CN103477035B - 平行循环热发动机 - Google Patents

平行循环热发动机 Download PDF

Info

Publication number
CN103477035B
CN103477035B CN201180062759.7A CN201180062759A CN103477035B CN 103477035 B CN103477035 B CN 103477035B CN 201180062759 A CN201180062759 A CN 201180062759A CN 103477035 B CN103477035 B CN 103477035B
Authority
CN
China
Prior art keywords
heat exchanger
fluid
turbine
stream
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180062759.7A
Other languages
English (en)
Other versions
CN103477035A (zh
Inventor
T·J·黑尔德
M·L·弗米尔什
T·谢
J·D·米勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Echogen Power Systems LLC
Original Assignee
Echogen Power Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Echogen Power Systems LLC filed Critical Echogen Power Systems LLC
Publication of CN103477035A publication Critical patent/CN103477035A/zh
Application granted granted Critical
Publication of CN103477035B publication Critical patent/CN103477035B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/04Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled condensation heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/02Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the fluid remaining in the liquid phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/08Control systems for steam boilers for steam boilers of forced-flow type of forced-circulation type
    • F22B35/083Control systems for steam boilers for steam boilers of forced-flow type of forced-circulation type without drum, i.e. without hot water storage in the boiler
    • F22B35/086Control systems for steam boilers for steam boilers of forced-flow type of forced-circulation type without drum, i.e. without hot water storage in the boiler operating at critical or supercritical pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

废热能转换循环、系统和设备,使用在废热流中串联设置的多个热交换器,和与废热交换器平行运行的多个热力学循环,以使通过工作流体从废热流提取的热能最大。该平行循环在不同温度范围内操作,使用输出的功驱动工作流体泵。将工作流体质量管理系统整合入循环中或与循环连接。

Description

平行循环热发动机
相关申请的交叉引用
本申请要求2011年8月18日申请的美国专利申请序列号13/212,631的优先权,该专利要求2010年11月29日申请的美国临时专利申请序列号61/417,789的优先权,通过引用将两者的内容以它们的全部并入本申请中。
技术背景
热通常作为工业过程的副产品而产生,在工业过程中需将含热的液体、固体或气体的流动物流排空到环境中,或者,否则的话,需努力地从过程中除去以维持工业过程装置的操作温度。有时工业过程可使用热交换设备捕集热并且通过其它工艺物流使它循环回到该过程中。其它时候,捕集并循环该热是不可行的,因为或者温度太低,或者没有易于获得的设备来直接使用热。这种类型的热通常称作“废”热,并且通常通过,例如,排出管(stack)直接排出到环境中,或间接地通过冷却介质例如水而排出。在其它装置(setting)中,这样的热是易于从可再生热能来源,例如来自太阳的(其可被浓缩或另外地处理)或地热来源的热获得。意欲将这些和另外的热能源落在本文中使用的该术语“废热”的定义内。
通过采用热力学方法,如兰金循环(Rankine cycle)的涡轮机发电机系统可利用废热,以将热转换成功。典型地,该方法是蒸汽-基的,其中使用废热使锅炉中的蒸汽升压以驱动涡轮机。然而,蒸汽-基的兰金循环的至少一个主要缺点是它的高温要求,这并不总是实际的,因为它通常需要相对高温(例如600℉或更高)的废热流或非常大的总热含量。另外,当热源物流冷却时,在多个压力/温度下使水沸腾以捕集在多个温度水平的热的复杂性使装置成本和操作劳动力的成本高。此 外,对于小流速和/或低温的物流来讲,蒸汽-基的兰金循环不是现实的选择。
通过用较低沸点的流体,例如像丙烷或丁烷,或HCFC(如R245fa)流体的轻质烃代替水,有机兰金循环(ORC)解决了蒸汽-基的兰金循环的缺点。然而,沸腾热传递的限制依然存在,并添加了新的问题,例如流体的热不稳定性、毒性或可燃性。
为了解决这些缺点,已经使用超临界CO2动力循环。超临界状态的CO2提供与多个热源的改进的热耦合。例如,通过使用超临界流体,可以更容易地匹配工艺热交换器的温度滑移(glide)。然而,单循环超临界CO2动力循环在有限的压力比下操作,从而限制了通过能量转换设备(通常是涡轮机或正位移膨胀器)的温度降低的量,即,能量提取。压力比受到限制主要是因为在典型的可获得的冷凝温度(例如常温)下,流体的高蒸气压。因此,限制了可从单一膨胀级获得的最大输出动力(功率),并且膨胀的流体保留了大量潜在的可使用的能量。尽管该残余能量的一部分可以通过使用作为蓄热器的热交换器在该循环内回收,并因此对泵和废热交换器之间的流体进行预热,但该方法限制了在单一循环中可从废热源提取的热的量。
因此,本领域中存在对可以有效率地且有效地不仅从废热而且从宽范围的热源产生动力(功率)的系统的需要。
发明内容
概述
本公开内容的实施方案可提供用于将热能转换为功的系统。该系统可以包括:泵,配置其以使工作流体遍及工作流体回路循环,将工作流体在泵的下游分离成第一质量流和第二质量流;和第一热交换器,与泵流体地连接并与热源热连通,配置第一热交换器以接收第一质量流并将来自热源的热转移到第一质量流。该系统也可包括第一涡轮机,与第一热交换器流体地连接并配置以使第一质量流膨胀;和第一蓄热器,与第一涡轮机流体地连接并配置以将来自从第一涡轮机排出的第一质量流的残余热能转移到导向第一热交换器的第一质量流。该系统 还可包括第二热交换器,与泵流体地连接并与热源热连通,配置第二热交换器以接收第二质量流并将来自热源的热转移到第二质量流;和第二涡轮机,与第二热交换器流体地连接并配置以使第二质量流膨胀。
本公开内容的实施方案还提供用于将热转换成功的另一系统。该另外的系统可以包括:泵,配置其以使工作流体遍及工作流体回路循环,将工作流体在泵的下游分离成第一质量流和第二质量流;第一热交换器,与泵流体地连接并与热源热连通,配置第一热交换器以接收第一质量流并将来自热源的热转移到第一质量流;和第一涡轮机,与第一热交换器流体地连接并配置以使第一质量流膨胀。该系统也可包括第一蓄热器,与第一涡轮机流体地连接并配置以将来自从第一涡轮机排出的第一质量流的残余热能转移到导向第一热交换器的第一质量流;第二热交换器,与泵流体地连接并与热源热连通,配置第二热交换器以接收第二质量流并将来自热源的热转移到第二质量流;和第二涡轮机,与第二热交换器流体地连接并配置以使第二质量流膨胀,第二质量流从第二涡轮机排出并与第一质量流再-组合以产生组合的质量流。该系统还可包括第二蓄热器,与第二涡轮机流体地连接并配置以将来自组合的质量流的残余热能转移到导向第二热交换器的第二质量流;和第三热交换器,与热源热连通并设置在泵和第一热交换器之间,配置第三热交换器以在通过第一热交换器之前接收并转移热到第一质量流。
本公开内容的实施方案还提供用于将热能转换为功的方法。该方法包括用泵使工作流体遍及工作流体回路循环;将工作流体回路中的工作流体分离成第一质量流和第二质量流;和在第一热交换器中将来自热源的热能转移到第一质量流,第一热交换器与热源热连通。该方法也可包括在与第一热交换器流体地连接的第一涡轮机中使第一质量流膨胀;在第一蓄热器中将来自从第一涡轮机排出的第一质量流的残余热能转移到导向第一热交换器的第一质量流,第一蓄热器与第一涡轮机流体地连接;和在第二热交换器中将来自热源的热能转移到第二质量流,第二热交换器与热源热连通。该方法还可包括在与第二热交换器流体地连接的第二涡轮机中使第二质量流膨胀。
附图说明
当与所附的附图一起阅读时,从下面的详细描述可以最好地理解本公开内容。它强调的是,按照工业中的标准实践,各种特征没有按比例绘制。事实上,为了清楚地讨论,各种特征的尺寸可任意增加或减少。
图1根据一个或多个公开的实施方案,示意性说明平行热发动机循环的示例性实施方案。
图2根据一个或多个公开的实施方案,示意性说明另一平行热发动机循环的示例性实施方案。
图3根据一个或多个公开的实施方案,示意性说明另一平行热发动机循环的示例性实施方案。
图4根据一个或多个公开的实施方案,示意性说明另一平行热发动机循环的示例性实施方案。
图5根据一个或多个公开的实施方案,示意性说明另一平行热发动机循环的示例性实施方案。
图6根据一个或多个公开的实施方案,示意性说明另一平行热发动机循环的示例性实施方案。
图7根据一个或多个公开的实施方案,示意性说明可用平行热发动机循环实施的质量管理系统(MMS)的示例性实施方案。
图8根据一个或多个公开的实施方案,示意性说明可用平行热发动机循环实施的MMS的示例性实施方案。
图9和图10示意性地说明通过利用可在本文公开的平行热发动机循环中使用的工作流体,用于单独的流体物流(例如空气)的入口急冷(chilling)的不同系统配置。
具体实施方式
详细说明
应当理解的是,下面的公开内容描述了数个用于实施本发明的不 同的特征、结构或功能的示例性实施方案。以下描述组件、设置和配置的示例性实施方案以简化本公开内容;然而,提供这些示例性实施方案仅是作为实例,而不意欲限制本发明的范围。此外,本公开内容可在本文提供的多个示例性实施方案和整个图中重复参考数字和/或字母。该重复是为了简单和清楚的目的,且本身并不说明在多个图中讨论的多个示例性实施方案和/或配置之间的关系。此外,相对于下面说明书中的第二特征或在下面说明书中的第二特征之上形成的第一特征可以包括其中第一和第二特征直接接触形成的实施方案,且也可以包括其中可形成插入在第一和第二特征之间的另外的特征,使得第一和第二特征可以并不直接接触的实施方案。最后,下面呈现的示例性实施方案可以以任何组合方式组合,即,来自一个示例性实施方案中的任何元件可用于任何另外的示例性实施方案中,而不偏离本公开内容的范围。
此外,使用遍及下面的说明书和权利要求书中的某些术语以指特定组件。如本领域技术人员将意识到的,不同实体可以通过不同的名称指相同的组件,且因此,对于本文中所述的元件,不意欲使命名约定限制本发明的范围,除非本文中另有特定限定。此外,不意欲使本文所用的命名约定区分名称而非功能不同的组件。此外,在下面的讨论和权利要求书中,术语“包括”和“包含”是无限制形式的,且因此应解释为意思是“包括,但不限于”。除非特定声明,所有在该公开内容中的数值可以是精确或近似的值。因此,本公开内容的不同实施方案可偏离本文公开的数目、值和范围但不偏离意欲的范围。此外,如在权利要求书或说明书中使用,术语“或”意欲同时包括独占(exclusive)和非独占(inclusive)的情况,即,“A或B”意欲为与“A和B中的至少一个”同义,除非本文另有明确说明。
图1说明示例性的热力学循环100,其根据本公开内容的一个或多个实施方案,可用于通过工作流体的热膨胀将热能转换为功。循环100的特征是兰金循环,并且可以在热发动机设备中实施,该设备包括多个与废热源流体连通的热交换器,多个用于动力(功率)生产和/ 或泵驱动动力(功率)的涡轮机,以及位于(多个)涡轮机下游的多个蓄热器。
特别地,热力学循环100可包括工作流体回路110,通过串联设置的第一热交换器102和第二热交换器104与热源106热连通。将意识到,可以利用任何数目的换热器与一个或多个热源连接。在一个示例性实施方案中,第一和第二热交换器102、104可以是废热交换器。在另外的示例性实施方案中,第一和第二热交换器102、104可以分别包括单一的或组合的废热交换器的第一和第二级。
热源106可以得自多个高温来源的热能。例如,热源106可以是废热流,例如,但不限于,燃气涡轮排气,工艺物流排气,或另外的燃烧产物排气物流,例如炉或锅炉的排气物流。因此,可以配置热力学循环100以将废热变换为电能,该电能的应用范围从燃气涡轮中的底部循环,固定式柴油发动机发电机组(genset),工业废热回收(例如,在炼制厂和压缩站),和混合选择到内燃机。在另外的示例性实施方案中,热源106可得自可再生热能源来源的热能,例如,但不限于,太阳热和地热来源。
虽然热源106可以是本身是高温来源的流体物流,在另外的示例性实施方案中,热源106可以是与高温来源接触的热流体。该热流体可将热能传输(deliver)至废热交换器102、104,以将该能量转移到回路100中的工作流体。
如所示,第一热交换器102可作为高温或相对较高温的热交换器,其适于接收热源106的初始或初级流。在本公开内容的多个示例性实施方案中,进入循环100的热源106的初始温度的范围可以从约400℉至大于约1,200℉(约204℃至大于约650℃)。在所示的示例性实施方案中,热源106的初始流可具有约500℃或更高的温度。然后第二热交换器104可通过第一热交换器102下游的串连连接108接收热源106。在一个示例性实施方案中,提供到第二热交换器104的热源106的温度可以是约250-300℃。应当指出,在图中所示的代表性的操作温度、压力和流速是通过实例的方式,并且认为不以任何方式限制本 公开内容的范围。
可意识到,将来自热源106的更大量的热能通过串连设置的第一和第二热交换器102、104转移,与第二热交换器104相比,第一热交换器102在废热流106中以相对较高的温度范围转移热。因此,如将在下面更详细描述,从联合的涡轮机或膨胀设备得到更大的动力(功率)产生。
在工作流体回路110,和本文下面公开的另外的示例性回路中循环的工作流体可以是二氧化碳(CO2)。二氧化碳作为用于动力(功率)产生循环的工作流体具有很多优点。它是一种温室友好和中性的工作流体,从而提供例如无毒、非可燃性、易获得性、低价格和无需回收的好处。部分由于它的相对高的工作压力,可以建造CO2系统,它比使用另外的工作流体的系统更紧凑(compact)。相对于另外的工作流体,CO2的高密度和体积热容使它更“能量密集(energy dense)”,这意味着所有系统组件的尺寸可以显著减少而不损失性能。应当指出,本文所用的术语“二氧化碳”不意欲限制任何特定类型、纯度或等级的CO2。例如,在至少一个示例性实施方案中,可以使用工业等级CO2,而不偏离本公开内容范围。
在另外的示例性实施方案中,回路110中的工作流体可以是二元,三元或另外的工作流体共混物。如本文所述,为了在热回收系统内流体组合具有的独特属性,可以选择工作流体的共混或组合。例如,一种这样的流体组合包括液体吸收剂和CO2混合物,从而使得使用比压缩CO2所需的更少的能量输入将组合的流体在液体状态泵送到高压。在另一示例性实施方案中,工作流体可以是CO2或超临界二氧化碳(ScCO2)与一种或多种另外的可混流体或化合物的组合。仍在另外的示例性实施例中,工作流体可以是CO2和丙烷,或CO2和氨的组合,而不偏离本公开内容范围。
使用的术语“工作流体”不意欲限制工作流体所在的物质状态或相。换句话说,工作流体可以是在流体相、气相、超临界相、亚临界状态或在流体循环内的任何一个或多个位置的任何另外的相或状态。 工作流体在回路110的某些部分(“高压侧”)可以处于超临界状态,而在回路110的另外部分(“低压侧”)处于亚临界状态。在另外的示例性实施方案中,可以操作和控制整个工作流体回路110,使得在整个回路110执行器件,工作流体处于超临界或亚临界状态。
在热源106中热交换器102、104串联设置,而在工作流体回路110中平行设置。第一热交换器102可以与第一涡轮机112流体地连接,而第二热交换器104可与第二涡轮机114流体地连接。进而,第一涡轮机112可流体地连接到第一蓄热器116,而第二涡轮机114可流体地连接到第二蓄热器118。涡轮机112、114之一或两者可以是动力涡轮机,配置其以向辅助系统或工艺提供动力(功率)。在回路110的低温侧蓄热器116、118可串联设置,而在回路110的高温侧平行设置。蓄热器116、118将回路110划分成高温侧和低温侧。例如,回路110的高温侧包括设置在其中将工作流体导向热交换器102、104的各蓄热器116、118下游的部分回路110。回路110的低温侧包括设置在其中引导工作流体远离热交换器102、104的各蓄热器116、118下游的部分回路110。
工作流体回路110还可以包括与流体回路110的组件流体连通的第一泵120和第二泵122,配置它们以使工作流体循环。第一和第二泵120、122可以是涡轮泵,或由一个或多个外部机器或设备,诸如马达独立地驱动。在一个示例性实施方案中,可使用第一泵120以在循环100的正常操作期间使工作流体循环,而只有用于开始循环100时,名义上驱动和使用第二泵122。在至少一个示例性实施方案中,可以使用第二涡轮机114以驱动第一泵120,但在另外的示例性实施方案中,可以使用第一涡轮机112以驱动第一泵120,或该第一泵120可以由马达(未示出)名义地驱动。
第一涡轮机112可以比第二涡轮机114在较高的相对温度(例如,较高的涡轮机入口温度)下操作,因为经历过第一热交换器102的热源106的温度下降。然而,在一个或多个示例性实施方案中,可配置各涡轮机112、114以在相同或基本上相同的入口压力下操作。这可以通 过设计和控制回路110来实现,这包括,但不限于,控制第一和第二泵120、122和/或使用多级泵以优化用于回路110的入口温度对应的各涡轮机12、114的入口压力。
在一个或多个示例性实施方案中,第一泵120的入口压力可超过工作流体蒸气压足够的限度(margin),以防止在低压和/或高速度的局部区域工作流体的蒸发。对于高速泵,例如可用于本文所公开的各种示例性实施方案中的涡轮泵,这尤其重要。因此,传统的被动(passive)增压系统,例如采用只提供相对于流体蒸气压,重力增加的压力的稳压罐,可以证明对于本文所公开的示例性实施方案是不足够的。
工作流体回路110可还包括冷凝器124,它与第一和第二蓄热器116、118之一或两者流体连通。可将离开各蓄热器116、118的低压排出工作流体流导向通过冷凝器124以进行冷却,用于返回到回路110的低温侧和到第一泵120或第二泵122。
在操作中,在工作流体回路110的点126处,将工作流体分离为第一质量流m1和第二质量流m2。将第一质量流量m1导向通过第一热交换器102,并随后在第一涡轮机112中膨胀。在第一涡轮机112之后,第一质量流m1通过第一蓄热器116,以在将它导向第一热交换器102时,将残余热转移回到第一质量流m1。可将第二质量流m2导向通过第二热交换器104,并随后在第二涡轮机114中膨胀。在第二涡轮机114之后,第二质量流m2通过第二蓄热器118,以在将它导向第二热交换器104时,将残余热转移回到第二质量流m2。然后在工作流体回路110的点128处,将第二质量流m2与第一质量流m1再组合,以产生组合的质量流m1+m2。可将该组合的质量流m1+m2导向通过冷凝器124并且回到泵120以再次开始该回路(loop)。在至少一个实施方案中,在泵120的入口处工作流体是超临界的。
可意识到,与热源106进行热交换的每级可以并入其中在完全的热力学循环100内最有效地利用它的工作流体回路110。例如,通过将热交换分成多级,或使用分离的热交换器(例如,第一和第二热交换器102、104)或具有多级的单一或多个热交换器,可以从热源106提 取另外的热量,以在膨胀中更有效地使用,并且主要地以从热源106获得多级膨胀。
另外,通过在相似的或基本上相似的压力比下使用多个涡轮机112、114,可以有效地利用更大部分的可获得的热源106,这是通过经蓄热器116、118使用来自各涡轮机112、114的残余热,使得该残余热没有丢失或受到损害。可以优化工作流体回路110中蓄热器116、118与热源106之间的设置,以使涡轮机112、114中多个温度膨胀的功率输出最大。通过选择性地组合平行的工作流体流,例如,通过匹配热容量率,C=m·cp,其中C是热容量率,m是工作流体的质量流率,且cp为恒压比热,任一蓄热器116、118的两侧可以平衡。
图2说明了根据一个或多个公开内容的实施方案,热力学循环200的另一示例性实施方案。在一些方面,循环200可以与以上关于图1所述的热力循环100相似。因此,参考图1可以最好地理解热力循环200,其中,相同的数字对应于相同的元件,且因此将不再次详细描述。循环200也包括串联设置的第一和第二热交换器102、104,与热源106热连通,但在工作流体回路210中平行。第一和第二蓄热器116和118在回路210的低温侧串联设置而在回路210的高温侧平行。
在回路210中,将工作流体在点202处分离为第一质量流m1和第二质量流m2。将第一质量流量m1最终导向通过第一热交换器102,并随后在第一涡轮机112中膨胀。然后第一质量流m1通过第一蓄热器116,以将残余热转移回到第一质量流m1(其流过过去状态25并且进入第一蓄热器116)。可将第二质量流m2导向通过第二热交换器104,并随后在第二涡轮机114中膨胀。在第二涡轮机114之后,在点204处将第二质量流m2与第一质量流m1再组合,以产生组合的质量流m1+m2。可将该组合的质量流导向通过第二蓄热器118,以将残余热转移到通过第二蓄热器118的第一质量流m1
蓄热器116、118的设置为组合的质量流m1+m2在到达冷凝器124之前提供第二蓄热器118。可意识到,如上所定义,通过提供更好的热容量率匹配,这可增加工作流体回路210的热效率。
如所说明,可以使用第二涡轮机114以驱动第一或主要工作流体泵120。然而,在另外的示例性实施方案中,可以使用第一涡轮机112以驱动泵120,而不偏离本公开内容的范围。如将在下面更详细地讨论的,通过在对应的状态41和42管理各自的质量流率,可以在常规的涡轮机入口压力或不同的涡轮机入口压力下操作第一和第二涡轮机112、114。
图3说明了根据本公开内容的一个或多个实施方案,热力学循环300的另一示例性实施方案。在一些方面,循环300可以与热力学循环100和/或200相似,因此,参考图1和2可以最好地理解循环300,其中,相同的数字对应相同的元件,和因此将不再次详细描述。热力学循环300可以包括工作流体回路310,其使用与热源106热连通的第三热交换器302。第三热交换器302可以是与如前所述的第一和第二热交换器102、104相似的热交换器类别。
热交换器102、104、302在与热源106物流热连通时可以串联设置,且在工作流体回路310中平行设置。对应的第一和第二蓄热器116、118与冷凝器124在回路310的低温侧串联设置,且在回路310的高温侧平行。在点304处将工作流体分离成第一和第二质量流m1、m2后,可配置第三热交换器302以接收第一质量流m1,并且在其到达用于膨胀的第一涡轮机112前,将来自热源106的热转移到第一质量流m1。在第一涡轮机112膨胀之后,将第一质量流m1导向通过第一蓄热器116,以将残余热转移到从第三热交换器302排出的第一质量流m1
将第二质量流m2导向通过第二热交换器104,且随后在第二涡轮机114中膨胀。在第二涡轮机114之后,在点306处将第二质量流m2与第一质量流m1再组合以产生组合的质量流m1+m2,其为在第二蓄热器118中的第二质量流m2提供残余热。
也可以使用第二涡轮机114驱动第一或初级泵120,或者它可以通过如本文所述的其它方式驱动。可以在回路310的低温侧提供第二或起动泵122,并提供通过平行的热交换器路径(包括第二和第三热交换器104/302)的循环工作流体。在一个示例性实施方案中,在循环300 的起动期间,第一和第三热交换器102、302的流量可以基本上为零。工作流体回路310还可以包括节流阀308,例如泵驱动节流阀,和截止阀312以管理工作流体的流量。
图4说明了根据一个或多个公开内容的示例性实施方案,热力学循环的400的另一示例性实施方案。在一些方面,循环400可以与热力学循环100、200和/或300相似,且因此,参考图1-3可以最好地理解循环400,其中,相同的数字对应相同的元件,因此将不再次详细描述。热力学循环400可以包括工作流体回路410,其中将第一和第二蓄热器116、118组合成单一的蓄热器402或否则的话,用单一的蓄热器402替换。该蓄热器402可以是与本文所述的蓄热器116、118相似的类型,或可以是对本领域技术人员已知的另外类型的蓄热器或热交换器。
如所示,可以配置蓄热器402以当第一质量流m1进入第一热交换器102时将热转移给它,并且当第一质量流m1离开第一涡轮机112时接收来自它的热。蓄热器402也可以在第二质量流m2进入第二热交换器104时将热转移给它,并且当第二质量流m2离开第二涡轮机114时接收来自它的热。组合的质量流m1+m2流出蓄热器402,并至冷凝器124。
在另外的示例性实施方案中,可以将蓄热器402放大,如通过图4中所示的虚线延伸线所指示的,或否则的话,使其适合于接收进入和离开第三热交换器302的第一质量流m1。因此,可从蓄热器304提取另外的热能,并且导向第三热交换器302,以增加第一质量流m1的温度。
图5说明了根据本公开内容的热力学循环500的另一示例性实施方案。在一些方面,循环500可以与热力学循环100相似,和因此可以参考上面的图1最好地理解,其中相同的数字对应相同的元件,将不再描述。热力学循环500可以具有与图1的工作流体回路110基本上相似的工作流体回路510,但第一和第二泵120、122的设置不同。如图1中所示,每个平行循环具有一个独立的泵(分别地,泵120用于 高温循环和泵122用于低温循环)以在正常操作期间供给工作流体流。相反,图5中的热力学循环500使用主泵120,其可以由第二涡轮机114驱动,以同时为两个平行循环提供工作流体流。图5中的起动泵122只在热发动机的起动过程期间操作,因此在正常操作期间不需要马达驱动的泵。
图6说明根据本公开内容的热力学循环600的另一示例性实施方案。在一些方面,循环600可以与热力学循环300相似,且因此可以参考上面的图3最好地理解,其中相同的数字对应相同的元件,且将不再详细描述。热力学循环600可以具有与图3的工作流体回路310基本上相似的工作流体回路610,但添加了第三蓄热器602,其从从第二蓄热器118排出的组合的质量流m1+m2中提取另外的热能。因此,在接收从热源106转移的残余热之前,可以增加进入第三热交换器302的第一质量流m1的温度。
如所示,蓄热器116、118、602可以作为单独的热交换设备操作。然而,在另外的示例性实施方案中,可以将蓄热器116、118、602组合为单一的蓄热器,类似于上述参考图4描述的蓄热器406。
如由本文所述的每个示例性的热力学循环100-600(意思是循环100、200、300、400、500和600)所示,并入每个工作流体回路110-610(意思是回路110、210、310、410、510和610)中的平行热交换循环和设置,通过将动力涡轮机入口温度提高至在单一循环中不可达到的水平,使得来自给定的热源106的更多的动力(功率)产生,从而导致每个示例性循环100-600更高的热效率。经第二和第三热交换器104、302添加较低温度的热交换循环,使得从热源106回收更高部分的可获得的能量。此外,为了热效率的另外改善,可以优化每个单独的热交换循环的压力比。
在任何公开的示例性实施方案中可实施的另外的变化,包括但不限于,使用两级或多级泵120、122以优化涡轮机112、114的入口压力,用于任何特别对应的任一涡轮机112、114的入口温度。在另外的示例性实施方案中,可以例如通过使用在共享的动力涡轮机轴上的平 行的另外的涡轮机级将涡轮机112、114耦合在一起。本文预期另外的变化是,但不限于,使用在涡轮机驱动泵轴上平行的另外的涡轮机级、通过齿轮箱(gear box)耦合涡轮机、使用不同的蓄热器设置以优化总体效率,和使用往复式膨胀器和泵替代涡轮机组(turbomachinery)。也可以将第二涡轮机114的输出与发电机或由第一涡轮机112驱动的动力(功率)-生产设备连接,甚至可以将第一和第二涡轮机112、114整合成为单件的涡轮机组,例如使用在共有轴上的单独的叶片/叶片盘(disk)的多级涡轮机,或例如使用用于每个径流式涡轮机的单独小齿轮(pinion)驱动大齿轮的单独级的径流式涡轮机。也仍预期另外的示例性变化,其中将第一和/或第二涡轮机112、114耦合至主泵120和电动发电机(未示出)从而同时作为起动马达和发电机。
每个所述循环100-600可以在多种物理实施方案中实施,包括,但不限于固定的或整合的装备,或作为自含的设备例如轻便式废热发动机或“块装(skid)”。该示例性废热发动机块装可以设置每个工作流体回路110-610,和相关组件,例如涡轮机112、114,蓄热器116、118,冷凝器124,泵120、122,阀,工作流体供给和控制系统以及机械和电子控制可作为单一单元而合并。在2009年12月9日申请的共同未决的美国专利申请序列号12/631,412,名称为“Thermal Energy Cnversion Device”中描述和说明了示例性废热发动机块装,将其内容通过引入至与本公开内容一致的程度而并入本文。
本文公开的示例性实施方案还可以包括并入和使用质量管理系统(MMS),其连接到所述的热力学循环100-600或与所述的热力学循环100-600整合。可以提供MMS以通过向工作流体回路100-600中加入或移除质量(即工作流体)从而控制第一泵120的入口压力,从而提高循环100-600的效率。在一个示例性实施方案中,MMS与工作循环100-600半被动地操作并使用传感器以监测回路110-610的高压侧(从泵120出口至膨胀器116、118入口)和低压侧(从膨胀器112、114出口至泵120入口)的压力和温度。MMS也可以包括阀,罐加热器或另外的装置以促进工作流体进入或离开工作流体回路110-610,和用于储 存工作流体的质量控制罐。MMS的示例性实施方案在下列专利中说明和描述:共同未决的美国专利申请序列号12/631,412,12/631,400,和12/631,379,每个都在2009年12月4日申请;美国专利申请序列号12/880,428,2010年9月13日申请,和PCT申请号US2011/29486,2011年3月22日申请。将上述每个案例的内容通过引入至与本公开内容一致的程度而并入本文。
现参照图7和8,分别说明示例性质量管理系统700和800,其可与本文在一个或多个示例性实施方案中所述的热力学循环100-600结合使用。图7和8中所示的系统接入点A、B和C(图8仅显示点A和C)对应于图1-6中所示的系统接入点A、B和C。因此,MMS700和800每个可以与图1-6的热力学循环100-600在对应的系统接入点A、B和C流体地连接(如果适用的话)。该示例性的MMS800储存低温(低于环境温度)和从而低压的工作流体,且示例性的MMS700储存在环境温度或接近环境温度的工作流体。如上面所讨论的,工作流体可以是CO2,但也可以是另外的工作流体而不偏离本公开内容的范围。
在示例性MMS700的操作中,通过在接入点A经过第一阀704从(多个)工作流体回路110-610放入(tap)工作流体从而对工作流体储存罐702加压。当需要时,通过打开设置在储存罐702底部附近的第二阀706向(多个)工作流体回路110-610中加入另外的工作流体,以允许另外的工作流体流过设置在泵120(图1-6)上游的接入点C。在接入点C将工作流体加入到(多个)回路110-610可以用于提高第一泵120的入口压力。为了从(多个)工作流体回路110-610中提取流体,并因而降低第一泵120的入口压力,可以打开第三阀708,以允许冷的、加压的流体经过接入点B进入储存罐。尽管在每个应用中未必需要,但是MMS700还可包括传送泵710,配置其以从罐702移除工作流体并将它注射到(多个)工作流体回路110-610中。
图8的MMS800只使用两个系统接入点或交接点A和C。在控制级(例如,单元正常运行)不使用阀-控制接口A,且提供阀-控制接口A只为了用蒸气使(多个)工作流体回路110-610预加压,使得在填充期 间(多个)回路110-610的温度保持在最低阈值。可以包括蒸发器以利用环境的热将液相工作流体转换成近似环境温度蒸气-相的工作流体。没有蒸发器,在填充期间系统的温度可急剧地下降。蒸发器也提供回到储存罐702的蒸气以弥补提取所损失的液体体积,且因而担当压力建造器(builder)。在至少一个实施方案中,该蒸发器可以是电加热的或由次级流体加热。在操作中,当期望增加第一泵120(图1-6)的抽吸压力时,通过用在接入点C处或附近提供的传送泵802泵送它,从而可选择性地将工作流体加入到(多个)工作流体回路110-610中。当期望降低泵120的抽吸压力时,可以在接口C选择性地从系统中提取工作流体,并通过一个或多个阀804和806膨胀下降到储存罐702的相对低的储存压力。
在大多数情况下,阀804、806之后的膨胀后的流体将是两相(即,蒸气+液体)。为防止储存罐702中的压力超过其正常的操作限度,可以提供小的蒸气压缩制冷循环,包括蒸气压缩机808和附加的冷凝器810。在另外的实施方案中,冷凝器可以用作蒸发器,其中将冷凝器的水用作热源,而不是吸热器(heat sink)。可以配置制冷循环以降低工作流体的温度且充分地冷凝蒸气,以维持储存罐702的压力在其设计条件。可意识到,可将蒸气压缩制冷循环整合进MMS800内,或者可以是具有独立的制冷剂回路的独立的蒸气压缩循环。
含在储存罐702内的工作流体将趋向于分层,密度较高的工作流体在罐702的底部,而密度较低的工作流体在罐702顶部。工作流体可以是在液相中,蒸气相中或两者中,或超临界;如果工作流体同时在蒸气相和液相中,将存在将工作流体的一相与另一相分离的相边界,稠密的工作流体在储存罐702的底部。以这种方式,MMS700、800可以能向回路110-610传输储存罐702内最稠密的工作流体。
对于遍及工作流体回路110-610的工作流体环境和状态,包括温度、压力、流动方向和速率,和组件操作,例如泵120、122和涡轮机112、114,所有的各种所述的控制或改变可以通过通常在图7和图8中所示的控制系统712进行监测和/或控制。与本公开内容的实施方案 相容的示例性控制系统在2010年9月13日申请的共同未决的美国专利序列号12/880,428,名称为“Heat Engine and Heat to Electricity Systems and Methods withWorking Fluid Fill System”中描述和说明,如上所示,通过引用将其并入本文。
在一个示例性实施方案中,控制系统712可以包括一个或多个比例-积分-微分(PID)控制器作为控制回路反馈系统。在另一示例性实施方案中,控制系统712可以是任何微处理器-基系统,其能存储控制程序和执行控制程序以接收传感器输入,并根据预定的算法或表产生控制信号。例如,控制系统712可以是微处理器-基计算机,其运行存储在计算机-可读介质上的控制软件程序。可以配置该软件程序以接收来自不同的压力、温度、流率等的传感器输入。传感器位于遍及工作流体回路110-610,并从那里产生控制信号,其中配置控制信号以优化和/或选择性地控制回路110-610的操作。
每个MMS700、800可以通信地耦合到这样的控制系统712,使得本文所述的各种阀及另外的装置的控制是自动化或半自动化的,且对经过位于遍及回路110-610的多个传感器获得的系统性能数据做出反应,并且也对周围和环境条件做出反应。也就是说,控制系统712可以与MMS700、800的每个组件进行通信,并且配置其以控制它们的操作,以更有效地来完成(多个)热力学循环100-600的功能。例如,控制系统712可以与系统中的每个阀、泵、传感器等进行通信(通过电线,RF信号等),并配置以根据控制软件、算法、或另外的预定的控制机制从而控制每个组件的操作。这可以证明控制第一泵120入口处的工作流体的温度和压力,以通过降低工作流体的可压缩性积极地增加第一泵120的抽吸压力是有利的。这样做可以避免对第一泵120的损害,也增加了(多个)热力学循环100-600的总压力比,从而改善了效率和功率输出。
在一个或多个示例性实施方案中,可以证明维持泵120的抽吸压力高于泵120入口处工作流体的沸腾压力是有利的。一种控制(多个)工作流体回路110-610的低温侧中的工作流体压力的方法是通过控制 图7的储存罐702中工作流体的温度。这可以通过维持储存罐702的温度比泵120入口处的温度在更高水平来实现。为完成这个,MMS700可以包括在罐702内使用加热器和/或盘管714。可以配置加热器/盘管714以添加或移除罐702内的流体/蒸气的热。在一个示例性实施方案中,可以使用直接电加热控制储存罐702的温度。然而,在另外的示例性实施方案中,储存罐702的温度可以使用另外的设备控制,例如,但不限于,使用泵排出流体(其在高于泵入口温度的温度)的热交换器盘管,使用来自冷却器/冷凝器(也在高于泵入口温度的温度)的废冷却水的热交换器盘管,或它们的组合。
现参照图9和10,分别为急冷系统900和1000,也可以与任何上述的循环连接使用,以为工业过程的其它区域提供冷却,包括,但不限于,燃气涡轮机或其它吸气式发动机的入口空气的预冷却,从而提供更高的发动机功率输出。在图9和10中的系统接入点B和D或C和D对应于在图1-6中的系统接入点B、C和D。因此,在对应的系统接入点A、B、C和/或D(如果适用的话),每个冷却系统900、1000可以与图1-6中的一个或多个工作流体回路110-610流体地连接。
在图9的急冷系统900中,在系统接入点C处可以从(多个)工作流体回路110-610中提取部分工作流体。通过膨胀设备902降低该部分流体的压力,膨胀设备902可以是阀、孔板(orifice)或流体膨胀器例如涡轮机或正位移膨胀器。该膨胀过程降低工作流体的温度。然后在蒸发器热交换器904中将热加入工作流体,从而降低了外部工艺流体(例如,空气,水等)的温度。然后,通过使用压缩机906使工作流体压力再-增加,之后经过系统接入点D将它再引入到(多个)工作流体回路110-610中。
压缩机906可以是马达驱动或者是涡轮机-驱动,或是专用涡轮机或是加入到系统的主涡轮机的附加轮。在另外的示例性实施方案中,可将压缩机906与(多个)主工作流体回路110-610整合。仍在另外的示例性实施方案中,压缩机906可采用流体喷射器的形式,移动流体从系统接入点A供给,并排出至在冷凝器124(图1-6)的上游的系统接 入点D。
图10的急冷系统1000还可以包括压缩机1002,基本上与如上所述的压缩机906类似。压缩机1002采用流体喷射器的形式,移动流体经过接入点A(未示出,但对应于图1-6中的点A)从(多个)工作流体循环110-610供给,并经接入点D排出至(多个)循环110–610。在所示的示例性实施方案中,在膨胀设备1006中膨胀之前,经接入点B从(多个)回路110-610中提取工作流体,并通过热交换器1004预冷却,膨胀设备1006与上述的膨胀设备902相似。在一个示例性实施方案中,热交换器1004可以包括水-CO2或空气-CO2热交换器。可以意识到,加入的热交换器1004可以提供另外的冷却能力,在其上,具有如图9中所示的急冷系统900的能力。
本文使用的术语“上游”和“下游”意欲更清楚地描述本公开内容的各种示例性实施方案和配置。例如,“上游”通常的意思是朝向或逆着正常操作期间的工作流体的流动方向,而“下游”通常的意思是在正常操作期间,具有工作流体的流动方向或在工作流体的流动方向。
上面概述了数个实施方案的特征,使得本领域技术人员可以更好地理解本公开内容。那些本领域技术人员应意识到,他们可以容易地使用本公开内容,作为用于设计或修改其它工艺的基础和用于执行相同的目的和/或达到本文所介绍的实施方案的相同的优点的结构。本领域技术人员也应该认识到,这样的等效配置不偏离本公开内容的精神和范围,并且,它们可作出本发明的各种改变、替代和改动而不偏离本发明的精神和范围。

Claims (43)

1.一种将热能转换为功的系统,包括:
泵,配置其以使工作流体遍及工作流体回路循环,将工作流体在泵的下游分离成第一质量流和第二质量流,其中工作流体包括二氧化碳且在至少部分工作流体回路上工作流体处于超临界状态;
第一热交换器,与泵流体地连接并与热流体热连通,配置第一热交换器以接收第一质量流并将来自热流体的热转移到第一质量流;
第一涡轮机,与第一热交换器流体地连接并配置以使第一质量流膨胀;
第一蓄热器,与第一涡轮机流体地连接并配置以将来自从第一涡轮机排出的第一质量流的残余热能转移到导向第一热交换器的第一质量流;
第二热交换器,与泵流体地连接并与热流体热连通,配置第二热交换器以接收第二质量流并将来自热流体的热转移到第二质量流;和
第二涡轮机,与第二热交换器流体地连接并配置以使第二质量流膨胀。
2.权利要求1的系统,其中热流体是废热流并且操作和控制整个工作流体回路使得工作流体处于超临界状态。
3.权利要求1的系统,其中工作流体在工作流体回路的高压侧处于超临界状态,且在工作流体回路的低压侧处于亚临界状态。
4.权利要求1的系统,其中在泵的入口处工作流体处于超临界状态。
5.权利要求1的系统,其中第一和第二热交换器在热流体中串联设置。
6.权利要求1的系统,其中第一质量流与第二质量流平行循环。
7.权利要求1的系统,还包括第二蓄热器,其与第二涡轮机流体地连接并且配置以将来自从第二涡轮机排出的第二质量流的残余热能转移到导向第二热交换器的第二质量流。
8.权利要求1的系统,还包括第二蓄热器,其与第二涡轮机流体地连接并且配置以将来自组合的第一和第二质量流的残余热能转移到导向第一热交换器的第一质量流。
9.权利要求1的系统,其中第一涡轮机的入口压力与第二涡轮机的入口压力基本上相等。
10.权利要求9的系统,其中第一涡轮机的排出压力与第二涡轮机的排出压力不同。
11.权利要求1的系统,还包括质量管理系统,通过至少两个接入点可操作地连接到工作流体回路,配置质量管理系统以控制工作流体回路内的工作流体的量。
12.一种将热能转换为功的系统,包括:
泵,配置其以使工作流体遍及工作流体回路循环,将工作流体在泵的下游分离成第一质量流和第二质量流,其中工作流体包括二氧化碳且在至少部分工作流体回路上工作流体处于超临界状态;
第一热交换器,与泵流体地连接并与热流体热连通,配置第一热交换器以接收第一质量流并将来自热流体的热转移到第一质量流;
第一涡轮机,与第一热交换器流体地连接并配置以使第一质量流膨胀;
第一蓄热器,与第一涡轮机流体地连接并配置以将来自从第一涡轮机排出的第一质量流的残余热能转移到导向第一热交换器的第一质量流;
第二热交换器,与泵流体地连接并与热流体热连通,配置第二热交换器以接收第二质量流并将来自热流体的热转移到第二质量流;
第二涡轮机,与第二热交换器流体地连接并配置以使第二质量流膨胀,第二质量流从第二涡轮机排出并与第一质量流再-组合以产生组合的质量流;
第二蓄热器,与第二涡轮机流体地连接并配置以将来自组合的质量流的残余热能转移到导向第二热交换器的第二质量流;和
第三热交换器,与热流体热连通并设置在泵和第一热交换器之间,配置第三热交换器以在通过第一热交换器之前接收并转移热到第一质量流。
13.权利要求12的系统,其中热流体是废热流并且操作和控制整个工作流体回路使得工作流体处于超临界状态。
14.权利要求13的系统,其中工作流体在工作流体回路的高压侧处于超临界状态,且在工作流体回路的低压侧处于亚临界状态。
15.权利要求12的系统,其中在泵的入口处工作流体处于超临界状态。
16.权利要求12的系统,其中热流体是废热流,且第一、第二和第三热交换器在废热流中串联设置,并且第一质量流与第二质量流平行循环。
17.权利要求12的系统,其中第一和第二蓄热器包含单一蓄热器组件。
18.权利要求12的系统,还包括设置在泵和第三热交换器之间的第三蓄热器。
19.权利要求18的系统,其中在将第一质量流引入到第三热交换器之前,配置第三蓄热器以将来自从第二蓄热器排出的组合的质量流的残余热转移到第一质量流。
20.权利要求18的系统,其中第一、第二和第三蓄热器包含单一蓄热器组件。
21.权利要求20的系统,其中配置单一蓄热器组件以接收从第三热交换器排出的第一质量流,以在第一质量流通过第一热交换器之前,将来自组合的质量流的另外的残余热能转移到第一质量流。
22.权利要求12的系统,其中第一涡轮机的入口压力与第二涡轮机的入口压力基本上相等。
23.权利要求22的系统,其中第一涡轮机的排出压力与第二涡轮机的排出压力不同。
24.一种将热能转换为功的方法,包括:
用泵使工作流体遍及工作流体回路循环,其中工作流体包括二氧化碳且在至少部分工作流体回路上工作流体处于超临界状态;
将工作流体回路中的工作流体分离成第一质量流和第二质量流;
在第一热交换器中将来自热流体的热能转移到第一质量流,第一热交换器与热流体热连通;
在与第一热交换器流体地连接的第一涡轮机中使第一质量流膨胀;
在第一蓄热器中将来自从第一涡轮机排出的第一质量流的残余热能转移到导向第一热交换器的第一质量流,第一蓄热器与第一涡轮机流体地连接;
在第二热交换器中将来自热流体的热能转移到第二质量流,第二热交换器与热流体热连通;和
在与第二热交换器流体地连接的第二涡轮机中使第二质量流膨胀。
25.权利要求24的方法,还包括在第二蓄热器中将来自从第二涡轮机排出的第二质量流的残余热能转移到导向第二热交换器的第二质量流,第二蓄热器与第二涡轮机流体地连接。
26.权利要求25的方法,还包括在通过第一热交换器之前,在第三热交换器中将来自热流体的热能转移到第一质量流,第三热交换器与热流体热连通并且设置在泵和第一热交换器之间。
27.权利要求26的方法,还包括在将第一质量流引入到第三热交换器之前,在第三蓄热器中将来自从第二蓄热器排出的组合的第一和第二质量流的残余热转移到第一质量流,第三蓄热器设置在泵和第三热交换器之间。
28.权利要求24的方法,还包括在第二蓄热器中将来自组合的第一和第二质量流的残余热能转移到导向第一热交换器的第一质量流,第二蓄热器与第二涡轮机流体地连接。
29.权利要求3-11或14-23任一项的系统或权利要求24-28任一项的方法,其中热流体是废热流并且操作和控制整个工作流体回路使得工作流体处于超临界状态。
30.权利要求2、4-11、13或15-23任一项的系统或权利要求24-28任一项的方法,其中工作流体在工作流体回路的高压侧处于超临界状态,且在工作流体回路的低压侧处于亚临界状态。
31.权利要求2、3、5-11、13-14或16-23任一项的系统或权利要求24-28任一项的方法,其中在泵的入口处工作流体处于超临界状态。
32.权利要求2-4、6-15或17-23任一项的系统或权利要求24-28任一项的方法,其中第一和第二热交换器在热流体中串联设置。
33.权利要求2-6、7-15、或17-23任一项的系统或权利要求24-28任一项的方法,其中第一质量流与第二质量流平行循环。
34.权利要求2-6或9-11任一项的系统或权利要求24的方法,还包括第二蓄热器,其与第二涡轮机流体地连接,并且配置以将来自从第二涡轮机排出的第二质量流的残余热能转移到导向第二热交换器的第二质量流。
35.权利要求2-6或9-11任一项的系统或权利要求24的方法,还包括第二蓄热器,其与第二涡轮机流体地连接,并且配置以将来自组合的第一和第二质量流的残余热能转移到导向第一热交换器的第一质量流。
36.权利要求2-8、10、11、13-21或23任一项的系统或权利要求24-28任一项的方法,其中第一涡轮机的入口压力与第二涡轮机的入口压力基本上相等。
37.权利要求1-8或11-21任一项的系统或权利要求24-28任一项的方法,其中第一涡轮机的排出压力与第二涡轮机的排出压力不同。
38.权利要求2-10或12-23任一项的系统或权利要求24-28任一项的方法,还包括通过至少两个接入点与工作流体回路可操作地连接的质量管理系统,配置质量管理系统以控制工作流体回路内的工作流体的量。
39.权利要求13-15或17-23任一项的系统或权利要求24-27任一项的方法,其中第一、第二和第三热交换器在废热流体中串联设置,第一质量流与第二质量流平行循环。
40.权利要求7-8、13-16或18-23任一项的系统或权利要求25-28任一项的方法,其中第一和第二蓄热器包含单一蓄热器组件。
41.权利要求1-11、13-17、22或23任一项的系统或权利要求24、25或28任一项的方法,还包括设置在泵和第三热交换器之间的第三蓄热器。
42.权利要求20-23任一项的系统,其中配置第三蓄热器以在将第一质量流引入到第三热交换器之前,将来自从第二蓄热器排出的组合的质量流的残余热转移到第一质量流。
43.权利要求19、20、22或23任一项的系统,其中第一、第二和第三蓄热器包含单一蓄热器组件。
CN201180062759.7A 2010-11-29 2011-11-28 平行循环热发动机 Active CN103477035B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US41778910P 2010-11-29 2010-11-29
US61/417,789 2010-11-29
US13/212,631 2011-08-18
US13/212,631 US9284855B2 (en) 2010-11-29 2011-08-18 Parallel cycle heat engines
PCT/US2011/062198 WO2012074905A2 (en) 2010-11-29 2011-11-28 Parallel cycle heat engines

Publications (2)

Publication Number Publication Date
CN103477035A CN103477035A (zh) 2013-12-25
CN103477035B true CN103477035B (zh) 2016-08-10

Family

ID=46125717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180062759.7A Active CN103477035B (zh) 2010-11-29 2011-11-28 平行循环热发动机

Country Status (9)

Country Link
US (3) US8616001B2 (zh)
EP (2) EP2646657B1 (zh)
JP (1) JP6039572B2 (zh)
KR (2) KR101835915B1 (zh)
CN (1) CN103477035B (zh)
AU (1) AU2011336831C1 (zh)
BR (2) BR112013013387A2 (zh)
CA (2) CA2818816C (zh)
WO (2) WO2012074907A2 (zh)

Families Citing this family (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8739531B2 (en) * 2009-01-13 2014-06-03 Avl Powertrain Engineering, Inc. Hybrid power plant with waste heat recovery system
US8616323B1 (en) 2009-03-11 2013-12-31 Echogen Power Systems Hybrid power systems
WO2010121255A1 (en) 2009-04-17 2010-10-21 Echogen Power Systems System and method for managing thermal issues in gas turbine engines
WO2010151560A1 (en) 2009-06-22 2010-12-29 Echogen Power Systems Inc. System and method for managing thermal issues in one or more industrial processes
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US8869531B2 (en) * 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8096128B2 (en) 2009-09-17 2012-01-17 Echogen Power Systems Heat engine and heat to electricity systems and methods
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
IT1399878B1 (it) * 2010-05-13 2013-05-09 Turboden Srl Impianto orc ad alta temperatura ottimizzato
IT1402363B1 (it) * 2010-06-10 2013-09-04 Turboden Srl Impianto orc con sistema per migliorare lo scambio termico tra sorgente di fluido caldo e fluido di lavoro
US20120031096A1 (en) * 2010-08-09 2012-02-09 Uop Llc Low Grade Heat Recovery from Process Streams for Power Generation
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US9062898B2 (en) 2011-10-03 2015-06-23 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
DE102011119977A1 (de) * 2011-12-02 2013-06-06 Alena von Lavante Vorrichtung und Verfahren zur Nutzung der Abwärme einer Brennkraftmaschine, insbesondere zur Nutzung der Abwärme eines Fahrzeugmotors
ITFI20110262A1 (it) * 2011-12-06 2013-06-07 Nuovo Pignone Spa "heat recovery in carbon dioxide compression and compression and liquefaction systems"
US8887503B2 (en) * 2011-12-13 2014-11-18 Aerojet Rocketdyne of DE, Inc Recuperative supercritical carbon dioxide cycle
US9038391B2 (en) * 2012-03-24 2015-05-26 General Electric Company System and method for recovery of waste heat from dual heat sources
US9115603B2 (en) * 2012-07-24 2015-08-25 Electratherm, Inc. Multiple organic Rankine cycle system and method
KR20150143402A (ko) 2012-08-20 2015-12-23 에코진 파워 시스템스, 엘엘씨 직렬 구성의 터보 펌프와 시동 펌프를 갖는 초임계 작동 유체 회로
WO2014052927A1 (en) 2012-09-27 2014-04-03 Gigawatt Day Storage Systems, Inc. Systems and methods for energy storage and retrieval
US20140102098A1 (en) 2012-10-12 2014-04-17 Echogen Power Systems, Llc Bypass and throttle valves for a supercritical working fluid circuit
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
US20140109575A1 (en) * 2012-10-22 2014-04-24 Fluor Technologies Corporation Method for reducing flue gas carbon dioxide emissions
US9410451B2 (en) 2012-12-04 2016-08-09 General Electric Company Gas turbine engine with integrated bottoming cycle system
JP6179736B2 (ja) * 2013-01-16 2017-08-16 パナソニックIpマネジメント株式会社 ランキンサイクル装置
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
WO2014117074A1 (en) 2013-01-28 2014-07-31 Echogen Power Systems, L.L.C. Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
US10934895B2 (en) 2013-03-04 2021-03-02 Echogen Power Systems, Llc Heat engine systems with high net power supercritical carbon dioxide circuits
WO2014164620A1 (en) * 2013-03-11 2014-10-09 Echogen Power Systems, L.L.C. Pump and valve system for controlling a supercritical working fluid circuit in a heat engine system
US20160040557A1 (en) * 2013-03-13 2016-02-11 Echogen Power Systems, L.L.C. Charging pump system for supplying a working fluid to bearings in a supercritical working fluid circuit
WO2014159520A1 (en) * 2013-03-14 2014-10-02 Echogen Power Systems, L.L.C. Controlling turbopump thrust in a heat engine system
US9145795B2 (en) * 2013-05-30 2015-09-29 General Electric Company System and method of waste heat recovery
US9593597B2 (en) * 2013-05-30 2017-03-14 General Electric Company System and method of waste heat recovery
US9587520B2 (en) * 2013-05-30 2017-03-07 General Electric Company System and method of waste heat recovery
US9260982B2 (en) * 2013-05-30 2016-02-16 General Electric Company System and method of waste heat recovery
US9874112B2 (en) * 2013-09-05 2018-01-23 Echogen Power Systems, Llc Heat engine system having a selectively configurable working fluid circuit
WO2015047120A1 (en) 2013-09-25 2015-04-02 Siemens Aktiengesellschaft Arrangement and method for the utilization of waste heat
EP3008297B1 (en) 2013-09-25 2017-06-28 Siemens Aktiengesellschaft Arrangement and method for the utilization of waste heat
JP6217426B2 (ja) * 2014-02-07 2017-10-25 いすゞ自動車株式会社 廃熱回収システム
CN103806969B (zh) * 2014-03-13 2015-04-29 中冶赛迪工程技术股份有限公司 一种超临界co2工质循环发电系统
WO2015192024A1 (en) * 2014-06-13 2015-12-17 Echogen Power Systems, L.L.C. Systems and methods for controlling backpressure in a heat engine system having hydrostatic bearings
US10495098B2 (en) * 2014-06-13 2019-12-03 Echogen Power Systems Llc Systems and methods for balancing thrust loads in a heat engine system
WO2016039655A1 (en) 2014-09-08 2016-03-17 Siemens Aktiengesellschaft System and method for recovering waste heat energy
MX2021014962A (es) * 2014-10-21 2022-12-01 Bright Energy Storage Tech Llp Intercambio termico en caliente en concreto y tubos y almacenamiento de energia (txes) incluyendo tecnicas de control de gradientes de temperatura.
US10570777B2 (en) 2014-11-03 2020-02-25 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
US10436075B2 (en) * 2015-01-05 2019-10-08 General Electric Company Multi-pressure organic Rankine cycle
FR3032744B1 (fr) * 2015-02-13 2018-11-16 Univ Aix Marseille Dispositif pour la transmission d'energie cinetique d'un fluide moteur a un fluide recepteur
US9644502B2 (en) * 2015-04-09 2017-05-09 General Electric Company Regenerative thermodynamic power generation cycle systems, and methods for operating thereof
KR101719234B1 (ko) * 2015-05-04 2017-03-23 두산중공업 주식회사 초임계 이산화탄소 발전 시스템
EP3106645B1 (en) 2015-06-15 2018-08-15 Rolls-Royce Corporation Gas turbine engine driven by sco2 cycle with advanced heat rejection
EP3109433B1 (en) 2015-06-19 2018-08-15 Rolls-Royce Corporation Engine driven by sc02 cycle with independent shafts for combustion cycle elements and propulsion elements
ITUB20156041A1 (it) * 2015-06-25 2017-06-01 Nuovo Pignone Srl Sistema e metodo a ciclo semplice per il recupero di cascame termico
EP3121409B1 (en) 2015-07-20 2020-03-18 Rolls-Royce Corporation Sectioned gas turbine engine driven by sco2 cycle
US10227899B2 (en) * 2015-08-24 2019-03-12 Saudi Arabian Oil Company Organic rankine cycle based conversion of gas processing plant waste heat into power and cooling
DE102015217737A1 (de) * 2015-09-16 2017-03-16 Robert Bosch Gmbh Abwärmerückgewinnungssystem mit einem Arbeitsfluidkreislauf
KR101800081B1 (ko) * 2015-10-16 2017-12-20 두산중공업 주식회사 복수의 열원을 활용한 초임계 이산화탄소 발전 시스템
WO2017069457A1 (ko) * 2015-10-21 2017-04-27 두산중공업 주식회사 초임계 이산화탄소 발전 시스템
RU2657068C2 (ru) * 2015-11-13 2018-06-08 Общество с ограниченной ответственностью "Элген Технологии", ООО "Элген Технологии" Установка для выработки электрической энергии при утилизации теплоты дымовых и выхлопных газов
US9863266B2 (en) 2015-11-19 2018-01-09 Borgwarner Inc. Waste heat recovery system for a power source
JP6615358B2 (ja) 2015-12-22 2019-12-04 シーメンス エナジー インコーポレイテッド コンバインドサイクルパワープラントにおける煙突エネルギ制御
KR20170085851A (ko) * 2016-01-15 2017-07-25 두산중공업 주식회사 복수의 열원을 활용한 초임계 이산화탄소 발전 시스템
KR101939436B1 (ko) 2016-02-11 2019-04-10 두산중공업 주식회사 복수의 열원을 활용한 초임계 이산화탄소 발전 시스템
KR101882070B1 (ko) * 2016-02-11 2018-07-25 두산중공업 주식회사 복수의 열원을 활용한 초임계 이산화탄소 발전 시스템
ITUB20160955A1 (it) * 2016-02-22 2017-08-22 Nuovo Pignone Tecnologie Srl Ciclo in cascata di recupero di cascame termico e metodo
US9742196B1 (en) * 2016-02-24 2017-08-22 Doosan Fuel Cell America, Inc. Fuel cell power plant cooling network integrated with a thermal hydraulic engine
CN105781645B (zh) * 2016-03-30 2018-11-27 泰州市海星环保设备安装有限公司 一种垃圾输送装置
CN105839684B (zh) * 2016-03-30 2018-11-27 泰州市邦富环保科技有限公司 一种高性能推土装置
CN105822457A (zh) * 2016-03-30 2016-08-03 时建华 一种新型垃圾运输装置
CN105863876A (zh) * 2016-03-30 2016-08-17 时建华 一种具有干燥功能的石油运输装置
CN105857155B (zh) * 2016-03-30 2018-12-25 江苏海涛新能源科技有限公司 一种多间隔物流装置
KR102116815B1 (ko) * 2016-07-13 2020-06-01 한국기계연구원 초임계 사이클 시스템
CN107630728B (zh) * 2016-07-18 2020-11-13 西门子公司 Co变换反应系统、co变换反应余热回收装置及方法
KR20180035008A (ko) * 2016-09-28 2018-04-05 두산중공업 주식회사 하이브리드형 발전 시스템
KR102061275B1 (ko) * 2016-10-04 2019-12-31 두산중공업 주식회사 하이브리드형 발전 시스템
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US10436109B2 (en) 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
CN108952966B (zh) 2017-05-25 2023-08-18 斗山重工业建设有限公司 联合循环发电设备
KR101876129B1 (ko) * 2017-06-15 2018-07-06 두산중공업 주식회사 필터 자동 세척 장치 및 이를 이용한 필터 자동 세척 방법 및 이를 포함하는 초임계 유체 발전 시스템
JP6776190B2 (ja) * 2017-06-26 2020-10-28 株式会社神戸製鋼所 熱エネルギー回収装置及び熱エネルギー回収方法
KR102026327B1 (ko) * 2017-07-20 2019-09-30 두산중공업 주식회사 하이브리드 발전 시스템
KR102010145B1 (ko) * 2017-10-25 2019-10-23 두산중공업 주식회사 초임계 이산화탄소 발전 플랜트 및 그 제어방법
CA3085850A1 (en) * 2017-12-18 2019-06-27 Exergy International S.R.L. Process, plant and thermodynamic cycle for production of power from variable temperature heat sources
US10883388B2 (en) 2018-06-27 2021-01-05 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
EP3935277A4 (en) 2019-03-06 2023-04-05 Industrom Power, LLC COMPACT AXIAL TURBINE FOR HIGH-DENSITY WORKING FLUID
US11708766B2 (en) 2019-03-06 2023-07-25 Industrom Power LLC Intercooled cascade cycle waste heat recovery system
US11396828B2 (en) 2019-03-13 2022-07-26 Dylan M. Chase Heat and power cogeneration system
KR102153458B1 (ko) * 2019-04-10 2020-09-08 한국기계연구원 초임계 랭킨 사이클 시스템
CN111636935A (zh) * 2019-04-15 2020-09-08 李华玉 单工质蒸汽联合循环
CN111608756A (zh) * 2019-04-23 2020-09-01 李华玉 单工质蒸汽联合循环
CN111561367A (zh) * 2019-04-25 2020-08-21 李华玉 单工质蒸汽联合循环
CN111561368A (zh) * 2019-04-26 2020-08-21 李华玉 单工质蒸汽联合循环
CN115478920A (zh) * 2019-06-13 2022-12-16 李华玉 逆向单工质蒸汽联合循环
US11927116B2 (en) * 2019-10-28 2024-03-12 Peregrine Turbine Technologies, Llc Methods and systems for starting and stopping a closed-cycle turbomachine
EP4058659A1 (en) 2019-11-16 2022-09-21 Malta Inc. Pumped heat electric storage system
IT201900023364A1 (it) * 2019-12-10 2021-06-10 Turboden Spa Ciclo rankine organico ad alta efficienza con disaccoppiamento flessibile del calore
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11982228B2 (en) 2020-08-12 2024-05-14 Malta Inc. Pumped heat energy storage system with steam cycle
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11492964B2 (en) 2020-11-25 2022-11-08 Michael F. Keller Integrated supercritical CO2/multiple thermal cycles
US11629638B2 (en) 2020-12-09 2023-04-18 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11280322B1 (en) 2021-04-02 2022-03-22 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
CN115680805A (zh) * 2022-10-24 2023-02-03 大连海事大学 一种面向余热回收的基于超临界二氧化碳发电循环的组合系统构建方法
US20240142143A1 (en) * 2022-10-27 2024-05-02 Supercritical Storage Company, Inc. High-temperature, dual rail heat pump cycle for high performance at high-temperature lift and range

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830062A (en) * 1973-10-09 1974-08-20 Thermo Electron Corp Rankine cycle bottoming plant
GB2010974A (en) * 1977-12-05 1979-07-04 Fiat Spa Heat Recovery System
US4276747A (en) * 1978-11-30 1981-07-07 Fiat Societa Per Azioni Heat recovery system
WO2004009964A1 (en) * 2002-07-22 2004-01-29 Douglas Wilbert Paul Smith Method of converting energy
JP2007198200A (ja) * 2006-01-25 2007-08-09 Hitachi Ltd ガスタービンを用いたエネルギー供給システム、エネルギー供給方法、エネルギー供給システムの改造方法
CN102032070A (zh) * 2009-09-28 2011-04-27 通用电气公司 双再热兰金循环系统及其方法
CN102575532A (zh) * 2009-06-22 2012-07-11 艾克竣电力系统股份有限公司 用于在一个或多个工业过程中管理热问题的系统和方法

Family Cites Families (425)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2575478A (en) 1948-06-26 1951-11-20 Leon T Wilson Method and system for utilizing solar energy
US2634375A (en) 1949-11-07 1953-04-07 Guimbal Jean Claude Combined turbine and generator unit
US2691280A (en) 1952-08-04 1954-10-12 James A Albert Refrigeration system and drying means therefor
US3105748A (en) 1957-12-09 1963-10-01 Parkersburg Rig & Reel Co Method and system for drying gas and reconcentrating the drying absorbent
GB856985A (en) 1957-12-16 1960-12-21 Licencia Talalmanyokat Process and device for controlling an equipment for cooling electrical generators
US3095274A (en) 1958-07-01 1963-06-25 Air Prod & Chem Hydrogen liquefaction and conversion systems
US3277955A (en) 1961-11-01 1966-10-11 Heller Laszlo Control apparatus for air-cooled steam condensation systems
US3401277A (en) 1962-12-31 1968-09-10 United Aircraft Corp Two-phase fluid power generator with no moving parts
US3237403A (en) 1963-03-19 1966-03-01 Douglas Aircraft Co Inc Supercritical cycle heat engine
US3622767A (en) 1967-01-16 1971-11-23 Ibm Adaptive control system and method
GB1275753A (en) 1968-09-14 1972-05-24 Rolls Royce Improvements in or relating to gas turbine engine power plants
US3736745A (en) 1971-06-09 1973-06-05 H Karig Supercritical thermal power system using combustion gases for working fluid
US3772879A (en) 1971-08-04 1973-11-20 Energy Res Corp Heat engine
US3998058A (en) 1974-09-16 1976-12-21 Fast Load Control Inc. Method of effecting fast turbine valving for improvement of power system stability
US4029255A (en) 1972-04-26 1977-06-14 Westinghouse Electric Corporation System for operating a steam turbine with bumpless digital megawatt and impulse pressure control loop switching
US3791137A (en) 1972-05-15 1974-02-12 Secr Defence Fluidized bed powerplant with helium circuit, indirect heat exchange and compressed air bypass control
US3939328A (en) 1973-11-06 1976-02-17 Westinghouse Electric Corporation Control system with adaptive process controllers especially adapted for electric power plant operation
US3971211A (en) 1974-04-02 1976-07-27 Mcdonnell Douglas Corporation Thermodynamic cycles with supercritical CO2 cycle topping
AT369864B (de) 1974-08-14 1982-06-15 Waagner Biro Ag Dampfspeicheranlage
US3995689A (en) 1975-01-27 1976-12-07 The Marley Cooling Tower Company Air cooled atmospheric heat exchanger
US4009575A (en) 1975-05-12 1977-03-01 said Thomas L. Hartman, Jr. Multi-use absorption/regeneration power cycle
DE2632777C2 (de) 1975-07-24 1986-02-20 Gilli, Paul Viktor, Prof. Dipl.-Ing. Dr.techn., Graz Dampfkraftanlage mit Einrichtung zur Spitzenlastdeckung
SE409054B (sv) 1975-12-30 1979-07-23 Munters Ab Carl Anordning vid vermepump i vilken ett arbetsmedium vid en sluten process cirkulerar i en krets under olika tryck och temperatur
US4198827A (en) 1976-03-15 1980-04-22 Schoeppel Roger J Power cycles based upon cyclical hydriding and dehydriding of a material
US4030312A (en) 1976-04-07 1977-06-21 Shantzer-Wallin Corporation Heat pumps with solar heat source
US4049407A (en) 1976-08-18 1977-09-20 Bottum Edward W Solar assisted heat pump system
US4164849A (en) 1976-09-30 1979-08-21 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for thermal power generation
US4070870A (en) 1976-10-04 1978-01-31 Borg-Warner Corporation Heat pump assisted solar powered absorption system
GB1583648A (en) 1976-10-04 1981-01-28 Acres Consulting Services Compressed air power storage systems
US4183220A (en) 1976-10-08 1980-01-15 Shaw John B Positive displacement gas expansion engine with low temperature differential
US4257232A (en) 1976-11-26 1981-03-24 Bell Ealious D Calcium carbide power system
US4164848A (en) 1976-12-21 1979-08-21 Paul Viktor Gilli Method and apparatus for peak-load coverage and stop-gap reserve in steam power plants
US4099381A (en) 1977-07-07 1978-07-11 Rappoport Marc D Geothermal and solar integrated energy transport and conversion system
US4170435A (en) 1977-10-14 1979-10-09 Swearingen Judson S Thrust controlled rotary apparatus
US4208882A (en) 1977-12-15 1980-06-24 General Electric Company Start-up attemperator
US4236869A (en) 1977-12-27 1980-12-02 United Technologies Corporation Gas turbine engine having bleed apparatus with dynamic pressure recovery
US4182960A (en) 1978-05-30 1980-01-08 Reuyl John S Integrated residential and automotive energy system
US4221185A (en) 1979-01-22 1980-09-09 Ball Corporation Apparatus for applying lubricating materials to metallic substrates
US4233085A (en) 1979-03-21 1980-11-11 Photon Power, Inc. Solar panel module
US4248049A (en) 1979-07-09 1981-02-03 Hybrid Energy Systems, Inc. Temperature conditioning system suitable for use with a solar energy collection and storage apparatus or a low temperature energy source
US4287430A (en) 1980-01-18 1981-09-01 Foster Wheeler Energy Corporation Coordinated control system for an electric power plant
US4798056A (en) 1980-02-11 1989-01-17 Sigma Research, Inc. Direct expansion solar collector-heat pump system
JPS5825876B2 (ja) 1980-02-18 1983-05-30 株式会社日立製作所 軸推力平衡装置
US4336692A (en) 1980-04-16 1982-06-29 Atlantic Richfield Company Dual source heat pump
CA1152563A (en) 1980-04-28 1983-08-23 Max F. Anderson Closed loop power generating method and apparatus
US4347714A (en) 1980-07-25 1982-09-07 The Garrett Corporation Heat pump systems for residential use
US4347711A (en) 1980-07-25 1982-09-07 The Garrett Corporation Heat-actuated space conditioning unit with bottoming cycle
US4384568A (en) 1980-11-12 1983-05-24 Palmatier Everett P Solar heating system
US4372125A (en) 1980-12-22 1983-02-08 General Electric Company Turbine bypass desuperheater control system
US4773212A (en) 1981-04-01 1988-09-27 United Technologies Corporation Balancing the heat flow between components associated with a gas turbine engine
US4391101A (en) 1981-04-01 1983-07-05 General Electric Company Attemperator-deaerator condenser
JPS588956A (ja) 1981-07-10 1983-01-19 株式会社システム・ホ−ムズ ヒ−トポンプ式冷暖房装置
US4428190A (en) 1981-08-07 1984-01-31 Ormat Turbines, Ltd. Power plant utilizing multi-stage turbines
DE3137371C2 (de) * 1981-09-19 1984-06-20 Saarbergwerke AG, 6600 Saarbrücken Anlage zur Verringerung der An- und Abfahrverluste, zur Erhöhung der nutzbaren Leistung und zur Verbesserung der Regelfähigkeit eines Wärmekraftwerkes
US4455836A (en) 1981-09-25 1984-06-26 Westinghouse Electric Corp. Turbine high pressure bypass temperature control system and method
FI66234C (fi) 1981-10-13 1984-09-10 Jaakko Larjola Energiomvandlare
US4448033A (en) 1982-03-29 1984-05-15 Carrier Corporation Thermostat self-test apparatus and method
JPS58193051A (ja) 1982-05-04 1983-11-10 Mitsubishi Electric Corp 太陽熱集熱装置
US4450363A (en) 1982-05-07 1984-05-22 The Babcock & Wilcox Company Coordinated control technique and arrangement for steam power generating system
US4475353A (en) 1982-06-16 1984-10-09 The Puraq Company Serial absorption refrigeration process
US4439994A (en) 1982-07-06 1984-04-03 Hybrid Energy Systems, Inc. Three phase absorption systems and methods for refrigeration and heat pump cycles
US4439687A (en) 1982-07-09 1984-03-27 Uop Inc. Generator synchronization in power recovery units
US4433554A (en) 1982-07-16 1984-02-28 Institut Francais Du Petrole Process for producing cold and/or heat by use of an absorption cycle with carbon dioxide as working fluid
US4489563A (en) 1982-08-06 1984-12-25 Kalina Alexander Ifaevich Generation of energy
US4467609A (en) 1982-08-27 1984-08-28 Loomis Robert G Working fluids for electrical generating plants
US4467621A (en) 1982-09-22 1984-08-28 Brien Paul R O Fluid/vacuum chamber to remove heat and heat vapor from a refrigerant fluid
US4489562A (en) 1982-11-08 1984-12-25 Combustion Engineering, Inc. Method and apparatus for controlling a gasifier
US4498289A (en) 1982-12-27 1985-02-12 Ian Osgerby Carbon dioxide power cycle
US4555905A (en) 1983-01-26 1985-12-03 Mitsui Engineering & Shipbuilding Co., Ltd. Method of and system for utilizing thermal energy accumulator
JPS6040707A (ja) 1983-08-12 1985-03-04 Toshiba Corp 低沸点媒体サイクル発電装置
US4674297A (en) 1983-09-29 1987-06-23 Vobach Arnold R Chemically assisted mechanical refrigeration process
JPS6088806A (ja) 1983-10-21 1985-05-18 Mitsui Eng & Shipbuild Co Ltd 内燃機関の廃熱回収装置
US5228310A (en) 1984-05-17 1993-07-20 Vandenberg Leonard B Solar heat pump
US4578953A (en) 1984-07-16 1986-04-01 Ormat Systems Inc. Cascaded power plant using low and medium temperature source fluid
US4700543A (en) 1984-07-16 1987-10-20 Ormat Turbines (1965) Ltd. Cascaded power plant using low and medium temperature source fluid
US4589255A (en) 1984-10-25 1986-05-20 Westinghouse Electric Corp. Adaptive temperature control system for the supply of steam to a steam turbine
US4573321A (en) 1984-11-06 1986-03-04 Ecoenergy I, Ltd. Power generating cycle
US4697981A (en) 1984-12-13 1987-10-06 United Technologies Corporation Rotor thrust balancing
JPS61152914A (ja) 1984-12-27 1986-07-11 Toshiba Corp 火力発電プラントの起動方法
US4636578A (en) 1985-04-11 1987-01-13 Atlantic Richfield Company Photocell assembly
EP0220492B1 (en) 1985-09-25 1991-03-06 Hitachi, Ltd. Control system for variable speed hydraulic turbine generator apparatus
CH669241A5 (de) 1985-11-27 1989-02-28 Sulzer Ag Axialschub-ausgleichsvorrichtung fuer fluessigkeitspumpe.
US5050375A (en) 1985-12-26 1991-09-24 Dipac Associates Pressurized wet combustion at increased temperature
US4730977A (en) 1986-12-31 1988-03-15 General Electric Company Thrust bearing loading arrangement for gas turbine engines
US4765143A (en) 1987-02-04 1988-08-23 Cbi Research Corporation Power plant using CO2 as a working fluid
US4756162A (en) 1987-04-09 1988-07-12 Abraham Dayan Method of utilizing thermal energy
US4821514A (en) 1987-06-09 1989-04-18 Deere & Company Pressure flow compensating control circuit
US4813242A (en) 1987-11-17 1989-03-21 Wicks Frank E Efficient heater and air conditioner
US4867633A (en) 1988-02-18 1989-09-19 Sundstrand Corporation Centrifugal pump with hydraulic thrust balance and tandem axial seals
JPH01240705A (ja) 1988-03-18 1989-09-26 Toshiba Corp 給水ポンプタービン装置
US5903060A (en) 1988-07-14 1999-05-11 Norton; Peter Small heat and electricity generating plant
US5483797A (en) 1988-12-02 1996-01-16 Ormat Industries Ltd. Method of and apparatus for controlling the operation of a valve that regulates the flow of geothermal fluid
NL8901348A (nl) 1989-05-29 1990-12-17 Turboconsult Bv Werkwijze en inrichting voor het opwekken van electrische energie.
US4986071A (en) 1989-06-05 1991-01-22 Komatsu Dresser Company Fast response load sense control system
US5531073A (en) 1989-07-01 1996-07-02 Ormat Turbines (1965) Ltd Rankine cycle power plant utilizing organic working fluid
US5503222A (en) 1989-07-28 1996-04-02 Uop Carousel heat exchanger for sorption cooling process
US5000003A (en) 1989-08-28 1991-03-19 Wicks Frank E Combined cycle engine
US4995234A (en) 1989-10-02 1991-02-26 Chicago Bridge & Iron Technical Services Company Power generation from LNG
US5335510A (en) 1989-11-14 1994-08-09 Rocky Research Continuous constant pressure process for staging solid-vapor compounds
JP2641581B2 (ja) 1990-01-19 1997-08-13 東洋エンジニアリング株式会社 発電方法
US4993483A (en) 1990-01-22 1991-02-19 Charles Harris Geothermal heat transfer system
JP3222127B2 (ja) * 1990-03-12 2001-10-22 株式会社日立製作所 一軸型加圧流動床コンバインドプラント及びその運転方法
US5102295A (en) 1990-04-03 1992-04-07 General Electric Company Thrust force-compensating apparatus with improved hydraulic pressure-responsive balance mechanism
US5098194A (en) 1990-06-27 1992-03-24 Union Carbide Chemicals & Plastics Technology Corporation Semi-continuous method and apparatus for forming a heated and pressurized mixture of fluids in a predetermined proportion
US5104284A (en) 1990-12-17 1992-04-14 Dresser-Rand Company Thrust compensating apparatus
US5164020A (en) 1991-05-24 1992-11-17 Solarex Corporation Solar panel
DE4129518A1 (de) 1991-09-06 1993-03-11 Siemens Ag Kuehlung einer niederbruck-dampfturbine im ventilationsbetrieb
US5360057A (en) 1991-09-09 1994-11-01 Rocky Research Dual-temperature heat pump apparatus and system
US5176321A (en) 1991-11-12 1993-01-05 Illinois Tool Works Inc. Device for applying electrostatically charged lubricant
JP3119718B2 (ja) 1992-05-18 2000-12-25 月島機械株式会社 低圧発電方法とその装置
WO1993024585A1 (en) 1992-06-03 1993-12-09 Henkel Corporation Polyol ester lubricants for refrigerant heat transfer fluids
US5320482A (en) 1992-09-21 1994-06-14 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for reducing axial thrust in centrifugal pumps
US5358378A (en) 1992-11-17 1994-10-25 Holscher Donald J Multistage centrifugal compressor without seals and with axial thrust balance
US5291960A (en) 1992-11-30 1994-03-08 Ford Motor Company Hybrid electric vehicle regenerative braking energy recovery system
FR2698659B1 (fr) 1992-12-02 1995-01-13 Stein Industrie Procédé de récupération de chaleur en particulier pour cycles combinés appareillage pour la mise en Óoeuvre du procédé et installation de récupération de chaleur pour cycle combiné.
US6753948B2 (en) 1993-04-27 2004-06-22 Nikon Corporation Scanning exposure method and apparatus
US5488828A (en) 1993-05-14 1996-02-06 Brossard; Pierre Energy generating apparatus
JPH06331225A (ja) 1993-05-19 1994-11-29 Nippondenso Co Ltd 蒸気噴射式冷凍装置
US5440882A (en) 1993-11-03 1995-08-15 Exergy, Inc. Method and apparatus for converting heat from geothermal liquid and geothermal steam to electric power
US5392606A (en) 1994-02-22 1995-02-28 Martin Marietta Energy Systems, Inc. Self-contained small utility system
US5538564A (en) 1994-03-18 1996-07-23 Regents Of The University Of California Three dimensional amorphous silicon/microcrystalline silicon solar cells
US5444972A (en) 1994-04-12 1995-08-29 Rockwell International Corporation Solar-gas combined cycle electrical generating system
JPH0828805A (ja) 1994-07-19 1996-02-02 Toshiba Corp ボイラ給水装置及びその制御方法
US5572871A (en) * 1994-07-29 1996-11-12 Exergy, Inc. System and apparatus for conversion of thermal energy into mechanical and electrical power
US5542203A (en) 1994-08-05 1996-08-06 Addco Manufacturing, Inc. Mobile sign with solar panel
DE4429539C2 (de) 1994-08-19 2002-10-24 Alstom Verfahren zur Drehzahlregelung einer Gasturbine bei Lastabwurf
AUPM835894A0 (en) 1994-09-22 1994-10-13 Thermal Energy Accumulator Products Pty Ltd A temperature control system for liquids
US5634340A (en) 1994-10-14 1997-06-03 Dresser Rand Company Compressed gas energy storage system with cooling capability
US5605118A (en) * 1994-11-15 1997-02-25 Tampella Power Corporation Method and system for reheat temperature control
US5813215A (en) 1995-02-21 1998-09-29 Weisser; Arthur M. Combined cycle waste heat recovery system
US5904697A (en) 1995-02-24 1999-05-18 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US5600967A (en) 1995-04-24 1997-02-11 Meckler; Milton Refrigerant enhancer-absorbent concentrator and turbo-charged absorption chiller
US5649426A (en) 1995-04-27 1997-07-22 Exergy, Inc. Method and apparatus for implementing a thermodynamic cycle
US5676382A (en) 1995-06-06 1997-10-14 Freudenberg Nok General Partnership Mechanical face seal assembly including a gasket
US6170264B1 (en) 1997-09-22 2001-01-09 Clean Energy Systems, Inc. Hydrocarbon combustion power generation system with CO2 sequestration
US5953902A (en) 1995-08-03 1999-09-21 Siemens Aktiengesellschaft Control system for controlling the rotational speed of a turbine, and method for controlling the rotational speed of a turbine during load shedding
JPH09100702A (ja) 1995-10-06 1997-04-15 Sadajiro Sano 高圧排気による二酸化炭素発電方式
US5647221A (en) 1995-10-10 1997-07-15 The George Washington University Pressure exchanging ejector and refrigeration apparatus and method
US5588298A (en) 1995-10-20 1996-12-31 Exergy, Inc. Supplying heat to an externally fired power system
US5771700A (en) 1995-11-06 1998-06-30 Ecr Technologies, Inc. Heat pump apparatus and related methods providing enhanced refrigerant flow control
ATE225490T1 (de) 1995-11-10 2002-10-15 Univ Nottingham Rotierendes wärmeübertragungsgerät
JPH09209716A (ja) 1996-02-07 1997-08-12 Toshiba Corp 発電プラント
DE19615911A1 (de) 1996-04-22 1997-10-23 Asea Brown Boveri Verfahren zum Betrieb einer Kombianlage
US5973050A (en) 1996-07-01 1999-10-26 Integrated Cryoelectronic Inc. Composite thermoelectric material
US5789822A (en) 1996-08-12 1998-08-04 Revak Turbomachinery Services, Inc. Speed control system for a prime mover
US5899067A (en) 1996-08-21 1999-05-04 Hageman; Brian C. Hydraulic engine powered by introduction and removal of heat from a working fluid
US5874039A (en) 1997-09-22 1999-02-23 Borealis Technical Limited Low work function electrode
US5738164A (en) 1996-11-15 1998-04-14 Geohil Ag Arrangement for effecting an energy exchange between earth soil and an energy exchanger
US5862666A (en) 1996-12-23 1999-01-26 Pratt & Whitney Canada Inc. Turbine engine having improved thrust bearing load control
US5763544A (en) 1997-01-16 1998-06-09 Praxair Technology, Inc. Cryogenic cooling of exothermic reactor
US5941238A (en) 1997-02-25 1999-08-24 Ada Tracy Heat storage vessels for use with heat pumps and solar panels
JPH10270734A (ja) 1997-03-27 1998-10-09 Canon Inc 太陽電池モジュール
US5873260A (en) 1997-04-02 1999-02-23 Linhardt; Hans D. Refrigeration apparatus and method
WO2004027221A1 (en) 1997-04-02 2004-04-01 Electric Power Research Institute, Inc. Method and system for a thermodynamic process for producing usable energy
TW347861U (en) 1997-04-26 1998-12-11 Ind Tech Res Inst Compound-type solar energy water-heating/dehumidifying apparatus
US5918460A (en) 1997-05-05 1999-07-06 United Technologies Corporation Liquid oxygen gasifying system for rocket engines
JP2986426B2 (ja) * 1997-06-04 1999-12-06 株式会社日立製作所 水素燃焼タービンプラント
JPH1144202A (ja) * 1997-07-29 1999-02-16 Toshiba Corp コンバインドサイクル発電プラント
US7147071B2 (en) 2004-02-04 2006-12-12 Battelle Energy Alliance, Llc Thermal management systems and methods
DE19751055A1 (de) 1997-11-18 1999-05-20 Abb Patent Gmbh Gasgekühlter Turbogenerator
US6446465B1 (en) 1997-12-11 2002-09-10 Bhp Petroleum Pty, Ltd. Liquefaction process and apparatus
EP0924386B1 (de) 1997-12-23 2003-02-05 ABB Turbo Systems AG Verfahren und Vorrichtung zum berührungsfreien Abdichten eines zwischen einem Rotor und einem Stator ausgebildeten Trennspalts
US5946931A (en) 1998-02-25 1999-09-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Evaporative cooling membrane device
JPH11270352A (ja) 1998-03-24 1999-10-05 Mitsubishi Heavy Ind Ltd 吸気冷却型ガスタービン発電設備及び同発電設備を用いた複合発電プラント
US20020166324A1 (en) 1998-04-02 2002-11-14 Capstone Turbine Corporation Integrated turbine power generation system having low pressure supplemental catalytic reactor
US6065280A (en) 1998-04-08 2000-05-23 General Electric Co. Method of heating gas turbine fuel in a combined cycle power plant using multi-component flow mixtures
DE29806768U1 (de) 1998-04-15 1998-06-25 Feodor Burgmann Dichtungswerke GmbH & Co., 82515 Wolfratshausen Dynamisches Dichtungselement für eine Gleitringdichtungsanordnung
US6062815A (en) 1998-06-05 2000-05-16 Freudenberg-Nok General Partnership Unitized seal impeller thrust system
US6223846B1 (en) 1998-06-15 2001-05-01 Michael M. Schechter Vehicle operating method and system
ZA993917B (en) 1998-06-17 2000-01-10 Ramgen Power Systems Inc Ramjet engine for power generation.
WO2000000774A1 (fr) 1998-06-30 2000-01-06 Ebara Corporation Echangeur de chaleur, pompe a chaleur, deshumidificateur et procede de deshumidification
US6112547A (en) 1998-07-10 2000-09-05 Spauschus Associates, Inc. Reduced pressure carbon dioxide-based refrigeration system
US6173563B1 (en) 1998-07-13 2001-01-16 General Electric Company Modified bottoming cycle for cooling inlet air to a gas turbine combined cycle plant
US6233938B1 (en) 1998-07-14 2001-05-22 Helios Energy Technologies, Inc. Rankine cycle and working fluid therefor
US6041604A (en) 1998-07-14 2000-03-28 Helios Research Corporation Rankine cycle and working fluid therefor
US6282917B1 (en) 1998-07-16 2001-09-04 Stephen Mongan Heat exchange method and apparatus
US6808179B1 (en) 1998-07-31 2004-10-26 Concepts Eti, Inc. Turbomachinery seal
US6748733B2 (en) 1998-09-15 2004-06-15 Robert F. Tamaro System for waste heat augmentation in combined cycle plant through combustor gas diversion
US6432320B1 (en) 1998-11-02 2002-08-13 Patrick Bonsignore Refrigerant and heat transfer fluid additive
US6571548B1 (en) 1998-12-31 2003-06-03 Ormat Industries Ltd. Waste heat recovery in an organic energy converter using an intermediate liquid cycle
US6105368A (en) 1999-01-13 2000-08-22 Abb Alstom Power Inc. Blowdown recovery system in a Kalina cycle power generation system
DE19906087A1 (de) 1999-02-13 2000-08-17 Buderus Heiztechnik Gmbh Einrichtung zur Funktionsprüfung einer Solaranlage
US6058930A (en) 1999-04-21 2000-05-09 Shingleton; Jefferson Solar collector and tracker arrangement
US6129507A (en) 1999-04-30 2000-10-10 Technology Commercialization Corporation Method and device for reducing axial thrust in rotary machines and a centrifugal pump using same
US6202782B1 (en) 1999-05-03 2001-03-20 Takefumi Hatanaka Vehicle driving method and hybrid vehicle propulsion system
AUPQ047599A0 (en) 1999-05-20 1999-06-10 Thermal Energy Accumulator Products Pty Ltd A semi self sustaining thermo-volumetric motor
US6082110A (en) 1999-06-29 2000-07-04 Rosenblatt; Joel H. Auto-reheat turbine system
US6295818B1 (en) 1999-06-29 2001-10-02 Powerlight Corporation PV-thermal solar power assembly
US6668554B1 (en) 1999-09-10 2003-12-30 The Regents Of The University Of California Geothermal energy production with supercritical fluids
US7249588B2 (en) 1999-10-18 2007-07-31 Ford Global Technologies, Llc Speed control method
US6299690B1 (en) 1999-11-18 2001-10-09 National Research Council Of Canada Die wall lubrication method and apparatus
WO2001044658A1 (en) 1999-12-17 2001-06-21 The Ohio State University Heat engine
JP2001193419A (ja) 2000-01-11 2001-07-17 Yutaka Maeda 複合発電システム及びその装置
US6921518B2 (en) 2000-01-25 2005-07-26 Meggitt (Uk) Limited Chemical reactor
US7033553B2 (en) 2000-01-25 2006-04-25 Meggitt (Uk) Limited Chemical reactor
US7022294B2 (en) 2000-01-25 2006-04-04 Meggitt (Uk) Limited Compact reactor
US6947432B2 (en) 2000-03-15 2005-09-20 At&T Corp. H.323 back-end services for intra-zone and inter-zone mobility management
GB0007917D0 (en) 2000-03-31 2000-05-17 Npower An engine
GB2361662B (en) 2000-04-26 2004-08-04 Matthew James Lewis-Aburn A method of manufacturing a moulded article and a product of the method
US6484490B1 (en) 2000-05-09 2002-11-26 Ingersoll-Rand Energy Systems Corp. Gas turbine system and method
US6282900B1 (en) 2000-06-27 2001-09-04 Ealious D. Bell Calcium carbide power system with waste energy recovery
SE518504C2 (sv) 2000-07-10 2002-10-15 Evol Ingenjoers Ab Fa Förfarande och system för kraftproduktion, samt anordnigar för eftermontering i system för kraftproduktion
US6463730B1 (en) 2000-07-12 2002-10-15 Honeywell Power Systems Inc. Valve control logic for gas turbine recuperator
US6960839B2 (en) 2000-07-17 2005-11-01 Ormat Technologies, Inc. Method of and apparatus for producing power from a heat source
AU2001286433A1 (en) 2000-08-11 2002-02-25 Nisource Energy Technologies Energy management system and methods for the optimization of distributed generation
US6657849B1 (en) 2000-08-24 2003-12-02 Oak-Mitsui, Inc. Formation of an embedded capacitor plane using a thin dielectric
US6393851B1 (en) 2000-09-14 2002-05-28 Xdx, Llc Vapor compression system
JP2002097965A (ja) 2000-09-21 2002-04-05 Mitsui Eng & Shipbuild Co Ltd 冷熱利用発電システム
DE10052993A1 (de) 2000-10-18 2002-05-02 Doekowa Ges Zur Entwicklung De Verfahren und Vorrichtung zur Umwandlung von thermischer Energie in mechanische Energie
AU2002214858A1 (en) 2000-10-27 2002-05-06 Questair Technologies, Inc. Systems and processes for providing hydrogen to fuel cells
US6539720B2 (en) 2000-11-06 2003-04-01 Capstone Turbine Corporation Generated system bottoming cycle
US6539728B2 (en) 2000-12-04 2003-04-01 Amos Korin Hybrid heat pump
US6739142B2 (en) 2000-12-04 2004-05-25 Amos Korin Membrane desiccation heat pump
US6526765B2 (en) 2000-12-22 2003-03-04 Carrier Corporation Pre-start bearing lubrication system employing an accumulator
US6715294B2 (en) 2001-01-24 2004-04-06 Drs Power Technology, Inc. Combined open cycle system for thermal energy conversion
WO2003004944A2 (en) 2001-01-30 2003-01-16 Materials And Electrochemical Research (Mer) Corporation Nano carbon materials for enhancing thermal transfer in fluids
US6810335B2 (en) 2001-03-12 2004-10-26 C.E. Electronics, Inc. Qualifier
WO2002090747A2 (en) 2001-05-07 2002-11-14 Battelle Memorial Institute Heat energy utilization system
US6374630B1 (en) 2001-05-09 2002-04-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon dioxide absorption heat pump
US6434955B1 (en) 2001-08-07 2002-08-20 The National University Of Singapore Electro-adsorption chiller: a miniaturized cooling cycle with applications from microelectronics to conventional air-conditioning
US6598397B2 (en) 2001-08-10 2003-07-29 Energetix Micropower Limited Integrated micro combined heat and power system
US20030213246A1 (en) 2002-05-15 2003-11-20 Coll John Gordon Process and device for controlling the thermal and electrical output of integrated micro combined heat and power generation systems
US20030061823A1 (en) 2001-09-25 2003-04-03 Alden Ray M. Deep cycle heating and cooling apparatus and process
US6734585B2 (en) 2001-11-16 2004-05-11 Honeywell International, Inc. Rotor end caps and a method of cooling a high speed generator
US7441589B2 (en) 2001-11-30 2008-10-28 Cooling Technologies, Inc. Absorption heat-transfer system
US6581384B1 (en) 2001-12-10 2003-06-24 Dwayne M. Benson Cooling and heating apparatus and process utilizing waste heat and method of control
US6684625B2 (en) 2002-01-22 2004-02-03 Hy Pat Corporation Hybrid rocket motor using a turbopump to pressurize a liquid propellant constituent
US6799892B2 (en) 2002-01-23 2004-10-05 Seagate Technology Llc Hybrid spindle bearing
US20030221438A1 (en) 2002-02-19 2003-12-04 Rane Milind V. Energy efficient sorption processes and systems
US6981377B2 (en) 2002-02-25 2006-01-03 Outfitter Energy Inc System and method for generation of electricity and power from waste heat and solar sources
US20050227187A1 (en) 2002-03-04 2005-10-13 Supercritical Systems Inc. Ionic fluid in supercritical fluid for semiconductor processing
WO2003076781A1 (de) 2002-03-14 2003-09-18 Alstom Technology Ltd Krafterzeugungsanlage
US6662569B2 (en) 2002-03-27 2003-12-16 Samuel M. Sami Method and apparatus for using magnetic fields for enhancing heat pump and refrigeration equipment performance
CA2382382A1 (fr) 2002-04-16 2003-10-16 Universite De Sherbrooke Moteur rotatif continu a combustion induite par onde de choc
US7735325B2 (en) 2002-04-16 2010-06-15 Research Sciences, Llc Power generation methods and systems
EP1516424A2 (en) 2002-06-18 2005-03-23 Ingersoll-Rand Energy Systems Corporation Microturbine engine system
US7464551B2 (en) 2002-07-04 2008-12-16 Alstom Technology Ltd. Method for operation of a power generation plant
WO2004009965A1 (en) 2002-07-22 2004-01-29 Stinger Daniel H Cascading closed loop cycle power generation
US6857268B2 (en) 2002-07-22 2005-02-22 Wow Energy, Inc. Cascading closed loop cycle (CCLC)
GB0217332D0 (en) 2002-07-25 2002-09-04 Univ Warwick Thermal compressive device
US7253486B2 (en) 2002-07-31 2007-08-07 Freescale Semiconductor, Inc. Field plate transistor with reduced field plate resistance
US6644062B1 (en) 2002-10-15 2003-11-11 Energent Corporation Transcritical turbine and method of operation
US6796123B2 (en) 2002-11-01 2004-09-28 George Lasker Uncoupled, thermal-compressor, gas-turbine engine
US20060060333A1 (en) 2002-11-05 2006-03-23 Lalit Chordia Methods and apparatuses for electronics cooling
US6892522B2 (en) 2002-11-13 2005-05-17 Carrier Corporation Combined rankine and vapor compression cycles
US8366883B2 (en) 2002-11-13 2013-02-05 Deka Products Limited Partnership Pressurized vapor cycle liquid distillation
US6624127B1 (en) 2002-11-15 2003-09-23 Intel Corporation Highly polar cleans for removal of residues from semiconductor structures
US7560160B2 (en) 2002-11-25 2009-07-14 Materials Modification, Inc. Multifunctional particulate material, fluid, and composition
US20040108096A1 (en) 2002-11-27 2004-06-10 Janssen Terrance Ernest Geothermal loopless exchanger
US6751959B1 (en) 2002-12-09 2004-06-22 Tennessee Valley Authority Simple and compact low-temperature power cycle
US6735948B1 (en) 2002-12-16 2004-05-18 Icalox, Inc. Dual pressure geothermal system
US7234314B1 (en) 2003-01-14 2007-06-26 Earth To Air Systems, Llc Geothermal heating and cooling system with solar heating
CA2514073C (en) 2003-01-22 2016-07-05 Vast Power Systems Inc. Thermodynamic cycles using thermal diluent
US6769256B1 (en) 2003-02-03 2004-08-03 Kalex, Inc. Power cycle and system for utilizing moderate and low temperature heat sources
CA2514280C (en) 2003-02-03 2010-06-29 Alexander I. Kalina Power cycle and system for utilizing moderate and low temperature heat sources
JP2004239250A (ja) 2003-02-05 2004-08-26 Yoshisuke Takiguchi 二酸化炭素の閉鎖循環式発電機構
US20030167769A1 (en) * 2003-03-31 2003-09-11 Desikan Bharathan Mixed working fluid power system with incremental vapor generation
US7124587B1 (en) 2003-04-15 2006-10-24 Johnathan W. Linney Heat exchange system
US6962054B1 (en) 2003-04-15 2005-11-08 Johnathan W. Linney Method for operating a heat exchanger in a power plant
US20040211182A1 (en) 2003-04-24 2004-10-28 Gould Len Charles Low cost heat engine which may be powered by heat from a phase change thermal storage material
JP2004332626A (ja) 2003-05-08 2004-11-25 Jio Service:Kk 発電装置及び発電方法
US7305829B2 (en) 2003-05-09 2007-12-11 Recurrent Engineering, Llc Method and apparatus for acquiring heat from multiple heat sources
US6986251B2 (en) 2003-06-17 2006-01-17 Utc Power, Llc Organic rankine cycle system for use with a reciprocating engine
EP1637763B1 (en) 2003-06-26 2011-11-09 Bosch Corporation Unitized spring device and master cylinder including the same
US6964168B1 (en) 2003-07-09 2005-11-15 Tas Ltd. Advanced heat recovery and energy conversion systems for power generation and pollution emissions reduction, and methods of using same
JP4277608B2 (ja) 2003-07-10 2009-06-10 株式会社日本自動車部品総合研究所 ランキンサイクル
CN101335473B (zh) 2003-07-24 2011-04-27 株式会社日立制作所 发电机
CA2474959C (en) 2003-08-07 2009-11-10 Infineum International Limited A lubricating oil composition
JP4044012B2 (ja) 2003-08-29 2008-02-06 シャープ株式会社 静電吸引型流体吐出装置
US6918254B2 (en) 2003-10-01 2005-07-19 The Aerospace Corporation Superheater capillary two-phase thermodynamic power conversion cycle system
JP4982083B2 (ja) 2003-10-10 2012-07-25 出光興産株式会社 潤滑油
US7300468B2 (en) 2003-10-31 2007-11-27 Whirlpool Patents Company Multifunctioning method utilizing a two phase non-aqueous extraction process
US7767903B2 (en) 2003-11-10 2010-08-03 Marshall Robert A System and method for thermal to electric conversion
US7279800B2 (en) 2003-11-10 2007-10-09 Bassett Terry E Waste oil electrical generation systems
US7048782B1 (en) 2003-11-21 2006-05-23 Uop Llc Apparatus and process for power recovery
US6904353B1 (en) 2003-12-18 2005-06-07 Honeywell International, Inc. Method and system for sliding mode control of a turbocharger
US7036315B2 (en) 2003-12-19 2006-05-02 United Technologies Corporation Apparatus and method for detecting low charge of working fluid in a waste heat recovery system
US7096679B2 (en) 2003-12-23 2006-08-29 Tecumseh Products Company Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device
US7423164B2 (en) 2003-12-31 2008-09-09 Ut-Battelle, Llc Synthesis of ionic liquids
US7227278B2 (en) 2004-01-21 2007-06-05 Nextek Power Systems Inc. Multiple bi-directional input/output power control system
JP4521202B2 (ja) 2004-02-24 2010-08-11 株式会社東芝 蒸気タービン発電プラント
US7955738B2 (en) 2004-03-05 2011-06-07 Honeywell International, Inc. Polymer ionic electrolytes
JP4343738B2 (ja) 2004-03-05 2009-10-14 株式会社Ihi バイナリーサイクル発電方法及び装置
US7171812B2 (en) 2004-03-15 2007-02-06 Powerstreams, Inc. Electric generation facility and method employing solar technology
WO2005100754A2 (en) 2004-04-16 2005-10-27 Clean Energy Systems, Inc. Zero emissions closed rankine cycle power system
US6968690B2 (en) 2004-04-23 2005-11-29 Kalex, Llc Power system and apparatus for utilizing waste heat
US7200996B2 (en) 2004-05-06 2007-04-10 United Technologies Corporation Startup and control methods for an ORC bottoming plant
US7516619B2 (en) 2004-07-19 2009-04-14 Recurrent Engineering, Llc Efficient conversion of heat to useful energy
JP4495536B2 (ja) 2004-07-23 2010-07-07 サンデン株式会社 ランキンサイクル発電装置
DE102004039164A1 (de) 2004-08-11 2006-03-02 Alstom Technology Ltd Verfahren zur Erzeugung von Energie in einer eine Gasturbine umfassenden Energieerzeugungsanlage sowie Energieerzeugungsanlage zur Durchführung des Verfahrens
US7971449B2 (en) 2004-08-14 2011-07-05 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Heat-activated heat-pump systems including integrated expander/compressor and regenerator
CN101027524B (zh) 2004-08-31 2010-06-09 国立大学法人东京工业大学 阳光聚集反射器和太阳能利用系统
US7194863B2 (en) 2004-09-01 2007-03-27 Honeywell International, Inc. Turbine speed control system and method
US7047744B1 (en) 2004-09-16 2006-05-23 Robertson Stuart J Dynamic heat sink engine
US7347049B2 (en) 2004-10-19 2008-03-25 General Electric Company Method and system for thermochemical heat energy storage and recovery
US7458218B2 (en) 2004-11-08 2008-12-02 Kalex, Llc Cascade power system
US7469542B2 (en) 2004-11-08 2008-12-30 Kalex, Llc Cascade power system
US7013205B1 (en) 2004-11-22 2006-03-14 International Business Machines Corporation System and method for minimizing energy consumption in hybrid vehicles
US7665304B2 (en) 2004-11-30 2010-02-23 Carrier Corporation Rankine cycle device having multiple turbo-generators
US20060112693A1 (en) 2004-11-30 2006-06-01 Sundel Timothy N Method and apparatus for power generation using waste heat
FR2879720B1 (fr) * 2004-12-17 2007-04-06 Snecma Moteurs Sa Systeme de compression-evaporation pour gaz liquefie
JP4543920B2 (ja) 2004-12-22 2010-09-15 株式会社デンソー 熱機関の廃熱利用装置
US7313926B2 (en) 2005-01-18 2008-01-01 Rexorce Thermionics, Inc. High efficiency absorption heat pump and methods of use
US20070161095A1 (en) 2005-01-18 2007-07-12 Gurin Michael H Biomass Fuel Synthesis Methods for Increased Energy Efficiency
US7174715B2 (en) 2005-02-02 2007-02-13 Siemens Power Generation, Inc. Hot to cold steam transformer for turbine systems
US7021060B1 (en) 2005-03-01 2006-04-04 Kaley, Llc Power cycle and system for utilizing moderate temperature heat sources
US7507274B2 (en) 2005-03-02 2009-03-24 Velocys, Inc. Separation process using microchannel technology
JP4493531B2 (ja) 2005-03-25 2010-06-30 株式会社デンソー 膨張機付き流体ポンプおよびそれを用いたランキンサイクル
US20060225459A1 (en) 2005-04-08 2006-10-12 Visteon Global Technologies, Inc. Accumulator for an air conditioning system
US7575053B2 (en) 2005-04-22 2009-08-18 Shell Oil Company Low temperature monitoring system for subsurface barriers
US7690202B2 (en) 2005-05-16 2010-04-06 General Electric Company Mobile gas turbine engine and generator assembly
US7765823B2 (en) 2005-05-18 2010-08-03 E.I. Du Pont De Nemours And Company Hybrid vapor compression-absorption cycle
WO2006137957A1 (en) 2005-06-13 2006-12-28 Gurin Michael H Nano-ionic liquids and methods of use
KR20080019268A (ko) 2005-06-16 2008-03-03 유티씨 파워 코포레이션 공통 부하를 구동시키는 엔진에 기계적으로 그리고열적으로 결합되는 유기 랭킨 사이클
US7276973B2 (en) 2005-06-29 2007-10-02 Skyworks Solutions, Inc. Automatic bias control circuit for linear power amplifiers
BRPI0502759B1 (pt) 2005-06-30 2014-02-25 óleo lubrificante e composição lubrificante para uma máquina de refrigeração
US8099198B2 (en) 2005-07-25 2012-01-17 Echogen Power Systems, Inc. Hybrid power generation and energy storage system
JP4561518B2 (ja) 2005-07-27 2010-10-13 株式会社日立製作所 交流励磁同期発電機を用いた発電装置とその制御方法。
JP2007040593A (ja) 2005-08-02 2007-02-15 Kansai Electric Power Co Inc:The ハイブリッドシステム
US7685824B2 (en) 2005-09-09 2010-03-30 The Regents Of The University Of Michigan Rotary ramjet turbo-generator
US7654354B1 (en) 2005-09-10 2010-02-02 Gemini Energy Technologies, Inc. System and method for providing a launch assist system
US7458217B2 (en) 2005-09-15 2008-12-02 Kalex, Llc System and method for utilization of waste heat from internal combustion engines
US7197876B1 (en) 2005-09-28 2007-04-03 Kalex, Llc System and apparatus for power system utilizing wide temperature range heat sources
US7287381B1 (en) 2005-10-05 2007-10-30 Modular Energy Solutions, Ltd. Power recovery and energy conversion systems and methods of using same
US7827791B2 (en) 2005-10-05 2010-11-09 Tas, Ltd. Advanced power recovery and energy conversion systems and methods of using same
US20070163261A1 (en) 2005-11-08 2007-07-19 Mev Technology, Inc. Dual thermodynamic cycle cryogenically fueled systems
US7621133B2 (en) 2005-11-18 2009-11-24 General Electric Company Methods and apparatus for starting up combined cycle power systems
US20070130952A1 (en) 2005-12-08 2007-06-14 Siemens Power Generation, Inc. Exhaust heat augmentation in a combined cycle power plant
JP4857766B2 (ja) 2005-12-28 2012-01-18 株式会社日立プラントテクノロジー 遠心圧縮機およびそれに用いるドライガスシールシステム
US7900450B2 (en) 2005-12-29 2011-03-08 Echogen Power Systems, Inc. Thermodynamic power conversion cycle and methods of use
US7950243B2 (en) 2006-01-16 2011-05-31 Gurin Michael H Carbon dioxide as fuel for power generation and sequestration system
US7770376B1 (en) 2006-01-21 2010-08-10 Florida Turbine Technologies, Inc. Dual heat exchanger power cycle
CN100425925C (zh) * 2006-01-23 2008-10-15 杜培俭 利用天然工质以及太阳能或废热的发电、空调及供暖装置
US20070227472A1 (en) 2006-03-23 2007-10-04 Denso Corporation Waste heat collecting system having expansion device
EP2002010A2 (en) 2006-03-25 2008-12-17 Llc Altervia Energy Biomass fuel synthesis methods for incresed energy efficiency
US7665291B2 (en) 2006-04-04 2010-02-23 General Electric Company Method and system for heat recovery from dirty gaseous fuel in gasification power plants
US7685821B2 (en) 2006-04-05 2010-03-30 Kalina Alexander I System and process for base load power generation
US7600394B2 (en) * 2006-04-05 2009-10-13 Kalex, Llc System and apparatus for complete condensation of multi-component working fluids
EP2010751B1 (en) 2006-04-21 2018-12-12 Shell International Research Maatschappij B.V. Temperature limited heaters using phase transformation of ferromagnetic material
US7549465B2 (en) 2006-04-25 2009-06-23 Lennox International Inc. Heat exchangers based on non-circular tubes with tube-endplate interface for joining tubes of disparate cross-sections
WO2007131281A1 (en) 2006-05-15 2007-11-22 Newcastle Innovation Limited A method and system for generating power from a heat source
DE102006035272B4 (de) 2006-07-31 2008-04-10 Technikum Corporation, EVH GmbH Verfahren und Vorrichtung zur Nutzung von Niedertemperaturwärme zur Stromerzeugung
US7503184B2 (en) 2006-08-11 2009-03-17 Southwest Gas Corporation Gas engine driven heat pump system with integrated heat recovery and energy saving subsystems
EP2057353A1 (en) 2006-08-25 2009-05-13 Commonwealth Scientific and Industrial Research Organisation A heat engine system
US7841179B2 (en) * 2006-08-31 2010-11-30 Kalex, Llc Power system and apparatus utilizing intermediate temperature waste heat
US7870717B2 (en) 2006-09-14 2011-01-18 Honeywell International Inc. Advanced hydrogen auxiliary power unit
GB0618867D0 (en) 2006-09-25 2006-11-01 Univ Sussex The Vehicle power supply system
WO2008039725A2 (en) 2006-09-25 2008-04-03 Rexorce Thermionics, Inc. Hybrid power generation and energy storage system
EP2076678B1 (en) 2006-10-04 2018-07-18 Energy Recovery, Inc. Rotary pressure transfer device
US7540324B2 (en) 2006-10-20 2009-06-02 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
KR100766101B1 (ko) 2006-10-23 2007-10-12 경상대학교산학협력단 저온 폐열의 활용을 위한 냉매 사용 터빈발전장치
US7685820B2 (en) 2006-12-08 2010-03-30 United Technologies Corporation Supercritical CO2 turbine for use in solar power plants
US20080163625A1 (en) 2007-01-10 2008-07-10 O'brien Kevin M Apparatus and method for producing sustainable power and heat
US7775758B2 (en) 2007-02-14 2010-08-17 Pratt & Whitney Canada Corp. Impeller rear cavity thrust adjustor
DE102007009503B4 (de) 2007-02-25 2009-08-27 Deutsche Energie Holding Gmbh Mehrstufiger ORC-Kreislauf mit Zwischenenthitzung
EP1998013A3 (en) 2007-04-16 2009-05-06 Turboden S.r.l. Apparatus for generating electric energy using high temperature fumes
US8839622B2 (en) 2007-04-16 2014-09-23 General Electric Company Fluid flow in a fluid expansion system
US7841306B2 (en) 2007-04-16 2010-11-30 Calnetix Power Solutions, Inc. Recovering heat energy
US8049460B2 (en) 2007-07-18 2011-11-01 Tesla Motors, Inc. Voltage dividing vehicle heater system and method
US7893690B2 (en) 2007-07-19 2011-02-22 Carnes Company, Inc. Balancing circuit for a metal detector
US8297065B2 (en) 2007-08-28 2012-10-30 Carrier Corporation Thermally activated high efficiency heat pump
US7950230B2 (en) 2007-09-14 2011-05-31 Denso Corporation Waste heat recovery apparatus
US8001672B2 (en) 2007-10-02 2011-08-23 Advanced Magnet Lab, Inc Methods of fabricating a conductor assembly having a curvilinear arcuate shape
WO2009045196A1 (en) 2007-10-04 2009-04-09 Utc Power Corporation Cascaded organic rankine cycle (orc) system using waste heat from a reciprocating engine
WO2009048479A1 (en) 2007-10-12 2009-04-16 Doty Scientific, Inc. High-temperature dual-source organic rankine cycle with gas separations
DE102008005978B4 (de) 2008-01-24 2010-06-02 E-Power Gmbh Niedertemperaturkraftwerk und Verfahren zum Betreiben eines thermodynamischen Zyklus
JP2009174494A (ja) 2008-01-28 2009-08-06 Panasonic Corp ランキンサイクルシステム
US20090205892A1 (en) 2008-02-19 2009-08-20 Caterpillar Inc. Hydraulic hybrid powertrain with exhaust-heated accumulator
US7997076B2 (en) 2008-03-31 2011-08-16 Cummins, Inc. Rankine cycle load limiting through use of a recuperator bypass
US7866157B2 (en) 2008-05-12 2011-01-11 Cummins Inc. Waste heat recovery system with constant power output
US7821158B2 (en) 2008-05-27 2010-10-26 Expansion Energy, Llc System and method for liquid air production, power storage and power release
US20100077792A1 (en) 2008-09-28 2010-04-01 Rexorce Thermionics, Inc. Electrostatic lubricant and methods of use
US8087248B2 (en) 2008-10-06 2012-01-03 Kalex, Llc Method and apparatus for the utilization of waste heat from gaseous heat sources carrying substantial quantities of dust
JP5001928B2 (ja) 2008-10-20 2012-08-15 サンデン株式会社 内燃機関の廃熱回収システム
US20100102008A1 (en) 2008-10-27 2010-04-29 Hedberg Herbert J Backpressure regulator for supercritical fluid chromatography
US8695344B2 (en) 2008-10-27 2014-04-15 Kalex, Llc Systems, methods and apparatuses for converting thermal energy into mechanical and electrical power
US8464532B2 (en) 2008-10-27 2013-06-18 Kalex, Llc Power systems and methods for high or medium initial temperature heat sources in medium and small scale power plants
US8176738B2 (en) 2008-11-20 2012-05-15 Kalex Llc Method and system for converting waste heat from cement plant into a usable form of energy
KR101069914B1 (ko) 2008-12-12 2011-10-05 삼성중공업 주식회사 탱커선의 폐열 회수 장치
WO2010074173A1 (ja) 2008-12-26 2010-07-01 三菱重工業株式会社 排熱回収システムの制御装置
US8176723B2 (en) 2008-12-31 2012-05-15 General Electric Company Apparatus for starting a steam turbine against rated pressure
US8739531B2 (en) 2009-01-13 2014-06-03 Avl Powertrain Engineering, Inc. Hybrid power plant with waste heat recovery system
US8596075B2 (en) 2009-02-26 2013-12-03 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US20100218930A1 (en) 2009-03-02 2010-09-02 Richard Alan Proeschel System and method for constructing heat exchanger
WO2010121255A1 (en) 2009-04-17 2010-10-21 Echogen Power Systems System and method for managing thermal issues in gas turbine engines
CN102414522B (zh) 2009-04-29 2014-03-05 开利公司 跨临界热激活的冷却、加热和制冷系统
FR2945574B1 (fr) * 2009-05-13 2015-10-30 Inst Francais Du Petrole Dispositif de controle du fluide de travail circulant dans un circuit ferme fonctionnant selon un cycle de rankine et procede pour un tel dispositif
US20100326076A1 (en) 2009-06-30 2010-12-30 General Electric Company Optimized system for recovering waste heat
JP2011017268A (ja) 2009-07-08 2011-01-27 Toosetsu:Kk 冷媒循環動力変換方法及びシステム
CN101614139A (zh) 2009-07-31 2009-12-30 王世英 多循环发电热力系统
US8434994B2 (en) 2009-08-03 2013-05-07 General Electric Company System and method for modifying rotor thrust
US20110030404A1 (en) 2009-08-04 2011-02-10 Sol Xorce Llc Heat pump with intgeral solar collector
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US20120247455A1 (en) 2009-08-06 2012-10-04 Echogen Power Systems, Llc Solar collector with expandable fluid mass management system
KR101103549B1 (ko) 2009-08-18 2012-01-09 삼성에버랜드 주식회사 증기 터빈 시스템 및 증기 터빈 시스템의 에너지 효율 증가 방법
US8627663B2 (en) 2009-09-02 2014-01-14 Cummins Intellectual Properties, Inc. Energy recovery system and method using an organic rankine cycle with condenser pressure regulation
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8096128B2 (en) 2009-09-17 2012-01-17 Echogen Power Systems Heat engine and heat to electricity systems and methods
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US8286431B2 (en) 2009-10-15 2012-10-16 Siemens Energy, Inc. Combined cycle power plant including a refrigeration cycle
JP2011106302A (ja) 2009-11-13 2011-06-02 Mitsubishi Heavy Ind Ltd エンジン廃熱回収発電ターボシステムおよびこれを備えた往復動エンジンシステム
EP2529096A4 (en) 2010-01-26 2017-12-06 TMEIC Corporation Energy recovery system and method
US8590307B2 (en) 2010-02-25 2013-11-26 General Electric Company Auto optimizing control system for organic rankine cycle plants
US8419936B2 (en) 2010-03-23 2013-04-16 Agilent Technologies, Inc. Low noise back pressure regulator for supercritical fluid chromatography
BR112012024146B1 (pt) * 2010-03-23 2020-12-22 Echogen Power Systems, Inc. circuito de fluido de trabalho para recuperação de calor perdido e método de recuperação de calor perdido em um circuito de fluido de trabalho
US8752381B2 (en) 2010-04-22 2014-06-17 Ormat Technologies Inc. Organic motive fluid based waste heat recovery system
US8801364B2 (en) 2010-06-04 2014-08-12 Honeywell International Inc. Impeller backface shroud for use with a gas turbine engine
US9046006B2 (en) 2010-06-21 2015-06-02 Paccar Inc Dual cycle rankine waste heat recovery cycle
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
WO2012074940A2 (en) 2010-11-29 2012-06-07 Echogen Power Systems, Inc. Heat engines with cascade cycles
KR101291170B1 (ko) 2010-12-17 2013-07-31 삼성중공업 주식회사 선박용 폐열회수장치
US20120174558A1 (en) 2010-12-23 2012-07-12 Michael Gurin Top cycle power generation with high radiant and emissivity exhaust
US9249018B2 (en) 2011-01-23 2016-02-02 Michael Gurin Hybrid supercritical power cycle having liquid fuel reactor converting biomass and methanol, gas turbine power generator, and superheated CO2 byproduct
CN202055876U (zh) 2011-04-28 2011-11-30 罗良宜 超临界低温空气能发电装置
KR101280520B1 (ko) 2011-05-18 2013-07-01 삼성중공업 주식회사 폐열원 전력생산 시스템
KR101280519B1 (ko) 2011-05-18 2013-07-01 삼성중공업 주식회사 랭킨 사이클 시스템
US8561406B2 (en) 2011-07-21 2013-10-22 Kalex, Llc Process and power system utilizing potential of ocean thermal energy conversion
US9062898B2 (en) 2011-10-03 2015-06-23 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
WO2013059695A1 (en) 2011-10-21 2013-04-25 Echogen Power Systems, Llc Turbine drive absorption system
US9765009B2 (en) 2011-11-17 2017-09-19 Evonik Degussa Gmbh Processes, products, and compositions having tetraalkylguanidine salt of aromatic carboxylic acid
CN202544943U (zh) 2012-05-07 2012-11-21 任放 一种低温位工业流体余热回收系统
CN202718721U (zh) 2012-08-29 2013-02-06 中材节能股份有限公司 一种高效有机工质朗肯循环系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830062A (en) * 1973-10-09 1974-08-20 Thermo Electron Corp Rankine cycle bottoming plant
GB2010974A (en) * 1977-12-05 1979-07-04 Fiat Spa Heat Recovery System
US4276747A (en) * 1978-11-30 1981-07-07 Fiat Societa Per Azioni Heat recovery system
WO2004009964A1 (en) * 2002-07-22 2004-01-29 Douglas Wilbert Paul Smith Method of converting energy
JP2007198200A (ja) * 2006-01-25 2007-08-09 Hitachi Ltd ガスタービンを用いたエネルギー供給システム、エネルギー供給方法、エネルギー供給システムの改造方法
CN102575532A (zh) * 2009-06-22 2012-07-11 艾克竣电力系统股份有限公司 用于在一个或多个工业过程中管理热问题的系统和方法
CN102032070A (zh) * 2009-09-28 2011-04-27 通用电气公司 双再热兰金循环系统及其方法

Also Published As

Publication number Publication date
EP2646658A2 (en) 2013-10-09
EP2646657A4 (en) 2014-07-09
BR112013013385A2 (zh) 2017-09-12
KR101835915B1 (ko) 2018-03-07
WO2012074905A3 (en) 2012-10-04
WO2012074907A2 (en) 2012-06-07
KR101896130B1 (ko) 2018-09-07
WO2012074905A2 (en) 2012-06-07
RU2013124072A (ru) 2015-01-10
CA2820606A1 (en) 2012-06-07
EP2646657B1 (en) 2020-12-23
EP2646657A2 (en) 2013-10-09
US20120131920A1 (en) 2012-05-31
WO2012074907A3 (en) 2012-09-07
CA2818816A1 (en) 2012-06-07
EP2646658A4 (en) 2014-06-25
CN103477035A (zh) 2013-12-25
US9284855B2 (en) 2016-03-15
AU2011336831B2 (en) 2016-12-01
CA2820606C (en) 2019-04-02
US20120131919A1 (en) 2012-05-31
US8616001B2 (en) 2013-12-31
BR112013013387A2 (pt) 2021-06-29
KR20140048075A (ko) 2014-04-23
US9410449B2 (en) 2016-08-09
JP6039572B2 (ja) 2016-12-07
AU2011336831A1 (en) 2013-06-13
AU2011336831C1 (en) 2017-05-25
BR112013013385A8 (pt) 2017-12-05
JP2014502329A (ja) 2014-01-30
US20140096521A1 (en) 2014-04-10
KR20140064704A (ko) 2014-05-28
CA2818816C (en) 2019-05-14

Similar Documents

Publication Publication Date Title
CN103477035B (zh) 平行循环热发动机
US8857186B2 (en) Heat engine cycles for high ambient conditions
EP2550436B1 (en) Heat engines with cascade cycles
US8869531B2 (en) Heat engines with cascade cycles
US10920668B2 (en) Energy storage system
AU2011318385B2 (en) System and method for liquid air production, power storage and power release
JP5017497B1 (ja) 液体空気生成、電力貯蔵および解放のためのシステムおよび方法
CN105794101A (zh) 用于具有能量储存的电力峰值的系统和方法
WO2012074940A2 (en) Heat engines with cascade cycles
JPH07224679A (ja) 圧縮空気エネルギー貯蔵方法及びシステム
CN107002512A (zh) 用于运行换热站的设备和方法
CN101025146A (zh) 利用常温下水中的热能的发电系统装置
CN106870937B (zh) 基于ifv的lng气化和发电装置及气化和/或发电方法
CN106062317A (zh) 具有一体齿轮连接式蒸汽压缩机的功率装置
JP2021511462A (ja) 冷凍と機械式圧縮とを交互に行うガス状流体圧縮
ES2970574T3 (es) Ciclo de potencia de recondensación para la regasificación de fluidos
AU2013101741A4 (en) Heat Engine System
WO2019053705A1 (en) SYSTEM AND METHOD FOR TRANSFORMING THERMAL ENERGY TO KINETIC ENERGY
CN109296418B (zh) 用于从压力能到电能的能量转换的方法和设备
RU2575674C2 (ru) Тепловые двигатели с параллельным циклом

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant