CN202055876U - 超临界低温空气能发电装置 - Google Patents

超临界低温空气能发电装置 Download PDF

Info

Publication number
CN202055876U
CN202055876U CN2011201310257U CN201120131025U CN202055876U CN 202055876 U CN202055876 U CN 202055876U CN 2011201310257 U CN2011201310257 U CN 2011201310257U CN 201120131025 U CN201120131025 U CN 201120131025U CN 202055876 U CN202055876 U CN 202055876U
Authority
CN
China
Prior art keywords
heat
power generation
overcritical
generating device
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011201310257U
Other languages
English (en)
Inventor
罗良宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2011201310257U priority Critical patent/CN202055876U/zh
Application granted granted Critical
Publication of CN202055876U publication Critical patent/CN202055876U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种新能源太阳能热力超临界低温空气能发电装置。包括吸热器、膨胀发电机组、回热器、冷却器、增压泵、制冷机及其管道附件及检测和控制装置,密闭系统内有氮气或混合工质。工质经吸热器成为高压超临界流体,经膨胀发电机组做功发电成为临界状态工质,经回热器、冷却器冷凝,由增压泵压入回热器换热再进吸热器吸热形成封闭循环发电系统。它也可以用于余热废热地热等中低温热源发电,工质用二氧化碳或混合工质。该超临界低温空气能发电装置副产冷气。它使工质在临界状态下冷凝,放热少,循环利用冷凝热,因而热电效率高、能量转换密度高、单位功率投资低、成本低、副产冷气不耗电。它成功突破了低温太阳能热力发电热效率低的关键难点技术。

Description

超临界低温空气能发电装置
技术领域
本实用新型涉及一种新能源发电装置,尤其是一种超临界低温空气能发电装置。 
背景技术
地球上的能源绝大部分都来源于太阳,不管风能、水能、生物能还是化石能源--煤炭、石油、天然气、可燃冰。在能源日益紧张的今天,新的可再生绿色洁净发电技术日益受到重视。现在,新能源中,水力、风力等太阳能发电技术以及太阳光发电的直接利用技术—光电池、镜面聚热发电技术已相当成熟;水力发电开发潜力已不大;而风力、太阳光太过分散,使得风力、太阳光的直接发电装置占地面积庞大、一次性投资极高。地球大气每天都在重复吸收并发散太阳辐射的能量,而吸收太阳光热能的环境流体—空气中、水中的太阳热能每天更新,几乎取之不尽用之不竭。因而人们都在加紧研究新的间接利用太阳能热能的环境流体—空气中、水中的热力发电技术。其中低温太阳能热力发电技术是最有潜力前途的高新技术。目前,公知的热泵式低温热能发电装置采用热泵系统富集空气中、水中的低温太阳热能再采用朗肯循环系统发电。其中热泵系统主要包括压缩机、冷凝器、节流器、蒸发器;朗肯循环系统主要包括冷凝器、循环泵、蒸发器、膨胀发电机组。该热泵式低温太阳能热力发电技术不仅热泵运行需消耗能量,而且朗肯循环发电系统的冷凝器所耗损的大量热量会流出系统不被有效利用。它投资高、尤其热效率低。 
发明内容
为了克服现有的热泵式低温热能发电装置投资高、尤其热效率低的不足, 本实用新型提供一种超临界低温空气能发电装置,该超临界低温空气能发电装置使工质在临界状态下冷凝,放热少,并且循环利用冷凝热,达到超临界低温空气能发电装置热电效率高、能量转换密度高、单位功率投资低、成本低、副产冷气不耗电的目的。
本实用新型解决其技术问题所采用的技术方案是:该超临界低温空气能发电装置主要包括吸热器、膨胀发电机组、回热器、冷却器、增压泵、制冷机;它还包括系统内相连接的管道、附件及检测和控制装置,密闭系统内有工质,工质为氮气或混合工质。在封闭循环发电系统中,工质经吸热器吸收低温环境流体—空气中、水中的热能加热液态工质成为高压超临界流体,然后高压超临界流体进入膨胀发电机组膨胀降温降压做功发电;膨胀发电机组出口是临界状态工质,临界状态工质经回热器放热冷凝成液态,经冷却器进一步冷却,再由增压泵压入回热器,吸收膨胀发电机组出口的临界状态工质的热量,同时传递冷量给膨胀发电机组出口的临界状态工质并使之冷凝;预热的高压工质再经吸热器进一步吸收低温环境流体—空气中、水中的热能加热液态工质成为高压超临界流体,再流向膨胀发电机组;这样形成了封闭循环发电系统。冷却器与制冷机通过管道相连,制冷机也可以用自然或其他人工冷源代替。吸热器可采用微通道管式高效换热器。回热器可采用套管式高效换热器。冷却器可采用套管式高效换热器。增压泵可采用多级隔膜增压泵。膨胀发动机与发电机连接组成膨胀发电机组,膨胀发动机可采用多级螺杆膨胀机组。膨胀发动机与增压泵主轴可以相连接。该超临界低温空气能发电装置也可以安装于车船及其他机械设备作为直接动力装置或充电装置。该超临界低温空气能发电装置也可以用于余热废热地热等中低温热源发电;用于余热废热地热等中低温热源发电时可用二氧化碳或混合工质。该超临界低温空气能发电装置副产冷气。该超临界低温空气能发电装置启动电力使用蓄电池或电网电力,发电电力除自用外上传电网。
本实用新型的有益效果是,该超临界低温空气能发电装置使工质在临界状态下冷凝,放热少,循环利用冷凝热,使该超临界低温空气能发电装置热效率高、能量转换密度高、单位功率投资低、成本低、副产冷气不耗电。 
附图说明
下面结合附图和实施例对本实用新型作进一步说明。
附图是本实用新型实施例的工作流程示意图。
图中 1. 吸热器、2. 膨胀发电机组、3. 回热器、4. 冷却器、5. 增压泵、6. 制冷机。 
具体实施方式
在附图所示实施例中,该超临界低温空气能发电装置主要包括吸热器(1)、膨胀发电机组(2)、回热器(3)、冷却器(4)、增压泵(5)、制冷机(6);它还包括系统内相连接的管道、附件及检测和控制装置,密闭系统内有工质,工质为氮气或混合工质。在封闭循环系统中,工质经吸热器(1)吸收低温环境流体—空气中、水中的热能加热液态工质成为高压超临界流体,然后高压超临界流体进入膨胀发电机组(2)膨胀降温降压做功发电;膨胀发电机组(2)出口是临界状态工质,临界状态工质经回热器(3)放热冷凝成液态,经冷却器(4)进一步冷却,再由增压泵(5)压入回热器(3),吸收膨胀发电机组(2)出口的临界状态工质的热量,同时传递冷量给膨胀发电机组(2)出口的临界状态工质并使之冷凝;预热的高压工质再经吸热器(1)进一步吸收低温环境流体—空气中、水中的热能加热液态工质成为高压超临界流体,再流向膨胀发电机组(2);这样形成了封闭循环发电系统。冷却器(4)与制冷机(6)通过管道相连。吸热器(1)采用微通道管式高效换热器。回热器(3)采用套管式高效换热器。冷却器(4)采用套管式高效换热器。增压泵(5)采用多级隔膜增压泵。膨胀发动机与发电机连接组成膨胀发电机组(2),膨胀发动机采用多级螺杆膨胀机组。 

Claims (2)

1.一种超临界低温空气能发电装置主要包括吸热器、膨胀发电机组、回热器、冷却器、增压泵、制冷机;它还包括系统内相连接的管道、附件及检测和控制装置,其特征是:吸热器、膨胀发电机组、回热器、冷却器、增压泵、回热器依次连接形成封闭循环发电系统。
2.根据权利要求1所述的超临界低温空气能发电装置,其特征是:该超临界低温空气能发电装置膨胀发电机组出口和增压泵出口有回热器。
3.    根据权利要求1所述的超临界低温空气能发电装置,其特征是:该超临界低温空气能发电装置的吸热器采用微通道管式高效换热器,回热器采用套管式高效换热器,冷却器采用套管式高效换热器,增压泵采用多级隔膜增压泵,膨胀发动机采用多级螺杆膨胀机组。
4.    根据权利要求1所述的超临界低温空气能发电装置,其特征是:该超临界低温空气能发电装置膨胀发电机组主轴与增压泵主轴之间相连接。
CN2011201310257U 2011-04-28 2011-04-28 超临界低温空气能发电装置 Expired - Fee Related CN202055876U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011201310257U CN202055876U (zh) 2011-04-28 2011-04-28 超临界低温空气能发电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011201310257U CN202055876U (zh) 2011-04-28 2011-04-28 超临界低温空气能发电装置

Publications (1)

Publication Number Publication Date
CN202055876U true CN202055876U (zh) 2011-11-30

Family

ID=45015850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011201310257U Expired - Fee Related CN202055876U (zh) 2011-04-28 2011-04-28 超临界低温空气能发电装置

Country Status (1)

Country Link
CN (1) CN202055876U (zh)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146814A (zh) * 2011-04-28 2011-08-10 罗良宜 超临界低温空气能发电装置
CN102606241A (zh) * 2012-04-10 2012-07-25 中国科学院微电子研究所 一种基于超临界二氧化碳的发电系统
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US8616323B1 (en) 2009-03-11 2013-12-31 Echogen Power Systems Hybrid power systems
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
CN103727016A (zh) * 2012-10-16 2014-04-16 株式会社日立产机系统 气体压缩机
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
US8794002B2 (en) 2009-09-17 2014-08-05 Echogen Power Systems Thermal energy conversion method
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US9014791B2 (en) 2009-04-17 2015-04-21 Echogen Power Systems, Llc System and method for managing thermal issues in gas turbine engines
US9062898B2 (en) 2011-10-03 2015-06-23 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
US9091278B2 (en) 2012-08-20 2015-07-28 Echogen Power Systems, Llc Supercritical working fluid circuit with a turbo pump and a start pump in series configuration
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
CN105775086A (zh) * 2016-03-22 2016-07-20 石家庄新华能源环保科技股份有限公司 一种利用二氧化碳储能为动力的轮船
US9441504B2 (en) 2009-06-22 2016-09-13 Echogen Power Systems, Llc System and method for managing thermal issues in one or more industrial processes
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
US9752460B2 (en) 2013-01-28 2017-09-05 Echogen Power Systems, Llc Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
CN107345490A (zh) * 2016-05-05 2017-11-14 中国科学院生态环境研究中心鄂尔多斯固体废弃物资源化工程技术研究所 空气能动力系统
US10934895B2 (en) 2013-03-04 2021-03-02 Echogen Power Systems, Llc Heat engine systems with high net power supercritical carbon dioxide circuits
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
US11293309B2 (en) 2014-11-03 2022-04-05 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
US11629638B2 (en) 2020-12-09 2023-04-18 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8616323B1 (en) 2009-03-11 2013-12-31 Echogen Power Systems Hybrid power systems
US9014791B2 (en) 2009-04-17 2015-04-21 Echogen Power Systems, Llc System and method for managing thermal issues in gas turbine engines
US9441504B2 (en) 2009-06-22 2016-09-13 Echogen Power Systems, Llc System and method for managing thermal issues in one or more industrial processes
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US9115605B2 (en) 2009-09-17 2015-08-25 Echogen Power Systems, Llc Thermal energy conversion device
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US9458738B2 (en) 2009-09-17 2016-10-04 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US8794002B2 (en) 2009-09-17 2014-08-05 Echogen Power Systems Thermal energy conversion method
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US9863282B2 (en) 2009-09-17 2018-01-09 Echogen Power System, LLC Automated mass management control
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8966901B2 (en) 2009-09-17 2015-03-03 Dresser-Rand Company Heat engine and heat to electricity systems and methods for working fluid fill system
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
US9410449B2 (en) 2010-11-29 2016-08-09 Echogen Power Systems, Llc Driven starter pump and start sequence
CN102146814A (zh) * 2011-04-28 2011-08-10 罗良宜 超临界低温空气能发电装置
US9062898B2 (en) 2011-10-03 2015-06-23 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
CN102606241A (zh) * 2012-04-10 2012-07-25 中国科学院微电子研究所 一种基于超临界二氧化碳的发电系统
US9091278B2 (en) 2012-08-20 2015-07-28 Echogen Power Systems, Llc Supercritical working fluid circuit with a turbo pump and a start pump in series configuration
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
US9347338B2 (en) 2012-10-16 2016-05-24 Hitachi Industrial Equipment Systems Co., Ltd. Gas compressor
CN103727016B (zh) * 2012-10-16 2017-04-12 株式会社日立产机系统 气体压缩机
CN103727016A (zh) * 2012-10-16 2014-04-16 株式会社日立产机系统 气体压缩机
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
US9752460B2 (en) 2013-01-28 2017-09-05 Echogen Power Systems, Llc Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
US10934895B2 (en) 2013-03-04 2021-03-02 Echogen Power Systems, Llc Heat engine systems with high net power supercritical carbon dioxide circuits
US11293309B2 (en) 2014-11-03 2022-04-05 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
CN105775086A (zh) * 2016-03-22 2016-07-20 石家庄新华能源环保科技股份有限公司 一种利用二氧化碳储能为动力的轮船
CN105775086B (zh) * 2016-03-22 2018-03-16 石家庄新华能源环保科技股份有限公司 一种利用二氧化碳储能为动力的轮船
CN107345490A (zh) * 2016-05-05 2017-11-14 中国科学院生态环境研究中心鄂尔多斯固体废弃物资源化工程技术研究所 空气能动力系统
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
US11629638B2 (en) 2020-12-09 2023-04-18 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system

Similar Documents

Publication Publication Date Title
CN202055876U (zh) 超临界低温空气能发电装置
CN102146814A (zh) 超临界低温空气能发电装置
CN102182655B (zh) 低温朗肯双循环发电装置
CN106224041B (zh) 一种电热储能系统
CN102748895B (zh) 基于第三工作介质发电的燃气热泵供能系统
CN106224040A (zh) 一种电热储能多联产系统
CN201650630U (zh) 一种利用太阳能和地热发电的装置
CN101825073A (zh) 一种分布式太阳能梯级利用系统
CN103711535A (zh) 环境热能转换的方法及利用环境热能提供动力的装置
CN102251876A (zh) 跨临界低温空气能热力发电装置
CN201991579U (zh) 空气能发电装置
CN102094689A (zh) 低温热能发电装置
CN201340043Y (zh) 太阳能多级利用系统
CN102383882A (zh) 新型空气能制冷发电装置
CN201991715U (zh) 低温太阳能热力发电装置
CN206738064U (zh) 一种风能和太阳能联合储能发电系统
CN203454466U (zh) 一种可再生能源互补的冷热电联产系统
CN211116438U (zh) 一种基于海洋温差能的发电制冷联合循环系统
CN201878060U (zh) 一种热泵型温差发电装置
CN102191958A (zh) 低温空气能发电装置
CN202081927U (zh) 低温朗肯双循环发电装置
CN202300555U (zh) 跨临界低温空气能发电装置
CN201991574U (zh) 低温热能发电装置
CN102191952A (zh) 空气能发电装置
CN102392706A (zh) 跨临界低温空气能发电装置

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111130

Termination date: 20140428