CN103459484A - 纳米管分散剂及由其得到的不含分散剂的纳米管膜 - Google Patents

纳米管分散剂及由其得到的不含分散剂的纳米管膜 Download PDF

Info

Publication number
CN103459484A
CN103459484A CN2012800169678A CN201280016967A CN103459484A CN 103459484 A CN103459484 A CN 103459484A CN 2012800169678 A CN2012800169678 A CN 2012800169678A CN 201280016967 A CN201280016967 A CN 201280016967A CN 103459484 A CN103459484 A CN 103459484A
Authority
CN
China
Prior art keywords
dispersion agent
dispersion
film
polymer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012800169678A
Other languages
English (en)
Other versions
CN103459484B (zh
Inventor
瑞安·M·瓦尔恰克
约翰·R·雷诺兹
安德鲁·G·林兹勒
安德鲁·M·斯普林
斯维特拉娜·V·瓦西里耶娃
普贾·韦德瓦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Florida Research Foundation Inc
Original Assignee
University of Florida Research Foundation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Florida Research Foundation Inc filed Critical University of Florida Research Foundation Inc
Publication of CN103459484A publication Critical patent/CN103459484A/zh
Application granted granted Critical
Publication of CN103459484B publication Critical patent/CN103459484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/284Alkyl ethers with hydroxylated hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/16Esters of inorganic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D147/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • C09D5/027Dispersing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Conductive Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

一种可降解聚合物纳米管(NT)分散剂,其包含通过连接基团与聚合物骨架连接的多个NT缔合基团,其中在聚合物骨架和/或连接基团内具有可断裂基团,使得在定向改变条件时使可断裂基团的键断裂,以缔合基团不与其他缔合基团连接的方式得到来自可降解聚合物NT分散剂的残余物,赋予缔合基团单体性质。可降解聚合物纳米管(NT)分散剂可与碳NT组合,形成NT分散体,其可通过气刷、静电喷涂、超声波喷涂、喷墨印刷、辊-辊涂覆或浸涂沉积形成NT膜或其它结构。沉积可使NT膜呈现不均匀的厚度或利用不同的厚度图案化。通过膜的沉积,可断裂可降解聚合物纳米管(NT)分散剂并且从膜中去除断裂残余物,产生NT之间的接触不被分散剂阻碍的膜,得到高电导率NT膜。

Description

纳米管分散剂及由其得到的不含分散剂的纳米管膜
相关申请的交叉引用
本申请要求2011年4月4日提交的美国临时申请序列No.61/471,582的权益,其全部内容(包括任何图、表或附图)通过引用并入本文。
背景技术
由于其理想的特性(包括高电导率、高载体迁移率和高机械强度),以及由于其能够被加工成多种形式(例如纤维和薄膜),碳纳米管(NT)在技术应用方面受到了大量关注。网和膜形式的NT已经被提议作为多种类型的器件的电极,所述器件包括:聚合物超级电容器、有机发光二级管和有机光伏器件的透明电极、以及有机发光二级管、有机光伏器件和有机电致变色器件的有机电极。电活性有机基体(例如聚(3-烷基噻吩)和聚(亚苯基亚乙烯基))内的NT分散体已经显示了作为本体异质结光伏器件中的电活性组件的潜力。最近的工作已经表明,将NT分散在有机聚合物基体(如聚苯乙烯和聚丙烯酸酯)内大大地增加了其强度、韧性和耐久性,此外还引入和增强了它性能。因此,NT分散到电活性有机材料中有望作为以下器件的活性部位:电荷储存超级电容器/电池、太阳能电池、基于电致变色纤维和膜的器件、以及发光器件,其除了产生增强的电子特性外,还可得到耐用和坚韧的材料。
NT膜商业成功的关键是能够通过如印刷、辊-辊涂覆和喷涂的方法来大规模加工膜。这些加工方法需要良好分散的NT溶液或悬浮体,并且该均匀溶液或悬浮体可长时间保持。该碳NT分散剂的实例包括离子型表面活性剂和非离子型表面活性剂、DNA、包含多环芳香族基团的共轭聚合物和非共轭聚合物(例如芘和卟啉)。用于高端电子应用的NT膜需要低的薄层电阻(<300欧姆/平方),对于涉及透明电极的那些应用,低的薄层电阻必须伴随着对感兴趣的波长区域内的电磁辐射的高透射率(大于75%)。但是,已使用的适合于大规模生产技术的作为分散体沉积的NT薄膜导致次优的透明度和/或电导率,其在具有可接受的透射率水平时通常具有大于1000欧姆/平方的电阻率。已经设计了很多分散剂(特别是聚合物分散剂)来将NT混入聚合物复合材料中作为加固材料,但是不适合形成透明导电的薄膜电极。通常,NT分散剂与纳米管不可逆地结合,此时在薄膜中NT分散剂超过NT的含量,并且未显示用在高端电子应用中的能力。
因此,仍然需要一种NT分散剂,使得能够形成稳定的碳NT分散体,并且可被容易地除去以形成薄膜而不损坏或损害NT的可能结构和性能。另外,这些分散剂可用于形成用于电活性及相关器件的碳纳米管复合材料,这些器件包括:电致发光器件、光伏器件、电致变色膜和纤维、场效应晶体管、蓄电池、电容器和超级电容器。
发明简述
本发明的一个实施方案涉及可降解的聚合物碳纳米管(NT)分散剂,其包含通过连接基团与聚合物骨架结合的多个NT缔合基团,并且具有位于NT缔合基团之间的多个可断裂基团。以这种方式,单个NT缔合基团与其他NT缔合基团分开,其中可断裂基团的断裂留下具有不超过一个NT缔合基团的来自聚合物碳纳米管(NT)分散剂的残余片段。所述NT缔合基团包含能够与NT或其他石墨烯结构非共价缔合的多环芳基。所述可降解聚合物NT分散剂可溶于至少一种溶剂中。所述可断裂基团包含能够通过改变温度、改变照度、添加一种或更多种化学物质或其任意组合来通过不会不利地改变NT膜结构的断裂反应而断裂的官能团。所述连接基团包含2至约20个单价或多价键,其包含碳原子和任选的杂原子的链或硅原子和任选的杂原子的链。所述多环芳基包括芘、蒽、并五苯、苯并[a]芘、
Figure BDA0000391193810000021
蒄、碗烯、并四苯、菲、苯并[9,10]菲、卵苯(ovalene)、苯并菲、苝、苯并[ghi]苝、蒽嵌蒽(antanthrene)、五苯、苉、二苯并[3,4;9,10]芘、苯并[3,4]芘,二苯并[3,4;8,9]芘、二苯并[3,4;6,7]芘、二苯并[1,2;3,4]芘、萘并[2,3;3,4]芘、卟啉衍生物或其任意组合。
本发明的另一个实施方案涉及纳米管(NT)分散体,其包含多个NT或NT等同物、可降解聚合物NT分散剂和溶剂,NT通过溶解可降解聚合物NT分散剂分散在所述溶剂中。所述NT或NT等同物可以是单壁碳纳米管(SWNT)、双壁碳纳米管(DWNT)、多壁碳纳米管(MWNT)、石墨烯片或其他石墨烯结构。所述分散体可包含其他纳米颗粒或微米颗粒。在本发明一个实施方案中,所述纳米颗粒或微粒可以是不溶于所述分散体的溶剂但可溶于第二溶剂的物质。
本发明另一个实施方案涉及形成包含NT的膜的方法,其中将NT分散体沉积在基底上,断裂可降解聚合物NT分散剂的可断裂基团,并且去除溶剂和来自可降解聚合物NT分散体的断裂残余物,但是不一定在同一步骤中。沉积可通过气刷、静电喷涂、超声波喷涂、喷墨印刷、辊-辊涂覆或浸涂法进行。溶剂的去除可在可断裂基团的断裂之前或之后进行。可通过热解、光解、添加催化剂、添加一种或更多种试剂、添加一种或更多种溶剂或其任意组合来促进断裂。可通过过滤、洗涤或蒸发来进行去除。
在本发明的一个实施方案中,包含NT的膜包含无残余分散剂的多个NT,其整个膜的NT之间具有紧密电接触,并且膜的厚度在预定图案变化(例如,厚的NT线分开薄的NT窗)。所述预定图案可通过借助上述沉积方法中的一种沉积膜的至少一部分来形成。例如,所述预定图案可以是通过喷墨印刷沉积在近似均匀厚透明纳米管膜衬底上的NT网,其中沉积线相对于膜较厚,但是具有小的宽度,从而使得非常透明的衬底膜的窗被较不透明或不透明的组成图案化的网分开。例如,网可具有小于50%的透射率的透明度,窗可具有超过75%透射率的透明度,从而使得相对于缺少网的均匀厚度的膜,所述网少许降低了膜的表观透明度,但是提高了膜的导电率。
本发明的这些以及其他的特征和优点对于本领域的技术人员将是明显的。虽然本领域技术人员可进行多种修改,但是这些修改在本发明的精神之内。
附图简述
图1示出了根据本发明的一个实施方案通过ADMET聚合使缩醛单体均聚以形成可溶于有机溶剂的可降解聚合物NT分散剂,以及根据本发明的一个实施方案将ADMET形成的包含烯的聚合物还原成饱和聚合物的反应流程。
图2示出了根据本发明的一个实施方案形成单体以及在随后通过烷氧基硅烷形成使其聚合成可降解聚合物NT分散剂的反应流程。
图3示出了根据本发明的一个实施方案通过ADMET共聚作用形成具有增强的有机溶剂溶解度的可降解聚合物NT分散剂的反应流程。
图4示出了根据本发明的一个实施方案通过ADMET共聚作用形成水溶性的可降解聚合物NT分散剂的反应流程。
图5示出了根据本发明的一个实施方案合成缩醛单体的反应流程,所述缩醛单体用于通过ADMET共聚作用制备可降解聚合物NT分散剂。
图6示出了根据本发明的一个实施方案合成α,ω-二烯单体的反应流程,其用于通过ADMET共聚作用制备具有增强的有机溶剂溶解度的可降解聚合物NT分散剂。
图7是根据本发明的一个实施方案的60nm至65nm厚的含NT膜的可见-近红外光谱,所述膜通过酸催化降解芘缔合基团与羟丙基纤维素NT分散剂之间的连接基团中的可断裂基团来制备,其中膜通过将NT分散体喷在玻璃衬底上来沉积。
图8是具有图7的可见-近红外光谱的NT膜随时间的薄层电阻的曲线图。
发明详述
本发明的一些实施方案涉及有需求的用于碳纳米管(NT)的可降解聚合物分散剂,其具有多个NT缔合基团,其中分散剂可在膜或其他结构形成之后通过将分散剂降解成在从聚合物中断裂之后保留下来的单独的、单体的、缔合基团来去除。所述缔合基团可以是多环芳族单元,例如芘单元。所述NT缔合基团在通过聚合物连接时以配位方式(cooperativemanner)与NT牢固结合,其中多个单独NT缔合基团的结合使得NT与聚合物耦合,其不依赖于任何个别NT缔合基团与NT的缔合或解离。通过可断裂基团的断裂,NT缔合基团从聚合物解离,使得单体NT缔合基团能够经历缔合/解离平衡,其可被推动至解离形式,并且使得能够从NT中除去NT缔合基团,其还使得能够从电极或包含NT膜或其它NT等同结构的任意其它器件中除去聚合物分散剂的残余的断裂耦合聚合物部分。
在本发明的另一个实施方案中,形成由NT和可降解聚合物NT分散剂制备的NT分散体,其可用作油墨以形成高导电的NT印刷膜。根据本发明一个实施方案,印刷的NT膜可通过去除作为高导电膜的聚合物分散剂来形成,如所使用的沉积法所允许的,所述膜在膜的整个区域内可具有不同的厚度和透明度。例如,印刷膜可包含划分高透明度NT窗的具有相对低透明度的连续高导电的NT带的网,其中所述窗的电导率高,但是低于网格带的电导率。印刷的纳米管膜可被掺杂以进一步提高其电导率。可通过本领域中任意已知的方法进行掺杂,并且掺杂物可以是已知掺杂NT的任何物质,包括但不限于:卤素、硫酸、碱金属、醌类、硼烷、硼-四氮杂戊搭烯、铵或铵盐、硫鎓盐、氧鎓盐、硒鎓盐、亚硝鎓盐、砷鎓盐、磷鎓盐、碘鎓盐、选择金属(例如,银)盐和光产酸源(photoacid),例如二芳基或多芳基硫鎓盐和碘鎓盐。
在本发明的一个实施方案中,可降解聚合物NT分散剂包含聚合物骨架和含有多环芳基的侧基,所述多环芳基与碳NT管壁或其他石墨烯表面如石墨烯片强烈但是可逆地结合。所述侧基连接在聚合物骨架的重复单元上,并且在某些情况下,除了聚合物的非末端重复单元之外,还连接在聚合物的末端。所述侧基可连接在聚合物的末端或非末端重复单元上。所述聚合物可以是直链、支链、超支化或树枝状聚合物。所述聚合物可以是均聚物或者两种或更多种不同重复单元的共聚物。所述聚合物(其可以是具有多种不同重复单元的共聚物)可以是可通过逐步生长或链生长聚合作用制备的任意聚合物,包括但不限于:聚酰胺、聚酯、聚碳酸酯、聚酰亚胺、聚丁二烯或其它非共轭多烯以及聚硅氧烷。所述聚合物可以是天然来源的,例如由纤维素发展来的那些。在本发明的一些实施方案中,聚合物骨架包含异质结构,例如杂原子或具有不同杂化的碳(例如孤立的烯单元),聚合物骨架可在此降解以有助于去除除了含单个NT缔合基团的片段之外的来自聚合物的片段。在本发明的一个实施方案中,已经形成了一种聚合物结构的可降解聚合物NT分散剂,可在聚合物上进行反应以形成另一结构,如可被本领域技术人员理解的和在用于还原非共轭聚烯的图1所示实施方案中描述的。在NT缔合基团与聚合物连接时,可降解聚合物NT分散剂可溶于至少一种溶剂,并且降解残余物(聚合物、低聚物或单体物质)可溶于相同或不同溶剂。在本发明的实施方案中,聚合物可具有低聚合度,例如三聚物、四聚物乃至二聚物,并且可称作低聚物或聚合物。聚合物的端基可连接一个或更多个NT缔合基团。
NT缔合基团通过包含2至约20共价键(为单键或多键)的连接基团连接在聚合物的重复单元上。连接基团可以是碳原子或碳原子与杂原子组合的链,所述杂原子包括但不限于:氧、氮、硅、磷和硫。在本发明的另一个实施方案中,连接基团可包含硅原子之间或硅原子与杂原子之间的2至约20个共价键,所述杂原子包括但不限于:氧、氮和碳。在本发明的另一个实施方案中,连接基团包含6至20个共价键,允许将聚合物骨架结构从同NT结合的NT缔合基团分离(decoupling)。允许降解的可断裂键可存在于聚合物骨架内或连接基团内。为了确保仅具有单个NT缔合基团的片段的可降解性,根据本发明的一个实施方案的可降解聚合物NT分散剂在给定的重复单元内具有不超过一个侧链NT缔合基团,并且可断裂键的布置在于:在可降解聚合物NT分散剂通过断裂全部可断裂基团完全降解之后,仅有一个NT缔合基团可存在于降解片段内。
用于制备NT分散体的NT分散剂可具有侧基上的可断裂基团。可降解聚合物分散剂上的多个NT缔合基团可与单个重复单元结合,只要全部可断裂键的断裂导致产生含有不超过单个NT缔合基团的可降解残余物,其中以这种方式,可形成有效去除了来自NT分散剂的残余片段的NT膜。这种类型的NT分散剂,对于与连接基团连接的每个NT缔合基团,在连接基团上具有至少一个可断裂基团。在本发明的一个实施方案中,形成NT膜的方法需要以非常高的断裂效率降解,使得通过反应没有一对NT缔合基团保持与单个分子连接。断裂得到具有单个NT缔合基团的降解片段。
尽管单体NT缔合基团可与NT结合,但是在降解后多个分子连接的NT缔合基团之间的配位(cooperation)的缺少使其能够被有效除去。这种除去使得剩余的NT能够在两个不受阻碍的相邻NT之间在(平均地)沿任意给定NT的多个位点紧密接触,从而允许膜内的电渗流,其导致NT膜的高电导率。由于NT与连接于同一可降解聚合物NT分散剂的多个NT缔合基团的配位结合,从NT解离的未降解聚合物NT分散剂上的任何NT缔合基团被迫保持紧邻NT。由于多个NT缔合基团的这种配位结合,建立了NT与可降解NT分散剂的强结合的平衡状态。在聚合物和/或连接基团降解之后,分离的单体NT缔合基团可从NT扩散,并且单体NT缔合基团和NT之间的缔合-解离平衡可被推动以有效地完全解离并且去除NT缔合基团。例如,用对单体NT缔合基团具有亲和力的溶剂或溶液多次洗涤导致从NT膜除去NT缔合基团。有效地,在足够量的NT缔合基团和其他聚合物残余被去除至以下程度时可认为完全解离:每个NT可不受阻碍地与至少一个其他NT接触,使得在所得膜或其他结构的基体内平均尺寸的NT具有多个接触。尽管不需要完全去除来自降解聚合物NT分散剂的所有包含单体NT缔合基团的残余物,但是在大部分系统中将有效地完全去除。
在本发明的另一个实施方案中,可在衬底上进行多次NT沉积以形成膜或图案化的膜,其中至少一次沉积使用利用了一种或更多种可降解NT分散剂的NT分散体。在可降解聚合物NT分散剂降解之后,单体NT缔合基团可分散至多重沉积膜的有效去除了NT缔合基团的部分。例如,有效去除了NT缔合基团的膜部分,没有以干扰NT之间的电连通的方式连接的NT缔合的部分,可与膜的其它具有单体NT缔合基团的部分释放的单体NT缔合基团结合,所述结合以不发生干扰现有NT与NT接触的方式。例如,根据美国专利7,776,444(其通过引用并入本文)的NT膜是无NT缔合基团的膜,其可用作衬底,通过在其上用印刷方法沉积可降解NT分散体来形成有图案的NT膜,其通过降解图案化的膜上的NT分散剂,具有单体NT缔合基团的片段可迁移至衬底NT膜而不干扰衬底NT膜NT与NT的缔合。
在用于形成纳米管分散体时,聚合物缔合分散剂的缔合基团可以是多环芳基,其可通过π-堆积(pi-stacking)与碳NT的侧壁非共价结合。其他非共价缔合力可用于与碳纳米管结合。与共价键不同,缔合基团与NT之间的结合不以改变或损害来自非定域π系统的纳米管性能的方式干扰纳米管结构。如本文使用的,碳NT包括单壁碳纳米管(SWNT)、多壁碳纳米管(MWNT)或NT等同物,包括石墨烯片、其它石墨烯结构或包含NT和/或NT等同物的任意混合物。
在本发明的一个实施方案中,可使用多种多环芳基作为可降解聚合物NT分散剂的缔合基团。这些多环芳基中的任何一种可单独使用或与一种或更多种其他结构不同的多环芳基组合使用来作为可降解聚合物NT分散剂的缔合基团。可用于与缔合基团非共价结合的多环芳基包括但不限于:芘、蒽、并五苯、苯并[a]芘、、蒄、碗烯、并四苯、菲、苯并[9,10]菲、卵苯、苯并菲、苝、苯并[ghi]苝、蒽嵌蒽、五苯、苉、二苯并[3,4;9,10]芘、苯并[3,4]芘,二苯并[3,4;8,9]芘、二苯并[3,4;6,7]芘、二苯并[1,2;3,4]芘、萘并[2,3;3,4]芘和卟啉衍生物。多环芳族缔合基团可与以下物质结合:聚合物的每一个重复单元、聚合物的交替重复单元、或与聚合物的三个或更多个重复单元随机或有规律连接。NT缔合基团可与可降解聚合物NT分散剂的一个或更多个端基连接。
本发明的一些实施方案涉及可降解聚合物NT分散剂的制备。包含连接的NT缔合基团的单体单元可通过任意合适的机理均聚(如图1和2中示例性实施方案所示)或共聚(如图3和4中示例性实施方案所示),所述机理包括但不限于:缩聚、开环加聚、自由基加聚、阴离子加聚、阳离子加聚、配位开环加聚、逐步生长或链生长易位聚合或任意其它合适的方法。可降解聚合物骨架还可是天然来源,例如基于纤维素的那些。聚合物链的结构可改变,以适应于使用可降解聚合物NT分散体的期望过程,以允许将所得NT膜沉积在所选衬底上,实现期望的沉积条件,或其他考虑因素。可降解聚合物NT分散剂的聚合物可以是可溶于水或可溶于有机溶剂的聚合物。有机溶剂可不同,并且可以是非极性溶剂(例如脂肪族或芳族烃)或非质子性极性有机溶剂(例如四氢呋喃或丙酮)或质子性极性溶剂(例如醇或二醇)。
在本发明的一个实施方案中,可断裂基团可位于骨架内或包含NT缔合基团的每个重复单元之间。另外的可断裂基团可位于骨架内的规则或不规则位置。在本发明的另一个实施方案中,可断裂基团位于聚合物骨架与NT缔合基团之间的连接基团内。可断裂基团可以是在制备或沉积NT分散体时稳定的任何基团,但是可改变这些条件以促进基团的断裂。改变条件可以是:改变温度、照度、添加一种或更多种作为催化剂和/或反应物的化学物质、添加催化剂和添加溶剂或其任意组合。例如,断裂可由于可断裂基团的热解或光解断键反应如逆狄尔斯-阿德尔反应(retroDiels-Alder reaction)导致。可通过催化剂如促进溶剂分解反应的酸或碱促进断裂。可对由NT分散体形成的膜施加条件的改变。在本发明的一个实施方案中,改变条件可包括改变用于分散催化剂内含物的溶剂或溶剂浓度,以使得聚合物NT分散体可以是单体与低聚物(例如环状低聚物)的平衡,其中包含NT缔合基团的重复单元与总重复单元的比例足够小并且可基本上仅留下每个低聚物包含单个NT缔合基团的低聚物。
例如,在本发明的一个示例性实施方案中,可断裂基团是缩醛或缩酮,其位于重复单元内和/或可降解聚合物NT分散剂的NT缔合基团的连接基团内。由该可降解聚合物NT分散剂形成的NT分散体可用于形成膜并且可添加酸或碱催化剂。例如,润湿膜的水或醇溶剂是导致缩醛或缩酮可断裂基团断裂的试剂。所添加的酸或碱催化剂可以是任意
Figure BDA0000391193810000081
-Lowry或路易斯酸或碱。断裂释放单体缔合基团,并且允许同时或随后除去来自聚合物NT分散剂的聚合物骨架部分或聚合物骨架部分的片段。单体NT缔合基团可包括连接基团的一部分,可包括整个连接基团,或可包括聚合物骨架的一部分,其可同时或随后从通过断裂产生的其他残余物中去除。在本发明的另一个示例性实施方案中,可断裂基团可以是二-、三-、或四-烷氧基硅烷(硅烷基酯)或二-、三-、或四-硅氮烷,其中溶剂或聚合物NT分散剂缺少氧亲核体,以致于随后可通过将来自NT分散体的膜暴露于亲核氧试剂和任何合适的所需催化剂来水解或醇解所述烷氧基硅烷或硅氮烷以从聚合物骨架、聚合物骨架的残余物释放单体NT缔合基团。在本发明的另一示例性实施方案中,可断裂基团可包含在天然来源的聚合物(例如纤维素)的骨架中。根据本发明的一些实施方案,断裂在纳米管分散体沉积成膜之后进行,并且其中断裂反应导致几乎不破坏NT膜结构,使得任意无NT缔合基团的包含NT的膜成为高导电,同时具有与去除NT分散剂之前的沉积膜近似相等的厚度。为了确保有效接触与NT分散剂结合的NT膜上的可断裂基团,避免很大分子量或固体的降解催化剂。因此,不使用聚合物结合试剂、酶或固体不溶催化剂来促进断裂。
在本发明的一个实施方案中,包含用于流动性的液体载体、可降解聚合物NT分散剂和NT的NT分散体通过可降解聚合物NT分散剂、NT和液体(在本文中通常称作“溶剂”)的组合形成。溶剂可能实际上不溶解NT分散体,但是在无NT时确实溶解可降解聚合物NT分散剂。由于聚合物NT缔合基团的配位性质,在本发明的一些实施方案中,可能的是可按照以下量使用可降解聚合物NT分散剂:NT上的单个分散剂单层乃至分散剂亚单层足够实现相对稳定的分散。NT可以是单壁碳纳米管(SWNT)、多壁碳纳米管(MWNT)或NT等同物,例如石墨烯片或其他石墨烯结构。NT分散体还可包含其他纳米、微米乃至更大的颗粒,其可根据期望改变膜或其他结构基体不主要由二维定义的结构或性能,结构在第三维厚度显著较小。额外的颗粒可改变所得膜或结构基体的最终性能。例如,在本发明的一个实施方案中,可包括金属纳米线或纳米颗粒,可根据需要使用第二分散剂乃至充分的机械搅拌以实现充分分散的结构。在本发明的另一个实施方案中,NT分散体可包含任何形状或形状的混合物的聚合物纳米颗粒或微米颗粒,例如,球形、棒形或圆盘形。聚合物纳米颗粒可以可用在最终结构中,或可通过溶解在不是用于分散体的液体载体的溶剂中。
在本发明的另外实施方案,用于形成NT膜的NT分散剂可具有通过连接基团(如之前定义的)连接在聚合物的单个重复单元上的多个NT缔合基团(如之前定义的),其中可断裂基团(如之前定义的)存在于连接基团内。尽管这样的分散剂在降解过程中具有潜在的问题,这是因为缔合NT对断裂反应的潜在的空间抑制,这样的分散剂可在可断裂基团是对称的(例如平面的酯基或烯)时使用,其中NT缔合基团无法迫使可断裂基团的优选面被其缔合的NT屏蔽。再次,避免将固体或高分子量催化剂或试剂用于断裂反应以促进所有可断裂键的断裂并且实现容易地去除包含单个NT缔合基团的片段。例如,可使用在Yang等Ind.Eng.Chem.Res.2010,49,2747–51(其通过引用并入本文)中公开的含芘的羟丙基纤维素衍生物(HPC-Py)作为NT分散剂,但是所公开的通过酶的断裂的方法必须避免,因为Yang等表明甚至当NT分散体不沉积成膜时,酶也不能产生单体NT缔合可断裂片段。
NT分散体可施加在任意材料的表面上。在本发明的一个实施方案中,NT分散体可施加在以下材料的表面:透明或不透明材料;不导电、半导电或导电材料;或者可溶或不溶材料。例如,所述表面可以是塑料、玻璃、陶瓷、半导体或金属的表面。所述表面可以是平的或相对于假设的平底具有不同高度,并且在相对于任意对的限定高度而言小的维度上被认为光滑的或粗糙的。在本发明的一个实施方案中,NT分散剂通过任意刷涂、喷涂、印刷或涂覆工艺施加在表面上。例如,可使用气刷、静电喷涂、超声波喷涂、喷墨印刷、辊-辊涂覆、棒涂或浸涂来沉积膜。可去除液体载体以留下包含与可降解的NT分散剂缔合的NT膜,并且改变改膜的环境以促进断裂反应,其留下包含NT的膜,但是不与任何不是天然单体的NT缔合基团缔合。可通过洗涤和/或蒸发降解产物和用于沉积、降解或去除步骤的液体来从包含NT的膜中去除残余的降解产物。
可通过例如喷涂将NT分散体沉积在衬底上,其中液体载体是与衬底相匹配的单一溶剂或溶剂的混合物。理想地,NT分散体具有至少数小时、数天或数周的稳定性,以按照如下方式生产包含NT的膜:经容器供应通过喷雾器、打印机或涂覆器或浸涂的浴在衬底上涂覆膜时,不需要一经制备立即沉积。然后按如下方式从NT中去除NT分散剂:其不损害纳米管或支持衬底,并且不使纳米管从衬底上脱层。例如,如果去除过程需要加热,那么以控制的方式加热,以避免由于气体产物快速膨胀损失而形成空隙。应在不促使涉及NT键的反应条件下进行NT分散剂的分解和/或解聚。可化学地通过以下方式进行分解:引入催化剂和/或反应物,例如稀酸或碱溶液;照度,例如,来自相干或非相干光源的电磁谱的可见或紫外线部分;或加热以导致热分解,例如,在具有受控加热和压力的烘箱中。去除分解产物可包括洗涤和蒸发,留下无NT分散剂的导电NT膜。由于在不产生空隙、气孔或缺口下解聚和去除,可保持或形成纳米管到纳米管的紧密接触,并且产生期望的无分散剂的低薄层电阻的包含NT的膜。
在本发明的一个示例性实施方案中,使用表面活性剂(例如,但不限于Triton-X100)使NT悬浮在水中并且向NT悬浮体中添加溶液中的NT分散剂以形成NT分散体。溶剂可以是水、水溶性溶剂或不溶于水的溶剂。通过混合,NT分散剂替换NT表面的一些或全部表面活性剂,这是因为NT分散剂的NT缔合基团较优的NT结合亲和力,其进一步通过多个NT缔合基团促进。根据需要,可按照受控方式加热悬浮体,或可添加对表面活性剂的亲和力比NT大,但是对于NT分散剂的亲和力比NT小的试剂。随后过滤和洗涤通过混合形成的NT分散体以去除表面活性剂和任何游离的过量NT分散剂。通过向NT分散体中添加期望的溶剂或溶剂混合物(通常,但是未必伴随搅拌),留下施加在衬底上的形式的NT分散体。
在本发明的另一个实施方案中,用表面活性剂使NT悬浮在水中,过滤和用水洗涤以去除过量的表面活性剂,留下NT膜,NT不以过滤器的平面内任何强加的方向沉积。在不干燥膜或在干燥膜之后,可通过向NT膜添加期望的溶剂和聚合物NT分散剂来形成NT分散体。可通过在预定温度下或升高/降低温度的曲线下搅拌,以及在空气或惰性气氛(例如,氩或氮气氛)下可能地回流溶剂来促进NT分散体的形成。
在本发明的一个实施方案中,可沉积膜以使得NT均匀分散在其沉积的表面上。在本发明的另一个实施方案中,当使用合适的沉积技术如印刷时,或通过将整个区域的沉积区域控制为足够容忍度的一系列NT膜沉积,可形成NT的图案。在这种方式中,根据本发明的一个实施方案,有图案的膜在膜的表面的区域上以预定形式可具有不同厚度。例如,一系列线或包含NT线的网(其在膜的平面内较薄,但是垂直于平面较厚)可用于连接连续的薄而透明的包含NT的窗,以使得包含NT的线具有非常高的电导率但是具有相对低的透明度或不透明。以这种方式,包含NT的线与非常透明的低电导率的包含NT的窗电连接,以使得总电导率非常高但是整个网格的透明度的总损失相对于相同质量的均匀分散在整个膜表面的NT较低。如本领域技术人员可理解的,可使用任意方法沉积,NT分散体可在特定浓度置于特定区域,或者特定区域可总计印刷一次或更更多次以实现期望的NT膜厚度轮廓,例如,通过使用NT分散体作为NT油墨用于印刷图案化的膜。例如,低透射率(例如,小于50%透射率)的线的网可印刷在第一沉积的均匀薄NT膜上,以使得印刷的线占膜区域的小于10%,并且接触下面的薄膜以形成具有大于85%的透射率的窗,其占膜区域的超过90%,其中所得图案化膜相对于相同质量的纳米管的均匀厚度的均匀膜显示提高的电导率和透明度。
材料和方法
6-溴己-1-醇的制备
为了进行图5中所示的第一转化,将己-1,6-二醇(60g,0.25mol)添加到1L的3颈烧瓶中,并且放置在氮气氛下。向该烧瓶中添加甲苯(600mL)和浓HBr(66mL48%(9M)水溶液)。将混合物在回流下加热36小时,用薄层色谱(TLC)检测转化。在反应混合物冷却至室温之后,形成两个分离的相。将有机相用乙醚稀释,并且用1M的NaOH和盐水洗涤。分离出有机部分并且用无水硫酸镁干燥。在真空下去除溶剂,得到黄色油状物,将其在110℃至120℃的真空下蒸馏,得到38g(84%产率)8-溴辛-1-醇。
2-(6-溴己氧基)四氢-2H-吡喃的制备
为了进行图5中所示的第二转化,将8-溴辛-1-醇(20.00g,0.096mol)转移到1L的3颈烧瓶中并且放置在氮气氛下,溶解在200mL脱气乙醚中。将高氯酸铁(1.06g,3×10-3mol)和2,3-二氢吡喃(THP)(12.09g,0.144mol)添加到烧瓶中。将混合物在室温下搅拌1.5小时,在反应过程之后进行TLC。使反应混合物通过用石油醚作为洗脱液的短的硅胶柱。蒸干溶剂,得到22.23g(87%产率)2-(6-溴己氧基)四氢-2H-吡喃。
(6-((四氢-2H-吡喃-2-基)氧基)己基)溴化镁的制备
为了进行图5中所示的第三转化,将500mL的3颈烧瓶在烘箱中干燥过夜,并且装入10.00g(416mmol)镁屑和磁性搅拌棒。将镁在快速的氩气流下干燥,同时通过热风枪加热。在冷却至室温之后,降低氩流速,通过注射器向反应容器中添加200ml经无水氮脱气的乙醚。向反应容器中缓慢添加10mL经氩脱气的1,2-二溴乙烷。将混合物在室温下搅拌1小时,之后在回流下再搅拌1小时,其中醚回流由腐蚀镁表面的放热反应引起。向容器中添加小的碘晶体。由此得到的澄清黑色溶液在回流1小时之后脱色。通过注射器滴加10.00g(37.72mmol)2-((6-溴己基)氧基)四氢-2H-吡喃在20mL无水THF中的溶液。在添加完成之后,将混合物回流2小时,形成格氏试剂(Grignard reagent)溶液。
2-((6-(5a1,8a-二氢芘-1-基)己基)氧基)四氢-2H-吡喃的制备
为了进行图5中示出的第四转化,将10g(35.60mmol)1-溴芘和0.2g(1mmol)1,2-双(二苯基膦)乙烷镍(II)氯化物溶解在150mL无水乙醚中并且将混合物回流。将格氏试剂溶液通过注射器转移到反应容器中。将反应混合物在回流下加热2小时。在冷却至室温后,将反应物倾倒进去离子水中并且用二氯甲烷萃取。将分离的有机溶液用硫酸镁干燥。通过使用1:1的二氯甲烷:己烷混合物的柱色谱之后去除溶剂,得到纯芘THP醚9.42g(68%产率)。
6-(5a1,8a-二氢芘-1-基)己-1-醇的制备
为了进行图5示出的第五转化,将5.78g(14.90mmol)芘THP醚和0.40g(1.12mmol)Fe(ClO4)3的混合物在80mL的甲醇和甲苯的等量混合物中在50℃下搅拌12小时,通过TLC监测反应的进行。在反应完成后,将溶剂在真空中蒸发,在溶剂蒸发之后,使用二氯甲烷作为溶剂通过柱色谱分离4.15g(92%产率)纯芘醇。
6-(5a1,8a-二氢芘-1-基)己醛的制备
为了进行图5中示出的第六转化,在氩气下将20mL无水二氯甲烷转移到3颈圆底烧瓶中,用干冰/丙酮浴冷却至-78℃并且添加1.71mL(24.1mmol)二甲亚砜。通过注射器,将1.39mL(16.2mmol)乙二酰氯滴加到容器中并将混合物搅拌30分钟。将2.41g(7.89mmol)芘醇在50mL二氯甲烷中的溶液在5分钟间滴加到混合物中。将所得高粘度混合物在-78℃下搅拌40分钟并且缓慢添加10mL无水三乙胺。使黄色混合物升温至室温,用150mL二氯甲烷稀释,用50mL水洗涤三次。收集有机层并且用硫酸镁干燥。在溶剂蒸发后,分离出1.89g(80%产率)固体白色芘醛产物。
6-(6,6-双(己-5-烯-1-基氧基)己基)-3a,3a1-二氢芘的制备
为了进行图5中所示的最后转化,在氩气氛下将2.00g,(6.66mmol)芘醛转移到100mL三颈圆底烧瓶中并溶解在40mL无水四氢呋喃中。向烧瓶中添加2.92g(26.6mmol)5-己烯-1-醇和0.92g(6.7mmol)HO3S–SiO2。HO3S–SiO2的制备在下文给出。将混合物在氩气氛下回流24小时。从混合物中将溶剂蒸发,将所得黄色油状物在50℃的真空下加热以去除残余5-己烯-1-醇。使用1:1二氯甲烷:己烷混合物用柱色谱分离缩醛单体。
以如下方式制备HO3S–SiO2支持的酸催化剂。向20mL乙醇和15mL去离子水的溶液中添加9.33g(44.8mmol)正硅酸四乙酯(Si(OEt)4)和0.84g(3.6mmol)3-巯丙基三乙氧基硅烷。将混合物在回流下搅拌2小时。通过在真空中蒸发来从液体中分离湿凝胶并且作为白色固体分离。将凝胶转移到100mL的3颈圆底烧瓶中,向其中添加30mL乙腈,随后添加5mL的31%过氧化氢水溶液。将混合物加热至回流并且保持6小时。过滤出所得白色凝胶并用去离子水洗涤,随后用乙醇洗涤。在真空中干燥约30分钟之后,将白色固体凝胶转移到500mL圆底烧瓶中并添加100mL的0.1M硫酸水溶液。将混合物搅拌1小时。过滤固体并且用去离子水洗涤至所得浆体显示中性pH。分离出固体HO3S–SiO2支持的酸性催化剂并在100℃的真空烘箱中干燥6小时后使用。
6-(6,6-双(己-5-烯-1-基氧基)己基)-3a,3a1-二氢芘的均聚
在图1中所示的聚合之前,将100mg(0.20mmol)缩醛单体在真空下于50℃干燥12小时,溶解在0.5mL脱气二氯苯中,并且将该单体溶液用氩脱气1小时。将该单体溶液用插管转移到在真空下干燥过夜的含1.65mg(2.01×10-3mmol)格拉布斯(Grubbs)1代催化剂(1mol%)的Schlenk管中。将聚合物混合物在70托真空下于45℃搅拌4天。通过添加5mL二氯苯中的1mL乙烯基乙醚淬灭反应,通过在无酸甲醇中过滤去除催化剂残余和任何未转化单体来分离作为胶的聚合物。
2,5-二溴苯-1,4-二酚的制备
为了进行图6所示的第一转化,在室温下将90.61g(0.57mol)溴在20mL冰醋酸中的溶液在3小时间滴加到30g(0.27mol)对苯二酚在200mL冰醋酸中的搅拌悬浮体中。搅拌的反应混合物随温度升高至约30摄氏度显示出温和的放热曲线,其伴随着形成澄清溶液,随后在5分钟至10分钟后沉淀出无色固体。搅拌持续过夜。通过过滤分离固体并且用少量冰醋酸洗涤。将滤液在真空下浓缩至约一半的原始体积并且冷冻30分钟。用己烷洗涤所述固体以去除残余醋酸,得到39.35g(55%)2,5-二溴苯-1,4-二酚。
1,4-二溴-2,5-双((2-乙基己基)氧基)苯的制备
为了进行图6所示的第二转化,将28.34g(0.11mol)2,5-二溴苯-1,4-二酚、40.91g(0.13mol)2-乙基己基溴和58.56g(0.42mol)碳酸钾在500mL乙腈中的悬浮体在氮气下加热至回流并且保持48小时。将混合物倾倒进500mL去离子水中,将所得悬浮体用硅藻土过滤并且溶解在二氯甲烷中。去除溶剂,得到残余深棕色油状物。将所述油状物溶解在己烷中并且通过柱色谱纯化。在减压下去除溶剂,留下澄清油状物。所述油状物包含残余的2-乙基己基溴,将其用Kuglerohr在70℃下真空蒸馏2小时去除,得到32.87g(61%产率)1,4-二溴-2,5-双((2-乙基己基)氧基)苯。
1,4-双((2-乙基己基)氧基)-2,5-二(十一-10-烯-1-基)苯的制备
为了进行图6所示的最终转化,将1.00g(2mmol)1,4-二溴-2,5-双((2-乙基己基)氧基)苯放入250mL的3颈圆底烧瓶中,并且在氩气氛下添加20mL无水四氢呋喃。将所得溶液用干冰和丙酮浴冷却至-78℃。用注射器滴加2.17mL己烷中的2.3M的正丁基锂(5mmol正丁基锂)并且将混合物搅拌30分钟。向混合物中,用注射器滴加溶解在5mL四氢呋喃中的1.39g(6mmol)11-溴十一碳-1-烯。将混合物在室温下搅拌过夜。将混合物倾倒进去离子水中并且用二氯甲烷萃取。将有机部分合并并且用无水硫酸镁干燥。
6-(6,6-双(己-5-烯-1-基氧基)己基)-3a,3a1-二氢芘与1,4-双((2-乙基己基)氧基)-2,5-二(十一-10-烯-1-基)苯的随机共聚。
如图3所示,将1.00g(2.07mmol)6-(6,6-双(己-5-烯-1-基氧基)己基)-3a,3a1-二氢芘与1.32g(2.07mmol)1,4-双((2-乙基己基)氧基)-2,5-二(十一-10-烯-1-基)苯的混合物在真空下干燥48小时,并且在氩气氛下转移到配备有磁性搅拌棒的Schlenk管中。将5.67mg(0.0069mmol)量的格拉布斯1代催化剂转移到管中,形成300/1单体/催化剂混合物,将其在45℃的真空下搅拌4天。如图4所示,通过添加10mL乙烯基乙醚催化聚合反应,通过添加酸性甲醇沉淀并且通过去除甲醇溶液分离作为粘性胶的共聚物。
将芘取代的羟丙基纤维素(HPC-Py)与SWNT在水中的悬浮体混合,使用单体表面活性剂Triton-X100((聚乙二醇单[4-(1,1,3,3-四甲基丁基)苯基]醚)形成NT悬浮体。将悬浮体过滤和洗涤,以去除添加HPC-Py释放的Triton-X100。通过添加水、乙醇或乙醇/水混合物制备多个NT-HPC-Py分散体。将乙醇NT-HPC-Py分散体均匀喷涂在玻璃衬底上,将所得膜升温至80℃以蒸发乙醇。将所得膜沉积在无外表空隙的玻璃。通过在膜上放置10mM硫酸溶液来分解HPC-Py。随后,通过用去离子水洗涤膜从NT分散剂游离的NT膜上去除断裂片段。如图7所示,所得NT膜的UV-可见光谱显示在550nm处70%的光透明度。60nm厚SWNT膜的薄膜电阻测量表现出与用美国专利7,261,852中公开的过滤方法制备的NT膜类似的特性,所述专利整体通过引用并入本文。SWNT膜显示出长期稳定性,如图8所示,在无任何包装暴露于环境空气4个月后,薄膜电阻由91Ω/□变为仅167Ω/□。
本文提及或引用的所有专利、专利申请、临时申请和出版物的全部内容(包括所有附图、表格)通过引用并入本文,其程度为不与本申请的明确教导相抵触。
应理解的是,本文描述的实施例和实施方案仅用于举例说明的目的,并且由其启示的本领域的技术人员提出对其进行的各种修改和改变将在本申请的精神和权限之内。

Claims (29)

1.一种可降解聚合物碳纳米管(NT)分散剂,其包含可溶性聚合物或共聚物,所述可溶性聚合物或共聚物具有包含多个重复单元的聚合物骨架,所述重复单元包含:
NT缔合基团,其包含能够与NT或其他石墨烯结构非共价缔合的多环芳基;
连接基团,其将所述聚合物骨架连接到所述NT缔合基团;和
至少一个可断裂基团,其位于所述聚合物骨架中或所述连接基团中,其中每一个NT缔合基团都被至少一个所述可断裂基团彼此分开。
2.根据权利要求1所述的可降解聚合物NT分散剂,其中所述可断裂基团包含能够通过改变温度、改变照度、添加一种或更多种化学物质、或其任意组合而断裂的官能团。
3.根据权利要求2所述的可降解聚合物NT分散剂,其中所述化学物质是催化剂和/或反应物。
4.根据权利要求2所述的可降解聚合物NT分散剂,其中所述官能团包括缩醛、缩酮、硅烷基酯、硅氮烷、酯、醚、酸酐或烯。
5.根据权利要求1所述的可降解聚合物NT分散剂,其中所述聚合物骨架包含至少两个重复单元,其通过逐步生长聚合或链生长聚合形成,聚合度至少为2。
6.根据权利要求1所述的可降解聚合物NT分散剂,其中所述聚合物骨架是纤维素或天然来源的其他聚合物。
7.根据权利要求1所述的可降解聚合物NT分散剂,其中所述连接基团包含2至约20个共价键,其包含碳原子和任选杂原子的链或硅原子和任选杂原子的链。
8.根据权利要求1所述的可降解聚合物NT分散剂,其中所述多环芳基包括芘、蒽、并五苯、苯并[a]芘、
Figure FDA0000391193800000011
蒄、碗烯、并四苯、菲、苯并[9,10]菲、卵苯、苯并菲、苝、苯并[ghi]苝、蒽嵌蒽、五苯、苉、二苯并[3,4;9,10]芘、苯并[3,4]芘,二苯并[3,4;8,9]芘、二苯并[3,4;6,7]芘、二苯并[1,2;3,4]芘、萘并[2,3;3,4]芘、卟啉衍生物或其任意组合。
9.根据权利要求1所述的可降解聚合物NT分散剂,其中所述可断裂基团存在于所述聚合物骨架中。
10.一种纳米管(NT)分散体,其包含:
多个NT或NT等同物;
根据权利要求1所述的可降解聚合物NT分散剂;和
溶剂。
11.根据权利要求10所述的NT分散体,其中所述NT或NT等同物包括单壁碳纳米管(SWNT)、双壁碳纳米管(DWNT)、多壁碳纳米管(MWNT)、石墨烯片或其它石墨烯结构。
12.根据权利要求10所述的NT分散体,其中所述溶剂包括水、C1至C6醇、二氯甲烷、四氢呋喃、乙酸乙酯、丙酮、二甲基甲酰胺、乙腈、二甲亚砜、己烷、苯、甲苯、氯仿和乙醚,或它们的任意组合。
13.根据权利要求10所述的NT分散体,其还包含纳米颗粒或微米颗粒。
14.根据权利要求13所述的NT分散体,其中所述纳米颗粒或微米颗粒包括导电、半导电或绝缘物质。
15.根据权利要求14所述的NT分散体,其中绝缘物质是不溶于所述分散体的溶剂,但是可溶于第二溶剂的物质。
16.一种分散NT的方法,其包括:
提供多个NT或NT等同物;
提供可降解聚合物NT分散剂;和
将所述NT或NT等同物与所述可降解聚合物NT分散剂在溶剂中混合。
17.根据权利要求16所述的方法,其中所述可降解聚合物NT分散剂包含可溶性聚合物或共聚物,所述可溶性聚合物或共聚物包含具有多个重复单元的聚合物骨架,所述重复单元包含:
NT缔合基团,其包含能够与NT或其他石墨烯结构非共价缔合的多环芳基;和
连接基团,其将聚合物骨架连接到所述NT缔合基团;
至少一个可断裂基团,其位于聚合物骨架中或连接基团中,其中每一个NT缔合基团被至少一个所述可断裂基团彼此分开。
18.根据权利要求16所述的方法,其中所述可降解聚合物NT分散剂包含可溶性聚合物或共聚物,所述可溶性聚合物或共聚物包含具有多个重复单元的聚合物骨架,所述重复单元包含:
至少一个NT缔合基团,其包含能够与NT或其它石墨烯结构非共价缔合的多环芳基;和
至少一个连接基团,每一个连接基团将聚合物骨架连接到NT缔合基团中的一个,并且具有至少一个可断裂基团。
19.根据权利要求16所述的方法,其还包括:
提供纳米颗粒或微米颗粒;和
将所述纳米颗粒或微米颗粒与所述NT或NT等同物、所述可降解聚合物NT分散剂和所述溶剂结合。
20.一种制备包含NT的膜的方法,其包括:
提供NT分散体,所述NT分散体包含多个NT或NT等同物和可降解聚合物NT分散剂,所述可降解聚合物NT分散剂包含:
可溶性聚合物或共聚物,其包含具有多个重复单元的聚合物骨架,所述重复单元包含:
NT缔合基团,其包含能够与NT或其他石墨烯结构非共价缔合的多环芳基;
连接基团,其将所述聚合物骨架连接到所述NT缔合基团;以及
至少一个可断裂基团,其位于所述聚合物骨架中或所述连接基团中,其中每一个所述NT缔合基团被至少一个所述可断裂基团彼此分开;
将所述NT分散体在衬底上沉积成膜;
通过改变所述膜的一种或更多种条件来促进所述可断裂基团的断裂;
去除来自所述可降解聚合物NT分散剂的断裂残余物;以及
去除所述溶剂。
21.根据权利要求20所述的方法,其中所述沉积包括气刷、静电喷涂、超声波喷涂、喷墨印刷、辊-辊涂覆或浸涂。
22.根据权利要求20所述的方法,其中促进所述断裂包括热解、光解、添加催化剂、添加一种或更多种反应物、添加一种或更多种溶剂或其任意组合。
23.根据权利要求20所述的方法,其中所述去除包括过滤、洗涤或蒸发。
24.一种制备包含NT的膜的方法,其包括:
提供NT分散体,所述NT分散体包含多个NT或NT等同物和可降解聚合物NT分散剂,所述可降解聚合物NT分散剂包含:
可溶性聚合物或共聚物,其包含具有多个重复单元的聚合物骨架,所述重复单元包含:
NT缔合基团,其包含能够与NT或其他石墨烯结构非共价缔合的多环芳基;
连接基团,其将所述聚合物骨架连接到所述NT缔合基团;
至少一个可断裂基团,其位于所述聚合物骨架中或所述连接基团中,其中每一个所述NT缔合基团被至少一个所述可断裂基团彼此分开;
将所述NT分散体在衬底上沉积成膜;
通过改变所述膜的一种或更多种条件来促进所述可断裂基团的断裂;
去除来自所述可降解聚合物NT分散剂的断裂残余物;以及
去除所述溶剂。
25.根据权利要求24所述的方法,其中所述沉积包括气刷、静电喷涂、超声波喷涂、喷墨印刷、辊-辊涂覆或浸涂。
26.根据权利要求24所述的方法,其中促进所述断裂包括热解、光解、添加催化剂、添加一种或更多种反应物、添加一种或更多种溶剂或其任意组合。
27.根据权利要求24所述的方法,其中所述去除包括过滤、洗涤或蒸发。
28.一种图案化的包含NT的膜,其包含多个NT,其中所述NT的表面没有残余的分散剂,使得在整个所述膜中在所述NT之间存在紧密电接触,并且其中所述膜的厚度在预定图案中变化。
29.根据权利要求28所述的包含NT的膜,其中所述预定图案包括一系列占小于10%膜面积的线或网和与之相连的占大于90%膜面积的窗,其中所述线或网具有小于50%透射率的透明度,所述窗具有超过60%透射率的透明度。
CN201280016967.8A 2011-04-04 2012-04-03 纳米管分散剂及由其得到的不含分散剂的纳米管膜 Active CN103459484B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161471582P 2011-04-04 2011-04-04
US61/471,582 2011-04-04
PCT/US2012/031950 WO2012138632A2 (en) 2011-04-04 2012-04-03 Nanotube dispersants and dispersant free nanotube films therefrom

Publications (2)

Publication Number Publication Date
CN103459484A true CN103459484A (zh) 2013-12-18
CN103459484B CN103459484B (zh) 2016-10-12

Family

ID=46969769

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280016967.8A Active CN103459484B (zh) 2011-04-04 2012-04-03 纳米管分散剂及由其得到的不含分散剂的纳米管膜

Country Status (12)

Country Link
US (3) US9775241B2 (zh)
EP (1) EP2694579A4 (zh)
JP (1) JP6108482B2 (zh)
KR (1) KR102017904B1 (zh)
CN (1) CN103459484B (zh)
AU (1) AU2012240367A1 (zh)
BR (1) BR112013025503A2 (zh)
CA (1) CA2832072A1 (zh)
MX (1) MX2013011538A (zh)
RU (1) RU2013148843A (zh)
SG (1) SG193937A1 (zh)
WO (1) WO2012138632A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104724691A (zh) * 2013-12-23 2015-06-24 北京阿格蕾雅科技发展有限公司 一种提高单壁碳纳米管分散性的方法
CN106163984A (zh) * 2014-01-31 2016-11-23 曼彻斯特大学 墨水制剂
CN108862264A (zh) * 2018-07-24 2018-11-23 浙江省海洋开发研究院 一种石墨烯分散剂及其制备方法、应用
CN109761222A (zh) * 2017-11-09 2019-05-17 北京华碳元芯电子科技有限责任公司 利用真空蒸发来去除碳纳米管表面分散剂的方法
CN113121917A (zh) * 2021-04-28 2021-07-16 中科易朔(厦门)防火技术服务有限公司 一种阻燃可控降解聚丙烯复合材料及其制备方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2011137967A (ru) 2009-04-30 2013-06-10 Юниверсити Оф Флорида Рисерч Фаундейшн Инк. Воздушные катоды на основе одностенных углеродных нанотрубок
EP2652822A4 (en) 2010-12-17 2014-07-30 Univ Florida HYDROGEN OXIDATION AND PRODUCTION OVER CARBON LAYERS
RU2013148843A (ru) 2011-04-04 2015-05-10 Юниверсити Оф Флорида Рисеч Фаундэйшн, Инк. Диспергирующие вещества для нанотрубок и пленки из нанотрубок, не содержащие диспергирующих веществ, на их основе
US9892817B2 (en) * 2011-05-25 2018-02-13 Nissan Chemical Industries, Ltd. Conductive composition, and conductive complex
CN103582660B (zh) 2011-05-25 2015-07-22 日产化学工业株式会社 高支化聚合物和碳纳米管分散剂
JP6164617B2 (ja) * 2012-07-30 2017-07-19 国立研究開発法人産業技術総合研究所 導電性薄膜の製造方法及び該方法により製造された導電性薄膜
US11479652B2 (en) 2012-10-19 2022-10-25 Rutgers, The State University Of New Jersey Covalent conjugates of graphene nanoparticles and polymer chains and composite materials formed therefrom
GB201218952D0 (en) * 2012-10-22 2012-12-05 Cambridge Entpr Ltd Functional inks based on layered materials and printed layered materials
KR20150016123A (ko) * 2013-08-01 2015-02-11 주식회사 엘지화학 분산제, 이의 제조 방법 및 이를 포함하는 탄소계 소재의 분산 조성물
CN104603191B (zh) 2013-09-02 2020-05-08 Lg化学株式会社 与碳纳米材料结合的热塑性聚合物及其制备方法
WO2015077508A1 (en) 2013-11-20 2015-05-28 University Of Florida Research Foundation, Inc. Carbon dioxide reduction over carbon-containing materials
KR101666478B1 (ko) * 2013-12-26 2016-10-14 주식회사 엘지화학 그래핀의 제조 방법과, 그래핀의 분산 조성물
EP3018177B1 (en) 2014-11-08 2023-08-02 Battelle Memorial Institute Stabilization of carbon nanotube coatings
US10301443B2 (en) * 2014-11-11 2019-05-28 Nanocore Aps Composite materials with desired characteristics
WO2017017420A1 (en) 2015-07-24 2017-02-02 The University Of Manchester Ink formulation
JP6356164B2 (ja) * 2016-01-15 2018-07-11 関西ペイント株式会社 リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペースト
CN107235482B (zh) * 2016-03-28 2019-04-23 中国科学院苏州纳米技术与纳米仿生研究所 表面洁净无分散剂的单壁碳纳米管的制备方法
US11702518B2 (en) 2016-07-22 2023-07-18 Rutgers, The State University Of New Jersey In situ bonding of carbon fibers and nanotubes to polymer matrices
US11059945B2 (en) * 2016-07-22 2021-07-13 Rutgers, The State University Of New Jersey In situ bonding of carbon fibers and nanotubes to polymer matrices
ES2664784B1 (es) * 2016-10-20 2019-02-04 Institut Quim De Sarria Cets Fundacio Privada Procedimiento de fabricacion de una suspension de particulas de grafeno y suspension correspondiente
US10852264B2 (en) 2017-07-18 2020-12-01 Boston Scientific Scimed, Inc. Systems and methods for analyte sensing in physiological gas samples
CN111868146A (zh) * 2018-01-11 2020-10-30 纳诺科尔有限公司 包含机械配体的复合材料
US11479653B2 (en) 2018-01-16 2022-10-25 Rutgers, The State University Of New Jersey Use of graphene-polymer composites to improve barrier resistance of polymers to liquid and gas permeants
CN111788477B (zh) 2018-02-20 2023-06-23 明尼苏达大学董事会 石墨烯非共价表面改性的基于化学变容二极管的传感器
AU2019260666B2 (en) 2018-04-25 2021-11-18 Boston Scientific Scimed, Inc. Chemical varactor-based sensors with non-covalent, electrostatic surface modification of graphene
JP6764898B2 (ja) * 2018-06-12 2020-10-07 吉田 英夫 ワークの炭素皮膜被覆方法
DE202018106258U1 (de) 2018-10-15 2020-01-20 Rutgers, The State University Of New Jersey Nano-Graphitische Schwämme
KR102666905B1 (ko) 2018-10-30 2024-05-17 삼성디스플레이 주식회사 발광 소자 분산제, 이를 포함하는 발광 소자 잉크 및 표시 장치의 제조 방법
EP3861329A1 (en) 2018-11-27 2021-08-11 Boston Scientific Scimed Inc. Systems and methods for detecting a health condition
WO2020131567A1 (en) 2018-12-18 2020-06-25 Boston Scientific Scimed, Inc. Systems and methods for measuring kinetic response of chemical sensor elements
US11807757B2 (en) 2019-05-07 2023-11-07 Rutgers, The State University Of New Jersey Economical multi-scale reinforced composites
EP4017364A1 (en) 2019-08-20 2022-06-29 Boston Scientific Scimed, Inc. Non-covalent modification of graphene-based chemical sensors
BR102020025922A2 (pt) * 2020-07-28 2022-06-07 Universidade Federal De Minas Gerais Processo para obtenção de tinta de nanomateriais de carbono, produtos e uso em monitoramento de deformações, tensões e impacto

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1878763A2 (en) * 2006-06-21 2008-01-16 Kuan-Jiuh Lin CNT/polymer composite and method for producing the same
CN101721944A (zh) * 2009-12-04 2010-06-09 青岛科技大学 一种聚合物基碳纳米管分散助剂及其合成方法和用途

Family Cites Families (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673473A (en) 1985-06-06 1987-06-16 Peter G. Pa Ang Means and method for reducing carbon dioxide to a product
NL9000268A (nl) 1990-02-05 1991-09-02 Oce Nederland Bv Gedoteerd tinoxidepoeder, een werkwijze voor zijn bereiding, en de toepassing ervan in elektrisch geleidende of antistatische bekledingen.
JP2566207Y2 (ja) 1992-10-21 1998-03-25 日亜化学工業株式会社 電流注入型窒化ガリウム系発光素子
FR2704848B1 (fr) 1993-05-03 1995-07-21 Prod Chim Auxil Synthese Précurseur liquide pour la production de revêtements d'oxyde d'étain dopé au fluor et procédé de revêtement correspondant.
JPH0822733B2 (ja) 1993-08-04 1996-03-06 工業技術院長 カーボンナノチューブの分離精製方法
DE4329651A1 (de) 1993-09-03 1995-03-09 Goldschmidt Ag Th Verfahren zur Herstellung elektrisch leitfähiger, infrarotreflektierender Schichten auf Glas-, Glaskeramik- oder Emailoberflächen
WO1997000925A1 (en) 1995-06-23 1997-01-09 E.I. Du Pont De Nemours And Company Method for monomer recovery
US6369934B1 (en) 1996-05-30 2002-04-09 Midwest Research Institute Self bleaching photoelectrochemical-electrochromic device
US5853877A (en) 1996-05-31 1998-12-29 Hyperion Catalysis International, Inc. Method for disentangling hollow carbon microfibers, electrically conductive transparent carbon microfibers aggregation film amd coating for forming such film
US6177181B1 (en) 1996-12-10 2001-01-23 Daicel Chemical Industries, Ltd. Porous films, process for producing the same, and laminate films and recording sheets made with the use of the porous films
US6683783B1 (en) 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
JP3497740B2 (ja) 1998-09-09 2004-02-16 株式会社東芝 カーボンナノチューブの製造方法及び電界放出型冷陰極装置の製造方法
EP1112224B1 (en) 1998-09-18 2009-08-19 William Marsh Rice University Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes
US6331262B1 (en) 1998-10-02 2001-12-18 University Of Kentucky Research Foundation Method of solubilizing shortened single-walled carbon nanotubes in organic solutions
US6232706B1 (en) 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
JP3943272B2 (ja) 1999-01-18 2007-07-11 双葉電子工業株式会社 カーボンナノチューブのフイルム化方法
US6127061A (en) 1999-01-26 2000-10-03 High-Density Energy, Inc. Catalytic air cathode for air-metal batteries
JP4063451B2 (ja) 1999-07-26 2008-03-19 双葉電子工業株式会社 カーボンナノチューブのパターン形成方法
JP4140180B2 (ja) 2000-08-31 2008-08-27 富士ゼロックス株式会社 トランジスタ
US6566983B2 (en) 2000-09-02 2003-05-20 Lg Electronics Inc. Saw filter using a carbon nanotube and method for manufacturing the same
TW525314B (en) 2000-09-29 2003-03-21 Sony Corp Fuel cell and method for preparation thereof
US6782154B2 (en) 2001-02-12 2004-08-24 Rensselaer Polytechnic Institute Ultrafast all-optical switch using carbon nanotube polymer composites
JP3912583B2 (ja) 2001-03-14 2007-05-09 三菱瓦斯化学株式会社 配向性カーボンナノチューブ膜の製造方法
CN1543399B (zh) 2001-03-26 2011-02-23 艾考斯公司 含碳纳米管的涂层
US8029734B2 (en) 2001-03-29 2011-10-04 The Board Of Trustees Of The Leland Stanford Junior University Noncovalent sidewall functionalization of carbon nanotubes
JP2002305087A (ja) 2001-04-05 2002-10-18 Sony Corp 有機電界発光素子
JP4207398B2 (ja) 2001-05-21 2009-01-14 富士ゼロックス株式会社 カーボンナノチューブ構造体の配線の製造方法、並びに、カーボンナノチューブ構造体の配線およびそれを用いたカーボンナノチューブデバイス
WO2003010837A1 (en) 2001-07-26 2003-02-06 Technische Universiteit Delft Electronic device using carbon nanotubes
US8062697B2 (en) 2001-10-19 2011-11-22 Applied Nanotech Holdings, Inc. Ink jet application for carbon nanotubes
US7462498B2 (en) 2001-10-19 2008-12-09 Applied Nanotech Holdings, Inc. Activation of carbon nanotubes for field emission applications
JP3590606B2 (ja) 2001-11-16 2004-11-17 日本原子力研究所 テンプレートを利用したカーボンナノチューブの作製法
US7455757B2 (en) 2001-11-30 2008-11-25 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
JP2003178816A (ja) 2001-12-11 2003-06-27 Hitachi Maxell Ltd 空気二次電池
JP2003209270A (ja) 2002-01-15 2003-07-25 Toyota Central Res & Dev Lab Inc 炭素系光電素子およびその製造方法
JP2003288835A (ja) 2002-03-27 2003-10-10 Seiko Epson Corp 電界放出素子及びその製造方法
US6831017B1 (en) 2002-04-05 2004-12-14 Integrated Nanosystems, Inc. Catalyst patterning for nanowire devices
DE10217362B4 (de) 2002-04-18 2004-05-13 Infineon Technologies Ag Gezielte Abscheidung von Nanoröhren
EP1513621A4 (en) 2002-05-21 2005-07-06 Eikos Inc METHOD FOR CONFIGURING COATING OF CARBON NANOTUBES AND WIRING OF CARBON NANOTUBES
DE10226366A1 (de) 2002-06-13 2004-01-08 Siemens Ag Elektroden für optoelektronische Bauelemente und deren Verwendung
JP4229648B2 (ja) 2002-06-25 2009-02-25 富士通株式会社 電子デバイスの製造方法
US7776444B2 (en) 2002-07-19 2010-08-17 University Of Florida Research Foundation, Inc. Transparent and electrically conductive single wall carbon nanotube films
AU2003249324A1 (en) 2002-07-19 2004-02-09 University Of Florida Transparent electrodes from single wall carbon nanotubes
US8999200B2 (en) * 2002-07-23 2015-04-07 Sabic Global Technologies B.V. Conductive thermoplastic composites and methods of making
JP3825020B2 (ja) 2002-08-01 2006-09-20 株式会社アイ・ヒッツ研究所 分散給電システム
US20070114573A1 (en) 2002-09-04 2007-05-24 Tzong-Ru Han Sensor device with heated nanostructure
JP4908846B2 (ja) 2002-10-31 2012-04-04 三星電子株式会社 炭素ナノチューブ含有燃料電池電極
JP2004158290A (ja) 2002-11-06 2004-06-03 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池およびその電極の製造方法
US7368483B2 (en) 2002-12-31 2008-05-06 International Business Machines Corporation Porous composition of matter, and method of making same
JP2004315297A (ja) 2003-04-17 2004-11-11 Misuzu Kogyo:Kk ナノカーボンコンポジット材及びその製造方法
EP1631812A4 (en) 2003-05-14 2010-12-01 Nantero Inc SENSOR PLATFORM HAVING A HORIZONTAL NANOPHONE ELEMENT
JP2005047763A (ja) 2003-07-30 2005-02-24 Japan Science & Technology Agency 炭素ナノ及びマイクロメートル構造体及びその製造方法
JP3868934B2 (ja) 2003-08-01 2007-01-17 株式会社東芝 電極製造方法
US8211593B2 (en) 2003-09-08 2012-07-03 Intematix Corporation Low platinum fuel cells, catalysts, and method for preparing the same
US7351444B2 (en) 2003-09-08 2008-04-01 Intematix Corporation Low platinum fuel cell catalysts and method for preparing the same
EP1685581A4 (en) 2003-09-12 2009-08-26 Applied Nanotech Holdings Inc MULDEN TRAINING
KR20060133974A (ko) 2003-10-16 2006-12-27 더 유니버시티 오브 아크론 탄소 나노섬유 기판 상의 탄소 나노튜브
US7122165B2 (en) 2003-11-03 2006-10-17 The Research Foundation Of State University Of New York Sidewall-functionalized carbon nanotubes, and methods for making the same
US20050098437A1 (en) 2003-11-12 2005-05-12 Proton Energy Systems, Inc. Use of carbon coating in an electrochemical cell
US20060029537A1 (en) 2003-11-20 2006-02-09 Xiefei Zhang High tensile strength carbon nanotube film and process for making the same
CN1546431A (zh) 2003-12-12 2004-11-17 上海交通大学 三维有序、孔径可调的多孔纳米陶瓷管的制备方法
US7192670B2 (en) 2003-12-26 2007-03-20 Hitachi Maxell, Ltd. Fuel cell and membrane electrode assembly
TWI258239B (en) 2004-06-02 2006-07-11 High Tech Battery Inc Air electrode constituting multilayer sintered structure and manufacturing method thereof
DE602005009333D1 (de) 2004-02-20 2008-10-09 Univ Florida Halbleiterbauelement und verfahren mit nanoröhren-kontakten
WO2005086982A2 (en) 2004-03-12 2005-09-22 Eikos, Inc. Carbon nanotube stripping solutions and methods
JP2005294109A (ja) 2004-04-01 2005-10-20 Toyota Motor Corp 燃料電池用基体及び燃料電池
JP5160890B2 (ja) 2004-06-10 2013-03-13 ダウ グローバル テクノロジーズ エルエルシー ナノ多孔質誘電体フィルムの形成方法
JP3985025B2 (ja) * 2005-03-23 2007-10-03 国立大学法人信州大学 両親媒性化合物、可溶性カーボンナノチューブ複合体
US20060220251A1 (en) 2005-03-31 2006-10-05 Grant Kloster Reducing internal film stress in dielectric film
US7335258B2 (en) * 2005-03-31 2008-02-26 Intel Corporation Functionalization and separation of nanotubes and structures formed thereby
CN2893940Y (zh) 2005-07-01 2007-04-25 上海神力科技有限公司 可再生能源与燃料电池耦合发电装置
WO2007004758A1 (en) 2005-07-05 2007-01-11 Korea Institute Of Machinery And Materials Method for manufacturing transparent electrode and transparent electrode man¬ ufactured thereby
US20080020923A1 (en) 2005-09-13 2008-01-24 Debe Mark K Multilayered nanostructured films
KR101114783B1 (ko) 2005-09-21 2012-02-27 유니버시티 오브 플로리다 리서치 파운데이션, 인크. 패턴화된 전기 전도성 박막 형성 저온 방법 및 그로부터제공된 패턴화된 제품
KR100730197B1 (ko) 2006-01-21 2007-06-19 삼성에스디아이 주식회사 연료전지용 캐소드 전극 구조
KR101255237B1 (ko) 2006-02-07 2013-04-16 삼성에스디아이 주식회사 연료전지용 담지 촉매, 그 제조방법, 이를 포함하는연료전지용 전극 및 상기 전극을 포함하는 연료전지
US7901817B2 (en) 2006-02-14 2011-03-08 Ini Power Systems, Inc. System for flexible in situ control of water in fuel cells
FI121540B (fi) 2006-03-08 2010-12-31 Canatu Oy Menetelmä, jolla siirretään korkean aspektisuhteen omaavia molekyylirakenteita
EP2374754B1 (en) 2006-03-09 2018-01-10 Battelle Memorial Institute Multi-layer structure comprising carbon nanotubes
JP2007258030A (ja) * 2006-03-24 2007-10-04 Nok Corp 炭素材料薄膜の製造方法
RU2303836C1 (ru) 2006-04-04 2007-07-27 Ассоциация делового сотрудничества в области передовых комплексных технологий "АСПЕКТ" Мембранно-электродная сборка для топливного элемента
KR100805924B1 (ko) 2006-04-07 2008-02-21 주식회사 이엠따블유에너지 공기 양극막 어셈블리 및 이를 포함하는 공기 금속 전지
WO2008021482A2 (en) 2006-08-14 2008-02-21 Chien-Min Sung Diamond-like carbon electronic devices and methods of manufacture
EP2066743B1 (en) 2006-09-04 2021-12-15 Oy Morphona Ltd. Functionalized cellulose - carbon nanotube nanocomposites
CN101529542B (zh) 2006-09-12 2012-06-13 佛罗里达大学研究基金公司 用于大表面积接触应用的纳米管电极
JP5680301B2 (ja) * 2006-10-11 2015-03-04 ユニバーシティ オブ フロリダ リサーチ ファンデーション インコーポレーティッド ペンダントパイ相互作用性/結合性置換基を含有する電気活性ポリマー、そのカーボンナノチューブ複合体、およびその形成方法
KR100829555B1 (ko) 2007-01-25 2008-05-14 삼성에스디아이 주식회사 탄소나노튜브, 담지 촉매, 상기 담지 촉매의 제조 방법 및상기 담지 촉매를 포함한 연료 전지
JP2009093983A (ja) 2007-10-11 2009-04-30 Toyota Central R&D Labs Inc 二次電池
TW200923944A (en) 2007-11-23 2009-06-01 Skymedi Corp Non-volatile memory system and its control method
JP5213025B2 (ja) 2008-02-14 2013-06-19 国立大学法人 東京大学 ナノカーボン物質分散液とその製造方法、ナノカーボン物質構成体
US8236446B2 (en) 2008-03-26 2012-08-07 Ada Technologies, Inc. High performance batteries with carbon nanomaterials and ionic liquids
US8699207B2 (en) 2008-10-21 2014-04-15 Brookhaven Science Associates, Llc Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer
DE102009012675A1 (de) 2009-03-13 2010-09-16 Bayer Materialscience Ag Verfahren zur Dispergierung graphitartiger Nanoteilchen
JP5374208B2 (ja) 2009-03-27 2013-12-25 矢崎総業株式会社 圧着端子金具
IT1393689B1 (it) 2009-04-06 2012-05-08 Envitech S R L Sa Processo e reattore di elettrocoagulazione con elettrodi di materiale nanostrutturato a base di carbonio per la rimozione di contaminanti dai liquidi
RU2011137967A (ru) 2009-04-30 2013-06-10 Юниверсити Оф Флорида Рисерч Фаундейшн Инк. Воздушные катоды на основе одностенных углеродных нанотрубок
US20130026029A1 (en) 2010-04-08 2013-01-31 Sam Kayaert Photo-electrochemical cell
US8795899B2 (en) 2010-08-19 2014-08-05 Nanotek Instruments, Inc. Lithium super-battery with a functionalized nano graphene cathode
JP2012082120A (ja) * 2010-10-15 2012-04-26 Fukuoka Prefecture 新規ナノカーボン分散剤、ナノカーボン分散液、ならびにそれらを用いるナノカーボン薄膜の製造方法およびナノカーボン薄膜
EP2652822A4 (en) 2010-12-17 2014-07-30 Univ Florida HYDROGEN OXIDATION AND PRODUCTION OVER CARBON LAYERS
RU2013148843A (ru) 2011-04-04 2015-05-10 Юниверсити Оф Флорида Рисеч Фаундэйшн, Инк. Диспергирующие вещества для нанотрубок и пленки из нанотрубок, не содержащие диспергирующих веществ, на их основе
CN103160849B (zh) 2011-12-12 2016-06-08 清华大学 二氧化碳电化学还原转化利用的方法
US20130105304A1 (en) 2012-07-26 2013-05-02 Liquid Light, Inc. System and High Surface Area Electrodes for the Electrochemical Reduction of Carbon Dioxide
WO2015077508A1 (en) 2013-11-20 2015-05-28 University Of Florida Research Foundation, Inc. Carbon dioxide reduction over carbon-containing materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1878763A2 (en) * 2006-06-21 2008-01-16 Kuan-Jiuh Lin CNT/polymer composite and method for producing the same
CN101721944A (zh) * 2009-12-04 2010-06-09 青岛科技大学 一种聚合物基碳纳米管分散助剂及其合成方法和用途

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHRISTOPH G. SALZMANN等: "《Highly hydrophilic and stable polypeptide/single-wall carbon nanotube conjugates》", 《JOURNAL OF MATERIALS CHEMISTRY》 *
CHRISTOPH G. SALZMANN等: "《Highly hydrophilic and stable polypeptide/single-wall carbon nanotube conjugates》", 《JOURNAL OF MATERIALS CHEMISTRY》, vol. 18, 4 March 2008 (2008-03-04), pages 1977 - 1983 *
PETAR PETROV等: ""Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers"", 《CHEMICAL COMMUNICATIONS》 *
PETAR PETROV等: ""Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers"", 《CHEMICAL COMMUNICATIONS》, vol. 23, 20 October 2003 (2003-10-20), pages 2904 - 2905, XP002727490, DOI: doi:10.1039/B307751A *
QIANG YANG等: ""Functionalization of Multiwalled Carbon Nanotubes by Pyrene-Labeled Hydroxypropyl", 《JOURNAL OF MATERIALS CHEMISTRY》 *
QIANG YANG等: ""Functionalization of Multiwalled Carbon Nanotubes by Pyrene-Labeled Hydroxypropyl", 《JOURNAL OF MATERIALS CHEMISTRY》, vol. 112, 23 September 2008 (2008-09-23), pages 12934 - 12939, XP002727491, DOI: doi:10.1021/jp805424f *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104724691A (zh) * 2013-12-23 2015-06-24 北京阿格蕾雅科技发展有限公司 一种提高单壁碳纳米管分散性的方法
CN106163984A (zh) * 2014-01-31 2016-11-23 曼彻斯特大学 墨水制剂
CN109761222A (zh) * 2017-11-09 2019-05-17 北京华碳元芯电子科技有限责任公司 利用真空蒸发来去除碳纳米管表面分散剂的方法
CN108862264A (zh) * 2018-07-24 2018-11-23 浙江省海洋开发研究院 一种石墨烯分散剂及其制备方法、应用
CN108862264B (zh) * 2018-07-24 2021-08-17 浙江省海洋开发研究院 一种石墨烯分散剂及其制备方法、应用
CN113121917A (zh) * 2021-04-28 2021-07-16 中科易朔(厦门)防火技术服务有限公司 一种阻燃可控降解聚丙烯复合材料及其制备方法

Also Published As

Publication number Publication date
EP2694579A4 (en) 2014-09-03
MX2013011538A (es) 2013-12-06
US9775241B2 (en) 2017-09-26
KR102017904B1 (ko) 2019-09-03
JP2014510187A (ja) 2014-04-24
KR20140026442A (ko) 2014-03-05
BR112013025503A2 (pt) 2016-12-27
US20160192484A1 (en) 2016-06-30
US9642252B2 (en) 2017-05-02
CN103459484B (zh) 2016-10-12
US20140083752A1 (en) 2014-03-27
CA2832072A1 (en) 2012-10-11
US20160185602A1 (en) 2016-06-30
WO2012138632A2 (en) 2012-10-11
EP2694579A2 (en) 2014-02-12
AU2012240367A1 (en) 2013-11-07
WO2012138632A3 (en) 2012-12-20
JP6108482B2 (ja) 2017-04-05
SG193937A1 (en) 2013-11-29
RU2013148843A (ru) 2015-05-10
US9642253B2 (en) 2017-05-02

Similar Documents

Publication Publication Date Title
CN103459484A (zh) 纳米管分散剂及由其得到的不含分散剂的纳米管膜
Subramanian et al. Review of recent advances in applications of vapor-phase material infiltration based on atomic layer deposition
Llanes-Pallas et al. Modular engineering of H-bonded supramolecular polymers for reversible functionalization of carbon nanotubes
Kumru et al. Colloidal properties of the metal-free semiconductor graphitic carbon nitride
TW200418722A (en) Nanotube polymer composite and methods of making same
Rice et al. Effect of induction on the dispersion of semiconducting and metallic single-walled carbon nanotubes using conjugated polymers
AU2005323492A1 (en) Fugitive viscosity and stability modifiers for carbon nanotube compositions
Zhao et al. Water soluble multi-walled carbon nanotubes prepared via nitroxide-mediated radical polymerization
Hu et al. Controllable synthesis of two-dimensional graphdiyne films catalyzed by a copper (II) trichloro complex
CN102953150B (zh) 挥发扩散法制备富勒烯微纳米纤维
Kanimozhi et al. Structurally analogous degradable version of fluorene–bipyridine copolymer with exceptional selectivity for large-diameter semiconducting carbon nanotubes
Cao et al. Hyperbranched poly (amidoamine)-modified multi-walled carbon nanotubes via grafting-from method
CN111848897A (zh) 由两类八极共轭结构单元通过碳-碳双键交替连接组成的共价有机框架材料的制备方法
Akyildiz et al. Photoluminescence mechanism and photocatalytic activity of organic–inorganic hybrid materials formed by sequential vapor infiltration
Lin et al. A microwave-assisted, solvent-free approach for the versatile functionalization of carbon nanotubes
Fernández-Sotillo et al. Continuous graphene-like layers formed on copper substrates by graphene oxide self-assembly and reduction
Di Crescenzo et al. Lipophilic guanosine derivatives as carbon nanotube dispersing agents
Tripathi et al. Synthesis of green nanocomposite material for engineering application
CN1699153A (zh) 制备内包金属颗粒洋葱状富勒烯的催化热解法
KR101210954B1 (ko) 자가 정렬 분자를 이용한 유리 및 세라믹 기판상에 접착력이 우수한 미세 전도성 프린팅 패턴의 제조 방법
Noh et al. Novel hybridization approaches for graphene-based nanocomposites
CN1243142C (zh) 连续大量制备纳米碳纤维的方法
Chevrier et al. Functionalization of P3HT‐Based Hybrid Materials for Photovoltaic Applications
Zhong et al. Formation of blue-emitting colloidal Si quantum dots through pulsed discharge of Si strips in distilled water medium
Coleman Nanotubes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant