JP4543920B2 - 熱機関の廃熱利用装置 - Google Patents

熱機関の廃熱利用装置 Download PDF

Info

Publication number
JP4543920B2
JP4543920B2 JP2004372255A JP2004372255A JP4543920B2 JP 4543920 B2 JP4543920 B2 JP 4543920B2 JP 2004372255 A JP2004372255 A JP 2004372255A JP 2004372255 A JP2004372255 A JP 2004372255A JP 4543920 B2 JP4543920 B2 JP 4543920B2
Authority
JP
Japan
Prior art keywords
heat
condenser
amount
pump
waste heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004372255A
Other languages
English (en)
Other versions
JP2006177266A (ja
Inventor
隆 山中
淳 稲葉
伸一 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004372255A priority Critical patent/JP4543920B2/ja
Priority to DE102005061214A priority patent/DE102005061214A1/de
Priority to US11/316,169 priority patent/US7454912B2/en
Publication of JP2006177266A publication Critical patent/JP2006177266A/ja
Application granted granted Critical
Publication of JP4543920B2 publication Critical patent/JP4543920B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、熱エネルギーを回収するランキンサイクルを備える熱機関に関するもので、熱機関として内燃機関(エンジン)を採用し、且つ、冷凍サイクル(空調装置)を備える車両に適用して有効である。
従来の廃熱利用装置として、例えば特許文献1に示されるように、冷凍サイクルの構成部品(凝縮器)を共用してランキンサイクルを形成し、圧縮機と兼用する膨張機によって車両用エンジン(内燃機関)の廃熱を動力として回収し、その回収した動力をエンジンに付加するものが知られている。
特開昭63−96449号公報
しかしながら、上記特許文献1に記載の廃熱利用装置では、ランキンサイクルの作動については、冷凍サイクルを停止させた時に、冷媒流路を切替えて加圧ポンプを作動させるという内容に留まっているので、冷凍サイクルとランキンサイクルとをどのような条件下で切替えるのか、あるいは、ランキンサイクルをどのように制御したら効率的な廃熱の回収が可能となるのかという点についての詳細な記載がなく、現実的な実施が難しい。
本発明の目的は、上記問題に鑑み、ランキンサイクルの作動条件を明確にして、効率的な廃熱回収を可能とする熱機関の廃熱利用装置を提供することにある。
本発明は上記目的を達成するために、以下の技術的手段を採用する。
請求項1に記載の発明では、ポンプ(33)によって循環される作動流体を、熱機関(10)の廃熱によって加熱して過熱蒸気とする加熱器(34)、加熱器(34)からの過熱蒸気の膨張によって駆動力を発生する膨張機(21)、外気に放熱することで膨張機(21)からの過熱蒸気を凝縮してポンプ(33)側に流出する凝縮器(22)を有するランキンサイクル(30A)と、ランキンサイクル(30A)の作動を制御する制御手段(40)とを備える熱機関の廃熱利用装置において、
制御手段(40)は、熱機関(10)の廃熱温度が予め定めた所定廃熱温度以上となる時に、
凝縮器(22)の作動条件下で凝縮器(22)が放熱しうる放熱量(Qc)を算出し、
加熱器(34)が熱機関(10)から回収すべき熱量を、算出された放熱量(Qc)に見合う回収熱量(Qh)として算出し、
回収熱量(Qh)と放熱量(Qc)との差によって定まり、更に、膨張機(21)の出入り口におけるエンタルピ差と作動流体の流量(G)との積として得られる膨張機(21)の動力(L)が、作動流体の流量(G)に対して極大値を示す流量決定マップを予め備えており、この流量決定マップに基づいて動力(L)が最大動力(Lmax)となる作動流体の流量(G)を決定し、
前記ポンプ(33)によって循環される作動流体の流量(G)が、決定された作動流体の流量(G)となるように制御することを特徴としている。
これにより、廃熱温度に基づいて、熱機関(10)から過度に熱量を奪うことなく、ランキンサイクル(30A)を稼動させることが可能となる。そして、凝縮器(22)側と加熱器(34)側との熱バランスをとりながら膨張機(21)での最適な動力(L)を回生できるので、ランキンサイクル(30A)における回生効率を向上させることができる。
そして、請求項2に記載の発明では、制御手段(40)は、作動流体の加熱器(34)側となる圧力(Ph)が、廃熱温度に応じて定まる目標圧力(Pho)となるように、膨張機(21)の回転数を制御することを特徴としている。
これにより、廃熱温度の変化に応じて、安定した膨張機(21)の動力(L)を得ることができる。
請求項3に記載の発明のように、熱機関(10)は、車両に搭載され、凝縮器(22)に車両の走行時の車速風が供給されるものとした時に、制御手段(40)は、車両の走行速度および外気温度を凝縮器(22)の作動条件として回収熱量(Qh)を算出することが可能である。
尚、請求項4に記載の発明のように、制御手段(40)は、上記車両の走行速度を熱機関(10)の作動回転数で代用しても良い。
また、請求項5に記載の発明のように、制御手段(40)は、作動流体の凝縮器(22)側となる圧力(Pc)を凝縮器(22)の作動条件として放熱量(Qc)を算出し、算出された放熱量(Qc)に見合う回収熱量(Qh)を算出しても良い。
そして、作動流体の流量(G)制御については、請求項6に記載の発明のように、制御手段(40)は、ポンプ(33)の回転数を可変することで対応が可能である。
また、請求項7に記載の発明のように、ポンプ(33)を一回転あたりの吐出容量が可変可能なものとして、制御手段(40)は、ポンプ(33)の吐出容量を可変することで作動流体の流量(G)を制御するようにしても良い。
また、請求項8に記載の発明のように、流路面積を可変可能として、ポンプ(33)をバイパスするバイパス流路(36)を設けて、制御手段(40)は、バイパス流路(36)の流路面積を可変することで作動流体の流量(G)を制御するようにしても良い。
尚、請求項1、請求項2、請求項5〜請求項8に記載の発明においては、請求項9に記載の発明のように、熱機関(10)は、車両用のものを対象として好適である。
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
(第1実施形態)
本実施形態は、本発明に係る熱機関の廃熱利用装置(以下、廃熱利用装置)20を、走行用駆動源となる内燃機関としてのエンジン(本発明における熱機関に対応)10が搭載される車両に適用したものである。廃熱利用装置20は、エンジン10で発生した廃熱からエネルギーを回収するものであり、空調装置用の冷凍サイクル20Aを構成する機器を一部共用して形成されるランキンサイクル30Aと制御装置40とを有している。以下、廃熱利用装置20の全体構成について図1を用いて説明する。
まず、冷凍サイクル20Aは、低温側の熱を高温側に移動させて冷熱および温熱を空調に利用するもので、膨張機兼圧縮機21、凝縮器22、気液分離器23、減圧器24、蒸発器25等が環状に接続されて形成されている。
膨脹機兼圧縮機(本発明における膨張機に対応)21は、気相冷媒を加圧して吐出する圧縮モード(圧縮機として作動)と、過熱蒸気冷媒の膨張時の流体圧を運動エネルギーに変換して機械的エネルギーを出力する膨張モード(膨張機として作動)とを兼ね備える流体機械である。ここでは、膨脹機兼圧縮機21は、周知のスクロール型圧縮機構と同一構造を有するものとしており、圧縮モード時の吐出側には、弁機構21aが設けられている。
弁機構21aは、膨脹機兼圧縮機21の圧縮モード時に加圧冷媒を吐出させつつ、その逆流を阻止する逆止弁としての機能を果たすと共に、膨張モード時には冷媒流路を開くことで、後述する加熱器34からの過熱蒸気冷媒を膨張機兼圧縮機21に流入させる開閉弁としての機能を果たす。上記弁機構21aの逆止弁あるいは開閉弁としての切替えは、後述する制御装置40によって制御されるようになっている。
また、膨張機兼圧縮機21には、発電機兼電動機21bが接続されている。発電機兼電動機21bは、図示しないステータおよびロータを有し、後述する制御装置40によって制御され、図示しないバッテリからステータに電力が供給された場合には、ロータを回転させて、膨張機兼圧縮機21を(圧縮機として)駆動する電動機として作動する。また、膨張機兼圧縮機21の膨張モード時に発生した駆動力によってロータを回転させるトルクが入力された場合には、電力を発生させる発電機として作動する。そして、得られた電力は、制御装置40によってバッテリに充電されるようになっている。尚、膨張モード時の膨張機兼圧縮機21の回転数は、制御装置40から発電機兼電動機21bに供給される電流信号(あるいは電圧信号)によって、調節可能となっている。
凝縮器22は、膨張機兼圧縮機21(圧縮モード時)の冷媒吐出側に設けられ、高温高圧に圧縮された冷媒と外気との間で熱交換して(冷媒の熱を外気に放熱して)冷媒を冷却し、凝縮液化する熱交換器である。凝縮器22は、車両のグリルおよびバンパーの後方に配設され、熱交換用の外気として、車両走行時の走行風が凝縮器22に供給されるようになっている。尚、アイドリング時や低速登坂時等には走行風の供給が期待できないため、凝縮器22に設けられた冷却ファン22aからの冷却風が供給されるようになっている。
気液分離器23は、凝縮器22で凝縮された冷媒を気相冷媒と液相冷媒とに分離して液相冷媒を流出させるレシーバである。減圧器24は、気液分離器23で分離された液相冷媒を減圧膨脹させるもので、本実施形態では、冷媒を等エンタルピ的に減圧すると共に、圧縮モード時の膨張機兼圧縮機21に吸入される冷媒の過熱度が所定値となるように絞り開度を制御する温度式膨脹弁を採用している。
蒸発器25は、減圧器24にて減圧された冷媒を蒸発させて吸熱作用を発揮する熱交換器であり、この吸熱作用によって送風機25aからの空調空気を冷却する。そして、蒸発器25の冷媒流出側には、蒸発器25側から膨張機兼圧縮機21側にのみ冷媒が流れることを許容する逆止弁25bが設けられている。
ランキンサイクル30Aは、エンジン10で発生した廃熱からエネルギー(膨張機兼圧縮機21の膨張モード時における駆動力)を回収するものである。ランキンサイクル30Aは、上記冷凍サイクル20Aに対して、凝縮器22、気液分離器23が共用されると共に、凝縮器22をバイパスするように気液分離器23から膨張機兼圧縮器21および凝縮器22の間(A点)に接続される第1バイパス流路31と、膨張機兼圧縮機21および逆止弁25bの間(B点)から凝縮器22およびA点の間(C点)に接続される第2バイパス流路32とが設けられて、以下のように形成されている。
即ち、第1バイパス流路31には、ポンプ部33aが配設されると共に、気液分離器23側からポンプ部33a側にのみ冷媒が流れることを許容する逆止弁31aが設けられている。尚、ポンプ部33aにはモータ部33bが接続されており、ポンプ部33aはモータ部33bによって駆動される。ポンプ部33aは一回転あたりの吐出容量が所定吐出容量となる固定容量型のものとしており、ポンプ部33aとモータ部33bとによって冷媒ポンプ(本発明におけるポンプに対応)33が形成され、冷媒ポンプ33(モータ部33b)は、後述する制御装置40によって制御されるようになっている。
また、A点と膨張機兼圧縮機21との間には、加熱器34が設けられている。加熱器34は、冷媒ポンプ33から送られる冷媒(本発明における作動流体に対応)とエンジン10における温水回路10Aのエンジン冷却水(温水)との間で熱交換することにより冷媒を加熱する熱交換器であり、三方弁11によりエンジン10から流出したエンジン冷却水を加熱器34に循環させる場合と循環させない場合とが切替えられる。三方弁11の流路切替えは、後述する制御装置40によって行われるようになっている。
尚、水ポンプ12は温水回路10A内でエンジン冷却水を循環させるポンプ(例えば、エンジン10によって駆動される機械式ポンプあるいは電動モータによって駆動される電動ポンプ)であり、ラジエータ13はエンジン冷却水と外気との間で熱交換してエンジン冷却水を冷却する熱交換器である。
また、エンジン10の出口側にはエンジン冷却水の温度を検出する水温センサ14が設けられており、この水温センサ14で検出(出力)されたエンジン冷却水温度信号(以下、冷却水温度信号)は、後述する制御装置40に入力される。
そして、第2バイパス流路32には、膨脹機兼圧縮機21側から凝縮器22の冷媒入口側にのみ冷媒が流れることを許容する逆止弁32aが設けられている。また、A点とC点との間には開閉弁35が設けられている。開閉弁35は、冷媒流路を開閉する電磁式のバルブであり、後述する制御装置40により制御されるようになっている。
上記気液分離器23、第1バイパス流路31、冷媒ポンプ33、加熱器34、膨張機兼圧縮機21、第2バイパス流路32、凝縮器22等にてランキンサイクル30Aが形成される。
制御装置(本発明における制御手段に対応)40は、乗員の設定する設定温度や環境条件等に基づいて決定されるA/C要求信号、図示しない外気温センサからの外気温度信号、図示しない車速センサからの車速信号、水温センサ14からの冷却水温度信号等が入力され、これらの信号に基づいて三方弁11、弁機構21a、発電機兼電動機21b、冷媒ポンプ33、開閉弁35の作動を制御する。尚、制御装置40には、後述する放熱量算出マップ(図3)、回収熱量算出マップ(図4)、流量決定マップ(図5)、冷媒ポンプ回転数決定マップ(図6)が予め記憶されており、これらマップに基づき冷媒ポンプ33の作動を制御するようになっている(詳細後述)。
次に、本実施形態に係る廃熱利用装置20の作動(制御装置40による制御)について、図2〜図6を用いて説明する。
図2は、制御装置40が冷凍サイクル20Aおよびランキンサイクル30Aを制御する際のフローチャートであり、まず、制御装置40はステップS100で乗員からのA/C要求が有ると、ステップS110で空調(冷房)作動のために冷凍サイクル20Aを稼動させる(ランキンサイクル30Aは非稼動)。即ち、冷媒ポンプ33を停止させた状態で開閉弁35を開き、三方弁11の切替えによって、エンジン冷却水を加熱器34側に循環させないようにする。また、弁機構21aを逆止弁として機能するように切替える。そして、発電機兼圧縮機21bを電動機として駆動し、膨張機兼圧縮機21を作動させて冷媒を吸入圧縮し(圧縮モード)、冷凍サイクル20Aを作動させる。
この時、膨張機兼圧縮機21で圧縮吐出された冷媒は、弁機構21a→加熱器34→開閉弁35→凝縮器22→気液分離器23→減圧器24→蒸発器25→逆止弁25b→膨張機兼圧縮機21の順に循環(冷凍サイクル20Aを循環)する。そして、送風機25aからの空調空気は蒸発器25で蒸発する冷媒によって吸熱され、冷却されることになる。尚、加熱器34にはエンジン冷却水が循環しないので、加熱器34にて冷媒は加熱されず、加熱器34は単なる冷媒通路として機能する。
しかし、ステップS100で乗員からのA/C要求が無いと判定した場合は、ステップS120で水温センサ14からの冷却水温度(本発明における廃熱温度に対応)が予め定めた所定温度(本発明における所定廃熱温度に対応し、例えば80℃設定)以上にあるか否かを判定する。
ステップS120で否と判定すると(ステップS120の0の表示)、エンジン10からの廃熱が充分に得られない場合であり、ステップS130で冷凍サイクル20Aを非稼動とすると共に、ランキンサイクル30Aも非稼動とする。即ち、発電機兼電動機21b、冷媒ポンプ33を停止状態とする。
一方、ステップS120でエンジン冷却水温度が所定温度以上あると判定すると(ステップS120の1の表示)、エンジン10からの廃熱が充分に得られる場合であり、ステップS140(ステップS141〜ステップS144)でランキンサイクル30Aを稼動させる。
即ち、ステップS141で車速、外気温度を読込み、ステップS142で凝縮器22での放熱量Qcを算出すると共に、加熱器34における回収熱量Qhを算出する。そして、最適な冷媒流量Gを決定して、冷媒ポンプ33の回転数を決定する。ここで、放熱量Qcは図3に示す放熱量算出マップに基づき算出し、回収熱量Qhは図4に示す回収熱量算出マップに基づき算出する。そして、冷媒流量Gを図5に示す流量決定マップから決定し、冷媒ポンプ33の回転数を図6に示す冷媒ポンプ回転数決定マップから決定する。
放熱量算出マップ(図3)は、凝縮器22の作動条件として外気温度と車速(本発明における車両の走行速度に対応)とを用いて、外気温度をパラメータとして、車速に対する凝縮器22で放熱しうる放熱量Qcを予め関係付けたものである。制御装置40はステップS141で読込んだ車速および外気温度から放熱量Qcを算出する。尚、凝縮器22においては、車速が高いほど凝縮器22に供給される走行風は増加し、また、外気温度が低いほど凝縮器22での冷媒との温度差が大きく取れることから、放熱量Qcが増加する。
ここで、膨張モード時の膨張機兼圧縮機21での発生駆動力(以下、動力L)は、加熱器34における回収熱量Qhと凝縮器22での上記放熱量Qcとの差(Qh−Qc)で得られ、各熱量Qh、Qcは、加熱器34、凝縮器22における各エンタルピ差ih、icと冷媒流量Gとの積として得られることから、動力L=G×ih−G×ic=G×(ih−ic)と表すことができる(図5)。
上記(ih−ic)は、膨張機兼圧縮機21の出入り口におけるエンタルピ差であって、放熱量Qcが少なく凝縮器22の性能に余裕がある場合は、膨脹機兼圧縮機21の出口圧力が低くなるため、出入り口圧力差が大きくなり、(ih−ic)も大きくなる。逆に冷媒流量Gが増加するほど凝縮器22における放熱量Qcが多くなり圧力が上昇するため、膨脹機兼圧縮機21の出口圧力が高くなり、圧力差が小さくなるため、(ih−ic)が小さくなる(図5中の右下がりの特性)。このため、冷媒流量Gと(ih−ic)とを掛け合わせて得られる動力Lは、極大値(最大動力Lmax)を取る特性(図5中の上に凸の特性)となる。
また、冷却水温度が高い場合は、膨脹機兼圧縮機21の入口圧力を高くすることが可能となるため、出入り口圧力差が大きくなり、(ih−ic)、即ち、動力Lが大きくなる。
このような特性を踏まえて、車速、外気温度、冷却水温度をパラメータにまとめたものが回収熱量算出マップ(図4)であり、また、冷媒流量Gに対する膨張機兼圧縮機21での動力Lを予め関係付けて、外気温度、車速、冷却水温度ごとにまとめたものが流量決定マップ(図5)である。回収熱量算出マップにおいては、車速が高いほど、また、外気温度が低いほど上記のように凝縮器22での放熱量Qcが増加するため、それに応じて回収熱量Qhも増加する。制御装置40は、この回収熱量算出マップを用いて、ステップS120で読込んだ冷却水温度、ステップS141で読込んだ車速および外気温度から回収熱量Qhを算出する。また、流量決定マップを用いて、最大動力Lmaxに対応する冷媒流量Gを決定する。例えば、冷却水温度が90℃、車速が60km/h、外気温度が25℃の場合、回収熱量Qcは図4中の破線矢印で示すように、7.4kwと算出され、冷媒流量Gは142kg/hと決定される(回収熱量は冷媒流量に略比例する)。
冷媒ポンプ回転数決定マップ(図6)は、冷媒流量Gと冷媒ポンプ33の回転数とを関係付けたものである。冷媒ポンプ33が固定容量型であることから、冷媒流量Gは冷媒ポンプ33の回転数に比例し、制御装置40は、上記のように決定した冷媒流量Gから、対応する冷媒ポンプ33の回転数を決定する。
次に、ステップS143でランキンサイクル30Aへの切替えを行う。即ち、三方弁11の切替えによって、エンジン冷却水を加熱器34側に循環させるようにする。また、開閉弁35を閉じ、弁機構21aによって冷媒流路を開いて膨張機兼圧縮機21が膨張モードで作動可能となるようにする。
そして、ステップS144で冷媒ポンプ33を上記ステップS142で決定した回転数で作動させ、また、発電機兼回転電機21bを発電機として作動させる。この時、制御装置40は、加熱器34側の冷媒圧力Phが冷却水温度に応じて定まる目標圧力Phoとなるように、発電機兼電動機21bへの電流信号(あるいは電圧信号)を可変して、発電機兼電動機21bの回転数、即ち、膨張機兼圧縮機21の回転数を調節する。具体的には、冷媒圧力Phが目標圧力Phoよりも高いと、回転数を上げ、逆に、冷媒圧力Phが目標圧力Phoよりも低いと、回転数を下げる。
冷媒ポンプ33から吐出された冷媒は、加熱器34で回収熱量Qh分だけ加熱され、過熱蒸気冷媒となって弁機構21aを通り膨張機兼圧縮機21で膨張する(膨張モード)。この時、膨張機兼圧縮機21は動力Lを発生し、この動力Lによって発電機兼電動機21bが作動され、発電が行われる。そして、制御装置40は、発電された電力をバッテリに蓄えるようにしている。
そして、膨張機兼圧縮機21から流出される冷媒は、第2バイパス流路32→逆止弁32a→凝縮器22→気液分離器23→第1バイパス流路31→逆止弁31a→液ポンプ33の順に循環することになる(ランキンサイクル30Aを循環)。
以上のように、本実施形態においては、冷却水温度に応じてランキンサイクル30Aの稼動可否を判定しているので(ステップS120)、エンジン10から過度に熱量を奪うことなく、ランキンサイクル30Aを稼動させることが可能となる。
また、ランキンサイクル30Aの稼動にあたって、凝縮器22の放熱量Qcに見合うように加熱器34での回収熱量Qhを算出して、その回収熱量Qhと放熱量Qcとによって定まる膨張機兼圧縮機21での発生動力Lが増大するように冷媒流量Gを決定して制御するようにしているので(ステップS140)、凝縮器22側と加熱器34側との熱バランスをとりながら膨張機兼圧縮機21での最適な動力Lを回生でき、ランキンサイクル30Aにおける回生効率を向上させることができる。
そして、加熱器34側の冷媒圧力Phが冷却水温度に応じて定まる目標圧力Phoとなるように、膨張機兼圧縮機21の回転数を調節するようにしているので、冷却水温度の変化に応じて、安定した膨張機兼圧縮機21での動力Lを得ることができる。
図7に示すタイムチャートは、本実施形態での車速に対する回収熱量Qh、回生電力を定量的に示したものである(机上シミュレーション結果)。尚、図8に示すタイムチャートは、凝縮器22での放熱量Qcを加味せずに、回収熱量Qhを一定(約6kw)とした場合の図7に対する比較結果である。
図7に示すように、例えば、車速が低い場合は、凝縮器22に供給される走行風量は少なく、凝縮器22での放熱量Qcが小さくなるので、その分、回収熱量Qhも小さくすることで、凝縮器22での冷媒圧力を低くすると共に、冷却水温度の低下を防止して、ランキンサイクル30Aの回生効率の悪化を防止できる。
また、車速が高い場合は、凝縮器22に供給される走行風量が増大され、凝縮器22での放熱量Qcが大きくなるので、その分、回収熱量Qhを大きくすることで、ランキンサイクル30Aの動力L(電力)の回生量を向上でき、ひいては、車両燃費を向上できる。
尚、外気温度が高い場合は、凝縮器22における冷媒との温度差が小さくなることから、凝縮器22での放熱量Qcが小さくなり、回収熱量Qhを小さくすることで上記車速が低い場合と同様にランキンサイクル30Aの回生効率の悪化を防止できる。また、外気温度が低い場合は、凝縮器22における冷媒との温度差が大きくなることから、凝縮器22での放熱量Qcが大きくなり、回収熱量Qhを大きくすることで上記車速が高い場合と同様に、ランキンサイクル30Aの動力L(電力)の回生量を向上できる。
図8に示す結果では、車両の燃費向上効果は2.7%であったが、図7に示す本実施形態の結果では車両の燃費向上効果が3.3%となった。
尚、上記第1実施形態では、回収熱量Qhを算出する際に、凝縮器22の放熱量Qc推定のための作動条件を車速と外気温度としたが、車速については、エンジン10の回転数で代用するようにしても良い。
(第2実施形態)
本発明の第2実施形態を図9〜図11に示す。第2実施形態は上記第1実施形態に対して、回収熱量Qhの算出方法を変更したものである。
ここでは、図9に示すように、凝縮器22の気液分離器23側に冷媒の圧力を検出する圧力センサ22bを設け、圧力センサ22bで検出された圧力信号(凝縮器側圧力Pc)を制御装置40に入力するようにしている。尚、第1実施形態で説明した外気温度信号、車速信号の入力は廃止している。
そして、図10に示すように、制御装置40用のフローチャートにおいて、ランキンサイクル30A稼動のためのステップS140をステップS140Aとして、その中のステップS141、S142をステップS141A、S142Aに変更している。
制御装置40が行う制御について、上記変更点を中心に以下説明する。ステップS120で冷却水温度が所定温度以上あると判定すると、ステップS141Aで凝縮器側圧力Pcを読込み、ステップS142Aで上記凝縮器側圧力Pcから回収熱量Qhを算出する。ここでは、回収熱量Qhは図11に示す回収熱量算出マップから算出する。この回収熱量算出マップは、凝縮器22の作動条件として凝縮器側圧力Pcを用いており、凝縮器側圧力Pcに対する回収熱量Qhを予め関係付けたものとしている。即ち、凝縮器側圧力Pcが低いほど、凝縮器22での放熱量Qcは大きいことになり、この放熱量Qcに見合うように回収熱量Qhを算出するようにしている。以下、上記第1実施形態と同様に、得られた回収熱量Qhおよび放熱量Qcから冷媒流量Gを決定し、この冷媒流量Gに対応する冷媒ポンプ33の回転数を決定する。
そして、ステップS143でランキンサイクル30Aの切替えを行い、ステップS144で冷媒ポンプ33を作動させ、膨張機兼圧縮機21の回転数を調節して、ランキンサイクル30Aを稼動させる。
これにより、上記第1実施形態と同様の効果を得ることができる。ここでは、凝縮器22での放熱量Qcおよび加熱器34での回収熱量Qh算出のために、センサとして圧力センサ22bの1つのみを使用するので、第1実施形態に対して、センサ数を減らすことができる。
(第3実施形態)
本発明の第3実施形態を図12、図13に示す。第3実施形態は、上記第1実施形態に対して冷媒流量Gの制御方法を変更したものである。
ここでは、図12に示すように、冷媒ポンプ33をバイパスするバイパス流路36と、開度を変更することでバイパス流路36の流路面積を可変する流量制御弁36aとを設けている。流量制御弁36aの開度は制御装置40によって制御されるようにしている。
そして、図13に示すように、制御装置40用のフローチャートにおいて、ランキンサイクル30A稼動のためのステップS140をステップS140Bとして、その中のステップS142、S144をステップS142B、S144Bに変更している。
制御装置40が行う制御について、上記変更点を中心に以下説明する。ステップS120で冷却水温度が所定温度以上あると判定すると、ステップS141で車速、外気温度を読込み、ステップS142Bで回収熱量Qhを算出して、冷媒流量Gを決定し(上記第1実施形態と同一の要領)、流量制御弁36aの開度を決定する。ここで、冷媒ポンプ33を最大能力(最大回転数)で作動させた時に、冷媒流量Gが大きいほど冷媒ポンプ33から吐出される冷媒が加熱器34側に流れるようにするために、流量制御弁36aの開度を小さく決定する。逆に、冷媒流量Gが小さいほど冷媒ポンプ33から吐出される冷媒がバイパス流路36側に流れるようにするために、流量制御弁36aの開度を大きく決定する。
そして、ステップS143でランキンサイクル30Aへの切替えを行い、ステップS144で冷媒ポンプ33を最大回転数で作動させ、膨張機兼圧縮機21の回転数を調節して、流量制御弁36aの開度をステップS142Bで決定した開度に制御する。
これにより、流量制御弁36aの開度に応じた冷媒流量Gに制御され、上記第1実施形態と同様の効果を得ることができる。
(その他の実施形態)
上記第1〜第3実施形態では、冷媒ポンプ33(ポンプ部33a)は固定容量型のものを使用したが、制御装置40によって一回転あたりの吐出容量が可変される可変容量型(例えば、斜板式やバイパス式等)のものとして、加熱器34に循環させる冷媒の流量を制御するようにしても良い。
また、熱機関はエンジン10のような内燃機関に限らず、外燃機関としても良い。更に熱機関は定置型のものでもよく、この場合は、凝縮器22での放熱量Qc算出のための作動条件を車速に代えて、冷却ファン22aの送風量に対応する回転数等とすれば良い。
また、廃熱利用装置20として、冷凍サイクル20Aに対してランキンサイクル30Aが独立して形成されると共に、ランキンサイクル30A内に配設される膨張機兼圧縮機21が膨張機として、また、発電機兼電動機21bが発電機として独立して形成されるものに適用しても良い。
また、膨張機兼圧縮機21で回収した動力Lで発電機兼電動機21bを作動させて、電気エネルギーとしてバッテリに蓄えるようにしたが、フライホイールによる運動エネルギー、またはバネによる弾性エネルギー等の機械的エネルギーとして蓄えても良い。
第1実施形態における熱機関の廃熱利用装置の全体構成を示す模式図である。 第1実施形態におけるランキンサイクル稼動制御用のフローチャートである。 第1実施形態における放熱量算出用のマップである。 第1実施形態における回収熱量算出用のマップである。 第1実施形態における冷媒流量決定用のマップである。 第1実施形態における冷媒ポンプ回転数決定用のマップである。 第1実施形態における効果を定量的に示すタイムチャートである。 本発明適用前の回収熱量と回生電力とを示すタイムチャートである。 第2実施形態における熱機関の廃熱利用装置の全体構成を示す模式図である。 第2実施形態におけるランキンサイクル稼動制御用のフローチャートである。 第2実施形態における回収熱量算出用のマップである。 第3実施形態における熱機関の廃熱利用装置の全体構成を示す模式図である。 第3実施形態におけるランキンサイクル稼動制御用のフローチャートである。
符号の説明
10 エンジン(熱機関)
20 熱機関の廃熱利用装置
21 膨張機兼圧縮機(膨張機)
22 凝縮器
30A ランキンサイクル
33 冷媒ポンプ(ポンプ)
34 加熱器
36 バイパス流路
40 制御装置(制御手段)

Claims (9)

  1. ポンプ(33)によって循環される作動流体を、熱機関(10)の廃熱によって加熱して過熱蒸気とする加熱器(34)、前記加熱器(34)からの前記過熱蒸気の膨張によって駆動力を発生する膨張機(21)、外気に放熱することで前記膨張機(21)からの前記過熱蒸気を凝縮して前記ポンプ(33)側に流出する凝縮器(22)を有するランキンサイクル(30A)と、
    前記ランキンサイクル(30A)の作動を制御する制御手段(40)とを備える熱機関の廃熱利用装置において、
    前記制御手段(40)は、前記熱機関(10)の廃熱温度が予め定めた所定廃熱温度以上となる時に、
    前記凝縮器(22)の作動条件下で前記凝縮器(22)が放熱しうる放熱量(Qc)を算出し、
    前記加熱器(34)が前記熱機関(10)から回収すべき熱量を、算出された前記放熱量(Qc)に見合う回収熱量(Qh)として算出し、
    前記回収熱量(Qh)と前記放熱量(Qc)との差によって定まり、更に、前記膨張機(21)の出入り口におけるエンタルピ差と前記作動流体の流量(G)との積として得られる前記膨張機(21)の動力(L)が、前記作動流体の流量(G)に対して極大値を示す流量決定マップを予め備えており、この流量決定マップに基づいて前記動力(L)が最大動力(Lmax)となる前記作動流体の流量(G)を決定し、
    前記ポンプ(33)によって循環される前記作動流体の流量(G)が、前記決定された前記作動流体の流量(G)となるように制御することを特徴とする熱機関の廃熱利用装置。
  2. 前記制御手段(40)は、前記作動流体の前記加熱器(34)側となる圧力(Ph)が、前記廃熱温度に応じて定まる目標圧力(Pho)となるように、前記膨張機(21)の回転数を制御することを特徴とする請求項1に記載の熱機関の廃熱利用装置。
  3. 前記熱機関(10)は、車両に搭載され、
    前記凝縮器(22)には、前記車両の走行時の車速風が供給されるものであり、
    前記制御手段(40)は、前記車両の走行速度および外気温度を前記凝縮器(22)の作動条件として前記回収熱量(Qh)を算出することを特徴とする請求項1または請求項2に記載の熱機関の廃熱利用装置。
  4. 前記制御手段(40)は、前記車両の走行速度を前記熱機関(10)の作動回転数で代用することを特徴とする請求項3に記載の熱機関の廃熱利用装置。
  5. 前記制御手段(40)は、前記作動流体の前記凝縮器(22)側となる圧力(Pc)を前記凝縮器(22)の作動条件として前記放熱量(Qc)を算出し、算出された前記放熱量(Qc)に見合う前記回収熱量(Qh)を算出することを特徴とする請求項1または請求項2に記載の熱機関の廃熱利用装置。
  6. 前記制御手段(40)は、前記ポンプ(33)の回転数を可変することで前記作動流体の流量(G)を制御することを特徴とする請求項1〜請求項5のいずれか1つに記載の熱機関の廃熱利用装置。
  7. 前記ポンプ(33)は、一回転あたりの吐出容量を可変可能とするものであり、
    前記制御手段(40)は、前記ポンプ(33)の前記吐出容量を可変することで前記作動流体の流量(G)を制御することを特徴とする請求項1〜請求項5のいずれか1つに記載の熱機関の廃熱利用装置。
  8. 流路面積を可変可能として、前記ポンプ(33)をバイパスするバイパス流路(36)を有し、
    前記制御手段(40)は、前記バイパス流路(36)の前記流路面積を可変することで前記作動流体の流量(G)を制御することを特徴とする請求項1〜請求項5のいずれか1つに記載の熱機関の廃熱利用装置。
  9. 前記熱機関(10)は、車両用であることを特徴とする請求項1、請求項2、請求項5〜請求項8のいずれか1つに記載の熱機関の廃熱利用装置。
JP2004372255A 2004-12-22 2004-12-22 熱機関の廃熱利用装置 Expired - Fee Related JP4543920B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004372255A JP4543920B2 (ja) 2004-12-22 2004-12-22 熱機関の廃熱利用装置
DE102005061214A DE102005061214A1 (de) 2004-12-22 2005-12-21 Vorrichtung zur Nutzung der Abwärme von einer Wärmekraftmaschine
US11/316,169 US7454912B2 (en) 2004-12-22 2005-12-22 Device for utilizing waste heat from heat engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372255A JP4543920B2 (ja) 2004-12-22 2004-12-22 熱機関の廃熱利用装置

Publications (2)

Publication Number Publication Date
JP2006177266A JP2006177266A (ja) 2006-07-06
JP4543920B2 true JP4543920B2 (ja) 2010-09-15

Family

ID=36643200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372255A Expired - Fee Related JP4543920B2 (ja) 2004-12-22 2004-12-22 熱機関の廃熱利用装置

Country Status (3)

Country Link
US (1) US7454912B2 (ja)
JP (1) JP4543920B2 (ja)
DE (1) DE102005061214A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108638794A (zh) * 2018-06-19 2018-10-12 三峡大学 一种汽车尾气余热利用的综合系统

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4823936B2 (ja) * 2006-04-19 2011-11-24 株式会社デンソー 廃熱利用装置およびその制御方法
US7950230B2 (en) * 2007-09-14 2011-05-31 Denso Corporation Waste heat recovery apparatus
DE102007061032B4 (de) * 2007-12-18 2020-03-12 Emcon Technologies Germany (Augsburg) Gmbh Baugruppe zur Energierückgewinnung bei einer Verbrennungskraftmaschine
DE102007062580A1 (de) * 2007-12-22 2009-06-25 Daimler Ag Verfahren zur Rückgewinnung einer Verlustwärme einer Verbrennungskraftmaschine
JP2009167994A (ja) * 2008-01-21 2009-07-30 Sanden Corp 内燃機関の廃熱利用装置
EP2249017B1 (en) 2008-02-14 2013-03-27 Sanden Corporation Waste heat utilization device for internal combustion engine
WO2009133620A1 (ja) * 2008-05-01 2009-11-05 サンデン株式会社 内燃機関の廃熱利用装置
JP4900334B2 (ja) * 2008-07-04 2012-03-21 株式会社デンソー 燃焼機関の廃熱利用システム
WO2010024246A1 (ja) * 2008-08-26 2010-03-04 サンデン株式会社 内燃機関の廃熱利用装置
DE102008057202A1 (de) 2008-11-13 2010-05-20 Daimler Ag Clausius-Rankine-Kreis
US8713939B2 (en) * 2008-12-18 2014-05-06 Mitsubishi Electric Corporation Exhaust heat recovery system
US8839620B2 (en) 2009-01-13 2014-09-23 Avl Powertrain Engineering, Inc. Sliding vane rotary expander for waste heat recovery system
US9051900B2 (en) 2009-01-13 2015-06-09 Avl Powertrain Engineering, Inc. Ejector type EGR mixer
WO2010083198A1 (en) 2009-01-13 2010-07-22 Avl North America Inc. Hybrid power plant with waste heat recovery system
US20100242479A1 (en) * 2009-03-30 2010-09-30 General Electric Company Tri-generation system using cascading organic rankine cycle
EP2419621A4 (en) 2009-04-17 2015-03-04 Echogen Power Systems SYSTEM AND METHOD FOR MANAGING HEAT PROBLEMS IN GAS TURBINE ENGINES
BRPI1011938B1 (pt) 2009-06-22 2020-12-01 Echogen Power Systems, Inc sistema e método para gerenciar problemas térmicos em um ou mais processos industriais.
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8794002B2 (en) 2009-09-17 2014-08-05 Echogen Power Systems Thermal energy conversion method
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
KR101087544B1 (ko) * 2009-10-06 2011-11-29 한국에너지기술연구원 랭킨 사이클 장치 및 이에 따른 제어방법
DE102010003906A1 (de) * 2010-04-13 2011-10-13 Behr Gmbh & Co. Kg Verbrennungsmotor
CA2841429C (en) * 2010-08-26 2019-04-16 Michael Joseph Timlin, Iii A binary condensing thermal power cycle
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
DE102010063701B4 (de) 2010-12-21 2019-02-07 Robert Bosch Gmbh Verfahren und Vorrichtung zur Nutzung von Abwärme einer Wärmekraftmaschine
EP2665907B1 (en) 2011-01-20 2017-05-10 Cummins Intellectual Properties, Inc. Rankine cycle waste heat recovery system and method with improved egr temperature control
DE102011003430B3 (de) * 2011-02-01 2012-05-31 Continental Automotive Gmbh Verfahren und Vorrichtung zum Überprüfen einer Steuereinrichtung
SE535680C2 (sv) * 2011-03-17 2012-11-06 Scania Cv Ab Arrangemang för att omvandla värmeenergi till mekanisk energi i ett fordon
JP5278496B2 (ja) * 2011-03-25 2013-09-04 株式会社豊田自動織機 車両用排熱回収装置
JP2013011182A (ja) * 2011-06-28 2013-01-17 Ihi Corp 廃熱発電装置
JP2013011258A (ja) * 2011-06-30 2013-01-17 Toyota Industries Corp ランキンサイクル
JP5621721B2 (ja) * 2011-06-30 2014-11-12 株式会社豊田自動織機 ランキンサイクル
JP2013083240A (ja) * 2011-09-26 2013-05-09 Toyota Industries Corp 廃熱利用装置
WO2013046929A1 (ja) 2011-09-30 2013-04-04 日産自動車株式会社 エンジン廃熱利用装置
WO2013055391A1 (en) 2011-10-03 2013-04-18 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
JP5708446B2 (ja) 2011-11-02 2015-04-30 株式会社豊田自動織機 廃熱回生システム
US9103249B2 (en) 2012-02-29 2015-08-11 Caterpillar Inc. Flywheel mechanical energy derived from engine exhaust heat
DE102012204257B4 (de) * 2012-03-19 2022-09-08 Bayerische Motoren Werke Aktiengesellschaft Wärmekraftmaschine in einem Kraftfahrzeug
JP6009193B2 (ja) * 2012-03-30 2016-10-19 株式会社荏原製作所 真空排気装置
US8893495B2 (en) 2012-07-16 2014-11-25 Cummins Intellectual Property, Inc. Reversible waste heat recovery system and method
BR112015003646A2 (pt) 2012-08-20 2017-07-04 Echogen Power Systems Llc circuito de fluido de trabalho supercrítico com uma bomba de turbo e uma bomba de arranque em séries de configuração
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
CA2899163C (en) 2013-01-28 2021-08-10 Echogen Power Systems, L.L.C. Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
BR112015021396A2 (pt) 2013-03-04 2017-08-22 Echogen Power Systems Llc Sistemas de motor de calor com circuitos de dióxido de carbono supercrítico de alto potência útil
EP2802060B1 (en) * 2013-05-06 2016-07-13 ABB Technology Ltd Energy accumulation and distribution
JP6197745B2 (ja) * 2013-07-31 2017-09-20 株式会社デンソー 車両用冷凍サイクル装置
WO2015192005A1 (en) * 2014-06-13 2015-12-17 Echogen Power Systems, L.L.C. Systems and methods for balancing thrust loads in a heat engine system
DE112015004953T5 (de) * 2014-10-31 2017-08-24 Modine Manufacturing Company Kühlmodul und clausius-rankine-prozess- abwärmerückgewinnungssystem
WO2016073252A1 (en) 2014-11-03 2016-05-12 Echogen Power Systems, L.L.C. Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
CA2966621C (en) * 2014-11-03 2023-03-07 Echogen Power Systems, L.L.C. Valve network and method for controlling pressure within a supercritical working fluid circuit in a heat engine system with a turbopump
JP6489856B2 (ja) * 2015-02-04 2019-03-27 三菱重工業株式会社 排熱回収装置、排熱回収型船舶推進装置および排熱回収方法
US10285310B2 (en) * 2016-03-20 2019-05-07 Robert Bonar Computer data center cooling and electricity generation using recovered heat
JP6732512B2 (ja) * 2016-04-21 2020-07-29 日野自動車株式会社 車両の廃熱回収装置
JP2018155192A (ja) * 2017-03-17 2018-10-04 トヨタ自動車株式会社 廃熱回収装置及び廃熱回収装置の制御方法
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
US11845361B2 (en) * 2019-11-08 2023-12-19 Korea Institute Of Industrial Technology Electric vehicle including Rankine cycle
JP7372132B2 (ja) * 2019-12-16 2023-10-31 パナソニックホールディングス株式会社 ランキンサイクル装置及びその運転方法
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
WO2021233521A1 (en) * 2020-05-18 2021-11-25 Volvo Truck Corporation A waste heat energy recovery system for an engine
CN116568910A (zh) 2020-12-09 2023-08-08 超临界存储公司 三罐电热蓄能系统
DE102021208629A1 (de) 2021-08-09 2023-02-09 Mahle International Gmbh Antriebssystem und Betriebsverfahren

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155707A (ja) * 2000-09-05 2002-05-31 Honda Motor Co Ltd ランキンサイクル装置
WO2003031775A1 (fr) * 2001-10-09 2003-04-17 Honda Giken Kogyo Kabushiki Kaisha Dispositif a circuit rankine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143113A (en) * 1981-03-02 1982-09-04 Hitachi Ltd Method and device for controlling flow rate of motive power generator of rankine cycle type
JPS5814404U (ja) * 1981-07-22 1983-01-29 株式会社東芝 ランキンサイクル装置
JP2540738B2 (ja) * 1986-10-13 1996-10-09 日本電装株式会社 車両搭載用の排熱利用装置
US20030213246A1 (en) * 2002-05-15 2003-11-20 Coll John Gordon Process and device for controlling the thermal and electrical output of integrated micro combined heat and power generation systems
EP1431523A4 (en) * 2001-09-28 2005-03-16 Honda Motor Co Ltd TEMPERATURE CONTROL DEVICE FOR EVAPORATOR
JP2004322914A (ja) * 2003-04-25 2004-11-18 Denso Corp 複合サイクル用熱交換器
JP2005155336A (ja) 2003-11-20 2005-06-16 Denso Corp ランキンサイクルおよび熱サイクル
US7181919B2 (en) * 2004-03-31 2007-02-27 Denso Corporation System utilizing waste heat of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155707A (ja) * 2000-09-05 2002-05-31 Honda Motor Co Ltd ランキンサイクル装置
WO2003031775A1 (fr) * 2001-10-09 2003-04-17 Honda Giken Kogyo Kabushiki Kaisha Dispositif a circuit rankine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108638794A (zh) * 2018-06-19 2018-10-12 三峡大学 一种汽车尾气余热利用的综合系统

Also Published As

Publication number Publication date
US20060225421A1 (en) 2006-10-12
JP2006177266A (ja) 2006-07-06
US7454912B2 (en) 2008-11-25
DE102005061214A1 (de) 2006-07-20

Similar Documents

Publication Publication Date Title
JP4543920B2 (ja) 熱機関の廃熱利用装置
US7536869B2 (en) Vapor compression refrigerating apparatus
JP4823936B2 (ja) 廃熱利用装置およびその制御方法
JP4277608B2 (ja) ランキンサイクル
US6928820B2 (en) Waste heat collecting system having rankine cycle and heating cycle
JP4801810B2 (ja) 廃熱利用装置を備える冷凍装置
US7392655B2 (en) Vapor compression refrigerating device
JP4089619B2 (ja) ランキンサイクルシステム
JP5053922B2 (ja) 内燃機関の廃熱利用装置
JP2005240740A (ja) 車両用排熱回収システム
JP4770562B2 (ja) 車両用空調装置
JP2010188949A (ja) 廃熱回収システム搭載車両
JP4588644B2 (ja) 廃熱利用装置を備える冷凍装置
JP2004255913A (ja) 冷凍サイクル装置
JP4140543B2 (ja) 廃熱利用装置
JP4034219B2 (ja) 廃熱回収サイクル
JP4699972B2 (ja) 廃熱利用装置およびその制御方法
JP2008145022A (ja) 廃熱利用装置を備える冷凍装置
JP2007205283A (ja) 廃熱利用装置およびその制御方法
JP2007218456A (ja) 車両用廃熱利用装置およびその制御方法
JP2002240545A (ja) 車両用空調装置およびその運転方法
JP3094456B2 (ja) 自動車用内燃機関の冷却装置
JP2006177588A (ja) 蒸気圧縮式冷凍機
JP2019120164A (ja) 車両用廃熱回収装置
JP2006125770A (ja) 廃熱利用装置を備える冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees