CN1061421A - 乳酸包装热塑性塑料 - Google Patents

乳酸包装热塑性塑料 Download PDF

Info

Publication number
CN1061421A
CN1061421A CN91109785A CN91109785A CN1061421A CN 1061421 A CN1061421 A CN 1061421A CN 91109785 A CN91109785 A CN 91109785A CN 91109785 A CN91109785 A CN 91109785A CN 1061421 A CN1061421 A CN 1061421A
Authority
CN
China
Prior art keywords
lactide
rac
lactic acid
composition
softening agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN91109785A
Other languages
English (en)
Inventor
R·G·辛克莱
J·R·普雷斯顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Battelle Memorial Institute Inc
Original Assignee
Battelle Memorial Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/579,460 external-priority patent/US5252642A/en
Priority claimed from US07/579,000 external-priority patent/US5216050A/en
Priority claimed from US07/579,005 external-priority patent/US5180765A/en
Application filed by Battelle Memorial Institute Inc filed Critical Battelle Memorial Institute Inc
Publication of CN1061421A publication Critical patent/CN1061421A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/53Polyethers; Polyesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/26Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/62Compostable, hydrosoluble or hydrodegradable materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1942Details relating to the geometry of the reactor round circular or disk-shaped spherical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/28Non-macromolecular organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

以乳酸为原料的四类可环境降解的热塑包装材 料:(1)主要为聚乳酸,增塑剂为乳酸、丙交酯的低聚 物,可用于代替聚乙烯等柔韧膜;(2)聚乳酸,重复单 元数450-10000,并且α-碳为D-或L-为主要量, 以及上述增塑剂,适于代替聚苯乙烯;(3)聚乳酸与另 一聚合物(PET,苯乙烯、乙烯、丙烯、氯乙烯……等的 聚合物或共聚物)物理混合而成,还有前述增塑剂,具 极好性能;(4)聚乳酸与可相容的弹性体聚合物的物 理混合物,后者提供抗冲击性能,还包括前述增塑 剂。

Description

本申请由下列四篇美国申请所得并要求优先权:题目为由聚乳酸制造的可生物降解的包装热塑性塑料的申请,其顺序号07/579005,1990年9月6日申请;题目为可生物降解的结晶聚苯乙烯的代替物的申请,其顺序号07/579465,1990年9月6日申请;题目为聚乳酸的共混物的申请,其顺序号07/579000,1990年9月6日申请;和题目为可降解的冲击改性的聚乳酸,其顺序号07/579460,1990年9月6日申请;所有上述申请以Battelle  Memorial  Institute为受让人。
本发明的第一主要实施方案关于增塑的可生物降解的L-丙交酯、D-丙交酯、D,L-丙交酯及其混合物的聚合物,它适用于非可生物降解的塑料(例如聚乙烯)通常适用的包装应用。本实施方案还关于由该聚合物生产的柔韧薄膜和其它包装产品的方法及其独特产品。本发明生产的产品实用性在于具有通常生成薄膜塑料的物理特性,还可生物降解。
本发明的第二个主要实施方案公开了一种材料及其生产这种材料的方法,该材料是一种弥补,是结晶聚苯乙烯的代替物,该结晶聚苯乙烯有时候称可取向的聚苯乙烯或为OPS,这种材料对结晶聚苯乙烯是一种弥补,但由聚酯组成,在环境中大约一年时间内能降解。这种材料是一种聚酯,它是由聚合的乳酸组成,它既可由D-乳酸又可由L-乳酸及D,L-乳酸来制备。两种聚合单体单元的比例、加工处理和有时含有某些辅助剂来确定结晶聚苯乙烯弥补严格需要所要求的精确的物理性质。因此,在大约90/10(L-乳酸/D,L-乳酸)的比例时,聚合的乳酸(PLA)呈现很好的热塑性性质,即透明、无色很硬挺。因此,它很适合制备薄膜、泡沫塑料和其它可处理或一次性使用塑料的热成型产品。用作包装塑料目的时,当留在环境中,聚乳酸很慢环境降解成无害的产品,这种无害消失能有助于减轻塑料污染环境产生的问题。
本发明第三个主要实施方案关于一般的热塑性塑料与聚乳酸共混,这就提供新颖的环境可降解热塑性塑料。环境可降解的热塑性塑料有各种各样的应用。
本发明的第四个主要实施方案关于可相容的弹性体与聚丙交酯共混,这就提供耐冲击改性的聚乳酸,用于各种各样的应用中,包括改性冲击的聚苯乙烯所用的那些应用中。
需要一种环境可生物降解的包装热塑性塑料以解决大量被抛弃的塑料包装材料。美国在1987年塑料销售量为537亿磅,其中用于包装用塑料为127亿磅。这种塑料大量被抛弃成为塑料污染物,成为损害风景的东西,威胁海洋生物。估计每年海鸟的死亡高达1-2百万只,海洋哺乳动物每年死亡为10万头。
随着塑料包装的处理所带来的问题,是与堆放场地减少有关,到二十世纪九十年代初,大多数主要城市可利用的固体废物处理堆放场地将被用尽,塑料约占固体废物重量的3%和体积的6%。
常用塑料的另一个不利因素是它基本来自石油,所生产的塑料取决于外国原油进口的不稳定性,较好的原料将来自更新的国内资源。
但是,使用包装塑料有好多理由,包装塑料以及有吸引力的包装物形式使用能提供令人满意的审美性,能很容易制造,并用特定的产品单元填充。包装保持清洁,贮存稳定,观察内包物所需性质(例如透明性)。生产这些包装物价格低廉,化学稳定性好是为人们所知,不过由于这种稳定性会导致塑料的寿命很长,以至当指定使用期结束后,抛弃的包装物继续保存在环境中极长时间。
由于乳酸的聚合物和共聚物是可生物降解、可生物相容和热塑性的,作为独特的物质已被知道一段时间。这些聚合物呈现很好的热塑性塑料,在动物体内,经过几个月到一年时间内的水解是100%可生物降解。在湿的环境中,几个星期以后就开始慢慢降解,如留在土地上或土地里或海水里,大约一年时间内消失。降解产物是乳酸、二氧化碳和水,所有这些都是无害的。
由本技术领域中熟练的人员来进行评价一种热塑性材料和其它材料的复合性质是不可预言的。因此,用结晶聚苯乙烯时,存在严格需要满意的聚苯乙烯的性能,已经开发了很多年满足结晶聚苯乙烯级的制造和最终使用规格。
实际上,将乳酸转变成它的环状二聚体丙交酯时,它就变成聚合单体。乳酸可潜在地从廉价原料如玉米淀粉或由发酵得到的玉米糖浆得到,或从石油化工原料如乙烯得到。丙交酯单体可通过一种催化熔体聚合转变成树脂,对于塑料生产者来说是众所周知的一般方法。由中间单体进行聚合时,允许树脂组成中的多变性。分子量能很容易控制。组成可随所需特殊性质而变化。
各种环酯,例如乙交酯、丙交酯和内酯的均聚物和共聚物在许多专利和科学出版物中已公开,早期的专利公开了聚合乳酸、丙交酯或其两者的方法,但是没有达到具有良好物理性能的高分子量聚合物,聚合物产物常是发粘的粘性物质,参看如美国专利1995970;2362511;2683136和3565869。Lowe专利(美国专利2668162)透露使用纯的乙交酯和丙交酯能达到高分子量的丙交酯的聚合物和共聚物。丙交酯和乙交酯的共聚物与均聚物相比较给予韧性和改进热塑加工性。强调着重于可取向冷拉伸纤维。薄膜被叙述为自支撑、或刚性、韧性的、并或是透明的或是不透明的。聚合物是高熔融和刚性的。美国专利3565869公开了在聚乙交酯中存在单体的典型状态-从产品中除去单体。在美国专利2396994中Filachione等公开了在强无机酸催化剂存在下由乳酸生产低分子量的聚乳酸的方法,在U.S.2438208中,Filachione等公开了用一种酸性酯化催化剂制备聚乳酸的连续方法。在U.S.4683288中,Tanaka等公开了用酸性粘土、活性粘土催化剂聚合或共聚合乳酸和√或乙醇酸。聚合物的平均分子量至少为5000,较好为5000-30000,在U.S.4789726中,Hutchinson公开了一种通过控制较高分子量聚酯的水解,生产特定低-中分子量的聚丙交酯或聚丙交酯-共-乙交酯的方法。
在专利和其它研制的文献中同样公开了由乳酸生产很坚固、结晶、可取向、刚性聚合物的聚合和共聚合的方法,该聚合物制造成纤维和辅助设备,它们是可生物降解和生物可相容的,有时称为可吸收的。聚合物通过水解慢慢地消失。参见例如美国专利2703316,2758987,3297033,3463158,3498957,3531561,3620218,3636956,3736646,3797499,3839297,3982543,4243775,4438253,4496446,4621638,欧洲专利申请Ep0146398,国际专利申请WO86/00533,和西德公开DE  2118127(1971)。美国专利4539981和4550449  Tunc报道适合辅助设备的高分子量物质,而在Ep  321176(1989)中Tunc公开了一种由聚丙交酯制造的取向的可再吸收热塑性塑料构件的方法,聚丙交酯是在美国专利4539981中所公开的。美国专利4603695公开了片状外科粘合预防物。美国专利4534349公开了复原性修补用模塑医学装置。R.G.Sinclair等对在Management  of  M  axillofacial  Trauma,I中所用的移植设备作了乙醇酸和乳酸为基底的制备和评价,AD748410,国家技术信息服务,制备和评价L-丙交酯和乙交酯的聚合物和共聚物,聚乙交酯聚合物是浅棕色,聚合物中掺有更多丙交酯时颜色加深,在第二系列聚合物中,丙交酯的均聚物是一种雪白结晶固体。
其它专利告知使用这些聚合物作为生物医药固定器、螺钉、钉、大头针和骨板的刚性外科元件。参看例如美国专利3739773,4060089和4279249。
控制释放装置、使用生物活性物质与丙交酯和/或乙交酯的聚合物和共聚物的混合物已被公开,参看例如美国专利3773919,3887699,4273920,4419340,4471077,4578384,在4728721中,Yamamoto等公开了用水或水和可溶于水的有机溶剂的混合物处理可生物降解的高分子量聚合物,以除去未反应的单体和低聚合度的聚合物。为了用作微胶囊的赋形剂,用直接综合制备分子量为2000至50000的聚乳酸和乳酸和乙醇酸的共聚物,由R.G.Sinclair发表在Environmental  Science  &Technology,7(10),955(1973)中。关于控制生物活性物质的释放的第五次国际讨论会的科学报告集,R.G.Science的论文,5.12和8.2.Akron  Press大学1978年。这些丙交酯聚合物和共聚物的应用需要韧性、或玻璃状光泽物质、并可抛光的,但没有透露用于热塑性包装材料中显尔易见的物理性质。R.G.Sinclair在生物医药使用和农药运送方面控制乳酸聚合物释放应用(Proc.of  the  First  Annual  Corn  Util.Conf.P221  6月11~12,1987)中讨论了丙交酯均聚物和与乙交酯和己内酯共聚物的一些优点。
丙交酯共聚物用于包装应用,在现有技术中一些记载已公开。因此,前述的Lowe专利,透明的自支撑薄膜是有名的丙交酯和乙交酯的共聚物。在美国专利2  2703316中    ,丙交酯聚合物被描述生成薄膜材料,具有韧性和可取向,公开的包装纸是韧的、柔软的和强劲的,或易弯曲的,但是为了获得柔韧性,聚丙交酯得用挥发性溶剂湿润,否则得到刚性和脆性聚合物。在现有技术中有一个实例告知要对丙交酯聚合物进行特殊改性处理才能获得柔韧性。美国专利2758987公开了L-丙交酯或D,L-丙交酯的均聚物,它可熔融压制成透明、强劲、取向的薄膜。聚(L-丙交酯)的性能如下,拉伸强度为29000psi,百分伸长为23%,拉伸模量为7  710000psi。聚(D,L-丙交酯)的性质是拉伸强度为26000psi,百分伸长为48和拉伸模量为260000psi。L-和D,L-丙交酯的共聚物(即是L-和D,L-乳酸的共聚物)仅公开的为50/50(重量)混合物。仅有的粘点性质表示在例3中。据称,对于研制高强度的,最好选用对映体(光学活性,如L-丙交酯)单体物质,因此,在美国专利3021309中,丙交酯与δ-戊内酯和己内酯进行共聚合成以改性丙交酯聚合物,并获得韧性白色结晶固体。仅用己内酯和2,4-二甲基-4-甲氧基甲基-5-羟基戊酸内酯的共聚物描述的软的固体共聚合物组成,不是与丙交酯组成的共聚物。美国专利3284417,涉及聚酯的生产,该聚酯用作增塑剂,以及制备弹性体和泡沫体的中间体。这篇专利包括丙交酯和使用基于7至9节环的内酯成分,例如ε-己内酯,制得所需中间体。没有给出拉伸强度、模量或百分伸长的数据。美国专利3297033告知使用乙交酯和乙交酯-丙交酯共聚物来制备不透明物质,取向成适用于缝合的纤维。该专利描述了“影响结晶度的增塑剂,但对海绵和薄膜是有用的”。在这些公开的内容显然是丙交酯聚合物和共聚物是刚性的,除非已增塑过。在美国专利3736646中也确实通过使用溶剂,例如二氯甲烷、二甲苯或甲苯软化丙交酯-乙交酯的共聚物。在美国专利3797499中,列出了L-丙交酯和D,L-丙交酯的共聚物作为可吸收缝合用拉伸纤维具有较大柔韧性,这些纤维的强度大于50000psi,伸长百分数大约20%。在5栏1行中,Schneider告知在本发明所提供的范围内具有抗增强性质。采用增塑剂如三醋酸甘油酯、苯甲酸乙酯和对苯二甲酸二乙酯。模量大约为一百万psi。这些与大多数柔性包装成分相比仍然是相当硬的组成,影响缝合使用。美国专利3844987公开了利用接枝和可生物降解聚合物与天然存在的可生物降解产物,例如纤维素物质,大豆粉、稻壳和酿酒厂的醇母的共混物用来制造制品,如装有一种介质的容器,该介质为发芽和生长种子或播种之用。这些制品不适合作包装使用。
美国专利3297033,3463158,3531561,3636956,3736646,3739773,和3797499都公开了丙交酯聚合物和共聚物是强结晶可取向聚合物,适合于制纤维和缝合材料。这些公开的东西告知使用的高结晶物质,通过拉伸和热处理进行定向以获得拉伸强度和模量一般都分别大于50000psi和1000000psi,虽然所述易成型性制成各种成型制品,但未取向的挤塑制品和模塑制品的物性没有被描述。例如美国专利3636956告知制备的共聚物的L-丙交酯/D.L-丙交酯的重量比为85/15,90/10,92.5/7.5或95/5,并列出了拉伸取向纤维,也指出了其它增塑剂如三醋酸甘油酯和对苯二甲酸二丁酯,但是在这篇公开文献中优选使用纯的L-丙交酯单体为了得到较大结晶度和拉伸纤维强度,最后,没有获得本发明的优点(例如以乳酸为基础的增塑剂的紧密分散液,它能提供独特的物性)。
美国专利4620999公开了一种可生物降解可废弃袋组合物,它是由3-羟基丁酸酯聚合物和3-羟基丁酸酯/3-羟基戊酸酯共聚物组成。比较起来,乳酸是2-羟基丙酸,美国专利3982543告知使用挥发性溶剂作为增塑剂与丙交酯共聚物一起获得柔韧性。美国专利4045418和4057537依靠已内酯与丙交酯(既可L-丙交酯或D,L-丙交酯)的共聚合获得柔韧性、美国专利4052988告知使用聚(对-二噁烷酮(P-dioxanone))获得改进可吸收缝合用打结和打结稳固。美国专利4387769和4526695公开了使用丙交酯和乙交酯聚合物和共聚物,它们是可变形的,但是只有在高温时是如此。欧洲专利申请0108933中用聚乙二醇改性乙交酯共聚物获得三嵌段共聚物,它可用作缝合材料。正如前面所描述,有一种强烈舆论,在丙交酯聚合物中只有依靠增塑剂才能获得柔韧性,该增塑剂是短效的挥发性溶剂,或是其它共聚单体物质。
从现有技术中早就知道了L-丙交酯和D,L-丙交酯的共聚物,引证文记录柔韧性不是固有物性。L-丙交酯和D,L-丙交酯的均聚物以及75/25,50/50和25/75重量比的L/D,L-丙交酯共聚物是美国专利2951828中的例子。共聚物的软化点为110-135℃。没有给出有关刚性和柔性方面的其它物性数据。在美国专利3636956和3797499中列出了95/5,92.5/7.5,90/10和85/15重量比的L-丙交酯/D,L-丙交酯共聚物。对由并纺纤维制的丝进行评价,其拉伸强度超过50000psi,模量为大约一百万,百分伸长大约为20%,增塑剂(相同于美国专利3636956中的)被用来增强柔韧性,在西德公开2118127中列出了雪白的显然是结晶聚合物,它是90/10L-丙交酯/D,L-丙交酯共聚物,没有给出这种共聚物的物性。该专利告知可用于外科元件。
加拿大专利808731列出了L-和D,L-丙交酯的共聚物,其中Ⅱ族的二价金属是该结构的一部分。90/10、L-/D,L-丙交酯共聚物(例2)和L-丙交酯均聚物都被叙述作为“适合于薄膜和纤维用”。90/10共聚物被称作一种雪白共聚物和L-丙交酯的均聚物能模塑成透明薄膜。(更多的结晶聚合物应是不透明的,或是雪白的物质,是一种均聚物。)该专利公开了一种事实,即本发明的新的聚丙交酯含有催化剂的金属组分,相信以乳酸盐的形式将是重要的。此外,聚丙交酯在制造薄膜和纤维时发现是有用的,这些薄膜和纤维是用传统的热塑性树脂制造方法来制造的。没有给出有关薄膜的强度和柔性方面的物性数据。
加拿大专利863673公开了L-/D,L-丙交酯的比例分别为97/3,95/5,92.5/7.5,90/10和85/15的L-丙交酯和D,L-丙交酯共聚物的组合物。这些组合物全部特征为外科应用的并纺丝。拉伸强度大约高达100000psi,伸长大约20%,增塑剂使用为达到柔韧,要求D,L-丙交酯成分少于15%(重量)。
加拿大专利923245公开了L-和D,L-丙交酯的共聚物(例15)。90/10共聚物被称作一种雪白聚丙交酯。由该专利的方法制备的聚丙交酯表明在用传统热塑性树脂制造方法来制备的纤维或制造的薄膜有实用性。
美国专利4719246告知使用聚L-和聚(D-丙交酯)的简单共混,称为聚(S-丙交酯)和聚(R-丙交酯)。样品都是物理混合物。啮合的特殊性质是由于外消旋化合物形成而产生的(参看“Stereochemistry  of  carbon  compounds”E.L.Eliel  McGraw-Hill,1962,P.45)。外消旋化合物是由啮合对映体组成的,也就是D和L形式(或R和S)通过极性力相互结合,这能引起结晶熔点的降低或升高,取决于是否D与D(或L与L)间结合力比D与L间结合力是小还是大。为了增强影响(在U.S.4719246中4栏48行中说明)所需的聚合物外消旋化合物是D和L两者的均聚物,或是D和L长链长度。这些结构的极大对称或规则性通过很规整的极性力允许它们配合在一起,或啮合,既是因为他们是相同的,或是镜像,这就导致相当大的结晶度。外消旋化合物的技术有很长历史,可追逆到经典化学。
OKutumi等的美国专利4137921例4中告知L-丙交酯和D,L-丙交酯的90/10无规共聚物,但是没有得到本发明的优点。Hutchinson的U.S.4789726告知通过先生成高分子量的物质,然后使它降解控制多分散性的较低重量的产品来制造聚酯、特别是低分子量的聚丙交酯的一种方法。但是该方法中要除去单体。
美国专利3736646,3773919,3887699,4273920,4471077和4578384告知使用丙交酯聚合物和共聚物作为持续药物释放基质,该基质是可生物降解和可生物相容的。此外,由一般热成型方法,例如薄膜挤出或模塑得聚合物的物性没有被提及。
附加有关技术包括低分子量聚D,L-丙交酯最近与药物如咔啡因、水扬酸或喹宁一道已被加到高分子D,L-丙交酯行列,参见R.Bodmeier等,International  J.of  Pharm.51,pp.1-8.(1989)。Chabot等的在聚合医学应用的L-丙交酯和外消旋D,L-丙交酯中除去残留单体和低聚物,参见聚合物,Vol.24,pp,53-59,(1983)。A.S.Chawla和Chang生产四种不同分子量D,L-丙交酯聚合物但除去了单体,为了在体内作降解研究,参看Biomat.Med.Dev.Art.Org.,13(3  &  4),pp.153-162,(1985-86).Kleine和Kleine生产几种低残留单体的D,L-丙交酯的聚乳酸,同时在聚合过程中测定丙交酯的水平,参看Macromolekulare  chemie,Vol.30,pp.23-38,(1959);Kohn等也制造一种低残留单体产品,同时在此过程中监测单体含量,参看Journ.Appl.Polymer  Science,Vol.29,pp.4265-4277,(1984)。M.Vert等告知高分子量聚丙交酯,并消除残留单体,参看Makromol.Chem.,Suppl.5,pp.30-41,(1981),M.Vert,在Macromol.Chem.,Macromol.Symp.6,pp.109-122,(1986),公开了类似的聚(L-/D,L-丙交酯)聚丙交酯,参看表6,P.118.在Ep  311065(1989)中,制备了聚D,L-丙交酯作为一种植入材料,当该材料降解时释放出药物,此材料中含有药物,低分子量聚丙交酯和其它添加剂,Ep314245(1989)公开了一种低量残留单体的聚丙交酯,该聚合物由内消旋D,L-丙交酯或其它单体进行聚合而制备;DE3820299(1988)公开了内消旋D,L-丙交酯与丙交酯的聚合,但没有得到本发明的优点;DE3820299(1988)公开了内消旋D,L-丙交酯与丙交酯的聚合,但没有得到本发明的优点。
特别有趣的是,美国专利4719246公开了L-丙交酯、D-丙交酯的均聚物,其混合物的聚合物与L-丙交酯或D-丙交酯与至少一种非丙交酯共聚单体的共聚物的掺合。共混打算生产具有聚(L-丙交酯)和聚(D-丙交酯)的相互作用链段的组合物。
U.S.3636956公开了交织纤维,它不是组合物的掺合或熔融掺合制造的物理混合物,美国专利4719246公开了L-丙交酯、D-丙交酯的均聚物,其混合物的聚合物,以及L-丙交酯或D-丙交酯与至少一种非丙交酯共聚单体的共聚物的掺合。这种掺入打算生产具有聚(L-丙交酯)和聚(D-丙交酯)的相互作用链段的组合物。美国专利4661530公开了聚(L-乳酸)和/或聚(D,L-乳酸)的混合物和链段聚酯尿烷或聚醚尿烷。生成的可生物降解的物质适用于合成生物组织的替代物和整形外科中的器官。PCT公开WO87/00419Barrows揭示了一骨热片,它包含一种非吸收聚合物和可生物吸收聚合物的共混物或混合物,聚乳酸是一种优选可生物降解聚合物,但其中没有揭示增塑剂。PCT公开WO84/00303的GogoLewski等建议制备外科用丝的聚酯和聚氨基甲酸乙酯的共混物,Cohn等在可生物降解PEO/PLA嵌段共聚物中(Journal  of  Biomed,Mater,Res.,Vol.22,P.993,1988,揭示了一种聚(环氧乙烷)和聚(乳酸)的物理混合物。
在现有技术中,没有一处公开了乳酸或丙交酯聚合物可通过使用丙交酯单体,或乳酸、或乳酸的低聚物,或乳酸低聚物的衍生物,或丙交酯的低聚物作为增塑剂成为柔韧高延伸组合物的源料。前述组合物没有一个适合意义明确的包装需要。
A.本发明一般公开的部分提供柔韧物质,它是由乳酸(L-乳酸或D-乳酸的均聚物或共聚物)或丙交酯(L-丙交酯,D-丙交酯,内消旋D,L-丙交酯和外消旋D,L-丙交酯)衍生的聚乳酸,该聚乳酸已用增塑剂,例如乳酸、丙交酯、乳酸的低聚物、丙交酯的低聚物,低聚物的乳酸的衍生物及其各种混合物紧密均匀增塑过,具有实用性,也表现热塑性塑料行为,后者可模拟在通常环境很慢生物降解塑料的性质(例如聚乙烯等性质)。在此所用术语紧密均匀分散是指该物质是均相的与聚合物紧密均匀混合。由于乳酸和丙交酯都能达到同一重复单元,在此所用一般术语聚乳酸涉及具有式Ⅰ的重复单元的聚合物,不受聚合物如何制备的任何限制(例如从丙交酯、乳酸或低聚物制备的),并不管聚合度或增塑的水平。
一般说,本发明柔韧物质的第一个实施方案提供一种环境可生物降解组合物,用作热塑性聚合物组合物的替代物,它包含一种聚乳酸和一种选自下面的增塑剂,其中增塑剂是紧密均匀分散在聚合物中。聚乳酸聚合物具有下式Ⅰ的重复单元
Figure 911097856_IMG25
其中n是重复单元的数目,n是整数,等于至少约150。较好非取向组合物的物理性质为150≤n≤20000,拉伸强度为大约300至约20000psi,断裂伸长为约50至约1000%,正切模量为约20000至约250000psi。增塑剂的紧密均匀分散能产生一种基本上透明组合物,尽管用某些加工方法不可能获得透明性,如组合物发泡时。
在另一个实施例中,当非取向组合物的拉伸强度为大约1200至约4000psi,断裂伸长为约100至约800%,正切模量为约20000至约75000psi时该组合物可能是聚乙烯的替代物。当非取向组合物的拉伸强度为约4500至约10000psi,断裂伸长为约100至约600%,正切模量为约165000至约225000,熔点为约150至约190F时,该组合物可能是聚丙烯的替代物。
本发明的另一个实施例提供一种生产用作热塑性聚合物组合物的替代物的环境可生物降解的组合物的方法,其步骤为(a)在适宜催化剂存在下,聚合选自D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物的丙交酯单体;(b)控制聚合让反应在完成聚合之前停止;(c)监测剩余单体水平;(d)在完成反应之前停止聚合以使预定量的未反应截留单体与聚合物结合;和(e)处理聚合物和未反应单体获得紧密均匀增塑组合物。聚合反应最好进行到含高达约40%(重量)单体时停止。如果希望附加增塑剂,可在处理步骤之前、期间或之后掺入到组合物中,其中增塑剂选自下面讨论的一组增塑剂。对于柔韧组合物来说剩余单体和附加增塑剂的总量较宜低于约40%(重量),最好在约10和约40%(重量)之间。
还有另一个实施方案包括生产增塑的聚乳酸的聚合物的方法,它包括混合、加热和熔融一种或多种丙交酯单体和一种催化剂;聚合溶液中的单体而形成一种聚合物而没有停止反应;把如下所述的增塑剂掺入生成的聚合物中。
还有一个实施方案包括提供一种将上述增塑剂加到聚乳酸中以获得所需性质的方法。
还有另一个实施方案包括制备可生物降解吹膜的方法,它经由将下列增塑剂包含在聚乳酸中达到所需性质,随继挤出增塑的聚乳酸作为一种吹膜。
本发明有用的增塑剂包括乳酸、丙交酯、乳酸的低聚物,丙交酯的低聚物及其混合物。优选的乳酸低聚物和丙交酯的低聚物由式Ⅱ所定义:
其中m是整数:2≤m≤75,优选m是整数:2≤m≤10
用在本发明中另一些增塑剂包括乳酸的低聚物的衍生物,选自由式Ⅲ所定义的
Figure 911097856_IMG27
其中R=H,烷基,芳基,烷芳基或乙酰基,和R是饱和的,其中R′=H,烷基、芳基、烷芳基或乙酰基,和R′是饱和的,其中R和R′二者不可能都是H,q是整数2≤q≤75,和其混合物,优选的q是整数:2≤q≤10。
对于柔韧性,乳酸或丙交酯单体增塑剂存在量为聚合物重量的约10至40%,而如丙交酯的低聚物,或乳酸的低聚物,和乳酸的低聚物的衍生物为增塑剂时,可能存在量为约10至约60%(重量)。
这种组合物允许有许多非降解聚合物(如聚乙烯)的所需特性,例如柔曲性、透明性和韧性。此外,增塑剂的存在便于熔融加工,防止脱色,增加组合物与环境接触中的降解速度。
以适合保留密切分散增塑剂在组合物中的方法将密切增塑的组合物加工成最终产品。为了获得密切分散而进行处理包括(1)以适合于保留紧密分散增塑剂的速率骤冷组合物;(2)熔融加工和以适合于保留紧密均匀分散增塑剂的速率骤冷组合物;和(3)以适合保留紧密分散增塑剂的方法加工组合物成最终产品。
组合物可包含约2至约60%(重量)增塑剂。当选择丙交酯时,组合物最好包括约10至约40%(重量)选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物的丙交酯增塑剂。
如果需要,增塑剂可选自由D-丙交酯,L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物组成的丙交酯,以致至少部分丙交酯增塑剂在立体化学上不同于制备聚合物所用单体。类似地,增塑剂可包括具有式Ⅱ的丙交酯的低聚物,或乳酸的低聚物或其混合物,这些低聚物在生产聚合物期间不产生。
特别有利的是通过与聚乳酸熔融共混将增塑剂顺序掺入聚乳酸中而获得共混组合物,第一批增塑剂选自乳酸低聚物、丙交酯低聚物及其混合物,与共混物熔融共混的第二批增塑剂选自乳酸、L-丙交酯、D-丙交酯、内消旋D、L-丙交酯、外消旋D,L-丙交酯及其混合物。如果需要,由式Ⅲ定义的第一批增塑剂可单独使用或与式Ⅱ的低聚物混合使用。这种程序允许在第一温度共混第一批增塑剂,在比第一温度低的第二温度共混第二批增塑剂。
B.一般说,本发明的第一实施方案为结晶聚苯乙烯的替代物,它提供一种环境可分解的聚合物组合物,适合用作结晶聚苯乙烯取代物。该组合物包括一种聚乳酸,其重复单元是L-或D-对映体,两个对映体任一个要占优势,如下叙述的增塑剂紧密均匀分散,其中非取向组合物具有下述物性,拉伸强度至少为5000psi,正切模量至少200000psi,并且是无色。组合物可调成约70℃以上是形状稳定的。
本发明的中一个实施方案提供一种结晶聚苯乙烯的取代物,它包括一种式Ⅰ的共聚物,其中n是约450至约10000之间的整数,重复单元是L-或D-对映体,二个对映体中任一个要占优势,并有约0.1~10%(重量)如下所述的增塑剂紧密均匀分散在其中,其中非取向组合物的拉伸强度至少约5000psi,正切模量至少约200000psi,形状稳定性约70℃以上,且是无色。L-对映体与D-对映体的比优选是约99/1和约1/99之间,最优选为约2.5/97.5和7.5/92.5之间,或约92.5/7.5和97.5/2.5之间。
本发明还有另一个实施方案提供一种组合物,包括下述组分的物理混合物(a)具有任一个D-或L-对映体占优势的第一种聚乳酸;(b)选自聚(D-乳酸)或聚(L-乳酸)的第二种聚乳酸,其中第一种聚乳酸与第二种聚乳酸的重量百分比是1/99到99/1之间;(c)大于约0.1%(重量)的如下所述的增塑剂,其中增塑剂是紧密均匀分散在聚乳酸之内;非取向的组合物的拉伸强度至少5000psi,正切模量至少200000psi,形状稳定性在70℃以上,基本上是无色的物理混合物,第一和第二种聚乳酸的优选比例是约98/2到约75/25之间,最优选为约85/15和约95/5之间。第一种聚乳酸可由式Ⅰ来定义,其中n是约450和约10000之间的整数;第二种聚乳酸由式Ⅳ来定义
其中p是约450和约10000之间的整数,非取向组合物的物性为拉伸强度为至少5000psi,正切模量至少200000psi,并是无色的。本实施方案的组合物可进行取向和退火以提供一种增塑剂紧密均匀分散在聚乳酸中的产品,该产品的物性为:拉伸强度超过7500psi,正切模量超过350000psi,尺寸热稳定性在温度70℃以上,该产品可双轴取向。
本发明还有另一实施方案提供一种取向和退火的环境可分解的薄膜或片材产品,适合用作取向结晶聚苯乙烯薄膜或片材的取代物,其包括:式Ⅰ共聚物的薄膜或片材,其中n是约450和约10000之间,重复单元是L-或D-对映体,任一个对映体占优势,剩余的如下所述的增塑剂紧密均匀分散在其中的产品,取向和退火过的产品物性为:拉伸强度超过7500,正切模量超过350000,尺寸热稳定性在温度约70℃以上。产品可双轴取向。其它产品的实例可含有其它下面讨论的增塑剂。
另一个实施方案提供一种取向和退火过的环境可分解的薄膜或片材产品,适合用作取向结晶聚苯乙烯薄膜或片材的取代物,其包括:约0.09~约99%(重量)之间的式Ⅰ的聚乳酸的物理混合物,其中n是约450和10000之间的整数,任一个D-或L-对映体占优选,式Ⅳ的聚乳酸的重量百分数在约99和约0.09之间,其中P是450和10000之间的整数。重复单元是D-或L-对映体,下面一种增塑剂(如下所述)并紧密均匀分散在聚乳酸内,产品的物性为:拉伸强度超过7500psi,正切模量超过350000psi,在温度70C以上是尺寸热稳定,产品可双轴拉伸。
还有一个实施方案提供一种环境可分解的聚合物泡沫组合物,其包括一种式Ⅰ的共聚物,其中n是约450和约10000之间的整数,重复单元是L-或D-对映体,任一个对映体占优势,下面讨论的增塑剂紧密均匀分散在其中,该组合物形状稳定在70℃以上。
还有另一发明实施方案提供一种环境可分解的聚丙交酯产品,适合用作结晶聚苯乙烯的代用物,其包括一种聚乳酸和一种如下所述增塑剂,增塑剂紧密均匀分散在聚乳酸中:其中聚乳酸的数均分子量Mn在约50000和400000之间,拉伸强度为至少约7500psi,正切模量至少350000,形状稳定性在70℃以上,将它加工成产品以后基本上是透明无色的。
本发明的组合物和方法中所考虑的增塑剂包括(a)乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯、乳酸的低聚物,丙交酯的低聚物及其混合物;其中乳酸的低聚物和丙交酯的低聚物由式Ⅱ所定义,m是整数:2≤m≤75;(b)一种或多种由式Ⅲ来定义的乳酸的低聚物的衍生物:其中R=H,烷基、芳基、烷芳基或乙酰基,R是饱和的;其中R1=H、烷基、芳基、烷芳基或乙酰基,R′是饱和的;其中R和R′不可能都是H;q是整数;2≤q≤75。
增塑剂可能是聚合反应中残留的存在的增塑剂,或是加到组合物中的附加增塑剂。
为了制得特定组合物或加工特性,增塑剂可能出现如:(a)第一种增塑剂选自丙交酯的低聚物、或乳酸的低聚物,第二种增塑剂选自乳酸,D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物;(b)第一种增塑剂选自一种或多种由式Ⅲ所定义的乳酸的低聚物的衍生物;其中R=H、烷基、芳基、烷芳基或乙酰基,R是饱和的;R1=H、烷基、芳基、烷基芳基、或乙酰基,R′是饱和的;R和R′不可能两者都是H;q是整数:2≤q≤75;第二种增塑剂选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物。
增塑剂存在的量必须在约0.1%(重量)以上。由增塑剂的量所规定的上限将给出其中所规定的结晶聚苯乙烯的物性。增塑剂的优选量在约0.1%(重量)和约10%(重量)之间。增塑剂可加入的量要如(1)有效的提供基本透明,(2)在加工过程中有效防止降解,(3)在加工期间有效的防止变色。增塑剂可通过现有技术中已知的方法共混(如研磨共混)加入,以获得紧密均匀分散。
还有另一实施方案提供制造环境可分解由聚合物组合物形成的薄膜或片材的方法,包括:共聚合选自D-丙交酯、L-丙交酯、D,L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物的单体的熔融共混物,其中,所选单体要提供D-和L-对映体,并且任何一个D-或L-对映体占优势;在完成聚合反应之前终止,以提供的组合物中如所述的增塑剂紧密分散,非取向的组合物的拉伸强度至少5000psi,正切模量至少200000psi;处理组合物要保持增塑剂紧密分散在聚合物内,因此获得基本上无色组合物。如果需要,在聚合反应终止以后,可加入附加的增塑剂。组合物也可给予如下所述的透明性。
该方法选择的单体类型和量最好能提供L-对映体与D-对映体的比在约1/99和99/1之间,更优选的是,所选单体要获得L-对映体与D-对映体之比在约2.5/97.5和7.5/92.5之间,或约92.5/7.5和97.5/2.5之间。该方法最好使用选择单体在熔融共混物中包含约85和95%(重量)之间的D-丙交酯或L丙交酯,和约5和15%(重量)之间的内消旋D,L-丙交酯或外消旋D,L-丙交酯。
聚合物组合物可有利于挤成薄膜或片材,并通过取向和/或退火的物理处理以提供具有拉伸强度至少7500psi和正切模量至少350000psi的聚合物薄膜或片材。额外处理包括双轴取向和热处理聚合物组合物。
处理可包括通过共混加入成核剂,加入D-丙交酯或L-丙交酯均聚物、再取向聚合物。着色体可通过在隋性气氛中,反应温度在140C以下进行聚合而被排除。如果需要,处理步骤包括在其玻璃化转变温度以上退火组合物,因此,获得更高的热挠曲温度。
C.第三类一般实施方案提供一种环境可降解的组合物,它包括一种聚乳酸的物理混合的共混物,选自聚对苯二甲酸乙二醇酯,苯乙烯,乙烯、丙烯、氯乙烯,醋酸乙烯酯、甲基丙烯酸烷基酯、丙烯酸烷基酯及其混合物的聚合物或共聚物的一种或多种聚合物;和一种或多种下面讨论的增塑剂。
存在在共混物中的聚乳酸可由式Ⅰ来表示,其中n是75和10000之间的整数。
本发明有用的增塑剂包括D-乳酸、L-乳酸、外消旋D,L-乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯,乳酸的低聚物、丙交酯的低聚物及其混合物。乳酸的低聚物和丙交酯的低聚物由式Ⅱ所定义,其中m是整数:2≤m≤75,优选的m是2≤m≤10的整数,这些限制相应于数均分子量分别低于约5400和低于约720。
本发明另外有用的增塑剂包括乳酸的低聚物衍生物,选自由式Ⅲ所定义的,其中R=H、烷基、芳基、烷芳基或乙酰基,R是饱和的;R′=H,烷基、芳基、烷芳基或乙酰基,R′是饱和的;R和R′不可能两者都是H,q是整数:2≤q≤75;及其混合物。优选q是2≤q≤10的整数。
增塑剂可以任何量存在以提供所需特性。例如,各种类型文中所讨论的增塑剂和在其它一般实例中的提供(a)使熔融共混组分的相容性更有效。(b)在共混过程中和在加工步骤中改进加工特性,和(c)控制和调节由于潮湿引起聚合物的敏感性和降解。对于柔韧性,增塑剂以较高量存在,而其它特性由较低量增强。组合物允许有许多纯的非降解聚合物的所需特性。此外,增塑剂的存在容易熔融加工、防止脱色、增强与环境接触的组合物的降解速率。以适合保留增塑剂紧密均匀分散在聚合物中的方法将紧密均匀增塑的组合物加工成最终产品。这些可能包括:(1)在适合于保持增塑剂紧密均匀分散的速率骤冷组合物;(2)熔融加工和在适合于保持增塑剂紧密均匀分散的速率骤冷组合物;和(3)以适合于保持增塑剂紧密均匀分散的方法把组合物加工成最终产品。增塑剂最好是至少紧密分散在聚乳酸内,如果没有共混的聚合物存在下。
特别有利的是通过熔融共混将增塑剂顺序掺入聚乳酸和其它聚合物中,即把选自乳酸的低聚物,丙交酯的低聚物及其混合物的第一种增塑剂与上述聚乳酸和其它聚合物熔融共混,和将选自乳酸、L-丙交酯、D-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物的第二种增塑剂与上步的共混物再进行熔融共混。如果需要,由式Ⅲ定义的第一种增塑剂可单独使用,或与式Ⅱ的低聚物混合使用。这种程序允许第一种增塑剂在第一温度进行共混、第二种增塑剂在比第一温度低的第二温度下共混。
D.第四一般实施方案提供一种环境可降解的组合物,包括聚乳酸的物理混合的和可相容弹性体共混的共混物,弹性体提供给共混的组合物改进耐冲击性。所述的弹性体可能是如“Hytrel”,它是一种链段的聚酯,即是硬的结晶链段聚对苯二甲酸丁二醇酯和软的长链链段聚醚乙二醇的嵌段共聚物。已知的一个例子是商标为Hytrel  4056(Dupont)链段聚酯。
除上述以外,还公开的共混物包括一种或多种增塑剂。该共混物与上述物质以及与其它物质一样有用(进一步讨论)。
存在共混物中的聚乳酸可由式Ⅰ来表示,其中n是75和10000之间的整数。
本发明有用的增塑剂包括D-乳酸、L-乳酸、外消旋D,L-乳酸、D-丙交酯、L-丙交酯、内消旋丙交酯、外消旋丙交酯、乳酸的低聚物、丙交酯的低聚物及其混合物,乳酸的低聚物和丙交酯的低聚物由式Ⅱ所定义:其中m是整数:2≤m≤75。这些限定分别相当于数均分子量低约5400和低约720。
用于本发明的另外增塑剂包括乳酸的低聚物衍生物,它选自由式Ⅲ所定义的,其中R=H、烷基、芳基、烷芳基或乙酰基,R是饱和的;R′=H、烷基、芳基、烷芳基或乙酰基,R′是饱和的;R和R′不能两者都是H;q是整数:2≤q≤75,及其混合物。
增塑剂可以任何量存在以提供所需特性。例如,文中讨论的各种类型的增塑剂和其它一般实例中的以提供:(a)使熔融共混物组分更有效的相互配合,(b)改进共混过程中和加工步骤中的加工特性,(c)控制和调节由于潮湿引起聚合物的敏感性和降解。对于柔韧性,增塑剂以较高量存在,而其它特性由较低量增强;组合物允许有许多纯的非可降解的聚合物的所需特性。此外,增塑剂的存在容易进行熔融加工,防止变色,增强与环境接触的组合物的降解速率。以适合于保持增塑剂紧密分散在聚乳酸和/或它的共混的聚合物中的方法将紧密均匀增塑的组合物加工成最终产品。这些步骤可包括(1)在适合于保持增塑剂紧密均匀分散的速率骤冷组合物;(2)在适合于保持增塑剂如紧密均匀分散的速率熔融加工和骤冷组合物;(3)以适合于保持增塑剂如紧密均匀分散的方法,把组合物加工成最终产品。
特别有利的是通过熔融共混将增塑剂顺序掺入聚乳酸和其它聚合物中,即把选自乳酸的低聚物、丙交酯的低聚物及其混合物的第一种增塑剂与上述聚乳酸和其它聚合物熔融共混,和将选自乳酸、L-丙交酯、D-丙交酯、内消旋丙交酯、外消旋D,L-丙交酯及其混合物的第二种增塑剂与上步的共混物再进行熔融共混。如果需要,由式Ⅲ定义的第一种增塑剂可单独使用,或与式Ⅱ的低聚物混合使用。这种程序允许第一种增塑剂在第一温度进行共混,第二种增塑剂在比第一温度低的第二温度下共混。图的简要说明
图1表示组合物中百分数丙交酯作为增塑剂(横座标x)与在psi测量的拉伸强度(纵座标y)之间的关系图。
图2表示组合物中重量百分数丙交酯作为增塑剂(横座标x)与在1000psi测得的弹性模量(纵座标y)之间的关系图。
图3表示组合物中百分数低聚物作为增塑剂(横座标x)与在psi测得的拉伸强度(纵座标y)之间的关系图,其中曲线A是90/10共聚物的,曲线B是92.5/7.5共聚物的。
图4表示组合物中百分数低聚物作为增塑剂(横座标x)与在1000psi测得的弹性模量(纵座标y)之间的关系图,其中曲线A是90/10共聚物的,曲线B是92.5/7.5共聚物的。
图5表示由本发明公开的方法制备的对照组合物的DSC曲线图温度按C测量(横座标x);热流动按mw测量(纵座标y);曲线A代表物质的第一扫描,曲线B代表第二扫描。
图6表示实例80的组合物的DSC曲线图,温度按C测量(横座标x),热流动按mw测量(纵座标y),曲线A代表物质的第一扫描,曲线B代表第二扫描。
图7表示实例81的组合物的DSC曲线图,温度按C测量(横座标x),热流动按mw测量(纵座标y),曲线A代表物质的第一扫描,曲线B代表第二扫描。
图8说明例5B的非退火的90/10L-/D,L-丙交酯共聚物的差示扫描量热法(DSC)曲线图,温度按C测量(横座标x);热流动按mw测量(纵座标y)。曲线A是非骤冷共聚物:曲线B是骤冷共聚物。
图9说明实例5B的物质在70℃保持100分钟后的DSC曲线图,温度按C测量(横座标x),热流动按mw测量(纵座标y),曲线A是非骤冷共聚物的,曲线B是骤冷共聚物的。
图10说明例5B的材料在185F下退火过夜后的DSC曲线图,温度按C测量(横座标x),热流动按mw测量(纵座标y),曲线A是非骤冷的共聚物的。
图11说明例5B的材料的DSC曲线图。该材料共混了5%的乳酸钙,温度按C测量(横座标x),热流动按mw测量(纵座标y),曲线A是未骤冷共聚物的,曲线B是骤冷共聚物的。
图12比较聚苯乙烯(曲线A)在C的和如例8B制备的丙交酯聚合物(曲线B)在160℃时的熔融粘度(1000泊)(纵座标y)与剪切速率特性(1/秒,1000)(横座标x)。
图13说明例8B的共聚物的DSC曲线图,温度按C测量(横座标x),热流动按mw测量(纵座标y),曲线(A)是未骤冷共聚物,曲线B是骤冷共聚物。
图14说明L-丙交酯均聚物加到例8B的共聚物的DSC曲线图,温度按C测量(横座标x),热流动按mw测量(纵座标y),曲线A是未骤冷均聚物,曲线B是骤冷均聚物。
图15说明例8B共聚物与L-丙交酯的均聚物的例23B的共混组合物的DSC曲线图,温度按C测量(横座标x),热流动按mw测量(纵座标y),曲线A是未骤冷的共聚物和均聚物的共混物,曲线B是骤冷的共聚物和均聚物的共混物。
图16说明为90/10L-/D,L-丙交酯共聚物的玻璃化转变温度与残留丙交酯单体的曲线图,横座标x是按重量%测量的丙交酯,纵座标y是按C测量的Tg。
图17说明90/10的L-/D,L-丙交酯共聚物与5%(重量)聚苯乙烯共混的DSC曲线图,温度按C测量的(横座标x),热流动按mw测量(纵座标y),曲线A是第一次加热的,曲线B是第二次加热的。
A第一一般实例
本发明公开的环境可生物降解的组合物是完全可降解成环境可接受和可相容的材料。降解的中间产物乳酸和丙交酯或乳酸的短链低聚物都是广泛公布于自然存在的物质,它很容易由各种有机体进行新陈代谢作用。它们自然最终降解产物是CO2和水。这些组合物例如含有少量其它材料、填料或填充料的这些组合物的预料的同等物通过适当选择材料也能完全环境降解的,本发明组合物提供环境可接受的材料,因为他们的物理变质和降解要比取代的传统非降解的塑料更迅速而且更完全。此外,由于组合物的全部或大部分是聚乳酸,和/或由丙交酯或低聚物衍生的乳酸,没有残留物或仅保留少部分较慢降解的残留物。这些残留物比主体产物有较高表面积,期望较快降解速率。
本发明的一般应用结果形成本发明最重要的和一般实例。当由丙交酯单体、乳酸、丙交酯的低聚物、乳酸的低聚物、低聚物的丙交酯的衍生物及其混合物增塑,并紧密均匀分散在聚合物中时,D-丙交酯、L-丙交酯、D,L-丙交酯的均聚物,以及D-丙交酯、L-丙交酯;D-丙交酯、D,L-丙交酯;L-丙交酯、D,L-丙交酯;和D-丙交酯,L-丙交酯与D,L-丙交酯的共聚物都能生产用于本发明的材料。增塑剂可通过在聚合反应完成之前停止反应而产生。任意的附加增塑剂由丙交酯单体(D-丙交酯、L-丙交酯、D,L-丙交酯、或其混合物),乳酸、丙交酯的低聚物或乳酸的低聚物或包括全部L-、D-和DL-构型的衍生物及其混合物组成,都能加到生成聚合物中。一般说各种聚丙交酯可被应用于本发明的各个方面,一种优选的聚合物由式Ⅰ来定义
Figure 911097856_IMG29
其中n是聚合度(重复单元数),并用用于生产聚合物的单体的不完全聚合衍生的增塑剂来增塑。使增塑剂更紧密地与聚合物一体化,使它的特性更好,事实上,需要很紧密的整体化以获得本发明的优点,将在下面进一步讨论。如果需要,附加单体或低聚物增塑剂可加到在聚合之后保留了任何残留单体或低聚物的组合物中。优选的乳酸低聚物和丙交酯的低聚物包括全部L-、D-、DL-构型及其混合物,无规和嵌段构型两者,用于由式Ⅱ来定义的增塑剂。
Figure 911097856_IMG30
其中m是整数:2≤m≤75,优选的m是整数:2≤m≤10。包括全部L-,D-,DL-构型及其混合物,无规和嵌段构型,具有增塑剂用途的乳酸低聚物和它的衍生物由式Ⅲ来定义
Figure 911097856_IMG31
其中R=H、烷基、芳基、烷芳基或乙酰基,R是饱和的;其中R′=H、烷基、芳基、烷芳基或乙酰基,R′是饱和的;R和R′不能都是H;q是整数:2≤q≤75,及其混合物。优选的q是整数:2≤q≤10。
加到聚合物组合物中的增塑剂有下列作用:
(a)起到增塑剂作用,给聚合物组合物引入挠曲性和柔韧性,这些性能在只有聚合物的组合物中不会发现。
(b)把这些增塑剂加到聚乳酸中降低聚合物的熔融粘度,并减低熔融生成组合物所需的温度、压力和剪切速率。
(c)增塑剂防止热增进和随着发生的变色,和在聚乳酸的挤出成形过程中分子量降低。
(d)增塑剂给于组合物增加耐冲击性,而该性能在只有聚合物情况下不会发现的。
此外,增塑剂可起到聚乳酸和其它可降解和非降解聚合物的熔融共混物的相容剂。也就是说两种不同聚合物的熔融混合物在增塑剂存在下,能更紧密均匀结合,并混合成很好分散的共混物。增塑剂也可改进溶液掺混的性能。
上述脚注n、m、和q是指聚合物或低聚物的平均链节数(重复单元数)。在此所用的数均分子量Mn与链节有关,由n、m、或q乘以单个链节的分子量。对于聚乳酸,这个数是72。存在聚合物中的链节数也称为聚合度。读者可参考下列课本(Polymer  chemistry  an  Introduction,2nd,Edition,R,Seymour等,Marcel  Dekker,Inc.1988和INtroduction  to  Polymer  Chemistry,R.seymour,MeGraw-Hill,New  York,1971),本主题将进一步讨论。
L-丙交酯,D-丙交酯和D,L-丙交酯在聚合物中的比例不是关键的,只要获得柔韧热塑性塑料就行,但是D,L-丙交酯的比例可随某些下面进一步讨论的性质而变化。L-丙交酯、D-丙交酯、和D,L-丙交酯可在很宽重量比例范围内变化以生成均聚物或共聚物为准。本发明所用的丙交酯单体可在市场上购得,因此单体反应物本身及其制备方法都无需考虑,酸酯单体只是构成本发明的任何部分。
D-丙交酯是一种D-乳酸的二内酯,或环状二聚体。类似的,L-丙交酯是L-乳酸的环状二聚体。内消旋D,L-丙交酯是D-和L-乳酸的环状二聚体。外消旋D.L-丙交酯包括D-丙交酯和L-丙交酯的混合物。当单独使用时,术语D.L-丙交酯打算包括内消旋D.L-丙交酯或外消旋D.L-丙交酯。
在文献中报道制备丙交酯的方法之一是乳酸在高真空下脱水。产品在高温低压下蒸馏。由W.H.Carothers,G.L.Dorough和M.J.Johnson(J.Am.Chem.Soc.,54,76-762[1932]);J.Gay-Lussac和J.Pelouse(Ann.7,43[1833]);C.A.Bischoff和P.Walden(Chem.Ber.,26,263[1903];Ann.279,171[1984]);和Heinrich  Byk(Ger.pat.267826[1912]);through  Chem  Abstr.8,554,2034[1914])的文献讨论了丙交酯及其制备。
光学活性酸可通过利用许多细菌类的乳杆菌的菌株,例如乳杆菌delbrueckii,L.Salivarius,L.Casei,等直接发酵几乎任何无毒碳水化合物产品、副产品及废物来制备。光学活性酸也可由外消旋混合物通过锌铵盐或带有生物碱的盐,例如吗啡的拆分而制得。L-丙交酯是一种白色粉末,分子量是144。市场上可得的产品应用于本发明,如果是不纯的,由无水甲基异丁基酮进行再结晶纯化为宜。雪白的结晶L-丙交酯在96-98℃熔融,如在此用的符号C代表摄氏度用符号℃来代替,类似符号F代表华氏度,用符号°F来代替。
用来制备D.L-丙交酯的D,L-乳酸是市场上购来的。D,L-乳酸可通过乳腈(2-羟基丙腈)的水解或者通过直接利用大量细菌类的乳杆菌的菌株直接发酵几乎任何无毒碳水化合物产物、副产物或废物来合成制备。D,L-丙交酯是一种白色粉末,分子量为144。市场上得到的产品用于本发明,如果不纯的话,用无水甲基异丁基酮进行再结晶纯化为好。市场上可得产品一种是糊状半固体,在90-130℃熔融。用甲基异丁基酮进行再结晶,并用活性炭脱色。三次这样再结晶以后,产品在真空中在通氮下于室温转鼓干燥8至24小时,用此得到雪白的结晶,包含D,L-丙交酯混合物,115~128℃熔融。
在制备本发明的组合物中,优选的是在液相中在一个密闭抽空容器中,在高达18个碳原子的羧酸的锡酯存在下进行反应。不过组合物也可大气压下,由惰性气体如氮掩盖的聚合体系来制备。如果聚合在氧或空气的存在下进行,一些变色发生,结果降低了分子量和拉伸强度。方法可在聚合反应的较后阶段缓慢进行的温度进行,以便在粘性聚合物熔融中捕集残留单体。对于这一目的的优选温度一般在纯L-丙交酯和纯的D,L-丙交酯的熔点之间,或在95至127℃之间。决不希望限制本发明的范围,目前相信低于约129℃,下面出现:
1.L-和D,L-丙交酯单体的反应物丙交酯单体混合物熔融形成低共熔混合物,熔融成一种流动的流体,它是一种、二种或三种单体的紧密均匀溶液。
2.用催化剂聚合流体熔融体形成一种增加粘度的溶液,最后捕集未反应的单体与聚合物结合作为一种溶液,而不是作为一个不相同的非均相。由于反应极端控制扩散,低浓度的聚合物的活性端基不能有效的接触,所以单体不再能进行反应。
3.聚合中止或相当慢进行,因此,在室温下,单体和聚合物的共混物是一种固体溶液,它给于组合物增塑、透明性和柔韧性。
4.使催化剂脱活,以便随后的熔融制造不能再引发聚合。
5.由于残留单体有很高的沸点,例如丙交酯的沸点在8乇时为142℃,并与它的开链互变体聚丙交酯紧密均匀结合,增塑的组合物是非常稳定的。
另一方面,该方法可在L-丙交酯的熔点和200℃之间在一温度下进行,乳酸或丙交酯随后熔融或溶剂混入聚合物中作进一步加工过程中之用。200℃以上温度是不希望的,因为共聚物倾向降解。提高温度在95至200℃范围内,一般提高聚合速度,将L-丙交酯和D.L-丙交酯的混合物在温度约110℃和160℃之间加热可获得好结果。
本发明所用催化剂是含有高达18个碳原子的羧酸锡盐和酯。所述酸的例子是甲酸、乙酸、丙酸、丁酸、戊酸、己酸、辛酸、壬酸、癸酸、十二酸、十四酸、十六酸、硬脂酸和苯甲酸、用乙酸锡和辛酸锡已获得好的结果。
催化剂使用规定催化剂的量。一般说,催化剂的浓度在约0.001至约2%(重量)(基于L-丙交酯和D.L-丙交酯的总重量)为适宜。催化剂浓度在约0.01至约1.0%(重量)范围内为优选。当催化剂浓度在约0.02至约0.5%(重量)的范围内时,获得好结果。在任何特别情况下,催化剂的精确量在很大程度上取决于所用催化剂和操作的可变因素(包括时间和温度)。确切条件可由本领域中熟练的技术人员很容易确定。
聚合步骤本身的反应时间受其它反应变量,包括反应温度,特定的催化剂,催化剂的量以及是否应用液体媒介物的支配。反应时间可从大约几分钟到12个小时、或几天内变化,它取决于被应用的特殊建立的条件。对单体的混合物连续加热直到确定的所需聚合水平为止。聚合水平可由分析残留单体来确定。正如前面讨论的那样,选择反应温度为了增强单体的掺入,并提供直接,出自聚合反应器的增塑的组合物。反应保持一段时间后,组合物已实现单体转变成聚合物,也就是希望达到所需增塑。在本发明优选的实例中,大约2至30%丙交酯留下没有反应,这一点取决于所要达到的增塑程度。
一般说,没有含活性氢的杂质存在下,进行聚合较好,因为所述杂质的存在倾向脱活催化剂和/或增加反应时间。聚合反应在基本上无水条件下进行也较适宜。
本发明的共聚物可通过本体聚合,悬浮聚合或溶液聚合来制备。聚合可在下列惰性通常液体有机介质存在下进行,例如芳烃,如苯、甲苯、二甲苯、乙苯等;氧化有机化合物,如苯甲醚、乙二醇的二甲基和二乙基醚;通常液体饱和烃,包括开链、环状和烷基取代的环状饱和烃,如己烷、庚烷。环己烷、烷基环己烷、十氢萘等。
聚合方法可采用间断、半连续或连续方法进行聚合,在配制随后聚合用的丙交酯单体反应物和催化剂中,可按已知的聚合技术的任何次序混合。因此,催化剂可加到任何一个单体反应物中。随后将含有催化剂的单体与其它单体混合。在可选择的方法中,单体反应物可相互混合。如果需要的话催化剂可溶解或悬浮在隋性通常是液体的有机介质中。如果需要,单体反应物任何一个作为一种在惰性有机介质中的溶液或悬浮液加到催化剂、催化剂溶液或催化剂悬浮液中。更进一步,催化剂和单体反应物可同时加到反应容器中。反应容器装有一般的热交换器和/或混合装置。反应容器可以是在制造聚合物的技术中所应用的任何正常设备。一种适宜容器如是不锈钢容器。
按照本发明生产的环境可生物降解的组合物取决于L-丙交酯、D-丙交酯、内消旋D,L-丙交酯的比例,发现在制造的制品如薄膜、纤维、模塑品和层状产品中有用,这些可由一般的制造方法制造。这些制造的制品期望非医药使用,即人体外部,它们可取代通常环境不可降解的塑料。
丝如通过熔融挤出的共聚物经过喷丝板而形成。薄膜可通过流延可生物降解组合物的溶液,然后除去溶剂;通过在具有加热压板的液压机中压制固体可生物降解组合物;或通过挤出经过一模头(包括吹膜技术)来生产膜。
在制备产品,例如由本发明的聚合物和共聚物制造的模塑品中,可采用包括熔融共混、慢冷和速冷(骤冷)在内的各种技术。
此处所用的骤冷是指温度迅速下降以防止聚合物彻底结晶。聚合物的结晶是一个很慢的过程,需要几分到几小时才能完全完成。当期望这样时,把温度保持在玻璃化转变温度Tg以上一段时间允许分子本身有序排列成彻底结晶晶格。这就被称为退火。当从无定形熔融体迅速冷却时,聚合物没有所需时间,仍保持大量无定形。骤冷所需的时间取决于样品的厚度、它的分子量、熔融粘度,组成以及它的Tg。在Tg点它处于冻结成为一种玻璃态。值得注意的是通过增塑降低熔融粘度和Tg,并有利于骤冷。薄膜显然冷却很快,因为它有高度的表面与体积比,而模塑件厚度很大,冷却更慢,并在脱模之前,时间花在热模中。规则结构如聚L-丙交酯比有更多无规结构如共聚物更容易排列有序,结晶更快。
对于聚丙交酯来说,熔点大约是150~190℃,它取决于L-丙交酯的含量和结构的规则性。包括各种L和D.L均聚物和共聚物的全部聚丙交酯的Tg是60℃。当残留的丙交酯与聚合物是紧密均匀分散时,Tg就下降。骤冷无定形态需要在无定形熔体中的聚合物或共聚物从它的熔融态迅速冷却到低于Tg温度以下。无法如此进行时允许球状结晶性发展,也就是结晶的由亚微细粒的区域结构发展到微米大小。后者散射光,聚合物样品变成不透明。这些结晶形式改进了热变形的稳定性。这种球状结晶性常常称为短程有序长程无序,因为结晶由无定形区分开。不过,该微晶起着假交链作用以保持在Tg以上,但在它的熔点以下尺寸稳定性。另一方面,热变形稳定性可通过在其Tg以上但在熔点以下取向无定形聚合物而获得。在此聚合物分子被拉伸允许一些长范围取向,然后“热固定”让取向完全,也就是给予一段时间退火。因此,无定形聚合物结晶成一种不同有序,称长范围有序,短范围无序。对透明性和耐热变形有利。
在教科书中可找到详细讨论,例如“structure  polymer  properties”,由RObert  J.Samuels著,wiley出版物,NY.NY  1974。
本发明组合物的期望等同物是含有少量其它材料。按照本发明生产的共聚物,如果需要,可添加交联剂、其它增塑剂、着色剂、填料等,或少量其它内酯单体如乙交酯或己内酯得以改性。
交联可通过把组合物与自由基引发剂如枯烯氢过氧化物进行配料,然后在高温下模塑进行,这就能改善耐热和耐溶剂。交联,也可将共聚物与多官能团化合物,例如多羟基醇配料、模塑、或在加热和真空下进行热成型而进行。接枝挤出机反应进行聚酯的塑化显然是交联和链延长共聚物的方法。
在制备模塑品中,填料可在塑化之前掺到组合物中。填料具有改进模塑物性质的作用。该性质包括硬度、强度、耐温度等。已知的填料物质包括铝粉、粉状碳酸钙、二氧化硅、高岭土(白土)、硅酸镁等。特别优秀的是淀粉,它能与组合物很好共混制得一种完全环境可生物降解的共混物。其它性质的改进可通过组合物与其它聚合物和丙交酯、乙交酯和己内酯的共聚物的熔融共混而进行。
按本发明制备的组合物可用来按已知方法生产增强层状产品。一般说,层状产品由纤维板或由复合的多层片材物而形成的基质,将它前体或贯穿纤维材料的组合物流动熔融并进行塑化固结成整体结构,同时在模压或液压而形成聚合物,用于形成基质的纤维包括天然和合成纤维,例如由木材、棉花、亚麻、大麻等衍生的纤维素;玻璃、尼龙,醋酸纤维素等。
第一类一般实施方案的组合物和它的制备由下列特定实例来加以进一步说明。
实例1
80/20,L-丙交酯/外消旋D,L-丙交酯
把高纯度的160克L-丙交酯和40克外消旋D,L-丙交酯(Purac,Inc,进行三次重结晶)装入500毫升园底烧瓶中,并用干氮吹洗一整夜。将10ml辛酸锡溶于60ml无水甲苯中,并用共沸蒸馏把10ml溶剂蒸到Dean-stark分水器中达到干燥这种催化剂溶液。从50ml干甲苯中溶有10ml辛酸锡中,用注射器移去0.20ml注入在反应烧瓶中丙交酯中。氮气吹洗连续经过连接进入反应烧瓶中的注射器针,通过橡胶隔模板和出口经由连接鼓泡器的一段导管。氮气流保持每秒1-3个气泡,烧瓶在油浴上加热保持在123~127℃。在第一部分加热过程中,丙交酯熔融,并通过涡流充分混合,随后产物变得很粘。加热20小时后,从加热浴上移去烧瓶和无色透明产物,冷却,打破烧瓶,并用液氮冲击,从产品中除去玻璃。共聚物在加热的液压中模塑。把模制件压制到5至10密耳厚的薄膜可能在20000Lb压力,170℃,2分钟内完成。在Instron试验器上评价薄膜的拉伸性质。其结果列于表1。1/8吋厚的样品也用模子做冲击强度试验。产品进行热解重量分析法,记录样品在4分钟加热到150℃,并在150℃保持60分后的失重。样品的失重是19.5%,在60分钟内几乎完成,失重归结于丙交酯的损失。差示扫描量热法的结果揭示组合物约110℃开始吸热,当温度增高到200℃时,变得更明显。没有观察到有熔点。样品在185°F退火过夜并再测量,样品保持透明、无色和有韧性,共聚物的样品可再模塑6次,没有任何变色或有明显的强度损失。薄膜是清洁、透明、无色很柔韧,不管重复模塑。
表1 当用丙交酯增塑时L-丙交酯和D.L-丙交酯共聚物(a)的性质
例  1  2  3
薄膜厚度,密尔  8  8  10
拉伸强度,1000psi. ASTM D638  3.9  1.7  7.9
延伸率,%  280  806  3.5
100%模量,1000 psi  0.75  --  --
200%模量,1000 psi  1.20  --  --
正切模量,1000 psi  36.6  --  289
悬壁梁式冲击强度ft-1b/in(b)0.63 -- 0.4
Mw,1000's  540  281  341
Mn,1000's  270  118  97.5
残留丙交酯,(c)% 19.5 27.8 2.7
注:(a)80/20,L-/外消旋D.L-丙交酯的重量比
(b)1/8英吋,缺口样品
(c)由等温热重量分析法在150℃测得失重。
实例2
类似于实例1,在3升园底烧瓶中装1.84Kg的L-丙交酯,0.46Kg的外消旋D,L-丙交酯和2.3ml的辛酸锡溶液。用氩吹洗混合物3小时,然后在125℃油浴内等温加热。混合物溶化,由涡流充分混合,并生成均匀、透明、无色流体,几小时后粘度大大增加,64小时后,从加热浴移去烧瓶,冷却,从清洁、透明的固体产物中除去玻璃,将橡胶状组合物剪料成片,并在研磨机内与干冰一起磨成1/8吋或类似尺寸,研磨物在空气环流干燥箱中于100°F干燥几小时,然后在室温真空干燥一整夜。压模的薄膜如实例1中所述来制备。测量薄膜的拉伸强度,和由热重分析法测得失重表示在表1中。
实例3
类似于实例1,在250ml园底烧瓶中装入79.98gL-丙交酯,20.04g外消旋D,L-丙交酯和0.20ml辛酸锡溶液。烧瓶用氮通过进出口净化,并在125℃油浴中加热。混合物熔融成无色流动液体,通过回荡烧瓶充分混合。2小时后,油浴温度增加到147℃,14小时后(总加热时间),温度降到131℃。总加热时间是18小时,产物是透明,无色玻璃状物质。类似于前述实例进行评价,结果记录在表1中。
实例1至3揭示反应温度对由生成组合物所需要的共聚物的性质的影响。
实例4
例1和3的共聚物的薄膜浸泡在水里几个月。3周以后,例1的共聚物变得模糊,而例3的共聚物保持透明约2个月,3个月后,例3的薄膜变得显著模糊,例1的薄膜是有色和不透明。已经与例1的薄膜接触的水感到酸而例3的是无味的。
对表1数据的观察揭示例1的共聚物是环境可生物降解的聚乙烯的替代物。本技术领域中熟练的人员认为共聚物的物性是一种优异结合,可用于许多包装应用,它的拉伸强度和最初正切模量与聚乙烯组合物相比有利用于如塑料垃圾袋,一般薄膜包括,塑料购物袋、三明治包装、六面包装架(six  pock  yokes)等中。对于共聚物和通常用在垃圾袋组合物的线形低密聚乙烯组合物,两者应力应变曲线的形状是大致相同。性质比较表示在表2中。
表2.  聚乙烯与聚乳酸的比较
性质 LDPE(a)LLDPE(b)丙交酯共聚物
NA272
拉伸强度,1000psi;ASTM
标准C  2.18  2.9  3.9
延伸率%  261  500  280
切线模量,1000 psi  54.9  51.0  36.6
100%模量,1000 psi  1.77  -  0.74
200%模量,  1.82  -  1.20
HDT(d)264 psi,F 95 99 122
注:(a)线性低密度聚乙烯,5~10密尔,2吋/分,我们的试验,
(b)线性低密度聚乙烯,数据来自计算机贮存器,
(c)L-丙交酯/外消旋D.L-丙交酯的共聚物,例1
(d)热折射温度
丙交酯聚合在一个可控制方法中,在没有完成单体向聚合物转变时停止,这一点在例1和2中已被说明,丙交酯单体与丙交酯的聚合物非常紧密均匀结合。另一方面,组合物可通过丙交酯与预聚物混合而产生。在那种情况下,所加的丙交酯可能是相同或不同的立体化学对映体,即L-,D-,或D,L-丙交酯,那些都用来制造聚合物体。
用凝胶渗透色谱分析具有重均分子量为480000,数均分子量为208000的,结合也就是在开放式2辊辊炼机预加热到350°F熔融和混合。共聚物在辊炼机上低于350°F就不熔融并不能较好结合。把10克聚合度为2.34的低聚物乳酸加到25克这种熔融的共聚物中,当所有低聚物乳酸混合在其中后,温度就降到300°F,该温度混合仍然是十分好。辊温度在300°F时,很慢加入10克L-丙交酯并进行混合。混合物从辊上被汽提,在压力机内于300°F压制成薄膜。5-10密耳厚的薄膜是无色透明,并很柔韧,没有丙交酯时,生成的薄膜将是很硬的。没有第一次加入低聚物乳酸,丙交酯在辊炼机上就不可能没有挥发损失地加入。
聚丙交酯和丙交酯增塑剂的共混物是非常柔韧,随着丙交酯含量增加,柔韧性随之增加。该共混物是无色透明的。仅仅很弱的丙交酯的味道是检测到的。没有显著可察觉到的丙交酯的味道。表3增塑的薄膜样品是耐撕裂的、容易折叠的,能被刺穿而没有断裂或撕裂。当把它们放在较冷处(5℃,40°F),稍微变硬,但是保持柔韧性和折痕而没有破裂。这些薄膜在手中显著柔软,表明玻璃化转变温度低于37℃。当丙交酯含量小于20%时,薄膜具有聚烯烃薄膜的典型喀啦响声。在较大丙交酯含量时,薄膜具有增塑的聚氯乙烯(PVC)的自然垂褶性和热感觉。事实上,本发明的组合物在许多应用中也是增塑的PVC的取代物。
如表3所述,弹性模量(最初正切模量)可能相当高,类似于线形低密度聚乙烯(LLDPE)。这就是一种潜在形成稳定性的标志。较低模量和拉伸强度是类似于低密度聚乙烯(LDPE)。作为丙交酯含量的函数的物性作图,如图1和图2
配料可由熔融聚合物与丙交酯单体在一般加工设备如辊压机辊或双螺杆配料机中共混而完成。正常为刚性玻璃状的丙交酯聚合物用丙交酯增韧,保持透明、无色以及非常近于无味。在重量分析法中丙交酯不是很短效的,需要加热,氮气吹洗,一般于170-200℃,吹洗20-60分钟,除去丙交酯。在光学显微镜下,薄膜中都没有可见的丙交酯。丙交酯区域结构在尺寸上为亚微细粒。这种增韧的聚乳酸建议将它用作取代聚烯烃的环境可生物降解的一次性包装薄膜。
实例5-16
在一系列的实验中,制备了L-和外消旋D,L-丙交酯的共聚物,将它与可变量的丙交酯熔融共混,评价共聚物的物性作为丙交酯组合物的函数。单体丙交酯含量由先前开发的等温热重量分析法测定。在配料和模塑成薄膜之前和之后测量丙交酯含量。观察到对于很高分子量的丙交酯共聚物,开炼机,2辊、辊炼,在所需温度下有挥发丙交酯倾向。这种损失可通过炼胶的制备或使用较低分子量的丙交酯共聚物(和它的较低附随混合温度)来减少到最低程度。较好的混合和共混方法是一般双螺杆挤出机,它能获得最小的挥发损失,一些结果表示在表3中。
此外,低聚物的乳酸的混合物,或乳酸的低聚物的衍生物,低聚物的乳酸和丙交酯都可用来制备柔韧薄膜,因此,低聚物或它的衍生物首先被加入,随后在较低温度下,在后者的熔融体中混合丙交酯。当首先加入低聚物时,熔融体粘度降低很快,随后温度下降,然后在一较低温度下混合丙交酯,没有大量挥发。这一点在实例16A中被说明。
实例16A
由上述的方法制备90/10  L/D,L-丙交酯共聚物,并
Figure 911097856_IMG33
Figure 911097856_IMG34
中所示。参考表3,在大约17-20%丙交酯含量时,拉伸性质类似于用在垃圾袋和购货袋的聚乙烯。
在较低丙交酯含量时,共混物相似于聚丙烯,一些数据被比较在表3中。表4规定用于比较中的一般塑料。
表3揭示丙交酯和聚丙交酯混合物的一些数据。其结果与实例1和2的类似组合物没有显著不同。但是,在本技术领域熟练人员认为精确的特性随混合物的紧密度、拉伸试验条件和制造薄膜的制造技术稍微有些变化。表3中的比较揭示丙交酯聚合物混合物具有广泛范围的可控制组合物,它模拟许多一般非可降解的塑料类型。
实例17
低聚物的聚乳酸(OPLA)从与如下的聚丙交酯混合来制备,将88%的L-乳酸(956g)的溶液加入装有机械搅拌和罐式温度计的三颈烧瓶(1升)中。反应混合物在氮气清洗下于150-190℃与200mmHg浓缩1小时,直到理论的稀释水被除去为止。除乳酸及其低聚物外,不使用任何催化剂,继续保持该温度和真空2小时直至脱水所应的73%理论量的水已被除去,所需要的总时间为3小时。在这时间停止反应,水样品和罐中的低聚物用0.5N NaOH滴定。在水的馏出物中发现有26.2g乳酸、罐中的低聚物(OPLA)也用过量的0.5N NaOH回流,然后用标准H2SO4反滴定,数据记录在表5中。加热低聚物的聚乳酸能很好流动,并表明有些冷流。它的聚合度为3.4,它在实例20中用以与实例19的聚合物熔融共混。
表5  实例1的OPLA的特性
理论的脱水百分数  可滴定酸  可滴定酯  总表示的乳酸  聚合度
%  %  %
58  34.4  82.4  116.8  3.4
实施例18
重复例17的过程,不同的是蒸馏进行得更慢,在加热8小时后,其间200mmHg下,温度很慢从63上升到175℃,滴定罐内的样品,表明有62.2%的理论水除去。滴定揭示聚合度为4.3。低聚物的聚乳酸的分子量利用真空泵并在179℃加热2小时进一步提高。低聚物的聚乳酸不再溶于0.1N  NaOH中,是水白色,有冷流。这种材料是低聚物的聚乳酸制备的第二个实例,与实例1比较,具有稍微高的聚合度,它与实例22和25中的聚丙交酯混合,估计聚合度约为6-10。
实例19
丙交酯的聚合物由类似于实例3的方法制备。利用0.02份(每100份)无水辛酸锡催化剂,使90/10重量百分度的L-/外消旋D,L-丙交酯共聚物进行熔融聚合。在一个类似方法中,制备100%L-丙交酯均聚物(L-PLA)。共聚物与均聚物以90/10共聚物/均聚物的重量比在350°F于双螺杆挤出机中进行熔融共混。共混物的凝胶渗透色谱展示重均分子量(Mw)为182000,数均分子量(Mn)为83000,由热解重多分析法得残留丙交酯的量是1.7%(重量)。这种共混物与例17的低聚物的聚乳酸混合以提供例20的材料。拉伸性质列于表6中。
实例20
例19的聚合物与例17的低聚物的聚乳酸在开放式2-辊辊炼机上于325°F熔融共混20分钟混合压模成薄膜。并进行试验表示在表6中。凝胶渗透色谱分子量是均匀,单模型分布(Mw/Mn=2.6)其Mw=192000,Mn=73000。
Figure 911097856_IMG36
实例21-25
例19的共聚物与例19中所述的20%的L-PLA进行熔融共混。共混物如例21一样列于表6中,它的分析结果和拉伸性质也被列出。例21本身也与例18的各种量的低聚物的聚乳酸依次进行熔融共混,如以前那样对例22到25进行试验并列于表6中。表7列出了这些组合物的凝胶渗透色谱分子量。拉伸强度和模量与低聚物的聚乳酸的重量百分数相比较于图3和4中(较低曲线)。
实例26-30
第二系列共聚物与低聚物的聚乳酸进行共混,92.5/7.5的L-/外消旋D,L-丙交酯共聚物由类似于例19和21的方法来制备。这是表8和9的例26。它与例18的低聚物的聚乳酸在开放式2辊辊炼机上于325°F熔融共混大约20分钟。共混物压模成3-5密耳厚薄膜,并测量它的拉伸性质和凝胶渗透色谱分子量。性质记录在表8和9中,作图于图3和图4中,第二系列共混物揭示拉伸性质有很高值,尽管分子量是低的。这可能是由于较低残留丙交酯单体和/或在高聚物组合物的可变化所致。全部低聚物的聚乳酸聚丙交酯共混物可容易模塑成无粘性透明薄膜。
表9  92.5/7.5L-/外消旋D,L-丙交酯共聚物的分子量
实例序号 % GPC×10-3(a)
OPLA  Mn  Mw  Mz  Mw/Mn
26  0  63  124  228  1.95
27  20  60  108  189  1.81
28  30  48  80  125  1.66
29  40  59  96  151  1.65
30  50  56  92  141  1.64
(a)凝胶渗透色谱(GPC)分子量是指单分散聚苯乙烯标准样。
实例31和32
含有和不含有增塑剂的薄膜样品在三月至五月暴露在Daytona,Florida的海水中。水的pH在7.3至7.6之间变化,咸度为33.2至38.4ppt,水在试验过程中逐渐温暖从15到27℃。样品切成条并在海水中暴露,前后试验拉伸,结果表示在表10中,全部样品在海水中暴露六周后表明变白和物理降解,随着时间的进展而进展。没有增塑剂的样品在海水中六周后变白降解。低聚物的聚乳酸聚丙交酯共混物降解较快,3周后表示降解显著清晰。掺有20%丙交酯在暴露1周后立刻引起变白并降解显著。
Figure 911097856_IMG38
Figure 911097856_IMG39
实例33
例33至51告知使用掺入丙交酯和骤冷获得柔韧性和透明性。此外,聚合物可退火以改进热破坏的稳定性。
聚L-丙交酯由上述所述方法来制备。因此,把300g三次重结晶和彻底干燥的L-丙交酯装入一个清洁、火焰干燥过的、氩气冷却过的500ml园底烧瓶中。烧瓶装有橡胶隔膜和进出口注射器针,允许连续导入氩气清洗。辛酸锡溶液可通过将20g辛酸锡溶于预先经分子筛干燥过的100ml甲苯中,然后蒸出10ml甲苯是为了共沸干燥溶液。辛酸锡在甲苯中的最终浓度为0.2g/ml。把0.3ml经过隔膜注入L-丙交酯。烧瓶和它的物料放在150℃的油浴上,当熔化时,激烈回荡获得均匀混合物。氩气清洗继续进行,并将一热电偶经过隔膜装入熔融物中,熔体是143℃油浴的温度上升到200℃,再加热,连续轻度清洗20小时。熔体的温度在加热头二小时上升到170-174℃,最终的温度为170℃。加热20小时后,烧瓶在空气中冷到室温,固体聚合物是透明的。
聚合物通过用干冰冲击烧瓶,从玻璃中释放出聚合物而被回收。由热解重量分析法分析残留的单体,由凝胶渗透色谱测分子量。差示扫描量热法表示玻璃化转变温度Tg是53℃,有两个熔点吸热峰,大约在170℃和190℃。凝胶渗透色谱分子量为Mn=129000;Mw=268000;Mz=462000;Mw/Mn=2.08。由热解重量分析法测得的残留单体是2.3%(实例33,表11)。实验表明L-丙交酯可在它熔点以上或接近熔点进行聚合,产品保持透明和更多的无定形。
实例34
用类似于例33的方法,用0.10ml的辛酸锡催化剂溶液,聚合104.0gL-丙交酯。但是,反应温度是155-165℃,进行72小时。聚合物(表11的序号34)慢慢形成结晶,在反应温度或室温时是一种白色不透明固体。由于样品比前述实验的要小,聚合物冷却得更快,但是仍不是骤冷成一透明固体。在与例33的比较中,较低反应温度允许聚(L-丙交酯)进行结晶变成不透明,因此,就不能形成增塑剂的紧密均匀分散。
在这些实验的许多情况下,温度很慢上升以适应聚合吸热。在单体基本上转变成聚合物之前,反应温度必须达到至少170-175℃,否则,聚(L-丙交酯)结晶,并难于再熔融。
在例36-42中,变化条件,重复L-丙交酯的聚合以获得具有不同残留丙交酯含量和结晶的聚(L-丙交酯)。结果表示在表11中,由表可见仅当产物由熔体骤冷后时,获得挠曲性和柔韧性,在室温时是透明的,并得到大约10%或更多残留丙交酯。相信L-丙交酯均聚物必须在熔融时进行聚合,由单体-聚合物熔融温度骤冷,得到一透明材料,证明它的均匀和紧密增塑性质。在聚合期间,聚(L-丙交酯)结晶时,因为温度很可能低于聚合物的熔点,残留单体作为增塑剂不再有效。如果聚合物结晶冷却到室温,它也失去它的增塑作用,在高温进行退火将破坏结晶度成无定形样品。
表11  L-丙交酯的聚合
例号  催化剂量  温度,  时间,  聚合物外观  残留单体  样品量
pph  ℃  小时  %  g
33 0.02 156-201(a)20 清洁,透明, 2.30 300
150-174(b)硬的玻璃状
34 0.02 155-165(a)72 结晶,不透 -- 104
明,硬的,脆的
35 0.005 120-200(a)24 结晶,不透明, -- 100
111-200(b)硬的,脆的
36 0.02 135-145(a)22 结晶(d),不透 1.1 500
135-152(b)明,硬的,脆的
37 0.02 117-185(a)24 结晶,不透明, 1.74 100
120-175(b,c)  硬的,脆的
38 0.02 160-170(a)8 结晶,不透明, 2.18 2,000
硬的,脆的
39 0.02 145(a)15 结晶,不透明, 3.6 25
137-144(b)硬的,脆的
40 0.0553 190(a)0.3 清洁,可挠曲 10.1 25
160-215(b)柔韧,透明
41 0.0553 188-193(a)0.28 除聚合物边缘 22.9 25
147-200(b)外,清洁,透明,
可挠曲
表11  L-丙交酯的聚合(续)
例号  催化剂量  温度,  时间,  聚合物外观  残留单体  样品量
pph  ℃  小时  %  g
42 0.02 145(a)2.75 结晶(d),不透 52.5 25
150-133(b)明,硬的,脆的
(a)油浴温度
(b)聚合物熔融温度
(c)当温度上升时该聚合物在160-169℃结晶。不再熔化
(d)在反应温度透明,冷却时结晶
与聚合物和单体两者相联系的透明性和紧密性也受到L-/D,L-丙交酯的比的影响。大约在95/5之比时,共聚物很容易骤冷成透明固体。L/D,L-丙交酯之比为90/10时,共聚物相当容易骤冷。100%L-丙交酯时,聚合物难以从粘稠聚合物骤冷到透明材料。由表12的例43-47表示某些比较。稀料样品,即L-丙交酯聚合物由薄膜可能被增塑,并骤冷成柔韧透明的材料。80/20共聚物很容易骤冷到透明固体。当用差示扫描量热法观察时,后者仅有痕量结晶。
表12  丙交酯聚合物的透明性
实例 丙交酯 温度 时间 O/T(b)GpcMw 残留单体
序号 L/D,L之比 ℃(a)小时 %
43  95/5  145-160  67  SO  385,000  2.64
44  100  135-152  22  O  322,000  1.1
45  90/10  150-157  45  T  821,000  4.95
46  90/10  150-170  48  T  278,000  1.37
47 80/20 135-175(c)23 T -- --
(a)熔融温度(聚合温度)
(b)聚合产物的空气冷却后不透明性/透明性
(O/T);不透明(O);稍微不透明(SO);
透明(T)
(c)慢冷1小时。
全部D,L-丙交酯是外消旋的。
全部丙交酯聚合物很容易热成型,这就是当用辐射加热器加热到软化,然后吸入一复杂模中,它们都很容易形成模的模型。但是,聚(L-丙交酯)变成部分混浊,在冷却时变得模糊。95/5,90/100和80/20共聚物的整个热成品是十分清洁和透明的。
实例48
实例33的聚(L-丙交酯)在开放式2辊辊炼机上于375°F(190℃)熔融并混合5分钟,然后在375℃后模2分钟,再在约30秒内空气骤冷到室温。制备7和20密耳厚的薄膜。两者都是清结透明的,没有光雾的痕迹和混浊度。在薄膜中的残留单体是0.79%,薄膜是很硬的。
实例49
重复实验,不同的是辊炼连续10分钟,而不是5分钟。由热解重量分析法分析薄膜,发现含有0.38%丙交酯,薄膜是清洁透明硬的。
实例50
把辊炼机辊炼的聚合物压模成1/4×1/2×1吋装饰板。这种装饰板在压机中需要打开冷却水入压机冷却5-10分钟。除外边是透明的外,装饰板是白色、不透明和结晶的。
上述例48-50告知骤冷聚L-丙交酯的薄膜保持透明。当冷却更慢进行时,他们结晶并失去其透明性。
当D,L-丙交酯被用作共聚用单体时,可由普通的冷却来代替骤冷以保持透明性。球状结晶性可通过退火而引入这些薄膜中,100%L-丙交酯聚合物结晶最快。在不需要透明性时,骤冷较高L-丙交酯聚合物能大大改进它的耐热破坏性。相反,在需要透明性时,例如在聚苯乙烯弥补中(offset),必需很小心以避免这类不透明结晶性。
实例51
聚L-丙交酯薄膜样品在一块热板上于240°F(115℃)退火。薄膜在大约1分钟变得模糊,大约2分钟完全混浊。为了比较,90/10的L/D,L-丙交酯共聚物薄膜需要10分钟变成模糊,15分钟变得完全混浊。当平靠在烘箱内的一水平端旁时,温度升高很慢,退火的聚(L-丙交酯)样品在温度上升到295°F(146℃)以前一直保持平直。然后薄膜全部弯曲。退火的90/10共聚物在185°F(85℃)时全部弯曲。结果表明聚内交酯的结晶性的量在高温到超出它的Tg很多的温度能增加它的成形热稳定性。
实例52-55
下列实验说明在配料过程中添加丙交酯的有利影响。这些例子表明没有丙交酯作为改性剂,丙交酯聚合物在配料过程中降解。当在配料中添加丙交酯时,防止变色和分子量的降低,或大大减低。
因此,在例52中,由上述的方法,用0.02pph SnCl2·2H2O催化剂制备的90/10的L-/D,L-丙交酯共聚物进行研磨并在双螺杆配料机中,添加5%(重量)丙交酯挤成颗粒。挤出机的熔融区温度升到390°F,聚合物变色,重均分子量(Mw,由凝胶渗透色谱测得)降低约40%。结果表明对于Mw很高的这种共聚物添加丙交酯的量不足够。结果示于表13。由此配料制造的颗粒再加入10%(重量)丙交酯进行再配料(实施例54)。熔融区的温度是375°F,其结果要好得多。进一步的变色就不发生了,分子量降得很少,或在实验误差范围之内,得到柔韧组合物。
为了弄清楚第二次配料和挤出是由于丙交酯改性剂而更为方便和不减低分子量,开始用类似的Mw的90/10的L-/D,L丙交酯的共聚物进行另一次配料(实施例53)。在这种情况下,在配料期间,基料中没有加入丙交酯。熔融区温度是382°F。共聚物被退色,Mw降低大约66%。此外,为了配料Mw278000的混合物,与添加了丙交酯的Mw为322000的混合物相比较,需要增加大约5%的转矩。
用丙交酯配料两次后,由热解重量分析法分析例54,发现丙交酯含量为14.4%。把例54的材料用Haake-Brabender挤出机(例55中的)转变成吹膜、这种组合物的薄膜是无色,高透明、非常柔韧和可延伸(如下面实例60-64中所述)。用凝胶渗透色谱测得Mw是324000(配料和挤出之前,Mw=307000)。这种增塑的材料的Tg是42℃,差示扫描量热法揭示在大约138℃时有很少量的结晶熔融。存在丙交酯的量如由热解重量分析法估计是14.6%。
表13在配料过程中丙交酯作为改性剂的影响
配料前 丙交酯(b)
例号 颜色 Mw(a)Ww/Mn(a)重量%
52  浅黄  513  2.15  0.78
53  浅黄  278  1.80  1.37
配料后 丙交酯(b)
例号 颜色 Mw(a)Ww/Mn(a)重量%
52 深黄 322 205 5.56(c)
53  黄  184  1.90  2.26
54 深黄 307 2.00 14.4(d)
55 无色(e)324 1.99 14.6
(a)GPC×103
(b)由热解重量分析法测得,在200℃
(c)在配料过程中添加5%(重量)丙交酯
(d)在配料过程中再添加10%(重量)丙交酯
(e)薄膜
实例56和57
例52和例53的配料聚丙交酯,在双螺杆配料机中,与额外丙交酯一起混合来提高丙交酯含量到大约20%。配料温度是347°F(175℃),从上述的375至385°F减低了很多,配料加工平稳,没有进一步退色。
上述结果清楚表明添加的丙交酯作为改性剂的有益影响。当添加丙交酯时需要转矩(torque)以配料组合物,退色和工作温度都下降了。从降低的Tg和组合物的柔韧性看出增塑的证据。此外,避免了分子量的降低和获得了稳定的组合物,对本技术领域的普通技术人员来说是显而易见的,所采用丙交酯的量取决于许多因素,包括寻找所需增塑的量,所用配料机的类型和聚丙交酯的分子量。
例58和59
例58和59说明聚丙交酯的吹膜挤出。这些柔韧膜模拟聚烯烃的。在双辊杆挤出机中,例56和57的增塑的配料,被调节到大约20%丙交酯。使用Haake-Brabender挤出机将配料转变成吹塑薄膜。该挤出机由具有薄膜模头吹塑的3/4吋的挤出机和接受装置组成。使用12.7mm外径模孔和一针以确定挤出隙距为0.483mm来实现吹塑薄膜。保持挤出物的温度为187℃。用3 OZ/吋2表压的充气空气在该温度下吹入稳定气泡。冷却空气以18psi压力对着气泡的外表吹。由于最终平均薄膜厚度是0.158mm(6.2密耳),充气比例是3∶1。当挤出机隙距从0.483减至0.254mm时,或者其温度升高时,聚合物迅速骤冷成结晶模糊的挤出物。不会膨胀。较大模孔模片生产的挤出物较厚并更粘稠。冷却更慢,用可协调的方法膨胀。挤压的薄膜在拉伸时呈现某些弹性复原。薄膜也耐撕裂和穿刺,拉伸时难以破裂。吹塑膜的平均弹性模量为117000psi,平均抗张强度为3735psi,平均断裂伸长为370%。这些模量略高于线形低密度聚乙烯,但是强度和断裂伸长相当。Elmerdorf撕裂强度在横向机方向是424g(ASTM1922),在机方向为183g,材料的Tg是36℃,由凝胶渗透色谱测得Mw是229000,由热解重量分析法测得残留的丙交酯是19.7%,差示扫描量热法曲线表明在约135℃时进入微弱吸热。
实例60-64
这些例子说明了用聚乳酸的低聚物的酯进行增塑。90/10的L-/D,L-丙交酯的共聚物与添加的丙交酯、低聚物的/乳酸的酯及其混合物进行熔融共混合,它们由拉伸和热性质来进行表征。
在例60中,90/10的L-/D,L-丙交酯的对照共聚物由热解重量分析法分析是6.74%丙交酯。在例61中,这种共聚物与30%(重量)的低聚物的聚乳酸甲酯(Mella)混合,后者可通过在一高压釜中,于210℃加热2500克(s)-乳酸甲酯3小时,然后收集在81至85℃/1.25乇分馏得到的Mella。混合物在约350°F在开放式2辊辊炼机上进行熔融共混。共混物在一压机中于大约350°F压模成透明柔韧薄膜,加入Mella以前和以后的拉伸性质记录在表14中。玻璃化转变温度(Tg)由于Mella增塑剂添加而减低。
对于例62,90/10的L-/D,L-丙交酯共聚物与添加的L-丙交酯在双螺杆挤出机中调节L-丙交酯含量到20%(重量)进行熔融共混。共混物再与低聚物的聚乳酸乙酯(Ella)(例63)和Mella(例64)混合,这些共混物的性质也记录在表14中。
表14 用乳酸低聚物的酯增塑聚丙交酯(a)的性能
弹性模  断裂  断裂
例号 增塑剂 量psi 强度psi 应变% Tg(b)Tm(c)
60 6.74%(d)L-丙交酯 370,000 6,903 2 51 141
61 6.74%(d)L-丙交酯和 154,000 2,012 100 30 141
30% Mella(e)
62  20% L-丙交酯  101,000  2,637  278  -  -
63  20% L-丙交酯和
30% Ella(f)7,316 2,561 339 - -
64  20% L-丙交酯和
30% Mella(e)3,620 495 83 - -
(a)90/10的L-/外消旋D.L-丙交酯共聚物
(b)玻璃化转变温度
(c)熔点
(d)由热解重量分析法分析
(e)乳酸甲酯低聚物
(f)乳酸乙酯低聚物
实例65-81
比较实施例65至81,它们选自专利文献,介绍的条件最可能产生本发明的材料。在这些专利中生产的材料没有完全表征,因此,这些实验需要允许更完全的实例的表征,并提供有意义的对照,从而证明本发明的材料的确是新的。
关于本发明,检测的组合物中残留丙交酯或乳酸的含量为约0.1至约60%(重量),此外丙交酯或乳酸紧密均匀分散在聚合物中。结果落入显而易见的范畴。因此,数均分子量Mn小于10800的产品不具有本发明所需要的性质。事实上,由这些低Mn的组合物制造的薄膜太脆不能进行拉伸测量的处理。
由本发明技术可知,乳酸,丙交酯,或乳酸或丙交酯的低聚物、或乳酸的衍生物必须存在以提供增塑和一些柔韧性。丙交酯存在的量必须大于约10%(重量),而乳酸的低聚物、丙交酯的低聚物和乳酸的衍生物一般要在约40%以上,才能给于聚丙交酯以显著的增塑和柔韧性。但是,正如本发明告知,任何量的增塑剂加到组合物中将会改变性质,并能用来获得特定配方的组合物。因此,如果作为增塑剂的丙交酯是紧密均匀分散和有效混合,丙交酯和聚丙交酯的混合物是完全透明。丙交酯的不均匀区域范围很小,一般小于1微米,因此不再散射光,即它是紧密均匀分散。相反,白色不透明的样品总是硬的,因为他们在试验条件下已结晶。结晶把聚合物质料中的丙交酯挤出,生成硬的刚性组合物,它是单体和聚合物的粗劣混合物,由差示扫描量热法(DCS)看,这也是明显的。已经离析的单体丙交酯本身揭示了具有分离的熔点(在95到100℃),较好增塑的样品不展示性质不同单体熔点。
很重要的一点是列出的这些专利常常表示L-丙交酯均聚物(“100%L-”在表15A和15B中)。丙交酯的均聚物很容易结晶,因为它的熔点高。在较低反应温度时,均聚物可能保留明显量的单体,但是在聚合期间组合物可能凝固。在较高温度时,L-丙交酯聚合得如此快以致于在大量单体留在产品中的情况下很难使聚合停止。
检查列于表15A和15B中的结果显示比较例既可得到低残留丙交酯的产品,又可不进行聚合或聚合如此之差,以致40%以上的丙交酯在特定的聚合终了时留在聚合体系中。因此,例65,66,(非常类似于Schneider的工作)、67、69、73、74和75制得低残留丙交酯的产品。例70、71、72、76、77和78没有很好进行聚合,正如记录在本发明专利的例中。在这些实例中,熟知的实验技术附加到程序中,在注中叙述,从历史观点看(单体纯度,例如)努力制作程序工作,具有质量不高的成功。没有发现是柔韧产品的例子。得到的产品或是玻璃状的,或是硬的、结晶、不透明的。值得注意的是只有使用锡化合物作为催化剂的这些实例看来对于许多包装应用是可接受的。
特别明显的是Tunc方法提供本发明的材料。为了弄清楚这一点需要以繁复的细节。按照Tunc的教导做列出的实验,如在例79到81中所示。图5是本发明的聚丙交酯的一个差示扫描量热法。大约在95至100℃,没有发现残留丙交酯单体的熔点。只看到聚合物熔融。由热解重量分析法分别分析这种材料,表明含有丙交酯单体为18.4%。
为了对照,准确重复Tunc方法进行制备、热解重量分析法展示用上述那样制备(例80)得到20.2%残留丙交酯。这种材料的差示扫描量热法表示在图6中,看到有一个截然不同的单体熔点。这就相应于离析丙交酯,其熔点在它自己不均匀区内。鉴于这种聚合物是白色、不透明、很硬和刚性的,而本发明制备的组合物是清洁透明亦很柔韧。
在例81中,重复Tunc告知的方法,取得类似结果。分析制得的材料丙交酯含量为32.2%,并显示出单体熔点(图7)。该材料很白结晶和硬的材料,其结果评价在表15A和15B中。
上述实验证实了全部乳酸组合物是一种柔韧热塑性的,适用于柔韧塑料包装薄膜和容器方面。为了比较,非增塑的均聚(L-丙交酯)是一种高结晶聚合物,其抗张强度为约7000psi,伸长为1%,初始模量为500,000psi。它是非常脆的,不透明,且容易裂纹,热塑性差,也不透明。聚(外消旋D、L-丙交酯)是一种无定形、玻璃状聚合物,其玻璃化转变温度约50℃,抗张强度约6300psi,伸长约12%,初始模量为160000psi。它虽然透明但也是很脆的。在严格对照中,用丙交酯单体增塑的L-丙交酯/外消旋D,L-丙交酯的共聚物显著不同。例如,增塑的聚合物的抗张强度为约3900psi,伸长为431%,初始模量为56000psi。增塑的聚合物是清洁无色的,共混物必须在高于100℃加热以除去增塑剂。
表15A  丙交酯聚合条件的有关技术
例号  专利  专利  丙交酯单体  催化剂  聚合
例子  (S)  类型 pph  温度℃ 小时
65  2,758,987  1  L-  Pbo  0.30  150  42
66  2,758,987  3  50/50  Pbo  3.00  150  89
L-/D,L
67  3,982,543  3  L-  Pbo  0.30  150  31
68 DD 14548 2 L- SnO(a)0.009 193 3
69 4,137,921 4 90/10 sn(Oct)2, 0.0553 180 0.33
L-/D,L GA/二噁烷(b)190 0.33
210  0.33
70 GB 755,447 4 D,L ZnO(c)0.02 150 24
71 GB 755,447 2 D,L Zn粉(d)0.02 140 25.5
72  GB  755,447  6  D,L  碳酸锌  0.02  140  2
氢氧化物(c)150 3
73  CA  932,382  1  D,L  四苯基锡  0.02  165  20
74 CA 923,245 1,7& L- Et2Zn 0.167 105- 2
8  110
75 DE 946,664 2 D,L(e)ZnCl20.25 140 48
76  DE  1  L-  硬脂酸锡  0.0087  205-  0.5
1,112,293  as  sn  210
表15A  丙交酯聚合条件的有关技术(续)
例号  专利  专利  丙交酯单体  催化剂  聚合
例子  (a)  类型  pph  温度℃  小时
77 2,951,828 1 L-(f)SnCl40.30 160 5
悬浮液(g)
78  3,268,487  2  D,L  三(2-氯乙  0.88  80  24
基胺(h)
79 EP App. 6, L- Sn(Oct)20.00108 165 93
108,635  聚合
(1984);  物8
4,550,449;
4,539,981
80 4,539,981;聚合 L- Sn(Oct)20.00119 136- 64
4,550,449  物33  139
81 4,539,981;聚合 L- Sn(Oct)20.00324 115 64.5
4,550,449  物37
(a)在加入88%的0.75pph乳酸改变配方之前没有反应,产物是白色,不透明,很硬且脆,薄膜太脆不能处理。
(b)包括乙醇酸作链转移剂
(c)不溶
(d)24小时加上用700μl 88%乳酸和100μl H2O附加1.5小时之后仍不溶解。
(e)在甲苯中,产物为无色并很粘
(f)在一种溶剂油(约150~200℃馏分)中,标准溶剂No.R-66
(g)附聚的
(h)在含有0.517pph  KOH的二噁烷中,不聚合,
表15B  丙交酯聚合结果的有关技术
GPC×10-3
例号  残留单体,%  Mw/Mn  聚合物外观
Mn  Mw  Mz
65  0  254  454  717  1.79  浅黄色,结晶,不透明
66  0  97  187  322  1.94  浅黄色,透明
67  0.85  95  195  325  2.06  部分不透明结晶,部分透明
68 17.5(a)5 7 9 1.47 白色,结晶,不透明
7.1;7.7  7  8  10  1.25
69  4.6  116  218  356  1.88  浅黄,透明
70  47.7  --  --  --  --  白色,结晶(单体),不透明
71  65.3  --  --  --  --  白色,结晶(单体),不透明
72  79.6  --  --  --  --  白色,结晶(单体),不透明
73  1.4  116  214  340  1.84  黄色,透明
74  1.9  80  150  235  1.87  橙色,结晶,不透明
75 5.4(i)164 377 657 2.3 硬无色
2.5,1.9(j)307 527 808 1.72
76  43.3  30  35  41  1.17  硬,结晶,不透明
表15B  丙交酯聚合结果的有关技术(续)
GPC×103
例号  残留单体,%  Mw/Mn  聚合物外观
Mn  Mw  Mz
77  8.6;9.6  219  343  504  1.57  硬,结晶,不透明
78  100  --  --  --  --  全部结晶单体
79  5.0  14  26  35  1.88  白色,结晶,不透明
film(k)14 26 35 1.82 在边缘有些透明
80 20.2(l)大于 1,000,000 白色,结晶,不透明
81 32.2(m)大于 1,000,000 白色,结晶,不透明
(i)样品在140℃加热,然后在60℃真空烘箱中干燥5分钟以除去溶剂
(j)样品在60℃真空烘箱中加热过夜以除去溶剂
(k)透明,很硬且脆
(l)Tunc  法得17.1%,分子量很高
(m)Tunc  法得28.0%,分子量很高
虽然理论上预示更多无定型结构作为增塑的结果,令人惊奇的是能产生柔韧、透明、热稳定组合物,其次接近准确适合某些包装应用所需的性质,例如聚乙烯。在需要有一种具有上述初始性质的材料,它是很慢环境可产生降解的,而后减轻塑料污染问题的时候,本发明出现了。
显然对本技术领域的熟练人员来说,高聚物和增塑剂的极紧密均匀共混物是罕见的事物。紧密增塑允许宽范围的原始物性和环境生物降解时间。
增塑剂在聚合物中的量取决于所需配料的特性。如果丙交酯被用作增塑剂,其用量最好是10到40%(重量)范围,而如果仅是丙交酯或乳酸的低聚物被使用,其用量范围可能为10-60%(重量)。令人惊异的是,低聚物可被加到高达30%(重量)基本上没有影响抗张强度或模量。见图3和4。添加30到60%(重量)低聚物产生显著的增塑及衰减了物性。这种添加对组合物来说具有巨大经济价值。这是由于低聚物的乳酸比高分子量的聚丙交酯便宜。低聚物可由乳酸或任何丙交酯来制备,值得注意的是乳酸的低聚物通常含有大量的乳酸除非被除去。考虑在缝纫组合物中要有特殊性质。是很重要的,本技术领域中的熟练人员并知道本发明的叙述能够选择反应条件以获得适当链长的聚合物,聚合物的增塑剂的性质以便性质以便获得所制造的组合物具有的物性类似于通常用来包装的热塑性塑料,并能比较迅速的降解。例如,较高量的增塑剂导致聚合物增加了柔韧性和增加了坚韧物性,但是也增加了降解速率。此外,短链长的聚合物需要少量增塑剂以获得像较长链的同样性质。
单体的聚合最好在低于129℃温度下进行。把增塑的聚合物进一步加工成最终产品最好在足够低的温度以便保持聚合物中的增塑剂。其温度可在129℃以上。如果附加的单体和/或低聚物在聚合后加入,在加工过程中,单体的保持当然不是关键。
没有取向的本发明组合物的抗张强度从300至20000psi,断裂伸长为50至1000%,正切模量为20000至250000psi。优选的聚烯烃替代物的组合物的抗张强度至少3000psi,断裂伸长至少250%,正切模量至少50000psi。
调正聚乙烯的替代物的组合物以便使没有取向的组合物的抗张强度为约1200至4000psi,断裂伸长为约100至约800%,正切模量为约20000至约75000psi,而调节替代聚丙烯的组合物以便使没有取向的组合物的抗张强度为约4500至约10000psi,断裂伸长为约100至约600%,正切模量为约165000至约225000,熔点为约150至约190°F。
本发明的均聚物和共聚物不溶于水,但经常与接触时很慢降解,而当与聚烯烃组合物相比时,降解得很快,后者由本发明所替代。因此,由聚合物制造抛掉的物体环境引起注意,在环境中慢慢降解成无害物质。如果由本发明的聚合物制造的实物被焚烧,燃烧带有清洁兰色火焰。
本发明的组合物用来替代聚烯烃组合物,特别是聚乙烯、聚丙烯以及聚氯乙烯和聚对苯二甲酸乙二醇酯,除掉上面列出的处,其方法是用来取代苯乙烯、醋酸乙烯酯、甲基丙烯酸烷基酯、丙烯酸烷基酯的聚合物。应理解由所列出一组单体的混合物制造的共聚物和上述组分的聚合物和共聚物的物理混合物同样可取代。在本技术领域中的熟练人员认为少量的丙交酯和乳酸可由预期的等同物如乙交酯、乙醇酸和己内酯来替代。
B第二类一般实例
本发明所公开的环境可生物降解的组合物是完全可降解于环境可接受的和可相容物质。降解的中间产物:乳酸是广泛分布的自然存在的物质,由各种各样有机体很容易使它产生代谢变化,它的自然最终降解产物是二氧化碳和水。这些组合物的所预期等同物为含有少量其它物质、填料、或补充剂,适当选择这些物质,也能完全环境可降解。此中的组合物提供环境可接受的物质,因为它们的物理变质和降解比它们取代的通用非可降解的塑料迅速和完全得多。此外,由于组合物的全部或主要部分是聚乳酸,和/或丙交酯或低聚物衍生的乳酸,没有残留物或仅有一小部分更慢降解的残留物保持。这种残留物比本体产物表面积更高,预期有更快的降解速度。因为乳酸和丙交酯都能达到相同的重复单元,如在此中所用一般术语聚乳酸是指具有式Ⅰ的重复单元的聚合物。对聚合物如何制造没有限制(如由丙交酯、乳酸或低聚物),以及没有涉及聚合度或增塑的水平。
当由乳酸、丙交酯单体、丙交酯的低聚物、乳酸的低聚物、低聚物的丙交酯的衍生物和它们的各种的混合物增塑时,本发明的优选组合物包括具有式Ⅰ的聚合的乳酸单元,其中n是大约450至约10000之间的整数,α-碳是D和L(或R和S)与纯对映体之一的大部分的无规则混合物。增塑剂可以由在聚合反应完成之前停止反应而产生。可任选地将附加的增塑剂,它由丙交酯单体(D-丙交酯、L-丙交酯、D,L-丙交酯或它们的混合物)、乳酸、丙交酯低聚物或乳酸低聚物或其衍生物(包括所有L-、D-、和DL-构型)、和它们的混合物构成,添加到生成的聚合物中。使在聚合物内更紧密均匀的增塑剂为一整体,其特性更好。事实上,需要很紧密均匀的分散和一体化以得到如下将讨论的本发明优点。如果需要,聚合后可将附加的单体或低聚物增塑剂添加到保留在组合物中的残存单体或低聚物中。由式Ⅱ定义的乳酸低聚物和丙交酯低聚物,其中m是2≤m≤75之间的整数(包括所有L-、D-、DL-构型)和它们的混合物,既可是无规的又可是嵌段构型,用作增塑剂。低聚物的乳酸(包括所有L-,D-,DL-构型和它们的混合物,既可是无规又可是嵌段构型,用作增塑剂)的衍生物由式Ⅲ定义,其中R为H、烷基、芳基,烷基芳基或乙酰基,并且R是饱和的;其中的R和R′不能同时是H;其中q是一整数,2≤q≤75,然而优选的范围是2≤m≤10。添加到聚合物组合物中的增塑剂具有下述功能:
(a)它们作为增塑剂将揉曲和柔韧性引入到聚合物组合物中,这些性能在仅含聚合物的组合物中是不具备的。
(b)这些增塑剂添加到聚乳酸中降低了聚合物的熔体粘度、也降低了熔融形成组合物所需要的温度、压力和剪切率。
(c)增塑剂能防止在聚乳酸的挤出成形过程中的生热和随之发生的褪色和分子量降低。
(d)增塑剂增加了组合物的耐冲击性,该性能在聚合物本身未发现。
此外,增塑剂可作为聚丙交酯与其它可降解和不可降解聚合物熔融共混合的相容剂,即,在增塑剂存在下,两种不同聚合物的熔融混合物可以更紧密均匀结合并混合成良好分散的共混物。增塑剂也可以改进溶液掺混的性能。
上述注角n、m、p和q指的是聚合物或低聚物的链节(重复单元)的平均数。与链节相关的如下使用的数均分子量Mn是链节乘n、m、p或q,即由各链节的分子量乘n、m、p或q,对聚乳酸来说,该数是72。存在在聚合物中的链节数也称为聚合度。读者可参考下述文章(该题目将进一步讨论)Polymer  chemistry  an  Introduction,第二版,R.seymour等,Marcel  Dekker,Inc.1988和Introduction  To  Polymer  chemistry,R.seymour,McGraw-Hill,New  york  1971。
当n低时,聚乳酸易于加工,但比当n大时相当的差。当n相当大时,例如7000或更大,聚乳酸相当坚牢,但难于注塑。对最平衡的熔融加工性和最终使用的物性来说,n优选为大约500至3000,选择单体的量和类型以便得到乳酸或它的环状二聚体,丙交酯的L-/D比率,下面将进一步讨论。如上所示,乳酸和丙交酯均能达到重复聚乳酸单元,但优选的是丙交酯,因为它能更容易的得到有良好物理性质所必需的较高分子量。由于丙交酯具有两个不对称的α-碳,因此,有三种类型丙交酯,即:D,D-(或D-);L,L-(或L-);和内消旋D,L-丙交酯。
D-丙交酯是D-乳酸的二丙交酯或环状二聚体。类似的,L-丙交酯是L-乳酸的环状二聚体。内消旋D,L-丙交酯是D-和L-乳酸的环状二聚体。外消旋D,L-丙交酯含有D-,和L-丙交酯的50/50混合物。当单独在本发明使用时,术语:D,L-丙交酯想要包括内消旋丙交酯或外消旋丙交酯。在本发明中使用的术语“紧密均匀分散”指的是材料是紧密均匀的与聚合物相混合。
纯聚L-乳酸和聚D-乳酸具有较差的加工特性,易出现裂开并成为不透明。纯聚(D,L-乳酸)易加工但不像以D或L构型为优势的丙交酯共聚物那样硬或可取向,共聚单体的比为85/15至95/5(L-对映体对D-对映体的比为大约92.5/7.5至约97.5/2.5)之间,最优选为大约90/10L-丙交酯/D,L-丙交酯,它是本发明优选方案。如果比率高于95/5,共聚物难以热成型没有裂开,并且在室温下变为不透明。还有,比率超过95/5材料变成双晶,难以挤出。由于不同结晶形态影响加工条件。此外,比率超过95/5,材料加工必须在太接近其分解点,不能得到合理的粘度而无颜色形成。如果比率低于85/15,丙交酯共聚物呈现比以L或D为主的共聚物较低的模量,而且,如果比率低于85/15,材料在合理的时间内难以得到要求的结晶度。在这些限定之间,由在塑料技术的典型制造/加工设备中共聚物以熔融骤冷成薄膜和模塑件,它们是透明的,无色和具有极好的刚性。正如上面所形成的性能与结晶聚苯乙烯的性能接近一致。可是,宽范围的L-/D-对映体的比可用于特殊用途。
本发明的另一优点是全部乳酸共聚物可以使用廉价的原料。玉米浆通过淀粉和玉米发酵成L-或是外消旋D,L-乳酸,这取决于微生物。外消旋,D,L-乳酸可廉价得到,即经由乙烯氧化成乙醛,乙醛与氰化氢反应形成乳腈,乳腈水解成外消旋D,L-乳酸。丙交酯可通过乳酸的蒸馏简单得到,通过普通的蒸馏/缩合法,在乳酸转变成丙交酯过程中,没有出现不对称碳的立体化学的变化。
在此讨论L-丙交酯和D,L-丙交酯的反应时,应当理解,指定L-丙交酯的反应也可使用D-丙交酯。因此,根据本发明所述的方法,D-丙交酯和D,L-丙交酯的反应给出的是等效的产品。唯一的区别是在不同的方向上旋转光。
本发明的共聚物优选是通过加热单体混合物形成均匀熔体并加入催化剂引起丙交酯经过开环聚合来形成的。聚合反应最好在惰性无水气氛如氮气或氩气中或在真空中进行。选用的催化剂包括二价金属氧化物和有机金属化合物,如辛酸锡,乙酸锌,乙酸镉,乙酸铝或丁酸铝,氯化锡,苯甲酸锡和氧化锑。辛酸锡是优选的催化剂,因为它在单体中溶解度高,在无水形式下易制备和低毒性。所需催化剂的量在大约0.02至2%(重量)之间变化(以单体为基准),优选为约0.2%。共聚物的分子量和熔体粘度可通过催化剂和/或链转移剂如乙醇酸的量来控制。聚合反应温度在大约100至200℃之间。最少颜色生成的发生低于140℃,聚合速率更好高于135℃。由于外消旋D-L丙交酯在127℃熔融,单体转变成聚合物的聚合最好在高于127℃下进行。
正如结晶聚苯乙烯补尝情况一样,在此,需要基本上清洁和透明的组合物。本发明的共聚物是在惰性气氛和高于其熔点,一般在125~150℃范围内聚合成的,熔融丙交酯共聚物可以从聚合器中以单束或条挤出,骤冷、造粒并在袋中贮存以备在随后的模塑和挤出操作中使用。
类似的,热成形包装薄膜和成形制品的透明性是通过在聚合物的熔点之上模塑和挤出然后迅速冷却其制造的制品而实现的。以后,聚合物保持透明性,除非在玻璃化转变温度Tg之上和熔点Tm之下加热数小时。热成形的片、厚板、薄膜、和模制品的慢速冷却会导致聚合物中的球粒结晶,它可以使得制品的热稳定性得以改进,但会引起透明性的损失。成核剂如苯甲酸钠,乳酸钙等也可导致迅速和大量的结晶,在Tg和Tm之间适量拉伸聚合物可导致聚合物分子的取向并能大大地改善物理性质而不损失透明性。
不同类型的丙交酯聚合物或共聚物的共混可以大大改变物性,作为一个例子,高熔融L-丙交酯与低熔融丙交酯共聚物的熔融共混可以提供透明的材料,它具有足够量和类型的结晶度以保持基本透明。本领域熟练技术人员认为模塑薄膜中的透明性、很高的刚性、升高的热变形温度、热加工性和环境可生物降解性是这些性能的罕有结合。这样,可掺混以及可成核、取向和由分子量控制的聚合物为最终配料的热塑性塑料提供了很大范围的加工性能和最终性能。
本发明的共聚物在水分的存在下将水解回乳酸。在环境空气和温度下,水解在12~18个月时间内变得明显,然后聚合物成为粘性的。稍有点不透明而且很脆。当共聚合物浸在水中时在1-4个月内出现明显的水解发生,这取决于组合物、分子量、环境温度、它的表面与体积之比。特别是共聚物置于的水环境,微生物可以进一步将乳酸还原成二氧化碳和水。当进行粗的测量,共聚合物有若干个月的适用期,但当在完全潮湿时大约在一年内消失。
下面实施例仅是对本发明的说明。在例1B至例7B中,制备并评价组合物系列,发现,与现有技术相比,L-丙交酯/D,L-丙交酯共聚物的加工性和物性有着截然不同的区别。
例1B
在干燥的500ml圆底烧瓶内装入160gL-丙交酯(Purac  Inc.,“triple-star”级)和40g外消旋D,L-丙交酯(Purac,Inc.,“Triple-star”级)。在加塞下通过塞子连接的进出口用氮连续净化,混合物于123-129℃加热大约1小时。单体形成透明熔体,通过回荡熔体使其彻底混合,共通过共沸蒸馏制备和干燥催化剂溶液,即,10ml的辛酸锡(Polysciences,Inc.)溶解在60ml甲苯中,含痕量水的10ml甲苯被蒸馏到迪安-斯达克榻分水器中(它由干燥管通风)。0.2ml量的辛酸锡溶液吸到熔体中并完全混合。用氮气连续清扫,在以后的3小时里熔体的粘度增加。在123~127℃连续加热20~24小时,让混合物冷却到室温并使烧瓶用护罩后的液氮进一步冷却。玻璃破碎并由通过轻敲从聚合物中除去。聚合物是透明无色的,并用一系列试验进行评价,并表示在表1B中。为以后的拉伸试验薄膜在加热  液压机中于170℃模压,模制1/8英寸厚的厚片为开口悬臂梁AsTm  D256冲击试验和热变形温度AsTm  D648用。通过差示扫描量热法(DSC)评价玻璃化转变温度(Tg)和熔点(Tm,吸热中心)。
例2B~7B
重复例1B的步骤,不同的是L-和外消旋丙交酯的比率改变,其试验结果如表1B中所示。例7B的纯丙交酯聚合物于170~200℃模塑不总是很好。因为它在模塑冷却中常常出现很差的细微裂纹,在冷却中它常常成不透明。图15~18说明例5B材料的DSC曲线图,以后将进一步讨论。
例8B
类似于例4B和例5B,制备L-丙交酯/外消旋D,L-丙交酯重量比为90/10的共聚物。向干燥氮气清扫的2升烧瓶内加入1045.8g的L-丙交酯和116.4g外消旋D,L-丙交酯,加入1.0ml量的无水辛酸锌(0.2ml/每ml甲苯)溶液。烧瓶用氮清扫一昼夜,然后在141℃油浴中加热直到单体熔融并良好混和,加热缓慢降至125℃并保持72小时。在冷却时聚合物缓慢变白,除去玻璃后,评价混浊无色玻璃状的共聚物。用凝胶渗透色谱法得到重均分子量(Mw)为522,000和数均分子量(Mn)为149,000。
丙交酯聚合物DSC显示在145℃有一强Tm,见图13。丙交酯聚合物熔融,骤冷,再用DSC检测显示无结晶或无熔点。然而Tg为大约50~55℃。结果表明,聚合物是结晶或无定形,取决于其加热过程。
例9B~12B
用例1B的步骤扩展组合物系列,不同的是使用另外L-和外消旋D,L-丙交酯比,在125℃加热2小时,在125~147℃加热14小时,然后在147~131℃加热2小时,结果列在表2B中。
表2B  L-丙交酯和D,L-丙交酯共聚物的拉伸和模量性质
组合物,重量比,L-丙交
酯/外消旋D,L-丙交酯  70/30  60/40  20/80  0/100
例号  9B  10B  11B  12B
颜色/透明性  无色/透明  -  -  -
膜厚度,密尔  6-9  4-6  4-5  5-7
抗张强度(a),1000psi
ASTM D638(a)6.9 6.7 5.8 5.6
伸长,%  3.2  3.0  2.7  2.8
正切模量,1000psi  287  293  275  278
(a)在一以0.2英时/分  狭口分离将薄膜拉伸,示意图速度为5英吋/分。
上述例子的结果表明,只有某些组合物具有结晶聚苯乙烯相补偿所需要的性能。似结晶聚苯乙烯等材料的主要要求是透明度和无色,抗张强度大于7000psi,正切模量(硬度测量)大于400,000psi和良好的热塑性行为。表3B列出了一些结晶聚苯乙烯(OPS)与含87.5%(重量)L-丙交酯和12.5%(重量)外消旋D,L-丙交酯无规共聚物一起比较。
例3B  物理性质比较
性质  聚乳酸例3B  结晶聚苯乙烯
冲击强度,切口悬臂梁
英尺-磅/英寸  0.4  0.4
极限抗张强度,psi  8300  7400
伸长,%  6.0  4.0
弹性模量,psi  694,000  450,000
形变温度,°F
负荷下,264psi  (a)  200
比重  1.25  1.05
洛氏硬度  (b)  M75
维卡(Vicat)软化点,°F  (c)  225
熔体流动速率,D1238(G) 40~46(d)1.7g/10分(e)
1.6g/10分(f)
注:(a)取决于加热历程
(b)肖氏,D=97
(c)DSC,在10度/分下Tm=125℃(257°F)
(d)在低温下流动速率降低
(e)制造者列出的
(f)我们的试验
例13B
模塑例2B的共聚物,再模塑若干次测定颜色在薄膜中是否显现,分子量保持很高。这种测定共聚物是否可循环,对生产实践是一重要考虑。表4B中的结果表明,尽管在高温下共聚物重复暴露在空气中,重复加热和模塑后;聚合物仍保持完全透明和无色。
表4B  模塑对丙交酯共聚物的影响
例号  历程  表观  Mw'  Mn'  Mw/mn
1000'S  1000'S
例2B(a)不模塑,直接 完全透明
来自聚合  和无色  928  218  -
例13B(a)模塑(b)后 完全透明
例2B  和无色  301  135  2.22
例13B(a)模塑6次(b)后 完全透明
例2B  和无色  137  56.7  2.42
注:(a)L-丙交酯/外消旋D,L-丙交酯比为85/15的共聚物。
(b)在167℃(333°F)压模7分钟成5密尔的薄膜。
例14B-18B
例2B、3B和6B的共聚物模压成大约20~30密尔厚的薄膜,将薄膜置于加热的英斯特郎(Instron)试验仪上,在83℃以每分钟0.5英寸速率将膜拉至其原长的5倍,迅速冷却薄膜并从试验仪上取下来,发现厚度大约5密尔。它们是透明无色的。评价拉伸性质并列在表5B中。当拉伸到其长度的8至10倍时,由于雾状出现的效应,薄膜呈现明显结晶形成并失去了一些透明性。
结果证明可以制成很薄的薄膜,具有结晶聚苯乙烯补偿的足够的刚性和透明性。因此,尽管丙交酯共聚物的密度比聚苯乙烯的高,但是很少材料可用作刚性结晶聚苯乙烯的补偿(offsets)。
表5B 取向后L-丙交酯/外消旋D,L-丙交酯共聚物的性能(a)
组合物,重量比
L-丙交酯/外消旋D,L-丙交酯
85/15  85/15  85/15  87.5/12.5  95/5
例号  14B  15B  16B  17B  18B
薄膜厚度,密尔  5.5  5.0  6.5  5.0  4.0
抗张强度,1000psi  14.0  14.7  15.0  13.0  16.0
伸长,%  31.5  15.4  30.0  23.8  37.4
正切模量,1000psi  -  56.4  419  432  513
注:(a)在英斯特朗仪上于83℃以0.5英寸/分速度下拉5×取向。
例19B
表1B的丙交酯共聚物薄膜在水中浸渍若干个月。共聚物保持透明约两个月、3个月后出现轻度混浊。因放置在湿空气中的搁板上和经常看管,薄膜实际上保持约1年不变,尽管英斯特朗数据表明若干个月后强度和伸长慢慢下降,在堆放地中,盖膜在6个月至2年内消失,这取决于干湿度,pH值,温度、组合物、表面对体积比各堆放地的生物活性。所有的薄膜燃烧带有清洁蓝色火焰。
例20B
用DSC检测例5B的丙交酯聚合物(骤冷,模压薄膜),发现结晶度低于2%,见图8,在近130℃处。例5B共聚物的1/8英寸厚样品于185°F烘箱中退火16小时。样品变成混浊,样品的DSC(见图10所示)结晶度明显增加。样品表明264psi热变形温度(HDT)为90至约95℃,未退火的类似样品显示热变形温度为50至55℃,与其Tg相对应。
例21B
在加热的辊炼机辊上将5%(重量)的乳酸钙与例5B的丙交酯于170℃共混5分钟,共混物以片状从滚筒上取下并检测。它是硬、强劲和混浊的。其尺寸范围为几微米至30微米,在82倍光学显微镜显示非均匀区域。DSC显示在145℃附近结晶度大量增加,见图11,它在骤冷和再加热中仍保持。与例8B、20B和21B比较,上面结果表明,成核剂在丙交酯共聚物中导致结晶更迅速更有效,可以使用成核剂如羧酸盐,乳酸盐是优选的。
例22B
在装有机械搅拌器和氮气进出口的500ml三颈圆底烧瓶中加入180.7gL-丙交酯和40.2g外消旋D,L-丙交酯(均为Boehringer和Ingelheim,S级)。瓶内物料在氮气清扫下加热到110℃熔融丙交酯,加入20.1g聚苯乙烯(Amoco R3,熔体指数3.5g/10分钟)。搅拌一昼夜,聚苯乙烯高度膨胀且有部分溶解同时温度升到185℃。温度降至141℃,加入0.2ml无水辛酸锡溶液(0.2ml/ml的甲苯)。停止搅拌并让丙交酯于141℃聚合3天。停止搅拌后高度溶胀聚苯乙烯漂在顶层,下层聚丙交酯相冷却并用DSC检测。样品具有低Tg,大约35℃,另外缺乏表观温度转变。模压模为明亮无色且很柔软。这些结果说明,聚苯乙烯完全干扰了结晶的形成。
例23B
例8B的丙交酯共聚物与20%(重量)的例7B中制成的L-丙交酯均聚物在辊炼机辊上混合。用DSC分析均聚物样品,见图14。用DSC检测共混样品,发现Tg为59~63℃,在150和166℃有强Tm′s,见图15,薄膜从透明到轻度混浊,取决于其压制后的冷却速度。在加热到80~90℃时骤冷样品易结晶。结果,现在共混物的热变形温度相当高。共混物于80~90℃变得混浊,但如未共混的90/10共聚物没有热变形,未取向模压薄膜所得拉伸数据如表6B中所示,并且与同样所得聚苯乙烯的数据相比较。
表6B  例23B聚丙交酯共混物与结晶聚苯乙烯的比较
例23B(a)结晶聚苯乙烯(a,b)
膜厚度,密尔  8  14
抗张强度,ASTM,D
882,1000's psi  7.7  6.0
伸长,%,对屈服  6.5  3.2
正切模量,1000's psi  323  267
注:(a)薄膜,未取向,模压样品
(b)熔体指数1.7
该例子说明,熔融共混是改进共聚物性能的极好方法。使其优越性能类似于聚苯乙烯。与聚合物掺混的L-丙交酯(或D-丙交酯)均聚物的量越高,热变形温度越高,然而混浊也增加。因此,在仍保持透明度的同时,添加均聚物要与增加类似聚苯乙烯性能的其它方法相结合。
作为进一步例子,取向由聚合物生产的薄膜增加了拉伸性。在拉伸到8至10倍时,物性仍增加,但材料变得混浊。因此取向度需要控制并且与其它变性方法相结合以达到最佳类似于聚苯乙烯的性能。
例24B~27B
例24B至27B是用链转移剂的量控制丙交酯的聚合,说明分子量可以用链转移剂如乙醇酸来控制。结果示于表7B中。链转移剂的量与重均分子量的倒数之间存在着一条近似直线的关系。优选链转移剂是乳酸或乙醇酸。
表7B  用链转移剂控制分子量
例号 CTA的PPH(a)Mn(b)MwbMw/Mn
24B  0.22  13,500  107,300  8.0
25B  0.45  12,800  66,700  5.2
26B  0.90  7,300  29,900  4.1
27B  1.80  4,700  13,900  2.9
注:(a)在聚合配方中每100份丙交酯乙醇酸链转移剂(CTA)的份数。
(b)于23℃用106、105、104和103anhstrom柱在四氢呋喃溶剂中的凝胶渗透色谱法,数均分子量Mn,重均分子量Mw,与单分散聚苯乙烯标准比较计算分子量。
例28B
以ASTM方法作为不渗透膜评价例2B丙交酯共聚物的4.0密尔模压薄膜。结果示于表8B中,丙交酯共聚物阻挡二氧化碳和氧比聚苯乙烯好得多。通过与一些其它聚合物不渗透膜相比较,丙交酯共聚物适用于许多包装应用中的不渗透膜。
表8B 例28B对气体渗透性(a)
vinylidiene(b)丙交酯共 结晶聚 聚对苯二甲 氯化物-氯
单元 聚物例2B 苯乙烯(b)酸乙二醇酯 乙烯共聚物
cc/100英寸2/
24小时/大气压
CO232.1 900 15~25 3.8-44
O219.9 350 6-8 0.8-6.9
注:(a)ASTM  D1434-75,例2B是4.0密尔模压膜。
(b)来自Modern  Plastics  Encyclopedia值。
例29B
将例1B至6B丙交酯共聚物的1/8英寸厚片在石油醚和二氯甲烷中浸渍一昼夜,石油醚/二氯甲烷的比为70/30至60/40,当置于沸水中时共聚物发泡,不规则但膨胀很好。形成泡沫。
这样,用其它加工步骤生成发泡材料时,可优选使用的可相容的化学或物理发泡剂。这些材料通常用于发泡苯乙烯(如餐具,包装,建筑材料等)。例如,发泡剂可以在挤出和注塑之前加入。
例30B
工业结晶聚苯乙烯(型号201,Huntsman  chemical  corp.)与例8B的丙交酯聚合物的熔体粘度做比较。于200℃用标准与5Kg重,聚苯乙烯熔融指数[ASTMD  1238(G)]为1.6g/10分钟。在同样的条件下丙交酯聚合物的熔融指数为40~46g/10分钟,然而在160℃的值是8g/10分钟。通过观察两聚合物在英斯特朗毛细管粘度仪上的熔体粘度得到熔体粘度的更详细比较。比较结果示于图12。在挤出和注塑通常的剪切速率是100~1000/秒。图12数据观察表明丙交酯聚合物于160℃的熔体粘度很类似于聚苯乙烯于200℃时的熔体粘度。
上述结果说明,丙交酯聚合物可以用很相似的方法于比聚苯乙烯低的温度进行熔融加工。
例31B~34B
进行纯化(再结晶和干燥)的内消旋丙交酯(内消旋D,L-丙交酯)的小试聚合作为均聚物和共聚物。用GPC测分子量并与D,L-丙交酯类似物比较,结果示于表9B中。聚合物熔压成膜,评价其物性并如表10B中所示进行比较。在实验不同的片厚和分子量,在实验误差内共聚物相类似。内消旋丙交酯的均聚物稍差。
表9B,内消旋和外消旋丙交酯聚合物和共聚物的GPC分子量比较。
例号 组成 残留 GPC×10-3
Mw/Mn
单体%  Mn  Mw  Mz
31 B(a)D,L-PLA - 97.5 341 757 3.49
32 B  内消旋PLA  2.76  62.5  152  264  2.42
33 B  90/10,L-/内消旋  1.67  29  142  301  1.67
34 B(a)90/10,L-/D,L- - 91.3 201 350 2.20
注:(a)外消旋D,L-丙交酯。
Figure 911097856_IMG41
例35B-47B
这些例子说明了优选L-/D,L-聚丙交酯共聚物系列的共聚物比例(这些例子全都使用外消旋D,L-丙交酯)。其中特别有益的是80/20,90/10,95/5和100/10比率。这些共聚物中的每种都是具有不同性质的材料。表11B中也包括了这些未取向共聚物的热性能数据。玻璃化转变温度(Tg)随着紧密均匀分散的残存丙交酯单体的量而变化。图16表示了典型关系,其中残留丙交酯是由TGA测定的,Tg是由DSC测定的。极近似地,Tg遵循着所有L-/D,L丙交酯共聚物比率的关系。80/20共聚物是典型的玻璃化转变温度为56℃的非晶材料,该共聚物仅限于工业使用,因于其热变形温度为40~50℃,对许多包装使用该温度太低,作为应用中的硬性聚合物要求高达70℃。
其它共聚物具有相同或仅稍高的玻璃化转变温度。但可以结晶以提高其热稳定性。结晶速率随着D,L的含量减少和分子量降低而增加,从热性能观点出发,只有百分之百的聚L-丙交酯聚合物是最需要的。然而,当考虑其它性能如模塑和挤出成型的加工性,在低温下以较小粘度和成色性进行如此加工的能力,反应器排料性和透明性能,如本文中进一步讨论的,优选的比率是85/15至95/5。
表11B  丙交酯共聚物热性能的概述
例号  共聚物比率  玻璃化转变温度℃  熔融温度℃
35B  80/20  56  -
36B  90/10  55  150
37B  95/5  59  164
38B  100/0  63  178
由这些聚合物的每种挤出的片材的机械性能也有点差别,取决共聚物比率,表12B概述了由挤出并3倍双轴取向片材料所得数据。双轴取向片材既可是非晶的又可以在退火中结晶生长的半结晶态。发现退火的片材的热稳定性高达退火温度,大约110℃。
由于80/20共聚物在退火时不结晶,当在高于其玻璃化转变温度加热时,它总是易受热变形,然而取向使其室温下机械性能增加很高。
经过退火和取向的90/10共聚物的多数性能增加,取向和退火的片材具有大约与80/20共聚物相同的机械性能。例如,同例4B,5B和6B相比,未取向95/5共聚物的机械性能可得到的数据大致与90/10共聚物相同,并在通常的实验误差内,95/5取向共聚物的机械性能不象80/20共聚物或90/10共聚物那样可再现。然而,认为它们对多数应用是可接受的。机械性能下降的原因解释成在取向片中周围有许多微观缺陷。这些缺陷的原因,从来没有被鉴定,然而,知道材料在结晶时易出现细裂纹。
为与Boehringer Ingelheim聚L-丙交酯,Resomer L214比较,Mw为800,000的聚合物,如例38B和47B所示,该聚合物的抗张强度与检测共聚合物的没有很大区别,但它的正切模量太高,但是,表中所用数值如同所公开的值不是来自用于评价其它聚合物的实验。
表12B  丙交酯共聚物机械性能的概述
例号  共聚物比率  形态  工艺  抗张强度  正切模量  伸长
psi  psi  %
39B  80/20  A  E  7500  305,000  5.7
40B  80/20  A  0-3x  12,200  427,000  18.2
41B  90/10  A  E  8,000  150,000  5.0
42B  90/10  C  E  8,500  188,000  4.6
43B  90/10  A  0-3x  11,700  494,000  41.2
44B  90/10  C  0-3x  10,200  401,000  20.7
45B  95/5  A  0-3x  9,900  273,000  56.5
46B  95/5  C  0-3x  8,800  245,000  68.0
47B  100/0  C  M  9,400  580,000  -
注:A=非晶  M=模塑
C=结晶  O=取向
Z=挤出
还进行90/10,95/5和100/0共聚物的流变分析以检测共聚物比率对流动性的影响。因为,比其它共聚物的熔点高,100/0共聚物得要在比其它两种材料高的温度下加工。Mw为约200000的纯聚L-丙交酯得要加热到200℃以使在熔体粘度低于100000泊下剪切为零。作为比较,具有Mw为200000的95/5共聚物和90/10共聚物分别在175℃和160℃下具有零剪切100000泊的粘度。
例48B-56B
为防止在挤出和配料时变色,加工助剂(增塑剂)是必要的。通过加工可基本加热纯聚乳酸进入到双螺杆挤出机的高剪切区。挤出机于350°F加工高分子量聚乳酸,无加工助剂使其内部温度升至390°F或更高,使挤出物变褐。对高剪切挤出机来说,用约5%的丙交酯掺到聚合物中即可防止上述问题。现已确信,作为润滑剂的加工助剂用以防止退色。其它加工助剂如乳酸钙、硬脂酸钠和苯甲酸钠也是有效的。表13B中给出了一些例证结果。对本专业技术领域人员来说是显然的,加工助剂的准确量取决于聚乳酸的分子量和施加剪切混合的量。
例53B和54B褪色是因为在配料中它们有点热降解。对上述例子来说,用丙交酯作加工助剂(增塑剂),需要约5%丙交酯作为最小量以获得无色产品。应注意到,其它加工助剂如苯甲酸钠和乳酸钙当用于低量时也可得到无色挤出物。
表13B  加工助剂的使用
例号 共聚物(a)加工助剂 熔区(b)温 挤出物颜色
组分  类型,  %(重量)  度,°F
48B  95/5  丙交酯  15.5  391  无色
49B  90/10  丙交酯  15.0  381  无色
50B  90/10  丙交酯  12.4  385  无色
51B  92.5/7.5  丙交酯  8.1  374  无色
52B 90/10 丙交酯 6.5(c)381 无色
53B  90/10  丙交酯  4.6  390  微褐
54B  90/10  丙交酯  3.4  404  褐
55B  90/10  苯甲酸钠  2.0  378  无色
56B  90/10  乳酸钙  2.0  384  无色
(a)L-/外消旋D,L-丙交酯的单体比
(b)双螺杆挤出机中高剪切区的温度
例57B
例57B-75B给出了丙交酯掺混连同骤冷一起得到柔韧性和透明性。换句话说,聚合物可以退火以改善抗热变形的稳定性。
用上述方法制备聚(L-丙交酯),因此,将300g三次重结晶和彻底干燥的L-丙交酯放入干净火焰干燥氩气冷却的500ml园底烧瓶中。烧瓶装有橡胶隔膜的注射针进出口(以便连续导入氩气净化)。在110ml甲苯(预先经过分子筛干燥)中溶解20g辛酸锡,然后蒸馏出10ml甲苯以便共沸干燥溶液,由此制备辛酸锡溶液。辛酸锡在甲苯中的最终浓度为0.2g/ml。经隔膜将0.3ml量注入到L-丙交酯中。烧瓶和其内容物料置于150℃油浴中,在熔融时强力回荡以得到均匀混合物。连续氩气纯化,并通过隔膜将一个热电偶装入到熔体中,熔体是143℃。油浴温度升至200℃并加热,和轻度继续净化20小时。在加热头两个小时熔体温度升到170-174℃。最终温度是170℃,加热20小时后烧瓶在空气中冷却到室温,固体聚合物是透明的。
用干冰冲击烧瓶使聚合物从玻璃上脱落并回收。用热解重量分析法分析残留单体和用凝胶渗透色谱法测量分子量。差示扫描量热法表明玻璃化转变温度(Tg)为53℃,两熔点吸热峰为大约170℃和190℃。凝胶渗透色谱法测得分子量为:Mm=129000;Mw=268000;Mz=462000,Mw/Mn=2.08。热解重量分析法测得的残留单体为2.3%(例57B,表14B)。实验表明在高于其熔点或附近可以聚合L-丙交酯,产品保持透明和多数非晶态。
例58B
用类似于例57B的方法,用0.1ml辛酸锡催化剂溶液聚合104.0gL-丙交酯。然而反应温度是155~165℃72小时。聚合物(表14B的例58B)慢慢形成结晶,于反应温度和室温是白色不透明固体。由于样品比前述实验生成的少,所以聚合物冷却很快,但不能骤冷成透明的固体。与例57B比较,较低的反应温度让聚L-丙交酯结晶变成不透明体,这样紧密分散的增塑剂就不能形成。
在这些实验的多数情况下慢慢升温使适应聚合吸热。在单体基本转变成聚合物之前反应温度一定要至少达到170-175℃,否则聚L-丙交酯结晶并且很难再熔融。
在例60B-66B中改变条件重复L-丙交酯聚合,得到不同残留单体含量和结晶度的聚L-丙交酯。结果示于表11B中,由表中看出,只有当产品从熔融骤冷时才能得到揉韧性和柔韧性,产品在室温是透明的,含有约10%或更多的残留丙交酯。确信必须在熔融态聚合L-丙交酯均聚物,从单体-聚合物熔融温度骤冷成透明材料作为其均匀紧密增塑性的证据。当由于聚合温度低于聚合物熔点而使聚合物在聚合中结晶时,残留单体不再作为有效的增塑剂。如果聚合物在冷却到室温时结晶,它也失去其增塑作用。在高温退火时结晶将恢复到非晶样品。
L-/D,L-丙交酯的比也影响聚合物和单体间缔合的透明性和紧密性。在近95/5比率的共聚物很容易骤冷成透明固体。L-/D,L-丙交酯比为90/10的共聚物骤冷相当容易。100%丙交酯聚合物很难由聚合物粘性部分骤冷成透明材料。表15B的例67B-71B给出了一些比较。较薄的横截面,即L-丙交酯聚合物薄膜可增塑并骤冷成柔韧性和透明性材料。80/20共聚物很容易骤冷成透明固体。由差示扫描量热法看后者只有痕量结晶。
表14B  L-丙交酯的聚合
例号  催化剂量  温度  时间,小时  聚合物表观  残留单体  样品大小
pph  ℃  %  g
57B 0.02 156-201(a)20 清洁透明,硬 2.30 300
150-174(b)玻璃状
58B 0.02 155-165(a)72 结晶,不透明 -- 104
硬,脆
59B 0.005 120-200(a)24 结晶,不透明, -- 100
111-200(b)硬,脆
60B 0.02 135-145(a)22 结晶(d),不 1.1 500
135-152(b)透明,硬,脆
61B 0.02 117-185(a)24 结晶,不透明 1.74 100
120-175(b,c)硬,脆
62B 0.02 160-170(a)8 结晶,不透明 2.18 2,000
硬,脆
63B 0.02 145(a)15 结晶,不透明, 3.6 25
137-144(b)硬,脆
64B 0.0553 190(a)0.3 清洁,揉曲性 10.1 25
160-215(b)柔韧,透明
65B 0.0553 188-193(a)0.28 清洁,透明,除 22.9 25
147-200(b)在聚合产物边缘
外柔韧
表14B  L-丙交酯的聚合(续)
例号  催化剂量  温度  时间,小时  聚合物表观  残留单体  样品大小
pph  ℃  %  g
66B 0.02 145(a)2.75 结晶(d)52.5 25
150-133(b)不透明,硬,脆
(a)油浴温度
(b)聚合物熔融温度
(c)当升温时该聚合物于160~169℃结晶并不再熔融
(d)在反应温度时透明,在冷却时结晶
表15B  丙交酯聚合物的透明性
例号 丙交酯L/D,L-比 温度℃(a)时间小时 O/T(b)GPC(Mw) 残留
单体%
67B  95/5  145~160  67  SO  385000  2.64
68B  100  135~152  22  O  322000  1.1
69B  90/10  150~157  45  T  821000  4.95
70B  90/10  150~170  48  T  278000  1.37
71B 80/20 135~175(c)23 T - -
(a)熔融温度(聚合温度)
(b)聚合产物空气冷却后不透明/透明(O/T),不透明(O),稍不透明(SO),透明(T)
(c)慢冷却1小时
所有D,L-丙交酯是外消旋的。
所有丙交酯聚合物易热成形,即,当由辐射加热器加热直到软化,然后吸入到复杂模塑时,它们都很易形成模塑模型。然而,聚L-丙交酯变得部分模糊并在冷却时混浊。95/5、90/10和80/20的共聚物相当清洁并且它们的整个热成型品透明。
例72B
在开放式双辊辊炼机上于375°F(190℃)熔融混合例57B的聚L-丙交酯5分钟,然后于375℃压模2分钟,在近30秒内空气骤冷到室温,制成7密耳和20密耳厚膜。二膜是清洁透明的而无痕量混浊或不透明。薄膜中残留单体为0.79%,薄膜很硬。
例73B
重复试验,不同的是混炼迟续10分钟而不是5分钟,用热解重量分析法再分析薄膜,发现有0.38%丙交酯,膜是清洁、透明和硬的。
例74B
辊炼机辊炼的聚合物也压模成1/4×1/2×1英寸片。通过打开冷却水入压机中,该片在压机中需要5-10分钟冷却。除了极边缘处是透明外该片是白色不透明晶体。
上述例72B-74B指出,聚(L-丙交酯)膜的骤冷保持透明性,当冷却更慢时,它们结晶并失去透明性。
如本发明中所用的骤冷表明,温度下降迅速以防聚合物扩大结晶。聚合物的结晶是一个慢过程,需要数分钟至数小时才能完全完成。需要时,温度保持在玻璃化转变温度(Tg)之上一定时间以便让分子有序成扩展晶格,这称作退火。当由非晶熔体迅速冷却时,聚合物没有所需要的时间并基本上保持非晶,所需骤冷时间取决于样品的厚度、分子量、熔体粘度、组成和其Tg(在该温度下凝固成玻璃态)。应注意到增塑降低了熔体粘度和Tg并有利骤冷。由于其高表面对体积比,薄膜显然冷却很快,另一方面,用其更厚的模塑产品冷却很慢并且时间花费在移去之前的温模上。有规结构如聚L-丙交酯比更多的无规结构如共聚物有序更容易,结晶更迅速。
因此,聚丙交酯时的熔点是大约150~190℃,这取决于L-丙交酯含量和结构的规整度。所有聚丙交酯(包括各种L和D,L均聚物和共聚物)的Tg都是60℃。当残留丙交酯与聚合物紧密分散时Tg下降。骤冷到非晶态要求非晶熔体聚合物或共聚物迅速由熔融态冷却到低于Tg以下的温度,没有这样做让球晶发展,即亚微细粒的结晶区域结构晶体发展到微米大小。后者散射光并且聚合物样品变成不透明。这些结晶形式改善了热变形稳定性。由于结晶由非晶区域隔开,这样球晶常常称之为短程有序-远程无序。然而,结晶作为假交联在Tg之上和其熔点之下保持尺寸稳定性。另一方面,在其Tg之上但低于其熔点可以通过取向非晶聚合物得到热变形稳定性。拉伸聚合物分子让一些远程有序,然后“热固定”让有序完成,即给一定时间退火。由此非晶聚合物结晶成不同的序列,称为远程有序或短程无序,有利于透明性和耐热变形性。在教科书,例如“结构聚合物性能”,由Robert  J.Samuels著,Wiley  publication,Ny,Ny1974中可发现详细讨论。
当用D,L-丙交酯作共聚单体时,可用普通冷却代替骤冷以保持透明性。由退火将球晶引入到这些膜中并且100%丙交酯聚合物最快结晶。在不要求透明性方面,高L-丙交酯聚合物可以退火以大大改进其耐热变形性。相反,在要求透明性方面,如结晶聚苯乙烯弥补,应特别注意避免这类不透明结晶。
例75B
在240°F(115℃)热板上退火聚L-丙交酯薄膜样品。膜在约1分钟内变成混浊并在约2分钟内完全模糊。作为比较,90/10L/D,L-丙交酯共聚物膜需要10分钟变成混浊,15分钟成完全模糊。当一边水平悬挂在烘箱中并慢慢升温时,得到退火聚L-丙交酯样品保持直态直至295°F(146℃)。然后膜弯曲。退火过的90/10共聚物于185°F(85℃)弯曲。结果表明,聚丙交酯结晶的量增加了在升温到其Tg以上好多温度的成形稳定性。
例76B-79B
下述例子说明了在配料过程中中添加丙交酯的有益影响。例子表明,无丙交酯作改性剂,丙交酯聚合物在配料过程降解。在配合过程添加丙交酯防止或基本上减少变色和分子量下降。
因此,在例76B中,用研磨的0.02pph SnCl2·2H2O催化剂通过前述方法制备90/10L-/D.L-丙交酯共聚物,添加5%(重量)丙交酯将共聚物用双螺杆配合机挤出造粒。挤出机的熔区温度升至390°F,聚合物变色,重均分子量(Mw,由凝胶渗透色谱法测)降低大约40%。结果说明,对这样高Mw共聚物加入了不足量的丙交酯。结果示于表16B中。这样配料的颗粒进一步添加10%(重量)丙交酯(例78B)再配合。熔区温度为375°F,结果更好,不再发生进一步变色,分子量稍微降低,或是在实验误差内,得到韧性组合物。
表16B  在配合期间丙交酯作为改性剂的影响
配料前 丙交酯(b)
例号 颜色 Mw(a)Mw/Mn(a)%(重量)
76B  浅黄色  513  2.15  0.78
77B  浅黄色  278  1.80  1.37
配料后 丙交酯(b)
例号 颜色 Mw(a)Mw/Mn(a)%(重量)
76B 暗黄色 322 2.05 5.56(c)
77B  黄色  184  1.90  2.26
78B 暗黄色 307 2.00 14.4(d)
79B  无色  324  1.99  14.6
(a).GPC×10-3
(b)由热解重量分析法,200℃
(c)配料期间加入5%(重量)丙交酯
(d)配料期间再加10%(重量)丙交酯
(e)薄膜
查明由于丙交酯改性剂第二配料和挤出便利并且不降低分子量,用类似的Mw  90/10L-/D,L-丙交酯共聚物开始进行其它配料(例77B)。在该情况下,在配料中不加丙交酯。熔区温度是382°F,共聚物变色,Mw下降到大约66%。此外,需要大约5%多扭矩(more  torgue)混合Mw  278000的混合物,与添加丙交酯Mw为322000的比较。
两次配料丙交酯后,用热解重量分析法分析例78B,发现丙交酯含量为14.4%。在例79B中用Haake-Brabender挤出机将例78B的材料转变成吹膜。如下述例60B-64B中所述,该组合物的薄膜是无色、高透明、很韧并可延伸的。凝胶渗透色谱法测得的Mw是324000(比较配料和挤出前的Mw-307000)。该增塑材料的Tg是42℃,差示扫描量热法表明有很少量的结晶在大约138℃熔融。由热解重量分析法测得丙交酯的存在量是14.6%。
例80B-81B
在双螺杆配料机中将例76B和77B的配合的聚丙交酯与额外的丙交酯共同混合,使丙交酯的含量达20%。配料温度是347°F(175℃),比前面的375~385°F降低很多,配合进行顺利无进一步的变色。
上述结果清楚表明了添加丙交酯作为改性剂的有益效果。当添加丙交酯时,降低了配合组合物所需的扭矩、变色性和加工温度。由组合物的Tg和韧性的降低看出增塑的进一步证据。此外,避免了分子量降低并得到稳定的组合物。对本专业技术领域熟练人员来说是显然的,所用丙交酯的量取决于许多因素,包括寻求所需增塑量,所用配料机类型和聚丙交酯的分子量。
例82B~86B
这些例子说明以低聚乳酸的酯增塑。90/10的L-/外消旋丙交酯共聚物与添加的丙交酯、低聚的乳酸的酯和它们的混合物熔混。由拉伸和热性质对其表征。
在例82B中,用热解重量分析法分析90/10的L-/外消旋D,L-丙交酯对照共聚物,它含6.74%丙交酯。它与30%(重量)例83B中的低聚的聚乳酸甲酯(Mella)混合,后者是在210℃高压釜中加热2500g(s)乳酸甲酯3小时,然后将其于81至85℃/1.25乇分馏Mella,由此来制备的。混合物在开放式双辊辊炼机上于大约350°F熔混,共混物在压力机中于大约350°F模压成透明韧性膜。在表17B中记录了添加Mella前后的拉伸性。添加Mella增塑剂降低了玻璃化转变温度(Tg)。
对例84B,在双螺杆挤出机中将90/10  L-/外消旋D,L-丙交酯共聚物与添加L-丙交酯熔融掺混,调节L-丙交酯的量到20%(重量)。共混物进一步与低聚聚乳酸乙酯(Ella,例85B)和Mella(例86B)掺混,这些共混物的性能也记录在表17B中。
表17B 用乳酸酯低聚物增塑聚丙交酯(a)的特性
例号 增塑剂 弹性模量 断裂强度 断裂应变 Tg(b)Tm(c)
psi  psi  %
82B 6.74%(d)L-丙交酯 370,000 6,903 2 51 141
83B 6.74%(d)L-丙交酯 154,000 2,012 100 30 141
和30% Mella(e)
84B  20%L-丙交酯  101,000  2,637  278  --  --
85B  20%L-丙交酯和  7,316  2,561  339  --  --
30% Ella(f)
86B  20% L-丙交酯和  3,620  495  83  --  --
30% Mella(e)
(a)90/10的L-/外消旋D,L-丙交酯共聚物
(b)玻璃化转变温度
(c)熔点
(d)由热解重量分析法分析
(e)乳酸甲酯低聚物
(f)乳酸乙酯低聚物
例87-92B
这些例子说明聚丙交酯共聚物的注塑和增加其热变形温度的加工。在具有75吨合模能力和6盎司最大注塑量的New  Britain注塑机上注塑90/10的L-/外消旋D,L-丙交酯共聚物(大约1.3%(重量)的残留单体)。在这些实验中模塑标准ASTM  D-638拉伸试条。模塑条件在条件范围内变化。重均分子量为350000的聚合物成功地模塑到大约165至200℃之间的熔融温度。低分子量的聚合物更容易模塑。模塑温度为大约23至大约85℃范围内,在填充后注塑前聚合物保持在模具内的时间在大约10秒至2分之间。
在注塑前将1%浓度的乳酸钙混入到聚合物中,这样就提供了成核点,增加了结晶速度。为增加聚合物的热变形温度,希望在注塑部件中结晶。
例如,成核90/10共聚物的模塑部件在大约110℃的金属板之间退火30秒至4分钟。检测退火部件的结晶的存在和结晶度的DSC曲线后发现,当聚合物于110℃与固体壁接触时发展完全结晶所需的退火时间为大约1至2分钟。注塑样品的机械性能示于表18B中。该表表明退火影响热变形温度,但不强烈影响强度,模量或断裂伸长。该表中所列的热变形温度是在264psi负荷下得到的。如果用66psi条件测热变形温度,观察退火样品的增加甚至更大。
表18B  注塑聚丙交酯的机械性能
例号  工艺  强度  模量  伸长  HDT
psi  psi  %  ℃
87B  注塑  8600  230000  6  46
88B  注塑/退火  8700  258000  4  57
乳酸钙成核聚合物用保持大约85℃的模具和保持大约2分进行注塑。这些条件不足以在样品中发展完全结晶。改进模具加热系统提供在模具中退火温度高于85℃,最好在约110至135℃之间。
用90/10L-/外消旋D,L-丙交酯共聚物和大约5至约20%(重量)聚L-丙交酯成核剂熔融共混物作样品进行注塑。结果示于表19B中。成形很好的注塑样品具有极好的强度、硬度和耐冲击性。表19B中所示的热变形温度可以通过退火改进。
表19B  注塑可生物降解聚合物的性能
例号 配方(a)抗张强度 1% 断裂应变 HDT 悬臂梁冲击
90/10 L-PLA  psi  正割模量  %  264 psi  英尺-磅/英寸
%  %  psi  °F
89B  95  5  8,245  227,440  7  115  0.34
90B  90  10  8,325  221,750  7  117  0.34
91B  85  15  8,631  230,150  7  116  0.35
92B  80  20  8,615  228,840  6  117  0.35
(a)90/10=90/10L-/外消旋D,L-丙交酯共聚物;L-PLA=100%L-丙交酯聚合物
例93B-109B
注:列在表20AB和20BB中的例93B-109B包括了表15A和15B(部分A.第一一般实施例)的例65至81的相同数据,这里重复这些数据是为了方便讨论有关部分B(B.第二一般实施例)的这些例子。
选自专利文献的比较例93B至109B提供生成本发明材料的最类似条件。这些专利所生产的材料没有完全表征,需要实验让更完全表征的例子并提供有意义的比较,证明本发明材料确实是新的。
关于本发明,要求这样的组合物,残留丙交酯或乳酸含量为大约0.1至约60%(重量),另外所含丙交酯或乳酸紧密均匀地分散在聚合物中。结果落入到明显的范畴。因此,数均分子量(Mn)低于32000的产品不具有本发明所要求的物性。事实上,由这样低Mn组合物制成的薄膜太脆,不能为拉伸测试进行处理。
由本发明中指出的知道,一定要存在乳酸、丙交酯、或丙交酯或乳酸的低聚物,或乳酸的衍生物,以提供本发明的增塑和优点。增塑剂存在的量必须为约0.1~10%(重量)。因此,如果增塑剂紧密分散并有效混合,组合物基本上是透明的。乳酸、丙交酯、低聚物或低聚物的衍生物的不均匀区的尺寸足够小,一般小于1微米,以至于它不再散射光。即它是紧密均匀分散的。相反,白色不透明样品总是硬的,因为它在实验条件下结晶,结晶使乳酸从聚合物块中压出,产生一种坚硬的组合物,它是单体和聚合物的粗糙混合物。从差示扫描量热法(DSC)测量看这也是显而易见的。分离的单体丙交酯在95至100℃本身显示其分离熔点,而增塑很好的样品不出现截然不同的单体熔点。
很重要一点是引证的专利常常指定L-丙交酯均聚物(在表20AB和20BB中“100%L-”)。L-丙交酯均聚物易结晶因为其高熔点。在低反应温度时,均聚物可保持可规量的单体,但在聚合时组合物凝固。在较高熔融溶度时,L-丙交酯聚合物如此迅速,以致于很难停止聚合,而同时有大量单体留在产品中。对聚L-/D,L-丙交酯共聚物来说,更少含量的单体也是真实的。
观察到在表20AB和20BB的结果揭示,比较例既可得到含低残留丙交酯的产品,或是通过其颜色、不透明性和结晶性看出产品中的残留丙交酯不是紧密分散的。因此不含残留丙交酯的例94B(很类似于Schneider的工作)和而含4.6%重量残留丙交酯的例97B均是变色的产品。从致力于制造加工过程的历程观点(如单体纯度)出发,在这些例子中,将公知试验室技术加到步骤中(如脚注所述),得到差的结果,得到玻璃态或是硬的结晶、不透明产品。应注意到,只有使用锡化物作为催化剂的那些例子对许多包装应用中似乎是可接受的。
很显然,US2758987和US4137921的方法可提供本发明的材料。为弄清此点,必须用它们的详细技术(如例94B和97B所示)做所列出的实验。按照这些方法的准确重复实现制备。热解重量分析法表明,一种这样的制备(例94B)含0.0%残留丙交酯。而该聚合物是浅黄色并含不可测的残留丙交酯,本发明的组合物是无色的并含少量作为加工助剂的丙交酯以防熔融加工中形成颜色。
表20AB.  丙交酯聚合条件的相关技术
例号  专利  专利的  丙交酯单体  催化剂  聚合
实例  (S)  类型  pph  温度  小时
93B  2,758,987  1  L-  Pbo  0.30  150  42
94B  2,758,987  3  50/50  Pbo  3.00  150  89
L-/D,L
95B  3,982,543  3  L-  Pbo  0.30  150  31
96B DD 14548 2 L- Sno(a)0.009 193 3
97B 4,137,921 4 90/10 Sn(Oct)2, 0.0553 180 0.33
L-/D,L  GA/  190  0.33
二噁烷(b)210 0.33
98B GB 755,447 4 D,L ZnO(c)0.02 150 24
99B  GB  755,447  2  D,L  Zn  0.02  140  25.5
(d)
100B  GB  755,447  6  D,L  碳酸锌  0.02  140  2
氢氧化物(e)150 3
101B  CA  932,382  1  D,L  四苯基锡  0.02  165  20
102B CA 923,245 1,7& L- Et2Zn 0.167 105- 2
8  110
103B DE 946,664 2 D,L(e)ZnCl20.25 140 48
104B  DE  1  L-  硬脂酸锡  0.0087  205-  0.5
1,112,293  如Sn  210
表20AB.  丙交酯聚合条件的相关技术(续)
例号  专利  专利的  丙交酯单体  催化剂  聚合
实例  (S)  类型  pph  温度  小时
105B 2,951,828 1 L-(f)SnCl40.30 160 5
悬浮液(g)
106B  3,268,487  2  D,L  三(2-氯乙  0.88  80  24
基)胺(h)
107B EP App. 6, L- Sn(Oct)20.00108 165 93
108,635  聚合
(1984);  物8
4,550,449;
4,539,981
108B 4,539,981; 聚合 L- Sn(Oct)20.00119 136- 64
4,550,449  物33  139
109B 4,539,981; 聚合 L- Sn(Oct)20.00324 115 64.5
4,550,449  物37
(a)通过添加0.75pph的88%乳酸直到配方改变以前无反应,产品是白色、不透明、很硬很脆,膜太脆不能处理。
(b)包括乙醇酸作链转移剂。
(c)不溶解。
(d)24小时后再用700μl  88%乳酸和100μl水1.5小时后不溶解。
(e)在甲苯中,产品无色并很粘。
(f)在矿油中,stoddard溶剂R-66号。
(g)结块
(h)在含0.517pph  KOH的二噁烷中,无聚合。
表20BB.  丙交酯聚合结果的相关技术
例号 残留单体 GPC×10-3聚合产物表观
%  Mn  Mw  Mz  Mw/Mn
93B  0  254  454  717  1.79  浅黄色,结晶,不透明
94B  0  97  187  322  1.94  浅黄色,透明
95B  0.85  95  195  325  2.06  部分不透明结晶,部
分透明
96B 17.5(a)5 7 9 1.47 白色,结晶,不透明
7.1;7.7  7  8  10  1.25
97B  4.6  116  218  356  1.88  浅黄色,透明
98B  47.7  --  --  --  --  白色,结晶(单体)不
透明
99B  65.3  --  --  --  --  白色,结晶(单体)不
透明
表20BB.  丙交酯聚合结果的相关技术(续)
例号 残留单体 GPC×10-3聚合产物表观
%  Mn  Mw  Mz  Mw/Mn
100B  79.6  --  --  --  --  白色,结晶(单体)不
透明
101B  1.4  116  214  340  1.84  黄色,透明
102B  1.9  80  150  235  1.87  橙色,结晶,不透明
103B 5.4(f)164 377 657 2.3 硬,无色
2.5;1.9(j)307 527 808 1.72
104B  43.3  30  35  41  1.17  硬,结晶,不透明
105B  8.6;9.6  219  343  504  1.57  硬,结晶,不透明
106B  100  --  --  --  --  全晶单体
107B  5.0  14  26  35  1.88  白色,结晶,不透明
(k)14 26 35 1.82 在边缘部分透明
108B 20.2(l)> 1,000,000 白色,结晶,不透明
109B 32.2(m)> 1,000,000 白色,结晶,不透明
(i)样品在140℃加热,然后在60℃真空烘箱中5分钟可除溶剂。
(j)样品在60℃真空烘箱中加热一昼夜除去溶剂
(k)透明,很硬很脆
(l)Tunc法得到17.1%,分子量很高
(m)Tunc法得到28.0%,分子量很高
重复例97B的过程得到有色产品,分析残留单体是4.6%丙交酯。材料是浅黄色,推测是由于高聚合温度,高温产生含有丙交酯聚合物、二噁烷溶剂和辛酸锡的色体。
具有n为450和10000之间整数的组合物具有良好的强度和熔融加工性之间的平衡性并且是优选的。如果选用单体作增塑剂,且单体的立体化学不同于组合物中用来制得聚丙交酯的单体,则可添加该单体可得到极好的组合物。类似的添加的低聚物的立体化学不同于聚合物聚合中所得到的,也能得到极好的产品,如本发明中所述,产品在无着色剂存在下是无色的。在惰性气氛和反应温度(优先140℃或更低)实现聚合反应,以及在上述的组合物中选择适当的增塑剂都可排除有色体。在熔融加工过程中,紧密混合足量的增塑剂以防变色和分子量降解。一旦了解本发明技术,可使用上述处理的各种结合以得到本领域技术人员欣赏的最佳性能。
在上述部分A第一一般实施例可以注意到较高含量增塑剂具有显著效果。在本发明中优选赋予刚度的低量增塑剂,增塑剂存在量优选为大约0.1~10%(重量)之间。增塑剂可以除去模塑应变,起润滑作用,保持低加工温度,保持低熔体粘度,在熔体成形时保持透明性和调节降解时间。组合物含有增塑剂,其量取决于聚合条件或聚合后所添加的量。也可以下述组分中选其它材料作增塑剂:乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物。也可以添加丙交酯或乳酸的低聚物、或乳酸衍生物的低聚物。通过添加不同于组合物中聚合物所选用的单体或添加不同于聚合中所得的低聚物,可以得到极好的组合物。
设想与本发明组合物等价物的是含有少量其它材料的那些组合物。必要时,可以通过添加交联剂、成核剂、其它增塑剂、着色剂、填料等改性本发明所生产的组合物。进一步处理如双轴向取向和热处理可以提供取代聚苯乙烯的有用薄膜。
热处理后可以得到双轴向取向和退火的环境可分解的聚丙交酯膜或片材以适用于取代双轴向取向的结晶聚苯乙烯的膜或片材。包括式Ⅰ的共聚物的膜或片材,其中n在大约450至约10000之间,是由大约85~95%(重量)D-丙交酯或L-丙交酯和大约5-15%(重量)D,L-丙交酯制备的,所述的膜具有在其中紧密分散的残留改性剂,它选自乳酸、D-丙交酯、L-丙交酯、D,L-丙交酯,所述酸和所述丙交酯的低聚物及其混合物,所述取向和退火的模具有抗张强度超过7500,正切模量超过350000,Tg低于60℃,在至少70℃下具有尺寸热稳定性的能力。
本发明组合物可以通过熔融加工制成具有自身承载结构的有用的制品,如一次性容器、餐具、托盘、板、饮水杯、一次性托盘、注射器、医用托盘、包装膜等。组合物具有通用塑料(如聚苯乙烯)的特性,因此它是有用的,并可代替它们并在环境中降解。增塑剂的量不仅能用作加工助剂,而且也能影响原有物性。另外增塑剂用量也影响环境降解速率。组合物特别还用于仅一次性使用或在处理前短寿命间隔使用的制品。
现在本专业熟练技术人员认为,有少量聚合的丙交酯和单体丙交酯的期望的等价物,这包括乙交酯、己内酯、戊内酯、和它们的环酯作为单体,相同和/或开链脂肪酯作为增塑剂。
C.第三一般实施例
本发明披露了聚乳酸(PLA)与聚苯乙烯(PS)、聚乙烯(PE)、聚对苯二甲酸乙二醇酯(PET)和聚丙烯(PP)的共混物。本发明披露了聚乳酸与这些普通塑料是可熔融相容的,并影响他们的物性。由于乳酸和丙交酯可以达到同样的重复单元,本发明中所用一般术语聚乳酸涉及具有式Ⅰ重复单元的聚合物,而没有任何限定聚合物是怎样制造的(如,由丙交酯、乳酸或低聚物),不涉及聚合度和增塑水平。
本发明披露的环境可降解组合物至少是部分可降解的,即组合物的聚乳酸部分分解比掺合物中更稳定组分更迅速,并引起掺合材料的物性变坏。例如,当组合物是少量区域内紧密均匀共混物,物性变坏将损坏原成型产品。本发明组合物提供了环境可接受材料,因为它的物理变坏和降解比普通非降解塑料迅速得多,而且,由于组合物的主要部分是聚乳酸、和/或乳酸衍生的丙交酯或低聚物,只保留有少部分更慢降解的热塑性残留体(如聚苯乙烯)。该残留体具有高表面积,预计比本体形成的产品分解得更快。
D-丙交酯是D-乳酸的二内酯或环状二聚体,类似的,L-丙交酯是L-乳酸的环状二聚体。内消旋D,L-丙交酯是D-和L-乳酸的环状二聚体,外消旋D,L-丙交酯包括50/50D-和L-丙交酯的混合物。当本发明单独使用时,术语“D,L-丙交酯”意图包括内消旋D,L-丙交酯和外消旋D,L-丙交酯。聚乳酸可由上述一种或多种来制备。
例1C
聚苯乙烯与聚乳酸溶剂掺混并由CH2Cl2溶剂注塑测最佳相容性。溶剂注塑膜是半透明的并看起来是“乳酪似的”。样品肉眼看均匀和耐析叠并且加工无碎片脱落。310倍光学显微镜显示不均匀区域为3微米或更小。共混物显然是非常相容的。它显示2年内无变化,关于短效材料的“起箱”也不是其物性,表明降解的证据。
例2C
聚丙烯8525  Hercules在Brabender中于400°F与聚乳酸类似的熔融共混,pp/PLA比为100/0(对照用)、90/10和75/25。
例3C-5C
由聚乳酸和聚苯乙烯制备熔融共混物。试验高分子量聚苯乙烯(piccolastic  E-125,Her  cules)和低分子量聚苯乙烯(piccolastic  D-100)。也使用通用聚苯乙烯(HunTsman聚苯乙烯208),和结晶聚苯乙烯。这些聚苯乙烯在Brabender中于325°F以不同比率与聚乳酸混合。
所用聚苯乙烯/聚乳酸比是100/0(对照用)、90/10和75/25(为HunTsman,通用聚苯乙烯)。
例6C-7C
使用两类聚对苯二甲酸乙二醇酯(Goodyears”clearstuff”和Eastman′s  Kodapak  TN-0148)它们在90℃干燥一昼夜并在Brabender中于525°F与聚乳酸熔融共混几分钟。聚乳酸降低了熔体粘度。
例8C-16C
在Abbey磨机中研磨例2C~7C中聚丙烯、通用聚苯乙烯和聚对苯二甲酸乙二醇酯(Eastman′s)的对照物和掺混物,并模压成大约5密耳的膜。聚丙烯-聚乳酸膜在大约400°F模塑,在大约250~300°F得到聚苯乙烯-聚乳酸膜;在大约525°F模塑聚对苯二甲酸乙二醇酯-聚乳酸膜。调节相对湿度50%并在在23℃保持24小时后在英斯特朗仪上测试上述膜,对照物也进行类似试验。将模压膜置于Atlas老化测试机上评价耐候性(周期为102分钟日晒和18分钟雨淋)。这些例子的结果示于表1C中。
例17C-19C
如上所述制备100%聚乳酸(用聚D,L-乳酸)三个样品,但膜厚为10~15密耳。如下述例20C~27C进行试验,不同的是第二个样品曝露在72°F50%相对湿度中82小时后测试。
例20C~27C
在Brabender  plasticorder中将高密度聚乙烯(HDPE,0.960g/cc)与聚乳酸于151℃熔融共混10分钟。高密度聚乙烯/聚乳酸的共混比为100/0(对照用)、90/10、80/20和50/50。每种制备2个样品。在Abbey磨机中研磨共混物并模压成10~15密耳膜。在Atlas老化测试机装置中试验膜(51分钟碳弧光和9分钟喷水)。温度从环境温度到140℃改变。如表2C中所示进行样品的抗张强度、屈服伸长试验和断裂拉伸分级。
例28C-33C
在Brabender  plasticorder中将低密度聚乙烯(LDPE)0.917g/cc)与聚乳酸于151℃熔融共混10分钟。使用低密度聚乙烯/聚乳酸的掺混比为100/0(对照用),90/10和50/50。每种制备2个样品。处理和评价样品如例20C~27C所述。结果示于表2C中。
例34
在装有机械搅拌和氮气进出口的500ml3颈园底烧瓶中加入180.7g  L-丙交酯和40.2g外消旋D,L-丙交酯(均为Boehringer和Ingelheim,S级),烧瓶的物料在氮气清扫下加热到110℃熔融丙交酯,并加入20.1g聚苯乙烯(Amoco.R3,熔体指数为3.5g/10分钟)。聚苯乙烯迅速熔胀并部分溶解,同时搅拌一昼夜和升温到185℃。温度降到141℃,并加入0.2ml无水辛酸锡溶液(0.2ml/ml的甲苯)。停止搅拌,让丙交酯在141℃聚合3天。停搅拌后高度溶胀聚苯乙烯漂浮到顶部层。冷却底层聚丙交酯相并通过差示扫描量热法(DSC)检测。样品具有低Tg,大约35℃,另外缺乏表观温度过度。模压膜为透明、无色并很韧。这些结果表明在这些条件下聚苯乙烯完全干扰结晶的形成。
例35C
聚乳酸与结晶聚苯乙烯辊炼机辊共混。共混物显示分散在聚乳酸中的聚苯乙烯极好的相容性。在170℃双辊辊炼机中将5%(重量)聚苯乙烯分散在L-/外消旋D,L-丙交酯比为90/10的共聚物中。材料变得混浊并由热分析表明有相当的结晶。这个例子说明,在这些条件下聚苯乙烯在聚乳酸中很容易导致结晶。材料的热分析法(见图17)显示即使材料加热和冷却仍保持结晶。
例34C和35C说明,与文中所述环境不能降解的塑料掺混的聚乳酸可以产生在混合物中的最终性质取决于所用的混合或搅拌技术。
所有类型的Brabender熔体共混物呈现10微米或更低的不均匀的颗粒尺寸。在模拟风化前后评价抗张强度。1248小时(52天)后,Atlas老化测试机中所有聚丙烯样品变白、极脆且不能测试。如表1C所示在短时间(间隔)再试验聚丙烯样品。在Atlas老化测试机中老化大约300小时后,样品呈现明显的环境降解。
聚苯乙烯与聚乳酸的共混物在300小时模拟风化后呈现环境降解。聚对苯二甲酸乙二醇酯掺混物大约300小时也明显环境降解。
评价模拟老化前后聚乳酸、高密度聚乙烯、低密度聚乙烯和它们的混合物的机械强度,结果示于表2C中。
表1C 加速老化(a)前后膜的拉伸强度
混合比和材料 拉伸强度(b)/ %伸长
前  后
小时
310  400
100/0 PP(c)/PLA 1665/61.0 585/1.6 494/1.7
90/10,PP/PLA  1568/51.0  954/3.2  346/--
75/25,PP/PLA  1124/14.0  370/1.1  254/1.0
100/0 PS(d)/PLA 3200/2.0 1066/1.0 --
90/10,PS/PLA  2350/2.0  582/1.0  --
75/25,PS/PLA  1493/1.6  484/1.0  --
100/0 PET(e)/PLA 3036/-- 3509/3.0 --
90/10,PET/PLA  2147/--  1378/3.0  --
75/25,PET/PLA  2743/--  2041/3.0  --
(a)老化测试机,周期为102分钟日晒和18分钟雨淋
(b)在英斯特朗机上0.05英寸/分钟
(c)Hercules聚丙烯825
(d)Huntsman  208
(e)Tennessee  Eastman,Kodapak  TN  0148
Figure 911097856_IMG42
Figure 911097856_IMG43
聚乳酸和其共混物比纯低密度或高密度聚乙烯具有更多的环境可降解。高密度聚乙烯样品降解基本上无失重,而高密度聚乙烯-聚乳酸共混物呈现失重,特别是显微镜显示聚乳酸露在膜表面。高密度聚乙烯曝露在光化光下降解,如显微镜所见。
对所有样品来说,模拟老化前后聚乳酸百分率的增加降低了抗张强度。在聚丙烯、聚苯乙烯、聚对苯二甲酸乙二醇酯,高和低密度聚乙烯的共混物中,聚乳酸的掺入导致了迅速降解。据估计,光化光及聚酯的水解降解了聚合物。共混物中小范围球形微细不均匀区域结构无疑是聚乳酸(它几乎全部被遮盖),因此,聚乳酸水解慢。通过聚乳酸位置的控制可以达到经水解更快的降解。这又涉及在熔融共混中共混物的流变学。小范围分散不均匀区域结构表明混合的聚合物的良好相容性。
在模拟垃圾堆放地(包括光),对照物和共混物表明降解速度更慢。单用水解聚乳酸样品缓慢变白,而共混物在试验其间质量没有变化。
相反,添加少量非降解热塑性塑料到聚乳酸中形成可相容共混物,例如用聚丙烯、聚苯乙烯、聚对苯二甲酸乙二醇酯,高和低密度聚乙烯,将减慢了聚乳酸的降解速率。优选组合物范围是80~99%(重量)聚乳酸。
一般描述的环境可降解组合物包括聚乳酸(聚丙交酯)和聚合物物理混合的共混物。该聚合物选自聚对苯二甲酸乙二醇酯;苯乙烯、乙烯、丙烯、氯乙烯、醋酸乙烯酯、甲基丙烯酸烷基酯、丙烯酸烷基酯、和它们物理混合物的聚合物或共聚物。其它可能的组合物的共混物是在下述讨论本发明方法例中所列举的,而增塑剂的量可在很宽范围内变化,取决于存在的聚乳酸的量和共混聚合物的类型,对硬性材料优选量一般为约0.1~约10%(重量)。共混物优选使用式Ⅰ的聚乳酸(其中n为75~10000之间的整数)和聚合物的物理混合物,聚合物选自聚苯乙烯、聚乙烯、聚对苯二甲酸乙二醇酯和聚丙烯,和其它组分将在下面进一步讨论。在组合物中聚乳酸组分可在很宽范围内变化,例如大约1/99至约99/1。优选的组合物是含5~50%(重量)聚乳酸的组合物。另外优选组合物具有聚乳酸的含量为约10-20%(重量),其它为大约80~99。比率将取决于所需的特性。
选自上述组的聚合物和共聚物(认为是添加的聚合物)可单独使用,也可混合使用。并不限于上述列出的这些聚合物和共聚物,因为注意到其它类型聚合物,如与聚乳酸可相容的。这包括由下列单体的聚合物和共聚物,乙烯、丙烯,苯乙烯、氯乙烯、醋酸乙烯酯、甲基丙烯酸烷基酯和丙烯酸烷基酯。应当理解,这里所用术语共聚物包括由所列单体的混合物制成的聚合物。上述聚合物和共聚物的物理混合物也适用于本发明。
生产组合物方法的第一方面例子包括,提供聚乳酸和选择的聚合物,聚合物为聚对苯二甲酸乙二醇酯,由苯乙烯、乙烯、丙烯、氯乙烯、乙酸乙烯酯、甲基丙烯酸烷基酯、丙烯酸烷基酯和它们的物理混合物制成的聚合物或共聚物,和共混的聚合物。共混可在辊炼机辊上熔融共混或在挤出机中混合或用其它机械方法。所提供的聚乳酸优选具有式Ⅰ并含由本发明所讨论的增塑剂。
生产本发明的组合物方法的第二方面例子包括,提供的丙交酯和聚合物,丙交酯选自D-丙交酯,L-丙交酯,内消旋D,L-丙交酯、外消旋D,L-丙交酯和它们的混合物;聚合物选自苯乙烯、乙烯、对苯二甲酸乙二醇酯、丙烯、氯乙烯、乙烯乙酸酯、甲基丙烯酸烷基酯、丙烯酸烷基酯和它们的物理混合物的聚合物和共聚物。将选择的丙交酯和聚合物混合,并加热熔融丙交酯,至少部分熔介聚合物。最后,丙交酯至少部分聚合得到聚丙交酯、未聚合的丙交酯单体和选择的聚合物的混合物。聚合反应最好通过调节保留的丙交酯的量来控制,并且在希望的值时停止聚合反应。如果需要,聚合反应可趋于完成。如在上述部分A和B中所述,可以添加下列其它丙交酯单体和增塑剂得到所需要的特性,例如乳酸、乳酸的低聚物、丙交酯低聚物及其混合物,其中低聚物由式Ⅱ定义,其中m是整数:为2≤m≤75,所述的低聚物优选具有数均分子量低于大约5400,更优选低于大约720;以及一个或多个用式Ⅲ限定的乳酸的低聚物的衍生物,式中R=H、烷基、芳基、烷芳基或乙酰基,且R是饱和的;式中的R′=H、烷基、芳基、烷芳基或乙酰基,且R′是饱和的;R和R′不能两者都是H。其中q是整数:为2≤q≤75,可被加入以得到在上述A和B部中所述的需要的特性。因此本发明中所讨论和其它一般例子的各种类型增塑剂考虑到:(a)熔融共混组分的更有效的相容;(b)在掺混和加工步骤中改进加工性能;和(c)由湿度控制和调节聚合物的敏感性和降解。
对本领域技术人员来说是显然的,聚乳酸和添加的聚合物的比例可以在很宽范围内变化,取决于它们的相互溶解性,而溶解性又随着混合充分性和混合温度而变。当将聚乳酸和添加的聚合物加到相互溶剂中时得到紧密均匀溶液,对许多工业加工来说使用溶剂是不实用的。物理混合(如在辊炼机辊上和挤出机上熔融共混)是更实际的,但要控制达到紧密均匀分散,即需要高剪切达到需要的紧密均匀性。即使用紧密均匀混合不同的聚合物也不可能是可相容的,即它们分离成相当大的不均匀区域结构,例如10-100微米尺寸或更大。这就产生“似干酪”混合物或性能很差的共混物。令人惊奇的是,聚乳酸很容易与其它各种聚合物(包括极性和非极性的聚合物)相容。
聚乳酸与其它聚合物的熔融共混温度可调节聚乳酸与一种或多种添加聚合物的比例而改变。在低温下溶解性可能不是足够的,而温度太高将引起混合物降解,一般温度范围为100~220℃,优选的为130-180℃。不同聚合物组分的熔融粘度是同样地显著地随着分子量的增加粘度急剧增加。通过控制聚乳酸和聚合物(或多种聚合物)的比例、温度、混合类型和时间、以及分子量,可以得到各种类型混合物。因此,例如,聚乳酸可以分散到添加聚合物或多种聚合物中去,或反之亦然,分散相的范围和几何结构改变很大,范围从离散球形至不同直径和长度的线束。这样导致宽范围的物性和在环境中的降解时间。聚乳酸对选择聚合物的重量百分比为99∶1至1∶99。
在用丙交酯单体溶解添加聚合物和其后丙交酯聚合的情况下,混合和聚合温度一定要在相互溶解性和丙交酯反应活性之间平衡。较高温度一般产生低分子量聚乳酸。如上所述,本发明的进一步例子是在一个温度下混合并在另一个温度下聚合以达到各种各样分散相的几何结构。
本发明组合物可以通过热熔融加工加工成有自身承载结构的有用制品,如一次性容器,餐具,托盘,板,饮水杯,一次性托盘,注射器,医用托盘,包装膜等。组合物有用于具有通用塑料特性的用途中,并因此可代替它们,还可在环境中降解。组合物特别由于具有仅一次性使用或在处理前短效寿命的制品。
D.第四一般实例
在本发明范围内包括的那些冲击改性剂是弹性离散的,紧密地与聚乳酸(或聚丙交酯)/冲击改性剂共混物结合,是疏水的、无孔的、在水中不溶胀,跟单独聚乳酸(或聚丙交酯)的水解速率相同或更慢;并且可与聚乳酸熔融相容。通过“熔融相容”,如在部分(第三一般例)中讨论的,指的是能与聚乳酸紧密混合的所有那些聚合物。混合会导致基本上均匀的共混物。本发明所有例子都呈现这些性能。由于乳酸和丙交酯都可以达到相同的重复单元,本发明中所用一般术语聚乳酸涉及具有式Ⅰ重复单元的聚合物,而未限定怎样制得该聚合物(例如由丙交酯、乳酸或低聚物),未涉及聚合度和增塑水平。
本发明所公开的环境可降解的组合物至少是部分可降解的。也就是说,组合物中的聚乳酸部分与共混物中的更稳定部分相比降解相当迅速,并引起混合材料的物性变坏。例如,当组合物是具有小的区域结构尺寸紧密均匀的共混物时,物性变坏将损坏了原成形产品。本发明组合物提供了环境可接受的材料,因为它的物性变坏和降解比一般非降解塑料迅速得多。而且,由于组合物的主要部分是聚乳酸和/或乳酸衍生的丙交酯或低聚物。将只保留有部分更慢降解弹性体的残留物(例如链段的聚酯)。该残留体具有高表面积,并预期比本体形成的产品分解的更快。
下列例子表明了聚乳酸(PLA)与HytrelTM(一种链段聚酯)的混合,后者是对苯二甲酸丁二醇酯的硬的结晶链段和聚乙二醇醚的软的长链链段的嵌段共聚物。这表明聚乳酸与该弹性体是熔融 相容的,并影响它的物性。
D-丙交酯是D-乳酸的二丙交酯或环状二聚体;类似的,L-丙交酯是L-乳酸的环状二聚体;内消旋D,L-丙交酯是D-和L-乳酸的环状二聚体:外消旋D,L-丙交酯是含50/50D-和L-丙交酯的混合物。当单独在本发明使用时,术语“D,L-丙交酯”打算包括内消旋D,L-丙交酯或外消旋D,L-丙交酯。聚乳酸可以由上述的一种或多种来制备。
例1D
用部分B第二一般例中例1B的过程制备不含HytrelTM链段聚酯的聚丙交酯共聚物并测试其悬臂梁冲击强度。结果列在表D中。为进一步比较,第二一般例的表1B中列出了其它L-丙交酯与D,L-丙交酯比的悬臂梁冲击强度。
例2D
在250ml三颈园底烧瓶中加入10.96gD,L-丙交酯、108.86gL-丙交酯和5.27gHytrelTM40 56链段聚酯(Du pont,一种热塑性弹性体)。Hytrel 4056链段聚酯是一种聚酯弹性体(用肖氏D硬度计),低挠曲模量,高熔融粘度,熔体指数7,比重为1.17,熔点为334°F,维卡软化温度为234°F,挤出温度为340-400°F。烧瓶装有机械搅拌和氮气进出口。物料用油浴加热。HytrelTM链段聚酯于170℃溶解在熔融的丙交酯中。催化剂溶液是将10ml辛酸锡溶解在60ml甲苯中,并蒸馏出10ml甲苯而制备。把100微升催化剂溶液注入到丙交酯和HytrelTM链段聚酯的溶液中。在氮气下于155℃搅拌混合物大约64小时。
粘度迅速增加并混合物成模糊状。产品坚韧并不透明,在155℃模压成8~9密尔厚度膜并测量拉伸性如表D中所示。
模压成1/8英寸厚板,并用2磅摆锤测量悬臂梁冲击强度。结果记录在表D中,其中数据与例1D无HytrelTM链段聚酯的类似的聚丙交酯共聚物比较,并与所谓的中强度冲击聚苯乙烯的数据比较,例7D。
例3D
省略HytrelTM链段聚酯,由例2D类似方法用1.0ml催化剂溶液共聚合800.0gL-丙交酯和202.3g外消旋D,L-丙交酯,丙交酯共聚物为透明无色。
在另一聚合中,用100微升催化剂熔融聚合104.0g  L-丙交酯,聚L-乳酸聚合物是白色结晶,当撞击时易出现细微裂纹。
把有电加热双辊辊炼机加热到375°F,然后在辊上将8.4g HytrelTM链段聚酯和19.2g聚L-乳酸相互混合,再加入172.4g丙交酯共聚物,混合物易掺混,从辊上取下,模塑并如例2D进行测试,数据记录在表D中。
例4D
如上述例3D中所述,把80g例3D的丙交酯共聚物,10g例3D的聚L-乳酸和10g HytrelTM链段聚酯进行双辊辊炼机掺混。如上述测试共混物,数据记录在表D中。
例5D
将100g例3D的共混物进一步与20g HytrelTM4056链段聚酯共混。该混合物易于辊炼混合并显示极佳的相容性。以前述方法测定其物理性质并记录在表D中。
例6D和7D
测试一段结晶聚苯乙烯和中强冲击聚苯乙烯作对照用。
上述结果清楚表明聚丙交酯是可冲击改性的。共混物提供了比结晶聚苯乙烯对照例明显高的悬臂梁冲击强度和比中强冲击聚苯乙烯稍低或相等的冲击强度,本专业领域熟练技术人员认为表D中冲击强度数据可通过优化冲击改性剂的量和类型进一步改善。
由于聚丙交酯表明具有与部分C第三一般例中许多其它化合物和热塑性塑料共混相容性,因此,对可共混相容的聚丙交酯和弹性的混合物来说,冲击改性聚丙交酯的方法是普通的。而且,本专业熟练技术人员认为,与模压相比,表D的数据注塑如共混物那样得以改进,因为模压常使样品取向,从而冲击强度得到改善。
Figure 911097856_IMG44
组合物适用作通过普通方法(如挤出或模塑)熔融加工的热塑性塑料。
共混物优选使用式Ⅰ的聚乳酸(其中n是75至100,00之间的整数)和聚合物(包括链段聚酯)的物理混合物。聚乳酸含量可以在很宽范围变化,例如在大约1~99%(重量)之间。适用的混合物是含有50~99%(重量)组合物的聚乳酸。优选组合物的聚乳酸含量为70~80%(重量),而其它适用的组分包括大约5~20%(重量),这取决于组合物的最终用途。
生产组合物的一般方法的两个例子包括,(1)熔融掺混聚乳酸和可共混相容的聚合物,提供了改进耐冲击性并且是离散的和紧密结合的。(如链段聚酯)(2)如例2D中在聚乳酸聚合中溶液混合,其中HytrelTM链段聚酯溶在聚乳酸中,所提供的聚乳酸优选具有式Ⅰ结构。如果需要,形成柔韧的量的增塑剂可加到共混物中,它选自丙交酯单体,乳酸低聚物,乳酸和它们的混合物,低聚物由式Ⅱ定义,其中m是整数,2≤m≤75,优选为2≤m≤10,可以添加的其它增塑剂包括一种或多种由式Ⅲ定义的乳酸的低聚物的衍生物,其中R为H,烷基,芳基,烷芳基或乙酰基,并且R是饱合的;R′为H,烷基,芳基,烷芳基或乙酰基,且R′是饱和的;R和R′不能同时为H;q是整数,2≤q≤75,优选的q是整数,2≤q≤10。
如上述部分A、B和C中所讨论的,添加增塑剂提供了附加的独特的物理性和加工优点。
增塑剂可以以提供所需特性的任何量存在。例如,在此处和上述部分A、B和C中讨论的各种类型增塑剂提供了(a)熔融共混组分的更有效地相容以达到更紧密性;(b)在混合和加工步骤中改进了加工性;(c)控制和调节了聚合物对湿度的敏感性和降解性。对柔韧性,增塑剂的存在量较高好,而其它特性如增加刚性则存在量较低好。组合物可提供不降解纯聚合物的许多需要的特性。此外,增塑剂的存在更容易熔融加工,防止变色,提高了与环境接触时组合物的降解速率,在某种意义上适合于保持增塑剂紧密均匀分散在聚乳酸和/或其共掺混的聚合物中。将紧密增塑的组合物加工成最终制品。这些步骤可能包括,(1)用适合于保持增塑剂紧密分散的速率骤冷组合物;(2)熔融加工并用适于保持增塑剂密切分散的速率骤冷组合物;(3)用适用于保持增塑剂密切分散的方法加工组合物成最终产品。如果没有共混聚合物,增塑剂最好至少在聚乳酸中紧密分散。
HytrelTM链段聚酯/聚乳酸混和物的显微镜观测显示,分散的HytrelTM链段聚酯存在几微米或更小尺寸的小的球形区域内。这些区域尺寸可通过混合条件如时间、混合速率和温度来调节。
因此,例如,添加到聚乳酸中的聚合物或几种聚合物一般是小的不均匀区域尺寸,小于10微米,可能是亚微观的,或是溶解在聚乳酸中。此外,这种冲击改性剂一定是弹性的。
虽然不希望建立任何特制理论,但确信,本发明提供了一种聚乳酸的连续基质,它含有作为破裂抑制剂的HytrelTM链聚酯的密切混合的微观区域结构,因为后者是热塑性弹性体,可以与聚乳酸相容。为此目的,冲击改性剂一定是弹性的并作为离散不均匀相紧密结合到聚乳酸中。为实现该弹性行为,添加的聚合物冲击改性剂可以是热塑性弹性体或交联的橡胶,例子是天然橡胶和苯乙烯-丁二烯共聚物。
用在本发明中冲击改性剂的进一步例子包括聚异戊二烯(guttapercha),苯乙烯-异戊二烯-苯乙烯嵌段共聚物,丙烯腈-丁二烯      -苯乙烯嵌段共聚物,苯乙烯-乙烯-苯乙烯嵌段共聚物,丙烯-乙烯-丙烯嵌段共聚物,
丙烯-异戊二烯-丙烯嵌段共聚物,它们的混合物等。也可以使用水溶胀或水溶解不显著的聚氨酯。
在材料置于水中5个月的试验中,材料与未浸入水中的材料比变脆,此外,水变成酸性表明聚乳酸破裂成乳酸。进一步明显现象是单独聚乳酸比HytrelTM链嵌段聚酯/聚乳酸混合物降解的更快,因此,也可使用HytrelTM链嵌段聚酯以延缓聚乳酸的降解速率。
可以加入可以与上述讨论的其它组分相容的第三组分以改进相容性。因此,在聚乳酸和冲击改性剂具有较差相容性的情况下,可以添加第三组分改善相容性。一般添加第三组分分别是在与其它两组分可相容的情况下和在其它两组分(聚乳酸和冲击改性剂)很不相容的情况下。这是通过增加聚乳酸和弹性冲击改性剂之间的界面结合来起作用的。然而,令人惊奇的是,聚乳酸与其它聚合物(极性和非极性的)具有宽范围的相容性。这可参考上述部分C第三一般例。
如果需要,可添加少量的增塑剂,如乙交酯,聚乙醇酸,己内酯和戊内酯。
本发明组合物可通过熔融加工加工成有用制品,如容器,餐具,托盘,板,饮水杯,一次性托盘,注射器,医用托盘等。组合物特别适用一次性使用或在处理前短寿命使用。
虽然根据上述具体例和一般例描述了本发明,但应理解到,本发明并不限于这些说明例和一般例。并且在本发明的权利要求范围内进行各种实践。

Claims (134)

1、一种用作代替热塑性聚合物组合物的环境可生物降解的组合物,包括:
a)一种聚乳酸,和
b)一种或多种选自由下式定义的乳酸低聚的衍生物的一种增塑剂:
式中R=H,烷基,芳基,烷芳基或乙酰基,且R是饱和的;R′=H,烷基,芳基,烷芳基或乙酰基,且R′是饱和的:R和R′不能都为H;q是整数;2≤q≤75;其中增塑剂是紧密均匀分散在聚合物中。
2、根据权利要求1的组合物,其中q是整数:2≤q≤10。
3、根据权利要求1的组合物,其中聚乳酸是下式的聚合物:
Figure 911097856_IMG2
式中n是重复单元数,n是整数,150≤n≤20000。
4、根据权利要求1的组合物,其中组合物是未取向的,其抗张强度为大约300至大约20000psi,断裂伸长为大约50至大约1000%,和正切模量为大约20000至大约250000psi。
5、根据权利要求1的组合物,其中组合物是未取向的,其抗张强度为大约1200至大约4000psi,断裂伸长为大约100至大约800%,和正切模量为大约20000至大约75000psi。
6、根据权利要求1的组合物,其中组合物是未取向的,抗张强度为大约4500至大约10000psi,断裂伸长为大约100至大约600%,正切模量为大约165000至大约225000,和熔点为大约150至约190°F。
7、根据权利要求1的组合物,其中聚合物是由选自L-丙交酯、D-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯和它们的混合物的丙交酯的单体衍生制得的。
8、根据权利要求1的组合物,其中组合物有大约2至大约60%(重量)的增塑剂。
9、根据权利要求1的组合物,包括分散在组合物中的添加增塑剂;它选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯、乳酸的低聚物、丙交酯低聚物和它们的混合物。
10、一种生产用作替代热塑性聚合物组合物的可生物降解组合物的方法,包括:
a)提供一种聚乳酸,
b)向聚乳酸中掺入增塑剂,它选自一种或多种由下式定义的乳酸的低聚物的衍生物:
Figure 911097856_IMG3
式中R=H,烷基,芳基,烷芳基或乙酰基,且R是饱和的;R′=H,烷基,芳基,烷芳基或乙酰基,且R′是饱和的;R和R′不能同时为H;q是整数;2≤q≤75。
11、根据权利要求10的方法,其中q是整数:
2≤q≤10。
12、根据权利要求10的方法,其中添加增塑剂的量为大约2至大约60%(重量)。
13、根据权利要求10的方法,其中包括掺入添加的增塑剂,选自乳酸、L-丙交酯、D-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯、乳酸的低聚物、丙交酯的低聚物和它们的混合物。
14、根据权利要求12的方法,包括以适合于得到增塑剂在聚合物中紧密分散的方法掺入增塑剂。
15、根据权利要求14的方法,挤出增塑的聚乳酸如吹膜。
16、根据权利要求15的方法,包括在吹膜挤出时保持增塑剂紧密分散。
17、根据权利要求14的方法,包括以适合于保持增塑剂在聚合物中紧密分散的方法加工组合物成最终产品。
18、根据权利要求14的方法,包括以适合于保持增塑剂在聚合物中紧密分散的速率骤冷组合物。
19、根据权利要求10的方法,包括熔融加工并以适合于保持单体在聚合物中紧密分散的速率骤冷。
20、根据权利要求15的方法,包括:在步骤(a)中提供具有下式重复单元的聚乳酸:
Figure 911097856_IMG4
式中n是重复单元数,n是整数,150≤n≤20000:增塑聚乳酸得到组合物,该组合物在未取向时,其抗张强度为大约1200至大约4000psi,断裂伸长大约100至800%,和正切模量为大约20000至大约75000psi。
21、根据权利要求15的方法,包括在步骤(a)中提供具有下式重复单元的聚乳酸:
Figure 911097856_IMG5
式中n是重复单元数,n是整数:150≤n≤20000;增塑聚乳酸得到组合物,该组合物在未取向时,具有抗张强度为大约4500至大约10000,断裂伸长为大约100至大约600%,正切模量为大约165000至大约225000,熔点为大约150至190°F。
22、一种将增塑剂掺混到聚乳酸中获得掺混组合物的方法,包括:
a.在第一温度下,熔融共混聚乳酸和第一种增塑剂,该增塑剂选自乳酸的低聚物、丙交酯的低聚物和它们的混合物;
b.在低于第一温度的第二温度下熔融共混所得共混物和第二增塑剂,第二增塑剂选自乳酸、L-丙交酯、D-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物;由此得到增塑剂的紧密均匀分散。
23、根据权利要求22的方法,包括以适合于增塑剂在聚合物中紧密分散的速率骤冷组合物。
24、一种掺混增塑剂到聚乳酸中得到共混组合物的方法,包括:
a.在第一温度下熔融掺混聚乳酸和第一增塑剂,第一增塑剂选自一种或多种由下式定义的乳酸的低聚物的衍生物:
Figure 911097856_IMG6
式中R=H,烷基,芳基,烷芳基或乙酰基,且R是饱和的;R′=H,烷基,芳基,烷芳基或乙酰基,且R′是饱和的;R和R′不能都是H;q是整数:2≤q≤75;
b.在低于第一温度的第二温度下熔融共混所得共混物和第二增塑剂,第二增塑剂选自乳酸、L-丙交酯、D-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物;由此得到增塑剂的紧密分散。
25、根据权利要求24的方法,其中q是整数:
2≤q≤10。
26、根据权利要求24的方法,包括以适合于保持增塑剂在聚合物中紧密分散的速率骤冷组合物。
27、一种适合于用作替代结晶聚苯乙烯的环境可降解的聚合物组合物,包括聚乳酸和增塑剂,聚乳酸的重复单元是L-或D-对映体和二对映体中之一占主要量的,所述增塑剂在聚乳酸中紧密分散,其量为大于0.1%(重量),它选自一种或多种由下式定义的乳酸的低聚物的衍生物:
Figure 911097856_IMG7
式中R=H,烷基,芳基,烷芳基或乙酰基,且R是饱和的;R′=H,烷基,芳基,烷芳基或乙酰基;且R′是饱和的;R和R′不能都是H;q是整数:2≤q≤75;未取向组合物的抗张强度至少大约5000psi,正切模量为至少大约200000,且基本是无色的。
28、根据权利要求27的组合物,其中增塑剂包括:
a.第二种增塑剂选自乳酸低聚物、丙交酯的低聚物及其混合物,其中乳酸低聚物和丙交酯低聚物具有数均分子量低于大约5400;和/或
b.第三种增塑剂选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物。
29、根据权利要求27的组合物,其中组合物在大约70℃以上是稳定形式。
30、根据权利要求27或28的组合物,其中聚丙交酯由下式定义:
式中n是大约450至大约10000之间的整数,其中重复单元是L-或D-对映体,并且二对映体中之一占主要量的。
31、根据权利要求30的组合物,其中L-对映体与D-对映体的比率是在大约1/99至大约99/1之间。
32、根据权利要求30的组合物,其中L-对映体与D-对映体的比率是在大约2.5/97.5和7.5/92.5之间,或在大约92.75/7.5和97.5/2.5之间。
33、根据权利要求30的组合物,包括成核剂,它选自乳酸盐、苯甲酸盐、聚L-丙交酯、聚D-丙交酯及其混合物。
34、根据权利要求30的组合物,包括增塑以提供基本透明的有效量存在。
35、根据权利要求28的组合物,其中乳酸的低聚物和丙交酯低聚物具有数均分子量低于大约720。
36、根据权利要求30的组合物,其中增塑剂的存在量为大约0.1~10%(重量)。
37、根据权利要求36的组合物,其中增塑剂的存在量为高于5%(重量)。
38、一种适合用作取代结晶聚苯乙烯的环境可降解的聚合物组合物,包括物理混合:
a.具有D-或L-对映体二者之一占主要量的第一种聚乳酸;
b.第二种聚乳酸,选自聚D-乳酸或聚L-乳酸,其中第一种聚乳酸与第二种聚乳酸的重量比在大约1/99和99/1之间;和
c.大于0.1%(重量)的增塑剂,选自一种或多种由下式定义的乳酸的低聚物的衍生物:
Figure 911097856_IMG9
式中R=H、烷基、芳基、烷芳基或乙酰基,且R是饱和的;R′=H、烷基、芳基、烷芳基或乙酰基,R′是饱和的;R和R′不能都是H;q是整数:2≤q≤75;其中增塑剂紧密分散在聚乳酸中,并且未取向组合物的抗张强度为至少5000psi和正切模量为至少200000psi。
39、根据权利要求38的组合物,其中增塑剂包括:
a)第二种增塑剂选自乳酸的低聚物,丙交酯的低聚物及其混合物,其中乳酸的低聚物和丙交酯的低聚物的数均分子量低于大约5400;和/或
b)第三种增塑剂,选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物。
40、根据权利要求39的组合物,其中组合物在大约70℃以上是形状稳定的。
41、根据权利要求39的组合物,其中第一种聚乳酸与第二种聚乳酸的比率在大约98/2和大约75/25之间。
42、根据权利要求39的组合物,其中:
a)第一种聚乳酸由下式定义:
Figure 911097856_IMG10
式中n是在大约450和10000之间的整数;
b)第二种聚乳酸由下式定义:
Figure 911097856_IMG11
式中p是大约450和10000之间的整数。
43、根据权利要求42的组合物,其中增塑剂的存在量为大约0.1至大约10%(重量)。
44、根据权利要求43的组合物,其中增塑剂的存在量大于大约5%(重量)。
45、根据权利要求42的组合物,含有成核剂,选自乳酸盐、苯甲酸盐、聚L-丙交酯、聚D-丙交酯及其混合物。
46、根据权利要求43的组合物,包括薄膜或片材产品;取向和退火的产品具有抗张强度超过7500,正切模量超过350000,和在大约70℃以上具有尺寸热稳定性。
47、根据权利要求46的产品,其中产品是双轴向取向的。
48、根据权利要求46的组合物,其中第一种聚乳酸与第二种聚乳酸的比率在大约98/2和大约75/25之间。
49、把权利要求27、28、38、39、42戒46的组合物加工成泡沫产品。
50、把权利要求27、28、38、39、42或46的组合物加工成产品,其中聚乳酸的数均分子量Mn在大约50000和400000之间;产品的物性为抗张强度至少大约7500psi,正切模量至少大约350000,在70℃以上形状稳定、加工成产品后基本是无色的。
51、一种制造适于用作取代结晶聚苯乙烯的环境可降解膜或片材成形聚合物组合物的方法,包括:
a.提供具有D-和L-对映体且D-或L-对映体二者之一占主要量的聚乳酸;
b.混入增塑剂,选自一种或多种由下式定义的乳酸的低聚物的衍生物:
式中R=H、烷基、芳基、烷芳基或乙酰基,且R是饱和的;R′=H、烷基、芳基、烷芳基或乙酰基,且R′是饱和的;R和R′不能都是H;q是整数;2≤q≤75;未取向组合物具有抗张强度至少5000psi,正切模量至少200000psi,是基本无色的,其中的增塑剂与组合物紧密分散。
52、根据权利要求51的方法,其中聚乳酸具有L-对映体与D-对映体的比率在大约1/99和99/1之间。
53、根据权利要求51的方法,其中聚乳酸具有L-对映体与D-对映体的比率在大约2.5/97.5和7.5/92.5之间或在大约92.5/7.5和97.5/2.5之间。
54、根据权利要求51的方法,其中增塑剂是以在进一步加工前防止膜或片材的降解或变色的有效量加入的。
55、根据权利要求51的方法,其中增塑剂包括:
a.第二种增塑剂,选自乳酸的低聚物、丙交酯的低聚物及其混合物,低聚物的数均分子量低于5400;和/或
b.第三种增塑剂,选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物。
56、根据权利要求51或55的方法,其中聚合物组合物挤出成模或片材,并通过取向和/或退火物理处理提供具有抗张强度至少7500psi和正切模量至少350000psi的聚合物膜或片材。
57、根据权利要求51或55的方法,其中膜或片材是双轴向取向的。
58、根据权利要求51或55的方法,其中膜或片材已被取向和热固定以保持取向。
59、根据权利要求51或55的方法,其中提供聚乳酸的步骤(a)包括:
1).提供具有D-或L-对映体二者中之一占主要量的第一种聚乳酸;
2).提供第二种聚乳酸,选自聚D-乳酸或聚L-乳酸,其中第一种聚乳酸与第二种聚乳酸的重量百分比在大约1/99和99/1之间。
60、根据权利要求59的方法,其中添加增塑剂的量在大约0.1至大约10%(重量)。
61、根据权利要求59的方法,其中掺入增塑剂的步骤包括:
a.掺入第二种增塑剂,选自乳酸的低聚物,丙交酯的低聚物及其混合物,其中乳酸低聚物和丙交酯低聚物的数均分子量低于大约5400;和/或
b.掺入第三种增塑剂,选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物。
62、根据权利要求59的方法,其中组合物在大约70℃以上是形状稳定的。
63、根据权利要求59的方法,其中第一种聚乳酸与第二种聚乳酸的比在大约98/2和大约75/25之间。
64、根据权利要求59的方法,其中:
a.第一种聚乳酸是由下式定义的:
Figure 911097856_IMG13
式中n是大约450和大约10000之间的整数;
b.第二种聚乳酸是由下式定义的:
式中p是大约450和10000之间的整数。
65、根据权利要求55的方法,其中增塑剂通过熔融共混,顺序加入:
a.一种或多种由下式定义的乳酸的低聚物的衍生物
Figure 911097856_IMG15
式中R=H、烷基、芳基、烷芳基或乙酰基,且R是饱和的;R′=H、烷基、芳基、烷芳基或乙酰基,且R′是饱和的;R和R′不能都是H;q是整数:2≤q≤75;其中掺混是在第一温度下进行的;和
b.第二种增塑剂,选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物;其中掺混是在比第一温度低的第二温度下进行的。
66、根据权利要求61的方法,其中增塑剂通过熔融混合,顺序加入:
a.一种或多种由下式定义的乳酸的低聚物的衍生物:
Figure 911097856_IMG16
式中R=H、烷基、芳基、烷芳基或乙酰基,且R是饱和的;R′=H、烷基、芳基、烷芳基或乙酰基,且R′是饱和的;R和R′不能都是H;q是整数:2≤q≤75;其中的掺混是在第一温度下进行的;和
b.第二种增塑剂,选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物,其中共混是在比第一温度低的第二温度下进行的。
67、根据权利要求55的方法,其中增塑剂通过熔融共混,顺序加入的:
a.第一种增塑剂,选自乳酸的低聚物、丙交酯的低聚物及其混合物,其中掺混是在第一温度下进行的。
b.第二种增塑剂,选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物,其中掺混是在比第一温度低的第二温度下进行的。
68、根据权利要求61的方法,其中增塑剂通过熔融共混,顺序地加入:
a.第一种增塑剂,选自乳酸的低聚物,丙交酯的低聚物及其混合物,其中共混是在第一温度下进行的;
b.第二种增塑剂,选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋,D,L-丙交酯及其混合物,其中共混是在比第一温度低的第二温度下进行的。
69、根据权利要求55的方法,其中选择添加的增塑剂来控制环境分解速率。
70、根据权利要求55的方法,其中提供的聚合物具有多分散性Mw/Mn在大约1.8和2.6之间。
71、根据权利要求55的方法,其中聚合物的粘度低于100000泊。
72、根据权利要求55的方法,其中退火在大约80和大约140℃之间进行,直至膜或片具有高于70℃的形状稳定性。
73、一种环境可降解的组合物,包括由下述组分物理混合的熔融共混物:
a.聚乳酸,
b.聚合物,选自聚对苯二甲酸乙二醇酯,由苯乙烯、乙烯、丙烯、氯乙烯、乙酸乙烯酯、甲基丙烯酸烷基酯、丙烯酸烷基酯及其混合物的聚合物或共聚物;和
c.增塑剂,选自一种或多种由下式定义的乳酸低聚物的衍生物:
Figure 911097856_IMG17
式中R=H、烷基、芳基、烷芳基或乙酰基,且R是饱和的;R′=H、烷基、芳基、烷芳基或乙酰基,且R′是饱和的;R和R′不能都是H;和q是整数:2≤q≤75;其中低聚物的数均分子量低于大约5400;和其中增塑剂至少在聚乳酸中是紧密分散的。
74、根据权利要求73的组合物,其中q是整数:
2≤q≤10。
75、根据权利要求73的组合物,其中一种或多种聚乳酸具有结构式为:
式中n是75和10000之间的整数。
76、根据权利要求73的组合物,其中增塑剂包括
a.第二种增塑剂,选自乳酸的低聚物,丙交酯的低聚物及其混合物,其中低聚物的数均分子量低于大约5400;和/或
b.第三种增塑剂,选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其它们的混合物。
77、根据权利要求76的组合物,包括增塑剂以提供熔融共混组分间相容的有效量存在。
78、根据权利要求76的组合物,包括增塑剂以调节由湿度降解敏感性的有效量存在。
79、根据权利要求73的组合物,其中增塑剂的添加量为0.1~10%(重量)。
80、根据权利要求73的组合物,其中含有大约1~99%(重量)的聚乳酸。
81、根据权利要求73的组合物,其中含有大约5~50%(重量)的聚乳酸。
82、根据权利要求73的组合物,其中含有大约10~20%(重量)的聚乳酸。
83、根据权利要求73的组合物,其中含有大约80~99%(重量)的聚乳酸。
84、生产权利要求73组合物的方法,包括:
a.提供一种聚乳酸
b.选择一种聚合物,它选自聚对苯二甲酸乙二醇酯、由苯乙烯、乙烯、丙烯、氯乙烯、乙酸乙烯酯、甲基丙烯酸烷基酯、丙烯酸烷基酯及其物理混合物制成的聚合物或共聚物;
c.提供一种增塑剂,选自一种或多种由下式定义的乳酸的低聚物的衍生物:
Figure 911097856_IMG19
式中R=H、烷基、芳基、烷芳基或乙酰基,且R是饱和的;R′=H、烷基、芳基、烷芳基或乙酰基,且R′是饱和的;R和R′不能都是H;q是整数:2≤q≤75;和
d.步骤(a)和(b)的聚合物与步骤(c)的增塑剂掺混。
85、根据权利要求84的方法,包括提供增塑剂以提供熔融共混组分间相容的有效量存在。
86、根据权利要求84的方法,包括提供增塑剂以调节对湿度降解敏感性的有效量存在。
87、根据权利要求84的方法,包括:
a.提供第二种增塑剂,选自丙交酯低聚物或乳酸低聚物;和/或
b.提供第三种增塑剂,选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物。
88、根据权利要求87的方法,其中低聚物的数均分子量低于大约720。
89、根据权利要求73的方法,其中q是整数:
2≤q≤10。
90、根据权利要求84的方法,其中增塑剂的添加量大约0.1~10%(重量)。
91、根据权利要求84的方法,其中掺混是通过熔融混合实现的。
92、根据权利要求84的方法,其中掺混是通过辊炼机辊掺混实现的。
93、生产环境可降解组合物的方法,包括:
a.提供丙交酯单体,选自D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物;
b.选择的聚合物,选自聚对苯二甲酸乙二醇酯,由苯乙烯、乙烯、丙烯、氯乙烯、乙酸乙烯酯、甲基丙烯酸烷基酯、丙烯酸烷基酯及其物理混合物制成的聚合物或共聚物,
c.在适合于熔融丙交酯和至少部分溶解聚合物的条件下混合并加热选择(a)中的丙交酯和选择(b)中的聚合物。
d.聚合步骤(c)混合物中的丙交酯得到聚丙交酯和聚合物的掺混物;和
e.聚合后向共混物中添加增塑剂,选自一种或多种由下式定义的乳酸的低聚物的衍生物:
Figure 911097856_IMG20
式中R=H、烷基、芳基、烷芳基或乙酰基,且R是饱和的;R′=H、烷基、芳基、烷芳基或乙酰基,R′是饱和的;R和R′不能都是H;q是整数:2≤q≤75:其中增塑剂至少在聚乳酸中紧密分散。
94、根据权利要求93的方法,包括附加的步骤:
f.成形共混物成自身支撑结构。
95、根据权利要求93的方法,包括探测单体保存量并控制步骤(d)的聚合反应以得到含残留单体的共混物。
96、由权利要求93的方法所得到的组合物。
97、根据权利要求93的方法,包括添加有效量增塑剂以提供熔融共混组分间的相容。
98、根据权利要求93的方法,包括添加有效量增塑剂以调节对湿度降解的敏感性。
99、根据权利要求93的方法,包括提供增塑剂,选自丙交酯低聚物或乳酸低聚物,低聚物的数均分子量低于大约720。
100、根据权利要求93的方法,其中q是整数:
2≤q≤10。
101、根据权利要求93的方法,包括:
a).提供一种第二种增塑剂,选自乳酸的低聚物、丙交酯的低聚物及其混合物,其中低聚物的数均分子量低于大约5400;和/或
b).提供一种第三种增塑剂,选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物。
102、根据权利要求100的方法,其中增塑剂的添加量为0.1~10%(重量)。
103、由权利要求93的方法得到的组合物。
104、一种环境可降解组合物,包括下述组分的物理混合的共混物:
a.聚乳酸;
b.弹性的可混相容的聚合物,它改善组合物的耐冲击性,该弹性可共混相容的聚合物是离散的并且紧密结合的;和
c.增塑剂,选自一种或多种由下式定义的乳酸的低聚物的衍生物:
Figure 911097856_IMG21
式中R=H、烷基、芳基、烷芳基或乙酰基,且R是饱和的;R′=H、烷基、芳基、烷芳基或乙酰基,R′是饱和的;R和R′不能都是H;q是整数:2≤q≤75;其中增塑剂至少在聚乳酸中紧密分散。
105、根据权利要求104的组合物,其中增塑剂以有效量存在以提供所需刚性。
106、根据权利要求104的组合物,其中包括增塑剂的有效量存在以提供聚乳酸和弹性体冲击改性剂间的更紧相容。
107、根据权利要求104的组合物,其中增塑剂包括:
a.第二种增塑剂,选自乳酸的低聚物,丙交酯的低聚物及其混合物,其中低聚物的数均分子量低于大约5400;和/或
b.第三种增塑剂,选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物。
108、根据权利要求107的组合物,其中低聚物的数均分子量低于大约720。
109、根据权利要求104的组合物,其中q是整数:
2≤q≤10。
110、根据权利要求104的组合物,含有大约0.1~10%(重量)的增塑剂。
111、根据权利要求104的组合物,含有大约1-99%(重量)的聚乳酸。
112、根据权利要求104的组合物,其中弹性可掺混相容的聚合物选自聚异戊二烯(gutta  percha),苯乙烯-异戊二烯-苯乙烯嵌段共聚物,丙烯腈-丁二烯-苯乙烯嵌段共聚物,苯乙烯-乙烯-苯乙烯嵌段共聚物,丙烯-乙烯-丙烯嵌段共聚物,丙烯-异戊二烯-丙烯嵌段共聚物及其混合物。
113、根据权利要求104的方法,其中弹性掺混可相容的聚合物选自水溶胀和水溶解不明显的聚氨酯。
114、根据权利要求104的组合物,其中掺混可相容的聚合物是链段聚合物。
115、根据权利要求114的组合物,包括弹性共混可相容的聚合物,选自聚对苯二甲酸丁二醇酯硬的结晶链段和聚乙二醇醚软的长链段的嵌段共聚物,天然橡胶,丁二烯-苯乙烯共聚物及其混合物。
116、生产权利要求104的组合物的方法,包括:
a.提供一种聚乳酸:
b.提供一种增塑剂,它选自一种或多种由下式定义的乳酸的低聚物的衍生物:
式中R=H、烷基、芳基、烷芳基或乙酰基,且R是饱和的;R′=H、烷基、芳基、烷芳基或乙酰基,R′是饱和的;R和R′不能同时为H;q是整数:2≤q≤75;
c.提供一种弹性共混可相容的聚合物,它改进了组合物的冲击性,且该弹性掺混可相容的聚合物是离散的和紧密结合的;和
d.将步骤(a)和(c)的聚合物和步骤(b)的增塑剂共混。
117、根据权利要求104的方法,包括提供:
a.第二种增塑剂,选自乳酸的低聚物、丙交酯的低聚物及其混合物,低聚物的数均分子量低于大约5400;和/或
b.第三种增塑剂,它选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物。
118、根据权利要求116的方法,提供数均分子量低于大约720的低聚物。
119、根据权利要求117的方法,其中第一种增塑剂在第一温度下共混,第二种增塑剂在比第一温度低的第二温度下共混。
120、根据权利要求116的方法,其中:
1)在步骤(b)中提供的增塑剂于第一温度下在步骤(d)中共混;和
2)第二种增塑剂在比第一温度低的第二温度下共混,它选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物。
121、根据权利要求116的方法,其中增塑剂的添加量为大约0.10至大约10%(重量)。
122、生产权利要求104的组合物的方法,包括:
a)将一种或多种丙交酯与提供改进组合物冲击性的弹性共混可相容的聚合物相混合,其中丙交酯选自D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物;
b)加热并溶解共混可相容聚合物于步骤(a)的乳酸中使得到溶液;
c)聚合溶液中的丙交酯;和
d)在组合物中掺入增塑剂,其中增塑剂至少在聚乳酸中紧密分散,增塑剂选自一种或多种由下式定义的乳酸的低聚物的衍生物:
Figure 911097856_IMG23
式中R=H、烷基、芳基、烷芳基或乙酰基,且R是饱和的;R′=H、烷基、芳基、烷芳基或乙酰基,R′是饱和的;R和R′不能都是H;q是整数:2≤q≤75;
123、根据权利要求122的方法,包括通过熔融加工把组合物加工成有用形状的步骤。
124、根据权利要求122的方法,包括选择包括链段聚酯在内的共混可相容的聚合物。
125、根据权利要求122的方法,掺入第二种增塑剂,它选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯、乳酸的低聚物、丙交酯的低聚物及其混合物,其中低聚物的数均分子量低于大约5400。
126、一种可降解组合物,包括下列组分物理混合的共混物:
a.一种聚乳酸;和
b.一种弹性掺混可相容聚合物,它提供改善聚乳酸的耐冲击性,其中聚合物选自聚异戊二烯(gutta  percha),苯乙烯-异戊二烯-苯乙烯嵌段共聚物,丙烯腈-丁二烯-苯乙烯嵌段共聚物,苯乙烯-乙烯-苯乙烯嵌段共聚物,丙烯-乙烯-丙烯嵌段共聚物,丙烯-异戊二烯-丙烯嵌段共聚物及其混合物。
127、生产权利要求126的组合物的方法,包括:
a.)提供一种聚乳酸;
b)提供一种改善聚乳酸耐冲击性的共混可相容的聚合物,它选自聚异戊二烯(gutta  percha),苯乙烯-异戊二烯-苯乙烯嵌段共聚物,丙烯腈-丁二烯-苯乙烯嵌段共聚物,苯乙烯-乙烯-苯乙烯嵌段共聚物,丙烯-乙烯-丙烯嵌段共聚物,丙烯-异戊二烯-丙烯嵌段共聚物及其混合物;和
c)共混步骤(a)和(b)的聚合物。
128、生产权利要求126的组合物的方法,包括:
a)将一种或多种丙交酯与提供改善组合物耐冲击性的共混可相容的聚合物相混合,其中丙交酯选自D-丙交酯、L-丙酯、内消旋D,L-丙交酯,外消旋D,L-丙交酯及其混合物;所述的共混可相容的聚合物选自聚异戊二烯(gutta  percha),苯乙烯-异戊二烯-苯乙烯嵌段共聚物,丙烯腈-丁二烯-苯乙烯嵌段共聚物,苯乙烯-乙烯-苯乙烯嵌段共聚物,丙烯-乙烯-丙烯嵌段共聚物,丙烯-异戊二烯-丙烯嵌段共聚物及其混合物;
b)加热并溶解共混可相容的聚合物于步骤(a)的乳酸中使形成溶液;和
c)聚合溶液中的丙交酯。
129、一种环境可降解组合物,包括将下述组分的物理混合物共混:
a)一种聚乳酸;
b)一种改善组合物耐冲击性的弹性共混可相容的聚合物,它选自聚异戊二烯(gutta  percha),苯乙烯-异戊二烯-苯乙烯嵌段共聚物,丙烯腈-丁二烯-苯乙烯嵌段共聚物,苯乙烯-乙烯-苯乙烯嵌段共聚物,丙烯-乙烯-丙烯嵌段共聚物,丙烯-异戊二烯-丙烯嵌段共聚物及其混合物;和
c)一种增塑剂,它选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯、乳酸的低聚物、丙交酯的低聚物及其混合物,其中低聚物的数均分子量低于大约5400,其中增塑剂至少在聚乳酸中是紧密分散的。
130、根据权利要求129的组合物,包括:
a)第一种增塑剂,它选自一种或多种由下式定义的乳酸的低聚物的衍生物:
Figure 911097856_IMG24
式中R=H、烷基、芳基、烷芳基或乙酰基,且R是饱和的;R′=H、烷基、芳基、烷芳基或乙酰基,R′是饱和的;R和R′不能都是H;q是整数:2≤q≤75;和
b)第二种增塑剂,它选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯及其混合物。
131、根据权利要求129的组合物,含有大约0.1~10%(重量)的增塑剂。
132、根据权利要求129的组合物,含有大约1-99%(重量)的聚乳酸。
133、一种生产权利要求129的组合物的方法,包括:
a)提供一种聚乳酸;
b)提供一种增塑剂,它选自乳酸、D-丙交酯、L-丙交酯、内消旋D,L-丙交酯、外消旋D,L-丙交酯、乳酸的低聚物、丙交酯的低聚物及其混合物,其中低聚物的数均分子量低于大约5400;
c)提供一种改善组合物耐冲击性的弹性共混可相容的聚合物,该聚合物是离散的并且紧密结合的;和
d)将步骤(a)和(c)的聚合物与步骤(b)的增塑剂相混合。
134、根据权利要求133的方法,提供的低聚物的数均分子量低于大约720。
CN91109785A 1990-09-06 1991-09-06 乳酸包装热塑性塑料 Pending CN1061421A (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US57946590A 1990-09-06 1990-09-06
US07/579,460 US5252642A (en) 1989-03-01 1990-09-06 Degradable impact modified polyactic acid
US07/579,000 US5216050A (en) 1988-08-08 1990-09-06 Blends of polyactic acid
US579,000 1990-09-06
US579,460 1990-09-06
US579,005 1990-09-06
US579,465 1990-09-06
US07/579,005 US5180765A (en) 1988-08-08 1990-09-06 Biodegradable packaging thermoplastics from lactides

Publications (1)

Publication Number Publication Date
CN1061421A true CN1061421A (zh) 1992-05-27

Family

ID=27504934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN91109785A Pending CN1061421A (zh) 1990-09-06 1991-09-06 乳酸包装热塑性塑料

Country Status (9)

Country Link
EP (1) EP0548284A1 (zh)
JP (1) JPH06504799A (zh)
KR (1) KR930703399A (zh)
CN (1) CN1061421A (zh)
AU (1) AU8660191A (zh)
BR (1) BR9106821A (zh)
CA (1) CA2091185A1 (zh)
FI (1) FI930992A0 (zh)
WO (1) WO1992004413A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100443541C (zh) * 2004-02-16 2008-12-17 三井化学株式会社 含有共聚物的脂肪族聚酯树脂组合物
CN102079852A (zh) * 2010-12-16 2011-06-01 昆明学院 环保型茶具及其制备方法
CN102272193A (zh) * 2008-11-07 2011-12-07 高露洁-棕榄公司 用于包装应用的聚乳酸与热塑性聚合物的共混物
CN102015889B (zh) * 2008-04-28 2013-02-06 花王株式会社 聚乳酸树脂组合物的制造方法
CN105061478A (zh) * 2015-08-07 2015-11-18 常州大学 一种热稳定锌金属有机骨架材料及其制备方法和应用
CN105246973A (zh) * 2013-04-04 2016-01-13 包装,运输及物流技术研究所(Itene) 用于制备纳米结构化可生物降解聚合物材料的组合物,所获得的材料及其应用
CN109312096A (zh) * 2016-06-21 2019-02-05 3M创新有限公司 包含聚乳酸聚合物、聚乙酸乙烯酯聚合物和增塑剂的泡沫组合物、制品及其制备和使用方法
CN109777053A (zh) * 2019-01-11 2019-05-21 海南绿袋子环保科技有限公司 一种含乳酸钙可控生物降解速率的材料
CN112384567A (zh) * 2018-07-06 2021-02-19 卡比奥利司公司 包含乳酸低聚物的高pla含量塑料材料
CN114616285A (zh) * 2019-06-13 2022-06-10 自然工作有限责任公司 快速水解聚丙交酯树脂组合物

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323307B1 (en) 1988-08-08 2001-11-27 Cargill Dow Polymers, Llc Degradation control of environmentally degradable disposable materials
US5076983A (en) * 1990-07-16 1991-12-31 E. I. Du Pont De Nemours And Company Polyhydroxy acid films
CA2067451A1 (en) * 1991-05-24 1993-10-29 Gregory B. Kharas Polylactide blends
US6326458B1 (en) 1992-01-24 2001-12-04 Cargill, Inc. Continuous process for the manufacture of lactide and lactide polymers
US6005067A (en) 1992-01-24 1999-12-21 Cargill Incorporated Continuous process for manufacture of lactide polymers with controlled optical purity
US5247058A (en) * 1992-01-24 1993-09-21 Cargill, Incorporated Continuous process for manufacture of lactide polymers with controlled optical purity
US5142023A (en) * 1992-01-24 1992-08-25 Cargill, Incorporated Continuous process for manufacture of lactide polymers with controlled optical purity
US5247059A (en) * 1992-01-24 1993-09-21 Cargill, Incorporated Continuous process for the manufacture of a purified lactide from esters of lactic acid
US5258488A (en) * 1992-01-24 1993-11-02 Cargill, Incorporated Continuous process for manufacture of lactide polymers with controlled optical purity
US5409751A (en) * 1992-03-27 1995-04-25 Mitsui Toatsu Chemicals, Incorporated Degradable container
DE69308429T3 (de) 1992-08-24 2003-07-17 Mitsui Chemicals Inc Geformtes Produkt aus Polymer und Verfahren zu seiner Herstellung
AU667048B2 (en) * 1992-09-07 1996-03-07 Guidor Ab Bioresorbable material and an article of manufacture made of such material for medical use
CA2144310A1 (en) * 1992-09-22 1994-03-31 Richard G. Sinclair Degradation control of environmentally degradable disposable materials
JPH06330001A (ja) * 1992-09-28 1994-11-29 Mitsui Toatsu Chem Inc 分解性粘着フィルム
US5338822A (en) * 1992-10-02 1994-08-16 Cargill, Incorporated Melt-stable lactide polymer composition and process for manufacture thereof
US6005068A (en) 1992-10-02 1999-12-21 Cargill Incorporated Melt-stable amorphous lactide polymer film and process for manufacture thereof
NZ256967A (en) 1992-10-02 1997-04-24 Cargill Inc Fabric formed from a melt-stable lactide polymer composition and uses thereof
ES2123668T3 (es) * 1992-10-02 1999-01-16 Cargill Inc Papel que tiene un recubrimiento de polimero de lactida estable en estado fundido y procedimiento para su fabricacion.
GB9223350D0 (en) * 1992-11-06 1992-12-23 Ici Plc Polymer composition
US5359026A (en) * 1993-07-30 1994-10-25 Cargill, Incorporated Poly(lactide) copolymer and process for manufacture thereof
JP3301506B2 (ja) * 1993-09-20 2002-07-15 大日本インキ化学工業株式会社 ラクタイド系共重合体の製造方法
JPH07205278A (ja) * 1994-01-11 1995-08-08 Mitsubishi Plastics Ind Ltd ポリ乳酸系重合体延伸フイルムの製造方法
JP3330712B2 (ja) * 1994-01-11 2002-09-30 三菱樹脂株式会社 ポリ乳酸系フィルムの製造方法
US5763513A (en) * 1994-05-19 1998-06-09 Mitsui Toatsu Chemicals, Inc. L-lactic acid polymer composition, molded product and film
SE503906C2 (sv) * 1994-12-13 1996-09-30 Moelnlycke Ab Mjölksyrautsöndrande polylaktidskikt för användning i absorberande alster
US5714573A (en) * 1995-01-19 1998-02-03 Cargill, Incorporated Impact modified melt-stable lactide polymer compositions and processes for manufacture thereof
AU5985196A (en) * 1995-06-07 1996-12-30 Kimberly-Clark Worldwide, Inc. Apparatus and method of forming a paper applicator containin g a compostable coating and the article itself
US5795320A (en) * 1995-06-07 1998-08-18 Kimberly-Clark Worldwide, Inc. Paper applicator containing a compostable coating
US5984888A (en) * 1995-06-07 1999-11-16 Kimberly-Clark Worldwide, Inc. Applicator and coating
US5849374A (en) * 1995-09-28 1998-12-15 Cargill, Incorporated Compostable multilayer structures, methods for manufacture, and articles prepared therefrom
US5849401A (en) * 1995-09-28 1998-12-15 Cargill, Incorporated Compostable multilayer structures, methods for manufacture, and articles prepared therefrom
US5686540A (en) * 1995-09-29 1997-11-11 Dainippon Ink And Chemicals, Inc. Process for the preparation of lactic acid-based polyester
JP3330273B2 (ja) * 1996-01-11 2002-09-30 三菱樹脂株式会社 熱収縮性ポリ乳酸系フィルムおよびその製造方法
WO1998050611A1 (en) 1997-05-02 1998-11-12 Cargill, Incorporated Degradable polymer fibers; preperation; product; and methods of use
US6183814B1 (en) 1997-05-23 2001-02-06 Cargill, Incorporated Coating grade polylactide and coated paper, preparation and uses thereof, and articles prepared therefrom
GB9802612D0 (en) * 1998-02-06 1998-04-01 Kobe Steel Ltd Biodegradable moulding compond
US6114495A (en) * 1998-04-01 2000-09-05 Cargill Incorporated Lactic acid residue containing polymer composition and product having improved stability, and method for preparation and use thereof
JP2001294737A (ja) * 2000-04-12 2001-10-23 Musashino Chemical Laboratory Ltd 改善された物性を有する生分解性ポリエステル樹脂組成物
DE10127314A1 (de) * 2001-06-06 2002-12-19 Trespaphan Gmbh Biologisch abbaubare biaxial verstreckte Folie mit kontrolliertem Weiterreißverhalten
WO2003066733A1 (fr) * 2002-02-05 2003-08-14 Mitsui Chemicals, Inc. Composition de resine biodegradable et objet moule a base de cette composition
JP2003002984A (ja) * 2002-06-14 2003-01-08 Mitsubishi Plastics Ind Ltd ポリ乳酸系フィルム
WO2004087812A1 (ja) 2003-03-28 2004-10-14 Toray Industries, Inc. ポリ乳酸樹脂組成物、およびその製造方法、並びにポリ乳酸二軸延伸フィルム、およびそれからなる成形品
CN1320044C (zh) 2003-04-25 2007-06-06 株式会社艾迪科 聚乳酸类树脂组合物、成型品及其制备方法
JP2005226056A (ja) * 2004-02-16 2005-08-25 Asahi Kasei Chemicals Corp 脂肪族ポリエステル樹脂の成形体
JP2005226055A (ja) * 2004-02-16 2005-08-25 Asahi Kasei Chemicals Corp 脂肪族ポリエステル樹脂成形体
JP4640765B2 (ja) 2004-09-03 2011-03-02 株式会社Adeka ポリ乳酸系樹脂組成物、成形品及びその製造方法
JP4622397B2 (ja) * 2004-09-06 2011-02-02 住友ベークライト株式会社 カレンダー成形用ポリ乳酸系樹脂組成物およびシート
JP4901106B2 (ja) * 2005-01-27 2012-03-21 東レ・ダウコーニング株式会社 車両モールディング用熱可塑性エラストマー組成物および車両用モールディング付きガラス板
JP4820569B2 (ja) 2005-04-08 2011-11-24 東レ・ダウコーニング株式会社 熱可塑性エラストマー組成物および車両用モールディング付きガラス板
CN101838425B (zh) 2005-08-04 2012-07-18 东丽株式会社 树脂组合物和由该树脂组合物形成的成型品
JP5223076B2 (ja) * 2006-03-24 2013-06-26 和歌山県 樹脂組成物の物理的性質制御方法
GB2445747B (en) 2007-01-22 2012-08-08 Tate & Lyle Plc New lactic acid polymers
EP1975201A1 (en) 2007-03-30 2008-10-01 Total Petrochemicals France Monovinylaromatic polymer composition comprising a polymer made from renewable resources as a dispersed phase
US8084551B2 (en) 2008-01-25 2011-12-27 Marco Paolo Ara Method for plasticizing lactic acid polymers
EP2147934A1 (en) 2008-07-25 2010-01-27 Total Petrochemicals France Process to make a composition comprising a monovinylaromatic polymer and a polymer made from renewable resources
JP4574701B2 (ja) * 2008-08-25 2010-11-04 富士通株式会社 生分解性樹脂組成物とそれを用いた樹脂筐体
CN101362853B (zh) * 2008-09-12 2011-03-30 浙江海正生物材料股份有限公司 一种低成本全生物降解聚乳酸片材及其制备方法
GB201105455D0 (en) 2011-03-31 2011-05-18 British American Tobacco Co Blends of a polylactic acid and a water soluble polymer
US9045630B2 (en) * 2011-06-29 2015-06-02 Fina Technology, Inc. Epoxy functional polystyrene for enhanced PLA miscibility
GB201112402D0 (en) 2011-07-19 2011-08-31 British American Tobacco Co Cellulose acetate compositions
CN104245811B (zh) * 2012-03-07 2016-10-05 胡赫塔迈基股份有限公司 基本上基于生物的,可热成型的组合物以及由其形成的容器
GB2509177A (en) 2012-12-24 2014-06-25 Innovia Films Ltd Packaging and labelling films
EP2952543B1 (en) 2014-06-05 2017-11-01 Omya International AG Polymer composition filled with an inorganic filler material mixture
WO2016105998A1 (en) 2014-12-22 2016-06-30 3M Innovative Properties Company Compositions and films comprising polylactic acid polymer, polyvinyl acetate polymer and plasticizer
US10414086B2 (en) * 2015-05-07 2019-09-17 Fina Technology, Inc. Polyethylene for superior sheet extrusion thermoforming performance
WO2017200756A1 (en) * 2016-05-20 2017-11-23 3M Innovative Properties Company Oriented polylactic acid polymer based film
CN109312147B (zh) * 2016-06-21 2021-04-16 3M创新有限公司 包括半结晶聚乳酸基膜的图形制品
EP3581608A1 (en) * 2018-06-14 2019-12-18 Stichting Wageningen Research Polymeric products
EP3947532A1 (en) 2019-03-29 2022-02-09 3M Innovative Properties Company Film comprising polylactic acid polymer suitable for graphic articles
CA3136834C (en) * 2019-05-17 2023-01-17 Northern Technologies International Corporation Polylactide-based masterbatch, for a commercially viable single-step in-mold annealing injection molding process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2551756B2 (ja) * 1985-05-07 1996-11-06 武田薬品工業株式会社 ポリオキシカルボン酸エステルおよびその製造法
EP0428620B1 (en) * 1988-08-08 1999-03-03 Biopak Technology, Ltd. A method of plasticizing lactide polymers.

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100443541C (zh) * 2004-02-16 2008-12-17 三井化学株式会社 含有共聚物的脂肪族聚酯树脂组合物
CN102015889B (zh) * 2008-04-28 2013-02-06 花王株式会社 聚乳酸树脂组合物的制造方法
CN102272193A (zh) * 2008-11-07 2011-12-07 高露洁-棕榄公司 用于包装应用的聚乳酸与热塑性聚合物的共混物
CN102079852A (zh) * 2010-12-16 2011-06-01 昆明学院 环保型茶具及其制备方法
CN105246973B (zh) * 2013-04-04 2017-06-09 包装,运输及物流技术研究所(Itene) 用于制备纳米结构化可生物降解聚合物材料的组合物,所获得的材料及其应用
CN105246973A (zh) * 2013-04-04 2016-01-13 包装,运输及物流技术研究所(Itene) 用于制备纳米结构化可生物降解聚合物材料的组合物,所获得的材料及其应用
CN105061478A (zh) * 2015-08-07 2015-11-18 常州大学 一种热稳定锌金属有机骨架材料及其制备方法和应用
CN109312096A (zh) * 2016-06-21 2019-02-05 3M创新有限公司 包含聚乳酸聚合物、聚乙酸乙烯酯聚合物和增塑剂的泡沫组合物、制品及其制备和使用方法
CN109312096B (zh) * 2016-06-21 2022-05-24 3M创新有限公司 包含聚乳酸聚合物、聚乙酸乙烯酯聚合物和增塑剂的泡沫组合物、制品及其制备和使用方法
US11407872B2 (en) 2016-06-21 2022-08-09 3M Innovative Properties Company Foam compositions comprising polylactic acid polymer, polyvinyl acetate polymer and plasticizer, articles, and methods of making and using same
CN112384567A (zh) * 2018-07-06 2021-02-19 卡比奥利司公司 包含乳酸低聚物的高pla含量塑料材料
CN109777053A (zh) * 2019-01-11 2019-05-21 海南绿袋子环保科技有限公司 一种含乳酸钙可控生物降解速率的材料
CN114616285A (zh) * 2019-06-13 2022-06-10 自然工作有限责任公司 快速水解聚丙交酯树脂组合物
CN114616285B (zh) * 2019-06-13 2023-11-07 自然工作有限责任公司 快速水解聚丙交酯树脂组合物

Also Published As

Publication number Publication date
CA2091185A1 (en) 1992-03-07
JPH06504799A (ja) 1994-06-02
FI930992A (fi) 1993-03-05
KR930703399A (ko) 1993-11-30
WO1992004413A1 (en) 1992-03-19
AU8660191A (en) 1992-03-30
BR9106821A (pt) 1993-07-13
FI930992A0 (fi) 1993-03-05
EP0548284A1 (en) 1993-06-30

Similar Documents

Publication Publication Date Title
CN1061421A (zh) 乳酸包装热塑性塑料
CN1476459A (zh) 脂肪族聚酯共聚物及其制造方法、脂肪族聚酯系生物降解性树脂成形物、和含内酯的树脂
US5180765A (en) Biodegradable packaging thermoplastics from lactides
KR101080735B1 (ko) 생분해성 폴리에스테르 수지 조성물, 그 제조방법, 및그들로부터 얻어지는 발포체 및 성형체
JP5409846B2 (ja) 成形体
JP3037431B2 (ja) 分解性ポリマー組成物
CN1906248A (zh) 消光薄膜
CN1662603A (zh) 聚乳酸类聚合物组合物、其成形品及薄膜
CN1639235A (zh) 聚乳酸系成型体及其制造方法
US20090023836A1 (en) Environmentally degradable polymeric composition and method for obtaining an environmentally degradable polymeric composition
TWI443140B (zh) 聚丁二酸丁二酯(pbs)及改質聚丁二酸丁二酯(mpbs)製成之熱成形物件
CN1235643C (zh) 包括可生物降解的聚酯共混组合物的吸收制品
EP0428620A1 (en) A method of plasticizing lactide polymers.
CN1771291A (zh) 生物降解性聚酯树脂组合物及其制造方法和用它形成的泡沫体及成形物
CN1772810A (zh) 树脂组合物及其制备方法
US20080249227A1 (en) Resin Composition, Product Molded from the Resin Composition, and Preparation Method for the Resin Composition
CN101080465A (zh) 生物降解性树脂组合物及其成型体
CN1161393C (zh) 具有抑制结晶度的共缩聚物
JP2009527594A (ja) 環境分解性ポリマー組成物及び環境分解性ポリマー組成物を得る方法
CN1299393A (zh) 含乳酸残余物的聚合物组合物,该产品的制备方法和用途
CA1339026C (en) Degradable thermoplastics from lactides
CN1429290A (zh) 共聚酯和由其形成的纤维状材料
Rigotti et al. Novel biobased polylactic acid/poly (pentamethylene 2, 5-furanoate) blends for sustainable food packaging
CN1159462A (zh) 可生物降解的组合物及其制备方法
CN1033517C (zh) 可生物降的组合物及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: American Colorado

Applicant after: Peck Biological Technology Co. Ltd.

Address before: ohio

Applicant before: Battelle Memorial Inst.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: BATTELLE MEMORIAL INSTITUTE TO: PECK BIOLOGICAL TECHNOLOGY CO., LTD.

C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication