CN108369956A - 铁电电容器、铁电场效应晶体管及在形成包含导电材料与铁电材料的电子组件时使用的方法 - Google Patents

铁电电容器、铁电场效应晶体管及在形成包含导电材料与铁电材料的电子组件时使用的方法 Download PDF

Info

Publication number
CN108369956A
CN108369956A CN201680070615.9A CN201680070615A CN108369956A CN 108369956 A CN108369956 A CN 108369956A CN 201680070615 A CN201680070615 A CN 201680070615A CN 108369956 A CN108369956 A CN 108369956A
Authority
CN
China
Prior art keywords
ferroelectric
ferroelectricity
composite stack
insulating material
method described
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680070615.9A
Other languages
English (en)
Other versions
CN108369956B (zh
Inventor
A·A·恰范
D·V·N·拉马斯瓦米
M·纳哈尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to CN202110941803.7A priority Critical patent/CN113644194A/zh
Publication of CN108369956A publication Critical patent/CN108369956A/zh
Application granted granted Critical
Publication of CN108369956B publication Critical patent/CN108369956B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28097Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a metallic silicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • H01L29/4975Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2 being a silicide layer, e.g. TiSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1434Memory
    • H01L2924/1435Random access memory [RAM]
    • H01L2924/1441Ferroelectric RAM [FeRAM or FRAM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种在形成包含导电材料与铁电材料的电子组件时使用的方法包含在衬底上方形成非铁电含金属氧化物的绝缘体材料。在所述衬底上方形成包含至少两种不同组合物非铁电金属氧化物的复合堆叠。所述复合堆叠具有至少1×102西门子/厘米的总体导电率。使用所述复合堆叠来使所述非铁电含金属氧化物的绝缘体材料变为铁电的。在所述复合堆叠及所述绝缘体材料上方形成导电材料。本发明还揭示独立于制造方法的铁电电容器及铁电场效应晶体管。

Description

铁电电容器、铁电场效应晶体管及在形成包含导电材料与铁 电材料的电子组件时使用的方法
技术领域
本文中所揭示的实施例涉及铁电电容器、涉及铁电场效应晶体管及涉及在形成包含导电材料与铁电材料的电子组件时使用的方法。
背景技术
存储器是一种类型的集成电路,且在计算机系统中用于存储数据。可将存储器制作成一或多个个别存储器单元阵列。可使用数字线(其也可称为位线、数据线、感测线或数据/感测线)及存取线(其也可称为字线)来写入或读取存储器单元。所述数字线可沿着阵列的列以导电方式互连存储器单元,且所述存取线可沿着阵列的行以导电方式互连存储器单元。每一存储器单元可通过数字线与存取线的组合而唯一地寻址。
存储器单元可是易失性的或非易失性的。非易失性存储器单元可存储数据达经延长时间段(包括当计算机关断时)。易失性存储器耗散且因此在许多例子中需要每秒多次地经刷新/经重新写入。不管如何,存储器单元经配置以将存储器保持或存储于至少两个不同可选择状态中。在二进制系统中,将所述状态视为“0”或“1”。在其它系统中,至少一些个别存储器单元可经配置以存储多于两个信息等级或信息状态。
电容器是可在存储器单元中使用的一种类型的电子组件。电容器具有由电绝缘材料分离的两个电导体。作为电场的能量可以静电方式存储于此材料内。一种类型的电容器是具有作为绝缘材料的至少部分的铁电材料的铁电电容器。铁电材料由具有两个稳定极化状态表征且借此可包含存储器单元的可编程材料。铁电材料的极化状态可通过施加适合的编程电压而改变,且在移除编程电压之后保持(至少达一时间)。每一极化状态具有与另一极化状态不同的电荷存储电容,且理想地所述电荷存储电容可用于在不反转极化状态(直到期望如此反转为止)的情况下写入(即,存储)及读取存储器状态。较不合意的是,在具有铁电电容器的一些存储器中,读取存储器状态的动作可反转极化。因此,在确定极化状态之后,即刻进行向存储器单元的重新写入以在极化状态的确定之后立即使存储器单元进入预读取状态。不管如何,由于形成电容器的一部分的铁电材料的双稳定特性,因此并入有铁电电容器的存储器单元理想地是非易失性的。一种类型的存储器单元具有以串联方式与铁电电容器电耦合的选择装置。
场效应晶体管是可在存储器单元中使用的另一类型的电子组件。这些晶体管包含在其之间具有半导电沟道区域的一对导电源极/漏极区域。导电栅极邻近所述沟道区域且通过薄栅极绝缘体材料与其分离。将适合电压施加到所述栅极允许电流穿过所述沟道区域从所述源极/漏极区域中的一者流动到另一者。当从所述栅极移除所述电压时,很大程度上防止电流流动穿过所述沟道区域。场效应晶体管也可包括额外结构,举例来说,作为栅极构造的一部分的可逆地可编程电荷存储区域。另外或另一选择是,可在存储器单元中使用除场效应晶体管之外的晶体管,举例来说,双极晶体管。
一种类型的晶体管是铁电场效应晶体管(FeFET),其中栅极构造的至少某一部分包含铁电材料。再次,此些材料由两个稳定极化状态表征。场效应晶体管中的这些不同状态可由针对晶体管的不同阈值电压(Vt)或由针对选定操作电压的不同沟道导电率表征。可通过施加适合的编程电压而改变铁电材料的极化状态,且此导致高沟道电导或低沟道电导中的一者。通过铁电极化状态引发的高及低电导在移除编程栅极电压之后保持(至少达一时间)。可通过施加小漏极电压(其并不干扰铁电极化)而读取沟道电导的状态。
可在除存储器电路之外的电路中使用电容器及晶体管。
附图说明
图1是根据本发明的实施例的工艺中的衬底片段的图解性截面图。
图2是处于在由图1所展示的处理步骤之后的处理步骤处的图1衬底的图式。
图3是处于在由图2所展示的处理步骤之后的处理步骤处的图2衬底的图式。
图4是根据本发明的实施例的工艺中的衬底片段的图解性截面图。
图5是根据本发明的实施例的工艺中的衬底片段及根据本发明的实施例的衬底片段的图解性截面图。
图6是根据本发明的实施例的工艺中的衬底片段及根据本发明的实施例的衬底片段的图解性截面图。
图7是根据本发明的实施例的工艺中的衬底片段及根据本发明的实施例的衬底片段的图解性截面图。
图8是根据本发明的实施例的工艺中的衬底片段及根据本发明的实施例的衬底片段的图解性截面图。
图9是根据本发明的实施例的工艺中的衬底片段及根据本发明的实施例的衬底片段的图解性截面图。
图10是根据本发明的实施例的工艺中的衬底片段及根据本发明的实施例的衬底片段的图解性截面图。
具体实施方式
本发明的实施例囊括一种在形成包含导电材料与铁电材料的电子组件时使用的方法。本发明的实施例也囊括独立于制造方法的铁电电容器。本发明的实施例也囊括独立于制造方法的铁电场效应晶体管。
参考图1,最初将关于包含基底衬底12且可包含半导体衬底的实例性衬底片段10描述方法实施例。在本文件的上下文中,术语“半导体衬底”或“半导电衬底”经定义为意指包含半导电材料的任何构造,所述半导电材料包括但不限于块体半导电材料(例如,半导电晶片)(单独地或以其上包含其它材料的组合件方式)及半导电材料层(单独地或以包含其它材料的组合件方式)。术语“衬底”是指任何支撑结构,包括但不限于上文所描述的半导电衬底。材料在可图1所描绘的材料的旁边、竖立在所描绘的材料里面或竖立在所描绘的材料外面。举例来说,可将集成电路的其它经部分或完全制作的组件设置于片段10周围或片段10内的某处。
衬底12可包含导电/导体材料(即,在本文中导电)、半导电材料或绝缘/绝缘体材料(即,在本文中电绝缘)中的任何一或多者。在本文件的上下文中,导体/导电材料具有至少3×104西门子/厘米的组成固有导电率(即,在本文中的各处,在20℃下),所述组成固有导电率与可通过正电荷或负电荷穿过原本固有地绝缘的薄材料的移动而发生的导电率形成对照。绝缘体/绝缘材料具有不大于1×10-9西门子/厘米的组成固有导电率(即,其具电阻性,与导电或半导电形成对照)。本文中所描述的材料、区域及结构中的任一者可是同质的或非同质的,且不管如何在其上覆的任何材料上方可是连续的或不连续的。此外,除非另外陈述,否则可使用任何适合的或尚待开发的技术形成每一材料,其中原子层沉积、化学气相沉积、物理气相沉积、外延生长、扩散掺杂及离子植入是实例。
已在衬底12上方形成非铁电含金属氧化物的绝缘体材料14。可使用任何适合的现有或尚待开发的非铁电含金属氧化物的绝缘体材料。在一个实施例中,非铁电绝缘体材料包含过渡金属氧化物:锆、氧化锆、铪、氧化铪、钛酸锆铅、氧化钽、氧化锶、氧化锶钛、氧化钛及钛酸钡锶中的一或多者,且过渡金属氧化物中可具有包含硅、铝、镧、钇、铒、钙、镁、锶、镥、镝、钆、镨、铬、铌、钽、铪、锆、钒锰、钴、镍、碳及任何其它稀土元素中的一或多者的掺杂剂。一个特定实例包括其中具有适合的掺杂剂的基于铪及锆的氧化物。其它实例包括其中具有适合的掺杂剂的基于铪及硅的氧化物;其中具有适合的掺杂剂的基于钇及锆的氧化物;及基于铪、硅及锆的氧化物。可以任何相(例如,非晶或结晶)沉积绝缘体材料14且此相可在后续处理期间保持或改变。以实例方式,可使用博斯克(Boeske)等人的第7,709,359号美国专利及/或博斯克的第8,304,823号美国专利中所描述的非铁电含金属氧化物的绝缘体材料中的任一者,且此些参考以引用方式并入本文中。
绝缘体材料14的实例性厚度是从约10埃到约200埃,且在一个实施例中从约30埃到约90埃。在此文件中,“厚度”本身(无先前指向性形容词)定义为与具不同组合物的紧邻材料或紧邻区域的最接近表面垂直穿过给定材料或区域的平均直线距离。另外,本文中所描述的各种材料及区域可是基本上恒定厚度或可变厚度。如果是可变厚度,那么除非另外指示,否则厚度是指平均厚度,且由于厚度是可变的因此此材料或区域将具有某一最小厚度及某一最大厚度。如本文中所使用,“不同组合物”仅要求具两种状态的材料或区域的可彼此直接抵靠的那些部分在化学上及/或在物理上不同(举例来说,如果此些材料或区域是不同质的)。如果两种状态的材料或区域彼此不直接抵靠,那么“不同组合物”仅要求两种状态的材料或区域的彼此最接近的那些部分在化学上及/或在物理上不同(如果此些材料或区域是不同质的)。在此文件中,当存在材料、区域或结构相对于彼此的至少某一物理接触触点时,所陈述的材料、区域或结构“直接抵靠”另一者。相比来说,前面无“直接地”的“在...上方”、“在...上”、“邻近”、“沿着”及“抵靠”囊括“直接抵靠”以及其中介入材料、区域或结构导致所陈述的材料、区域或结构相对于彼此的无物理接触触点的构造。
参考图2,已在衬底12上方(且在一个实施例中如所展示在含金属氧化物的绝缘体材料14上方)形成包含至少两种不同组合物非铁电金属氧化物的复合堆叠16。在本文件的上下文中,“复合堆叠”意指包含多个层的构造,其中至少两种不同组合物非铁电金属氧化物中的个别者是在不同层中且不排除至少一些紧邻层的互混。“层(layer及layers)”的使用并不要求将层毯覆或完全覆盖在下伏材料上方,而是层在下伏材料上方层可是不连续的或仅经部分地接纳。不管如何,复合堆叠具有至少1×102西门子/厘米的总体导电率。在一个实施例中,复合堆叠具有不大于1×103西门子/厘米的总体导电率。复合堆叠16的实例性总体厚度是从约5埃到约50埃,且在一个实施例中从约10埃到约20埃。
在一个理想实施例中且如所展示,复合堆叠16及含金属氧化物的绝缘体材料14形成为彼此直接抵靠。在一个实施例中,所述至少两种不同组合物非铁电金属氧化物中的每一者具有至少1×102西门子/厘米的导电率。在一个实施例中,所述至少两种不同组合物非铁电金属氧化物中的至少一者不具有至少1×102西门子/厘米的导电率(即,使另一非铁电金属氧化物材料的组合物及体积充分使得总体复合堆叠具有至少1×102西门子/厘米的导电率)。在一个实施例中,所述至少两种不同组合物非铁电金属氧化物是从以下各项当中选出:TiOx、AlOx、Al2O3、ScOx、Sc2O3、ZrOx、YOx、Y2O3、MgOx、MgO、HfOx、SrOx、SrO、TaxOy、NbOx、GdOx、MoOx、RuOx、LaOx、VxOy、IrOx、CrOx、ZnOx、PrOx、CeOx、SmOx及LuOx,其中如本文中针对氧化物在经验公式中使用的“x”是任何适合的数字使得材料中的至少某种包含分子氧化物,但其可能未必在所有材料中都是总体化学计量或甚至此材料的大部分是化学计量。可取决于组合物中的金属原子及氧原子的量而实现所要导电率/电阻率。
图2将复合堆叠16描绘为包含四个层18、20、22及24,其中每一层仅以实例方式展示为具有相同恒定厚度。可使用较少层(即,不同组合物的至少两个层)或可使用多于四个层,且与是否为相同相应厚度、不同相应厚度、相同或不同可变厚度等无关。在一个实施例中,将复合堆叠形成为包含仅两种不同组合物非铁电金属氧化物(例如,按上文仅两种不同组合物非铁电金属氧化物是从以下各项当中选出:TiOx、AlOx、Al2O3、ScOx、Sc2O3、ZrOx、YOx、Y2O3、MgOx、MgO、HfOx、SrOx、SrO、TaxOy、NbOx、GdOx、MoOx、RuOx、LaOx、VxOy、IrOx、CrOx、ZnOx、PrOx、CeOx、SmOx及LuOx)。在一个实施例中,将复合堆叠形成为包含两种不同组合物非铁电金属氧化物中的每一者的两个交替层(且在一个实施例中仅两个交替层)(例如,A/B/A/B,其中A及B仅是TiOx、AlOx、Al2O3、ScOx、Sc2O3、ZrOx、YOx、Y2O3、MgOx、MgO、HfOx、SrOx、SrO、TaxOy、NbOx、GdOx、MoOx、RuOx、LaOx、VxOy、IrOx、CrOx、ZnOx、PrOx、CeOx、SmOx及LuOx中的两个不同者)。在一个实施例中,将所述复合堆叠形成为基本上由所述至少两种不同组合物非铁电金属氧化物组成。然而在另一实施例中,将复合堆叠形成为包含额外材料,举例来说另外包含SiOx(例如,在复合堆叠内及/或作为复合堆叠的竖立最外或最内层)。
参考图3,已在复合堆叠16及绝缘体材料14上方形成导电材料26,且在一个实施例中如所展示直接抵靠复合堆叠16。在一个实施例中,复合堆叠16比导电材料26的导电率低。导电材料26的实例性厚度是50埃。可使用任何适合的导电材料,其中元素金属、两种或多于两种元素金属的合金、导电金属化合物及导电掺杂半导电材料是实例。
根据方法实施例,使用复合堆叠16来使非铁电含金属氧化物的绝缘体材料14变为铁电的。复合堆叠16在成品电路构造中保持非铁电。材料14在从非铁电到铁电的转换之前及之后均是绝缘的。包含至少两种不同组合物非铁电金属氧化物的复合堆叠能够使非铁电含金属氧化物的绝缘体材料14变为铁电的。在一个实施例中,在形成导电材料26中的任一者之前使含金属氧化物的绝缘体材料14变为铁电的。另一选择是,在形成导电材料26中的一些或所有之后使含金属氧化物的绝缘体材料14变为铁电的。
在一个实施例中,在复合堆叠16在非铁电含金属氧化物的绝缘体材料14上方的沉积期间,使用复合堆叠16来使绝缘体材料14变为铁电的。仅作为用于将复合堆叠16沉积为TiOx与ZrOx的交替层的化学气相沉积方法中的一个实例,五甲基环戊二烯基三甲醇钛、三(二甲基胺基)环戊二烯基锆及臭氧可分别用作钛、锆及氧的前驱物。实例性相应流率是100sccm到2,000sccm、100sccm到2,000sccm及1,000sccm到20,000sccm。实例性温度及压力范围是200℃到350℃及0.1托到5托。可或可不使用等离子体(无论是直接或远程)。此些实例性沉积条件将足以在复合堆叠16的沉积期间使非铁电材料14变为铁电的。可由所属领域的技术人员确定及选定替代条件(一些包括不同前驱物)。
在一个实施例中,在复合堆叠16在非铁电含金属氧化物的绝缘体材料14上方的沉积之后,使用复合堆叠16来使绝缘体材料14变为铁电的。此些实例性条件包括在炉中使用具有至少350℃的周围环境或衬底温度、从0.1托到7,600托的压力的惰性气氛退火达至少5秒。可使用复合堆叠16来使非铁电含金属氧化物的绝缘体材料14部分地在复合堆叠16的沉积期间且部分地在复合堆叠16的沉积之后变为铁电的。
接下来,参考图4及衬底片段10a描述以上关于图1到3描述和展示的实施例方法的在形成电子组件时使用的替代实施例方法。已在适当情况下使用来自上文所描述的实施例的相同编号,其中一些构造差异是以后缀“a”或以不同编号指示。衬底片段10a包含非铁电含金属氧化物的绝缘材料28,所述非铁电含金属氧化物的绝缘材料在包含电子组件的成品电路构造中是非铁电的。因此,上文关于图1所描述的处理将稍微不同,在于非铁电含金属氧化物的绝缘体材料14形成于绝缘材料28上方(且在一个实施例中直接抵靠绝缘材料)。实例性非铁电绝缘材料28包括第5页第13行到第5页第27行中的任何绝缘非铁电金属氧化物。绝缘材料28的实例性厚度范围是从约1埃到约10埃,且在一个实施例中从约2埃到约5埃。绝缘材料28可促进或用于在非铁电含金属氧化物的绝缘体材料14中(在最初形成时)及/或在变为铁电的含金属氧化物的绝缘体材料14(即,在其变为铁电之后)中引发所要结晶结构。可在图4实施例中使用如上文在图1到3中所描述及/或所展示的任何其它属性或方面。
可关于衬底片段10/10a进行如下文所描述的后续处理。举例来说,图5展示已对绝缘体材料14、复合堆叠16及导电材料26进行图案化以形成铁电场效应晶体管35的铁电栅极构造30,其中铁电材料14充当栅极绝缘体。基底衬底12可包含用以提供操作地接近栅极构造30的半导电沟道32及在基底衬底的相对侧上的一对源极/漏极区域34的经适合掺杂半导电材料。使非铁电材料14变为铁电的可发生在由图5所描绘的图案化之前或之后。此外且不管如何,尽管展示简单平面及水平铁电场效应晶体管35,但也可形成垂直、凹陷、非线性沟道构造等,且无论现有或尚待开发。在此文件中,“水平”是指沿着在制作期间相对于其处理衬底的主要表面的大体方向,且“垂直”是大体正交于其的方向。此外,如本文中所使用的“垂直”及“水平”是在三维空间中独立于衬底的定向而相对于彼此大体垂直的方向。进一步在此文件中,“竖直”、“上部”、“下部”、“顶部”、“底部”及“下面”是指相对于上面制作电路的基底衬底的垂直方向。
上文所描述的处理在形成复合堆叠16之前形成绝缘体材料14。另一选择是,可在形成绝缘体材料14之前形成复合堆叠16。在一个此类实施例中,在衬底上方形成包含至少两种不同组合物非铁电金属氧化物的复合堆叠。复合堆叠具有至少1×102西门子/厘米的总体导电率。在复合堆叠上方形成含金属氧化物的绝缘体材料且在一个实施例中,通过使用所述复合堆叠来使所述绝缘体材料变为铁电的而使所述绝缘体材料在其最初形成之后即刻变为铁电的,所述绝缘体材料原本将为在不存在(即,如果没有)所述复合堆叠的情况下在相同条件(例如,相同处理器制成模型、前驱物、流率、温度、压力、时间等所有条件)下形成的非铁电含金属氧化物的绝缘体材料。仅作为形成此铁电含金属氧化物的绝缘体材料的一个实例,可使用任何适合的前驱物以及200℃到350℃及0.1托到5托的温度及压力范围,并且在有或无等离子体的情况下进行化学气相沉积。在所述复合堆叠及所述绝缘体材料上方形成导电材料。可使用如上文所展示及/或所描述的任何其它属性或方面。
图6展示铁电场效应晶体管35b的实例性替代铁电栅极构造30b。已在适当情况下使用来自上文所描述的实施例的相同编号,其中一些构造差异是以后缀“b”指示。已展示复合堆叠16形成于沟道32上方(且在一个实施例中直接抵靠沟道),且在绝缘体材料14的形成之前形成。导电材料26形成于绝缘体材料14上方(且在一个实施例中直接抵靠绝缘体材料)。可使用如上文所展示及/或所描述的任何其它属性或方面。
图7中关于衬底片段10c展示可利用本发明的方法实施例制作的替代实例性构造。已在适当情况下使用来自上文所描述的实施例的相同编号,其中一些构造差异是以后缀“c”或以不同编号指示。衬底10c包含铁电电容器40。此可通过在图1的基底衬底12上方形成非铁电含金属氧化物的绝缘体材料14之前在基地衬底上方形成导体材料42而制作。导体材料42可包含上文针对导电材料26所描述的材料中的任一者,且导体材料42及导电材料26相对于彼此可具有相同组合物或不同组合物(及相同或不同厚度)。处理可在其它方面以上文所描述的方式中的任一者发生。导电材料26、复合堆叠16、绝缘体材料14及导体材料42展示为然后被图案化成铁电电容器构造40。可使用复合堆叠16来使绝缘体材料14在由图7展示的实例性图案化之前、之后、期间(或其中两者)变为铁电的。
图8展示根据上文的实例性方法实施例制造的替代实施例铁电电容器40d,借此已在形成绝缘体材料14之前形成复合堆叠16。已在适当情况下使用来自上文所描述的实施例的相同编号,其中一些构造差异是以后缀“d”指示。可使用如上文所展示及/或所描述的任何其它属性或方面。
上文所描述的实施例形成单个复合堆叠区域16。图9展示包含两个复合堆叠16的替代实例性铁电电容器构造40e。已在适当情况下使用来自上文所描述的实施例的相同编号,其中一些构造差异是以后缀“e”指示。复合堆叠16无需相对于彼此具有相同构造及/或组合物,且可理想地相对于彼此具有不同构造及/或组合物。可使用如上文所展示及/或所描述的任何其它属性或方面。
如图10中所展示,也可制作具有带有多于一个复合堆叠区域16的栅极构造35f的铁电场效应晶体管30f。已在适当情况下使用来自上文所描述的实施例的相同编号,其中在图10中一些构造差异是以后缀“f”指示。可使用如上文所展示及/或所描述的任何其它属性或方面。
本发明的实施例包括独立于制造方法的铁电电容器,例如,在图7到9中展示的铁电电容器40、40d及40e。根据本发明的装置实施例的此铁电电容器包含两个导电电容器电极(例如,材料26及42),所述两个导电电容器电极在其之间具有铁电材料(例如,铁电绝缘体材料14,且与其是否包括氧化物材料无关)。非铁电材料是在所述导电电容器电极中的至少一者与所述铁电材料之间。非铁电材料包含至少两种不同组合物非铁电金属氧化物的复合堆叠(例如,复合堆叠16)。非铁电材料具有至少1×102西门子/厘米的总体导电率且比非铁电材料较接近的导电电容器电极(例如,图7中的电极26及图8中的电极42)的导电率低。铁电材料可在导电电容器电极中的仅一者与铁电材料之间(例如,图7或8),或可在导电电容器电极中的每一者与铁电材料之间(例如,图9)。如上文在方法实施例中所描述的任何其它属性可用于或施加于根据本发明的独立于制造方法的铁电电容器装置构造中。
本发明的实施例包含独立于制造方法的铁电场效应晶体管。此晶体管包含在其之间具有半导电沟道(例如,沟道32)的一对源极/漏极区域(例如,区域34)。此铁电场效应晶体管还包含包括铁电栅极绝缘体材料(例如,材料14,且与是否包含氧化物材料无关)及导电栅极电极(例如,材料26)的栅极构造(例如,构造30/30b/30f)。铁电场效应晶体管也在a)铁电栅极绝缘体材料与导电栅极电极及b)铁电栅极绝缘体材料与沟道中的至少一者之间包含非铁电材料。非铁电材料包含至少两种不同组合物非铁电金属氧化物的复合堆叠(例如,复合堆叠16)。非铁电材料具有至少1×102西门子/厘米的总体导电率且比栅极电极的导电率低。图5、6及10描绘仅此三个实例性实施例,且可在根据本发明的独立于制造方法的铁电场效应晶体管装置构造中采用如上文关于方法实施例所描述的任何其它属性。
形成不包括复合堆叠16的构造的前导工艺要求导电材料26的组合物针对非铁电含金属氧化物的绝缘体材料14为TiN,非铁电含金属氧化物的绝缘体材料14经沉积(且因此在形成TiN期间及/或之后)随后变为铁电的。TiN可并不在所有成品电路构造中均是合意的,且复合堆叠16的提供使得能够使用除TiN之外的导电材料26的组合物(例如,例如IrOx、SrRuO3、RuOx及LSCO的导电金属氧化物;例如TiSix、TaSix及RuSix的硅化物;WNxSiy;Ru;及例如TiAlN、TaN、WNx、TiSixNy、TaSixNy、RuSixNy及RuSixTiyNz的其它导电金属氮化物)。使用除TiN之外的导电材料可降低所需的对衬底的总体热处理。此外,使用除TiN之外的导电电极材料可改善铁电材料在总体电子组件中的性能。然而,在一个实施例中,导电材料26包含TiN且在另一实施例中无TiN。在导电材料26与绝缘体材料14之间仅提供非铁电金属氧化物材料的单个组合物(此在本发明的范围之外)是不足的,因为其要求专用沉积后退火及/或产生到所要结晶相的较低程度的转换,无论最初是非晶型或最初是非所要结晶相。
使用如本文中所描述的复合堆叠可改善工作周期性能。举例来说,考虑包含根据前导技术制造的在其之间具有65埃铁电电容器绝缘体的TiN顶部及底部电极的铁电电容器(即,在不存在本文中所描述的复合堆叠的情况下在所述电极之间的单个同质绝缘体组合物)。考虑根据本发明制造的包含相同65埃铁电电容器绝缘体且另外具有包含在顶部TiN电容器电极与65埃铁电电容器绝缘体之间的材料A及材料B的四个交替层(约15埃的总厚度)的复合堆叠的构造,其中材料A及材料B仅是TiOx、AlOx、ScOx、ZrOx、YOx、MgOx、HfOx、SrOx、TaxOy、NbOx、GdOx、MoOx、RuOx、LaOx、VxOy、IrOx、CrOx、ZnOx、PrOx、CeOx、SmOx及LuOx中的两个不同者。根据本发明制造的此构造显示经改善工作周期性能。
总结
在一些实施例中,一种在形成包含导电材料与铁电材料的电子组件时使用的方法包含在衬底上方形成非铁电含金属氧化物的绝缘体材料。在所述衬底上方形成包含至少两种不同组合物非铁电金属氧化物的复合堆叠。所述复合堆叠具有至少1×102西门子/厘米的总体导电率。使用所述复合堆叠来使非铁电含金属氧化物的绝缘体材料变为铁电的。在所述复合堆叠及所述绝缘体材料上方形成导电材料。
在一些实施例中,一种在形成包含导电材料与铁电材料的电子组件时使用的方法包含在衬底上方形成包含至少两种不同组合物非铁电金属氧化物的复合堆叠。所述复合堆叠具有至少1×102西门子/厘米的总体导电率。在所述复合堆叠上方形成含金属氧化物的绝缘体材料且使其在最初形成之后即刻变为铁电的,此是通过使用所述复合堆叠使原本将变为在不存在所述复合堆叠的情况下在相同条件下形成的非铁电含金属氧化物的绝缘体材料变为铁电的而实现。在所述复合堆叠及所述绝缘体材料上方形成导电材料。
在一些实施例中,铁电电容器包含在其之间具有铁电材料的两个导电电容器电极。非铁电材料是在所述导电电容器电极中的至少一者与所述铁电材料之间。所述非铁电材料包含包括至少两种不同组合物非铁电金属氧化物的复合堆叠。所述非铁电材料具有至少1×102西门子/厘米的总体导电率且比非铁电材料较接近的导电电容器电极的导电率低。
在一些实施例中,铁电场效应晶体管包含在其之间具有半导电沟道的一对源极/漏极区域。并且,铁电场效应晶体管的栅极构造包含铁电栅极绝缘体材料及导电栅极电极。栅极构造也在a)所述铁电栅极绝缘体材料与所述导电栅极电极及b)所述铁电栅极绝缘体材料与所述沟道中的至少一者之间包括非铁电材料。所述非铁电材料包含包括至少两种不同组合物非铁电金属氧化物的复合堆叠。所述非铁电材料具有至少1×102西门子/厘米的总体导电率且比所述栅极电极的导电率低。
按照条例,已在语言上关于结构及方法特征较特定或较不特定描述本文中所揭示的标的物。然而,应理解,由于本文中所揭示的构件包含实例性实施例,因此权利要求书并不限于所展示及所描述的特定特征。因此,权利要求书是由字面措辞来提供完整范围,且根据等效内容的教义适当地予以解释。

Claims (30)

1.一种在形成包含导电材料与铁电材料的电子组件时使用的方法,所述方法包含:
在衬底上方形成非铁电含金属氧化物的绝缘体材料;
在所述衬底上方形成包含至少两种不同组合物非铁电金属氧化物的复合堆叠,所述复合堆叠具有至少1×102西门子/厘米的总体导电率;
使用所述复合堆叠来使所述非铁电含金属氧化物的绝缘体材料变为铁电的;及
在所述复合堆叠及所述绝缘体材料上方形成导电材料。
2.根据权利要求1所述的方法,其中所述复合堆叠具有不大于1×103西门子/厘米的总体导电率。
3.根据权利要求1所述的方法,其中在形成所述导电材料中的任一者之前使所述含金属氧化物的绝缘体材料变为铁电的。
4.根据权利要求1所述的方法,其包含在形成所述复合堆叠之前形成所述绝缘体材料。
5.根据权利要求1所述的方法,其包含在形成所述绝缘体材料之前形成所述复合堆叠。
6.根据权利要求1所述的方法,其中将所述复合堆叠形成为基本上由所述至少两种不同组合物非铁电金属氧化物组成。
7.根据权利要求1所述的方法,其中将所述复合堆叠形成为另外包含SiO2
8.根据权利要求1所述的方法,其包含将所述复合堆叠形成为比所述导电材料的导电率低。
9.根据权利要求1所述的方法,其包含将所述复合堆叠与所述绝缘体材料形成为彼此直接抵靠。
10.根据权利要求9所述的方法,其中将所述复合堆叠形成为基本上由所述至少两种不同组合物非铁电金属氧化物组成。
11.根据权利要求1所述的方法,其包含将所述导电材料形成为直接抵靠所述复合堆叠。
12.根据权利要求11所述的方法,其中将所述复合堆叠形成为基本上由所述至少两种不同组合物非铁电金属氧化物组成。
13.根据权利要求1所述的方法,其包含将所述导电材料形成为直接抵靠所述绝缘体材料。
14.根据权利要求1所述的方法,其包含在所述复合堆叠于所述非铁电含金属氧化物的绝缘体材料上方的沉积期间,使用所述复合堆叠来使所述绝缘体材料变为铁电的。
15.根据权利要求1所述的方法,其包含在所述复合堆叠于所述非铁电含金属氧化物的绝缘体材料上方的沉积之后,使用所述复合堆叠来使所述绝缘体材料变为铁电的。
16.根据权利要求1所述的方法,其包含将所述绝缘体材料、所述复合堆叠及所述导电材料图案化成铁电场效应晶体管栅极构造。
17.根据权利要求1所述的方法,其中在导体材料上方形成所述绝缘体材料,且所述方法进一步包含将所述导电材料、所述复合堆叠、所述绝缘体材料及所述导体材料图案化成铁电电容器构造。
18.根据权利要求1所述的方法,其中所述至少两种不同组合物非铁电金属氧化物中的每一者具有至少1×102西门子/厘米的导电率。
19.根据权利要求1所述的方法,其中所述至少两种不同组合物非铁电金属氧化物中的至少一者不具有至少1×102西门子/厘米的导电率。
20.根据权利要求1所述的方法,其包含将所述复合堆叠形成为仅包含两种不同组合物非铁电金属氧化物。
21.根据权利要求20所述的方法,其包含将所述复合堆叠形成为包含所述两种不同组合物非铁电金属氧化物中的每一者的两个交替层。
22.根据权利要求1所述的方法,其中所述至少两种不同组合物非铁电金属氧化物是从以下各项当中选出:TiOx、AlOx、Al2O3、ScOx、Sc2O3、ZrOx、YOx、Y2O3、MgOx、MgO、HfOx、SrOx、SrO、TaxOy、NbOx、GdOx、MoOx、RuOx、LaOx、VxOy、IrOx、CrOx、ZnOx、PrOx、CeOx、SmOx及LuOx
23.根据权利要求1所述的方法,其中在非铁电含金属氧化物的绝缘材料上方形成所述绝缘体材料,所述非铁电含金属氧化物的绝缘材料在包含所述电子组件的成品电路构造中是非铁电的。
24.根据权利要求23所述的方法,其包含将所述绝缘体材料形成为直接抵靠所述非铁电含金属氧化物的绝缘材料。
25.根据权利要求23所述的方法,其包含使用所述非铁电含金属氧化物的绝缘材料来在所述绝缘体材料最初形成时且在其是非铁电时在所述绝缘体材料中引发所要结晶结构。
26.根据权利要求23所述的方法,其包含使用所述非铁电含金属氧化物的绝缘材料来在所述变为铁电的含金属氧化物的绝缘体材料中引发所要结晶结构。
27.根据权利要求1所述的方法,其中所述导电材料包含以下各项中的一或多者:IrOx、SrRuO3、RuOx、LSCO、TiSix、TaSix、RuSix、WNxSiy、Ru、TiAlN、TaN、WNx、TiSixNy、TaSixNy、RuSixNy及RuSixTiyNz
28.一种在形成包含导电材料与铁电材料的电子组件时使用的方法,所述方法包含:
在衬底上方形成包含至少两种不同组合物非铁电金属氧化物的复合堆叠,所述复合堆叠具有至少1×102西门子/厘米的总体导电率;
在所述复合堆叠上方形成含金属氧化物的绝缘体材料且通过使用所述复合堆叠来使所述绝缘体材料变为铁电的而使所述绝缘体材料在其最初形成之后即刻变为铁电的,所述绝缘体材料原本将为在不存在所述复合堆叠的情况下在相同条件下形成的非铁电含金属氧化物的绝缘体材料;及
在所述复合堆叠及所述绝缘体材料上方形成导电材料。
29.一种铁电电容器,其包含:
两个导电电容器电极,其间具有铁电材料;及
所述导电电容器电极中的至少一者与所述铁电材料之间的非铁电材料,所述非铁电材料包含包括至少两种不同组合物非铁电金属氧化物的复合堆叠,所述非铁电材料具有至少1×102西门子/厘米的总体导电率且比所述非铁电材料较接近的所述导电电容器电极的导电率低。
30.一种铁电场效应晶体管,其包含:
一对源极/漏极区域,其间具有半导电沟道;及
栅极构造,其包含:
铁电栅极绝缘体材料;
导电栅极电极;及
以下各项中的至少一者之间的非铁电材料:a)所述铁电栅极绝缘体材料与所述导电栅极电极,及b)所述铁电栅极绝缘体材料与所述沟道;所述非铁电材料包含复合堆叠,所述复合堆叠包含至少两种不同组合物非铁电金属氧化物,所述非铁电材料具有至少1×102西门子/厘米的总体导电率且比所述栅极电极的导电率低。
CN201680070615.9A 2015-12-03 2016-11-21 铁电电容器、铁电场效应晶体管及在形成包含导电材料与铁电材料的电子组件时使用的方法 Active CN108369956B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110941803.7A CN113644194A (zh) 2015-12-03 2016-11-21 铁电电容器、铁电场效应晶体管及在形成包含导电材料与铁电材料的电子组件时使用的方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/958,182 US9876018B2 (en) 2015-12-03 2015-12-03 Ferroelectric capacitor, ferroelectric field effect transistor, and method used in forming an electronic component comprising conductive material and ferroelectric material
US14/958,182 2015-12-03
PCT/US2016/063046 WO2017095678A1 (en) 2015-12-03 2016-11-21 Ferroelectric capacitor, ferroelectric field effect transistor, and method used in forming an electronic component comprising conductive material and ferroelectric material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110941803.7A Division CN113644194A (zh) 2015-12-03 2016-11-21 铁电电容器、铁电场效应晶体管及在形成包含导电材料与铁电材料的电子组件时使用的方法

Publications (2)

Publication Number Publication Date
CN108369956A true CN108369956A (zh) 2018-08-03
CN108369956B CN108369956B (zh) 2021-08-31

Family

ID=58797884

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201680070615.9A Active CN108369956B (zh) 2015-12-03 2016-11-21 铁电电容器、铁电场效应晶体管及在形成包含导电材料与铁电材料的电子组件时使用的方法
CN202110941803.7A Pending CN113644194A (zh) 2015-12-03 2016-11-21 铁电电容器、铁电场效应晶体管及在形成包含导电材料与铁电材料的电子组件时使用的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202110941803.7A Pending CN113644194A (zh) 2015-12-03 2016-11-21 铁电电容器、铁电场效应晶体管及在形成包含导电材料与铁电材料的电子组件时使用的方法

Country Status (7)

Country Link
US (4) US9876018B2 (zh)
EP (1) EP3384532A4 (zh)
JP (2) JP6883038B2 (zh)
KR (3) KR102208970B1 (zh)
CN (2) CN108369956B (zh)
TW (1) TWI600057B (zh)
WO (1) WO2017095678A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112053951A (zh) * 2019-06-06 2020-12-08 美光科技公司 用于集成电路制造的方法
WO2023065195A1 (zh) * 2021-10-21 2023-04-27 华为技术有限公司 铁电器件、存储装置及电子设备

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017027744A1 (en) * 2015-08-11 2017-02-16 James Lin Integrated circuit including ferroelectric memory cells and methods for manufacturing
US11120884B2 (en) 2015-09-30 2021-09-14 Sunrise Memory Corporation Implementing logic function and generating analog signals using NOR memory strings
US9876018B2 (en) 2015-12-03 2018-01-23 Micron Technology, Inc. Ferroelectric capacitor, ferroelectric field effect transistor, and method used in forming an electronic component comprising conductive material and ferroelectric material
US9786345B1 (en) * 2016-09-16 2017-10-10 Micron Technology, Inc. Compensation for threshold voltage variation of memory cell components
US10957807B2 (en) * 2017-04-19 2021-03-23 The Board Of Trustees Of The University Of Alabama PLZT thin film capacitors apparatus with enhanced photocurrent and power conversion efficiency and method thereof
US10319426B2 (en) * 2017-05-09 2019-06-11 Micron Technology, Inc. Semiconductor structures, memory cells and devices comprising ferroelectric materials, systems including same, and related methods
CN109087997A (zh) * 2017-06-14 2018-12-25 萨摩亚商费洛储存科技股份有限公司 铁电膜层的制造方法、铁电隧道结单元、存储器元件及其写入与读取方法
WO2018236361A1 (en) * 2017-06-20 2018-12-27 Intel Corporation FERROELECTRIC FIELD EFFECT TRANSISTORS (FEFET) HAVING INTERFACE LAYER DESIGNED AS A BAND
WO2018236360A1 (en) * 2017-06-20 2018-12-27 Intel Corporation PHASE FIELD EFFECT TRANSISTORS HAVING FERROELECTRIC GRID DIELECTRICS
US10950384B2 (en) * 2017-08-30 2021-03-16 Micron Technology, Inc. Method used in forming an electronic device comprising conductive material and ferroelectric material
DE102018108152A1 (de) * 2017-08-31 2019-02-28 Taiwan Semiconductor Manufacturing Co. Ltd. Halbleiterbauelement und herstellungsverfahren davon
US11239361B2 (en) 2017-09-29 2022-02-01 Intel Corporation Multilayer insulator stack for ferroelectric transistor and capacitor
US10930751B2 (en) 2017-12-15 2021-02-23 Micron Technology, Inc. Ferroelectric assemblies
US10553673B2 (en) 2017-12-27 2020-02-04 Micron Technology, Inc. Methods used in forming at least a portion of at least one conductive capacitor electrode of a capacitor that comprises a pair of conductive capacitor electrodes having a capacitor insulator there-between and methods of forming a capacitor
US10748931B2 (en) 2018-05-08 2020-08-18 Micron Technology, Inc. Integrated assemblies having ferroelectric transistors with body regions coupled to carrier reservoirs
US11502103B2 (en) 2018-08-28 2022-11-15 Intel Corporation Memory cell with a ferroelectric capacitor integrated with a transtor gate
US11018229B2 (en) 2018-09-05 2021-05-25 Micron Technology, Inc. Methods of forming semiconductor structures
US10790145B2 (en) 2018-09-05 2020-09-29 Micron Technology, Inc. Methods of forming crystallized materials from amorphous materials
US10707298B2 (en) 2018-09-05 2020-07-07 Micron Technology, Inc. Methods of forming semiconductor structures
US20200098926A1 (en) * 2018-09-26 2020-03-26 Intel Corporation Transistors with ferroelectric gates
US11482529B2 (en) * 2019-02-27 2022-10-25 Kepler Computing Inc. High-density low voltage non-volatile memory with unidirectional plate-line and bit-line and pillar capacitor
CN113454779A (zh) 2019-03-06 2021-09-28 美光科技公司 具有耦合到载流子槽结构的晶体管主体区域的集成组合件;以及形成集成组合件的方法
US11063131B2 (en) * 2019-06-13 2021-07-13 Intel Corporation Ferroelectric or anti-ferroelectric trench capacitor with spacers for sidewall strain engineering
US11335790B2 (en) * 2019-09-20 2022-05-17 Sandisk Technologies Llc Ferroelectric memory devices with dual dielectric confinement and methods of forming the same
KR20210035553A (ko) * 2019-09-24 2021-04-01 삼성전자주식회사 도메인 스위칭 소자 및 그 제조방법
US11139315B2 (en) * 2019-10-31 2021-10-05 Qualcomm Incorporated Ferroelectric transistor
WO2021127218A1 (en) 2019-12-19 2021-06-24 Sunrise Memory Corporation Process for preparing a channel region of a thin-film transistor
KR102336608B1 (ko) * 2019-12-30 2021-12-09 울산과학기술원 트랜지스터, 이를 포함하는 삼진 인버터, 및 트랜지스터의 제조 방법
WO2021137432A1 (ko) * 2019-12-30 2021-07-08 울산과학기술원 트랜지스터, 이를 포함하는 삼진 인버터, 및 트랜지스터의 제조 방법
US11424268B2 (en) * 2020-01-08 2022-08-23 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and manufacturing method thereof
KR20210138993A (ko) * 2020-05-13 2021-11-22 삼성전자주식회사 박막 구조체 및 이를 포함하는 반도체 소자
US11569382B2 (en) * 2020-06-15 2023-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of fabricating the same
US11980037B2 (en) 2020-06-19 2024-05-07 Intel Corporation Memory cells with ferroelectric capacitors separate from transistor gate stacks
US11581335B2 (en) * 2020-06-23 2023-02-14 Taiwan Semiconductor Manufacturing Company Limited Ferroelectric tunnel junction devices with metal-FE interface layer and methods for forming the same
US20210399137A1 (en) * 2020-06-23 2021-12-23 Taiwan Semiconductor Manufacturing Company Limited Interfacial dual passivation layer for a ferroelectric device and methods of forming the same
US11302529B2 (en) * 2020-07-09 2022-04-12 Taiwan Semiconductor Manufacturing Company Ltd. Seed layer for ferroelectric memory device and manufacturing method thereof
US20220140146A1 (en) * 2020-10-30 2022-05-05 Applied Materials, Inc. Ferroelectric devices enhanced with interface switching modulation
US11545506B2 (en) * 2020-11-13 2023-01-03 Sandisk Technologies Llc Ferroelectric field effect transistors having enhanced memory window and methods of making the same
US11996462B2 (en) 2020-11-13 2024-05-28 Sandisk Technologies Llc Ferroelectric field effect transistors having enhanced memory window and methods of making the same
US11594553B2 (en) 2021-01-15 2023-02-28 Sandisk Technologies Llc Three-dimensional ferroelectric memory device containing lattice-matched templates and methods of making the same
US20220278115A1 (en) * 2021-02-26 2022-09-01 Taiwan Semiconductor Manufacturing Company, Ltd. Ferroelectric Memory Device and Method of Manufacturing the Same
US11557609B2 (en) * 2021-03-04 2023-01-17 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit structure and method of forming the same
TW202310429A (zh) 2021-07-16 2023-03-01 美商日升存儲公司 薄膜鐵電電晶體的三維記憶體串陣列
CN114023876B (zh) * 2021-10-29 2023-08-25 华中科技大学 一种基于HfO2/ZrO2或HfO2/Al2O3超晶格铁电忆阻器及其制备

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1165380A (zh) * 1996-03-13 1997-11-19 株式会社日立制作所 铁电元件及其制备方法
CN1302456A (zh) * 1999-04-29 2001-07-04 赛姆特里克斯公司 具有成分分级的铁电材料的铁电场效应晶体管及其制造方法
CN1358326A (zh) * 1999-06-10 2002-07-10 塞姆特里克斯公司 高介电常数的金属氧化物薄膜
US20020125518A1 (en) * 1999-09-28 2002-09-12 Haneder Thomas Peter Ferroelectric transistor
US20050040481A1 (en) * 2002-09-30 2005-02-24 Kabushiki Kaisha Toshiba Insulating film and electronic device
CN1212665C (zh) * 2001-10-26 2005-07-27 富士通株式会社 具有电极的电子器件及其制备
CN101047183A (zh) * 2006-03-31 2007-10-03 富士通株式会社 半导体器件及其制造方法
US20080001254A1 (en) * 2006-06-30 2008-01-03 Fujitsu Limited Semiconductor device and method of manufacturing the same
US7427515B2 (en) * 2004-03-31 2008-09-23 Fujitsu Limited Electronic element including ferroelectric substance film and method of manufacturing the same
US8304823B2 (en) * 2008-04-21 2012-11-06 Namlab Ggmbh Integrated circuit including a ferroelectric memory cell and method of manufacturing the same
CN104810269A (zh) * 2014-01-27 2015-07-29 格罗方德半导体公司 具有铁电氧化铪的半导体装置及形成该半导体装置的方法
US20150214323A1 (en) * 2010-10-07 2015-07-30 International Business Machines Corporation Engineering multiple threshold voltages in an integrated circuit

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444008A (en) * 1993-09-24 1995-08-22 Vlsi Technology, Inc. High-performance punchthrough implant method for MOS/VLSI
US5753934A (en) 1995-08-04 1998-05-19 Tok Corporation Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film
JP3310881B2 (ja) 1995-08-04 2002-08-05 ティーディーケイ株式会社 積層薄膜、電子デバイス用基板、電子デバイスおよび積層薄膜の製造方法
JP3891603B2 (ja) 1995-12-27 2007-03-14 シャープ株式会社 強誘電体薄膜被覆基板、キャパシタ構造素子、及び強誘電体薄膜被覆基板の製造方法
JPH10182292A (ja) * 1996-10-16 1998-07-07 Sony Corp 酸化物積層構造およびその製造方法
KR100219522B1 (ko) * 1997-01-10 1999-09-01 윤종용 단결정 강유전체막을 구비하는 반도체장치 및 그 제조방법
JP3103916B2 (ja) 1997-07-09 2000-10-30 ソニー株式会社 強誘電体キャパシタおよびその製造方法並びにそれを用いたメモリセル
JP3098474B2 (ja) * 1997-10-31 2000-10-16 日本電気株式会社 半導体装置の製造方法
JP3212930B2 (ja) * 1997-11-26 2001-09-25 日本電気株式会社 容量及びその製造方法
US6509601B1 (en) * 1998-07-31 2003-01-21 Samsung Electronics Co., Ltd. Semiconductor memory device having capacitor protection layer and method for manufacturing the same
US6339238B1 (en) 1998-10-13 2002-01-15 Symetrix Corporation Ferroelectric field effect transistor, memory utilizing same, and method of operating same
US6172385B1 (en) 1998-10-30 2001-01-09 International Business Machines Corporation Multilayer ferroelectric capacitor structure
US6495878B1 (en) 1999-08-02 2002-12-17 Symetrix Corporation Interlayer oxide containing thin films for high dielectric constant application
US6318647B1 (en) 1999-08-18 2001-11-20 The Procter & Gamble Company Disposable cartridge for use in a hand-held electrostatic sprayer apparatus
JP2002198495A (ja) 2000-12-25 2002-07-12 Sony Corp 半導体装置およびその製造方法
US7700454B2 (en) 2001-07-24 2010-04-20 Samsung Electronics Co., Ltd. Methods of forming integrated circuit electrodes and capacitors by wrinkling a layer that includes a high percentage of impurities
US6878980B2 (en) 2001-11-23 2005-04-12 Hans Gude Gudesen Ferroelectric or electret memory circuit
US6773930B2 (en) 2001-12-31 2004-08-10 Texas Instruments Incorporated Method of forming an FeRAM capacitor having a bottom electrode diffusion barrier
US7053433B1 (en) * 2002-04-29 2006-05-30 Celis Semiconductor Corp. Encapsulated ferroelectric array
US7164165B2 (en) * 2002-05-16 2007-01-16 Micron Technology, Inc. MIS capacitor
JP4331442B2 (ja) 2002-06-14 2009-09-16 富士通マイクロエレクトロニクス株式会社 強誘電体キャパシタ及びその製造方法並びに強誘電体メモリ
US7314842B2 (en) * 2002-10-21 2008-01-01 E.I. Du Pont De Nemours And Company Substituted barium titanate and barium strontium titanate ferroelectric compositions
DE10303316A1 (de) * 2003-01-28 2004-08-12 Forschungszentrum Jülich GmbH Schneller remanenter Speicher
KR20040070564A (ko) 2003-02-04 2004-08-11 삼성전자주식회사 강유전체 커패시터 및 그 제조방법
JP4901105B2 (ja) 2003-04-15 2012-03-21 富士通セミコンダクター株式会社 半導体装置の製造方法
JP3892424B2 (ja) * 2003-07-24 2007-03-14 松下電器産業株式会社 強誘電体容量素子の製造方法
JP2005101517A (ja) 2003-09-02 2005-04-14 Matsushita Electric Ind Co Ltd 容量素子及び半導体記憶装置
US7015564B2 (en) 2003-09-02 2006-03-21 Matsushita Electric Industrial Co., Ltd. Capacitive element and semiconductor memory device
JP4025316B2 (ja) 2004-06-09 2007-12-19 株式会社東芝 半導体装置の製造方法
US7180141B2 (en) * 2004-12-03 2007-02-20 Texas Instruments Incorporated Ferroelectric capacitor with parallel resistance for ferroelectric memory
US7220600B2 (en) 2004-12-17 2007-05-22 Texas Instruments Incorporated Ferroelectric capacitor stack etch cleaning methods
US7772014B2 (en) 2007-08-28 2010-08-10 Texas Instruments Incorporated Semiconductor device having reduced single bit fails and a method of manufacture thereof
US7709359B2 (en) 2007-09-05 2010-05-04 Qimonda Ag Integrated circuit with dielectric layer
US20090087623A1 (en) * 2007-09-28 2009-04-02 Brazier Mark R Methods for the deposition of ternary oxide gate dielectrics and structures formed thereby
KR20140004855A (ko) * 2012-07-03 2014-01-14 서울대학교산학협력단 음의 커패시턴스를 가지는 강유전체를 이용한 커패시터 소자
US8796751B2 (en) * 2012-11-20 2014-08-05 Micron Technology, Inc. Transistors, memory cells and semiconductor constructions
JP2014103226A (ja) * 2012-11-20 2014-06-05 Mitsubishi Materials Corp 強誘電体薄膜の製造方法
US20140147940A1 (en) * 2012-11-26 2014-05-29 Texas Instruments Incorporated Process-compatible sputtering target for forming ferroelectric memory capacitor plates
EP2979207A4 (en) 2013-10-10 2016-11-09 Yandex Europe Ag METHODS AND SYSTEMS FOR INDEXING SOURCE DATA FOR DATABASE DOCUMENTS AND FOR DOCUMENT LOCATION IN THE DATABASE
JP6062552B2 (ja) 2014-03-17 2017-01-18 株式会社東芝 不揮発性記憶装置
US9147689B1 (en) 2014-04-16 2015-09-29 Micron Technology, Inc. Methods of forming ferroelectric capacitors
US9755041B2 (en) * 2014-04-30 2017-09-05 Purdue Research Foundation NEMS devices with series ferroelectric negative capacitor
US10242989B2 (en) * 2014-05-20 2019-03-26 Micron Technology, Inc. Polar, chiral, and non-centro-symmetric ferroelectric materials, memory cells including such materials, and related devices and methods
US9530833B2 (en) * 2014-06-17 2016-12-27 Globalfoundaries Inc. Semiconductor structure including capacitors having different capacitor dielectrics and method for the formation thereof
CN105139886B (zh) 2015-07-24 2018-05-08 Tcl移动通信科技(宁波)有限公司 一种应用转接装置的音乐播放方法及系统
US9876018B2 (en) 2015-12-03 2018-01-23 Micron Technology, Inc. Ferroelectric capacitor, ferroelectric field effect transistor, and method used in forming an electronic component comprising conductive material and ferroelectric material

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1165380A (zh) * 1996-03-13 1997-11-19 株式会社日立制作所 铁电元件及其制备方法
CN1302456A (zh) * 1999-04-29 2001-07-04 赛姆特里克斯公司 具有成分分级的铁电材料的铁电场效应晶体管及其制造方法
CN1358326A (zh) * 1999-06-10 2002-07-10 塞姆特里克斯公司 高介电常数的金属氧化物薄膜
US20020125518A1 (en) * 1999-09-28 2002-09-12 Haneder Thomas Peter Ferroelectric transistor
CN1212665C (zh) * 2001-10-26 2005-07-27 富士通株式会社 具有电极的电子器件及其制备
US20050040481A1 (en) * 2002-09-30 2005-02-24 Kabushiki Kaisha Toshiba Insulating film and electronic device
US7427515B2 (en) * 2004-03-31 2008-09-23 Fujitsu Limited Electronic element including ferroelectric substance film and method of manufacturing the same
CN101047183A (zh) * 2006-03-31 2007-10-03 富士通株式会社 半导体器件及其制造方法
US20080001254A1 (en) * 2006-06-30 2008-01-03 Fujitsu Limited Semiconductor device and method of manufacturing the same
US8304823B2 (en) * 2008-04-21 2012-11-06 Namlab Ggmbh Integrated circuit including a ferroelectric memory cell and method of manufacturing the same
US20150214323A1 (en) * 2010-10-07 2015-07-30 International Business Machines Corporation Engineering multiple threshold voltages in an integrated circuit
CN104810269A (zh) * 2014-01-27 2015-07-29 格罗方德半导体公司 具有铁电氧化铪的半导体装置及形成该半导体装置的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112053951A (zh) * 2019-06-06 2020-12-08 美光科技公司 用于集成电路制造的方法
WO2023065195A1 (zh) * 2021-10-21 2023-04-27 华为技术有限公司 铁电器件、存储装置及电子设备

Also Published As

Publication number Publication date
KR20200100213A (ko) 2020-08-25
US11856790B2 (en) 2023-12-26
JP7265570B2 (ja) 2023-04-26
US9876018B2 (en) 2018-01-23
US20180102374A1 (en) 2018-04-12
US11552086B2 (en) 2023-01-10
JP6883038B2 (ja) 2021-06-02
WO2017095678A1 (en) 2017-06-08
JP2018536998A (ja) 2018-12-13
EP3384532A1 (en) 2018-10-10
KR20210011510A (ko) 2021-02-01
CN108369956B (zh) 2021-08-31
KR102415069B1 (ko) 2022-06-30
US20200373314A1 (en) 2020-11-26
KR102208970B1 (ko) 2021-01-29
TWI600057B (zh) 2017-09-21
US20170162587A1 (en) 2017-06-08
EP3384532A4 (en) 2019-07-17
US10748914B2 (en) 2020-08-18
JP2021073747A (ja) 2021-05-13
TW201730922A (zh) 2017-09-01
US20230121892A1 (en) 2023-04-20
CN113644194A (zh) 2021-11-12
KR20180076369A (ko) 2018-07-05

Similar Documents

Publication Publication Date Title
CN108369956A (zh) 铁电电容器、铁电场效应晶体管及在形成包含导电材料与铁电材料的电子组件时使用的方法
US11469043B2 (en) Electronic device comprising conductive material and ferroelectric material
CN110192279A (zh) 存储器单元及形成电容器的方法
US7791149B2 (en) Integrated circuit including a dielectric layer
US20090057737A1 (en) Integrated circuit with dielectric layer
US20140153312A1 (en) Memory cells having ferroelectric materials
TW201546803A (zh) 極性、對掌及非中心對稱鐵電材料,包含此材料之記憶體單元及相關之裝置及方法
US8722504B2 (en) Interfacial layer for DRAM capacitor
US8787066B2 (en) Method for forming resistive switching memory elements with improved switching behavior
KR20100035248A (ko) 비휘발성 기억소자 및 비휘발성 기억소자의 정보기록방법과정보판독방법
KR102433698B1 (ko) 커패시터 절연체를 사이에 갖는 전도성 커패시터 전극 쌍을 포함하는 커패시터의 적어도 하나의 전도성 커패시터 전극의 적어도 일 부분을 형성하는데 사용되는 방법 및 커패시터를 형성하는 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant