CN104518085B - 具有横向偏移的beva/teva的rram单元结构 - Google Patents

具有横向偏移的beva/teva的rram单元结构 Download PDF

Info

Publication number
CN104518085B
CN104518085B CN201310746001.6A CN201310746001A CN104518085B CN 104518085 B CN104518085 B CN 104518085B CN 201310746001 A CN201310746001 A CN 201310746001A CN 104518085 B CN104518085 B CN 104518085B
Authority
CN
China
Prior art keywords
top electrode
electrode
hole
random access
access memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310746001.6A
Other languages
English (en)
Other versions
CN104518085A (zh
Inventor
张至扬
朱文定
涂国基
廖鈺文
陈侠威
杨晋杰
石昇弘
游文俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN104518085A publication Critical patent/CN104518085A/zh
Application granted granted Critical
Publication of CN104518085B publication Critical patent/CN104518085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • H10N70/8265Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices on sidewalls of dielectric structures, e.g. mesa-shaped or cup-shaped devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/066Shaping switching materials by filling of openings, e.g. damascene method
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/023Formation of switching materials, e.g. deposition of layers by chemical vapor deposition, e.g. MOCVD, ALD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/028Formation of switching materials, e.g. deposition of layers by conversion of electrode material, e.g. oxidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of switching materials after formation, e.g. doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of switching materials after formation, e.g. doping
    • H10N70/043Modification of switching materials after formation, e.g. doping by implantation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of switching materials after formation, e.g. doping
    • H10N70/046Modification of switching materials after formation, e.g. doping by diffusion, e.g. photo-dissolution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/068Shaping switching materials by processes specially adapted for achieving sub-lithographic dimensions, e.g. using spacers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • H10N70/235Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect between different crystalline phases, e.g. cubic and hexagonal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/25Multistable switching devices, e.g. memristors based on bulk electronic defects, e.g. trapping of electrons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/253Multistable switching devices, e.g. memristors having three or more electrodes, e.g. transistor-like devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/257Multistable switching devices, e.g. memristors having switching assisted by radiation or particle beam, e.g. optically controlled devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/823Device geometry adapted for essentially horizontal current flow, e.g. bridge type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/828Current flow limiting means within the switching material region, e.g. constrictions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8413Electrodes adapted for resistive heating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8416Electrodes adapted for supplying ionic species
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8418Electrodes adapted for focusing electric field or current, e.g. tip-shaped
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/861Thermal details
    • H10N70/8613Heating or cooling means other than resistive heating electrodes, e.g. heater in parallel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/861Thermal details
    • H10N70/8616Thermal insulation means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8822Sulfides, e.g. CuS
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Switching materials based on at least one element of group IIIA, IVA or VA, e.g. elemental or compound semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Switching materials based on at least one element of group IIIA, IVA or VA, e.g. elemental or compound semiconductors
    • H10N70/8845Carbon or carbides

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明涉及一种具有轴偏移或横向偏移的顶电极通孔(TEVA)和底电极通孔(BEVA)的电阻式随机存取存储器(RRAM)单元架构。具有同轴的TEVA和BEVA的传统RRAM单元能够引起高接触电阻变化率。本发明中的轴偏移的TEVA和BEVA促使TEVA远离RRAM单元上方的绝缘层,这样能够提高接触电阻变化率。本发明也涉及一种具有矩形RRAM单元的存储器件,该RRAM单元具有能够降低形成电压且提高数据保持的较大区域。本发明还公开了具有横向偏移的BEVA/TEVA的RRAM单元结构。

Description

具有横向偏移的BEVA/TEVA的RRAM单元结构
技术领域
本发明涉及半导体技术领域,更具体地,涉及具有横向偏移的BEVA/TEVA的RRAM单元结构。
背景技术
非易失性存储器用于各式各样的商业和军用电子器件和设备中。嵌入式闪存存储器件用于将数据和可执行程序保存在集成芯片中。随着集成芯片的功能性增加,对更大存储容量的需求也增加,这就使得集成芯片的设计者和制造商必须提高可用存储容量,同时还要降低集成芯片的尺寸和功耗。为了实现这个目标,在过去的几十年里,已经明显地缩小了存储单元组件的尺寸。由于将工艺技术转移到较小的单元尺寸中,所以,对于嵌入式闪存存储来说,集成浮栅和高k金属栅极变得复杂且昂贵。由于简单的结构和涉及CMOS逻辑兼容工艺技术,所以电阻式随机存取存储器(RRAM)是用于下一代非易失性存储器技术的一个有前景的候选者。
RRAM单元是夹在顶电极和底电极之间的金属氧化物材料。然而,传统的RRAM单元能够在顶电极通孔处引起高的接触电阻变化率。本发明目的在于降低接触电阻变化率、减小形成电压以及提高数据保持。
发明内容
为了解决现有技术中所存在的问题,根据本发明的一个方面,提供了一种电阻式随机存取存储器(RRAM)器件,包括:
电阻式随机存取存储器(RRAM)单元,具有第一表面和第二表面;
第一导电互连件,在第一位置处与所述第一表面邻接;以及
第二导电互连件,在第二位置处与所述第二表面邻接,其中,所述第一位置和所述第二位置彼此横向偏移。
在可选实施例中,所述RRAM单元包括:可变电阻式介电层,具有顶面和底面;顶电极,设置在所述可变电阻式介电层的上方且与所述顶面邻接;底电极,设置在所述可变电阻式介电层的下方且与所述底面邻接;顶电极通孔(TEVA),与所述顶电极邻接;以及,底电极通孔(BEVA),与所述底电极邻接。
在可选实施例中,所述TEVA与所述第一导电互连件相对应且设置在所述第一位置,并且,所述BEVA与所述第二导电互连件结构相对应且设置在所述第二位置,所述第一位置和所述第二位置彼此横向偏移。
在可选实施例中,所述RRAM器件还包括:半导体区,包括设置在形成于所述半导体区上方的极低k介电层内的金属;介电保护层,具有位于所述金属上方的开口区,其中,所述介电保护层的侧壁终止于所述金属上方的圆形端;绝缘层,与位于所述开口区上方的所述顶电极邻接;以及,间隔件,位于所述顶电极的每一侧。
在可选实施例中,所述底电极通孔(BEVA)位于所述介电保护层上方的限定区的上方,以浸渍的方式遵循所述介电保护层的所述圆形端的形状,且位于与所述半导体区中的所述金属相接触的所述开口区的上方;所述底电极设置在所述BEVA的整个上方;所述可变电阻式介电层设置在所述BE的整个上方;所述顶电极位于所述可变电阻式介电层上方的限定区的上方;以及,所述TEVA位于与所述开口区和所述绝缘层横向偏移的位置处。
在可选实施例中,所述RRAM单元包括构成一个区域的长度尺寸和宽度尺寸,并且,上覆导电互连件和下伏导电互连件设置在所述区域内。
在可选实施例中,所述RRAM单元的形状为矩形。
在可选实施例中,所述顶电极包括氮化钽(TaN)或钛(Ti),所述底电极包括氮化钛(TiN),所述TEVA包括铜(Cu),所述BEVA包括TaN,所述可变电阻式介电层包括氧化铪(HfO),所述间隔件包括氮化硅(SiN),以及所述绝缘层包括氮氧化硅(SiON)。
根据本发明的另一方面,还提供了一种电阻式随机存取存储器(RRAM)器件,包括:
半导体主体,具有被沟道区水平分隔开的源极区和漏极区;
栅极结构,连接至所述沟道区;
第一接触件和第二接触件,分别从所述漏极区和所述源极区向上延伸;
第一导电互连件,形成在所述第一接触件的上方且电连接至所述第一接触件;
电阻式随机存取存储器(RRAM)单元,形成在所述第一导电互连件的上方且具有第一表面和第二表面,其中,所述第一表面在第一位置处连接至所述第一导电互连件;以及
第二导电互连件,形成在所述RRAM单元的上方且在第二位置处与所述第二表面邻接,其中,所述第一位置和所述第二位置彼此横向偏移。
在可选实施例中,所述栅极结构连接至字线。
在可选实施例中,所述栅极结构包括形成在栅极电介质上方的多晶硅栅电极,所述栅极电介质将所述栅电极与所述沟道区电隔离。
在可选实施例中,一个或多个金属接触件和一个或多个金属接触通孔存在于所述源极区和所述第二接触件之间以及所述漏极区和所述第一接触件之间。
在可选实施例中,所述源极区连接至源极线,且所述漏极区连接至位线。
在可选实施例中,所述源极区和所述漏极区具有第一导电率且所述半导体主体具有第二导电率。
根据本发明的另一方面,还提供了一种形成电阻式随机存取存储器(RRAM)器件的方法,包括:
在第一位置形成与RRAM单元的第一表面邻接的上覆导电互连件;以及
在第二位置形成与所述RRAM单元的第二表面邻接的下伏导电互连件,其中,所述第一位置和所述第二位置彼此横向偏移。
在可选实施例中,所述RRAM单元包括半导体区、介电保护层、底电极通孔(BEVA)、底电极(BE)、可变电阻式介电层以及顶电极(TE),其中所述半导体区包括设置在极低k介电层内的金属层。
在可选实施例中,所述方法还包括:在所述顶电极的上方形成抗反射层;光刻图案化和蚀刻所述顶电极(TE);在所述半导体主体的整个上方沉积间隔件材料层;蚀刻所述间隔件材料层以在所述顶电极的每一侧形成间隔件、以及露出两端位置上的所述可变电阻式介电层;光刻图案化和蚀刻堆叠件,所述堆叠件包括所述可变电阻式介电层、底电极和所述BEVA;以及,形成与所述TE邻接的顶电极通孔(TEVA)。
在可选实施例中,在蚀刻所述顶电极之后,在所述顶电极的上方保留所述抗反射层的一部分。
在可选实施例中,所述顶电极通孔横向偏移于所述抗反射层的所述一部分。
在可选实施例中,在蚀刻所述顶电极期间,完全去除所述抗反射层。
附图说明
图1A示出了根据本发明的电阻式随机存取存储器(RRAM)器件的一些实施例的顶视图。
图1B示出了根据本发明一些实施例的图1A中RRAM器件的RRAM单元中的一个的截面图。
图2示出了根据本发明的用于形成RRAM器件的方法的一些实施例的流程图。
图3示出了根据本发明的用于在RRAM单元上形成顶电极通孔的方法的一些实施例的流程图。
图4示出了根据本发明的存储单元上的横向偏移的顶电极通孔(TEVA)和底电极通孔(BEVA)的一些实施例的截面图。
图5A-图5D示出了根据本发明的横向偏移结构和非横向偏移结构的一些实施例。
图6示出了根据本发明的具有横向偏移TEVA和BEVA的RRAM器件的一些实施例的截面图。
图7A-图7F示出了根据本发明的形成TEVA的方法的截面图的实施例。
图8示出了具有邻接顶电极的无绝缘材料的横向偏移的TEVA和BEVA的RRAM器件的一些实施例的截面图。
具体实施方式
参见附图作出本文的描述,其中,在整篇描述中,相同的参考数字通常用于表示相同的元件,并且,无需按比例绘制不同结构。在以下描述中,为了说明的目的,给出很多具体说明以便理解。然而,对于本领域的技术人员,根据较少程度的这些具体说明就可实施本文的一个或多个方面是显而易见的。在其他情况下,以框图的形式示出了已知结构和器件以便理解。
RRAM单元包括两个电极,这两个电极具有设置在两个电极之间的电阻式开关元件。电阻式开关元件或可变电阻式介电层使用“形成工艺”制备存储器件以备使用。通常在工厂、组装或初始系统配置中应用形成工艺。电阻式开关材料通常是绝缘的,但是施加给电阻式开关材料的足够的电压(被称为形成电压)会在电阻式开关材料中形成一个或多个导电通路。通过适当地施加不同的电压(例如,置位电压和复位电压),可调整导电通路以形成高电阻状态或低电阻状态。例如,电阻式开关材料可根据施加的置位电压从第一电阻率改变为第二电阻率且根据施加的复位电压从第二电阻率回到第一电阻率。
RRAM单元可被视为存储逻辑位元,其中,当电阻式开关元件具有增大的电阻时,可认为RRAM单元存储“0”位元;当电阻式开关元件具有降低的电阻时,RRAM单元可被视为存储“1”位元,反之亦然。通过将读取电压施加给两个电极且测量流经电阻式开关元件的相应的电流,电路可用于读出电阻式开关元件的电阻状态。如果流经电阻式开关元件的电流大于某一预定的基准电流,则认为电阻式开关元件处于降低的电阻状态,并因此,RRAM单元存储逻辑“1”。另一个方面,如果流经电阻式开关元件的电流小于某一预定的基准电流,则认为电阻式开关元件处于增加的电阻状态,并因此RRAM单元存储逻辑“0”。
RRAM单元具有导电互连件,导电互连件包括将顶电极和底电极连接至器件的剩余部分的顶电极通孔(TEVA)和底电极通孔(BEVA)。在传统的RRAM单元中,TEVA和BEVA沿着相同的纵轴设置。在这种情况下,如果TEVA设置在那个位置,可保持在顶电极上方的抗反射层会引起TEVA上的高接触电阻。
因此,本发明涉及一种新的用于RRAM单元的体系结构,该体系结构能够提高顶电极通孔处的接触电阻变化率。在一些实施例中,包括TEVA和BEVA的导电互连件是横向偏移的,以便TEVA远离能够降低接触电阻变化率的绝缘抗反射层。而且,以下面的这种方式选择RRAM单元的形状和尺寸:使得RRAM单元将导电互连件容纳在RRAM单元的区域内的两端处。小单元尺寸和高密度存储可给相关的逻辑电路带来不利影响,如,引起不规则的杂质扩散和结漏的RRAM区域周围的应力、较低产率和可靠性问题等。这能造成形成电压的增加。较大区域会有助于减小形成电压同时也提高存储器件的数据保持。
图1A示出了根据一些实施例的存储器件100a的俯视图,存储器件100a包括以一系列的列和行布置的多个存储单元。存储阵列101包括配置为存储数据的多个存储单元。为了说明的目的,图1A中的存储单元以两行和两列布置,其中,单个的单元被标记为C行-列,虽然典型的实施例会包含共同构成存储数字数据的存储阵列的数千、数百万或其他数量的行和列。存储单元C22包括夹在顶电极通孔104和底电极通孔106之间的RRAM单元102。底电极通孔106和与区域108相关联的第一金属接触件接触。参考数字110表示上方设置有存储单元的半导体衬底。
图1B示出了沿着存储单元C21的RRAM单元的长度方向的存储单元C21的截面图。RRAM单元位于半导体区108的上方,半导体区108包括诸如金属的导电区108a,并且在导电区108a的每一侧具有极低k介电区108b。介电保护层112位于半导体区108的正上方,该介电保护层112具有位于金属区108a上方的开口区,其中,介电保护层112的侧壁终止于金属108a上方的圆形端。介电保护层112保护半导体区108免受随后的蚀刻步骤的影响。在一个实施例中,底电极通孔(BEVA)106位于介电保护层上方的限定区的上方,以浸渍的方式遵循介电保护层112的圆形端的形状且位于与半导体区108中的金属108a接触的开口区上方。底电极(BE)114位于BEVA的上方且邻接BEVA的顶面。可变电阻式介电层或电阻式开关元件116设置为邻接BE的整个表面。顶电极(TE)118位于限定区处的可变电阻式介电层116的上方。在一个实施例中,顶电极118包括第一TE层118a和位于第一TE层118a的顶部的第二TE层118b。两个间隔件120a和120b各设置在TE层118的一侧。间隔件120a和120b也位于可变电阻式介电层116的两端上。顶电极通孔(TEVA)位于第二TE层118b的一侧。这种布局使得TEVA横向偏移于BEVA/金属界面或导电互连件,其中导电互连件将RRAM单元的底部连接至器件的剩余部分。抗反射层122设置在第二TE层118b的上方但不同于TEVA位置的位置处。抗反射层122位于金属区108a的垂直上方、TE层118b上方的凹陷中且由于制造工艺附带地位于这样的位置中,通过下文会有更详细地了解。
图2示出了根据本发明的用于形成具有横向偏移的BEVA和TEVA的RRAM器件的方法200的一些实施例的流程图。
虽然下面将公开的方法200示出和描述为一系列的步骤或事件,但是应该理解,不能限制性地解释这些步骤或事件的示出顺序。例如,有些步骤可以以不同的顺序进行和/或与除了示出的和/或描述的步骤或事件以外的其他步骤或事件同时进行。此外,无需所有示出的步骤来实现本说明书中的一个或多个方面或实施例。而且,可以以一个或多个单独的步骤和/或阶段进行本文描述的一个或多个步骤。
在202中,在第一位置处形成与RRAM单元的第一表面邻接的第一导电互连件。
在204中,在第二位置处形成与RRAM单元的第二表面邻接的第二导电互连件,这使得第一位置和第二位置彼此横向偏移。在一个实施例中,第一表面是RRAM单元的底面,而第二表面是RRAM单元的顶面。
图3示出了根据本发明的用于在RRAM单元上形成顶电极通孔(TEVA)的方法300的一些实施例的流程图。
虽然下面将公开的方法300示出和描述为一系列的步骤或事件,但是应该理解,不能限制性地解释这些步骤或事件的示出顺序。例如,有些步骤可以以不同的顺序进行和/或与除了示出的和/或描述的步骤或事件以外的其他步骤或事件同时进行。此外,无需进行示出的所有步骤来完成本发明的一个或多个方面或实施例。并且,可以以一个或多个单独的步骤和/或阶段进行本文描述的一个或多个步骤。
在302中,在RRAM单元的顶电极上方沉积抗反射/绝缘层。该抗反射层保护RRAM表面免受随后可能发生在RRAM单元上方的光刻图案化和蚀刻步骤的损害。在一些实施例中,沉积在TE上方的抗反射层包括氮氧化硅(SiON)。
在304中,进行包括各向异性蚀刻的光刻步骤以图案化和蚀刻顶电极,从而留下可变电阻式介电层开口或露出两端。在一些实施例中,光刻步骤没有完全去除覆在顶电极上面的位置处的抗反射层,且留下一些抗反射层在金属区的垂直上方的中心位置,其中,金属区形成与BEVA相关联的底接触件。在一些实施例中,在蚀刻步骤中完全去除抗反射层。
在306中,在半导体主体的整个上方沉积间隔件材料,以在整个RRAM单元的上方形成单层。在一些实施例中,间隔件材料包括氮化硅(SiN)。
在308中,蚀刻间隔件材料以在顶电极的两端形成间隔件。间隔件位于可变电阻式介电层的开放、暴露的端部位置上。
在310中,进行另一光刻步骤,该光刻步骤蚀刻限定区处的底电极,留下底电极两端的保护性介电层开口。
在312中,在横向远离中心位置的位置处形成与顶电极邻接的顶电极通孔(TEVA)。这样保证了TEVA不与绝缘抗反射层接触,由此不会像传统的布置那样增加接触电阻。TEVA也与将RRAM单元的底部连接至器件的剩余部分的导电互连件发生横向偏移。
图4示出了根据本发明的RRAM器件400的一些实施例的截面图,其中,RRAM器件400具有相互横向偏移的上覆导电互连件和下伏导电互连件。RRAM单元402夹在横向偏移的两个导电互连件之间。参考数字404表示与RRAM单元402的顶面402a邻接的上覆导电互连件,且参考数字406表示与RRAM单元402的底面402b邻接的下伏导电互连件。顶面402a上的突出虚线区表示上覆导电互连件所处的第一位置403a,且底面402b上的突出虚线区403b表示下伏导电互连件所处的第二位置403b。第一位置403a和第二位置403b彼此横向偏移。下列附图会详细解释横向偏移的概念。
图5A-图5D示出了横向偏移对象和未横向偏移对象的一些实施例。为了解释横向偏移的两个对象,引入了垂直于水平面且穿过两个对象的中心的两个轴线。如果两个轴线分隔开非零距离,那么可以说这两个对象是横向偏移或轴偏移。
图5A示出了沿着水平轴或横轴502的两个横向偏移对象504和506的布置500a。508是穿过对象504的中心的第一轴线,且510是穿过对象506的中心的第二轴线。参考数字512表示两个轴线之间观测到的非零距离。在这里,虽然两个对象看来沿着水平轴502重叠了一段距离,但是两个轴线之间的距离512表示对象504和508彼此横向偏移或轴偏移。
图5B表示横向偏移对象的另一个实施例的布置500b。在这种情况下,对象504和506的角部沿着横轴502在单一一点处接触。然而,两个垂直轴线508和510之间具有非零距离512,因此对象504和506彼此横向偏移或轴偏移。
图5C示出了布置500c中的横向偏移对象的另一个实施例。此处的对象504和506沿着水平轴502没有连接区。因此,轴线508和510之间具有非常明显的非零距离,且对象彼此横向偏移或轴偏移。
图5D表示布置500d,布置500d示出了两个对象没有横向偏移或同轴的一个实施例。两个轴线508和510之间没有距离或两个轴线彼此重叠,这就使得两个对象504和506彼此同轴或没有横向偏移。
图6示出了根据本发明的具有横向偏移的TEVA和BEVA的RRAM器件600的一些实施例的截面图。多个这样的RRAM器件形成配置为用于存储数据的存储阵列。在一个实施例中,选择晶体管与每个RRAM器件相关联。选择晶体管配置为抑制潜通路泄露(即,防止用于特定存储单元的电流流经邻近的存储单元),同时给存储单元的操作提供充足的驱动电流。图6包括常规的平面MOSFET选择晶体管601。选择晶体管601包括位于半导体主体602内的源极604和漏极606,源极604和漏极606被沟道区605水平地隔开。栅电极608位于半导体主体602上的一个位置,而该位置位于沟道区605的上方。在一些实施例中,栅电极包括多晶硅。通过横向延伸在半导体主体602的表面上方的栅极氧化层或栅极介电层607将栅电极608与源极604和漏极606分隔开。漏极606通过第一金属接触件612a连接至数据存储元件或RRAM单元620。源极604与第二金属接触件612b连接。栅电极连接至字线614a,源极通过第二金属接触件612b连接至选择线614b,且RRAM单元620通过附加金属接触件612g进一步连接至包括在上部金属化层中的位线614c。使用字线和位线可选择性地访问期望的RRAM器件以用于读出、写入和清除操作。有助于将RRAM存储器件连接至外部电路的包括612c、612d、612e和612f的一个或多个金属接触件和包括610a、610b、610c、610d、610e和610f等的金属接触通孔可存在于漏极和第一金属接触件之间以及源极和第二金属接触件之间。在一些实施例中,金属接触件包括铜(Cu)。
RRAM单元620包括夹在顶电极622和底电极623之间的电阻式开关元件/可变电阻式介电层621。在一些实施例中,顶电极包括钛(Ti)和氮化钽(TaN),底电极包括氮化钛(TiN),且电阻式开关元件包括二氧化铪(HfO2)。顶电极通孔(TEVA)624将存储单元620的顶电极622连接至上部金属化层612g,且底电极通孔(BEVA)625将RRAM单元620的底电极623连接至第一金属接触件/下部金属化层612a。为了降低TEVA624和下方绝缘层(未示出)之间可累积的接触电阻,将TEVA624和BEVA625以彼此横向偏移的方式设置,其中,绝缘层位于顶电极622上方的中心位置处。RRAM单元620也具有扩大的常规矩形区或细长区,以容纳横向偏移的TEVA和BEVA。较大的细长区能够降低形成电压和提高RRAM单元中的数据保持。
图7A-图7F示出了根据本发明的形成顶电极通孔(TEVA)的相应方法300的不同实施例的截面图。
图7A示出了包括RRAM单元、BEVA和下方的金属互连件的半导体主体700a的一个实施例的截面图。半导体主体700a包括半导体区702,半导体区702包括设置在绝缘层(诸如极低k介电层)704内的导电金属区703。在一些实施例中,金属区包括铜(Cu)且极低k介电层包括多孔二氧化硅、氟化硅玻璃、聚酰亚胺、聚降冰片烯、苯并环丁烯或PTFE。具有位于金属上方的开口区的介电保护层706设置在半导体区702的上方,其中,由于蚀刻,介电保护层的侧壁终止于金属上方的圆形端。在一些实施例中,介电保护层包括碳化硅(SiC)。底电极通孔(BEVA)708共形地位于介电保护层706上方的限定区的上方。底电极通孔708以浸渍的方式遵循介电保护层的圆形端的形状且也位于与半导体区702中的金属703接触的开口区的上方。在一些实施例中,BEVA包括氮化钽(TaN)。底电极(BE)710位于整个BEVA的上方,且可变电阻式介电层712位于BE的上方。可变电阻式介电层通常为绝缘的,但是,施加给可变电阻式介电材料的足够电压会在可变电阻式电介质中形成一个或多个导电通路。通过适当地施加不同电压(如,置位电压和复位电压),可调整导电通路以形成高电阻状态或低电阻状态。在一些实施例中,BE710包括氮化钛(TiN)且可变电阻式介电层包括二氧化铪(HfO2)。第一顶电极层714位于可变电阻式介电层712的顶部,且第二顶电极层716设置为邻接第一顶电极层714。在一些实施例中,第一顶电极层包括钛(Ti)且第二顶电极层包括TaN。绝缘抗反射层718设置为邻接整个第二顶电极层716。抗反射层718保护下伏层免受随后的蚀刻步骤的影响,且通过降低引起驻波的光反射提高图案化。在一些实施例中,抗反射层包括SiON。
图7B示出了在光刻图案化和蚀刻顶电极(TE)之后的半导体主体700b的实施例。在一些实施例中,执行各向异性蚀刻步骤,在两端位置上形成用于可变电阻式介电层的开放的暴露端713。在一个实施例中,光刻步骤没有从第二顶电极层716完全去除抗反射层718,且留下一些抗反射层718在金属区垂直上方的中心位置处。在另一个实施例中,在蚀刻步骤中完全去除抗反射层。
图7C示出了在半导体主体的整个上方沉积间隔件材料以在半导体主体的整个上方形成间隔层720之后的半导体主体700c的实施例。在一些实施例中,间隔件材料包括氮化硅(SiN)。
图7D示出了在蚀刻间隔层720以在顶电极的两端形成间隔件720a和720b之后的半导体主体700d的实施例。间隔件720a和720b位于可变电阻式介电层的开放的端位置上。
图7E示出了进行另一个光刻步骤来蚀刻限定区的底电极710和可变电阻式介电层712之后的半导体主体700e的实施例。这个蚀刻步骤将留下保护介电层在其两端位置处开放。
图7F示出了在远离浸渍区的位置形成顶电极通孔(TEVA)722之后的半导体主体700f的实施例。这将保证TEVA不与绝缘抗反射层718接触,因此,这种构造比常规设计明显提高了接触电阻变化率。所以,TEVA横向偏移于将RRAM单元的底部连接至器件的剩余部分的导电互连件。
图8示出了根据本发明的具有横向偏移的TEVA和BEVA以及没有绝缘抗反射层的顶电极表面的RRAM器件800的实施例。在这种情况下,在方法300的步骤304期间完全去除了抗反射层。
应该理解,在全文中引用示例性结构来讨论所描述的方法的方面,但这些方法并不受示出的相应结构的限制。相反,这些方法(和结构)被视为彼此独立且能够单独存在并且无需考虑附图所示的任何特定方面就可实施。此外,能够以诸如旋涂、溅射、生长和/或沉积技术等的任何合适的方式形成本文所描述的层。
并且,基于阅读和/或理解本说明书和附图,本领域的技术人员可想到等同的改变和/或修改。本公开包括所有这样的修改和改变并且通常不旨在限制于此。例如,虽然本文中提供的附图被示出和描述成具有特定的掺杂类型,但是应该理解,本领域的技术人员应该知道,也可使用可选的掺杂类型。
此外,虽然只通过若干实现的其中一个公开了一个特定部件或方面,但是如期望的那样,这样的部件或方面可与其他实现的一个或多个其他部件和/或方面结合。并且,在某种程度上,本文中使用了术语“包括”、“具有”、“有”、“带有”和/或其变体,这些术语旨在包含的意思,如“包括”。并且,“示例性的”仅意味着实例,而不是最佳实例。也应该理解,为了简化和便于理解,本文所述的部件、层和/或元件示出为具有特定尺寸和/或相互之间的方位,并且实际的尺寸和/或方位可基本不同于本文示出的尺寸和/或方位。
本发明涉及一种电阻式随机存取存储器(RRAM)器件,RRAM器件包括具有第一表面和第二表面的电阻式随机存取存储器(RRAM)单元、在第一位置处与第一表面邻接的第一导电互连件以及在第二位置处与第二表面邻接的第二导电互连件,其中,第一位置和第二位置是横向偏移的。
在一些实施例中,本发明涉及一种电阻式随机存取存储器(RRAM)器件,RRAM器件包括具有通过沟道区水平分隔开的源极区和漏极区的半导体主体、连接至沟道区的栅极结构、分别从漏极区和源极区向上延伸的第一接触件和第二接触件、形成在第一接触件的上方且电连接至第一接触件的第一导电互连件、形成在第一导电互连件的上方且具有第一表面和第二表面的电阻式随机存取存储器(RRAM)单元,形成在RRAM单元的上方且在第二位置处与第二表面邻接的第二导电互连件,其中,第一表面在第一位置处连接至第一导电互连件,并且,第一位置和第二位置是横向偏移的。
在另一个实施例中,本发明涉及一种形成电阻式随机存取存储器(RRAM)器件的方法,该方法包括:在第一位置处形成与RRAM单元的第一表面邻接的上覆导电互连件,以及在第二位置处形成与RRAM单元的第二表面邻接的下伏导电互连件,其中,第一位置和第二位置是横向偏移的。

Claims (18)

1.一种电阻式随机存取存储器(RRAM)器件,包括:
电阻式随机存取存储器(RRAM)单元,具有第一表面和第二表面;
顶电极通孔,在第一位置处与所述第一表面邻接;以及
底电极通孔,在第二位置处与所述第二表面邻接,其中,所述第一位置和所述第二位置彼此横向偏移;
其中,所述电阻式随机存取存储器单元包括顶电极和抗反射层,所述顶电极具有位于所述顶电极上方的凹陷,所述顶电极通孔位于所述顶电极的一侧,所述抗反射层设置在所述顶电极的上方的所述凹陷中但不同于所述顶电极通孔的位置的位置处。
2.根据权利要求1所述的电阻式随机存取存储器器件,其中,所述电阻式随机存取存储器单元包括:
可变电阻式介电层,具有顶面和底面;
所述顶电极,设置在所述可变电阻式介电层的上方且与所述顶面邻接;
底电极,设置在所述可变电阻式介电层的下方且与所述底面邻接;
其中,所述顶电极通孔与所述顶电极邻接,
所述底电极通孔与所述底电极邻接。
3.根据权利要求2所述的电阻式随机存取存储器器件,还包括:
半导体区,包括设置在形成于所述半导体区上方的极低k介电层内的金属;
介电保护层,具有位于所述金属上方的开口区,其中,所述介电保护层的侧壁终止于所述金属上方的圆形端;
绝缘层,与位于所述开口区上方的所述顶电极邻接;以及
间隔件,位于所述顶电极的每一侧。
4.根据权利要求3所述的电阻式随机存取存储器器件,其中:
所述底电极通孔位于所述介电保护层上方的限定区的上方,以浸渍的方式遵循所述介电保护层的所述圆形端的形状,且位于与所述半导体区中的所述金属相接触的所述开口区的上方;
所述底电极设置在所述底电极通孔的整个上方;
所述可变电阻式介电层设置在所述底电极的整个上方;
所述顶电极位于所述可变电阻式介电层上方的限定区的上方;以及
所述顶电极通孔位于与所述开口区和所述绝缘层横向偏移的位置处。
5.根据权利要求1所述的电阻式随机存取存储器器件,其中,所述电阻式随机存取存储器单元包括构成一个区域的长度尺寸和宽度尺寸,并且,所述顶电极通孔和所述底电极通孔设置在所述区域内。
6.根据权利要求1所述的电阻式随机存取存储器器件,其中,所述电阻式随机存取存储器单元的形状为矩形。
7.根据权利要求3所述的电阻式随机存取存储器器件,其中,所述顶电极包括氮化钽TaN或钛Ti,所述底电极包括氮化钛TiN,所述顶电极通孔包括铜Cu,所述底电极通孔包括TaN,所述可变电阻式介电层包括氧化铪HfO,所述间隔件包括氮化硅SiN,以及所述绝缘层包括氮氧化硅SiON。
8.一种电阻式随机存取存储器(RRAM)器件,包括:
半导体主体,具有被沟道区水平分隔开的源极区和漏极区;
栅极结构,连接至所述沟道区;
第一接触件和第二接触件,分别从所述漏极区和所述源极区向上延伸;
底电极通孔,形成在所述第一接触件的上方且电连接至所述第一接触件;
电阻式随机存取存储器(RRAM)单元,形成在所述底电极通孔的上方且具有第一表面和第二表面,其中,所述第一表面在第一位置处连接至所述底电极通孔;以及
顶电极通孔,形成在所述电阻式随机存取存储器单元的上方且在第二位置处与所述第二表面邻接,其中,所述第一位置和所述第二位置彼此横向偏移;
其中,所述电阻式随机存取存储器单元包括顶电极和抗反射层,所述顶电极具有位于所述顶电极上方的凹陷,所述顶电极通孔位于所述顶电极的一侧,所述抗反射层设置在所述顶电极的上方的所述凹陷中但不同于所述顶电极通孔的位置的位置处。
9.根据权利要求8所述的电阻式随机存取存储器器件,其中,所述栅极结构连接至字线。
10.根据权利要求8所述的电阻式随机存取存储器器件,其中,所述栅极结构包括形成在栅极电介质上方的多晶硅栅电极,所述栅极电介质将所述栅电极与所述沟道区电隔离。
11.根据权利要求8所述的电阻式随机存取存储器器件,其中,一个或多个金属接触件和一个或多个金属接触通孔存在于所述源极区和所述第二接触件之间以及所述漏极区和所述第一接触件之间。
12.根据权利要求8所述的电阻式随机存取存储器器件,其中,所述源极区连接至源极线,且所述漏极区连接至位线。
13.根据权利要求8所述的电阻式随机存取存储器器件,其中,所述源极区和所述漏极区具有第一导电率且所述半导体主体具有第二导电率。
14.一种形成电阻式随机存取存储器(RRAM)器件的方法,包括:
在第一位置形成与电阻式随机存取存储器单元的第一表面邻接的顶电极通孔;以及
在第二位置形成与所述电阻式随机存取存储器单元的第二表面邻接的底电极通孔,其中,所述第一位置和所述第二位置彼此横向偏移;
其中,所述电阻式随机存取存储器单元包括顶电极和抗反射层,所述顶电极具有位于所述顶电极上方的凹陷,所述顶电极通孔位于所述顶电极的一侧,所述抗反射层设置在所述顶电极的上方的所述凹陷中但不同于所述顶电极通孔的位置的位置处。
15.根据权利要求14所述的方法,其中,所述电阻式随机存取存储器单元还包括半导体区、介电保护层、底电极、可变电阻式介电层,其中所述半导体区包括设置在极低k介电层内的金属层。
16.根据权利要求15所述的方法,还包括:
光刻图案化和蚀刻所述顶电极;
在所述半导体主体的整个上方沉积间隔件材料层;
蚀刻所述间隔件材料层以在所述顶电极的每一侧形成间隔件、以及露出两端位置上的所述可变电阻式介电层;
光刻图案化和蚀刻堆叠件,所述堆叠件包括所述可变电阻式介电层、底电极和所述底电极通孔;以及
形成与所述顶电极邻接的所述顶电极通孔。
17.根据权利要求16所述的方法,其中,在蚀刻所述顶电极之后,在所述顶电极的上方保留所述抗反射层的一部分。
18.根据权利要求17所述的方法,其中,所述顶电极通孔横向偏移于所述抗反射层的所述一部分。
CN201310746001.6A 2013-09-30 2013-12-30 具有横向偏移的beva/teva的rram单元结构 Active CN104518085B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/041,514 US9112148B2 (en) 2013-09-30 2013-09-30 RRAM cell structure with laterally offset BEVA/TEVA
US14/041,514 2013-09-30

Publications (2)

Publication Number Publication Date
CN104518085A CN104518085A (zh) 2015-04-15
CN104518085B true CN104518085B (zh) 2017-12-05

Family

ID=52739176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310746001.6A Active CN104518085B (zh) 2013-09-30 2013-12-30 具有横向偏移的beva/teva的rram单元结构

Country Status (3)

Country Link
US (5) US9112148B2 (zh)
KR (1) KR101573146B1 (zh)
CN (1) CN104518085B (zh)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9231197B2 (en) * 2012-11-12 2016-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Logic compatible RRAM structure and process
US9112148B2 (en) 2013-09-30 2015-08-18 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM cell structure with laterally offset BEVA/TEVA
US9230647B2 (en) 2013-12-27 2016-01-05 Taiwan Semiconductor Manufacturing Co., Ltd. Metal line connection for improved RRAM reliability, semiconductor arrangement comprising the same, and manufacture thereof
US9178144B1 (en) * 2014-04-14 2015-11-03 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM cell with bottom electrode
US20170084832A1 (en) * 2014-05-21 2017-03-23 The Trustees Of The University Of Pennsylvania Non-volatile resistance switching devices
US9209392B1 (en) 2014-10-14 2015-12-08 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM cell with bottom electrode
US9666790B2 (en) 2015-07-17 2017-05-30 Taiwan Semiconductor Manufacturing Co., Ltd. Manufacturing techniques and corresponding devices for magnetic tunnel junction devices
US10230047B2 (en) * 2015-10-22 2019-03-12 Winbond Electronics Corp. RRAM device and method for manufacturing the same
US10163981B2 (en) 2016-04-27 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Metal landing method for RRAM technology
WO2018004588A1 (en) * 2016-06-30 2018-01-04 Intel Corporation Approaches for fabricating back end of line (beol)-compatible rram devices and the resulting structures
TWI607592B (zh) * 2017-01-05 2017-12-01 旺宏電子股份有限公司 具一記憶體結構之半導體元件
CN108288671B (zh) * 2017-01-09 2021-08-27 旺宏电子股份有限公司 具一存储器结构的半导体元件
US9859336B1 (en) 2017-01-09 2018-01-02 Macronix International Co., Ltd. Semiconductor device including a memory cell structure
CN107017341B (zh) * 2017-03-28 2020-09-25 华中科技大学 一种非对称环状微电极相变存储单元及器件
US10164182B1 (en) 2017-06-26 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Switching layer scheme to enhance RRAM performance
US10804464B2 (en) * 2017-11-24 2020-10-13 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming memory device with diffusion barrier and capping layer
US10297749B1 (en) * 2017-12-12 2019-05-21 International Business Machines Corporation High density resistive random access memory integrated on complementary metal oxide semiconductor
KR20190122421A (ko) * 2018-04-20 2019-10-30 삼성전자주식회사 반도체 소자
US10361367B1 (en) 2018-07-17 2019-07-23 International Business Machines Corporation Resistive memory crossbar array with top electrode inner spacers
US10916585B2 (en) 2018-08-14 2021-02-09 Newport Fab, Llc Stacked phase-change material (PCM) radio frequency (RF) switches with improved RF power handling
US10454027B1 (en) 2018-08-14 2019-10-22 Newport Fab, Llc Phase-change material (PCM) radio frequency (RF) switches with stressor layers and contact adhesion layers
US10686128B2 (en) 2018-08-14 2020-06-16 Newport Fab, Llc Semiconductor devices having phase-change material (PCM) radio frequency (RF) switches and integrated passive devices
US10566528B1 (en) 2018-08-14 2020-02-18 Newport Fab, Llc Heating element designs for phase-change material (PCM) radio frequency (RF) switches
US10593404B2 (en) 2018-08-14 2020-03-17 Newport Fab, Llc Array architecture for large scale integration of phase-change material (PCM) radio frequency (RF) switches
US10937960B2 (en) 2018-08-14 2021-03-02 Newport Fab, Llc Concurrent fabrication of and structure for capacitive terminals and ohmic terminals in a phase-change material (PCM) radio frequency (RF) switch
US10566321B1 (en) 2018-08-14 2020-02-18 Newport Fab, Llc Wafer-to-wafer and die-to-wafer bonding of phase-change material (PCM) switches with integrated circuits and bonded two-die devices
US10770657B2 (en) 2018-08-14 2020-09-08 Newport Fab, Llc High reliability phase-change material (PCM) radio frequency (RF) switch using trap-rich region
US10615338B2 (en) 2018-08-14 2020-04-07 Newport Fab, Llc Phase-change material (PCM) contacts with slot lower portions and contact dielectric for reducing parasitic capacitance and improving manufacturability in PCM RF switches
US10770389B2 (en) 2018-08-14 2020-09-08 Newport Fab, Llc Phase-change material (PCM) radio frequency (RF) switches with capacitively coupled RF terminals
US10862477B2 (en) 2018-08-14 2020-12-08 Newport Fab, Llc Read out integrated circuit (ROIC) for rapid testing of functionality of phase-change material (PCM) radio frequency (RF) switches
US10978639B2 (en) 2018-08-14 2021-04-13 Newport Fab, Llc Circuits for reducing RF signal interference and for reducing DC power loss in phase-change material (PCM) RF switches
US10749109B2 (en) 2018-08-14 2020-08-18 Newport Fab, Llc Read out integrated circuit (ROIC) for rapid testing and characterization of resistivity change of heating element in phase-change material (PCM) radio frequency (RF) switch
US11050022B2 (en) 2018-08-14 2021-06-29 Newport Fab, Llc Radio frequency (RF) switches having phase-change material (PCM) and heat management for increased manufacturability and performance
US10644235B2 (en) * 2018-08-14 2020-05-05 Newport Fab, Llc Phase-change material (PCM) radio frequency (RF) switch with reduced parasitic capacitance
US11057019B2 (en) 2018-08-14 2021-07-06 Newport Fab, Llc Non-volatile adjustable phase shifter using non-volatile radio frequency (RF) switch
US10686010B2 (en) 2018-08-14 2020-06-16 Newport Fab, Llc Fabrication of semiconductor device using a shared material in a phase-change material (PCM) switch region and a resonator region
US10622560B2 (en) * 2018-08-14 2020-04-14 Newport Fab, Llc Semiconductor chips and systems having phase-change material (PCM) switches integrated with micro-electrical-mechanical systems (MEMS) and/or resonators
US10693061B2 (en) 2018-08-14 2020-06-23 Newport Fab, Llc Semiconductor devices having phase-change material (PCM) radio frequency (RF) switches and integrated active devices
US10644236B2 (en) 2018-08-14 2020-05-05 Newport Fab, Llc Phase-change material (PCM) radio frequency (RF) switch with reduced parasitic capacitance
US10476001B1 (en) * 2018-08-14 2019-11-12 Newport Fab, Llc Manufacturing RF switch based on phase-change material
US10862032B2 (en) 2018-08-14 2020-12-08 Newport Fab, Llc Phase-change material (PCM) radio frequency (RF) switch
US10475993B1 (en) 2018-08-14 2019-11-12 Newport Fab, Llc PCM RF switch fabrication with subtractively formed heater
US10707125B2 (en) 2018-08-14 2020-07-07 Newport Fab, Llc Fabrication of contacts in an RF switch having a phase-change material (PCM) and a heating element
US10916540B2 (en) 2018-08-14 2021-02-09 Newport Fab, Llc Device including PCM RF switch integrated with group III-V semiconductors
US10739290B2 (en) 2018-08-14 2020-08-11 Newport Fab, Llc Read out integrated circuit (ROIC) for rapid testing and characterization of conductivity skew of phase-change material (PCM) in PCM radio frequency (RF) switches
US10944052B2 (en) 2018-08-14 2021-03-09 Newport Fab, Llc Phase-change material (PCM) radio frequency (RF) switch using a chemically protective and thermally conductive layer
US10529922B1 (en) 2018-08-14 2020-01-07 Newport Fab, Llc Substrates and heat spreaders for heat management and RF isolation in integrated semiconductor devices having phase-change material (PCM) radio frequency (RF) switches
US10686130B2 (en) 2018-08-14 2020-06-16 Newport Fab, Llc Phase-change material (PCM) contact configurations for improving performance in PCM RF switches
US10461253B1 (en) 2018-08-14 2019-10-29 Newport Fab, Llc High reliability RF switch based on phase-change material
US11159145B2 (en) 2018-08-14 2021-10-26 Newport Fab, Llc Radio frequency (RF) filtering using phase-change material (PCM) RF switches
US10833004B2 (en) 2018-08-14 2020-11-10 Newport Fab, Llc Dba Jazz Semiconductor Capacitive tuning circuit using RF switches with PCM capacitors and PCM contact capacitors
US11196401B2 (en) 2018-08-14 2021-12-07 Newport Fab, Llc Radio frequency (RF) module using a tunable RF filter with non-volatile RF switches
US11289650B2 (en) * 2019-03-04 2022-03-29 International Business Machines Corporation Stacked access device and resistive memory
US11183503B2 (en) * 2019-07-31 2021-11-23 Taiwan Semiconductor Manufacturing Company, Ltd. Memory cell having top and bottom electrodes defining recesses
CN110635030B (zh) * 2019-09-24 2021-10-01 华中科技大学 用于纳米级相变存储器单元的垂直电极配置结构
US11600664B2 (en) 2020-01-16 2023-03-07 Globalfoundries Singapore Pte. Ltd. Memory devices and methods of forming memory devices
US11309353B2 (en) * 2020-04-30 2022-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Spacer-defined back-end transistor as memory selector
US11502250B2 (en) * 2020-05-26 2022-11-15 Globalfoundries Singapore Pte. Ltd. Memory devices and methods of forming memory devices
JP2023039618A (ja) * 2021-09-09 2023-03-22 キオクシア株式会社 メモリデバイス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1983617A (zh) * 2005-11-28 2007-06-20 尔必达存储器株式会社 电可改写非易失存储元件及其制造方法
CN101170121A (zh) * 2006-10-24 2008-04-30 旺宏电子股份有限公司 双稳态可编程电阻式随机存取存储器
CN102934229A (zh) * 2010-05-25 2013-02-13 美光科技公司 电阻可变存储器单元结构及方法

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337266B1 (en) 1996-07-22 2002-01-08 Micron Technology, Inc. Small electrode for chalcogenide memories
US6871396B2 (en) * 2000-02-09 2005-03-29 Matsushita Electric Industrial Co., Ltd. Transfer material for wiring substrate
US6764894B2 (en) * 2001-08-31 2004-07-20 Ovonyx, Inc. Elevated pore phase-change memory
US6507061B1 (en) * 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
KR100829556B1 (ko) * 2002-05-29 2008-05-14 삼성전자주식회사 자기 저항 램 및 그의 제조방법
US7049623B2 (en) * 2002-12-13 2006-05-23 Ovonyx, Inc. Vertical elevated pore phase change memory
JP4008857B2 (ja) * 2003-03-24 2007-11-14 株式会社東芝 半導体記憶装置及びその製造方法
US7928420B2 (en) * 2003-12-10 2011-04-19 International Business Machines Corporation Phase change tip storage cell
JP4072523B2 (ja) 2004-07-15 2008-04-09 日本電気株式会社 半導体装置
KR100655796B1 (ko) * 2004-08-17 2006-12-11 삼성전자주식회사 상변화 메모리 장치 및 그 제조 방법
DE102004041893B4 (de) * 2004-08-30 2006-11-23 Infineon Technologies Ag Verfahren zur Herstellung von Speicherbauelementen (PCRAM) mit Speicherzellen auf der Basis einer in ihrem Phasenzustand änderbaren Schicht
US7633110B2 (en) 2004-09-21 2009-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Memory cell
DE102004052611A1 (de) * 2004-10-29 2006-05-04 Infineon Technologies Ag Verfahren zur Herstellung einer mit einem Füllmaterial mindestens teilweise gefüllten Öffnung, Verfahren zur Herstellung einer Speicherzelle und Speicherzelle
US20060169968A1 (en) * 2005-02-01 2006-08-03 Thomas Happ Pillar phase change memory cell
TWI431761B (zh) * 2005-02-10 2014-03-21 Renesas Electronics Corp 半導體積體電路裝置
KR100645064B1 (ko) 2005-05-23 2006-11-10 삼성전자주식회사 금속 산화물 저항 기억소자 및 그 제조방법
KR100668348B1 (ko) * 2005-11-11 2007-01-12 삼성전자주식회사 비휘발성 메모리 소자 및 그 제조방법
US7531825B2 (en) * 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
EP1845567A1 (en) * 2006-04-11 2007-10-17 STMicroelectronics S.r.l. Phase-change memory device and manufacturing process thereof.
WO2007148405A1 (ja) * 2006-06-23 2007-12-27 Renesas Technology Corp. 半導体装置
JP2008021668A (ja) * 2006-07-10 2008-01-31 Renesas Technology Corp 相変化型不揮発性メモリおよびその製造方法
JP2008021750A (ja) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd 抵抗変化素子およびその製造方法、ならびにそれを用いた抵抗変化型メモリ
KR100858083B1 (ko) * 2006-10-18 2008-09-10 삼성전자주식회사 하부전극 콘택층과 상변화층 사이에 넓은 접촉면적을 갖는상변화 메모리 소자 및 그 제조 방법
JP2008103541A (ja) * 2006-10-19 2008-05-01 Renesas Technology Corp 相変化メモリおよびその製造方法
JP5062180B2 (ja) * 2006-12-19 2012-10-31 富士通株式会社 抵抗変化素子及びその製造方法
KR100791008B1 (ko) * 2006-12-26 2008-01-04 삼성전자주식회사 서로 인접하는 셀들에 공유된 상변화 물질 패턴을 구비하는상변화 메모리 소자 및 이를 구비하는 전자제품
US7817454B2 (en) * 2007-04-03 2010-10-19 Micron Technology, Inc. Variable resistance memory with lattice array using enclosing transistors
US20080247214A1 (en) * 2007-04-03 2008-10-09 Klaus Ufert Integrated memory
KR100869235B1 (ko) * 2007-05-25 2008-11-18 삼성전자주식회사 반도체 다이오드의 제조 방법 및 이를 이용한 상변이 기억소자의 제조 방법
WO2008149605A1 (ja) * 2007-06-04 2008-12-11 Nec Corporation 抵抗変化素子およびこれを備えた半導体装置
US20080303015A1 (en) * 2007-06-07 2008-12-11 Thomas Happ Memory having shared storage material
US8179739B2 (en) * 2007-08-10 2012-05-15 Renesas Electronics Corporation Semiconductor device and its manufacturing method
CN101842897B (zh) * 2007-10-30 2011-11-02 松下电器产业株式会社 非易失性半导体存储装置和其制造方法
JP2009135219A (ja) * 2007-11-29 2009-06-18 Renesas Technology Corp 半導体装置およびその製造方法
JP5170107B2 (ja) * 2007-12-07 2013-03-27 富士通株式会社 抵抗変化型メモリ装置、不揮発性メモリ装置、およびその製造方法
KR20090081153A (ko) * 2008-01-23 2009-07-28 삼성전자주식회사 저항성 메모리 소자 및 그 제조방법
US8564079B2 (en) * 2008-04-21 2013-10-22 Qualcomm Incorporated STT MRAM magnetic tunnel junction architecture and integration
US7906817B1 (en) * 2008-06-06 2011-03-15 Novellus Systems, Inc. High compressive stress carbon liners for MOS devices
WO2009154266A1 (ja) * 2008-06-20 2009-12-23 日本電気株式会社 半導体記憶装置及びその動作方法
US7791925B2 (en) * 2008-10-31 2010-09-07 Seagate Technology, Llc Structures for resistive random access memory cells
US8053749B2 (en) * 2008-11-07 2011-11-08 Seagate Technology Llc Mirrored-gate cell for non-volatile memory
WO2010079816A1 (ja) * 2009-01-09 2010-07-15 日本電気株式会社 半導体装置及びその製造方法
JP5360209B2 (ja) * 2009-06-25 2013-12-04 日本電気株式会社 半導体装置及びその製造方法
US20120161095A1 (en) * 2009-08-28 2012-06-28 Takumi Mikawa Semiconductor memory device and method of manufacturing the same
US8283202B2 (en) * 2009-08-28 2012-10-09 International Business Machines Corporation Single mask adder phase change memory element
US7943420B1 (en) * 2009-11-25 2011-05-17 International Business Machines Corporation Single mask adder phase change memory element
US9385308B2 (en) * 2010-03-26 2016-07-05 Qualcomm Incorporated Perpendicular magnetic tunnel junction structure
US8471360B2 (en) * 2010-04-14 2013-06-25 Sandisk 3D Llc Memory cell with carbon switching material having a reduced cross-sectional area and methods for forming the same
JP5436669B2 (ja) * 2010-07-01 2014-03-05 パナソニック株式会社 不揮発性記憶素子及びその製造方法
US8241944B2 (en) * 2010-07-02 2012-08-14 Micron Technology, Inc. Resistive RAM devices and methods
JP2012064440A (ja) * 2010-09-16 2012-03-29 Konica Minolta Business Technologies Inc 光電変換素子及び太陽電池
WO2012066787A1 (ja) * 2010-11-19 2012-05-24 パナソニック株式会社 不揮発性記憶素子および不揮発性記憶素子の製造方法
KR101715861B1 (ko) * 2010-12-02 2017-03-14 삼성전자주식회사 중수소 어닐링을 이용한 반도체 소자 형성방법
US8824183B2 (en) * 2010-12-14 2014-09-02 Sandisk 3D Llc Non-volatile memory having 3D array of read/write elements with vertical bit lines and select devices and methods thereof
US8927331B2 (en) * 2011-03-10 2015-01-06 Panasonic Corporation Method of manufacturing nonvolatile memory device
US20120261635A1 (en) * 2011-04-12 2012-10-18 Feng Zhou Resistive random access memory (ram) cell and method for forming
CN102185105A (zh) * 2011-04-22 2011-09-14 复旦大学 一种半导体存储器结构及其制造方法
JP2012248620A (ja) * 2011-05-26 2012-12-13 Toshiba Corp 半導体記憶装置の製造方法
US8609492B2 (en) * 2011-07-27 2013-12-17 Micron Technology, Inc. Vertical memory cell
US9680093B2 (en) * 2011-09-16 2017-06-13 Panasonic Intellectual Property Management Co., Ltd. Nonvolatile memory element, nonvolatile memory device, nonvolatile memory element manufacturing method, and nonvolatile memory device manufacturing method
US8822265B2 (en) 2011-10-06 2014-09-02 Intermolecular, Inc. Method for reducing forming voltage in resistive random access memory
JP5236841B1 (ja) * 2011-10-11 2013-07-17 パナソニック株式会社 半導体記憶素子の製造方法
KR20130044496A (ko) * 2011-10-24 2013-05-03 에스케이하이닉스 주식회사 배선 상에 셀 패턴이 형성되는 반도체 메모리 소자 및 그 제조 방법
US8878156B2 (en) * 2011-11-21 2014-11-04 Avalanche Technology Inc. Memory device having stitched arrays of 4 F2 memory cells
KR101841445B1 (ko) * 2011-12-06 2018-03-23 삼성전자주식회사 저항성 메모리 소자 및 그 제조 방법
US8710481B2 (en) * 2012-01-23 2014-04-29 Sandisk 3D Llc Non-volatile memory cell containing a nano-rail electrode
JP5346144B1 (ja) * 2012-02-20 2013-11-20 パナソニック株式会社 不揮発性記憶装置およびその製造方法
JP2013175570A (ja) * 2012-02-24 2013-09-05 National Institute Of Advanced Industrial & Technology 半導体記憶装置およびその製造方法
US8698118B2 (en) * 2012-02-29 2014-04-15 Globalfoundries Singapore Pte Ltd Compact RRAM device and methods of making same
JP2013197422A (ja) * 2012-03-21 2013-09-30 Toshiba Corp 不揮発性記憶装置及びその製造方法
WO2013140768A1 (ja) * 2012-03-21 2013-09-26 パナソニック株式会社 不揮発性記憶装置及びその製造方法
WO2013145741A1 (ja) * 2012-03-29 2013-10-03 パナソニック株式会社 不揮発性記憶装置およびその製造方法
JP6233306B2 (ja) * 2012-06-22 2017-11-22 日本電気株式会社 スイッチング素子およびスイッチング素子の製造方法
US8896096B2 (en) * 2012-07-19 2014-11-25 Taiwan Semiconductor Manufacturing Company, Ltd. Process-compatible decoupling capacitor and method for making the same
JP6056868B2 (ja) * 2012-10-09 2017-01-11 日本電気株式会社 配線形成方法
KR20140058278A (ko) * 2012-11-06 2014-05-14 삼성전자주식회사 저항성 메모리 소자, 저항성 메모리 어레이 및 저항성 메모리 소자의 제조 방법
US8921818B2 (en) * 2012-11-09 2014-12-30 Taiwan Semiconductor Manufacturing Company, Ltd. Resistance variable memory structure
US9231197B2 (en) * 2012-11-12 2016-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Logic compatible RRAM structure and process
US9019743B2 (en) * 2012-11-29 2015-04-28 Taiwan Semiconductor Manufacturing Company, Ltd. Method and structure for resistive switching random access memory with high reliable and high density
KR102021978B1 (ko) * 2012-12-06 2019-09-18 삼성전자주식회사 블로킹 막을 갖는 반도체 소자 및 그 형성 방법
US9130162B2 (en) * 2012-12-20 2015-09-08 Taiwan Semiconductor Manufacturing Company, Ltd. Resistance variable memory structure and method of forming the same
US10340451B2 (en) * 2013-01-18 2019-07-02 Nec Corporation Switching element having overlapped wiring connections and method for fabricating semiconductor switching device
US9331277B2 (en) 2013-01-21 2016-05-03 Taiwan Semiconductor Manufacturing Company, Ltd. One transistor and one resistive random access memory (RRAM) structure with spacer
US9437813B2 (en) * 2013-02-14 2016-09-06 Sandisk Technologies Llc Method for forming resistance-switching memory cell with multiple electrodes using nano-particle hard mask
US8963114B2 (en) * 2013-03-06 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. One transistor and one resistive (1T1R) random access memory (RRAM) structure with dual spacers
US8952347B2 (en) * 2013-03-08 2015-02-10 Taiwan Semiconductor Manfacturing Company, Ltd. Resistive memory cell array with top electrode bit line
US9478638B2 (en) * 2013-03-12 2016-10-25 Taiwan Semiconductor Manufacturing Company, Ltd. Resistive switching random access memory with asymmetric source and drain
US9231205B2 (en) 2013-03-13 2016-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Low form voltage resistive random access memory (RRAM)
US9349953B2 (en) * 2013-03-15 2016-05-24 Taiwan Semiconductor Manufacturing Company, Ltd. Resistance variable memory structure and method of forming the same
TWI543337B (zh) * 2013-03-19 2016-07-21 東芝股份有限公司 電阻式隨機存取記憶裝置
US8872149B1 (en) * 2013-07-30 2014-10-28 Taiwan Semiconductor Manufacturing Company, Ltd. RRAM structure and process using composite spacer
US9040951B2 (en) * 2013-08-30 2015-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Resistance variable memory structure and method of forming the same
US9112148B2 (en) 2013-09-30 2015-08-18 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM cell structure with laterally offset BEVA/TEVA
US9178144B1 (en) 2014-04-14 2015-11-03 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM cell with bottom electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1983617A (zh) * 2005-11-28 2007-06-20 尔必达存储器株式会社 电可改写非易失存储元件及其制造方法
CN101170121A (zh) * 2006-10-24 2008-04-30 旺宏电子股份有限公司 双稳态可编程电阻式随机存取存储器
CN102934229A (zh) * 2010-05-25 2013-02-13 美光科技公司 电阻可变存储器单元结构及方法

Also Published As

Publication number Publication date
US20170141301A1 (en) 2017-05-18
US10700275B2 (en) 2020-06-30
US9112148B2 (en) 2015-08-18
KR20150037517A (ko) 2015-04-08
US11723292B2 (en) 2023-08-08
US20150090949A1 (en) 2015-04-02
US10199575B2 (en) 2019-02-05
KR101573146B1 (ko) 2015-12-01
US20150325786A1 (en) 2015-11-12
US20200335694A1 (en) 2020-10-22
US20190123271A1 (en) 2019-04-25
CN104518085A (zh) 2015-04-15
US9425392B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
CN104518085B (zh) 具有横向偏移的beva/teva的rram单元结构
TWI678823B (zh) 記憶體電路及形成記憶體電路的方法
US8987700B2 (en) Thermally confined electrode for programmable resistance memory
CN101872778B (zh) 集成电路3d相变存储器阵列及制造方法
US8212233B2 (en) Forming phase-change memory using self-aligned contact/via scheme
US7473921B2 (en) Nonvolatile memory cell with concentric phase change material formed around a pillar arrangement
CN101447501B (zh) 半导体装置及其制造方法
CN101958398B (zh) 热保护相变随机存取存储器及其制造方法
KR101667857B1 (ko) 개선된 rram 신뢰성을 위한 금속 라인 커넥션, 이를 포함하는 반도체 장치, 및 이의 제조
JP5748750B2 (ja) 封入相変化セル構造および方法
JP2015532789A (ja) 3次元メモリアレイアーキテクチャ
CN103872067A (zh) 可变电阻存储器件及其制造方法
CN108122923A (zh) 存储器件及制造其的方法
CN103165662B (zh) 阻变存储器件及其制造方法
US11495293B2 (en) Configurable resistivity for lines in a memory device
KR101030016B1 (ko) 비휘발성 프로그래머블 스위치 소자 및 그 제조방법
US20180090542A1 (en) Phase-change memory cell
KR102452013B1 (ko) 메모리 어레이에 대한 비트 라인 및 워드 라인 접속
US20230165173A1 (en) Semiconductor device and method for fabricating the same
US10886333B2 (en) Memory structure including gate controlled three-terminal metal oxide components
US20220059764A1 (en) Miec and tunnel-based selectors with improved rectification characteristics and tunability
KR20060122268A (ko) 상변환 기억 소자 및 그의 제조방법
WO2022159406A1 (en) Non-volatile memory device having pn diode
TW202410442A (zh) 記憶體選擇器和其形成方法
WO2022203978A1 (en) Non-volatile memory device having schottky diode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant