CN103154014A - 修饰核苷、其类似物以及由它们制备的寡聚化合物 - Google Patents
修饰核苷、其类似物以及由它们制备的寡聚化合物 Download PDFInfo
- Publication number
- CN103154014A CN103154014A CN2011800210080A CN201180021008A CN103154014A CN 103154014 A CN103154014 A CN 103154014A CN 2011800210080 A CN2011800210080 A CN 2011800210080A CN 201180021008 A CN201180021008 A CN 201180021008A CN 103154014 A CN103154014 A CN 103154014A
- Authority
- CN
- China
- Prior art keywords
- replacement
- alkyl
- och
- oligomeric compounds
- independently
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 *C(C(*)OC1/C=C/P(O)=O)C1N Chemical compound *C(C(*)OC1/C=C/P(O)=O)C1N 0.000 description 3
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/712—Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/06—Pyrimidine radicals
- C07H19/067—Pyrimidine radicals with ribosyl as the saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/06—Pyrimidine radicals
- C07H19/10—Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/16—Purine radicals
- C07H19/167—Purine radicals with ribosyl as the saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/16—Purine radicals
- C07H19/20—Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
- C07H21/02—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1135—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1137—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/315—Phosphorothioates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/318—Chemical structure of the backbone where the PO2 is completely replaced, e.g. MMI or formacetal
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
- C12N2310/321—2'-O-R Modification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
- C12N2310/322—2'-R Modification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
- C12N2310/323—Chemical structure of the sugar modified ring structure
- C12N2310/3231—Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/34—Spatial arrangement of the modifications
- C12N2310/345—Spatial arrangement of the modifications having at least two different backbone modifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/34—Spatial arrangement of the modifications
- C12N2310/346—Spatial arrangement of the modifications having a combination of backbone and sugar modifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/50—Methods for regulating/modulating their activity
- C12N2320/51—Methods for regulating/modulating their activity modulating the chemical stability, e.g. nuclease-resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Virology (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Communicable Diseases (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Saccharide Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明提供了修饰核苷、其类似物以及由它们制备的寡聚化合物。更具体地讲,本发明提供了可用于并入到寡聚化合物末端的修饰核苷及其类似物。此类寡聚化合物也可包含在双链组合物中。在一些实施方案中,预期本文提供的所述寡聚化合物与靶RNA的一部分杂交,从而导致所述靶RNA正常功能的丧失。
Description
政府支持的声明
本发明根据NIH授予的5R44GM076793-03号合同在美国政府的支持下完成。美国政府在本发明中享有某些权利。
序列表
本专利申请随电子版的序列表一起提交。该序列表作为名称为20110426_CHEM0067WOSEQ.txt的文件提供,其创建于2011年4月26日,大小为10Kb。该电子版序列表中的信息全部以引用方式并入本文。
发明领域
本文提供了5′修饰核苷、其类似物以及由它们制备的寡聚化合物。更具体地讲,提供了可用于并入到寡聚化合物的一个末端位置(优选5′位置)的5′修饰核苷及其类似物。在某些实施方案中,预期本文提供的寡聚化合物具有增强的核酸酶稳定性。在某些实施方案中,预期本文提供的并入这些5′修饰核苷或其类似物中的一者或多者的寡聚化合物和组合物与靶RNA的一部分杂交,从而导致靶RNA正常功能的丧失。还预期这些寡聚化合物可用作诊断应用中的引物和探针。
发明背景
在30多年前,人们首次提出了靶向致病基因序列(Belikova等,Tet.Lett.,1967,37,3557-3562),并在10多年后在细胞培养中证实了反义活性(Zamecnik等,Proc.Natl.Acad.Sci.U.S.A.,1978,75,280-284)。反义技术在治疗源于致病基因的疾病或病症中的一个优势在于,其是一种能够调节(增加或减少)特定致病基因表达的直接遗传学方法。另一个优势在于,使用反义化合物验证治疗靶导致直接和立即发现候选药物;反义化合物是潜在的治疗剂。
一般来讲,反义技术背后的原理是反义化合物与靶核酸杂交并调节基因表达活性或功能,诸如转录或翻译。基因表达的调节能可通过例如靶降解或占位型抑制而实现。通过降解调节RNA靶功能的一个实例是与DNA样反义化合物杂交后靶RNA的基于RNA酶H的降解。通过靶降解调节基因表达的另一个实例是RNA干扰(RNAi)。RNAi一般是指涉及引入dsRNA的反义介导的基因沉默,从而导致被靶向的内源性mRNA水平发生序列特异性降低。通过占位型机制调节RNA靶功能的另外实例为调节microRNA功能。MicroRNA是调控编码蛋白质的RNA的表达的非编码小RNA。反义化合物与microRNA的结合防止microRNA结合到其信使RNA靶,并因而干扰microRNA的功能。无论具体机制如何,此序列特异性都使得反义化合物在以下方面极富吸引力:作为靶验证和基因功能确定的工具,以及作为治疗剂以选择性地调节恶性肿瘤和其它疾病发病机理中涉及的基因表达。
反义技术是减少一种或多种特定基因产物表达的有效手段,并因此可以证明可独特地用于多种治疗、诊断和研究应用。化学修饰的核苷通常被用于并入到反义化合物中,以增强一种或多种特性,诸如核酸酶抗性、药代动力学或对靶RNA的亲和力。在1998年,反义化合物Vitravene(福米韦生(fomivirsen);由Isis Pharmaceuticals Inc.,Carlsbad,CA开发)是第一种得到美国食品药品监督管理局(FDA)核准上市的反义药物,并且目前被用于治疗AIDS患者中巨细胞病毒(CMV)诱导的视网膜炎。
新的化学修饰已经改善了反义化合物的效能和功效,从而揭示口腔递送以及增强皮下施用可能性、降低副作用的可能性,并引起患者便利性得到改善。增强反义化合物的效能的化学修饰允许施用较低的剂量,这减小毒性的可能性,以及降低治疗的总成本。增强对降解的抗性的修饰会导致较慢的体内清除,从而允许降低给药频率。在一种化合物中,可组合不同类型的化学修饰,以进一步优化化合物的功效。
5′-取代DNA和RNA衍生物的合成及其并入到寡聚化合物中在以下文献中已有所报道(Saha等,J.Org.Chem.,1995,60,788-789;Wang等,Bioorganic & Medicinal Chemistry Letters,1999,9,885-890;以及Mikhailov等,Nucleosides & Nucleotides,1991,10(1-3),339-343;Leonid等,1995,14(3-5),901-905;以及Eppacher等,Helvetica ChimicaActa,2004,87,3004-3020)。也已经用修饰的碱基将5′-取代的单体制备成单磷酸酯制备(Wang等,Nucleosides Nucleotides & Nucleic Acids,2004,23(1&2),317-337)。
已经对一类在多个位置(包括糖环的5′-位和2′-位)包括任选修饰的修饰核苷以及在其中并入了这些修饰核苷的寡聚化合物进行了报道(参见国际申请号:PCT/US94/02993,以WO 94/22890在1994年10月13日公布)。
之前曾报道了5′-CH2取代2′-O-保护核苷的合成及其并入到寡聚物中(参见Wu等,Helvetica Chimica Acta,2000,83,1127-1143和Wu等Bioconjugate Chem.1999,10,921-924)。
已经制备了酰胺连接的核苷二聚体,用于并入到寡核苷酸中,其中二聚体(5′至3′)中3′连接的核苷包含2′-OCH3和5′-(S)-CH3(Mesmaeker等,Synlett,1997,1287-1290)。
之前曾报道了一类2′-取代5′-CH2(或O)修饰核苷以及将它们并入到寡核苷酸中进行了讨论(参见国际申请号:PCT/US92/01020,以WO 92/13869在1992年2月7日公布)。
之前曾报道了具有2′-取代的修饰5′-亚甲基膦酸酯单体的合成及其在制备修饰抗病毒二聚体中的用途(参见美国专利申请号:10/418,662,以US 2006/0074035在2006年4月6日公布)。
已经制备了5’-炔基膦酸酯核糖核苷的多种类似物,并在以下文献中进行了报道(参见Meurillon等,Tetrahedron,2009,65,6039-6046以及Nucleic Acids Symposium Series,2008,52(1),565-566;Lera等,Org.Lett.,2000,2(24),3873-3875)。
已经对5’-乙烯基膦酸酯DNA和RNA单体的制备及其在制备用于寡核苷酸合成的二聚化合物中的用途进行了描述。也已经讨论了它们的生化研究(参见Whittaker等,Tet.Lett.,2008,49,6984-6987;Abbas等,Org.Lett.,2001,3(21),3365-3367;Bertram等,Biochemistry,2002,41,7725-7731;Zhao等,Tet.Lett.,1996,37(35),6239-6242和Jung,等,Bioorg.Med.Chem.,2000,8,2501-2509)。
已经制备了多种BNA,并在专利文献以及科学文献中进行了报道,参见例如:Singh等,Chem.Commun.,1998,4,455-456;Koshkin等,Tetrahedron,1998,54,3607-3630;Wahlestedt等,Proc.Natl.Acad.Sci.U.S.A.,2000,97,5633-5638;Kumar等,Bioorg.Med.Chem.Lett.,1998,8,2219-2222;Wengel等的PCT国际申请WO 98-DK39319980914;Singh等,J.Org.Chem.,1998,63,10035-10039;它们均全文以引用方式并入本文。已授权的美国专利以及已公布的专利申请的实例包括例如:美国专利7,053,207、6,770,748、6,268,490和6,794,499,以及已公布的美国专利申请20040219565、20040014959、20030207841、20040192918、20030224377、20040143114和20030082807;它们均全文以引用方式并入本文。
在文献中已报道了多种环己六醇核苷类似物的合成,参见例如:Verheggen等,J.Med.Chem.,1995,38,826-835;Altmann等,Chimia,1996,50,168-176;Herdewijn等,Bioorganic & Medicinal ChemistryLetters,1996,6(13),1457-1460;Verheggen等,Nucleosides &Nucleotides,1996,15(1-3),325-335;Ostrowski等,J.Med.Chem.,1998,41,4343-4353;Allart等,Tetrahedron.,1999,55,6527-6546;Wouters等,Bioorganic & Medicinal Chemistry Letters,1999,9,1563-1566;Brown,等,Drug Development Res.,2000,49,253-259;已公布的PCT申请:WO 93/25565、WO 02/18406和WO 05/049582;美国专利5,314,893、5,607,922和6,455,507。
已经描述了作为单体的多种环己六醇核苷类似物,并且也已将它们并入到了寡聚化合物中(参见例如:已公布的PCT申请WO93/25565,于1993年12月23日公布;Augustyns等Nucleic Acids Res.,1993,21(20),4670-4676;Verheggen等,J.Med.Chem.,1993,36,2033-2040;Van Aerschol等,Angew.Chem.Int.Ed.Engl.,1995,34(12),1338-1339;Anderson等,Tetrahedron Letters,1996,37(45),8147-8150;Herdewijn等,Liebigs Ann.,1996,1337-1348;De Bouvere等,LiebigsAnn./Recueil,1997,1453-1461;1513-1520;Hendrix等,Chem.Eur.J.,1997,3(1),110-120;Hendrix等,Chem.Eur.J.,1997,3(9),1513-1520;Hossain et al,J.Org.Chem.,1998,63,1574-1582;Allart等,Chem.Eur.J.,1999,5(8),2424-2431;Boudou等,Nucleic Acids Res.,1999,27(6),1450-1456;Kozlov等,J.Am.Chem.Soc.,1999,121,1108-1109;Kozlov等,J.Am.Chem.Soc.,1999,121,2653-2656;Kozlov等,J.Am.Chem.Soc.,1999,121,5856-5859;Pochet等,Nucleosides & Nucleotides,1999,18(4&5),1015-1017;Vastmans等,Collection Symposium Series,1999,2,156-160;Froeyen等,Helvetica Chimica Acta,2000,83,2153-2182;Kozlov等,Chem.Eur.J.,2000,6(1),151-155;Atkins等,Parmazie,2000,55(8),615-617;Lescrinier等,Chemistry & Biology,2000,7,719-731;Lescrinier 等,Helvetica Chimica Acta,2000,83,1291-1310;Wang等,J.Am.Chem.,2000,122,8595-8602;美国专利申请US 2004/0033967;已公布的美国专利申请US 2008/0038745;已公布和授权的美国专利7,276,592)。DNA类似物也在论文中进行了综述(参见:Leumann,J.C,Bioorganic & Medicinal Chemistry,2002,10,841-854),该论文包括环己六醇核苷类似物的一般性讨论(在“己糖醇核酸家族”名称下)。
也已经制备了具有磷酸二酯连接的己糖醇核酸(HNA,或1,5-无水己糖醇核酸)的寡聚化合物,用于细胞测定中的评价。进行了评价的不同基序被完全修饰,其中每个单体均为磷酸二酯连接的己糖醇核酸类似物并具有缺口,其中寡聚化合物3′和5′外部区域中的每个单体均为磷酸二酯连接的己糖醇核酸类似物,而内部区域中的每个单体均为硫代磷酸酯连接的脱氧核糖核苷(参见:Kang等,Nucleic AcidsResearch,2004,32(14),4411-4419;Vandermeeren等,2000,55,655-663;Flores等,Parasitol Res.,1999,85,864-866;以及Hendrix等,Chem.Eur.J,1997,3(9),1513-1520)。
已经制备了具有磷酸二酯连接的类似物(带3′-OH基团)的寡聚化合物,该类似物在本领域中被称为ANA或D-阿卓糖醇(D-altritol)核酸,并对这些寡聚化合物进行了结构上的评价和体外评价(Allart等,Chem.Eur.J.,1999,5(8),2424-2431)。
已经制备了具有并入的己糖醇核苷酸(在本领域中也被称为HNA核酸)的化学修饰siRNA,并对其沉默能力进行了测试(参见:已公布的PCT申请WO 06/047842,于2006年5月11日公布)。
已对环己烯核酸及其类似物在科学和专利文献中作为单体以及作为寡聚化合物进行了报道,参见例如:Robeyns等,J.Am.Chem.Soc.,2008,130(6),1979-1984;Horváth等,Tetrahedron Letters,2007,48,3621-3623;Nauwelaerts等,J.Am.Chem.Soc.,2007,129(30),9340-9348;Gu等,,Nucleosides,Nucleotides & Nucleic Acids,2005,24(5-7),993-998;Nauwelaerts等,Nucleic Acids Research,2005,33(8),2452-2463;Robeyns等,Acta Crystallographica,Section F:StructuralBiology and Crystallization Communications,2005,F61(6),585-586;Gu等,Tetrahedron,2004,60(9),2111-2123;Gu等,Oligonucleotides,2003,13(6),479-489;Wang等,J.Org.Chem.,2003,68,4499-4505;Verbeure等,Nucleic Acids Research,2001,29(24),4941-4947;Wang等,J.Org.Chem.,2001,66,8478-82;Wang等,Nucleosides,Nucleotides & NucleicAcids,2001,20(4-7),785-788;Wang等,J.Am.Chem.,2000,122,8595-8602;已公布的PCT申请WO 06/047842;以及已公布的PCT申请WO 01/049687;它们均全文以引用方式并入本文。
在文献中已报道了多种四氢吡喃核苷类似物的合成,参见例如:Verheggen等,J.Med.Chem.,1995,38,826-835;Altmann等,Chimia,1996,50,168-176;Herdewijn等,Bioorganic & Medicinal ChemistryLetters,1996,6(13),1457-1460;Verheggen 等,Nucleosides &Nucleotides,1996,15(1-3),325-335;Ostrowski等,J.Med.Chem.,1998,41,4343-4353;Allart等,Tetrahedron.,1999,55,6527-6546;Wouters等,Bioorganic & Medicinal Chemistry Letters,1999,9,1563-1566;Brown,等,Drug Development Res.,2000,49,253-259;已公布的PCT申请:WO 93/25565、WO 02/18406和WO 05/049582;美国专利5,314,893、5,607,922和6,455,507。
已经描述了作为单体的多种四氢吡喃核苷类似物,并且也已将它们并入到寡聚化合物中(参见例如:已公布的PCT申请WO 93/25565,于1993年12月23日公布;Augustyns等Nucleic Acids Res.,1993,21(20),4670-4676;Verheggen等,J.Med.Chem.,1993,36,2033-2040;Van Aerschol等,Angew.Chem.Int.Ed.Engl.,1995,34(12),1338-1339;Anderson等,Tetrahedron Letters,1996,37(45),8147-8150;Herdewijn等,Liebigs Ann.,1996,1337-1348;De Bouvere等,Liebigs Ann./Recueil,1997,1453-1461;1513-1520;Hendrix等,Chem.Eur.J.,1997,3(1),110-120;Hendrix等,Chem.Eur.J.,1997,3(9),1513-1520;Hossain et al,J.Org.Chem.,1998,63,1574-1582;Allart等,Chem.Eur.J.,1999,5(8),2424-2431;Boudou等,Nucleic Acids Res.,1999,27(6),1450-1456;Kozlov等,J.Am.Chem.Soc.,1999,121,1108-1109;Kozlov等,J.Am.Chem.Soc.,1999,121,2653-2656;Kozlov等,J.Am.Chem.Soc.,1999,121,5856-5859;Pochet等,Nucleosides & Nucleotides,1999,18(4&5),1015-1017;Vastmans等,Collection Symposium Series,1999,2,156-160;Froeyen等,Helvetica Chimica Acta,2000,83,2153-2182;Kozlov等,Chem.Eur.J.,2000,6(1),151-155;Atkins等,Parmazie,2000,55(8),615-617;Lescrinier等,Chemistry & Biology,2000,7,719-731;Lescrinier等,Helvetica Chimica Acta,2000,83,1291-1310;Wang等,J.Am.Chem.,2000,122,8595-8602;美国专利申请US 2004/0033967;已公布的美国专利申请US 2008/0038745;已公布和授权的美国专利7,276,592)。DNA类似物也在论文中进行了综述(参见:Leumann,J.C,Bioorganic & Medicinal Chemistry,2002,10,841-854),该论文包括四氢吡喃核苷类似物的一般性讨论(在“己糖醇核酸家族”名称下)。
已经制备了具有磷酸二酯连接的3′-H四氢吡喃核苷类似物(在本领域中也称为HNA-己糖醇核酸或1,5-无水己糖醇核酸)的寡聚化合物,用于细胞测定中的评价。进行了评价的不同基序被完全修饰,其中每个单体均为磷酸二酯连接的3′-H四氢吡喃核苷类似物并具有缺口,其中寡聚化合物3′和5′外部区域中的每个单体均为磷酸二酯连接的3′-H四氢吡喃核苷类似物,而内部区域中的每个单体均为硫代磷酸酯连接的脱氧核糖核苷(参见:Kang等,Nucleic Acids Research,2004,32(14),4411-4419;Vandermeeren等,2000,55,655-663;Flores等,Parasitol Res.,1999,85,864-866;以及Hendrix等,Chem.Eur.J,1997,3(9),1513-1520)。
已经制备了具有磷酸二酯连接的3′-OH四氢吡喃核苷类似物(在本领域中也被称为ANA或D-阿卓糖醇核酸)的寡聚化合物,并对它们进行了结构上的评价和体外评价(Allart等,Chem.Eur.J.,1999,5(8),2424-2431)。
已经制备了具有并入的己糖醇核苷酸(在本领域中也被称为HNA核酸)的化学修饰siRNA,并对其沉默能力进行了测试(参见:已公布的PCT申请WO 06/047842,于2006年5月11日公布)。
发明概述
本文提供了5′修饰核苷、其类似物以及由它们制备的寡聚化合物。更具体地讲,本文提供的5′修饰核苷及其类似物被连接到寡聚化合物的末端,优选在5′末端。在某些实施方案中,预期本文提供的寡聚化合物具有增强的核酸酶稳定性。在某些实施方案中,预期本文提供的并入了5′修饰核苷或其类似物中的一者或多者的寡聚化合物和组合物可与靶RNA的一部分杂交,从而导致靶RNA正常功能的丧失。还预期这些寡聚化合物可用作诊断应用中的引物和探针。
在本文中更详细地对变量进行单独定义。需要理解的是,本文提供的5′-修饰核苷、其类似物和寡聚化合物包括本文所公开的实施方案和所定义的变量的所有组合。
在某些实施方案中,提供具有式Ic的化合物:
其中:
T1为任选保护的磷部分;
M1为H、OH或OR1;
M2为OH、OR1或N(R1)(R2);
每个R1和R2独立地为C1-C6烷基或取代的C1-C6烷基;
r为0或1;
A具有下式之一:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(R3)(R4);
Q3为O、S、N(R5)或C(R6)(R7);
每个R3、R4、R5、R6和R7独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
M3为O、S、NR14、C(R15)(R16)、C(R15)(R16)C(R17)(R18)、C(R15)=C(R17)、OC(R15)(R16)或OC(R15)(Bx2);
R14为H、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
R15、R16、R17和R18各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
Bx1为杂环碱基部分;
或者若存在Bx2,则Bx2为杂环碱基部分,而Bx1为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
J4、J5、J6和J7各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
或者J4与J5或J7之一形成桥,其中所述桥包含选自O、S、NR19、C(R20)(R21)、C(R20)=C(R21)、C[=C(R20)(R21)]和C(=O)的1至3个连接的双基基团,而J5、J6和J7的其它两个各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
每个R19、R20和R21独立地为H、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X1]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X1为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=X2)J1、OC(=X2)N(J1)(J2)和C(=X2)N(J1)(J2);
X2为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3)。
在某些实施方案中,M3为O、CH=CH、OCH2或OC(H)(Bx2)。在某些实施方案中,M3为O。
在某些实施方案中,J4、J5、J6和J7每一个都为H。在某些实施方案中,J4与J5或J7之一形成桥。
在某些实施方案中,A具有下式之一:
其中:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基或取代的C1-C6烷氧基。在某些实施方案中,Q1和Q2每一个均为H。在某些实施方案中,Q1和Q2各自独立地为H或卤素。在某些实施方案中,Q1和Q2为H,Q1和Q2的另一个为F、CH3或OCH3。
在某些实施方案中,T1具有式:
其中:
Ra和Rc各自独立地为受保护的羟基、受保护的硫醇、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、受保护的氨基或取代的氨基;以及
Rb为O或S。在某些实施方案中,Rb为O,以及Ra和Rc各自独立地为OCH3、OCH2CH3或OCH(CH3)2。
在某些实施方案中,r为0,M1为O(CH2)2CN,以及M2为N[CH(CH3)2]2。
在某些实施方案中,G为卤素、OCH3、OCH2F、OCHF2、OCF3、OCH2CH3、O(CH2)2F、OCH2CHF2、OCH2CF3、OCH2-CH=CH2、O(CH2)2-OCH3、O(CH2)2-SCH3、O(CH2)2-OCF3、O(CH2)3-N(R10)(R11)、O(CH2)2-ON(R10)(R11)、O(CH2)2-O(CH2)2-N(R10)(R11)、OCH2C(=O)-N(R10)(R11)、OCH2C(=O)-N(R12)-(CH2)2-N(R10)(R11)或O(CH2)2-N(R12)-C(=NR13)[N(R10)(R11)]其中R10、R11、R12和R13各自独立地为H或C1-C6烷基。在某些实施方案中,G为卤素、OCH3、OCF3、OCH2CH3、OCH2CF3、OCH2-CH=CH2、O(CH2)2-OCH3、O(CH2)2-O(CH2)2-N(CH3)2、OCH2C(=O)-N(H)CH3、OCH2C(=O)-N(H)-(CH2)2-N(CH3)2或OCH2-N(H)-C(=NH)NH2。在某些实施方案中,G为F、OCH3或O(CH2)2-OCH3。在某些实施方案中,G为O(CH2)2-OCH3。
在某些实施方案中,杂环碱基部分为嘧啶、取代的嘧啶、嘌呤或取代的嘌呤。在某些实施方案中,杂环碱基部分为尿嘧啶、胸腺嘧啶、胞嘧啶、5-甲基胞嘧啶、腺嘌呤或鸟嘌呤。
在某些实施方案中,提供具有式Ie的构型的化合物:
其中Bx为选自嘧啶、取代的嘧啶、嘌呤或取代的嘌呤的杂环碱基部分,而其它变量如之前所述。
在某些实施方案中,提供了式Ie化合物,其中A具有式:
其中Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基或取代的C1-C6烷氧基。在某些实施方案中,提供了式Ie化合物,其中Q1和Q2各自独立地为H、F、CH3或OCH3。在某些实施方案中,提供了式Ie化合物,其中T1具有式:
其中;
Rb为O;以及
Ra和Rc各自独立地为OCH3、OCH2CH3或OCH(CH3)2。
在某些实施方案中,提供了具有式IIc的寡聚化合物:
其中:
T1为任选保护的磷部分;
T2为将式IIc的化合物连接到寡聚化合物的核苷间连接基团;
A具有下式之一:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(R3)(R4);
Q3为O、S、N(R5)或C(R6)(R7);
每个R3、R4、R5、R6和R7独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
M3为O、S、NR14、C(R15)(R16)、C(R15)(R16)C(R17)(R18)、C(R15)=C(R17)、OC(R15)(R16)或OC(R15)(Bx2);
R14为H、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
R15、R16、R17和R18各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
Bx1为杂环碱基部分;
或者若存在Bx2,则Bx2为杂环碱基部分,而Bx1为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
J4、J5、J6和J7各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
或者J4与J5或J7之一形成桥,其中所述桥包含选自O、S、NR19、C(R20)(R21)、C(R20)=C(R21)、C[=C(R20)(R21)]和C(=O)的1至3个连接的双基基团,而J5、J6和J7的其它两个各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
每个R19、R20和R21独立地为H、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X1]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X1为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=X2)J1、OC(=X2)N(J1)(J2)和C(=X2)N(J1)(J2);
X2为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;
当j为1时,则Z不为卤素或N(E2)(E3);以及
其中所述寡聚化合物包含8至40个单体亚单位,并可与靶核酸的至少一部分杂交。
在某些实施方案中,M3为O、CH=CH、OCH2或OC(H)(Bx2)。在某些实施方案中,M3为O。
在某些实施方案中,J4、J5、J6和J7每一个都为H。在某些实施方案中,J4与J5或J7之一形成桥。
在某些实施方案中,A具有下式之一:
其中:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基或取代的C1-C6烷氧基。在某些实施方案中,Q1和Q2每一个均为H。在某些实施方案中,Q1和Q2各自独立地为H或卤素。在某些实施方案中,Q1和Q2为H,Q1和Q2的另一个为F、CH3或OCH3。
在某些实施方案中,T1具有式:
其中:
Ra和Rc各自独立地为受保护的羟基、受保护的硫醇、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、受保护的氨基或取代的氨基;以及
Rb为O或S。在某些实施方案中,Rb为O,而Ra和Rc各自独立地为OCH3、OCH2CH3或CH(CH3)2。
在某些实施方案中,G为卤素、OCH3、OCH2F、OCHF2、OCF3、OCH2CH3、O(CH2)2F、OCH2CHF2、OCH2CF3、OCH2-CH=CH2、O(CH2)2-OCH3、O(CH2)2-SCH3、O(CH2)2-OCF3、O(CH2)3-N(R10)(R11)、O(CH2)2-ON(R10)(R11)、O(CH2)2-O(CH2)2-N(R10)(R11)、OCH2C(=O)-N(R10)(R11)、OCH2C(=O)-N(R12)-(CH2)2-N(R10)(R11)或O(CH2)2-N(R12)-C(=NR13)[N(R10)(R11)]其中R10、R11、R12和R13各自独立地为H或C1-C6烷基。在某些实施方案中,G为卤素、OCH3、OCF3、OCH2CH3、OCH2CF3、OCH2-CH=CH2、O(CH2)2-OCH3、O(CH2)2-O(CH2)2-N(CH3)2、OCH2C(=O)-N(H)CH3、OCH2C(=O)-N(H)-(CH2)2-N(CH3)2或OCH2-N(H)-C(=NH)NH2。在某些实施方案中,G为F、OCH3或O(CH2)2-OCH3。在某些实施方案中,G为O(CH2)2-OCH3。
在某些实施方案中,杂环碱基部分为嘧啶、取代的嘧啶、嘌呤或取代的嘌呤。在某些实施方案中,杂环碱基部分为尿嘧啶、胸腺嘧啶、胞嘧啶、5-甲基胞嘧啶、腺嘌呤或鸟嘌呤。
在某些实施方案中,提供了寡聚化合物,其中具有式IIc的每个5′-末端化合物还具有式IId的构型:
其中Bx为选自嘧啶、取代的嘧啶、嘌呤或取代的嘌呤的杂环碱基部分。
在某些实施方案中,A具有式:
其中Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基或取代的C1-C6烷氧基。在某些实施方案中,Q1和Q2各自独立地为H、F、CH3或OCH3。
在某些实施方案中,T1具有式:
其中;
Rb为O;以及
Ra和Rc各自独立地为OCH3、OCH2CH3或OCH(CH3)2。
在某些实施方案中,提供了寡聚化合物,其中所述5′-末端化合物具有式IIe:
其中:
Bx为尿嘧啶、胸腺嘧啶、胞嘧啶、5-甲基胞嘧啶、腺嘌呤或鸟嘌呤;
T2是将式IIe的化合物连接到寡聚化合物的硫代磷酸酯核苷间连接基团;以及
G为卤素、OCH3、OCF3、OCH2CH3、OCH2CF3、OCH2-CH=CH2、O(CH2)2-OCH3、O(CH2)2-O(CH2)2-N(CH3)2、OCH2C(=O)-N(H)CH3、OCH2C(=O)-N(H)-(CH2)2-N(CH3)2或OCH2-N(H)-C(=NH)NH2。
在某些实施方案中,提供了寡聚化合物,其中所述5′-末端化合物具有式IIe,其中G为F、OCH3或O(CH2)2-OCH3。
在某些实施方案中,提供包含连接的单体亚单位的寡聚化合物,其中每个核苷间连接基团独立地为磷酸二酯核苷间连接基团或硫代磷酸酯核苷间连接基团。在某些实施方案中,每个核苷间连接基团均为硫代磷酸酯核苷间连接基团。
在某些实施方案中,提供了双链组合物,其包含:
第一寡聚化合物和第二寡聚化合物,其中所述第一寡聚化合物与所述第二寡聚化合物互补,并且所述第二寡聚化合物与核酸靶互补;
所述第一和第二寡聚化合物中的至少一者为如本文提供的寡聚化合物;并且
其中所述组合物任选包含一个或多个5′或3′末端基团。
在某些实施方案中,提供了抑制基因表达的方法,包括使细胞与如本文提供的寡聚化合物或如本文提供的双链组合物接触,其中所述寡聚化合物单独地或以双链组合物的形式包含约8至约40个单体亚单位,并与靶RNA互补。在某些实施方案中,细胞在动物中。在某些实施方案中,细胞在人中。在某些实施方案中,靶RNA选自mRNA、pre-mRNA和micro RNA。在某些实施方案中,靶RNA为mRNA。在某些实施方案中,靶RNA为人mRNA。在某些实施方案中,靶RNA被裂解,从而抑制其功能。在某些实施方案中,该方法进一步包括检测靶RNA的水平。
在某些实施方案中,提供了体外抑制基因表达的方法,包括使一种或多种细胞或组织与如本文提供的寡聚化合物或如本文提供的双链组合物接触。
在某些实施方案中,提供寡聚化合物和双链组合物用于体内抑制基因表达的方法,所述方法包括使一种或多种细胞、组织或动物与如本文提供的寡聚化合物或如本文提供的双链组合物接触。
在某些实施方案中,提供如本文提供的寡聚化合物或双链组合物用于药物治疗。
在某些实施方案中,提供一种供单独使用或以双链组合物形式使用的寡聚化合物,其在5′-位包含具有下式之一的化合物:
其中:
T1为任选保护的磷部分;
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(R3)(R4);
每个R3和R4独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=X2)J1、OC(=X2)N(J1)(J2)和C(=X2)N(J1)(J2);
X2为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;
当j为1时,则Z不为卤素或N(E2)(E3);以及
其中所述寡聚化合物或双链组合物分别通过基于ssRNAi或dsRNAi RISC的机制发挥作用,并相对于不具有5′修饰的寡聚化合物提供增强的活性。这种修饰可以在寡聚化合物的末端5′位,或对于含有非呋喃酰(non-furanosyl)单体的寡聚化合物而言,位于等效的5′位。在实例中示出了将如上所示的乙烯基团之一连接到具有非呋喃酰环的单体上。
在某些实施方案中,提供一种供单独使用或以双链组合物形式使用的寡聚化合物,其在5′-位包含具有下式之一的化合物:
其中:
T1为任选保护的磷部分;
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(R3)(R4);
Q3为O、S、N(R5)或C(R6)(R7);
每个R3、R4、R5、R6和R7独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=X2)J1、OC(=X2)N(J1)(J2)和C(=X2)N(J1)(J2);
X2为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3);以及
其中所述寡聚化合物或双链组合物分别通过基于ssRNAi或dsRNAi RISC的机制发挥作用,并相对于不具有5′修饰的寡聚化合物提供增强的活性。这种修饰可以在寡聚化合物的末端5′位,或对于含有非呋喃酰单体的寡聚化合物而言,位于等效的5′位。
在某些实施方案中,提供一种供单独使用或以双链组合物形式使用的寡聚化合物,其在5′-位包含具有下式的化合物:
其中:
T1为任选保护的磷部分;以及
其中所述寡聚化合物或双链组合物分别通过基于ssRNAi或dsRNAi RISC的机制发挥作用,并相对于不具有5′修饰的寡聚化合物提供增强的活性。这种修饰可以在寡聚化合物的末端5′位,或对于含有非呋喃酰单体的寡聚化合物而言,位于等效的5′位。
在某些实施方案中,5′修饰核苷及其类似物均包含在式Ic化合物中:
其中:
T1为任选保护的磷部分;
M1为H、OH或OR1;
M2为OH、OR1或N(R1)(R2);
每个R1和R2独立地为C1-C6烷基、取代的C1-C6烷基;
r为0或1;
A具有下式之一:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基、C1-C6烷氧基、取代的C1-C6烷氧基或N(R3)(R4);
Q3为O、S、N(R5)或C(R6)(R7);
每个R3、R4、R5、R6和R7独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
M3为O、S、NR14、C(R15)(R16)、C(R15)(R16)C(R17)(R18)、C(R15)=C(R17)、OC(R15)(R16)或OC(R15)(Bx2);
R14为H、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
R15、R16、R17和R18各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
Bx1和Bx2之一为杂环碱基部分,而Bx1和Bx2的另一个如果存在时为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
J4、J5、J6和J7各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
或者J4与J5或J7形成桥,其中所述桥包含选自O、S、NR19、C(R20)(R21)、C(R20)=C(R21)、C[=C(R20)(R21)]和C(=O)的1至3个连接的双基基团,而J5、J6和J7的其它两个各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
每个R19、R20和R21独立地为H、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X1]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X1为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=X2)J1、OC(=X2)N(J1)(J2)和C(=X2)N(J1)(J2);
X2为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3)。
在某些实施方案中,M3为O、CH2CH2、CH=CH、OCH2或OC(H)(Bx2),其中Bx2为杂环碱基部分。
在某些实施方案中,J4、J5、J6和J7每一个都为H。
在某些实施方案中,A具有式:
其中Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基或取代的C1-C6烷氧基。在某些实施方案中,Q1和Q2各自独立地为H或卤素。
在某些实施方案中,5′修饰核苷均具有式I:
其中:
Bx为杂环碱基部分;
T1为任选保护的磷部分;
M1为H、OH或OR1;
M2为OH、OR1或N(R1)(R2);
每个R1和R2独立地为烷基或取代的烷基;
r为0或1;
A具有下式之一:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基、C1-C6烷氧基、取代的C1-C6烷氧基或N(R3)(R4);
Q3为O、S、N(R5)或C(R6)(R7);
每个R3、R4、R5、R6和R7独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=L)J1、OC(=L)N(J1)(J2)和C(=L)N(J1)(J2);
L为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3)。
在某些实施方案中,Bx为嘧啶、取代的嘧啶、嘌呤或取代的嘌呤。在某些实施方案中,Bx为尿嘧啶、5-噻唑并尿嘧啶、胸腺嘧啶、胞嘧啶、5-甲基胞嘧啶、5-噻唑并胞嘧啶、腺嘌呤、鸟嘌呤或2,6-二氨基嘌呤。
在某些实施方案中,T1具有式:
其中:
Ra和Rc各自独立地为受保护的羟基、受保护的硫醇、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、受保护的氨基或取代的氨基;以及
Rb为O或S。
在某些实施方案中,T1具有式:
其中:
Ra和Rc均为受保护的羟基;以及
Rb为O或S。
在某些实施方案中,T1具有式:
其中:
Ra和Rc各自独立地为OCH3、OCH2CH3或OCH(CH3)2;以及
Rb为O。
在某些实施方案中,r为1,M1为H,而M2为OH。在某些实施方案中,r为0,M1为O(CH2)2CN,以及M2为N[CH(CH3)2]2。
在某些实施方案中,G为卤素、OCH3、OCH2F、OCHF2、OCF3、OCH2CH3、O(CH2)2F、OCH2CHF2、OCH2CF3、OCH2-CH=CH2、O(CH2)2-OCH3、O(CH2)2-SCH3、O(CH2)2-OCF3、O(CH2)3-N(R10)(R11)、O(CH2)2-ON(R10)(R11)、O(CH2)2-O(CH2)2-N(R10)(R11)、OCH2C(=O)-N(R10)(R11)、OCH2C(=O)-N(R12)-(CH2)2-N(R10)(R11)或O(CH2)2-N(R12)-C(=NR13)[N(R10)(R11)]其中R10、R11、R12和R13各自独立地为H或C1-C6烷基。在某些实施方案中,G为卤素、OCH3、OCF3、OCH2CH3、OCH2CF3、OCH2-CH=CH2、O(CH2)2-OCH3、O(CH2)2-O(CH2)2-N(CH3)2、OCH2C(=O)-N(H)CH3、OCH2C(=O)-N(H)-(CH2)2-N(CH3)2或OCH2-N(H)-C(=NH)NH2。在某些实施方案中,G为F、OCH3、O(CH2)2-OCH3、OCH2C(=O)-N(H)CH3或OCH2C(=O)-N(H)-(CH2)2-N(CH3)2。在某些实施方案中,G为O(CH2)2-OCH3。在某些实施方案中,G为F。
在某些实施方案中,A具有下式之一:
在某些实施方案中,A具有式:
在某些实施方案中,A具有下式之一:
在某些实施方案中,Q1和Q2每一个均为H。在某些实施方案中,Q1和Q2为H,而Q1和Q2的另一个为卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基或取代的C1-C6烷氧基。在某些实施方案中,Q1和Q2为H,而Q1和Q2的另一个为F或CH3。在某些实施方案中,Q1和Q2各自独立地为F或CH3。在某些实施方案中,Q3为O。在某些实施方案中,Q3为S。在某些实施方案中,Q3为N(R5)。在某些实施方案中,R5为H。在某些实施方案中,R5为C1-C6烷基或取代的C1-C6烷基。在某些实施方案中,R5为CH3。在某些实施方案中,Q3为C(R6)(R7)。在某些实施方案中,R6和R7均为H。在某些实施方案中,R6和R7之一为H,而R6和R7的另一个为C1-C6烷基或取代的C1-C6烷基。在某些实施方案中,R6和R7之一为H,而R6和R7的另一个为CH3。在某些实施方案中,R6和R7各自独立地为
C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基。
在某些实施方案中,A具有式:
在某些实施方案中,5′修饰核苷均具有式Ia:
其中:
Bx为杂环碱基部分;
T1为任选保护的磷部分;
M1为H、OH或OR1;
M2为OH、OR1或N(R1)(R2);
每个R1和R2独立地为烷基或取代的烷基;
r为0或1;
A具有下式之一:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基、C1-C6烷氧基、取代的C1-C6烷氧基或N(R3)(R4);
Q3为O、S、N(R5)或C(R6)(R7);
每个R3、R4、R5、R6和R7独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=L)J1、OC(=L)N(J1)(J2)和C(=L)N(J1)(J2);
L为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3)。
在某些实施方案中,5′修饰核苷均具有式Ib:
其中:
Bx为杂环碱基部分;
T1为任选保护的磷部分;
M1为H、OH或OR1;
M2为OH、OR1或N(R1)(R2);
每个R1和R2独立地为烷基或取代的烷基;
r为0或1;
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基、C1-C6烷氧基、取代的C1-C6烷氧基或N(R3)(R4);
每个R3和R4独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=L)J1、OC(=L)N(J1)(J2)和C(=L)N(J1)(J2);
L为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3)。
在某些实施方案中,5′修饰核苷均具有式Ib:
其中:
Bx为杂环碱基部分;
T1为任选保护的磷部分;
M1为O(CH2)2CN;
M2为N[(CH(CH3)2]2;
r为0;
Q1和Q2均为H;
G为卤素或O-[C(R8)(R9)]n-[(C=O)m-X]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=L)J1、OC(=L)N(J1)(J2)和C(=L)N(J1)(J2);
L为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3)。
在某些实施方案中,5′修饰核苷均具有式Ib:
其中:
Bx为杂环碱基部分;
T1为任选保护的磷部分;
M1为O(CH2)2CN;
M2为N[(CH(CH3)2]2;
r为0;
Q1和Q2均为H;
G为O(CH2)2OCH3。
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=L)J1、OC(=L)N(J1)(J2)和C(=L)N(J1)(J2);
L为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3)。
在某些实施方案中,提供了寡聚化合物,其包括具有式IIc的化合物:
其中:
T1为任选保护的磷部分;
T2为将式IIc的化合物连接到寡聚化合物的核苷间连接基团;
M1为H、OH或OR1;
M2为OH、OR1或N(R1)(R2);
每个R1和R2独立地为C1-C6烷基、取代的C1-C6烷基;
r为0或1;
A具有下式之一:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基、C1-C6烷氧基、取代的C1-C6烷氧基或N(R3)(R4);
Q3为O、S、N(R5)或C(R6)(R7);
每个R3、R4、R5、R6和R7独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
M3为O、S、NR14、C(R15)(R16)、C(R15)(R16)C(R17)(R18)、C(R15)=C(R17)、OC(R15)(R16)或OC(R15)(Bx2);
R14为H、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
R15、R16、R17和R18各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
Bx1和Bx2之一为杂环碱基部分,而Bx1和Bx2的另一个如果存在为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
J4、J5、J6和J7各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
或者J4与J5或J7形成桥,其中所述桥包含选自O、S、NR19、C(R20)(R21)、C(R20)=C(R21)、C[=C(R20)(R21)]和C(=O)的1至3个连接的双基基团,而J5、J6和J7的其它两个各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
每个R19、R20和R21独立地为H、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X1]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X1为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=X2)J1、OC(=X2)N(J1)(J2)和C(=X2)N(J1)(J2);
X2为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3)。
在某些实施方案中,提供了具有式IIc的寡聚化合物,其中M3为O、CH2CH2、CH=CH、OCH2或OC(H)(Bx2),其中Bx2为杂环碱基部分。
在某些实施方案中,提供了具有式IIc的寡聚化合物,其中J4、J5、J6和J7均为H。
在某些实施方案中,提供了寡聚化合物,其包括具有式IIc的化合物,其中A具有式:
其中Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基或取代的C1-C6烷氧基。
在某些实施方案中,提供了寡聚化合物,其包括具有式IIc的化合物,其中Q1和Q2各自独立地为H或卤素。
在某些实施方案中,提供了寡聚化合物,其包括具有式II的5′-末端化合物:
其中:
Bx为杂环碱基部分;
T1为任选保护的磷部分;
T2为将式II化合物连接到寡聚化合物的核苷间连接基团;
A具有下式之一:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基、C1-C6烷氧基、取代的C1-C6烷氧基或N(R3)(R4);
Q3为O、S、N(R5)或C(R6)(R7);
每个R3、R4、R5、R6和R7独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=L)J1、OC(=L)N(J1)(J2)和C(=L)N(J1)(J2);
L为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3)。
在某些实施方案中,提供了寡聚化合物,其包括具有式II的化合物,其中Bx为嘧啶、取代的嘧啶、嘌呤或取代的嘌呤。在某些实施方案中,提供了寡聚化合物,其包括具有式II的化合物,其中Bx为尿嘧啶、5-噻唑并尿嘧啶、胸腺嘧啶、胞嘧啶、5-甲基胞嘧啶、5-噻唑并胞嘧啶、腺嘌呤、鸟嘌呤或2,6-二氨基嘌呤。
在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中T1具有式:
其中:
Ra和Rc各自独立地为受保护的羟基、受保护的硫醇、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、受保护的氨基或取代的氨基;以及
Rb为O或S。
在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中T1具有式:
其中:
Ra和Rc均为受保护的羟基;以及
Rb为O或S。
在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中T1具有式:
其中:
Ra和Rc各自独立地为OCH3、OCH2CH3或OCH(CH3)2;以及
Rb为O。
在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中G为卤素、OCH3、OCH2F、OCHF2、OCF3、OCH2CH3、O(CH2)2F、OCH2CHF2、OCH2CF3、OCH2-CH=CH2、O(CH2)2-OCH3、O(CH2)2-SCH3、O(CH2)2-OCF3、O(CH2)3-N(R10)(R11)、O(CH2)2-ON(R10)(R11)、O(CH2)2-O(CH2)2-N(R10)(R11)、OCH2C(=O)-N(R10)(R11)、OCH2C(=O)-N(R12)-(CH2)2-N(R10)(R11)或O(CH2)2-N(R12)-C(=NR13)[N(R10)(R11)]其中R10、R11、R12和R13各自独立地为H或C1-C6烷基。在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中G为卤素、OCH3、OCF3、OCH2CH3、OCH2CF3、OCH2-CH=CH2、O(CH2)2-OCH3、O(CH2)2-O(CH2)2-N(CH3)2、OCH2C(=O)-N(H)CH3、OCH2C(=O)-N(H)-(CH2)2-N(CH3)2或OCH2-N(H)-C(=NH)NH2。在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中G为F、OCH3、O(CH2)2-OCH3、OCH2C(=O)-N(H)CH3或OCH2C(=O)-N(H)-(CH2)2-N(CH3)2。在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中G为O(CH2)2-OCH3。在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中G为F。
在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中A具有下式之一:
在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中A具有式:
在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中A具有下式之一:
在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中Q1和Q2均为H。在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中Q1和Q2之一为H,而Q1和Q2的另一个为卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基或取代的C1-C6烷氧基。在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中Q1和Q2之一为H,而Q1和Q2的另一个为F或CH3。在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中Q1和Q2各自独立地为F或CH3。在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中Q3为O。在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中Q3为S。在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中Q3为N(R5)。
在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中Q3为N(R5),以及R5为H。在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中Q3为N(R5),以及R5为C1-C6烷基或取代的C1-C6烷基。在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中Q3为N(R5),以及R5为CH3。
在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中Q3为C(R6)(R7)。
在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中Q3为C(R6)(R7),以及R6和R7均为H。在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中Q3为C(R6)(R7),以及R6和R7之一为H,而R6和R7的另一个为C1-C6烷基或取代的C1-C6烷基。在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中Q3为C(R6)(R7),以及R6和R7之一为H,而R6和R7的另一个为CH3。在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中Q3为C(R6)(R7),以及R6和R7各自独立地为C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基。
在某些实施方案中,提供了寡聚化合物,其包括具有式II或式IIc的化合物,其中A具有式:
在某些实施方案中,提供了寡聚化合物,其包括具有式IIa的化合物:
其中:
Bx为杂环碱基部分;
T1为任选保护的磷部分;
T2为将式II化合物连接到寡聚化合物其余部分的核苷间连接基团;
A具有下式之一:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基、C1-C6烷氧基、取代的C1-C6烷氧基或N(R3)(R4);
Q3为O、S、N(R5)或C(R6)(R7);
每个R3、R4、R5、R6和R7独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=L)J1、OC(=L)N(J1)(J2)和C(=L)N(J1)(J2);
L为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3)。
在某些实施方案中,提供了寡聚化合物,其包括具有式IIb的化合物:
IIb。
在某些实施方案中,提供了寡聚化合物,其包括具有式IIb的化合物,其中Q1和Q2均为H。
在某些实施方案中,提供了寡聚化合物,其包括具有式IIa或IIb的化合物,其中G为O(CH2)2OCH3。
在某些实施方案中,提供了寡聚化合物,其中每个核苷间连接基团独立地为磷酸二酯核苷间连接基团或硫代磷酸酯核苷间连接基团。在某些实施方案中,提供了寡聚化合物,其中基本上每个核苷间连接基团均为硫代磷酸酯核苷间连接基团。
在某些实施方案中,提供了双链组合物,它们均包含:
第一寡聚化合物和第二寡聚化合物,其中所述第一寡聚化合物与所述第二寡聚化合物互补,并且所述第二寡聚化合物与核酸靶互补;
所述第一和第二寡聚化合物的至少一者为包括具有式II、IIa、IIb或IIc的5′末端化合物的寡聚化合物;并且
其中所述组合物任选地包含一个或多个5′或3′末端基团。
在某些实施方案中,提供了抑制基因表达的方法,该方法包括:使细胞与包括具有式II、IIa、IIb或IIc的5′末端化合物的寡聚化合物接触或与包含至少一种具有式II、IIa、IIb或IIc的5′末端化合物的双链组合物接触,其中该寡聚化合物以及该双链组合物中的第一和第二寡聚化合物均包含约8至约40个单体亚单位,并且该寡聚化合物或该双链组合物中的第一和第二寡聚化合物之一与靶RNA互补。在某些实施方案中,细胞在动物中。在某些实施方案中,细胞在人中。在某些实施方案中,靶RNA选自mRNA、pre-mRNA和micro RNA。在某些实施方案中,靶RNA为mRNA。在某些实施方案中,靶RNA为人mRNA。在某些实施方案中,靶RNA被裂解,从而抑制其功能。在某些实施方案中,该方法进一步包括检测靶RNA的水平。
在某些实施方案中,提供了抑制基因表达的方法,该方法包括:使一种或多种细胞或组织与包括具有式II、IIa、IIb或IIc的5′末端化合物的寡聚化合物接触或与包含至少一种具有式II、IIa、IIb或IIc的5′末端化合物的双链组合物接触。
在某些实施方案中,提供了包括具有式II、IIa、IIb或IIc的5′末端化合物的寡聚化合物或包含至少一种具有式II、IIa、IIb或IIc的5′末端化合物的双链组合物,用于体内抑制基因表达的方法,该方法包括使一种或多种细胞、组织或动物与包括具有式II、IIa、IIb或IIc的5′末端化合物的寡聚化合物接触或与包含至少一种具有式II、IIa、IIb或IIc的5′末端化合物的双链组合物接触。
在某些实施方案中,提供了包括具有式II、IIa、IIb或IIc的5′末端化合物的寡聚化合物或包含至少一种具有式II、IIa、IIb或IIc的5′末端化合物的双链组合物,用于药物治疗。
在某些实施方案中,寡聚化合物除了5′修饰核苷或其类似物之外的其余部分将在其上具有一个或多个修饰。此类修饰包括糖修饰或用糖替代物替代、碱基修饰、其它3′和5′末端基团(双链组合物,其包含至少一种本身具有两个5′端的如本文所述的寡聚化合物)、核苷间键合修饰以及基序。此类修饰在本文有所描述,并且其中许多对本领域的技术人员而言都是已知的。所有此类修饰都适于本文所公开的寡聚化合物和双链组合物。
在某些此类实施方案中,寡聚化合物的其余部分包含至少一个修饰的核苷。在某些实施方案中,寡聚化合物包含修饰碱基。在某些实施方案中,寡聚化合物包含糖替代物。在某些此类实施方案中,糖替代物为四氢吡喃。在某些实施方案中,四氢吡喃为F-HNA。
在某些实施方案中,寡聚化合物的其余部分包含至少一个含有修饰糖的核苷。在某些实施方案中,该至少一个含有修饰糖的修饰核苷选自双环核苷和2’-修饰核苷。在某些实施方案中,该至少一个修饰核苷为双环核苷。在某些实施方案中,该双环核苷为(4’-CH2-O-2’)BNA核苷。在某些实施方案中,该双环核苷为(4’-(CH2)2-O-2’)BNA核苷。在某些实施方案中,该双环核苷为(4’-C(CH3)H-O-2’)BNA核苷。在某些实施方案中,该至少一个修饰核苷为2’-修饰核苷。在某些实施方案中,该至少一个2’-修饰核苷选自2’-F核苷、2’-OCH3核苷和2’-O(CH2)2OCH3核苷。在某些实施方案中,该至少一个2’-修饰核苷为2’-F核苷。在某些实施方案中,该至少一个2’-修饰核苷为2’-OCH3核苷。在某些实施方案中,该至少一个2’-修饰核苷为2’-O(CH2)2OCH3核苷。
在某些实施方案中,寡聚化合物的其余部分包含至少一个未修饰的核苷。在某些实施方案中,该未修饰的核苷为核糖核苷。在某些实施方案中,该未修饰的核苷为脱氧核糖核苷。
在某些实施方案中,寡聚化合物的其余部分包含至少两个修饰核苷。在某些实施方案中,该至少两个修饰核苷包含相同的修饰。在某些实施方案中,该至少两个修饰核苷包含不同的修饰。在某些实施方案中,该至少两个修饰核苷的至少一个包含糖替代物。在某些实施方案中,该至少两个修饰核苷的至少一个包含2’-修饰。在某些实施方案中,该至少两个修饰核苷的每一个独立地选自2’-F核苷、2’-OCH3核苷和2’-O(CH2)2OCH3核苷。在某些实施方案中,该至少两个修饰核苷的每一个都为2’-F核苷。在某些实施方案中,该至少两个修饰核苷的每一个都为2’-OCH3核苷。在某些实施方案中,该至少两个修饰核苷的每一个都为2’-O(CH2)2OCH3修饰核苷。在某些实施方案中,寡聚化合物基本上每个核苷都为修饰核苷。在某些实施方案中,寡聚化合物的每个核苷都为修饰核苷。
在某些实施方案中,寡聚化合物的其余部分包含:
1-20个第一类型区域,每个第一类型区域独立地包含1-20个邻接核苷,其中各第一类型区域的每个核苷包含第一类型修饰;
0-20个第二类型区域,每个第二类型区域独立地包含1-20个邻接核苷,其中各第二类型区域的每个核苷包含第二类型修饰;以及0-20个第三类型区域,每个第三类型区域独立地包含1-20个邻接核苷,其中各第三类型区域的每个核苷包含第三类型修饰;其中第一类型修饰、第二类型修饰和第三类型修饰各自独立地选自2’-F、2’OCH3、2’-O(CH2)2OCH3、BNA、F-HNA、2’-H和2’-OH;前提是第一类型修饰、第二类型修饰和第三类型修饰彼此各不相同。
在某些实施方案中,寡聚化合物的其余部分包含2-20个第一类型区域、3-20个第一类型区域、4-20个第一类型区域、5-20个第一类型区域或6-20个第一类型区域。在某些实施方案中,寡聚化合物的其余部分包含1-20个第二类型区域、2-20个第二类型区域、3-20个第二类型区域、4-20个第二类型区域或5-20第二类型区域。在某些实施方案中,寡聚化合物的其余部分包含1-20个第三类型区域、2-20个第三类型区域、3-20个第三类型区域、4-20个第三类型区域或5-20个第三类型区域。
在某些实施方案中,寡聚化合物的其余部分在寡聚化合物的3’-端包含第三类型区域。在某些实施方案中,寡聚化合物的其余部分在寡聚化合物的3’-端包含第三类型区域。在某些实施方案中,第三类型区域包含1至3个修饰核苷,以及第三类型修饰为2’-O(CH2)2OCH3。在某些实施方案中,第三相同类型区域包含两个修饰核苷,以及第三类型修饰为2’-O(CH2)2OCH3。
在某些实施方案中,每个第一类型区域包含1至5个修饰核苷。在某些实施方案中,每个第一类型区域包含6至10个修饰核苷。在某些实施方案中,每个第一类型区域包含11至15个修饰核苷。在某些实施方案中,每个第一类型区域包含16至20个修饰核苷。
在某些实施方案中,第一类型修饰为2’-F。在某些实施方案中,第一类型修饰为2’-OMe。在某些实施方案中,第一类型修饰为DNA。在某些实施方案中,第一类型修饰为2’-O(CH2)2OCH3。在某些实施方案中,第一类型修饰为4’-CH2-O-2’。在某些实施方案中,第一类型修饰为4’-(CH2)2-O-2’。在某些实施方案中,第一类型修饰为4’-C(CH3)H-O-2’。在某些实施方案中,每个第二类型区域包含1至5个修饰核苷。在某些实施方案中,每个第二类型区域包含6至10个修饰核苷。在某些实施方案中,每个第二类型区域包含11至15个修饰核苷。在某些实施方案中,每个第二类型区域包含16至20个修饰核苷。在某些实施方案中,第二类型修饰为2’-F。在某些实施方案中,第二类型修饰为2’-OMe。在某些实施方案中,第二类型修饰为DNA。在某些实施方案中,第二类型修饰为2’-O(CH2)2OCH3。在某些实施方案中,第二类型修饰为4’-CH2-O-2’。在某些实施方案中,第二类型修饰为4’-(CH2)2-O-2’。在某些实施方案中,第二类型修饰为4’-C(CH3)H-O-2’。在某些实施方案中,寡聚化合物具有交替基序,其中第一类型区域与第二类型区域交替。
在某些实施方案中,本发明提供其中5’末端核苷为式II、IIa、IIb、IIc、IId或IIe化合物的寡聚化合物,并且该寡聚化合物的其余部分包含具有以下核苷基序的核苷的至少一个区域:(A)n-(B)n-(A)n-(B)n,其中:A和B为不同修饰的核苷;而每个n独立地选自1、2、3、4和5。
在某些实施方案中,A和B各自独立地选自双环和2’-修饰核苷。在某些实施方案中,A和B的至少一者为双环核苷。在某些实施方案中,A和B的至少一者为(4’-CH2-O-2’)BNA核苷。在某些实施方案中,A和B的至少一者为(4’-(CH2)2-O-2’)BNA核苷。在某些实施方案中,A和B的至少一者为(4’-C(CH3)H-O-2’)BNA核苷。在某些实施方案中,A和B的至少一者为2’-修饰核苷。在某些实施方案中,2’-修饰核苷选自:2’-F核苷、2’-OCH3核苷和2’-O(CH2)2OCH3核苷。在某些实施方案中,A和B各自独立地选自:2’-F核苷、2’-OCH3核苷、2’-O(CH2)2OCH3核苷、(4’-CH2-O-2’)BNA核苷、(4’-(CH2)2-O-2’)BNA核苷、(4’-C(CH3)H-O-2’)BNA核苷、DNA核苷、RNA核苷和F-HNA核苷。在某些实施方案中,A和B各自独立地选自:2’-F核苷、2’-OCH3核苷、(4’-CH2-O-2’)BNA核苷、(4’-(CH2)2-O-2’)BNA核苷、(4’-C(CH3)H-O-2’)BNA核苷和DNA核苷。在某些实施方案中,A和B之一为2’-F核苷。在某些实施方案中,A和B之一为2’-OCH3核苷。在某些实施方案中,A和B之一为2’-O(CH2)2OCH3核苷。在某些实施方案中,A为2’-F核苷,而B为2’-OCH3核苷。在某些实施方案中,A为2’-OCH3核苷,而B为2’-F核苷。在某些实施方案中,A和B之一选自(4’-CH2-O-2’)BNA核苷、(4’-(CH2)2-O-2’)BNA核苷和(4’-C(CH3)H-O-2’)BNA核苷,而A和B的另一者为DNA核苷。
在某些实施方案中,本发明提供其中5’末端核苷为式II、IIa、IIb、IIc、IId或IIe化合物的寡聚化合物,并且该寡聚化合物的其余部分包含具有以下核苷基序的核苷的至少一个区域:(A)x-(B)2-(A)Y-(B)2-(A)Z-(B)3其中:A为第一类型的核苷;B为第二类型的核苷;X为0-10;Y为1-10;以及Z为1-10。
在某些实施方案中,X选自0、1、2和3。在某些实施方案中,X选自4、5、6和7。在某些实施方案中,Y选自1、2和3。在某些实施方案中,Y选自4、5、6和7。在某些实施方案中,Z选自1、2和3。在某些实施方案中,Z选自4、5、6和7。在某些实施方案中,A为2’-F核苷。在某些实施方案中,B为2’-OCH3核苷。
在某些实施方案中,本发明提供其中5’末端核苷为式II、IIa、IIb、IIc、IId或IIe化合物的寡聚化合物,并且其中该寡聚化合物在其3’-端包含由1至5个核苷组成的3’-区域,其中:3’-区域的核苷的每一个都包含彼此相同的修饰;并且3’-区域的核苷与邻近3’-区域的最后一个核苷的修饰不同。
在某些实施方案中,3’-区域的修饰不同于寡聚化合物任何其它核苷的任何修饰。在某些实施方案中,3’-区域的核苷为2’-O(CH2)2OCH3核苷。在某些实施方案中,3’-区域由2个核苷组成。在某些实施方案中,3’-区域由3个核苷组成。在某些实施方案中,3’-区域的每个核苷包含尿嘧啶碱基。在某些实施方案中,3’-区域的每个核苷包含腺嘌呤碱基。在某些实施方案中,3’-区域的每个核苷包含胸腺嘧啶碱基。
在某些实施方案中,寡聚化合物的其余部分包含均匀修饰的核苷区域。在某些实施方案中,该均匀修饰的核苷区域包含2-20个邻接的均匀修饰核苷。在某些实施方案中,该均匀修饰的核苷区域包含3-20个邻接的均匀修饰核苷。在某些实施方案中,该均匀修饰的核苷区域包含4-20个邻接的均匀修饰核苷。在某些实施方案中,该均匀修饰的核苷区域包含5-20个邻接的均匀修饰核苷。在某些实施方案中,该均匀修饰的核苷区域包含6-20个邻接的均匀修饰核苷。在某些实施方案中,该均匀修饰的核苷区域包含5-15个邻接的均匀修饰核苷。在某些实施方案中,该均匀修饰的核苷区域包含6-15个邻接的均匀修饰核苷。在某些实施方案中,该均匀修饰的核苷区域包含5-10个邻接的均匀修饰核苷。在某些实施方案中,该均匀修饰的核苷区域包含6-10个邻接的均匀修饰核苷。
在某些实施方案中,寡聚化合物的其余部分包含交替修饰的核苷区域和均匀修饰的核苷区域。在某些实施方案中,交替核苷酸区域为完全修饰核苷区域的5’。在某些实施方案中,交替核苷酸区域为完全修饰核苷区域的3’。在某些实施方案中,交替区域和完全修饰区域彼此紧邻。在某些实施方案中,寡聚化合物在交替区域与完全修饰区域之间具有另外的核苷。
在某些实施方案中,寡聚化合物的其余部分包含至少一个具有以下基序I的核苷区域:Nf(PS)Nm(PO),其中:Nf为2’-F核苷,Nm为2’-OCH3核苷,PS为硫代磷酸酯连接基团;以及PO为磷酸二酯连接基团。
在某些实施方案中,5’末端核苷为式II、IIa、IIb、IIc、IId或IIe的化合物,并且从5’末端起的第二核苷为Nf。
在某些实施方案中,寡聚化合物包含至少2个、或3个、或4个、或6个、或7个、或8个、或9个或10个单独的具有基序I的区域。
在某些实施方案中,寡聚化合物的其余部分包含至少一个具有选自以下的核苷基序的区域:AABBAA、ABBABB、AABAAB、ABBABAABB、ABABAA、AABABAB、ABABAA、ABBAABBABABAA、BABBAABBABABAA或ABABBAABBABABAA;其中A为第一类型核苷,而B为第二类型核苷。
在某些实施方案中,本发明的寡聚化合物包含一个或多个共轭基团。在某些实施方案中,本发明的寡聚化合物由寡核苷酸组成。
在某些实施方案中,本发明提供了具有下式的寡聚化合物:
5’-(Z)-(L-Qa-L-Qb)t-(L-Qa)u-(L-Qc)v-(G)a-3’其中:每个L为核苷间连接基团;G为将寡聚化合物连接到共轭物的共轭基团或连接基团;a为0或1;Qa、Qb和Qc的每一个独立地为具有选自以下的2’-取代基团的2’-修饰核苷:卤素、烯丙基、氨基、叠氮基、O-烯丙基、O-C1-C6烷基、OCF3、O-(CH2)2-O-CH3、O(CH2)2SCH3、O-(CH2)2-O-N(J5)(J6)和O-CH2-C(=O)-N(Ja)(Jb),其中每个Ja和Jb独立地为H、氨基保护基团或者取代或未取代的C1-C6烷基;前提是Qa、Qb和Qc互不相同;t为4至8;u为0或1;v为1至3;以及Z为式II、IIa、IIb、IIc、IId或IIe化合物。
在某些实施方案中,每个Qa和Qb独立地为具有选自卤素和O-C1-C6烷基的2’-取代基团的2’-修饰核苷。在某些实施方案中,每个Qa和Qb独立地为具有选自F和O-甲基的2’-取代基团的2’-修饰核苷。在某些实施方案中,每个Qc为具有O-(CH2)2-OCH3的2’-取代基团的2’-修饰核苷。在某些实施方案中,a为0。在某些实施方案中,v为2。在某些实施方案中,u为0。在某些实施方案中,u为1。
在任何上述实施方案的一些中,寡聚化合物的其余部分包含由8-80个连接的核苷;8-26个连接的核苷;10-24个连接的核苷;16-22个连接的核苷;16-18个连接的核苷或19-22个连接的核苷组成的寡核苷酸。在任何上述实施方案的一些中,从5’-端起的第二个核苷包含糖部分,该糖部分包含选自OH和卤素的2’-取代基。在某些实施方案中,从5’-端起的第二个核苷为2’-F修饰核苷。
在任何上述实施方案的一些中,寡聚化合物包含至少一个修饰的连接基团。在某些实施方案中,每个核苷间连接基团独立地为磷酸二酯或硫代磷酸酯。在某些实施方案中,5’-最末端核苷间连接基团为硫代磷酸酯连接基团。在某些实施方案中,寡聚化合物包含至少一个硫代磷酸酯区域,后者包含至少两个邻接的硫代磷酸酯连接基团。在某些实施方案中,该至少一个硫代磷酸酯区域包含3至12个邻接的硫代磷酸酯连接基团。在某些实施方案中,该至少一个硫代磷酸酯区域包含6至8个邻接的硫代磷酸酯连接基团。在某些实施方案中,该至少一个硫代磷酸酯区域位于寡聚化合物的3’-端。在某些实施方案中,该至少一个硫代磷酸酯区域位于寡聚化合物3’-端的3个核苷内。在某些实施方案中,寡核苷酸3’-端的第7-9个核苷间键合为硫代磷酸酯键合,并且5’-端的核苷间键合为硫代磷酸酯键合。
在某些实施方案中,本发明提供包含由10至30个连接核苷组成的寡核苷酸的寡聚化合物,其中:
(a)5’端核苷具有式II、IIa、IIb、IIc、IId或IIe:
(b)从5’-端起的第二核苷的糖部分选自未修饰的2’-OH糖以及含有选自2’-卤素、2’O-烷基和2’-O-取代烷基的修饰的修饰糖;以及
(c)在5’-端的第一核苷间键合以及在3’-端的最后七个核苷间键合为硫代磷酸酯键合;以及
(d)至少一个核苷间键合不是硫代磷酸酯键合。
在某些实施方案中,寡聚化合物为反义化合物。在某些实施方案中,反义化合物为RNAi化合物。在某些实施方案中,反义化合物为单链RNAi化合物。在某些实施方案中,反义化合物为双链RNAi化合物(siRNA),其中一条或两条链为如本文所公开的寡聚化合物。在某些实施方案中,反义化合物为microRNA模拟物。在某些实施方案中,反义化合物为RNA酶H反义化合物。在某些实施方案中,反义化合物调节剪接。
在某些实施方案中,寡聚化合物的核碱基序列的至少一部分与靶核酸的一部分互补,其中该靶核酸选自:靶mRNA、靶pre-mRNA、靶microRNA和靶非编码RNA。在某些实施方案中,寡聚化合物的核碱基序列包含与靶核酸100%互补的区域,并且其中该100%互补的区域为至少10个核碱基。在某些实施方案中,该100%互补的区域为至少15个核碱基。在某些实施方案中,该100%互补的区域为至少20个核碱基。在某些实施方案中,该寡核苷酸与靶核酸至少85%互补。在某些实施方案中,该寡核苷酸与靶核酸至少90%互补。在某些实施方案中,该寡核苷酸与靶核酸至少95%互补。在某些实施方案中,该寡核苷酸与靶核酸至少98%互补。在某些实施方案中,该寡核苷酸与靶核酸100%互补。
在某些实施方案中,反义化合物为microRNA模拟物,其具有的核碱基序列包含与microRNA的种子区域至少80%相同的部分,并与microRNA具有至少70%的整体同一性。在某些实施方案中,microRNA模拟物的核碱基序列具有与microRNA的种子区域序列至少80%相同的部分,并与microRNA具有至少75%的整体同一性。在某些实施方案中,microRNA模拟物的核碱基序列具有与microRNA的种子区域序列至少80%相同的部分,并与microRNA具有至少80%的整体同一性。在某些实施方案中,microRNA模拟物的核碱基序列具有与microRNA的种子区域序列至少100%相同的部分,并与microRNA具有至少80%的整体同一性。在某些实施方案中,microRNA模拟物的核碱基序列具有与microRNA的种子区域序列至少100%相同的部分,并与microRNA具有至少85%的整体同一性。在某些实施方案中,microRNA模拟物的核碱基序列具有与microRNA序列100%相同的部分。在某些实施方案中,寡核苷酸的核碱基序列包含与靶核酸的种子匹配片段100%互补的区域。在某些实施方案中,反义化合物为microRNA模拟物,其具有的核碱基序列包含与microRNA的种子区域至少80%相同的部分,并与microRNA具有至少50%的整体同一性。在某些实施方案中,反义化合物为microRNA模拟物,其具有的核碱基序列包含与microRNA的种子区域至少80%相同的部分,并与microRNA具有至少55%的整体同一性。在某些实施方案中,反义化合物为microRNA模拟物,其具有的核碱基序列包含与microRNA的种子区域至少80%相同的部分,并与microRNA具有至少60%的整体同一性。在某些实施方案中,反义化合物为microRNA模拟物,其具有的核碱基序列包含与microRNA的种子区域至少80%相同的部分,并与microRNA具有至少65%的整体同一性。在某些实施方案中,寡聚化合物包含选自存在于miRBase中的microRNA序列的核碱基序列。在某些实施方案中,寡聚化合物由选自存在于miRBase中的microRNA序列的核碱基序列组成。
在某些实施方案中,靶核酸为靶mRNA。在某些实施方案中,靶核酸为靶pre-mRNA。在某些实施方案中,靶核酸为非编码RNA。在某些实施方案中,靶核酸为microRNA。在某些实施方案中,靶核酸为pre-mir。在某些实施方案中,靶核酸为pri-mir。
在某些实施方案中,寡核苷酸的核碱基序列包含与靶核酸100%互补的区域,并且其中该100%互补的区域为至少10个核碱基。在某些实施方案中,寡核苷酸的核碱基序列包含与靶核酸100%互补的区域,并且其中该100%互补的区域为至少6个核碱基。在某些实施方案中,寡核苷酸的核碱基序列包含与靶核酸100%互补的区域,并且其中该100%互补的区域为至少7个核碱基。在某些实施方案中,靶核酸为哺乳动物靶核酸。在某些实施方案中,哺乳动物靶核酸为人靶核酸。
在某些实施方案中,寡聚化合物在其至少一端包含1至3个末端基团核苷。在某些实施方案中,寡聚化合物在3’-端包含1至3个末端基团核苷。在某些实施方案中,寡聚化合物在5’-端包含1至3个末端基团核苷。
在某些实施方案中,本发明的寡聚化合物为单链的。在某些实施方案中,本发明的寡聚化合物与第二寡聚化合物配对,以形成双链组合物。
在某些实施方案中,本发明提供包含寡聚化合物和药学上可接受的稀释剂或载体的药物组合物。在某些实施方案中,药学上可接受的稀释剂或载体为药用级无菌盐水。
在某些实施方案中,本发明提供包括使细胞与本文所述的寡聚化合物接触的方法。在某些实施方案中,此类方法包括检测反义活性。在某些实施方案中,检测反义活性包括检测细胞中的表型变化。在某些实施方案中,检测反义活性包括检测细胞中靶核酸的量的变化。在某些实施方案中,检测反义活性包括检测靶蛋白的量的变化。在某些实施方案中,细胞在体外。在某些实施方案中,细胞在动物中。在某些实施方案中,动物为哺乳动物。在某些实施方案中,哺乳动物为人。
在某些实施方案中,本发明提供调节细胞中靶mRNA的方法,包括使细胞与本发明的寡聚化合物接触,并且从而调节细胞中的mRNA。在某些实施方案中,此类方法包括检测细胞中的表型变化。在某些实施方案中,方法包括检测细胞中mRNA水平的降低。在某些实施方案中,方法包括检测靶蛋白的量的变化。在某些实施方案中,细胞在体外。在某些实施方案中,细胞在动物中。在某些实施方案中,动物为哺乳动物。在某些实施方案中,哺乳动物为人。
在某些实施方案中,本发明提供将本发明的药物组合物施用给动物的方法。在某些实施方案中,动物为哺乳动物。在某些实施方案中,哺乳动物为人。在某些实施方案中,该方法包括检测动物中的反义活性。在某些实施方案中,该方法包括检测动物中靶核酸的量的变化。在某些实施方案中,该方法包括检测动物中靶蛋白的量的变化。在某些实施方案中,该方法包括检测动物中的表型变化。在某些实施方案中,表型变化是活性生物标记物的量或质量的变化。
在某些实施方案中,本发明提供将本发明的寡聚化合物用于制造用于治疗以非期望的基因表达为特征的疾病的药剂。
在某些实施方案中,本发明提供将本发明的寡聚化合物用于制造用于通过抑制基因表达而治疗疾病的药剂。
在某些实施方案中,本发明提供包括检测反义活性的方法,其中反义活性为microRNA模拟物活性。在某些实施方案中,检测microRNA模拟物活性包括检测细胞中靶核酸的量的变化。在某些实施方案中,检测microRNA模拟物活性包括检测细胞中靶蛋白的量的变化。
在某些实施方案中,抑制基因表达的方法包括使细胞与如本文提供的寡聚化合物或双链组合物接触,其中所述寡聚化合物或双链组合物的一条链包含约8至约40个单体亚单位,并与靶RNA互补。在某些实施方案中,细胞在动物中。在某些实施方案中,细胞在人中。在某些实施方案中,靶RNA选自mRNA、pre-mRNA和micro RNA。在某些实施方案中,靶RNA为mRNA。在某些实施方案中,靶RNA为人mRNA。在某些实施方案中,靶RNA被裂解,从而抑制其功能。在某些实施方案中,该方法进一步包括检测靶RNA的水平。
在某些实施方案中,提供了体外抑制基因表达的方法,包括使一种或多种细胞或组织与如本文提供的寡聚化合物或双链组合物接触。
在某些实施方案中,将如本文提供的寡聚化合物或双链组合物用于体内抑制基因表达的方法,所述方法包括使一种或多种细胞、组织或动物与如本文提供的寡聚化合物或双链组合物接触。
在某些实施方案中,将如本文提供的寡聚化合物或双链组合物用于药物治疗。
发明详述
除非提供明确的定义,否则结合本文所述的分析化学、有机合成化学和药物化学所用的命名以及其程序和技术均为本领域所熟知和常用的那些。标准技术可用于化学合成和化学分析。某些此类技术和程序可见于例如:″Carbohydrate Modifications in Antisense Research″,Sangvi和Cook主编,American Chemical Society,Washington D.C.,1994年;″Remington′s Pharmaceutical Sciences″,Mack Publishing Co.,Easton,Pa.,第18版,1990年;和″Antisense Drug Technology,Principles,Strategies,and Applications″,Stanley T.Crooke主编,CRC Press,BocaRaton,Florida;以及Sambrook等,″Molecular Cloning,A laboratoryManual″,第2版,Cold Spring Harbor Laboratory Press,1989年,它们据此为任何目的以引用方式并入。在允许的情况下,在整篇公开中所参考的所有专利、专利申请、已公布的专利申请和其它出版物及其它数据均整体以引用方式并入。
除非另外指明,否则下列术语均具有以下含义:
如本文所用,“核苷”是指包含杂环碱基部分和糖部分的化合物。核苷包括但不限于天然存在的核苷(如存在于DNA和RNA中)、无碱基核苷、修饰的核苷以及具有拟态碱基(mimetic base)和/或糖基的核苷。核苷可由多种取代基的任何一种修饰。核苷可包含磷酸酯部分。
如本文所用,“糖部分”是指天然的或修饰的糖环或糖替代物。
如本文所用,术语“糖替代物”是指能够代替天然存在的核苷的呋喃糖环的结构。在某些实施方案中,糖替代物是非呋喃糖(或4′-取代的呋喃糖)环或环体系或开放体系。此类结构相对于天然呋喃糖环包含简单的变化,诸如六元环;或者可以更为复杂,与用于肽核酸的非环体系一样。糖替代物包括但不限于吗啉基类、环己烯基类和环己六醇类。在大多数具有糖替代物基团的核苷中,通常将杂环碱基部分保持为允许杂交。
如本文所用,“核苷酸”是指进一步包含磷酸酯连接基团的核苷。如本文所用,“连接的核苷”可以由或可以不由磷酸酯键合连接,并因而包括“连接的核苷酸”。
如本文所用,“核碱基”或“杂环碱基部分”是指核苷的杂环碱基部分。核碱基可以为天然存在的或可以被修饰。在某些实施方案中,核碱基可以包含能够以氢键结合到另一核酸的碱基上的任何原子或一组原子。
如本文所用,“修饰核苷”是指与天然存在的RNA或DNA核苷相比包含至少一个修饰的核苷。此类修饰可以位于糖部分和/或位于核碱基上。
如本文所用,“双环核苷”或“BNA”是指具有下述糖部分的核苷,该糖部分包含糖环(包括但不限于呋喃糖,诸如糖替代物),而糖环又包含连接糖环的两个碳原子以形成第二个环的桥。在某些实施方案中,所述桥将5元糖环的4’碳连接到2’碳。
如本文所用,“4’-2’双环核苷”是指包含下述呋喃糖环的双环核苷,该呋喃糖环包含连接呋喃糖环的两个碳原子的桥,其连接糖环的2’碳原子和4’碳原子。
如本文所用,“2’-修饰”或“2’-取代”是指包含糖的核苷,该糖在2’位又包含非H或OH的取代基。2’-修饰核苷包括但不限于:其中连接糖环的两个碳原子的桥将糖环2’碳与另一碳相连的双环核苷;以及具有非桥接2’取代基的核苷,这些取代基诸如烯丙基、氨基、叠氮基、硫醇、O-烯丙基、O-C1-C10烷基、-OCF3、O-(CH2)2-O-CH3、2′-O(CH2)2SCH3、O-(CH2)2-O-N(Rm)(Rn)或O-CH2-C(=O)-N(Rm)(Rn),其中每个Rm和Rn独立地为H或者取代或未取代的C1-C10烷基。2’-修饰核苷可进一步包含其它修饰,例如在糖的其它位置上和/或在核碱基上。
如本文所用,″2’-F″是指包含糖的核苷,该糖在2’位又包含氟基团。
如本文所用,″2’-OMe″或″2’-OCH3″或“2’-O-甲基”都是指包含糖的核苷,该糖又在糖环的2’位包含-OCH3基团。
如本文所用,″MOE″或″2’-MOE″或″2’-OCH2CH2OCH3″或“2’-O-甲氧基乙基”都是指包含糖的核苷,该糖又在糖环的2’位包含-OCH2CH2OCH3基团。
如本文所用,“寡核苷酸”是指包含多个连接的核苷的化合物。在某些实施方案中,这些多个核苷中的一个或多个被修饰。在某些实施方案中,寡核苷酸包含一个或多个核糖核苷(RNA)和/或脱氧核糖核苷(DNA)。
如本文所用,“寡核苷”是指其中所有的核苷间键合都不含磷原子的寡核苷酸。如本文所用,寡核苷酸包含寡核苷。
如本文所用,“修饰的寡核苷酸”是指包含至少一个修饰的核苷和/或至少一个修饰的核苷间键合的寡核苷酸。
如本文所用,“核苷间键合”是指相邻核苷之间的共价键。
如本文所用,“天然存在的核苷间键合”是指3′至5′磷酸二酯键。
如本文所用,“修饰核苷间键合”是指非天然存在的核苷间键合的任何核苷间键合。
如本文所用,“寡聚化合物”是指包含两个或更多个亚结构或单体亚单位的聚合结构。在某些实施方案中,寡聚化合物为寡核苷酸。在某些实施方案中,寡聚化合物包含一个或多个共轭基团和/或末端基团。
如本文所用,除非另外指明或修正,否则术语“双链”是指彼此杂交的两种单独的寡聚化合物。此类双链化合物可具有一条或两条链的一端或两端处的一个或多个非杂交核苷(悬垂)和/或一个或多个内部非杂交核苷(错配),前提是存在足够的互补性以维持生理相关条件下的杂交。
如本文所用,术语“自互补”或“发夹”是指包含通过寡聚化合物自我杂交而形成的双链体区域的单一寡聚化合物。
如本文所用,术语“单链的”是指未与其互补序列杂交并且不具有足够的自互补性以在生理相关条件下形成发夹结构的寡聚化合物。单链化合物可以能够结合到其互补序列从而变成双链的或部分双链的化合物。
如本文所用,“末端基团”是指一个或多个连接到寡核苷酸3’端或5’端之一或两者的原子。在某些实施方案中,末端基团为共轭基团。在某些实施方案中,末端基团包含一个或多个另外的核苷。
如本文所用,“共轭物”是指结合到寡核苷酸或寡聚化合物的一个原子或一组原子。一般来讲,共轭基团改变其连接到的化合物的一种或多种性质,包括但不限于药效学、药代动力学、结合、吸收、细胞分布、细胞摄取、电荷和清除。共轭基团通常被用在化学领域,并直接连接或通过任选的连接部分或连接基团连接到母体化合物诸如寡聚化合物上。在某些实施方案中,共轭基团包括但不限于嵌入剂、报告分子、聚胺类、聚酰胺类、聚乙二醇类、硫醚类、聚醚类、胆固醇类、巯基胆固醇类、胆酸部分、叶酸盐、脂质、磷脂、生物素、吩嗪、菲啶、蒽醌、金刚烷、吖啶、荧光素、罗丹明、香豆素和染料。在某些实施方案中,共轭物为末端基团。在某些实施方案中,共轭物被连接到3’或5’末端核苷或连接到寡核苷酸的内部核苷。
如本文所用,“共轭物连接基团”是指用于将共轭物连接到寡核苷酸或寡聚化合物的任何原子或一组原子。诸如本领域已知的那些连接基团或双官能连接部分适于本发明。
如本文所用,“反义化合物”是指寡聚化合物,其至少一部分与和其杂交的靶核酸至少部分互补。在某些实施方案中,反义化合物调节(增加或减少)靶核酸的表达或量。在某些实施方案中,反义化合物改变靶pre-mRNA的剪接,从而导致不同的剪接变体。在某些实施方案中,反义化合物调节一种或多种不同靶蛋白的表达。本文设想的反义机制包括但不限于RNA酶H机制、RNAi机制、剪接调节、翻译阻断、改变RNA加工、抑制microRNA功能或模拟microRNA功能。
如本文所用,“表达”是指基因借以最终产生蛋白质的过程。表达包括但不限于转录、剪接、转录后修饰和翻译。
如本文所用,″RNAi″是指某些反义化合物借以来影响靶核酸的表达或量的机制。RNAi机制涉及RISC途径。
如本文所用,“RNAi化合物”是指至少部分地通过RNAi机制发挥作用以调节靶核酸和/或由靶核酸编码的蛋白质的寡聚化合物。RNAi化合物包括但不限于双链短干扰RNA(siRNA)、单链RNA(ssRNA)和microRNA,包括microRNA模拟物。
如本文所用,“反义寡核苷酸”是指为寡核苷酸的反义化合物。
如本文所用,“反义活性”是指归因于反义化合物与其靶核酸的杂交而产生的任何可检测和/或可测量的活性。在某些实施方案中,这种活性可以是核酸或蛋白质的量的升高或降低。在某些实施方案中,这种活性可以是核酸或蛋白质的剪接变体比率的变化。检测和/或测量反义活性可以是直接或间接的。例如,在某些实施方案中,反义活性通过检测和/或测量靶蛋白的量或靶蛋白的剪接变体的相对量而进行评估。在某些实施方案中,反义活性通过检测和/或测量靶核酸和/或裂解靶核酸和/或作为另外一种选择为剪接靶核酸的量而评估。在某些实施方案中,反义活性通过观测细胞或动物中的表型变化而评估。
如本文所用,结合活性、反应或效果的“检测”或“测量”表示进行用于检测或测量这种活性、反应或效果的试验。这种检测和/或测量可以包括值为零。因此,如果用于检测或测量的试验导致发现无活性(零活性),然而却已执行了检测或测量活性的步骤。例如,在某些实施方案中,本发明提供包括检测反义活性、检测毒性和/或测量毒性标记物的步骤的方法。任何这种步骤都可以包括值为零。
如本文所用,“靶核酸”是指其表达、量或活性能够由反义化合物调节的任何核酸分子。在某些实施方案中,靶核酸为DNA或RNA。在某些实施方案中,靶RNA为mRNA、pre-mRNA、非编码RNA、pri-microRNA、pre-microRNA、成熟microRNA、启动子调控RNA或天然反义转录物。例如,靶核酸可以是其表达与特定疾病或疾病状态相关的细胞基因(或从基因转录的mRNA)、或为来自感染物的核酸分子。在某些实施方案中,靶核酸为病毒或细菌核酸。
如本文所用,“靶mRNA”是指预先选择的编码蛋白质的RNA分子。
如本文所用,“靶pre-mRNA”是指预先选择的尚未完全加工成mRNA的RNA转录物。显然的是,pre-RNA包含一个或多个内含子。
如本文所用,“靶microRNA”是指预先选择的长度为约18-30个核碱基的非编码RNA分子,其调节一种或多种蛋白质的表达,或者是指这种非编码分子的前体。
如本文所用,“靶pdRNA”是指预先选择的与一种或多种启动子相互作用以调节转录的RNA分子。
如本文所用,″microRNA″是指在翻译水平抑制基因表达的天然存在的非编码小RNA。在某些实施方案中,microRNA通过结合到靶核酸3’未翻译区域内的靶点而抑制基因表达。在某些实施方案中,microRNA具有如miRBase中所示的核碱基序列,所述miRBase是一个已公开的microRNA序列的数据库,网址为http://microrna.sanger.ac.uk/sequences/。在某些实施方案中,microRNA具有如2007年12月发布的miRBase 10.1版中所示的核碱基序列,该版本整体以引用方式并入本文。在某些实施方案中,microRNA具有如2008年9月发布的miRBase 12.0版中所示的核碱基序列,该版本整体以引用方式并入本文。
如本文所用,“microRNA模拟物”是指具有与microRNA的序列至少部分相同的序列的寡聚化合物。在某些实施方案中,microRNA模拟物包含microRNA的microRNA种子区域。在某些实施方案中,microRNA模拟物调节不止一种靶核酸的翻译。
如本文所用,“种子区域”是指位于反义化合物5’端或其附近的区域,该区域具有对该反义化合物进行的靶核酸识别存在重要意义的核碱基序列。在某些实施方案中,种子区域包括反义化合物的第2-8个核碱基。在某些实施方案中,种子区域包括反义化合物的第2-7个核碱基。在某些实施方案中,种子区域包括反义化合物的第1-7个核碱基。在某些实施方案中,种子区域包括反义化合物的第1-6个核碱基。在某些实施方案中,种子区域包括反义化合物的第1-8个核碱基。
如本文所用,“microRNA种子区域”是指microRNA或microRNA模拟物的种子区域。在某些实施方案中,microRNA种子区域包括microRNA或microRNA模拟物的第2-8个核碱基。在某些实施方案中,microRNA种子区域包括microRNA或microRNA模拟物的第2-7个核碱基。在某些实施方案中,microRNA种子区域包括microRNA或microRNA模拟物的第1-7个核碱基。在某些实施方案中,microRNA种子区域包括microRNA或microRNA模拟物的第1-6个核碱基。在某些实施方案中,microRNA种子区域包括microRNA或microRNA模拟物的第1-8个核碱基。
如本文所用,“种子匹配片段”是指具有与种子区域互补的核碱基的靶核酸部分。在某些实施方案中,种子匹配片段具有与siRNA、ssRNA、天然microRNA或microRNA模拟物的第2-8个核碱基互补的核碱基。在某些实施方案中,种子匹配片段具有与siRNA、ssRNA、microRNA或microRNA模拟物的第2-7个核碱基互补的核碱基。在某些实施方案中,种子匹配片段具有与siRNA、ssRNA、microRNA或microRNA模拟物的第1-6个核碱基互补的核碱基。在某些实施方案中,种子匹配片段具有与siRNA、ssRNA、microRNA或microRNA模拟物的第1-7个核碱基互补的核碱基。在某些实施方案中,种子匹配片段具有与siRNA、ssRNA、microRNA或microRNA模拟物的第1-8个核碱基互补的核碱基。
如本文所用,“种子匹配靶核酸”是指包含种子匹配片段的靶核酸。
如本文所用,“microRNA家族”是指一组共有microRNA种子序列的microRNA。在某些实施方案中,microRNA家族成员调节一组共同的靶核酸。在某些实施方案中,共有的microRNA种子序列存在于microRNA家族每个成员中相同的核碱基位置。在某些实施方案中,共有的microRNA种子序列不存在于microRNA家族每个成员中相同的核碱基位置。例如,存在于microRNA家族一个成员的第1-7个核碱基的microRNA种子序列可见于microRNA家族另一个成员的第2-8个核碱基。
如本文所用,“靶非编码RNA”是指预先选择的未翻译以产生蛋白质的RNA分子。某些非编码RNA参与表达的调节。
如本文所用,“靶病毒核酸”是指预先选择的与病毒相关的核酸(RNA或DNA)。这种病毒核酸包括构成病毒基因组的核酸,以及那些核酸的转录物(包括反转录物和由RNA转录的RNA),而不论是否由宿主细胞机制产生。在某些情况下,病毒核酸还包括病毒感染后由病毒征用的宿主核酸。
如本文所用,“靶向”是指反义化合物与特定靶核酸分子或靶核酸分子内特定核苷酸区域缔合。反义化合物若与靶核酸充分互补从而允许在生理条件下杂交,则其靶向该靶核酸。
如本文所用,“靶蛋白”是指其表达由反义化合物调节的蛋白质。在某些实施方案中,靶蛋白由靶核酸编码。在某些实施方案中,靶蛋白的表达以其它方式受靶核酸的影响。
如本文所用,“核碱基互补性”或“互补性”在就核碱基而言时是指能够与另一核碱基进行碱基配对的核碱基。例如,在DNA中,腺嘌呤(A)与胸腺嘧啶(T)互补。例如,在RNA中,腺嘌呤(A)与尿嘧啶(U)互补。在某些实施方案中,互补的核碱基是指能够与其靶核酸的核碱基进行碱基配对的反义化合物的核碱基。例如,如果在反义化合物某一位置的核碱基能够与在靶核酸某一位置的核碱基成氢键,则认为寡核苷酸与靶核酸之间的氢键的位置在该核碱基对处互补。包含某些修饰的核碱基可保持与对应的核碱基配对的能力,并因此仍能够具有核碱基互补性。
如本文所用,“非互补的”在就核碱基而言时是指彼此不形成氢键或换句话讲不支持杂交的一对核碱基。
如本文所用,“互补的”在就连接的核苷、寡核苷酸或核酸而言时是指寡聚化合物通过核碱基互补性与另一寡聚化合物或核酸杂交的能力。在某些实施方案中,当每个分子中足够数量的相应位置被可彼此结合的核碱基占据从而允许反义化合物与靶之间的稳定缔合时,反义化合物及其靶彼此互补。本领域的技术人员认识到,可能包括错配,而不会丧失寡聚化合物保持缔合的能力。因此,本文描述的是可包含最多约20%的错配的核苷酸(即,不是与相应的靶核苷酸互补的核碱基)的反义化合物。优选地,反义化合物包含不超过约15%,更优选不超过约10%,最优选不超过5%的错配或无错配。其余的核苷酸为核碱基互补的或换句话讲不会破坏杂交(例如,通用碱基)。本领域的普通技术人员会认识到,本文提供的化合物与靶核酸至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%或100%互补。
如本文所用,“杂交”是指互补的寡聚化合物(例如,反义化合物及其靶核酸)的配对。虽然不限于具体的机制,但最常见的配对机制涉及互补核苷或核苷酸碱基(核碱基)之间成氢键,其可以为Watson-Crick、Hoogsteen或反Hoogsteen氢键。例如,天然核碱基腺嘌呤与天然核碱基胸腺嘧啶核苷和尿嘧啶为核碱基互补,它们通过形成氢键而配对。天然碱基鸟嘌呤是与天然碱基胞嘧啶和5-甲基胞嘧啶互补的核碱基。杂交可在不同情况下发生。
如本文所用,“特异性杂交”是指寡聚化合物以高于与另一核酸位点杂交的亲和力与一个核酸位点杂交的能力。在某些实施方案中,反义寡核苷酸与不止一个靶位点特异性杂交。
如本文所用,“调节”是指与调节之前的功能或活性相比时,该功能或活性的量或质量发生扰动。例如,调节包括改变基因表达,这种改变包括增加(刺激或诱导)或减少(抑制或降低)。又如,表达的调节可包括扰动pre-mRNA加工的剪接位点选择,从而导致与未扰动的条件相比,所存在的特定剪接变体的量发生变化。再如,调节包括扰动蛋白质的翻译。
如本文所用,“基序”是指寡聚化合物或其区域中的修饰模式。基序可由寡聚化合物的某些核苷处和/或某些连接基团处的修饰来限定。
如本文所用,“核苷基序”是指寡聚化合物或其区域中的核苷修饰模式。这种寡聚化合物的键合可以为修饰的或未修饰的。除非另外指明,否则本文仅描述核苷的基序旨在表示核苷基序。因此,在此类情况下,这些键合不受限制。
如本文所用,“键合基序”是指寡聚化合物或其区域中的键合修饰的模式。这种寡聚化合物的核苷可以为修饰的或未修饰的。除非另外指明,否则本文仅描述键合的基序旨在表示键合基序。因此,在此类情况下,核苷不受限制。
如本文所用,“不同的修饰”或“不同修饰的”是指相对于彼此不同的天然存在的分子的修饰,包括不存在修饰。因此,例如,即使DNA核苷未被修饰,MOE核苷和未修饰的DNA核苷也为“不同修饰的”。同样,即使DNA和RNA都为天然存在的未修饰核苷,两者也为“不同修饰的”。除非另外指明,否则相同但包含不同核碱基的核苷不是不同修饰的。例如,包含2’-OMe修饰糖和腺嘌呤核碱基的核苷以及包含2’-OMe修饰糖和胸腺嘧啶核碱基的核苷不是不同修饰的。
如本文所用,“相同的修饰”是指相对于彼此相同的天然存在的分子的修饰,包括不存在修饰。因此,例如,即使DNA核苷未被修饰,两个未修饰的DNA核苷也具有“相同的修饰”。
如本文所用,关于一种核苷或一“类”核苷的“修饰类型”是指核苷的修饰并包括修饰和未经修饰的核苷。因此,除非另外指明,否则“具有第一类型修饰的核苷”可以为未修饰的核苷。
如本文所用,“单独的区域”是指寡聚化合物的一部分,其中该区域内的核苷和核苷间键合均包含相同的修饰;并且任何相邻部分的核苷和/或核苷间键合包含至少一个不同的修饰。
如本文所用,“交替基序”是指寡聚化合物或其部分,其具有至少四个单独的修饰核苷区域,模式为(AB)nAm,其中A表示具有第一修饰类型的核苷区域;B表示具有不同修饰类型的核苷区域;n为2-15;以及m为0或1。因此,在某些实施方案中,交替基序包含4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20个或更多个交替区域。在某些实施方案中,每个A区域和每个B区域独立地包含1-4个核苷。
如本文所用,“完全修饰的”是指其中每个核苷都为修饰核苷的寡聚化合物或其上的部分。完全修饰的寡聚化合物的核苷的修饰可以都相同,或者一个或多个可以彼此不同。
如本文所用,“均匀修饰的”或“均匀地修饰的”是指包含相同修饰的寡聚化合物或其部分。均匀地修饰的核苷区域的核苷均包含相同的修饰。
如本文所用,术语″gapmer″或“缺口寡聚化合物”是指具有两个外部区域或侧翼和一个内部区域或缺口的寡聚化合物。这三个区域形成邻接的单体亚单位序列,而外部区域的糖基不同于内部区域的糖基,并且其中特定区域内的每个单体亚单位的糖基基本上相同。
如本文所用,“药学上可接受的载体或稀释剂”是指任何适用于向动物施用的物质。在某些实施方案中,药学上可接受的载体或稀释剂为无菌盐水。在某些实施方案中,这种无菌盐水为药用级盐水。
如本文所用的术语“取代基”或“取代基团”意在包括通常添加到其它基团或母体化合物上以增强期望性质或提供其它期望效果的基团。取代基团可被保护或不受保护,并可被添加到母体化合物中一个可用的位点或多个可用的位点。取代基团还可以进一步被其它取代基团取代,并可直接地或通过连接基团诸如烷基或烃基连接到母体化合物上。
本文适合的取代基团包括但不限于:卤素、羟基、烷基、烯基、炔基、酰基(-C(O)Raa)、羧基(-C(O)O-Raa)、脂族基团、脂环族基团、烷氧基、取代的氧基(-O-Raa)、芳基、芳烷基、杂环基、杂芳基、杂芳基烷基、氨基(-N(Rbb)(Rcc))、亚氨基(=NRbb)、酰胺基(-C(O)N(Rbb)(Rcc)或-N(Rbb)C(O)Raa)、叠氮基(-N3)、硝基(-NO2)、氰基(-CN)、氨基甲酰胺基(carbamido)(-OC(O)N(Rbb)(Rcc)或-N(Rbb)C(O)ORaa)、脲基(-N(Rbb)C(O)N(Rbb)(Rcc))、硫脲基(-N(Rbb)C(S)N(Rbb)(Rcc))、胍基(-N(Rbb)C(=NRbb)N(Rbb)(Rcc))、脒基(amidinyl)(-C(=NRbb)N(Rbb)(Rcc)或-N(Rbb)C(=NRbb)(Raa))、硫醇(-SRbb)、亚磺酰基(-S(O)Rbb)、磺酰基(-S(O)2Rbb)以及磺酰胺基(-S(O)2N(Rbb)(Rcc)或-N(Rbb)S(O)2Rbb)。其中每个Raa、Rbb和Rcc独立地为H、任选连接的化学官能团或进一步的取代基团,其中优选的列表包括但不限于H、烷基、烯基、炔基、脂族基团、烷氧基、酰基、芳基、芳烷基、杂芳基、脂环族基团、杂环基团和杂芳基烷基。本文所述化合物内所选的取代基以递归程度(recursive degree)存在。
在此范畴中,“递归取代基”是指一个取代基上可以存在另一个该取代基。由于此类取代基的递归性,因此在理论上,在任何给定的权利要求中可以存在大量的取代基。药物化学和有机化学领域的普通技术人员将理解此类取代基的总数由预期化合物的期望性质合理地限制。此类性质以举例而非限制的方式包括物理性质诸如分子量、溶解度或log P,应用性质诸如针对预期靶的活性,以及实用性质诸如易合成性。
递归取代基是本发明的预期方面。药物化学和有机化学领域的普通技术人员将理解此类取代基的通用性。在递归取代基存在于本发明权利要求中的程度下,其总数将如上所述进行确定。
如本文所用的术语“稳定化合物”和“稳定结构”意在表示足够稳健以能够从反应混合物中分离到有用的纯度并配制成有效的治疗剂的化合物。本文只考虑稳定化合物。
如本文所用的术语“烷基”是指包含最多24个碳原子的饱和直链或支链烃基。烷基的实例包括但不限于甲基、乙基、丙基、丁基、异丙基、正己基、辛基、癸基、十二烷基等。烷基通常包含1至约24个碳原子,更通常包含1至约12个碳原子(C1-C12烷基),其中1至约6个原子是更优选的。如本文所用的术语“低级烷基”包含1至约6个碳原子。如本文所用的烷基可任选地包含一个或更多个进一步的取代基团。
如本文所用的术语“烯基”是指包含最多24个碳原子并具有至少一个碳-碳双键的直链或支链烃基。烯基的实例包括但不限于乙烯基、丙烯基、丁烯基、1-甲基-2-丁烯-1-基、二烯诸如1,3-丁二烯等。烯基通常包含2至约24个碳原子,更通常包含2至约12个碳原子,其中2至约6个碳原子是更优选的。如本文所用的烯基可任选地包含一个或更多个进一步的取代基团。
如本文所用的术语“炔基”是指包含最多24个碳原子并具有至少一个碳-碳三键的直链或支链烃基。炔基的实例包括但不限于乙炔基、1-丙炔基、1-丁炔基等。炔基通常包含2至约24个碳原子,更通常包含2至约12个碳原子,其中2至约6个碳原子是更优选的。如本文所用的炔基可任选地包含一个或更多个进一步的取代基团。
如本文所用的术语“酰基”是指通过从有机酸中移除羟基而形成的基团,并具有通式-C(O)-X,其中X通常为脂族、脂环族或芳族的。实例包括脂族羰基、芳族羰基、脂族磺酰基、芳族亚磺酰基、脂族亚磺酰基、芳族磷酸酯、脂族磷酸酯等。如本文所用的酰基可任选地包含进一步的取代基团。
术语“脂环族”是指其中环为脂族的环体系。该环体系可包含一个或多个环,其中至少一个环是脂族的。优选的脂环族化合物包含环中具有约5至约9个碳原子的环。如本文所用,脂环族可任选地包含进一步的取代基团。
如本文所用,术语“脂族”是指包含最多24个碳原子的直链或支链烃基,其中任何两个碳原子之间的饱和度为单键、双键或三键。脂族基团优选地包含1至约24个碳原子,更通常包含1至约12个碳原子,其中1至约6个团原子是更优选的。脂族基团的直链或支链可由一个或多个包括氮、氧、硫和磷的杂原子中断。此类被杂原子中断的脂族基团包括但不限于多烷氧基诸如聚亚烷基二醇类、聚胺类和聚亚胺类。如本文所用,脂族基团可任选地包含进一步的取代基团。
如本文所用,术语“烷氧基”是指在烷基和氧原子之间形成的基团,其中氧原子用于将烷氧基连接到母体分子。烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基、异丙氧基、正丁氧基、仲丁氧基、叔丁氧基、正戊氧基、新戊氧基和正己氧基等。如本文所用的烷氧基可任选地包含进一步的取代基团。
如本文所用的术语“氨基烷基”是指氨基取代的C1-C12烷基。该基团的烷基部分与母体分子形成共价键。氨基可位于任何位置,并且氨基烷基可在烷基和/或氨基部位被进一步的取代基团取代。
如本文所用的术语“芳烷基”和“芳基烷基”是指共价连接到C1-C12烷基的芳族基团。所得的芳烷基(或芳基烷基)的烷基部分与母体分子形成共价键。实例包括但不限于苄基、苯乙基等。如本文所用的芳烷基可任选地包含连接到烷基、芳基或形成基团的两者的进一步的取代基团。
如本文所用的术语“芳基”和“芳族”是指具有一个或多个芳环的单环或多环的碳环系基团。芳基的实例包括但不限于苯基、萘基、四氢萘基、茚满基、茚基(idenyl)等。优选的芳基环体系在一个或多个环中具有约5至约20个碳原子。如本文所用的芳基可任选地包含进一步的取代基团。
如本文所用的术语“卤”或“卤素”是指选自氟、氯、溴和碘的原子。
如本文所用的术语“杂芳基”和“杂芳族”是指包含单环或多环芳环、环体系或稠合环体系的基团,其中这些环的至少一个为芳族的并包含一和或多个杂原子。杂芳基还意在包括稠合环体系,包括其中稠环的一个或多个不含杂原子的体系。杂芳基通常包含一个选自硫、氮或氧的环原子。杂芳基的实例包括但不限于:吡啶基、吡嗪基、嘧啶基、吡咯基、吡唑基、咪唑基、噻唑基、噁唑基、异噁唑基、噻二唑基、噁二唑基、苯硫基、呋喃基、喹啉基、异喹啉基、苯并咪唑基、苯并噁唑基、喹噁啉基等。杂芳基可直接地或通过连接部分诸如脂族基团或杂原子连接到母体分子上。如本文所用的杂芳基可任选地包含进一步的取代基团。
如本文所用的术语“杂芳基烷基”是指进一步包含共价连接的C1-C12烷基的如之前定义的杂芳基。所得杂芳基烷基的烷基部分能够与母体分子形成共价键。实例包括但不限于吡啶基甲基、吡啶基乙基、萘啶基丙基(napthyridinylpropyl)等。如本文所用的杂芳基烷基可在杂芳基或烷基部分的一者或两者上任选地包含进一步的取代基团。
如本文所用的术语“杂环基团”是指包含至少一个和杂原子并为不饱和的、部分饱和的或完全饱和的单环或多环环体系,因而包括杂芳基基团。杂环还意在包括稠合环体系,其中稠合环的一个或多个包含至少一个杂原子,并且其它环可包含一个或多个杂原子或任选地不含杂原子。杂环基团通常包含至少一个选自硫、氮或氧的原子。杂环基团的实例包括[1,3]二氧戊环基、吡咯烷基、吡唑啉基、吡唑烷基、咪唑啉基、咪唑烷基、哌啶基、吡嗪基、噁唑烷基、异噁唑烷基、吗啉基、噻唑烷基、异噻唑烷基、喹噁啉基、哒嗪基(pyridazinonyl)、四氢呋喃基等。如本文所用的杂环基团可任选地包含进一步的取代基团。
术语“烃基”包括含有C、O和H的基团。其包括具有任何饱和度的直链、支链和环状基团。此类烃基可包含一个或多个选自N、O和S的杂原子,并可进一步被一个或多个取代基团进行单或多取代。
如本文所用的术语“单环或多环结构”包括选自单环环体系或其中环为稠合的或相连的多环环体系的所有环体系,并意在包括单独地选自脂基、脂环基、芳基、杂芳基、芳烷基、芳基烷基、杂环基、杂芳基、杂芳族基和杂芳基烷基的单个和混合环体系。此类单环和多环结构可包含每一个都具有相同饱和度或每一个独立地具有不同饱和度(包括完全饱和、部分饱和或完全不饱和)的环。每个环可包含选自C、N、O和S的环原子,以得到杂环以及只含C环原子的环,这些环可以混合基序存在,诸如例如苯并咪唑,其中一个环只具有碳环原子,而稠合的环具有两个氮原子。单环或多环结构可进一步被取代基团取代,诸如例如邻苯二甲酰亚胺,其具有连接到其中一个环上的两个=O基团。单环或多环结构可使用多种策略连接到母体分子上,诸如通过环原子直接连接、通过取代基团或通过双官能连接部分连接。
术语“氧代”是指基团(=O)。
连接基团或双官能连接部分诸如本领域已知的那些可用于将化学官能团、共轭基团、报告基团和其它基团连接到母体化合物诸如例如寡聚化合物中的选择性位点上。一般来讲,双官能连接部分包括具有两个官能团的烃基部分。选择其中一个官能团以结合到母体分子或所关注的化合物上,而选择另一个以结合到基本上任何选定的基团诸如化学官能团或共轭基团上。在一些实施方案中,连接基包含链结构或重复单元诸如乙二醇或氨基酸单元的聚合物。通常用于双官能连接部分的官能团的实例包括但不限于用于与亲核基团反应的亲电体以及用于与亲电基团反应的亲核体。在一些实施方案中,双官能连接部分包含氨基、羟基、羧酸、硫醇、不饱和度(例如,双键或三键)等。双官能连接部分的一些非限制实例包括8-氨基-3,6-二氧杂辛酸(ADO)、4-(N-马来酰亚胺基甲基)环己烷-1-羧酸琥珀酰亚胺(SMCC)和6-氨基己酸(AHEX或AHA)。其它连接基团包括但不限于取代的C1-C10烷基、取代的或未取代的C2-C10烯基或者取代的或未取代的C2-C10炔基,其中优选取代基团的非限制性列表包括羟基、氨基、烷氧基、羧基、苄基、苯基、硝基、硫醇、硫代烷氧基、卤素、烷基、芳基、烯基和炔基。
如本文所用的术语“磷酸酯部分”是指包括磷酸酯以及修饰磷酸酯的末端磷酸酯基团。磷酸酯部分可位于任一末端,但优选位于5′-末端核苷。在一个方面,末端磷酸酯未修饰,具有式-O-P(=O)(OH)OH。在另一方面,末端磷酸酯被修饰使得O和OH基团的一个或多个被H、O、S、N(R)或烷基取代,其中R为H、氨基保护基团或者未取代的或取代的烷基。在某些实施方案中,5′和/或3′末端基团可包含1至3个磷酸酯部分,它们各自独立地为未修饰的(二或三磷酸酯)或修饰的。
如本文所用,术语“磷部分”是指具有下式的基团:
其中:
Ra和Rc各自独立地为OH、SH、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、氨基或取代的氨基;以及
Rb为O或S。
本文包含的磷部分可被连接到可用于制备寡聚化合物的单体上,其中可使用O、S、NRd或CReRf连接该单体,其中Rd包括但不限于H、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或取代的酰基,而Re和Rf各自独立地包括但不限于H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基或取代的C1-C6烷氧基。此类连接的磷部分包括但不限于磷酸酯、修饰的磷酸酯、硫代磷酸酯、修饰的硫代磷酸酯、膦酸酯、修饰的膦酸酯、氨基磷酸酯和修饰的磷氨基磷酸酯。
如本文所用的术语“保护基团”是指本领域已知的用来保护反应性基团(包括但不限于羟基、氨基和硫醇基团)避免在合成过程中发生非期望反应的不稳定化学部分。保护基团通常在其它反应性位点的反应过程中选择性地和/或正交地用于保护某些位点,并且然后可被移除从而按原样或可用于进一步反应的方式释放出未保护的基团。如本领域所已知的保护基团一般在″Greene′s Protective Groups inOrganic Synthesis″,第4版,John Wiley & Sons,New York,2007年中有所描述。
基团可作为前体选择性地并入到如本文提供的寡聚化合物中。例如,氨基可作为叠氮基被置于如本文提供的化合物中,所述叠氮基可在合成中的所需时间点被化学转化成氨基。一般来讲,基团受到保护或作为对反应为惰性的前体存在,所述反应修饰母体分子的其它区域,以在合适的时间转化成其最终基团。进一步的代表性保护基团或前体基团在Agrawal等,″Protocols for Oligonucleotide Conjugates″,Humana Press,New Jersey,1994年,第26卷第1-72页中有所讨论。
术语“正交保护的”是指通过不同类的保护基团保护的官能团,其中每类保护基团可按任何顺序并在所有其它类存在下被移除(参见Barany等,J.Am.Chem.Soc.,1977,99,7363-7365;Barany等,J.Am.Chem.Soc.,1980,102,3084-3095)。正交保护广泛用于例如自动寡核苷酸合成。将官能团在一个或多个不受解封过程影响的其它受保护官能团存在下解封。使该解封的官能团以某一方式反应,并且在某一时间点在一组不同的反应条件下移除进一步的正交保护基团。这允许实现选择性化学反应,从而得到期望的化合物或寡聚化合物。
羟基保护基团的实例包括但不限于乙酰基、叔丁基、叔丁氧基甲基、甲氧基甲基、四氢吡喃基、1-乙氧基乙基、1-(2-氯乙氧基)乙基、对氯苯基、2,4-二硝基苯基、苄基、2,6-二氯苄基、二苯基甲基、对硝基苄基、双(2-乙酰氧基乙氧基)甲基(ACE)、2-三甲基硅基乙基、三甲基硅基、三乙基硅基、叔丁基二甲基硅基、叔丁基二苯基硅基、三苯基硅基、[(三异丙基硅基)氧基]甲基(TOM)、苯甲酰基甲酸酯、氯乙酰基、三氯乙酰基、三氟乙酰基、新戊酰基、苯甲酰基、对苯基苯甲酰基、9-芴基甲基碳酸酯、甲磺酸酯基、甲苯磺酸酯基、三苯基甲基(三苯甲基)、单甲氧基三苯甲基、二甲氧基三苯甲基(DMT)、三甲氧基三苯甲基、1(2-氟苯基)-4-甲氧基哌啶-4-基(FPMP)、9-苯基黄嘌呤-9-基(Pixyl)和9-(对甲氧苯基)黄嘌呤-9-基(MOX)。其中更常用的羟基保护基团包括但不限于苄基、2,6-二氯苄基、叔丁基二甲基硅基、叔丁基二苯基硅基、苯甲酰基、甲磺酰基、甲苯磺酸酯基、二甲氧基三苯甲基(DMT)、9-苯基黄嘌呤-9-基(Pixyl)和9-(对甲氧苯基)黄嘌呤-9-基(MOX)。
常用于保护磷酸酯和磷羟基的保护基团的实例包括但不限于甲基、乙基、苄基(Bn)、苯基、异丙基、叔丁基、烯丙基、环己基(cHex)、4-甲氧基苄基、4-氯苄基、4-硝基苄基、4-酰氧基苄基、2-甲基苯基、2,6-二甲基苯基、2-氯苯基、二苯基甲基、4-甲硫基-1-丁基、2-(S-乙酰硫基)乙基(SATE)、2-氰乙基、2-氰基-1,1-二甲基乙基(CDM)、4-氰基-2-丁烯基、2-(三甲基硅基)乙基(TSE)、2-(苯硫基)乙基、2-(三苯基硅基)乙基、2-(苄磺酰基)乙基、2,2,2-三氯乙基、2,2,2-三溴乙基、2,3-二溴丙基、2,2,2-三氟乙基、苯硫基、2-氯-4-三苯甲基苯基、2-溴苯基、2-[N-异丙基-N-(4-甲氧基苯甲酰基)氨基]乙基、4-(N-三氟乙酰基氨基)丁基、4-氧代戊基、4-三苯甲基氨基苯基、4-苄基氨基苯基和吗啉代。其中更常用的磷酸酯和磷保护基团包括但不限于甲基、乙基、苄基(Bn)、苯基、异丙基、叔丁基、4-甲氧基苄基、4-氯苄基、2-氯苯基和2-氰乙基。
氨基保护基团的实例包括但不限于氨基甲酸酯保护基团,诸如2-三甲基硅基乙氧基羰基(Teoc)、1-甲基-1-(4-联苯基)乙氧基羰基(Bpoc)、叔丁氧基羰基(BOC)、烯丙氧基羰基(Alloc)、9-芴基甲氧基羰基(Fmoc)和苄氧基羰基(Cbz);酰胺保护基团,诸如甲酰基、乙酰基、三卤乙酰基、苯甲酰基和硝基苯基乙酰基;磺胺保护基团,诸如2-硝基苯磺酰基;以及亚胺和环酰亚胺保护基团,诸如邻苯二甲酰亚胺基和二硫代丁二酰基(dithiasuccinoyl)。
硫醇保护基团的实例包括但不限于三苯基甲基(三苯甲基)、苄基(Bn)等。
在某些实施方案中,可制备具有一个或多个任选保护的含磷核苷间键合的如本文提供的寡聚化合物。含磷核苷间键合诸如磷酸二酯和硫代磷酸酯键合的代表性保护基团包括β-氰乙基、二苯基硅基乙基、δ-氰基丁烯基、氰基对二甲苯基(CPX)、N-甲基-N-三氟乙酰基乙基(META)、乙酰氧基苯氧基乙基(APE)和丁烯-4-基。参见例如美国专利No.4,725,677和Re.34,069(β-氰乙基);Beaucage等,Tetrahedron,1993,49(10),1925-1963;Beaucage等,Tetrahedron,1993,49(46),10441-10488;Beaucage等,Tetrahedron,1992,48(12),2223-2311。
在某些实施方案中,提供了具有反应性磷基团的化合物,其可用于形成核苷间键合,包括例如磷酸二酯和硫代磷酸酯核苷间键合。此类反应性磷基团在本领域中是已知的,并包含PIII或PV价态的磷原子,包括但不限于磷酰胺、H-膦酸酯、磷酸三酯和含磷手性助剂。在某些实施方案中,反应性磷基团选自二异丙基氰基乙氧基磷酰胺(-O*-P[N[(CH(CH3)2]2]O(CH2)2CN)和H-膦酸酯(-O*-P(=O)(H)OH),其中O*由单体的Markush基团提供。优选的固相合成反应利用磷酰胺(PIII化学)作为反应性亚磷酸酯。随后使用已知的方法将中间体亚磷酸酯化合物氧化成磷酸酯或硫代磷酸酯(PV化学)以得到磷酸二酯或硫代磷酸酯核苷间键合。另外的反应性磷酸酯和亚磷酸酯在Tetrahedron Report Number 309(Beaucage和Iyer,Tetrahedron,1992,48,2223-2311)中有所公开。
某些单体化合物
在某些实施方案中,提供具有式Ic的化合物:
其中:
T1为任选保护的磷部分;
M1为H、OH或OR1;
M2为OH、OR1或N(R1)(R2);
每个R1和R2独立地为C1-C6烷基、取代的C1-C6烷基;
r为0或1;
A具有下式之一:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基、C1-C6烷氧基、取代的C1-C6烷氧基或N(R3)(R4);
Q3为O、S、N(R5)或C(R6)(R7);
每个R3、R4、R5、R6和R7独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
M3为O、S、NR14、C(R15)(R16)、C(R15)(R16)C(R17)(R18)、C(R15)=C(R17)、OC(R15)(R16)或OC(R15)(Bx2);
R14为H、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
R15、R16、R17和R18各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
Bx1和Bx2之一为杂环碱基部分,而Bx1和Bx2的另一个如果存在为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
J4、J5、J6和J7各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
或者J4与J5或J7形成桥,其中所述桥包含选自O、S、NR19、C(R20)(R21)、C(R20)=C(R21)、C[=C(R20)(R21)]和C(=O)的1至3个连接的双基基团,而J5、J6和J7的其它两个各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
每个R19、R20和R21独立地为H、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X1]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X1为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=X2)J1、OC(=X2)N(J1)(J2)和C(=X2)N(J1)(J2);
X2为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3)。
在某些实施方案中,提供了具有式I的化合物:
其中:
Bx为杂环碱基部分;
T1为任选保护的磷部分;
M1为H、OH或OR1;
M2为OH、OR1或N(R1)(R2);
每个R1和R2独立地为烷基或取代的烷基;
r为0或1;
A具有下式之一:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基、C1-C6烷氧基、取代的C1-C6烷氧基或N(R3)(R4);
Q3为O、S、N(R5)或C(R6)(R7);
每个R3、R4、R5、R6和R7独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=L)J1、OC(=L)N(J1)(J2)和C(=L)N(J1)(J2);
L为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3)。
在某些实施方案中,提供了具有式Ia构型的化合物:
其中:
Bx为杂环碱基部分;
T1为任选保护的磷部分;
M1为H、OH或OR1;
M2为OH、OR1或N(R1)(R2);
每个R1和R2独立地为烷基或取代的烷基;
r为0或1;
A具有下式之一:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基、C1-C6烷氧基、取代的C1-C6烷氧基或N(R3)(R4);
Q3为O、S、N(R5)或C(R6)(R7);
每个R3、R4、R5、R6和R7独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=L)J1、OC(=L)N(J1)(J2)和C(=L)N(J1)(J2);
L为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3)。
在某些实施方案中,G不为H或OH。
在某些实施方案中,提供了具有式Ib的化合物:
其中:
Bx为杂环碱基部分;
T1为任选保护的磷部分;
M1为H、OH或OR1;
M2为OH、OR1或N(R1)(R2);
每个R1和R2独立地为烷基或取代的烷基;
r为0或1;
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基、C1-C6烷氧基、取代的C1-C6烷氧基或N(R3)(R4);
每个R3和R4独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=L)J1、OC(=L)N(J1)(J2)和C(=L)N(J1)(J2);
L为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3)。
某些寡聚化合物
在某些实施方案中,提供了寡聚化合物,其包括具有式IIc的化合物:
其中:
T1为任选保护的磷部分;
T2为将式IIc的化合物连接到寡聚化合物的核苷间连接基团;
M1为H、OH或OR1;
M2为OH、OR1或N(R1)(R2);
每个R1和R2独立地为C1-C6烷基、取代的C1-C6烷基;
r为0或1;
A具有下式之一:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基、C1-C6烷氧基、取代的C1-C6烷氧基或N(R3)(R4);
Q3为O、S、N(R5)或C(R6)(R7);
每个R3、R4、R5、R6和R7独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
M3为O、S、NR14、C(R15)(R16)、C(R15)(R16)C(R17)(R18)、C(R15)=C(R17)、OC(R15)(R16)或OC(R15)(Bx2);
R14为H、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
R15、R16、R17和R18各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
Bx1和Bx2之一为杂环碱基部分,而Bx1和Bx2的另一个如果存在为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
J4、J5、J6和J7各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
或者J4与J5或J7形成桥,其中所述桥包含选自O、S、NR19、C(R20)(R21)、C(R20)=C(R21)、C[=C(R20)(R21)]和C(=O)的1至3个连接的双基基团,而J5、J6和J7的其它两个各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
每个R19、R20和R21独立地为H、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X1]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X1为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=X2)J1、OC(=X2)N(J1)(J2)和C(=X2)N(J1)(J2);
X2为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3)。
在某些实施方案中,提供了寡聚化合物,其包括具有式II的化合物:
其中:
Bx为杂环碱基部分;
T1为任选保护的磷部分;
T2为将式II化合物连接到寡聚化合物其余部分的核苷间连接基团;
A具有下式之一:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基、C1-C6烷氧基、取代的C1-C6烷氧基或N(R3)(R4);
Q3为O、S、N(R5)或C(R6)(R7);
每个R3、R4、R5、R6和R7独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=L)J1、OC(=L)N(J1)(J2)和C(=L)N(J1)(J2);
L为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3)。
在某些实施方案中,提供了寡聚化合物,其包括具有式IIa的化合物:
其中:
Bx为杂环碱基部分;
T1为任选保护的磷部分;
T2为将式II化合物连接到寡聚化合物其余部分的核苷间连接基团;
A具有下式之一:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基、C1-C6烷氧基、取代的C1-C6烷氧基或N(R3)(R4);
Q3为O、S、N(R5)或C(R6)(R7);
每个R3、R4、R5、R6和R7独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=L)J1、OC(=L)N(J1)(J2)和C(=L)N(J1)(J2);
L为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,则Z不为卤素或N(E2)(E3)。
在某些实施方案中,提供了寡聚化合物,其包括具有式IIb的化合物:
在某些实施方案中,提供了寡聚化合物,其包括具有式IIb的化合物,其中Q1和Q2均为H。在某些实施方案中,提供了寡聚化合物,其包括具有式IIb的化合物,其中G为O(CH2)2OCH3。
在某些实施方案中,寡聚化合物包含式II、IIa、IIb、IIc、IId或IIe的核苷。在某些此类实施方案中,式II、IIa、IIb、IIc、IId或IIe核苷位于5’-末端。在某些此类实施方案中,寡聚化合物的其余部分包含一个或多个修饰。此类修饰可包括修饰的糖部分、修饰的核碱基和/或修饰的核苷间键合。可并入到包含式II、IIa、IIb、IIc、IId或IIe核苷的寡聚化合物中的某些此类修饰位于5’-末端,如本领域所已知。
某些修饰的糖部分
本发明的寡聚化合物可任选地包含一个或多个核苷,其中糖基已被修饰。此类糖修饰核苷可赋予反义化合物增强的核酸酶稳定性、增强的结合亲和力或一些其它有益的生物学性质。在某些实施方案中,核苷包含化学修饰的呋喃核糖环部分。化学修饰的呋喃核糖环的实例包括但不限于添加取代基团(包括5′和/或2′取代基团);桥接两个环原子以形成双环核酸(BNA);由S、N(R)或C(R1)(R2)(R=H、C1-C12烷基或保护基团)替代核糖基环氧原子;以及它们的组合。化学修饰的糖的实例包括2′-F-5′-甲基取代的核苷(有关其它公开的5′,2′-双取代核苷,参见2008年8月21日公布的PCT国际申请WO2008/101157)、由S替代核糖基环氧原子并进一步在2′-位取代(参见2005年6月16日公布的美国专利申请US2005/0130923)或者作为另外一种选择为BNA的5′-取代(参见2007年11月22日公布的PCT国际申请WO 2007/134181,其中LNA由例如5′-甲基或5′-乙烯基取代)。
具有修饰的糖部分的核苷的实例包括但不限于包含5′-乙烯基、5′-甲基(R或S)、4′-S、2′-F、2′-OCH3和2′-O(CH2)2OCH3取代基团的核苷。2’位的取代基也可选自烯丙基、氨基、叠氮基、硫代、O-烯丙基、O-C1-C10烷基、OCF3、O(CH2)2SCH3、O(CH2)2-O-N(Rm)(Rn)和O-CH2-C(=O)-N(Rm)(Rn),其中每个Rm和Rn独立地为H或者取代的或未取代的C1-C10烷基。
在某些实施方案中,本发明的寡聚化合物包含一个或多个双环核苷。在某些此类实施方案中,该双环核苷包含4′与2′核糖基环原子之间的桥。在某些实施方案中,本文提供的寡聚化合物包含一个或多个双环核苷,其中桥构成4’至2’双环核苷。此类4’至2’双环核苷的实例包括但不限于下式之一:4′-(CH2)-O-2′(LNA)、4′-(CH2)-S-2′、4′-(CH2)2-O-2′(ENA)、4′-CH(CH3)-O-2′和4′-CH(CH2OCH3)-O-2′及其类似物(参见2008年7月15日授权的美国专利7,399,845);4′-C(CH3)(CH3)-O-2′及其类似物(参见2009年1月8日公布的国际申请WO2009/006478);4′-CH2-N(OCH3)-2′及其类似物(参见,2008年12月11日公布的PCT 国际申请WO2008/150729);4′-CH2-O-N(CH3)-2′(参见2004年9月2日公布的美国专利申请US2004/0171570);4′-CH2-N(R)-O-2′,其中R为H、C1-C12烷基或保护基团(参见2008年9月23日授权的美国专利7,427,672);4′-CH2-C(H)(CH3)-2′(参见Chattopadhyaya,等,J.Org.Chem.,2009,74,118-134);以及4′-CH2-C(=CH2)-2′及其类似物(参见,2008年12月8日公布的PCT国际申请WO 2008/154401)。另见例如:Singh等,Chem.Commun.,1998,4,455-456;Koshkin等,Tetrahedron,1998,54,3607-3630;Wahlestedt等,Proc.Natl.Acad.Sci.U.S.A.,2000,97,5633-5638;Kumar等,Bioorg.Med.Chem.Lett.,1998,8,2219-2222;Singh等,J.Org.Chem.,1998,63,10035-10039;Srivastava等,J.Am.Chem.Soc.,129(26)8362-8379(July 4,2007);Elayadi等,Curr.OpinionInvens.Drugs,2001,2,558-561;Braasch等,Chem.Biol.,2001,8,1-7;Orum等,Curr.Opinion Mol.Ther.,2001,3,239-243;美国专利No.7,053,207、6,268,490、6,770,748、6,794,499、7,034,133、6,525,191、6,670,461和7,399,845;国际申请WO 2004/106356、WO 1994/14226、WO 2005/021570和WO 2007/134181;美国专利公开No.US2004/0171570、US2007/0287831和US2008/0039618;美国专利序列号12/129,154、60/989,574、61/026,995、61/026,998、61/056,564、61/086,231、61/097,787和61/099,844;以及PCT国际申请No.PCT/US2008/064591、PCT/US2008/066154和PCT/US2008/068922。可制备具有一种或多种立体化学糖构型包括例如α-L-呋喃核糖和β-D-呋喃核糖的前述双环核苷的每一个(参见PCT国际申请PCT/DK98/00393,以WO 99/14226于1999年3月25日公布)。
在某些实施方案中,BNA核苷的双环糖部分包括但不限于在戊呋喃糖基糖部分的4′和2’位置之间具有至少一个桥的化合物,其中此类桥独立地包含1个或2至4个独立地选自-[C(Ra)(Rb)]n-、-C(Ra)=C(Rb)-、-C(Ra)=N-、-C(=NRa)-、-C(=O)-、-C(=S)、-O-、-Si(Ra)2-、-S(=O)x-和-N(Ra)-的连接基团;
其中:
x为0、1或2;
n为1、2、3或4;
每个Ra和Rb独立地为H、保护基团、羟基、C1-C12烷基、取代的C1-C12烷基、C2-C12烯基、取代的C2-C12烯基、C2-C12炔基、取代的C2-C12炔基、C5-C20芳基、取代的C5-C20芳基、杂环基、取代的杂环基、杂芳基、取代的杂芳基、C5-C7脂环基、取代的C5-C7脂环基、卤素、OJ1、NJ1J2、SJ1、N3、COOJ1、酰基(C(=O)-H)、取代的酰基、CN、磺酰基(S(=O)2-J1)或增效砜(sulfoxyl)(S(=O)-J1);以及
每个J1和J2独立地为H、C1-C12烷基、取代的C1-C12烷基、C2-C12烯基、取代的C2-C12烯基、C2-C12炔基、取代的C2-C12炔基、C5-C20芳基、取代的C5-C20芳基、酰基(C(=O)-H)、取代的酰基、杂环基、取代的杂环基、C1-C12氨基烷基、取代的C1-C12氨基烷基或保护基团。
在某些实施方案中,双环糖部分的桥为-[C(Ra)(Rb)]n-、-[C(Ra)(Rb)]n-O-、-C(RaRb)-N(R)-O-或-C(RaRb)-O-N(R)-。在某些实施方案中,桥为4′-CH2-2′、4′-(CH2)2-2′、4′-(CH2)3-2′、4′-CH2-O-2′、4′-(CH2)2-O-2′、4′-CH2-O-N(R)-2′和4′-CH2-N(R)-O-2′-,其中每个R独立地为H、保护基团或C1-C12烷基。
在某些实施方案中,双环核苷进一步由同分异构构型限定。例如,包含4’-2’亚甲基-氧桥的核苷可以为α-L构型或为β-D构型。此前,已有人将α-L-亚甲基氧(4’-CH2-O-2’)BNA并入到表现出反义活性的反义寡核苷酸中(Frieden等,Nucleic Acids Research,2003,21,6365-6372)。
在某些实施方案中,双环核苷包括但不限于(A)α-L-亚甲基氧(4’-CH2-O-2’)BNA、(B)β-D-亚甲基氧(4’-CH2-O-2’)BNA、(C)乙烯氧基(4’-(CH2)2-O-2’)BNA、(D)氨氧基(4’-CH2-O-N(R)-2’)BNA、(E)氧氨基(4’-CH2-N(R)-O-2’)BNA、(F)甲基(亚甲基氧)(4’-CH(CH3)-O-2’)BNA(也称为限制性乙基或cEt)、(G)亚甲基-硫代(4’-CH2-S-2’)BNA、(H)亚甲基-氨基(4’-CH2-N(R)-2’)BNA、(I)甲基碳环(4’-CH2-CH(CH3)-2’)BNA以及(J)丙烯碳环(4’-(CH2)3-2’)BNA,如下所述。
其中Bx为碱基部分,而R独立地为H、保护基团或C1-C12烷基。
在某些实施方案中,双环核苷具有式I:
其中:
Bx为杂环碱基部分;
-Qa-Qb-Qc-为-CH2-N(Rc)-CH2-、-C(=O)-N(Rc)-CH2-、-CH2-O-N(Rc)-、-CH2-N(Rc)-O-或-N(Rc)-O-CH2;
Rc为C1-C12烷基或氨基保护基团;以及
Ta和Tb各自独立地为H、羟基保护基团、共轭基团、反应性磷基团、磷部分或与载体介质的共价连接。
在某些实施方案中,双环核苷具有式II:
其中:
Bx为杂环碱基部分;
Ta和Tb各自独立地为H、羟基保护基团、共轭基团、反应性磷基团、磷部分或与载体介质的共价连接;
Za为C1-C6烷基、C2-C6烯基、C2-C6炔基、取代的C1-C6烷基、取代的C2-C6烯基、取代的C2-C6炔基、酰基、取代的酰基、取代的酰胺、硫醇或取代的硫醇。
在某些实施方案中,取代基团的每一个独立地为由独立地选自以下的取代基团单或多取代:卤素、氧代、羟基、OJc、NJcJd、SJc、N3、OC(=X)Jc和NJeC(=X)NJcJd,其中每个Jc、Jd和Je独立地为H、C1-C6烷基或取代的C1-C6烷基,而X为O或NJc。
在某些实施方案中,双环核苷具有式III:
其中:
Bx为杂环碱基部分;
Ta和Tb各自独立地为H、羟基保护基团、共轭基团、反应性磷基团、磷部分或与载体介质的共价连接;
Zb为C1-C6烷基、C2-C6烯基、C2-C6炔基、取代的C1-C6烷基、取代的C2-C6烯基、取代的C2-C6炔基或取代的酰基(C(=O)-)。
在某些实施方案中,双环核苷具有式IV:
其中:
Bx为杂环碱基部分;
Ta和Tb各自独立地为H、羟基保护基团、共轭基团、反应性磷基团、磷部分或与载体介质的共价连接;
Rd为C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
每个qa、qb、qc和qd独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基、C1-C6烷氧基、取代的C1-C6烷氧基、酰基、取代的酰基、C1-C6氨基烷基或取代的C1-C6氨基烷基;
在某些实施方案中,双环核苷具有式V:
其中:
Bx为杂环碱基部分;
Ta和Tb各自独立地为H、羟基保护基团、共轭基团、反应性磷基团、磷部分或与载体介质的共价连接;
qa、qb、qe和qf各自独立地为氢、卤素、C1-C12烷基、取代的C1-C12烷基、C2-C12烯基、取代的C2-C12烯基、C2-C12炔基、取代的C2-C12炔基、C1-C12烷氧基、取代的C1-C12烷氧基、OJj、SJj、SOJj、SO2Jj、NJjJk、N3、CN、C(=O)OJj、C(=O)NJjJk、C(=O)Jj、O-C(=O)NJjJk、N(H)C(=NH)NJjJk、N(H)C(=O)NJjJk或N(H)C(=S)NJjJk;
或者qe和qf一起为=C(qg)(qh);
qg和qh各自独立地为H、卤素、C1-C12烷基或取代的C1-C12烷基。
已经描述了亚甲基氧(4’-CH2-O-2’)BNA单体腺嘌呤、胞嘧啶、鸟嘌呤、5-甲基-胞嘧啶、胸腺嘧啶和尿嘧啶的合成和制备及其寡聚化以及核酸识别性质(参见例如Koshkin等,Tetrahedron,1998,54,3607-3630)。BNA及其制备也在WO 98/39352和WO 99/14226中有所描述。
已经制得了亚甲基氧(4’-CH2-O-2’)BNA、亚甲基氧(4’-CH2-O-2’)BNA以及2′-硫代-BNA的类似物(参见,例如Kumar等,Bioorg.Med.Chem.Lett.,1998,8,2219-2222)。包含寡聚脱氧核苷酸双链体作为核酸聚合酶的底物的锁核苷类似物的制备也得到了描述(参见例如Wengel等,WO 99/14226)。此外,2′-氨基-BNA的合成已在本领域中进行了描述,其为一种新型构象限制性高亲和寡核苷酸类似物(参见例如Singh等,J.Org.Chem.,1998,63,10035-10039)。此外,已经制备了2′-氨基-和2′-甲基氨基-BNA,并且它们的双链体与互补RNA和DNA链的热稳定性之前也进行了报道。
在某些实施方案中,双环核苷具有式VI:
其中:
Bx为杂环碱基部分;
Ta和Tb各自独立地为H、羟基保护基团、共轭基团、反应性磷基团、磷部分或与载体介质的共价连接;
每个qi、qj、qk和ql独立地为H、卤素、C1-C12烷基、取代的C1-C12烷基、C2-C12烯基、取代的C2-C12烯基、C2-C12炔基、取代的C2-C12炔基、C1-C12烷氧基、取代的C1-C12烷氧基、OJj、SJj、SOJj、SO2Jj、NJjJk、N3、CN、C(=O)OJj、C(=O)NJjJk、C(=O)Jj、O-C(=O)NJjJk、N(H)C(=NH)NJjJk、N(H)C(=O)NJjJk或N(H)C(=S)NJjJk;以及
qi和qj或ql和qk一起为=C(qg)(qh),其中qg和qh各自独立地为H、卤素、C1-C12烷基或取代的C1-C12烷基。
一种具有4′-(CH2)3-2′桥的碳环双环核苷以及烯基类似物桥4′-CH=CH-CH2-2′已得到了描述(参见,例如Freier等,Nucleic AcidsResearch,1997,25(22),4429-4443以及Albaek等,J.Org.Chem.,2006,71,7731-7740)。碳环双环核苷的合成和制备及其寡聚化和生化研究也得到了描述(参见,例如Srivastava等,J.Am.Chem.Soc.2007,129(26),8362-8379)。
在某些实施方案中,寡聚化合物包含一个或多个修饰的四氢吡喃核苷,其为具有六元四氢吡喃以代替天然存在核苷中的戊呋喃糖基残基的核苷。修饰的四氢吡喃核苷包括但不限于在本领域中称为己糖醇核酸(HNA)、anitol核酸(ANA)、甘露醇核酸(MNA)(参见Leumann,CJ.,Bioorg.& Med.Chem.(2002)10:841-854)、氟代HNA(F-HNA)的那些或具有式VII的那些化合物:
其中独立地对于式X的所述至少一个四氢吡喃核苷类似物的每一个:
Bx为杂环碱基部分;
T3和T4各自独立地为将四氢吡喃核苷类似物连接到反义化合物的核苷间连接基团,或者T3和T4之一为将四氢吡喃核苷类似物连接到反义化合物的核苷间连接基团,而T3和T4的另一个为H、羟基保护基团、连接的共轭基团或者5′或3′-末端基团;
q1、q2、q3、q4、q5、q6和q7各自独立地为H、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;以及
R1和R2之一为氢,另一个选自卤素、取代的或未取代的烷氧基、NJ1J2、SJ1、N3、OC(=X)J1、OC(=X)NJ1J2、NJ3C(=X)NJ1J2以及CN,其中X为O、S或NJ1,以及每一个J1、J2和J3独立地为H或C1-C6烷基。
在某些实施方案中,提供了式X的修饰THP核苷,其中q1、q2、q3、q4、q5、q6和q7均为H。在某些实施方案中,q1、q2、q3、q4、q5、q6和q7的至少一个不为H。在某些实施方案中,q1、q2、q3、q4、q5、q6和q7的至少一个为甲基。在某些实施方案中,提供了式X的THP核苷,其中R1和R2之一为F。在某些实施方案中,R1为氟而R2为H,R1为甲氧基而R2为H,以及R1为甲氧基乙氧基而R2为H。
在某些实施方案中,寡聚化合物包含一个或多个修饰的环己烯基核苷,其为具有六元环己烯基以代替天然存在核苷中的戊呋喃糖基残基的核苷。修饰的环己烯基核苷包括但不限于在本领域中描述的那些(参见例如共同拥有的2010年4月10日公布的PCT申请WO2010/036696;Robeyns等,J.Am.Chem.Soc.,2008,130(6),1979-1984;Horváth等,Tetrahedron Letters,2007,48,3621-3623;Nauwelaerts等,J.Am.Chem.Soc.,2007,129(30),9340-9348;Gu等,,Nucleosides,Nucleotides & Nucleic Acids,2005,24(5-7),993-998;Nauwelaerts等,Nucleic Acids Research,2005,33(8),2452-2463;Robeyns等,ActaCrystallographica,Section F:Structural Biology and CrystallizationCommunications,2005,F61(6),585-586;Gu等,Tetrahedron,2004,60(9),2111-2123;Gu等,Oligonucleotides,2003,13(6),479-489;Wang等,J.Org.Chem.,2003,68,4499-4505;Verbeure等,Nucleic AcidsResearch,2001,29(24),4941-4947;Wang等,J.Org.Chem.,2001,66,8478-82;Wang等,Nucleosides,Nucleotides & Nucleic Acids,2001,20(4-7),785-788;Wang等,J.Am.Chem.,2000,122,8595-8602;已公布的PCT申请WO 06/047842;以及已公布的PCT申请WO01/049687;它们每一个都以引用方式全文并入本文)。某些修饰的环己烯基核苷具有式VIII。
其中独立地针对式VIII的所述至少一个环己烯基核苷类似物的每一个:
Bx为杂环碱基部分;
T3和T4各自独立地为将环己烯基核苷类似物连接到反义化合物的核苷间连接基团,或者T3和T4之一为将四氢吡喃核苷类似物连接到反义化合物的核苷间连接基团,而T3和T4的另一个为H、羟基保护基团、连接的共轭基团或者5′或3′-末端基团;以及
q1、q2、q3、q4、q5、q6、q7、q8和q9各自独立地为H、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或其它糖取代基团。
许多其它双环和三环糖替代物环体系在本领域中也是已知的,可用于修饰核苷以并入到反义化合物中(参见,例如综述性论文:Leumann,J.C,Bioorganic & Medicinal Chemistry,2002,10,841-854)。也为本文提供了这些修饰的组合,不限于诸如2′-F-5′-甲基取代的核苷(有关其它公开的5′,2′-双取代的核苷,参见2008年8月21日公布的PCT国际申请WO 2008/101157)以及用S替代核糖基环氧原子并进一步在2′-位取代(参见2005年6月16日公布的美国专利申请US2005-0130923)或者作为另外一种选择为双环核酸的5′-取代(参见2007年11月22日公布的PCT国际申请WO 2007/134181,其中4′-CH2-O-2′双环核苷在5′位被5′-甲基或5′-乙烯基进一步取代)。此类环体系可发生多种另外的取代以增强活性。
制备修饰糖的方法对本领域的技术人员而言是熟知的。
在具有修饰糖部分的核苷酸中,保持核碱基部分(天然的、修饰的或它们的组合)与合适的核酸靶杂交。
在某些实施方案中,反义化合物包含一个或多个具有修饰糖部分的核苷酸。在某些实施方案中,修饰的糖部分为2’-MOE。在某些实施方案中,2’-MOE修饰核苷酸以gapmer基序排列。在某些实施方案中,修饰的糖部分为cEt(4’-CH(CH3)-O-2’BNA)。在某些实施方案中,cEt修饰的核苷在整个gapmer基序的侧翼中排列。
某些修饰核碱基
在某些实施方案中,本发明的核苷包含一个或多个未修饰的核碱基。在某些实施方案中,本发明的核苷包含一个或多个修饰的核碱基。
如本文所用,术语“未修饰的核碱基”和“天然存在的核碱基”包括嘌呤碱基腺嘌呤(A)和鸟嘌呤(G)以及嘧啶碱基胸腺嘧啶(T)、胞嘧啶(C)和尿嘧啶(U)。修饰核碱基包括其它合成的和天然的核碱基诸如5-甲基胞嘧啶(5-me-C),5-羟甲基胞嘧啶,黄嘌呤,次黄嘌呤,2-氨基腺嘌呤,腺嘌呤和鸟嘌呤的6-甲基和其它烷基衍生物,腺嘌呤和鸟嘌呤的2-丙基和其它烷基衍生物,2-硫尿嘧啶、2-硫代胸腺嘧啶和2-巯基胞嘧啶,5-卤尿嘧啶和胞嘧啶,5-丙炔基(-C≡C-CH3)尿嘧啶和胞嘧啶以及嘧啶碱基的其它炔基衍生物,6-偶氮尿嘧啶、胞嘧啶和胸腺嘧啶,5-尿嘧啶(假尿嘧啶),4-硫尿嘧啶,8-卤、8-氨基、8-硫醇、8-硫代烷基、8-羟基和其它8-取代的腺嘌呤和鸟嘌呤,5-卤尤其是5-溴、5-三氟甲基和其它5-取代的尿嘧啶和胞嘧啶,7-甲基鸟嘌呤和7-甲基腺嘌呤,2-F-腺嘌呤,2-氨基-腺嘌呤,8-氮杂鸟嘌呤和8-氮杂腺嘌呤,7-去氮鸟嘌呤和7-去氮腺嘌呤,3-去氮鸟嘌呤和3-去氮腺嘌呤,通用碱基,疏水碱基,混杂碱基(promiscuous base),扩环碱基(size-expandedbase),以及如本文所定义的氟化碱基。进一步的修饰核碱基包括三环嘧啶诸如吩噁嗪胞嘧啶核苷([5,4-b][1,4]苯并噁嗪-2(3H)-酮)、吩噻嗪胞嘧啶核苷(1H-嘧啶并[5,4-b][1,4]苯并噻嗪-2(3H)-酮)、G夹(G-clamp)诸如取代的吩噁嗪胞嘧啶核苷(例如9-(2-氨基乙氧基)-H-嘧啶并[5,4-b][1,4]苯并噁嗪-2(3H)-酮)、咔唑胞嘧啶核苷(2H-嘧啶并[4,5-b]吲哚-2-酮)、吡啶并吲哚胞嘧啶核苷(H-吡啶并[3′,2′:4,5]吡咯并[2,3-d]嘧啶-2-酮)。修饰的核苷还可以包括其中嘌呤或嘧啶碱基被其它杂环替代的那些,例如7-去氮腺嘌呤、7-去氮鸟苷、2-氨基吡啶和2-吡啶酮。如本文所用的术语“杂环碱基部分”包括核碱基和修饰的核碱基。进一步的核碱基和修饰的核碱基包括在美国专利No.3,687,808中公开的那些;在″The Concise Encyclopedia Of Polymer Science AndEngineering″,Kroschwitz,J.I.主编,John Wiley & Sons,1990年,第858-859页中公开的那些;由Englisch等,″Angewandte Chemie″,国际版,1991年,第30卷第613页公开的那些以及由Sanghvi,Y.S.,第15章,″Antisense Research and Applications″,Crooke,S.T.和Lebleu,B.主编,CRC Press,1993年,第273-288页公开的那些。
每一个核苷的杂环碱基部分可由一个或多个取代基团修饰以增强一种或多种性质诸如对于靶链的亲和力或以有利的方式影响一些其它性质。修饰核碱基包括但不限于如本文所定义的通用碱基、疏水碱基、混杂碱基、扩环碱基以及氟化碱基。其中这些核碱基的某些尤其可用于增强如本文提供的寡聚化合物的结合亲和力。这些包括5-取代的嘧啶、6-氮杂嘧啶以及N-2、N-6和O-6取代的嘌呤,包括2-氨丙基腺嘌呤、5-丙炔基尿嘧啶和5-丙炔基胞嘧啶。已表明,5-甲基胞嘧啶取代将核酸双链体的稳定性增加0.6-1.2℃(″Antisense Researchand Applications″,Sanghvi,Y.S.、Crooke,S.T.和Lebleu,B.主编,CRCPress,Boca Raton,1993年,第276-278页)。
教导某些上述修饰核碱基以及其它修饰核碱基的制备的代表性美国专利包括但不限于U.S.3,687,808、4,845,205、5,130,302、5,134,066、5,175,273、5,367,066、5,432,272、5,457,187、5,459,255、5,484,908、5,502,177、5,525,711、5,552,540、5,587,469、5,594,121、5,596,091、5,614,617、5,645,985、5,681,941、5,750,692、5,763,588、5,830,653和6,005,096,其中某些与本申请共同拥有,并且它们中的每一个都全文以引用方式并入本文。
某些核苷间键合
在某些实施方案中,本发明提供包含连接的核苷的寡聚化合物。在此类实施方案中,可使用任何核苷间键合将核苷连接在一起。两类主要的核苷间连接基团由存在或不存在磷原子而定义。代表性的含磷核苷间键合包括但不限于磷酸二酯(P=O)、磷酸三酯、甲基膦酸酯、磷酰胺酯和硫代磷酸酯(P=S)。代表性的不含磷的核苷间连接基团包括但不限于亚甲基甲基亚氨基(-CH2-N(CH3)-O-CH2-)、硫代二酯(-O-C(O)-S-)、硫羰氨基甲酸酯(-O-C(O)(NH)-S-)、硅氧烷(-O-Si(H)2-O-)和N,N′-二甲基肼(-CH2-N(CH3)-N(CH3)-)。具有不含磷的核苷间连接基团的寡核苷酸可被称为寡核苷。与天然磷酸二酯键合相比的修饰键合可用于改变(通常增强)寡聚化合物的核酸酶抗性。在某些实施方案中,可作为外消旋混合物或单独的对映体制备具有手性原子的核苷间键合。代表性的手性键合包括但不限于膦酸烷基酯和硫代磷酸酯。制备含磷和不含磷的核苷间键合的方法对本领域的技术人员而言是熟知的。
本文所述的寡核苷酸包含一个或多个不对称中心,并且因而产生对映体、非对映体和其它立体异构构型,就绝对立体化学而言这些构型可被定义为(R)或(S)、α或β,诸如针对糖异头物,或定义为(D)或(L),诸如针对氨基酸等。在本文提供的反义化合物中,包括所有此类可能的同分异构体以及它们的外消旋形式和任选纯的形式。
如本文所用,术语“中性核苷间键合”旨在包括非离子的核苷间键合。中性核苷间键合包括但不限于磷酸三酯、甲基膦酸酯、MMI(3′-CH2-N(CH3)-O-5′)、酰胺-3(3′-CH2-C(=O)-N(H)-5′)、酰胺-4(3′-CH2-N(H)-C(=O)-5′)、亚甲基缩醛(formacetal)(3′-O-CH2-O-5′)和硫代亚甲基缩醛(thioformacetal)(3′-S-CH2-O-5′)。进一步的中性核苷间键合包括非离子键合,包括硅氧烷(二烷基硅氧烷)、羧酸酯、甲酰胺、硫化物、磺酸酯和酰胺(参见例如:″Carbohydrate Modifications inAntisense Research″;Y.S.Sanghvi和P.D.Cook主编,ACS SymposiumSeries 580;第3和4章,第40-65页)。进一步的中性核苷间键合包括含有混合N、O、S和CH2组成部分的非离子键合。
某些长度
在某些实施方案中,本发明提供包含任何多种长度范围的寡核苷酸的寡聚化合物。在某些实施方案中,本发明提供由X至Y个连接的核苷组成的寡聚化合物或寡核苷酸,其中X表示该范围内最小的核苷数,并且Y表示该范围内最大的核苷数。在某些此类实施方案中,X和Y各自独立地选自8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49和50;前提是X≤Y。例如,在某些实施方案中,本发明提供寡聚化合物,其包含由8至9、8至10、8至11、8至12、8至13、8至14、8至15、8至16、8至17、8至18、8至19、8至20、8至21、8至22、8至23、8至24、8至25、8至26、8至27、8至28、8至29、8至30、9至10、9至11、9至12、9至13、9至14、9至15、9至16、9至17、9至18、9至19、9至20、9至21、9至22、9至23、9至24、9至25、9至26、9至27、9至28、9至29、9至30、10至11、10至12、10至13、10至14、10至15、10至16、10至17、10至18、10至19、10至20、10至21、10至22、10至23、10至24、10至25、10至26、10至27、10至28、10至29、10至30、11至12、11至13、11至14、11至15、11至16、11至17、11至18、11至19、11至20、11至21、11至22、11至23、11至24、11至25、11至26、11至27、11至28、11至29、11至30、12至13、12至14、12至15、12至16、12至17、12至18、12至19、12至20、12至21、12至22、12至23、12至24、12至25、12至26、12至27、12至28、12至29、12至30、13至14、13至15、13至16、13至17、13至18、13至19、13至20、13至21、13至22、13至23、13至24、13至25、13至26、13至27、13至28、13至29、13至30、14至15、14至16、14至17、14至18、14至19、14至20、14至21、14至22、14至23、14至24、14至25、14至26、14至27、14至28、14至29、14至30、15至16、15至17、15至18、15至19、15至20、15至21、15至22、15至23、15至24、15至25、15至26、15至27、15至28、15至29、15至30、16至17、16至18、16至19、16至20、16至21、16至22、16至23、16至24、16至25、16至26、16至27、16至28、16至29、16至30、17至18、17至19、17至20、17至21、17至22、17至23、17至24、17至25、17至26、17至27、17至28、17至29、17至30、18至19、18至20、18至21、18至22、18至23、18至24、18至25、18至26、18至27、18至28、18至29、18至30、19至20、19至21、19至22、19至23、19至24、19至25、19至26、19至29、19至28、19至29、19至30、20至21、20至22、20至23、20至24、20至25、20至26、20至27、20至28、20至29、20至30、21至22、21至23、21至24、21至25、21至26、21至27、21至28、21至29、21至30、22至23、22至24、22至25、22至26、22至27、22至28、22至29、22至30、23至24、23至25、23至26、23至27、23至28、23至29、23至30、24至25、24至26、24至27、24至28、24至29、24至30、25至26、25至27、25至28、25至29、25至30、26至27、26至28、26至29、26至30、27至28、27至29、27至30、28至29、28至30或29至30个连接的核苷组成的寡核苷酸。在其中限制寡聚化合物或寡核苷酸的核苷数的实施方案中,无论是针对某一范围还是针对具体的数值,寡聚化合物或寡核苷酸都可进一步包含另外的其它取代基。例如,包含8-30个核苷的寡核苷酸不包括具有31个核苷的寡核苷酸,但是除非另外指明,否则这种寡核苷酸可进一步包含例如一个或多个共轭物、末端基团或其它取代基。在某些实施方案中,末端基团包括但不限于末端基团核苷。在此类实施方案中,末端基团核苷与寡核苷酸的末端核苷不同地修饰,从而将此类末端基团核苷与寡核苷酸的核苷区别开来。
某些基序
在某些实施方案中,本发明提供包含一个或多个具有特定核苷基序的区域的寡聚化合物。在某些实施方案中,本发明的修饰寡核苷酸的5’-末端核苷组成式II、IIa、IIb、IIc、IId或IIe的化合物。
缺口基序
在某些实施方案中,本发明的寡聚化合物包含gapmer区域。在某些此类实施方案中,外部区域的糖基彼此相同(本文称为对称的gapmer)。在某些实施方案中,用于5′-外部区域的糖基与用于3′-外部区域的糖基不同(本文称为不对称的gapmer)。在某些实施方案中,外部区域较小(每个独立地为1、2、3、4或约5个单体亚单位),并且这些单体亚单位包含非天然存在的糖基,而末端区域包含β-D-2′-脱氧核糖核苷。在某些实施方案中,外部区域各自独立地包含1至约5个具有非天然存在的糖基的单体亚单位,而内部区域包含6至18个未修饰的核苷。内部区域或缺口通常包含β-D-2′-脱氧核糖核苷,但可包含非天然存在的糖基。杂环碱基和核苷间键合可在缺口寡聚化合物的各个位置独立地变化。基序进一步任选地包括使用一个或多个其它基团,包括但不限于加帽基团、共轭基团和其它5′或3′-末端基团。
在某些实施方案中,缺口寡聚化合物包含β-D-2′-脱氧核糖核苷的内部区域,而外部区域之一包含修饰的核苷。在某些实施方案中,缺口寡聚化合物包含β-D-2′-脱氧核糖核苷的内部区域,而两个外部区域均包含修饰的核苷。在某些实施方案中,本文提供了缺口寡聚化合物,其中所有的单体亚单位都包含非天然存在的糖基。
在某些实施方案中,提供了这样的缺口寡聚化合物,其包含5′-端的一个或两个修饰核苷,3′-端的两个或三个修饰核苷,以及10至16个β-D-2′-脱氧核糖核苷的内部区域。在某些实施方案中,提供了这样的缺口寡聚化合物,其包含5′-端的一个修饰核苷,3′-端的两个修饰核苷,以及10至16个β-D-2′-脱氧核糖核苷的内部区域。在某些实施方案中,提供了这样的缺口寡聚化合物,其包含5′-端的一个修饰核苷,3′-端的两个修饰核苷,以及10至14个β-D-2′-脱氧核糖核苷的内部区域。
在某些实施方案中,提供了长度为约10至约21个单体亚单位的缺口寡聚化合物。在某些实施方案中,提供了长度为约12至约16个单体亚单位的缺口寡聚化合物。在某些实施方案中,提供了长度为约12至约14个单体亚单位的缺口寡聚化合物。
某些交替区域
在某些实施方案中,本发明的寡核苷酸包含一个或多个交替修饰区域。在某些实施方案中,寡核苷酸包含一个或多个交替核苷修饰区域。在某些实施方案中,寡核苷酸包含一个或多个交替键合修饰区域。在某些实施方案中,寡核苷酸包含一个或多个交替核苷和键合修饰区域。
在某些实施方案中,本发明的寡核苷酸包含一个或多个交替2’-F修饰核苷和2’-OMe修饰核苷区域。在某些此类实施方案中,此类交替2’F修饰和2’OMe修饰核苷区域还包含交替键合。在某些此类实施方案中,2’-F修饰核苷的3’端的键合为硫代磷酸酯键合。在某些此类实施方案中,2’OMe核苷的3’端的键合为磷酸二酯键合。在某些实施方案中,此类交替区域为:(2’-F)-(PS)-(2’-OMe)-(PO)。
在某些实施方案中,寡聚化合物包含2、3、4、5、6、7、8、9、10或11个此类交替区域。此类区域可为邻接的,或者可被不同修饰的核苷或键合中断。
在某些实施方案中,交替基序中的一个或多个交替区域包含不止一种类型的单个核苷。例如,本发明的寡聚化合物可包含任何以下核苷基序的一个或多个区域:
AABBAA;
ABBABB;
AABAAB;
ABBABAABB;
ABABAA;
AABABAB;
ABABAA;
ABBAABBABABAA;
BABBAABBABABAA;或
ABABBAABBABABAA;
其中A为第一类型核苷,而B为第二类型核苷。在某些实施方案中,A和B均选自2’-F、2’-OMe、BNA、DNA和MOE。
在某些实施方案中,A为DNA。在某些实施方案中,B为4’-CH2O-2’-BNA。在某些实施方案中,A为DNA而B为4’-CH2O-2’-BNA。在某些实施方案中,A为4’-CH2O-2’-BNA。在某些实施方案中,B为DNA。在某些实施方案中,A为4’-CH2O-2’-BNA而B为DNA。在某些实施方案中,A为2’-F。在某些实施方案中,B为2’-OMe。在某些实施方案中,A为2’-F而B为2’-OMe。在某些实施方案中,A为2’-OMe。在某些实施方案中,B为2’-F。在某些实施方案中,A为2’-OMe而B为2’-F。在某些实施方案中,A为DNA而B为2’-OMe。在某些实施方案中,A为2’-OMe而B为DNA。
在某些实施方案中,具有这样的交替基序的寡聚化合物还包含式II、IIa、IIb、IIc、IId或IIe的5’末端核苷。
2-2-3基序
在某些实施方案中,本发明的寡核苷酸包含具有2-2-3基序的区域。此类区域包含以下基序:
5’-(式II、IIa、IIb、IIc、IId或IIe)-(E)w-(A)2-(B)x-(A)2-(C)y-(A)3-(D)z
其中:A为第一类型的修饰核苷;
B、C、D和E为与A相比不同修饰的核苷,然而B、C、D和E可具有彼此相同或不同的修饰;
w和z为0至15;
x和y为1至15。
在某些实施方案中,A为2’-OMe修饰核苷。在某些实施方案中,B、C、D和E均为2’-F修饰核苷。在某些实施方案中,A为2’-OMe修饰核苷,而B、C、D和E均为2’-F修饰核苷。
在某些实施方案中,2-2-3基序的键合均为修饰的键合。在某些实施方案中,这些键合均为硫代磷酸酯键合。在某些实施方案中,第一类型的每个修饰的3’-端的键合为磷酸二酯。
在某些实施方案中,Z为0。在此类实施方案中,第一类型的三个核苷的区域位于寡核苷酸的3’-端。在某些实施方案中,这样的区域位于寡聚化合物的3’-端,且无附加的基团连接到第一类型的三个核苷的区域的3’端。在某些实施方案中,包含其中Z为0的寡核苷酸的寡聚化合物可以包含连接到3’-末端核苷的末端基团。此类末端基团可包括另外的核苷。此类另外的核苷通常为非杂交的核苷。
在某些实施方案中,Z为1-3。在某些实施方案中,Z为2。在某些实施方案中,Z的核苷为2’-MOE核苷。在某些实施方案中,Z表示非杂交核苷。为避免混淆,应注意的是,此类非杂交核苷也可被描述为Z=0的3’-末端基团。
基序的组合
需要理解的是,可以组合某些上述基序和修饰。由于基序可仅包含几个核苷,因此特定的寡核苷酸可包含两个或更多个基序。以非限制性实例的方式,在某些实施方案中,寡聚化合物可具有如下表中所述的核苷基序。在下表中,术语“无”表示特定的特征不存在于寡核苷酸中。例如,在标记为“5’基序/修饰”的列中的“无”表明寡核苷酸的5’端包含中心基序的第一个核苷。
具有本文所述的多种核苷基序任一种的寡聚化合物可具有任何键合基序。例如,包括但不限于上表所述的那些的寡聚化合物可具有非限制选自下表的键合基序:
最5’端键合 | 中心区域 | 3’-区域 |
PS | 交替PO/PS | 6PS |
PS | 交替PO/PS | 7PS |
PS | 交替PO/PS | 8PS |
从上面的非限制性表中可以明显看出,由核苷基序和键合基序限定的区域长度不必相同。例如,上表核苷基序中3’区域为2个核苷,而上表键合基序的3’-区域为6-8个核苷。合并上表将得到具有2个3’-末端MOE核苷和6至8个3’-末端硫代磷酸酯键的寡核苷酸(因此,核苷基序中心区域中的某些键合也为硫代磷酸酯)。为了进一步阐述,且不以任何方式进行限制,组合核苷基序和序列基序以在下表中显示5个非限制性实例。表的第一列列出了根据位置从N1(5’-端的第一个核苷)至N20(5’-端的第20位)的核苷和键合。在某些实施方案中,本发明的寡核苷酸长于20个核苷(表格仅为示例性的)。表格中的某些位置列举了核苷或键合,“无”表明寡核苷酸在该位置无核苷。
在上面的非限制性实例中:
A列表示由20个连接的核苷组成的寡聚化合物,其中该寡聚化合物包含:式II、IIa、IIb、IIc、IId或IIe的修饰5’-末端核苷;交替核苷区域;交替键合区域;2个3’-末端MOE核苷,其每一个都包含尿嘧啶碱基;以及3’-端的六个硫代磷酸酯键合区域。
B列表示由18个连接的核苷组成的寡聚化合物,其中该寡聚化合物包含:式II、IIa、IIb、IIc、IId或IIe的修饰5’-末端核苷;2-2-3基序,其中2-2-3基序的修饰核苷为2’O-Me,并且其余的核苷均为2’-F;两个3’-末端MOE核苷,其每一个都包含尿嘧啶碱基;以及3’-端的六个硫代磷酸酯键合区域。
C列表示由20个连接的核苷组成的寡聚化合物,其中该寡聚化合物包含:式II、IIa、IIb、IIc、IId或IIe的修饰5’-末端核苷;均匀修饰的2’-F核苷区域;2个3’-末端MOE核苷,其每一个都包含尿嘧啶碱基;并且其中每个核苷间键合都为硫代磷酸酯键合。
D列表示由20个连接的核苷组成的寡聚化合物,其中该寡聚化合物包含:式II、IIa、IIb、IIc、IId或IIe的修饰5’-末端核苷;交替2’-OMe/2’-F核苷区域;均匀2’F核苷区域;交替硫代磷酸酯/磷酸二酯键合区域;两个3’-末端MOE核苷,其每一个都包含腺嘌呤碱基;以及3’-端的六个硫代磷酸酯键合区域。
E列表示由17个连接的核苷组成的寡聚化合物,其中该寡聚化合物包含:式II、IIa、IIb、IIc、IId或IIe的修饰5’-末端核苷;2-2-3基序,其中2-2-3基序的修饰核苷为2’F,并且其余的核苷均为2’-OMe;三个3’-末端MOE核苷。
提供上述实例只是为了阐述可如何将所述基序以组合方式使用,并不旨在将本发明限制到特定组合或用于阐述该组合的特定修饰。另外,本文的具体实例,包括但不限于上表中的那些,旨在涵盖更通用的实施方案。例如,上表中的A列示例性地示出交替的2’-OMe和2’-F核苷区域。因此,该同一公开也示例性地示出了交替的不同2’-修饰区域。其还示例性地示出了交替的2’-O-烷基和2’-卤素核苷区域。其也示例性地示出了交替的不同修饰核苷区域。整篇说明书中的所有实例都考虑到此通用阐释。
还应注意的是,寡聚化合物的长度,诸如上表示例性示出的那些,可在不破坏基序的情况下通过延长或缩短一个或多个所述区域而容易地控制。
在某些实施方案中,本发明提供寡聚化合物,其中5’-末端核苷(1位)为式II、IIa、IIb、IIc、IId或IIe的化合物,而2位核苷包含2’-修饰。在某些此类实施方案中,2位核苷的2’-修饰选自卤素、烷基和取代的烷基。在某些实施方案中,2位核苷的2’-修饰选自2’-F和2’-烷基。在某些实施方案中,2位核苷的2’-修饰为2’-F。在某些实施方案中,2位核苷的2’-取代为未修饰的OH(如在天然存在的RNA中)。
在某些实施方案中,3位核苷为修饰核苷。在某些实施方案中,3位核苷为双环核苷。在某些实施方案中,3位核苷包含糖替代物。在某些此类实施方案中,糖替代物为四氢吡喃。在某些实施方案中,3位核苷的糖为F-HNA。
在某些实施方案中,反义寡聚化合物包含含有10至30个连接核苷的寡核苷酸,其中寡核苷酸包含:式II、IIa、IIb、IIc、IId或IIe的1位修饰核苷;包含糖部分的2位核苷,该糖部分与1位修饰核苷的糖部分相比被不同地修饰;以及1至4个3’-末端基团核苷,其每个都包含2’-修饰;并且其中至少7个最3’-端核苷间键合为硫代磷酸酯键合。
某些共轭基团
在某些实施方案中,寡聚化合物通过连接一个或多个共轭基团而修饰。一般来讲,共轭基团改变所连接的寡聚化合物的一种或多种性质,包括但不限于药效学、药代动力学、稳定性、结合、吸收、细胞分布、细胞摄取、电荷和清除。共轭基团通常被用在化学领域,并直接连接或通过任选的共轭物连接部分或共轭物连接基团连接到母体化合物诸如寡聚化合物上,诸如寡核苷酸。共轭基团包括但不限于嵌入剂、报告分子、聚胺类、聚酰胺类、聚乙二醇类、硫醚类、聚醚类、胆固醇类、巯基胆固醇类、胆酸部分、叶酸盐、脂质、磷脂、生物素、吩嗪、菲啶、蒽醌、金刚烷、吖啶、荧光素、罗丹明、香豆素和染料。之前已描述了某些共轭基团,例如:胆固醇部分(Letsinger等,Proc.Natl.Acad.Sci.USA,1989,86,6553-6556)、胆酸(Manoharan等,Bioorg.Med.Chem.Let.,1994,4,1053-1060)、硫醚例如己基-S-三苯甲硫醇(Manoharan等,Ann.N.Y.Acad.Sci.,1992,660,306-309;Manoharan等,Bioorg.Med.Chem.Let.,1993,3,2765-2770)、巯基胆固醇(Oberhauser等,Nucl.Acids Res.,1992,20,533-538)、脂族链例如十二烷二醇或十一烷基残基(Saison-Behmoaras等,EMBO J.,1991,10,1111-1118;Kabanov等,FEBS Lett.,1990,259,327-330;Svinarchuk等,Biochimie,1993,75,49-54)、磷脂例如双十六烷基-rac-甘油或1,2-二-O-十六烷基-rac-甘油-3-H-膦酸三乙铵(Manoharan等,TetrahedronLett.,1995,36,3651-3654;Shea等,Nucl.Acids Res.,1990,18,3777-3783)、聚胺或聚乙二醇链(Manoharan等,Nucleosides &Nucleotides,1995,14,969-973)或金刚烷乙酸(Manoharan等,Tetrahedron Lett.,1995,36,3651-3654)、棕榈基部分(Mishra等,Biochim.Biophys.Acta,1995,1264,229-237)或十八烷基胺或己基氨基-羰基-氧胆固醇部分(Crooke等,J.Pharmacol.Exp.Ther.,1996,277,923-937)。
在某些实施方案中,共轭基团包括活性药物,例如阿司匹林、华法令(warfarin)、保秦松(phenylbutazone)、布洛芬、舒洛芬、芬布芬(fen-bufen)、酮洛芬、(S)-(+)-普拉洛芬、卡洛芬、丹肌氨酸(dansylsarcosine)、2,3,5-三碘苯甲酸、氟芬那酸、亚叶酸、苯并噻二嗪、氯噻嗪、二氮杂卓、吲哚美辛、巴比妥酸盐、头孢菌素、磺胺类药、抗糖尿病药、抗菌药或抗生素。寡核苷酸-药物共轭物及其制备在美国专利申请09/334,130中有所描述。
教导寡核苷酸共轭物的制备的代表性美国专利包括但不限于:4,828,979、4,948,882、5,218,105、5,525,465、5,541,313、5,545,730、5,552,538、5,578,717、5,580,731、5,580,731、5,591,584、5,109,124、5,118,802、5,138,045、5,414,077、5,486,603、5,512,439、5,578,718、5,608,046、4,587,044、4,605,735、4,667,025、4,762,779、4,789,737、4,824,941、4,835,263、4,876,335、4,904,582、4,958,013、5,082,830、5,112,963、5,214,136、5,082,830、5,112,963、5,214,136、5,245,022、5,254,469、5,258,506、5,262,536、5,272,250、5,292,873、5,317,098、5,371,241、5,391,723、5,416,203、5,451,463、5,510,475、5,512,667、5,514,785、5,565,552、5,567,810、5,574,142、5,585,481、5,587,371、5,595,726、5,597,696、5,599,923、5,599,928和5,688,941。
在某些实施方案中,共轭基团被直接连到寡聚化合物中的寡核苷酸。在某些实施方案中,共轭基团通过共轭物连接基团连接到寡核苷酸。在某些此类实施方案中,共轭物连接基团,包括但不限于双官能连接部分诸如本领域已知的那些,适于本文提供的化合物。共轭物连接基团可用于将共轭基团,诸如化学稳定基团、官能团、报告基团和其它基团连接到母体化合物诸如例如寡聚化合物中的选择性位点。一般来讲,双官能连接部分包括具有两个官能团的烃基部分。选择其中一个官能团以结合到母体分子或所关注的化合物上,而选择另一个以结合到基本上任何选定的基团诸如化学官能团或共轭基团上。在一些实施方案中,共轭物连接基包含链结构或重复单元诸如乙二醇或氨基酸单元的寡聚物。通常用于双官能连接部分的官能团的实例包括但不限于用于与亲核基团反应的亲电体以及用于与亲电基团反应的亲核体。在一些实施方案中,双官能连接部分包含氨基、羟基、羧酸、硫醇、不饱和度(如双键或三键)等。
共轭物连接部分的一些非限制实例包括吡咯烷、8-氨基-3,6-二氧杂辛酸(ADO)、4-(N-马来酰亚胺基甲基)环己烷-1-羧酸琥珀酰亚胺(SMCC)和6-氨基己酸(AHEX或AHA)。其它连接基团包括但不限于取代的C1-C10烷基、取代的或未取代的C2-C10烯基或者取代的或未取代的C2-C10炔基,其中优选的取代基团的非限制性列表包括羟基、氨基、烷氧基、羧基、苄基、苯基、硝基、硫醇、硫代烷氧基、卤素、烷基、芳基、烯基和炔基。
共轭基团可被连接到寡核苷酸的一端或两端(末端共轭基团)和/或任何内部位置。
在某些实施方案中,共轭基团位于寡聚化合物的寡核苷酸的3’-端。在某些实施方案中,共轭基团在3’-端附近。在某些实施方案中,共轭物被连接在寡聚化合物的3’端,但在一个或多个末端基团核苷之前。在某些实施方案中,共轭基团被置于末端基团内。
在某些实施方案中,本发明提供寡聚化合物。在某些实施方案中,寡聚化合物包含寡核苷酸。在某些实施方案中,寡聚化合物包含寡核苷酸和一个或多个共轭和/或末端基团。此类共轭和/或末端基团可被添加到具有上述任何化学基序的寡核苷酸。因此,例如,包含具有交替核苷区域的寡核苷酸的寡聚化合物可包含末端基团。
反义化合物
在某些实施方案中,本发明的寡聚化合物为反义化合物。在此类实施方案中,寡聚化合物与靶核酸互补。在某些实施方案中,靶核酸为RNA。在某些实施方案中,靶核酸为非编码RNA。在某些实施方案中,靶核酸编码蛋白质。在某些实施方案中,靶核酸选自mRNA、pre-mRNA、microRNA、非编码RNA包括非编码小RNA,以及启动子调控的RNA。在某些实施方案中,寡聚化合物与不止一种靶核酸至少部分互补。例如,本发明的寡聚化合物可以为microRNA模拟物,其通常结合到多个靶。
反义机制包括涉及寡聚化合物与靶核酸杂交的任何机制,其中杂交产生生物效应。在某些实施方案中,这种杂交导致靶核酸降解或占位,同时抑制或刺激细胞机制,这些机制涉及例如靶核酸的翻译、转录或剪接。
一种类型的涉及靶RNA降解的反义机制为RNA酶H介导的反义。RNA酶H是一种细胞内切核酸酶,其裂解RNA:DNA双链体的RNA链。本领域已知的是,“DNA样”的单链反义化合物在哺乳动物细胞中引导RNA酶H活性。RNA酶H的活化因此导致RNA靶的裂解,从而大大增强DNA样寡核苷酸介导的基因表达抑制的效率。
反义机制还包括但不限于RNAi机制,其利用RISC途径。此类RNAi机制包括但不限于siRNA、ssRNA和microRNA机制。这种机制包括形成microRNA模拟物和/或anti-microRNA。
反义机制还包括但不限于杂交或模拟microRNA或mRNA之外的非编码RNA的机制。此类非编码RNA包括但不限于启动子调控的RNA以及影响一种或多种核酸的转录或翻译的短和长RNA。
在某些实施方案中,反义化合物在存在足够的互补性程度时特异性杂交,以避免反义化合物在需要特异性结合的条件下非特异性结合到非靶核酸序列,即,在体内测定或治疗剂治疗的情况中在生理条件下,以及在体外测定的情况中进行测定的条件下。
在某些实施方案中,本发明的寡聚化合物为RNAi化合物。在某些实施方案中,本发明的寡聚化合物为ssRNA化合物。在某些实施方案中,本发明的寡聚化合物与第二寡聚化合物配对,以形成siRNA。在某些此类实施方案中,第二寡聚化合物也为本发明的寡聚化合物。在某些实施方案中,第二寡聚化合物为任何修饰的或未修饰的核酸。在某些实施方案中,本发明的寡聚化合物为siRNA化合物中的反义链。在某些实施方案中,本发明的寡聚化合物为siRNA化合物中的有义链。
单链反义化合物
在某些实施方案中,本发明的寡聚化合物尤其适于用作单链反义化合物。在某些此类实施方案中,此类寡聚化合物为单链RNAi化合物。在某些实施方案中,此类寡聚化合物为ssRNA化合物或microRNA模拟物。本文所述的某些5’-末端核苷适用于此类单链寡聚化合物。在某些实施方案中,此类5’-末端核苷稳定5’-磷部分。在某些实施方案中,本发明的5’-末端核苷对核酸酶有抗性。在某些实施方案中,本发明的基序尤其适用于单链寡聚化合物。
单链RNAi化合物的使用有所限制。在某些情况下,单链RNAi化合物快速降解和/或不会有效地载入RISC。本发明的某些化合物具有优于之前所述的ssRNAi化合物的性质。在某些实施方案中,本发明的寡聚化合物为优异的体外ssRNAi化合物。在某些此类实施方案中,使5’-末端磷部分稳定。在某些此类实施方案中,5’-核苷对核酸酶裂解有抗性。在某些实施方案中,5’-末端有效载入RISC。在某些实施方案中,基序使寡聚化合物稳定。在某些实施方案中,使寡聚化合物的3’-末端稳定。
设计用于细胞中和/或用于体内的单链RNAi化合物存在多方面的挑战。例如,该化合物必须化学稳定、对核酸酶降解有抗性、能够进入细胞、能够载入RISC(例如,结合Ago1或Ago2)、能够与靶核酸杂交以及对细胞或动物无毒性。在某些情况下,改善一种这样的特征的修饰或基序可使另一种特征劣化,从而使具有这种修饰或基序的化合物不适合用作RNAi化合物。例如,某些修饰,尤其是如果置于寡聚化合物5’-端或其附近时,可使得化合物更稳定以及对核酸酶降解更有抗性,但也可通过阻断与RISC组分诸如Ago1或Ago2的相互作用而抑制或防止载入RISC。尽管具有改善的稳定性,但这种化合物也不适用于RNAi。因此,面临的挑战是要确定:满足每个参数以至少足以提供官能化单链RNAi化合物的修饰和组合及修饰的位置。在某些实施方案中,本发明的寡聚化合物组合多种修饰以提供具有单链RNAi化合物活性的单链RNAi化合物。
在某些情况下,包含5’-磷部分的单链寡聚化合物是期望的。例如,在某些实施方案中,这种5’-磷部分是必需的或用于RNAi化合物,尤其是单链RNAi化合物。在此类情况下,也期望使磷部分稳定,避免其发生可使化合物失活的降解或去磷酸化。另外,期望使整个5’-核苷稳定避免其降解,而降解也会使化合物失活。因此,在某些实施方案中,其中使5’-磷部分和5’-核苷两者都稳定的寡核苷酸是期望的。在某些实施方案中,本发明提供可置于寡聚化合物5’-端从而产生稳定磷和稳定核苷的修饰核苷。在某些此类实施方案中,磷部分在生物系统中相对于未修饰的核苷对去除有抗性,和/或5’-核苷对核酸酶的裂解有抗性。在某些实施方案中,此类核苷在以下一个位置、两个位置或所有三个位置被修饰:2’-位、5’-位和磷部分。此类修饰核苷可并入到寡聚化合物的5’-端。
虽然本发明的某些寡聚化合物具有作为单链化合物的特定用途,但是此类化合物也可与第二条链配对以形成双链寡聚化合物。在此类实施方案中,双链体的第二条链可以为或者也可以不为本发明的寡聚化合物。
在某些实施方案中,本发明的寡聚化合物结合和/或活化一种或多种核酸酶。在某些实施方案中,这种结合和/或活化最终导致反义活性。在某些实施方案中,本发明的寡聚化合物与靶核酸以及与核酸酶相互作用,从而导致核酸酶活化以及靶核酸裂解。在某些实施方案中,本发明的寡聚化合物与靶核酸以及与核酸酶相互作用,从而导致核酸酶活化以及靶核酸失活。在某些实施方案中,本发明的寡聚化合物与靶核酸形成双链体,而该双链体活化核酸酶,从而导致寡聚化合物和靶核酸的一者或两者裂解和/或失活。在某些实施方案中,本发明的寡聚化合物结合和/或活化核酸酶,而结合和/或活化后的核酸酶使靶核酸裂解或失活。核酸酶包括但不限于核糖核酸酶(特异性裂解核糖核苷酸的核酸酶)、双链核酸酶(特异性裂解双链体一条或两条链的核酸酶)以及双链核糖核酸酶。例如,核酸酶包括但不限于RNA酶H、argonaute蛋白(包括但不限于Ago2)和dicer。
在某些实施方案中,本发明的寡聚化合物与argonaute蛋白(Ago)相互作用。在某些实施方案中,此类寡聚化合物首先进入RISC途径,方式是与该途径的另一成员(例如,dicer)相互作用。在某些实施方案中,寡聚化合物首先通过与Ago相互作用而进入RISC途径。在某些实施方案中,这种相互作用最终导致反义活性。在某些实施方案中,本发明提供包括使Ago与寡聚化合物接触而使Ago活化的方法。在某些实施方案中,此类寡聚化合物包含修饰的5’-磷酸酯基团。在某些实施方案中,本发明提供调节细胞中靶核酸的表达或量的方法,包括使细胞与能够活化Ago的寡聚化合物接触,最终导致靶核酸的裂解。在某些实施方案中,细胞在动物中。在某些实施方案中,细胞在体外。在某些实施方案中,在存在锰的情况下执行该方法。在某些实施方案中,锰为内源性的。在某些实施方案中,在不存在锰的情况下执行该方法。在某些实施方案中,Ago为细胞内源性的。在某些此类实施方案中,细胞在动物中。在某些实施方案中,Ago为人Ago。在某些实施方案中,Ago为Ago2。在某些实施方案中,Ago为人Ago2。
在某些实施方案中,本发明的寡聚化合物与酶dicer相互作用。在某些此类实施方案中,寡聚化合物结合到dicer和/或被dicer裂解。在某些此类实施方案中,这种与dicer的相互作用最终导致反义活性。在某些实施方案中,dicer为人dicer。在某些实施方案中,与dicer相互作用的寡聚化合物为双链寡聚化合物。在某些实施方案中,与dicer相互作用的寡聚化合物为单链寡聚化合物。
在其中双链寡聚化合物与dicer相互作用的实施方案中,这种双链寡聚化合物形成dicer双链体。在某些实施方案中,本文所述的任何寡聚化合物可适合作为dicer双链体的一条或两条链。在某些实施方案中,dicer双链体的每条链都为本发明的寡聚化合物。在某些实施方案中,dicer双链体的一条链为本发明的寡聚化合物,而另一条链为任何修饰的或未修饰的寡聚化合物。在某些实施方案中,dicer双链体的一条或两条链在5’端包含式II、IIa、IIb、IIc、IId或IIe的核苷。在某些实施方案中,dicer双链体的一条链为反义寡聚化合物,而另一条链为其有义互补序列。
在某些实施方案中,dicer双链体在一端或两端包含3’-悬垂(3’-overhang)。在某些实施方案中,此类悬垂为另外的核苷。在某些实施方案中,dicer双链体在有义寡核苷酸而不在反义寡核苷酸上包含3’悬垂。在某些实施方案中,dicer双链体在反义寡核苷酸而不在有义寡核苷酸上包含3’悬垂。在某些实施方案中,dicer双链体的3’悬垂包含1-4个核苷。在某些实施方案中,此类悬垂包含两个核苷。在某些实施方案中,3’-悬垂中的核苷包括嘌呤核碱基。在某些实施方案中,3’悬垂中的核苷包括腺嘌呤核碱基。在某些实施方案中,3’悬垂中的核苷包括嘧啶。在某些实施方案中,包含3’-嘌呤悬垂的dicer双链体作为反义化合物比包含3’嘧啶悬垂的dicer二聚体更具活性。在某些实施方案中,dicer二聚体的寡聚化合物包含一个或多个3’脱氧核苷。在某些此类实施方案中,3’脱氧核苷为dT核苷。
在某些实施方案中,dicer双链体每条链5’端包含磷酸酯部分。在某些实施方案中,dicer双链体的反义链包含磷酸酯部分,而dicer双链体的有义链不包含磷酸酯部分。在某些实施方案中,dicer双链体的有义链包含磷酸酯部分,而dicer双链体的反义链不包含磷酸酯部分。在某些实施方案中,dicer双链体在3’端不包含磷酸酯部分。在某些实施方案中,dicer双链体被dicer裂解。在此类实施方案中,dicer双链体在裂解位点的核苷上不包含2’-OMe修饰。在某些实施方案中,此类裂解位点核苷为RNA。
在某些实施方案中,寡聚化合物与dicer的相互作用最终导致反义活性。在某些实施方案中,dicer裂解双链寡聚化合物的一条或两条链,而所得的产物进入RISC途径,最终导致反义活性。在某些实施方案中,dicer不裂解双链寡聚化合物的任一条链,但仍然有利于进入RISC途径并最终导致反义活性。在某些实施方案中,dicer裂解单链寡聚化合物,而所得的产物进入RISC途径,最终导致反义活性。在某些实施方案中,dicer不裂解单链寡聚化合物,但仍然有利于进入RISC途径并最终导致反义活性。
在某些实施方案中,本发明提供活化dicer的方法,包括使dicer与寡聚化合物接触。在某些此类实施方案中,dicer在细胞中。在某些此类实施方案中,细胞在动物中。
Dicer
在某些实施方案中,本发明的寡聚化合物与酶dicer相互作用。在某些此类实施方案中,寡聚化合物结合到dicer和/或被dicer裂解。在某些此类实施方案中,这种与dicer的相互作用最终导致反义活性。在某些实施方案中,dicer为人dicer。在某些实施方案中,与dicer相互作用的寡聚化合物为双链寡聚化合物。在某些实施方案中,与dicer相互作用的寡聚化合物为单链寡聚化合物。
在其中双链寡聚化合物与dicer相互作用的实施方案中,这种双链寡聚化合物形成dicer双链体。在某些实施方案中,本文所述的任何寡聚化合物可适合作为dicer双链体的一条或两条链。在某些实施方案中,dicer双链体的每条链都为本发明的寡聚化合物。在某些实施方案中,dicer双链体的一条链为本发明的寡聚化合物,而另一条链为任何修饰的或未修饰的寡聚化合物。在某些实施方案中,dicer双链体的一条或两条链在5’包含式II、IIa、IIb、IIc、IId或IIe的核苷。在某些实施方案中,dicer双链体的一条链为反义寡聚化合物,而另一条链为其有义互补序列。
在某些实施方案中,本发明提供与dicer相互作用的单链寡聚化合物。在某些实施方案中,此类单链dicer化合物包含式II、IIa、IIb、IIc、IId或IIe的核苷。在某些实施方案中,单链dicer化合物在3’-端不含磷部分。在某些实施方案中,此类单链dicer化合物可以包含3’-悬垂。在某些实施方案中,此类3’-悬垂为另外的核苷。在某些实施方案中,此类3’-悬垂包含1-4个另外的核苷,其不与靶核酸互补和/或与寡聚化合物的相邻3’核苷不同地修饰。在某些实施方案中,单链寡聚化合物包含具有两个3’-端悬垂核苷的反义寡核苷酸,其中悬垂核苷为腺嘌呤或修饰的腺嘌呤核苷。在某些实施方案中,与dicer相互作用的单链寡聚化合物包含式II、IIa、IIb、IIc、IId或IIe的核苷。
在某些实施方案中,寡聚化合物与dicer的相互作用最终导致反义活性。在某些实施方案中,dicer裂解双链寡聚化合物的一条或两条链,而所得的产物进入RISC途径,最终导致反义活性。在某些实施方案中,dicer不裂解双链寡聚化合物的任一条链,但仍然有利于进入RISC途径并最终导致反义活性。在某些实施方案中,dicer裂解单链寡聚化合物,而所得的产物进入RISC途径,最终导致反义活性。在某些实施方案中,dicer不裂解单链寡聚化合物,但仍然有利于进入RISC途径并最终导致反义活性。
在某些实施方案中,本发明提供活化dicer的方法,包括使dicer与寡聚化合物接触。在某些此类实施方案中,dicer在细胞中。在某些此类实施方案中,细胞在动物中。
Ago
在某些实施方案中,本发明的寡聚化合物与Ago相互作用。在某些实施方案中,此类寡聚化合物首先进入RISC途径,方式是与该途径的另一成员(例如,dicer)相互作用。在某些实施方案中,寡聚化合物首先通过与Ago相互作用而进入RISC途径。在某些实施方案中,这种相互作用最终导致反义活性。在某些实施方案中,本发明提供包括使Ago与寡聚化合物接触而使Ago活化的方法。在某些此类实施方案中,Ago在细胞中。在某些此类实施方案中,细胞在动物中。
寡聚化合物同一性
在某些实施方案中,寡聚化合物的一部分与microRNA的核碱基序列100%相同,但整个寡聚化合物不与microRNA完全相同。在某些此类实施方案中,具有100%相同部分的寡聚化合物的长度大于microRNA的长度。例如,对于由24个连接的核苷组成的microRNA模拟物,其中在第1至23位的核碱基均与23个核碱基长度的microRNA的相应位置相同,其具有与microRNA核碱基序列100%相同的23个核苷部分,并具有与microRNA的核碱基序列大约96%的整体同一性。
在某些实施方案中,寡聚化合物的核碱基序列与microRNA一部分的核碱基序列完全相同。例如,对于由22个连接的核苷组成的单链microRNA模拟物,其中第1至22位的核碱基均与23个核碱基长度的microRNA的相应位置相同,其与microRNA核碱基序列的22个核碱基部分完全相同。这样的单链microRNA模拟物与整个microRNA的核碱基序列具有大约96%的整体同一性,并具有与microRNA的22个核碱基部分100%的同一性。
单体和寡聚化合物的合成
本文提供的核苷可通过任何适用的有机合成技术制备,例如在下面的实施例中所示。许多此类技术在本领域中是熟知的。然而,许多已知的技术在以下文献中有详细记载:″Compendium of OrganicSynthetic Methods″,John Wiley & Sons,New York:第1卷,Ian T.Harrison和Shuyen Harrison,1971年;第2卷,Ian T.Harrison和ShuyenHarrison,1974年;第3卷,Louis S.Hegedus和Leroy Wade,1977年;第4卷,Leroy G.Wade Jr.,1980年;第5卷,Leroy G.Wade Jr.,1984年;和第6卷,Michael B.Smith;以及March,J.,″AdvancedOrganic Chemistry″,第3版,John Wiley & Sons,New York,1985年;″Comprehensive Organic Synthesis.Selectivity,Strategy & Efficiency inModern Organic Chemistry″,第9卷,Barry M.Trost总编,PergamonPress,New York,1993年;″Advanced Organic Chemistry,Part B:Reactions and Synthesis″,第4版,Carey和Sundberg,KluwerAcademic/Plenum Publishers,New York,2001年;″Advanced OrganicChemistry,Reactions,Mechanisms,and Structure″,第2版,March,McGraw Hill,1977年;Greene,T.W.和Wutz,P.G.M.,″Protecting Groupsin Organic Synthesis″,第4版,John Wiley & Sons,New York,1991年;以及Larock,R.C.,″Comprehensive Organic Transformations″,第2版,John Wiley & Sons,New York,1999年。
本文所述的化合物包含一个或多个不对称中心,并因此产生对映体、非对映体和其它立体异构形式,其可根据绝对立体化学定义为(R)-或(S)-、α或β,或定义为(D)-或(L)-,诸如对于氨基酸而言。本文包括所有此类可能的异构体,以及它们的外消旋和光学纯形式。光学异构体可通过其相应的光学活性前体通过上述程序或通过拆分外消旋混合物而制备。拆分可在存在拆分剂的情况下通过色谱法或通过反复结晶或通过本领域技术人员已知的这些技术的一些组合而进行。有关拆分的进一步细节可见于Jacques等,″Enantiomers,Racemates,andResolutions″,John Wiley & Sons,1981年。当本文所述的化合物包含烯属双键、其它不饱和度或其它几何不对称中心时,并且除非另外指明,否则其旨在表示该化合物包含E和Z几何异构体两者或顺、反式异构体两者。同样,也旨在包括所有互变异构形式。本文出现的任何碳-碳双键的构型仅出于便利而选择,并不旨在限制特定构型,除非这样进行了说明。
在某些实施方案中,如本文所公开的寡聚化合物的制备根据以下文献中的用于DNA的程序而进行:″Protocols for Oligonucleotides andAnalogs″,Agrawal主编,Humana Press,1993年;和/或RNA:Scaringe,″Methods″,2001年,第23卷第206-217页;Gait等,″Applications ofChemically synthesized RNA in RNA:Protein Interactions“,Smith主编,1998年,第1-36页;Gallo等,″Tetrahedron″,2001年,第57卷,第5707-5713页。固相合成的另外方法可见于Caruthers美国专利No.4,415,732、4,458,066、4,500,707、4,668,777、4,973,679和5,132,418;以及Koster美国专利No.4,725,677和Re.34,069。
寡聚化合物的合成
寡聚化合物通常使用与液相方法相对的固体载体方法制备。常用于制备寡聚化合物的利用固体载体方法的市售设备由多家供应商销售,包括例如Applied Biosystems(Foster City,CA)。另外或作为另外一种选择,可采用任何本领域已知的用于这种合成的其它装置。合适的固相技术,包括自动合成技术,在″Oligonucleotides and Analogues,a Practical Approach″,F.Eckstein主编,Oxford University Press,NewYork,1991年中有所描述。
相对于DNA及相关类似物的RNA及相关类似物的合成已在RNA干扰和micro RNA增加方面作出了不断的努力。目前商业上采用的主要RNA合成策略包括5′-O-DMT-2′-O-叔丁基二甲基硅基(TBDMS)、5′-O-DMT-2′-O-[1(2-氟代苯基)-4-甲氧基哌啶-4-基](FPMP)、2′-O-[(三异丙基硅基)氧基]甲基(2′-O-CH2-O-Si(iPr)3(TOM)和5′-O-硅醚-2′-ACE (5′-O-双(三甲基硅氧基)环十二烷基氧硅醚(DOD)-2′-O-双(2-乙酰氧基乙氧基)甲基(ACE)。目前提供RNA产品的一些主要公司的当前列表包括Pierce Nucleic Acid Technologies、Dharmacon Research Inc.、Ameri Biotechnologies Inc.和Integrated DNATechnologies,Inc。Princeton Separations这家公司在销售一种RNA合成活化剂,其宣称尤其是采用TOM和TBDMS化学时可缩短偶联时间。用于商业RNA合成的主要基团为TBDMS:5′-O-DMT-2′-O-叔丁基二甲基硅基;TOM:2′-O-[(三异丙基硅基)氧基]甲基;DOD/ACE:(5′-O-双(三甲基硅氧基)环十二烷基氧硅醚-2′-O-双(2-乙酰氧基乙氧基)甲基;以及FPMP:5′-O-DMT-2′-O-[1(2-氟代苯基)-4-乙氧基哌啶-4-基]。在某些实施方案中,前述RNA合成策略的每一种都可在本文中使用。在某些实施方案中,前述RNA合成策略可按混合方式一起进行,例如使用一种策略中的5′-保护基团以及另一种策略中的2′-O-保护基团。
配制药物组合物的组合物和方法
寡聚化合物可与药学上可接受的活性和/或惰性物质配混,用于制备药物组合物或制剂。配制药物组合物的组合物和方法取决于多种标准,包括但不限于施用途径、疾病程度或待施用的剂量。
包括反义化合物的寡聚化合物可通过将此类寡聚化合物与合适的药学上可接受的稀释剂或载体进行组合而用于药物组合物。药学上可接受的稀释剂包括磷酸盐缓冲液(PBS)。PBS是适用于肠胃外递送的组合物的稀释剂。因此,在某些实施方案中,用于本文所述的方法的是包含反义化合物和药学上可接受的稀释剂的药物组合物。在某些实施方案中,药学上可接受的稀释剂为PBS。
包含寡聚化合物的药物组合物涵盖任何药学上可接受的盐、酯或此类酯的盐。在某些实施方案中,包含寡聚化合物的药物组合物包含一种或多种寡核苷酸,其在施用给动物(包括人)后能够(直接或间接地)提供生物活性的代谢物或其残余物。因此,例如,本公开还涉及反义化合物的药学上可接受的盐、前药、此类前药的药学上可接受的盐和其它生物等效剂。合适的药学上可接受的盐包括但不限于钠盐和钾盐。
前药可包括将另外的核苷并入到会被体内内源性核酸酶裂解的寡聚化合物的一端或两端,以形成活性寡聚化合物。
基于脂质的载体已被用于多种方法中的核酸治疗。在一种方法中,将核酸引入由阳离子脂质和中性脂质混合物制成的预成型脂质体或脂质体复合物中。在另一种方法中,在不存在中性脂质的情况下,形成DNA与单或多阳离子脂质的复合物。
在某些方法中,制备包含与核酸复合的聚胺化合物或脂质部分的制剂。此类制剂在以下文献中有所描述:PCT公开WO/2008/042973;以及Akinc等,″Nature Biotechnology″,第26卷第561-569页(2008年5月1日),它们均全文以引用方式并入本文。
某些方法/用途
在某些实施方案中,本发明提供降低靶核酸的量或活性的化合物和方法。在某些实施方案中,本发明提供反义化合物和方法。在某些实施方案中,本发明提供基于RNA酶H活化的反义化合物和方法。在某些实施方案中,本发明提供RNAi化合物和方法。
在某些情况下,希望使用至少部分地通过RISC发挥作用的反义化合物。在某些此类情况下,未修饰的RNA,无论是单链的还是双链的,均不适合。单链RNA相对不稳定,而双链RNA不易进入细胞。挑战还在于必须确定提供所需性质(诸如改善的稳定性)的修饰和基序,而不干扰(并甚至可能改善)通过RNAi发挥的RNA反义活性。
在某些实施方案中,本发明提供具有引起改善特性的基序(核苷基序和/或键合基序)的寡核苷酸。某些此类基序产生具有改善的稳定性和/或细胞摄取特性而同时维持反义活性的单链寡核苷酸。例如,靠近3’-末端具有交替核苷基序和7个硫代磷酸酯键合的寡核苷酸具有改善的稳定性和活性。在各个键合处包含硫代磷酸酯键合的相似化合物具有进一步改善的稳定性,但不具有作为RNAi化合物的活性,大概是因为另外的硫代磷酸酯键合会干扰寡核苷酸与RISC途径组分(例如与Ago)的相互作用。在某些实施方案中,具有本文的基序的寡核苷酸产生具有期望性质的单链RNAi化合物。在某些实施方案中,此类寡核苷酸可与第二条链配对,以形成双链RNAi化合物。在此类实施方案中,此类双链RNAi化合物的第二条链可以包含本发明的基序,可以包含另一修饰基序或者可未修饰。
已表明,在某些情况下,包含5’-磷酸酯基团的单链RNA具有RNAi活性,但是如果缺乏这种5’-磷酸酯基团则具有较低的RNAi活性。本发明人已认识到,在某些情况下,未修饰的5’-磷酸酯基团可能不稳定(在化学上或酶学上不稳定)。因此,在某些情况下,希望修饰寡核苷酸以稳定5’-磷酸酯。在某些实施方案中,这通过修饰磷酸酯基团而实现。在某些实施方案中,这通过修饰5’-末端核苷的糖而实现。在某些实施方案中,这通过修饰磷酸酯基团和糖而实现。在某些实施方案中,糖在5’-位、2’-位或5’-位和2’-位这两个位置被修饰。正如上文的基序一样,在其中需要RNAi活性的实施方案中,磷酸酯稳定化修饰不得干扰寡核苷酸与RISC途径组分(例如,与Ago)的相互作用的能力。
在某些实施方案中,本发明提供包含本文所述的磷酸酯稳定化修饰和基序的寡核苷酸。在某些实施方案中,此类寡核苷酸可用作具有所需性质的单链RNAi化合物。在某些实施方案中,此类寡核苷酸可与第二条链配对,以形成双链RNAi化合物。在此类实施方案中,第二条链可以包含本发明的基序,可以包含另一修饰基序或者可以为未修饰的RNA。
此类包含本发明的基序和/或5’-磷酸酯稳定化修饰的反义化合物的靶可为任何天然存在的核酸。在某些实施方案中,靶选自:pre-mRNA、mRNA、非编码RNA、非编码小RNA、pd-RNA和microRNA。在其中靶核酸为pre-RNA或mRNA的实施方案中,靶可以与天然存在的micro-RNA的靶相同(即,寡核苷酸可以为microRNA模拟物)。在此类实施方案中,可以有不止一种靶mRNA。
在某些实施方案中,本发明提供在细胞中实现反义活性的化合物和方法。在某些实施方案中,细胞在动物中。在某些实施方案中,动物为人。在某些实施方案中,本发明提供将本发明的化合物施用给动物以调节一种或多种靶核酸的量或活性或功能的方法。
在某些实施方案中,寡核苷酸包含一个或多个本发明的基序,但不包含磷酸酯稳定化修饰。在某些实施方案中,此类寡核苷酸可用于体外应用。在某些实施方案中,此类寡核苷酸可用于其中不需要RISC活性的体内应用。例如,在某些实施方案中,此类寡核苷酸改变pre-mRNA的剪接。
非限制性公开以及以引用方式并入
虽然本文所述的某些化合物、组合物和方法已专门根据某些实施方案进行了描述,但是以下实施例仅用于阐述本文所述的化合物而不旨在对其进行限制。本申请中列举的各参考文献、GenBank登录号等均全文以引用方式并入本文。
虽然随附此提交的序列表根据需要将每个序列标识为″RNA″或″DNA″,但事实上,那些序列可以用任何化学修饰组合进行修饰。本领域的技术人员将容易理解,用于描述修饰寡核苷酸的诸如″RNA″或″DNA″的命名在某些情况下是任意的。例如,包含含有2’-OH糖部分和胸腺嘧啶碱基的核苷的寡核苷酸可被描述为具有修饰糖(2’OH,针对DNA的天然2’-H)的DNA,或描述为具有修饰碱基(胸腺嘧啶(甲基化尿嘧啶),针对RNA的天然尿嘧啶)的RNA。
实施例(一般)
分别在300MHz和75MHz Bruker光谱仪上记录1H和13C NMR光谱。
实施例1
核苷亚磷酰胺的合成
核苷亚磷酰胺的制备根据本文以及本领域所述的程序进行,诸如但不限于美国专利6,426,220和已公布的PCT WO 02/36743。
实施例2
寡聚化合物的合成
根据本发明使用的寡聚化合物可通过熟知的固相合成技术便利且常规地制得。用于此合成的设备由多家供应商销售,包括例如Applied Biosystems(Foster City,CA)。此外或作为另外一种选择,可采用本领域已知的用于这种合成的任何其它装置。熟知的是,使用类似的技术制备寡核苷酸,诸如烷基化衍生物以及具有硫代磷酸酯键合的那些。
寡聚化合物:未取代的和取代的磷酸二酯(P=O)寡聚化合物(包括但不限于寡核苷酸)可使用标准亚磷酰胺化学通过碘氧化而在自动化DNA合成仪(Applied Biosystems 394型)上合成。
在某些实施方案中,硫代磷酸酯核苷间键合(P=S)以类似于磷酸二酯核苷间键合的方式合成,不同的是:通过使用10%w/v的3,H-1,2-苯并二硫醇-3-酮-1,1-二氧化物的乙腈溶液氧化亚磷酸酯键合而实现硫杂化。将硫杂化反应步骤的时间增至180秒,并通过正常加帽步骤继续。在55℃下的浓氨水中处理(12-16h)从CPG柱裂解并解封后,通过用超过3倍体积的乙醇从1M的NH4OAc溶液中进行沉淀来回收寡聚化合物。次磷酸酯(phosphinate)核苷间键合可如美国专利5,508,270中所述而制备。
烷基磷酸酯核苷间键合可如美国专利4,469,863中所述而制备。
3’-脱氧-3’-亚甲基膦酸酯核苷间键合可如美国专利5,610,289或5,625,050中所述而制备。
亚磷酰胺核苷间键合可如美国专利5,256,775或美国专利5,366,878中所述而制备。
烷基硫代磷酸酯核苷间键合可如已公布的PCT申请PCT/US94/00902和PCT/US93/06976(分别以WO 94/17093和WO94/02499公布)中所述而制备。
3′-脱氧-3′-氨基磷酰胺酯核苷间键合可如美国专利5,476,925中所述而制备。
磷酸三酯核苷间键合可如美国专利5,023,243中所述而制备。
硼烷磷酸酯(borano phosphate)核苷间键合可如美国专利5,130,302和5,177,198中所述而制备。
具有一个或多个不含磷的核苷间键合,包括但不限于亚甲基甲基亚氨基连接的寡核苷(也鉴别为MMI连接的寡核苷)、亚甲基二甲基肼连接的寡核苷(也鉴别为MDH连接的寡核苷)、亚甲基羰基氨基连接的寡核苷(也鉴别为酰胺-3连接的寡核苷)以及亚甲基氨基羰基连接的寡核苷(也鉴别为酰胺-4连接的寡核苷)的寡聚化合物,以及具有例如交替MMI和P=O或P=S键合的混合主链寡聚化合物可如美国专利5,378,825、5,386,023、5,489,677、5,602,240和5,610,289中所述而制备。
亚甲基缩醛和硫代亚甲基缩醛核苷间键合可如美国专利5,264,562和5,264,564中所述而制备。
环氧乙烷核苷间键合可如美国专利5,223,618中所述而制备。
实施例3
寡聚化合物的分离和纯化
从可控孔度玻璃固体载体或其它载体介质上裂解并在55℃的浓氨水中解封12-16小时后,通过>3倍体积的乙醇将包括但不限于寡核苷酸和寡核苷的寡聚化合物从1M的NH4OAc中沉淀出来而进行回收。将合成的寡聚化合物通过电喷射质谱(分子量测定)以及通过毛细管凝胶电泳进行分析。在合成中得到的硫代磷酸酯和磷酸二酯键合的相对量通过正确分子量相对于-16amu产物(+/-32+/-48)的比率而确定。对于一些研究,通过HPLC纯化寡聚化合物,如Chiang等,J.Biol.Chem.1991,266,18162-18171中所述。用HPLC纯化材料获得的结果通常类似于用非HPLC纯化材料获得的那些。
实施例4
使用96孔板形式合成寡聚化合物
包括但不限于寡核苷酸的寡聚化合物可通过固相P(III)亚磷酰胺化学在能够以96孔形式同时组装96个序列的自动合成仪上合成。磷酸二酯核苷间键合通过用碘水氧化而获得。硫代磷酸酯核苷间键合通过利用3,H-1,2苯并二硫-3-酮-1,1-二氧化物(Beaucage试剂)的无水乙腈溶液的硫化作用而生成。标准碱基保护的β-氰乙基二异丙基亚磷酰胺可购自多家商业供应商(例如PE-Applied Biosystems,Foster City,CA或Pharmacia,Piscataway,NJ)。非标准核苷根据标准或专利方法合成,并可以被官能化为碱基保护的β-氰乙基二异丙基亚磷酰胺。
可在高温(55-60℃)下用浓NH4OH处理12-16小时,将寡聚化合物从载体上裂解并去保护,并且然后真空干燥释放出的产物。然后,将干燥的产物重悬在无菌水中,以提供母板,然后使用自动移液器由其稀释所有的分析和测试板样品。
实施例5
使用96孔板形式分析寡聚化合物
每个孔中寡聚化合物的浓度可通过样品稀释以及紫外吸收光谱而评估。各个产物的全长完整性可通过毛细管电泳(CE)以96孔形式(Beckman P/ACETM MDQ)或对于单个制备的样品在商业CE设备(如Beckman P/ACETM 5000,ABI 270)上评价。碱基和主链组成通过利用电喷射质谱对寡聚化合物进行质量分析而确认。所有测定测试板均使用单和多通道自动移液器由母板稀释而得。如果在平板上至少85%的寡聚化合物为至少85%全长,则将该平板判断为可接受。
实施例6
用寡聚化合物体外处理细胞
在多种细胞类型的任一种中测试寡聚化合物对靶核酸表达的影响,前提是该靶核酸以可测量的水平存在。这可通常使用例如PCR或Northern印迹分析而测定。来源于多种组织和物种的细胞系可得自American Type Culture Collection(ATCC,Manassas,VA)。
提供以下细胞类型用于示例性目的,但是可按常规使用其它细胞类型,前提是靶在所选的细胞类型中表达。这可容易地通过本领域中常规的方法测定,例如Northern印迹分析、核糖核酸酶保护测定或RT-PCR。
b.END细胞:小鼠脑内皮细胞系b.END得自Max Plank Institute(Bad Nauheim,Germany)的Werner Risau博士。b.END细胞通常在用10%胎牛血清(Invitrogen Life Technologies,Carlsbad,CA)补充的DMEM高糖培养基(Invitrogen Life Technologies,Carlsbad,CA)中进行培养。通常通过在达到大约90%汇合度时进行胰蛋白酶消化和稀释而对细胞传代。将细胞以大约3000个细胞/孔的密度接种到96孔板(Falcon-Primaria#353872,BD Biosciences,Bedford,MA)上,用于包括但不限于寡聚化合物转染实验的用途。
涉及到用寡聚化合物处理细胞的实验:
当细胞达到大约汇合度时,使用如本文所述的转染方法用寡聚化合物对其进行处理。
LIPOFECTINTM
当细胞达到65-75%汇合度时,用一种或多种寡聚化合物对其进行处理。将寡聚化合物与LIPOFECTINTM(Invitrogen Life Technologies,Carlsbad,CA)在Opti-MEMTM-1减血清培养基(Invitrogen LifeTechnologies,Carlsbad,CA)中混合,以达到所需的寡聚化合物浓度和每100nM寡聚化合物2.5或3μg/mL的LIPOFECTINTM浓度。将此转染混合物在室温下孵育大约0.5小时。对于在96孔板中生长的细胞,将孔用100μL OPTI-MEMTM-1洗涤一次,并且然后用130μL转染混合物处理。使用适当体积的培养基和寡聚化合物类似地处理在24孔板或其它标准组织培养板中生长的细胞。处理细胞,一式两份或一式三份获取数据。在37℃处理大约4-7小时后,将含有转染混合物的培养基用新鲜培养基替换。在用寡聚化合物处理后16-24小时收获细胞。
本领域已知的其它合适的转染试剂包括但不限于CYTOFECTINTM、LIPOFECTAMINETM、OLIGOFECTAMINETM和FUGENETM。本领域已知的其它合适的转染方法包括但不限于电穿孔。
实施例7
靶mRNA水平的实时定量PCR分析
靶mRNA水平的定量通过实时定量PCR使用ABI PRISMTM7600、7700或7900序列检测系统(PE-Applied Biosystems,Foster City,CA)根据制造商说明而完成。它是一种闭管、非凝胶型荧光检测系统,能对聚合酶链反应(PCR)产物进行实时高通量定量。与其中在完成PCR后才进行扩增产物定量的标准PCR相对,实时定量PCR中的产物在它们蓄积时即进行定量。这通过在PCR反应中包括在正向与反向PCR引物之间特异性退火的寡核苷酸探针而实现,并包含两种荧光染料。将报告染料(如FAM或JOE,得自PE-Applied Biosystems,Foster City,CA;Operon Technologies Inc.,Alameda,CA或IntegratedDNA Technologies Inc.,Coralville,IA)连接到探针的5′端,并且将淬灭染料(如TAMRA,得自PE-Applied Biosystems,Foster City,CA;Operon Technologies Inc.,Alameda,CA或Integrated DNA TechnologiesInc.,Coralville,IA)连接到探针的3′端。当探针和染料完整无损时,报告染料发射被邻近的3′淬灭染料淬灭。在扩增过程中,探针与靶序列退火形成可由Taq聚合酶的5′-核酸外切酶活性裂解的底物。在PCR扩增循环的延伸阶段,Taq聚合酶对探针的裂解从探针的其余部分(并因此从淬灭部分)释放出报告染料,并产生序列特异性荧光信号。通过每个循环,附加的报告染料分子从其相应的探针裂解,并通过ABIPRISMTM序列检测系统内置的激光光学元件以固定的间隔监测荧光强度。在各测定中,一系列包含得自未处理对照样品的连续稀释mRNA的平行反应生成标准曲线,其用于定量对测试样品进行反义寡核苷酸处理后的抑制百分比。
在定量PCR分析前,评价对正测量的靶基因具有特异性的引物-探针组与GAPDH扩增反应“多重化”的能力。在多重化中,在单个样品中同时扩增靶基因和内标基因GAPDH。在此分析中,对从未处理的细胞中分离的mRNA进行连续稀释。在存在仅对GAPDH、仅对靶基因(“单重化”)或对两者(多重化)具有特异性的引物-探针组的情况下,扩增每个稀释样。在PCR扩增后,由单重和多重化样品两者生成作为稀释度函数的GAPDH和靶mRNA信号的标准曲线。如果由多重化样品生成的GAPDH和靶信号的斜率和相关系数均落在其由单重化样品生成的相应值的10%内,则将对该靶具有特异性的引物-探针组视为可多重化。其它PCR方法在本领域中也是已知的。
RT和PCR试剂得自Invitrogen Life Technologies(Carlsbad,CA)。RT(实时)PCR通过以下方式而进行:将20μL PCR混合物(2.5×PCR缓冲液(不含MgCl2),6.6mM MgCl2,dATP、dCTP、dCTP和dGTP各375μM,正向引物和反向引物各375nM,探针125nM,4单位RNA酶抑制剂,1.25单位PLATINUMTaq,5单位MuLV逆转录酶以及2.5×ROX染料)加到含有30μL总RNA溶液(20-200ng)的96孔板。通过在48℃孵育30分钟进行RT反应。在95℃孵育10分钟以活化PLATINUMTaq后,进行两步PCR方案的40个循环:95℃15秒(变性),然后是60℃ 1.5分钟(退火/延伸)。
将通过RT(实时)PCR获得的基因靶的量进行归一化,方式是使用GAPDH(一种表达恒定的基因)的表达水平,或通过使用RIBOGREENTM(Molecular Probes,Inc.Eugene,OR)进行总RNA定量。GAPDH表达通过实时RT-PCR定量,方式为与靶同时运行、多重化运行或单独运行。使用RiboGreenTM RNA定量试剂(MolecularProbes,Inc.Eugene,OR)进行总RNA定量。通过RIBOGREENTM进行RNA定量的方法在Jones,L.J.等(″Analytical Biochemistry″,1998年,第265卷第368-374页)中有所教导。
在此测定中,将170μL RIBOGREENTM工作试剂(按1:350的比例稀释在10mM Tris-HCl、1mM EDTA中的RIBOGREENTM试剂,pH 7.5)移液到含有30μL经纯化的细胞RNA的96孔板中。在CytoFluor 4000(PE Applied Biosystems)中读取平板,其中激发波长为485nm并且发射波长为530nm。
实施例8
对寡核苷酸抑制靶表达的分析
可以按本领域已知的多种方式测定靶表达的反义调节。例如,靶mRNA水平可通过例如Northern印迹分析、竞争聚合酶链反应(PCR)或实时PCR进行定量。实时定量PCR目前是所需的。可对总细胞RNA或poly(A)+mRNA进行RNA分析。本公开进行RNA分析的一种方法是使用如本文其它实施例中所述的总细胞RNA。RNA分离的方法在本领域中是熟知的。Northern印迹分析也在本领域是常规的。实时定量(PCR)可通过使用可得自PE-Applied Biosystems,Foster City,CA的市售ABI PRISMTM 7600、7700或7900序列检测系统并根据制造商说明使用而便利地完成。
靶的蛋白质水平可以按本领域熟知的多种方式定量,诸如免疫沉淀、Western印迹分析(免疫印迹)、酶联免疫吸附测定(ELISA)或荧光激活细胞分选(FACS)。可鉴定针对靶的抗体并且可获自多种来源,诸如抗体的MSRS目录(Aerie Corporation,Birmingham,MI),或可通过本领域熟知的常规单克隆或多克隆抗体产生方法而制备。制备多克隆抗血清的方法在例如Ausubel,F.M.等,″Current Protocols inMolecular Biology″,第2卷,第11.12.1-11.12.9页,John Wiley & Sons,Inc.,1997年中有所教导。单克隆抗体的制备在例如Ausubel,F.M.等,″Current Protocols in Molecular Biology″,第2卷,第11.4.1-11.11.5页,John Wiley & Sons,Inc.,1997年中有所教导。
免疫沉淀法是本领域的标准方法,并可见于例如Ausubel,F.M.等,″Current Protocols in Molecular Biology″,第2卷,第10.16.1-10.16.11页,John Wiley & Sons,Inc.,1998年。Western印迹(免疫印迹)分析是本领域的标准方法,并可见于例如Ausubel,F.M.等,″Current Protocols in Molecular Biology″,第2卷,第10.8.1-10.8.21页,John Wiley & Sons,Inc.,1997年。酶联免疫吸附测定(ELISA)是本领域的标准方法,并可见于例如Ausubel,F.M.等,″Current Protocolsin Molecular Biology″,第2卷,第11.2.1-11.2.22页,John Wiley & Sons,Inc.,1991年。
实施例9
用于靶抑制剂用途的表型测定和体内研究的设计
表型测定
通过本文所公开的方法鉴定出靶抑制剂后,将寡聚化合物在一种或多种表型测定中进一步研究,每种测定具有可预测对特定疾病状态或病症的疗效的可测量终点指标。
表型测定、试剂盒和所用的试剂对本领域的技术人员而言是熟知的,并在本文中用于研究靶在健康和疾病中的角色和/或关联。可购自多家商业供应商任一家的代表性表型测定包括:用于测定细胞活性、细胞毒性、增殖或细胞存活的那些(Molecular Probes,Eugene,OR;PerkinElmer,Boston,MA);基于蛋白质的测定,包括酶学测定(Panvera,LLC,Madison,WI;BD Biosciences,Franklin Lakes,NJ;OncogeneResearch Products,San Diego,CA);细胞调控、信号转导、炎症、氧化过程和细胞凋亡(Assay Designs Inc.,Ann Arbor,MI);甘油三酯累积(Sigma-Aldrich,St.Louis,MO);血管新生试验、小管形成试验、细胞因子和激素测定以及代谢测定(Chemicon International Inc.,Temecula,CA;Amersham Biosciences,Piscataway,NJ)。
在一个非限制性实例中,将经确定适于特定表型测定的细胞(即,为乳腺癌研究选择的MCF-7细胞;为肥胖症研究选择的脂肪细胞)用通过体外研究鉴定的靶抑制剂以及通过上述方法确定的最佳浓度的对照化合物进行处理。在处理期结束时,通过一种或多种对测定具有特异性的方法分析处理和未处理的细胞,以确定表型结果和终点。
表型终点包括随着时间或治疗剂量的细胞形态的变化,以及细胞组分诸如蛋白质、脂质、核酸、激素、糖类或金属水平的变化。细胞状态的测量也是所关注的终点,这些状态包括pH、细胞周期的阶段、细胞对生物指示剂的摄取或分泌。
对处理之后细胞的一种或多种基因的表达的测量也用作靶抑制剂的功效或效力的指示。对Hallmark基因或那些疑似与特定疾病状态、病症或表型相关的基因在处理和未处理细胞中均进行测量。
体内研究
本文所述的体内研究的个体受试者为温血脊椎动物,其包括人。
实施例10
RNA分离
Poly(A)+mRNA分离
Poly(A)+mRNA根据Miura等(Clin.Chem.,1996,42,1758-1764)的方法进行分离。其它用于poly(A)+mRNA分离的方法在本领域中是常规的。简而言之,对于生长在96孔板上的细胞,从细胞中移除生长培养基,用200μL冷PBS洗涤每个孔。将60μL裂解缓冲液(10mM Tris-HCl,pH 7.6,1mM EDTA,0.5M NaCl,0.5% NP-40,20mM氧钒核糖核苷复合物)加入到每个孔,轻轻搅动平板,并且然后在室温下孵育五分钟。将55μL裂解物转移到Oligo d(T)包被的96孔板(AGCT Inc.,Irvine CA)。将平板在室温下孵育60分钟,用200μL洗涤缓冲液(10mM Tris-HCl pH 7.6,1mM EDTA,0.3M NaCl)洗涤3次。最后一次洗涤后,将平板印在纸巾上,以除去多余的洗涤缓冲液,并且然后风干5分钟。将预热到70℃的60μL洗脱缓冲液(5mM Tris-HClpH 7.6)加到每个孔中,将平板在90℃的热板上孵育5分钟,并且然后将洗脱物转移到新的96孔板。
可使用适当体积的所有溶液类似地处理在100mm或其它标准板上生长的细胞。
总RNA分离
使用购自Qiagen Inc.(Valencia,CA)的RNEASY 96TM试剂盒和缓冲液根据制造商推荐的程序分离总RNA。简而言之,对于生长在96孔板上的细胞,将生长培养基从细胞中移除,并且用200μL冷PBS洗涤每个孔。将150μL缓冲液RLT加到每个孔,并且将平板用力搅动20秒。然后将150μL 70%的乙醇加入每个孔,并且通过用移液管上下吹打3次来混合内容物。然后将样品转移到连接到QIAVACTM歧管的RNEASY 96TM孔板,而该歧管配有废液收集盘并连接到真空源。施加真空1分钟。将500μL缓冲液RW1添加到RNEASY 96TM板的每个孔,并且孵育15分钟,并且然后再次施加真空1分钟。将另外500μL缓冲液RW1添加到RNEASY 96TM板的每个孔,并且施加真空2分钟。然后将1mL缓冲液RPE添加到RNEASY 96TM板的每个孔,并且施加真空90秒。然后重复缓冲液RPE洗涤,并且再施加真空3分钟。然后将平板从QIAVACTM歧管去除,并且在纸巾上吸干。然后将平板再次连接到QIAVACTM歧管,其配有含有1.2mL收集管的收集管支架。然后通过移取140μL无RNA酶的水到每个孔中来洗脱RNA,将其孵育1分钟,并且然后施加真空3分钟。
可使用QIAGEN Bio-Robot 9604(Qiagen,Inc.,Valencia CA)自动执行反复的移液和洗脱步骤。基本上,在培养板上裂解细胞后,将平板转移到自动平台,在其中执行移液、DNA酶处理和洗脱步骤。
实施例11
靶特异性引物和探针
可使用已公布的序列信息,将探针和引物设计为与靶序列杂交。
例如,对于人PTEN,使用已公布的序列信息(GENBANKTM登录号U92436.1,SEQ ID NO:1)设计了以下引物-探针组。
正向引物:AATGGCTAAGTGAAGATGACAATCAT(SEQ ID NO:2)
反向引物:TGCACATATCATTACACCAGTTCGT(SEQ ID NO:3)
以及PCR探针:
FAM-TTGCAGCAATTCACTGTAAAGCTGGAAAGG-TAMRA(SEQ ID NO:4),其中FAM为荧光染料,而TAMRA为淬灭染料。
实施例12
靶蛋白质水平的Western印迹分析
使用标准方法执行Western印迹分析(免疫印迹分析)。在寡核苷酸处理后16-20h收获细胞,用PBS洗涤一次,将其悬浮在Laemml缓冲液(100μl/孔)中,煮沸5分钟,并且上样到16%SDS-PAGE凝胶。在150V运行凝胶电泳1.5小时,并且转移到膜用于Western印迹。使用合适的针对靶的一抗,以及针对一抗物质的放射标记或荧光标记的二抗。使用PHOSPHORIMAGERTM(Molecular Dynamics,Sunnyvale CA)显示区带。
实施例13
化合物5的制备
根据美国专利5,969,116中公布的程序制备化合物1。
实施例14
化合物9的制备
a)化合物7的制备
将市售的1,2;5,6-二-O-异亚丙基-α-D-异呋喃糖即化合物6(135g,519.0mmol)和2-(溴甲基)萘(126g,570.0mmol)溶于三颈烧瓶(500mL)内的DMF(500mL)中,并且将反应物在冰浴中冷却。将氢化钠(60%w/w,29g,727.0mmol)小心加入(按6g为一部分每10分钟加入一次)反应中,并且添加完成后继续再搅拌60分钟。此时,TLC分析表明不再有糖(化合物6)。将反应物小心倾倒在碎冰(约500g)上,然后将所得的浆液用力搅拌,直至所有的冰都融化。通过过滤收集所得的灰白色固体,并且将其悬在水中。使用机械搅拌器将悬浮液用力搅拌30分钟,之后,通过过滤收集固体,并且悬入己烷中。将悬浮液用力搅拌30分钟,之后,通过过滤收集固体,并且风干4-6小时,再在P2O5上通过高真空干燥16小时,得到作为灰白色固体的化合物7(206.0g,99%)。1H NMR(300MHz,CDCl3)δ:7.85(m,4H),7.48(m,3H),5.74(s,1H),4.92(d,1H,J=11.7),4.75(d,1H,J=11.6),4.58(m,1H),4.36(m,1H),4.15(m,1H),4.03-3.86(m,3H),1.61(s,3H),1.36(s,9H)。
b)化合物8的制备
将化合物7(200.0g,0.5mol)分小部分加入到乙酸(2.2L)和水(740mL)的溶液。将反应物在室温下搅拌16h,之后TLC分析(30%EtOAc/己烷)表明化合物7被完全消耗。然后将反应物减压浓缩,直到除去大部分乙酸。将剩余的溶液倒入经搅拌的EtOAc(1L)和水(1L)的混合物中。然后向上述混合物中加入固体KOH,直到含水层为强碱性(pH>12)。将有机层分离,用饱和碳酸氢钠溶液和盐水洗涤,然后干燥(Na2SO4)、过滤和减压浓缩,得到黄色泡沫状化合物8,将其直接使用而不进一步纯化。
c)化合物9的制备
将NaIO4(107.0g)的水(3L)溶液在40分钟内加入到经搅拌(机械搅拌器)的化合物8的二噁烷(1.5L)溶液。60分钟后,将反应混合物倒入EtOAc(1.5L),并且分离有机层,用水(1L)和盐水(1L)洗涤,然后干燥(Na2SO4)和浓缩,得到黄色油状化合物9,将其直接使用而不进一步纯化。
实施例15
化合物14的制备
根据实施例14中所述的程序制备化合物9。
实施例16
化合物17的制备
a)化合物15的制备
根据美国专利5,969,116中公布的程序制备化合物1。将苯甲酰氯(5.6mL,48.5mmol)加入到核苷化合物1(25g,40.5mmol)的吡啶(100mL)溶液。在室温下搅拌3小时后,向反应中添加另外的苯甲酰氯(2.5mL)。再经过60分钟后,将反应用水淬灭,并且然后在乙酸乙酯和水之间分配。将有机层进一步用水、盐水洗涤,干燥(硫酸钠)并浓缩,得到粗制的苯甲酰基保护的核苷,将其直接使用而不进一步纯化。
将三氟乙酸(5mL)加入到从上面得到的粗制核苷和三乙基硅烷(12mL)的二氯甲烷溶液。2小时后,向反应中加入另外的三氟乙酸(5mL)和三乙基硅烷(5mL),并且再继续搅拌4小时,其间,反应物从初始亮橙色变为浅黄色。在旋转蒸发仪上除去溶剂,并且将残余物溶于乙酸乙酯,并且用水、碳酸氢钠、盐水仔细洗涤有机层,干燥(硫酸钠)并浓缩。将所得的白色固体悬在己烷中,并且通过过滤进行收集,然后用另外的己烷进一步洗涤,得到核苷化合物15(14.9g,87%,经2步)。
b)化合物16的制备
将二环己基碳二亚胺(1.5g,7.2mmol)加入到化合物15(2.0g,4.8mmol)和三氟乙酸吡啶鎓(0.92g,4.8mmol)的二甲基亚砜(48mL)溶液,并且将反应混合物在室温下搅拌6小时。在单独的烧瓶中,将叔丁醇钾的溶液(10mL 1M的THF溶液)加入到四乙基亚甲基二膦酸酯(2.4mL,9.6mmol)的THF(20mL)溶液。在室温下搅拌10分钟后,将该烧瓶在冰浴中冷却,并且通过插管将DMSO溶液加入。在室温下搅拌2小时后,将反应物用乙酸乙酯稀释,并且用水、盐水洗涤有机层,干燥(硫酸钠)并浓缩。通过柱色谱(硅胶,用20至40%的丙酮的二氯甲烷溶液洗脱)纯化得到了乙烯基核苷化合物16(1.25g,47%)。
c)化合物16a的制备
将乙烯基核苷化合物16(110mg,0.2mmol)和7N氨水的甲醇(2mL)溶液在室温下老化6小时,并且在旋转蒸发仪上除去溶剂。通过色谱(硅胶,用70至90%的丙酮的二氯甲烷溶液洗脱)纯化残余物,得到了化合物16a(84mg,95%)。
d)化合物17的制备
将(2-氰基乙氧基)-四异丙基亚磷酰二胺(0.084mL,0.28mmol)加入到化合物16a(84mg,0.19mmol)、四唑(12mg,0.15mmol)和N-甲基咪唑(1滴)的二甲基甲酰胺(1mL)溶液。在室温下搅拌3小时后,将反应物用乙酸乙酯稀释,并且用盐水(2x)洗涤有机层,干燥(硫酸钠)并浓缩。通过柱色谱(硅胶,用2至4%的甲醇的二氯甲烷溶液洗脱)纯化得到了亚酰胺(amidite)化合物17(113mg,90%)。
实施例17
化合物19和19a的制备
根据实施例16中所述的程序制备化合物15。通过色谱法分离化合物18和18a。通过光谱分析确定化合物19和19a的结构。
实施例18
化合物20的制备
根据实施例14中所述的程序制备化合物8。
实施例19
化合物24的制备
根据实施例18中所述的程序制备化合物20。
实施例20
化合物27的制备
根据实施例16中所述的程序制备化合物15。
实施例21
化合物30的制备
根据实施例18中所述的程序制备化合物20。
实施例22
化合物32的制备
根据实施例21中所述的程序制备化合物28。
实施例23
化合物36、37和38的制备
根据19实施例中所述的程序制备化合物23a。
实施例24
化合物42、43和44的制备
根据实施例20中所述的程序制备化合物26。
实施例25
制备化合物14和47的可供选择的方法
根据实施例16中所述的程序制备化合物15。
实施例26
化合物50的制备
根据实施例16中所述的程序制备化合物15。化合物50的光谱分析与结构一致。
实施例27
化合物62的制备
a)化合物52的制备(双丙酮葡萄糖的烷基化)
原料化合物51可商购获得,也可根据Moffatt等,J.Org.Chem.,1979,44,1301中的程序制备。
将NaH(60%分散在矿物油中,49.2g,1.6当量)加入到用氮气吹扫过的2L圆底烧瓶,用己烷(2x 1.0L)洗涤NaH以除去矿物油。倾析己烷后,加入DMF(700mL),并且使混合物在冰浴中冷却。然后将双丙酮葡萄糖化合物51(200g,0.77mol)在30分钟的时间内加入。移除冰浴,并且将混合物在室温下搅拌1小时。然后使反应物在冰浴中第二次冷却,在30分钟的时间内逐滴加入1-溴甲基萘(187g,1.1当量)的DMF(100mL)溶液。完成添加后,将冰浴搅拌过夜,同时使冰融化,从而允许反应进行到室温。16h后,经TLC确定反应完成(Rf=0.45,20%EtOAc/己烷,并且用茴香醛喷雾试剂处理后炭化而显色)。然后将混合物倾倒在放入冰浴中的冷水(1.5L)上。将含水层用EtOAc(250mL×2)萃取,然后用饱和NaHCO3(1L)、盐水(1L)依次洗涤,并减压蒸发有机层,得到深棕色油状物。将该油状物溶于最少的DCM中,并让其通过用100%己烷(3.0L)洗脱的硅胶滤塞,以除去微量的上层杂质,然后用20%EtOAc/己烷收集主斑点。浓缩溶剂得到棕色油状烷基化产物(269g,87%),将其直接使用而不进一步纯化。
异亚丙基(isopropylidine)的选择性裂解
将上面得到的粗制油状物(69g,0.67mol)溶于乙酸(2.2L)和水(900mL)。让反应在室温下进行16h。通过TLC(20%EtOAc/己烷)跟踪反应。反应完成后,减压蒸发掉大部分乙酸,并且然后将剩余的溶液分小部分倒入经搅拌的EtOAc (1L)/NaHCO3(1L,饱和水溶液)混合物,然后加入NaHCO3,直到停止逸出气体。将有机层用水(1L×2)、盐水(1L)洗涤,经Na2SO4干燥,过滤,然后减压移除,得到粗制黄色油状物。然后将油状物溶于最少的DCM中,并且让其通过用20%EtOAc/己烷(3.0L)洗脱的硅胶滤塞,以除去上层斑点杂质,并且然后用80%EtOAc/己烷洗脱,得到主要化合物。蒸发溶剂得到浅黄色油状粗产物(201g,82%)。TLC(Rf=0.22,20%EtOAc/己烷)。
伯羟基的选择性硅烷化
将粗制化合物(105g,0.293mol)溶于无水DMF(1L),然后添加咪唑(39.9g,0.58mol)。在氮气下搅拌的同时,使所得的黄色溶液在冰浴中冷却到0℃。将溶于最低量DMF的叔丁基二甲基氯硅烷(TBDMSCl,48.5ml,0.322mol)在40分钟的时间内逐滴加入。让完成添加时最初为0℃的冰浴达到室温,并且再继续搅拌16h。通过TLC测定此时反应完成(Rf=0.56,20%EtOAc/己烷)。然后通过加入MeOH(50mL)让反应淬灭。然后加入水(1L)和EtOAc(500mL),并且用饱和NaHCO3(1L)和盐水(1L)洗涤有机层,然后干燥(Na2SO4),过滤,并且减压除去溶剂,得到黄色油状物化合物52(139.0g)。
1H NMR(300MHz,CDCl3+2%D2O):δ7.7和7.4(m,7H,Nap),5.86(d,1H,J=3.6Hz),4.7(m,2H),4.54(d,1H,J=5.7Hz),4.08(s,2H),3.9-4.0(m,1H),3.7-3.8(m,2H),1.39(s,1H,CH3),1.24(s,1H,CH3),0.82(s,9H,tBu),0.02(s,6H,SiMe2)。
13C NMR(75MHz,CDCl3+2%D2O):δ135.1,133.3,133.1,128.3,128.0,127.7,126.6,126.2,126.0,125.7,111.7,105.2,82.6,81.9,79.6,72.6,68.6,64.5,26.7,26.3,25.9,18.3,-5.4。LCMS(方法CN1),保留时间=1.8min,m/z=497.1(M+Na),纯度>98%。
b)化合物53的制备
将草酰氯(12.2mL,145mmol)和CH2Cl2(280mL)加入到装有两个加料漏斗的2L圆底烧瓶。一个加料漏斗装有DMSO (20.5mL,289mmol)的CH2Cl2(30mL)溶液,而另一个漏斗则装有溶于CH2Cl2(380mL)的化合物52(45.75g,96.4mmol)。然后将圆底烧瓶在氮气下冷却到-78℃,并且在15分钟内逐滴加入DMSO溶液。再搅拌50分钟后,将化合物52的溶液在15分钟内逐滴加入。再搅拌30分钟后,将Et3N(60mL,434mmol)在10分钟内加入,并且使反应在室温下进行30分钟。然后用NH4Cl(饱和,150mL)将反应淬灭,并且依次用10%柠檬酸(1L)、碳酸氢钠(饱和,1L)和盐水(1L)洗涤有机层。然后将有机层在Na2SO4上干燥,浓缩,通过硅胶(20%EtOAc/己烷)过滤,得到粗制酮(42.4g,93%),将其直接用于下一步,而不进一步纯化。TLC(Rf=0.55,20%EtOAc/己烷)。LCMS(方法CN1),保留时间=2.1min,m/z=473.1(M+H),495.1(M+Na),967.3(2M+Na)。
将该粗制酮(39g,82.5mmol)的THF(240mL)溶液加入到配有加料漏斗的1L圆底烧瓶,该加料漏斗装有1.0M的乙烯基溴化镁的THF(125mL)溶液。使烧瓶在冰浴中冷却,并且然后将格氏试剂在10分钟内逐滴加入。然后使反应在室温下进行1.5h,再用NH4Cl(饱和,150mL)淬灭。将Et2O(400mL)加入,并用盐水(1L)洗涤有机层。使有机层通过硅胶滤塞(必要时用Et2O洗脱),并且然后浓缩,得到定量收率的化合物53,其纯度为约90%,并直接用于下一步。TLC(Rf=0.55,20%EtOAc/己烷)。
1H NMR(300MHz,CDCl3):δ7.79-7.90和7.47-7.56(m,7H,Nap),6.11(dd,1H,J=16.2,9.6Hz,=CH-),6.08(d,1H,J=3.9Hz,H-1),5.49(dd,1H,J=17.4,1.5Hz,=CH2);5.22(dd,1H,J=12.3,1.5Hz,=CH2),4.91和4.72(ABq,2H,CH2),4.71(d,1H,J=4.2Hz,H-2),4.38(d,1H,J=3.0Hz,H-4),4.24(d,1H,J=2.7Hz,H-3),3.92(s,1H,OH),3.63(d,1H,J=9.6Hz,6a),3.47(d,1H,J=9.6Hz,6b),1.53(s,3H,CH3),1.38(s,3H,CH3),0.86(s,9H,C(CH3)3),-0.0(s,3H,SiMe),-0.08(s,3H,SiMe)。1H NMR与Tetrahedron Lett.,1993,1653中报道的OBn衍生物严格匹配。
LCMS(方法DR1),m/z=501.1(M+H),523.2(M+Na)。
c)化合物54的制备(TBS和异亚丙基的水解)
向较纯的化合物53(41.3g,82.5mmol)和Amberlite(IR-120H+强酸性离子交换树脂,80g)中加入1,4-二噁烷(275mL)和H2O(230mL)。将此混合物在90℃加热36h,并且然后通过硅藻土热滤,再蒸发至干燥。然后将所得的粗制固体在P2O5上于50℃干燥12h。
水解材料的乙酰化
将上面得到的粗制白色固体用吡啶(290mL)处理,然后将Ac2O(78mL,10当量)逐滴加入,再接着加入DMAP(120mg)。反应在室温下继续进行16h,并且然后蒸发溶剂以及与甲苯(3x100mL)共蒸发。将主要产物通过硅胶色谱(25%EtOAc/己烷至35%EtOAc/己烷)纯化,得到透明白色泡沫状粗制四乙酸酯化合物54(31.4g,74%)。TLC(Rf=0.27,40%EtOAc/己烷)。
1H NMR(300MHz,CDCl3):δ7.83-7.79,7.68,7.5-7.4,7.35和7.32(m,7H,Nap),5.95-5.87(m,3H,CH=CH和H1),5.63(dd,1H,J=8.7,3.3Hz,=CH),5.46(d,1H,J=9.9Hz,H4),5.25(dd,1H,J=9.3,8.4Hz,H2),4.76(s,2H,CH2Nap),4.14和3.71(d,J=12.4Hz,H6),3.79(dd,1H,J=9.8,9.8Hz,H3),2.10(s,6H,Ac x 2),1.95(s,3H,Ac),1.90(s,3H,Ac)。13C NMR(75MHz,CDCl3+2%D2O):δ170.7,169.5,169.1,169.0,135.2,133.2,133.0,129.8,128.3,127.9,127.7,126.3(2C),126.1,125.5,122.03,88.9,78.5,78.1,74.6,72.6,69.5,65.2,20.9(3C),20.8。
LCMS(方法CN1),保留时间=1.47min,m/z=537.1(M+Na),纯度=99%。
注:化合物54通过对Tetrahedron Lett.,1993,1653以及Tetrahedron,2004,6813中报道的程序进行稍微修改由化合物51制备而成。
d)化合物55的制备(Vorbrüggen偶联和脱乙酰化)
将N,O-双(三甲硅基)乙酰胺(BSA,54.7mL,224mmol)加入经搅拌的尿嘧啶(10.2g,90.7mmol)和化合物54(31.1g,60.4mmol)在无水乙腈(300mL)中的悬浮液。在室温下搅拌30分钟后,观察到透明溶液,并且在氮气下将反应物冷却到0℃。将三甲基硅基氟代甲烷磺酸酯(TMSOTf,21.9mL,121mmol)加入,并且将反应物在室温下搅拌15分钟后,将其转移到80℃的预热油浴中。在80℃搅拌4h后,将反应物冷却到室温,并加入MeOH(20mL)、EtOAc(250mL)和H2O(400mL)。然后将有机相依次用饱和NaHCO3、盐水洗涤,干燥(Na2SO4)并浓缩得到粗制三醋酸酯。TLC(Rf=0.60,80%EtOAc/己烷)。LCMS(方法DRHI),m/z=567.1(M+H)。
将粗制核苷用7N MeOH/NH3(300mL)在50℃过夜处理,并且然后蒸发至干燥。将主要产物经硅胶色谱(2%MeOH/CH2Cl2至6%MeOH/CH2Cl2)纯化,得到作为白色固体的三醇化合物55(17.75g,67%)。TLC(Rf=0.25,8%MeOH/CH2Cl2)。
1H NMR(300MHz,DMSO-d6/2%D2O):δ7.9-7.8(m,5H,Nap和H6),7.62,7.59,和7.53-7.46(m,3H,Nap),6.07(dd,1H,J=11.9,17.3Hz,C=CH),5.68(d,1H,J=3.0Hz,H5),5.66(s,1H,H1’),5.45-5.39(m,2H,C=CH2),4.99(s,2H,CH2ONap),3.93(d,1H,J=9.6Hz,H4’),3.67(dd,1H,J=8.9,8.9Hz,H2’),3.43(dd,1H,J=9.6,12.0Hz,H3’),3.16和3.42(d,2H,J=8.9Hz,6’-CH2)。
13C NMR(75MHz,DMSO-d6/2%D2O):δ162.8(C4),150.6(C2),141.4(C6),136.8(quat),132.6(quat),132.5(=CH-),132.0(quat),127.3,127.2,127.1,125.8,125.7,125.3,*117.9(=CH2),101.6(C5),82.3(C3’),81.3(C5’),77.8(C1’),73.5(CH2ONap),71.1(C2’),68.4(C4’),64.8(6’-CH2)。注:*在127.3和125.3之间存在一个附加的碳,其与其它碳中的一个重叠。
LCMS(方法G1),保留时间=2.09min,m/z=463.1(M+Na),纯度>99%。
e)化合物56的制备(形成亚苄基(benzylidine))
向经搅拌的三醇化合物55(16.1g,36.5mmol)在无水DMF(180mL)中的混合物加入樟脑磺酸(CSA,850mg),然后加入苯甲醛二甲缩醛(BDMA,22mL,146mmol)。将此混合物在50℃进行搅拌,并且两小时后,加入另外的CSA(600mg)和BDMA(6mL)。再过2h后,将反应混合物冷却到室温,并且在EtOAc(300mL)和NaHCO3(饱和)/H2O(500mL,3:2)之间分配。然后将有机层用盐水洗涤两次,并用另外的EtOAc部分对含水层反萃取。将合并的有机层在Na2SO4上干燥,并蒸发得到粗制亚苄基化合物。将粗产物经硅胶色谱(2%MeOH/CH2Cl2至5%MeOH/CH2Cl2)纯化,得到作为白色固体的亚苄基化合物56(18.6g,96%)。如通过1H NMR测定最终的化合物含有一些DMF,不会干扰后续步骤。TLC(Rf=0.45,8%MeOH/CH2Cl2)。
1H NMR(300MHz,DMSO-d6/2%D2O):δ7.9-7.8(m,5H,Nap和H6),7.71-7.78和7.51-7.41(m,8H,Nap,Ph),6.32(dd,3H,J=11.1,18.2Hz,C=CH),5.84(d,1H,J=9.3Hz,H1’),5.77(s,1H,亚苄基CH),5.72(d,1H,J=7.8Hz,H5),5.61-5.56(m,2H,C=CH2),4.96(s,2H,CH2ONap),4.06(d,1H,J=10.5Hz,H4’),4.0-3.7(m,4H,H2’,H3’,和6’-CH2)。13CNMR(75MHz,DMSO-d6/2% D2O):δ162.8(C4),150.4(C2),140.8(C6),136.9(quat),136.0(quat),134.5(=CH-),132.2(quat),131.9(quat),128.5,127.7,127.1,127.0,125.7,125.5,125.3,125.2,125.1*,118.0(=CH2),101.8(亚苄基CH),101.2(C5),80.8(CH),78.6(C1’),77.9(CH),75.5(6’-CH2),72.9(CH2ONap),71.5(CH),70.6(quat)。注:*在128.5和125.1之间存在一个附加的碳,其与其它碳中的一个重叠。
LCMS(方法G1),保留时间=3.70min,m/z=529.1(M+H),551.1(M+Na),纯度>99%。
f)化合物57的制备(双羟化、高碘酸盐裂解以及还原成醇)
向经搅拌的化合物56(45g,85mmol)在95%丙酮(含水,350mL)中的溶液加入N-甲基氧化吗啉(48g,409mmol)和2.5%OsO4在异丙醇(70mg OsO4)中的溶液,并且使反应物在室温下搅拌4天。此时,将反应物通过硅藻土和硅胶过滤,用丙酮彻底洗脱。将所得的粗产物经柱色谱(2.5%至5%的甲醇/DCM)纯化,得到二醇(19.74g),将其立即用THF(175mL)、H2O(175mL)和NaIO4(15g,70mmol)处理。1h后,加入水和EtOAc,将有机层用饱和NaHCO3和盐水洗涤,然后干燥(Na2SO4),过滤,并且减压除去溶剂得到粗制醛。将此化合物立即用4当量的NaBH4的甲醇溶液在0℃处理1h,并且然后加入水和EtOAc,并用10%柠檬酸(含水)和盐水洗涤有机层,然后干燥(Na2SO4),过滤,减压除去溶剂得到粗制醇。将反应物通过硅胶色谱纯化,用甲醇/DCM洗脱得到化合物57(40%的总体收率)。1H NMR和LCMS与结构一致。
g)化合物58的制备(形成无水物)
向经搅拌的化合物57(1.28g,2.4mmol)和三苯膦(2.2g,8.4mmol)在无水THF(20mL)中的0℃混合物逐滴加入DIAD(1.6mL,8.4mmol)。在室温下搅拌18小时后,加入水和DCM,并用盐水洗涤有机层,然后干燥(Na2SO4),过滤,并减压除去溶剂,得到粗制双环产物。将此产物通过硅胶色谱纯化(2%甲醇/DCM至10%甲醇/DCM),得到纯的化合物58(1.11g,90%)。1H NMR和LCMS与结构一致。
h)化合物59的制备
将化合物58(1.1g,2.15mmol)溶于DMF(15mL),并且用NaH(60%分散在矿物油中,6.4mmol)处理15分钟。此时,加入NH4Cl和EtOAc,并且将有机层用水和盐水洗涤,然后干燥(NaCl2SO4),过滤,并减压除去溶剂得到粗制化合物。将此化合物通过硅胶色谱(3%甲醇/DCM)纯化,得到纯的化合物59(866mg,79%)。1H NMR和LCMS与结构一致。
i)化合物60的制备(移除Nap)
将化合物59(800mg,1.6mmol)溶于DCM(15mL),并且用水(1.5mL)和DDQ(529mg,2.3mmol)处理。搅拌16小时后,加入水和DCM,并用饱和NaHCO3和盐水洗涤有机层,然后干燥(Na2SO4),过滤,减压除去溶剂,得到粗制醇。将有机物用DCM反萃取数次。将粗制化合物与甲醇/DCM(10mL)和硅胶(1g)共蒸发。干燥后,将此直接应用于硅胶柱,并通过硅胶色谱(2%至6%甲醇/DCM)纯化,得到化合物60(409mg,70%)。1H NMR和LCMS与结构一致。
j)化合物61的制备(Barton-Macombie脱氧)
在0℃向经搅拌的化合物60(388mg,1.04mmol)和DMAP(343mg,2.8mmol)在CH3CN(14mL)中的混合物加入氯化硫代甲酸苯酯(196μL,1.45mmol)。搅拌4小时后,将反应混合物蒸发至干燥。将甲苯(13mL)、Bu4SnH(1.65mL,6.24mmol)和AIBN(15mg)在90℃加热4h。然后将反应物蒸发至干燥,通过硅胶色谱(1.5%至3%甲醇/DCM)纯化,得到化合物61(254mg,68%)。1H NMR和LCMS与结构一致。
k)化合物62的制备(去除亚苄基和DMT保护)
将经搅拌的化合物61(230mg,0.64mmol)的混合物在40psi的压力下经10%Pd/C(20mg)氢化10小时。将反应物过滤,蒸发,以及与甲苯共蒸发。减压干燥16小时后,加入吡啶(3mL)和DMTCl(187mg,0.55mmol)。让反应物在室温下搅拌4小时,并加入水和EtOAc,再用饱和NaHCO3和盐水洗涤有机层,然后干燥(Na2SO4),过滤,减压除去溶剂。将所得的泡沫通过硅胶色谱(10%至40%丙酮/CH2Cl2)纯化,得到化合物62(171mg,47%)。1H NMR和LCMS与结构一致。
实施例28
化合物65的制备
根据实施例27中所述的程序制备化合物62。
实施例29
化合物69的制备
化合物66的制备与已公布的程序类似(参见国际申请号:PCT/US2009/033373,2009年8月13日以WO 2009/100320公布)。
实施例30
化合物73的制备
化合物70的制备与已公布的程序类似(参见Wang等,J.Am.Chem.Soc.,2000,122 8595-8602)。
实施例31
化合物77的制备
化合物74的制备与已公布的程序类似(参见国际申请号:PCT/US2009/058011,2011年4月1日以WO 2010/036696公布)。
实施例32
化合物81的制备
化合物78的制备与已公布的程序类似(参见国际申请号:PCT/US2008/073379,2009年2月19日以WO 2009/023855公布)。
实施例33
化合物85的制备
化合物82的制备与已公布的程序类似(参见已公布的美国专利申请号:US 2004/0033967)。
实施例34
化合物89的制备
化合物86的制备与已公布的程序类似(参见国际申请号:PCT/US2010/022759,2010年8月12日以WO 2010/090969公布)。
实施例35
化合物93的制备
化合物90的制备与已公布的程序类似(参见国际申请号:PCT/US2010/022759,2010年8月12日以WO 2010/090969公布)。
实施例35a
制备化合物50的可供选择的方法
化合物1根据美国专利5,969,116中公布的程序而制备。化合物50的光谱分析与结构一致。
实施例36
聚化合物
根据本领域熟知的合成程序(它们中的一些在本文有所阐述),使用前述实施例(实施例13,化合物5;实施例15和25,化合物14;实施例16,化合物17;实施例17,化合物19和19a;实施例19,化合物24;实施例20,化合物27;实施例21,化合物30;实施例22,化合物32;实施例23,化合物36-38;实施例24,化合物42-44;实施例25,化合物47;实施例26和35a,化合物50;实施例28,化合物65;实施例29,化合物69;实施例30,化合物73;实施例31,化合物77;实施例32,化合物81;实施例33,化合物85;实施例34,化合物89以及实施例35,化合物93)中所述的亚磷酰胺化合物的一种或多种,制备具有至少一个式II、IIa、IIb、IIc、IId或IIe的5′修饰核苷的寡聚化合物。
使用标准的自动化寡核苷酸合成技术,将(E)-乙烯基二甲基膦酸酯亚磷酰胺化合物17并入到寡聚化合物中。
SEQ ID NO. 组成(5’至3’)
/ISIS NO.
05/505739 Pv-TesUfsGmUfsCmUfsCmUfsGmGfsUmCfsCmUfsUmsAfsCmsUfsUmsAesAe
两个核苷之间的下标“s”表示硫代磷酸酯核苷间键合(从5’到3’)。两个核苷之间不存在下标“s”表示磷酸二酯核苷间键合。5’-端的“Pv”表示5’-(E)-乙烯基膦酸酯基团(PO(OH)2(CH=CH-)。其后跟着下标f、m或e的核苷为糖修饰核苷。下标“f”表示2’-氟代修饰核苷,下标“m”表示2’-O-甲基修饰核苷,而下标“e”表示2’-O-甲氧基乙基(MOE)修饰核苷。
实施例37
通过固相技术制备在5′-末端包含如本文提供的修饰核苷的寡聚化合物的一般方法(制备505739)
除非另外指明,否则用于寡聚化合物合成的所有试剂和溶液均购自商业来源。标准亚磷酰胺和固体载体用于并入A、U、G、meC和C残基。将0.1M的2’-F和2’-O-Me亚磷酰胺的无水乙腈(CH3CN)溶液与溶于30%二氯甲烷(CH2Cl2)的无水CH3CN溶液的2’-O-MOE-5’-脱氧-5’-亚甲基二乙基膦酸酯和2’-O-MOE-脱氧-5’-乙烯基二甲基膦酸酯3’-亚磷酰胺一起用于合成。将寡聚化合物在VIMAD UnyLinkerTM固体载体上合成,并且将适量的固体载体填充在合成柱中。将溶于甲苯的二氯乙酸(6%)用作脱三苯甲基试剂。将N-甲基咪唑存在下的4,5-二氰基咪唑或1H-四唑的CH3CN溶液用作偶联步骤中的活化剂。寡聚化合物的合成在合成仪(GE Healthcare Bioscience)或ABI394合成仪(Applied Biosystems)上以2-200μmol的规模用下述程序进行。
将预装UnylinkerTM的固体载体在关闭柱底出口后装入合成柱,并且加入CH3CN以形成浆液。将该溶胀的载体结合的UnylinkerTM用在甲苯中含6%二氯乙酸的脱三苯甲基试剂处理,以得到自由羟基。在偶联步骤中,为偶联反应提供4至14当量的亚磷酰胺溶液10分钟。所有其它步骤均按标准方案进行。硫代磷酸酯键合通过使用0.05M的DDTT(3-((二甲基氨基-亚甲基)氨基)-3H-1,2,4-二噻唑-3-硫酮)在1:1吡啶/CH3CN中的溶液接触3分钟进行硫化而引入。使用叔丁基过氧化氢/CH3CN/水(10:87:3)的溶液反应12分钟,将亚磷酸三酯核苷间键合氧化成磷酸二酯核苷间键合。
组装所需的序列后,将结合寡聚化合物的固体载体用CH2Cl2洗涤,并且在高真空下干燥。4小时后,将干燥的固体载体悬浮在三甲基碘硅烷(TMSI)和吡啶的CH2Cl2溶液中,以除去5’-膦酸酯保护基团(乙基醚或甲基醚)。通过将0.75mL TMSI和0.53mL吡啶溶于28.2mL CH2Cl2而制备去保护溶液(每μmol固体载体使用0.5mL)。在室温下30分钟后,将反应用1M 2-巯基乙醇在1:1 TEA/CH3CN中的溶液淬灭(每μmol固体载体使用0.5mL)。倾析上清液,并用另外的2-巯基乙醇溶液洗涤固体载体。在室温下45分钟后,重复采用另外的2-巯基乙醇溶液的洗涤步骤。倾析上清液,并将固体载体结合的寡聚化合物悬浮到氨水(28-30重量%)在1M 2-巯基乙醇中的溶液(每μmol固体载体使用0.75mL),并在55℃加热2小时,以将寡聚化合物从固体载体裂解。
让裂解的溶液冷却到环境温度(20℃)24小时。然后过滤未结合的寡聚化合物,漂洗载体,用水:乙醇(1:1)再用水过滤。合并滤液,并浓缩至干燥。将所得的残余物在反相色谱柱(Waters X-Bridge C-185μm,19×250mm,A=5mM的三丁基醋酸铵在5%含水CH3CN中的溶液,B=CH3CN,0至90%的B持续80分钟,流速7mL min-1,λ=260nm)上通过HPLC纯化。将含全长寡聚化合物的级分收集到一起(通过LC/MS分析评估>95%),并在强阴离子交换色谱柱(GE HealthcareBioscience,Source 30Q,30μm,2.54×8cm,A=100mM的醋酸铵在30%含水CH3CN中的溶液,B=1.5M的NaBr的A溶液,0-40%的B持续60min,流速14mL min-1)上通过HPLC将三丁基铵反离子交换成钠。将残余物在反相色谱柱上通过HPLC脱盐,得到基于固体载体装载量分离的收率为15-20%的寡聚化合物。将未结合的寡聚化合物在Agilent 1100 MSD系统上通过离子对HPLC-MS分析进行表征。
SEQ ID NO. 组成(5’至3’)
/ISIS NO.
05/505739 Pv-TesUfsGmUfsCmUfsCmUfsGmGfsUmCfsCmUfsUmsAfsCmsUfsUmsAesAe
两个核苷之间的下标“s”表示硫代磷酸酯核苷间键合(从5’到3’)。两个核苷之间不存在下标“s”表示磷酸二酯核苷间键合。5’-端的“Pv”表示5’-(E)-乙烯基膦酸酯基团(PO(OH)2(CH=CH-)。其后跟着下标f、m或e的核苷为糖修饰核苷。下标“f”表示2’-氟代修饰核苷,下标“m”表示2’-O-甲基修饰核苷,而下标“e”表示2’-O-甲氧基乙基(MOE)修饰核苷。
实施例38
包含修饰5′-核苷(5’-脱氧-5’-亚甲基二乙基膦酸酯和5’-脱氧-5’-乙烯基二甲基膦酸酯)的修饰寡聚化合物的制备
以2或200μmol的规模根据实施例37中所述的程序制备寡聚化合物。将合成仪(GE Healthcare Bioscience)和ABI394合成仪(Applied Biosystems)均用于特定的运行。将未结合的寡聚化合物从固体载体上裂解,并通过离子对HPLC-MS进行分析。
两个核苷之间的下标“s”表示硫代磷酸酯核苷间键合(从5’到3’)。两个核苷之间不存在下标“s”表示磷酸二酯核苷间键合。5’-端的“Py”表示5’-亚甲基二乙基膦酸酯基团(PO(OCH2CH3)2(CH2CH2-)。5’-端的“Pv”表示5’-(E)-乙烯基膦酸酯基团(PO(OH)2(CH=CH-)。其后跟着下标f、m或e的核苷为糖修饰核苷。下标“f”表示2’-氟代修饰核苷,下标“m”表示2’-O-甲基修饰核苷,而下标“e”表示2’-O-甲氧基乙基(MOE)修饰核苷。
实施例39
制备C16-和胆固醇-共轭寡聚化合物95和96的一般方法
化合物94以及共轭寡聚化合物95和96根据已公布的程序(参见Swayze等,WO 2006/031461)和实施例37所述的程序制备。
实施例40
制备C16-和胆固醇-共轭寡聚化合物
如下所示的C16和胆固醇共轭寡聚化合物根据实施例38和39所述的程序制备。
两个核苷之间的下标“s”表示硫代磷酸酯核苷间键合(从5’到3’)。两个核苷之间不存在下标“s”表示磷酸二酯核苷间键合。5’-端的“Pv”表示5’-(E)-乙烯基膦酸酯基团(PO(OH)2(CH=CH-)。其后跟着下标f、m或e的核苷为糖修饰核苷。下标“f”表示2’-氟代修饰核苷,下标“m”表示2’-O-甲基修饰核苷,而下标“e”表示2’-O-甲氧基乙基(MOE)修饰核苷。通过吡咯烷连接基共轭的C16烷基链和胆固醇如下所示。
将共轭寡聚化合物从固体载体上裂解,然后通过离子对HPLC-MS进行分析。
计算 计算 实测
/ISIS NO. 质量(Da) 质量(Da)
06/526608 7879.2 7877.6
06/527155 8067.5 8066.5
实施例41
制备C10-共轭寡聚化合物99的一般方法
UnylinkerTM97可商购获得。共轭寡聚化合物99的制备与已公布的程序(参见Swayze等,WO 2006/031461)和实施例38和39中所述的程序类似。
实施例42
制备C10-共轭寡聚化合物
如下所示的C10-共轭寡聚化合物根据实施例41中所述的程序制备而得,其中将C10共轭物连接到寡聚化合物的3’端或任何内部位置。
两个核苷之间的下标“s”表示硫代磷酸酯核苷间键合(从5’到3’)。两个核苷之间不存在下标“s ”表示磷酸二酯核苷间键合。5’-端的“Pv”表示5’-(E)-乙烯基膦酸酯基团(PO(OH)2(CH=CH-)。其后跟着下标f、m或e的核苷为糖修饰核苷。下标“f”表示2’-氟代修饰核苷,下标“m”表示2’-O-甲基修饰核苷,而下标“e”表示2’-O-甲氧基乙基(MOE)修饰核苷。具有下标“C10”的核苷如下所示。
实施例43
靶向PTEN的修饰ssRNA-体外研究
制备一系列修饰单链RNA(ssRNA),并测试它们降低PTENmRNA在HeLa细胞和肝细胞中表达水平的能力。使用如本文所述的转染方法诸如LIPOFECTAMINETM2000(Lipo)或电穿孔(Electro),将HeLa细胞和肝细胞用如下所示的修饰单链寡聚化合物处理。使用通过将归一化mRNA水平相对于所用浓度的对数绘图而生成的线性回归方程来计算IC50。在单独的测定中测试带有星号(*)的修饰ssRNA,并且它们的IC50如下所示。
两个核苷之间的下标“s”表示硫代磷酸酯核苷间键合(从5’到3’)。两个核苷之间不存在下标“s”表示磷酸二酯核苷间键合。5’-端的“Px”表示5’-(E)-(F-乙烯基)膦酸酯基团(PO(OH)2(CF=CH-)。5’-端的“Pz”表示5’-(Z)-(F-乙烯基)膦酸酯基团(PO(OH)2(CF=CH-)。5’-端的“Pyy”表示5’-(F-亚甲基)膦酸酯基团(PO(OH)2(CHFCH2-)。5’-端的“P”表示5’-磷酸酯基团。5’-端的“Py”表示5’-亚甲基膦酸酯基团(PO(OH)2(CH2CH2-)。5’-端的“Pv”表示5’-(E)-乙烯基膦酸酯基团(PO(OH)2(CH=CH-)。meC表示5-甲基胞嘧啶核苷。其后跟着下标“d”的核苷为β-D-2’-脱氧核糖核苷。其后跟着下标f、m或e的核苷为糖修饰核苷。下标“f”表示2’-氟代修饰核苷,下标“m”表示2’-O-甲基修饰核苷,而下标“e”表示2’-O-甲氧基乙基(MOE)修饰核苷。具有下标“R”的核苷如下所示。
下标R。
实施例44
靶向PTEN的在3’端包含修饰的修饰ssRNA体外研究
制备一系列在3’末端包含修饰的修饰单链RNA(ssRNA),并测试它们降低PTEN mRNA在HeLa细胞中表达水平的能力。使用如本文所述的LIPOFECTAMINETM2000作为转染试剂将HeLa细胞用如下所示的修饰单链寡聚化合物处理。使用通过将归一化mRNA水平相对于所用浓度的对数绘图而生成的线性回归方程来计算IC50,并且它们如下所示。
两个核苷之间的下标“s”表示硫代磷酸酯核苷间键合(从5’到3’)。两个核苷之间不存在下标“s”表示磷酸二酯核苷间键合。5’-端的“Pv”表示5’-(E)-乙烯基膦酸酯基团(PO(OH)2(CH=CH-)。其后跟着下标“d”的核苷为β-D-2’-脱氧核糖核苷。其后跟着下标f、m或e的核苷为糖修饰核苷。下标“f”表示2’-氟代修饰核苷,下标“m”表示2’-O-甲基修饰核苷,而下标“e”表示2’-O-甲氧基乙基(MOE)修饰核苷。
实施例45
靶向PTEN的包含至少一个FHNA的修饰ssRNA-体外研究
制备一系列包含至少一个FHNA的修饰单链RNA(ssRNA),并测试它们降低PTEN mRNA在HeLa细胞中表达水平的能力。使用如本文所述的LIPOFECTAMINETM2000作为转染试剂将HeLa细胞用如下所示的修饰单链寡聚化合物处理。使用通过将归一化mRNA水平相对于所用浓度的对数绘图而生成的线性回归方程来计算IC50,并且它们如下所示。在单独的测定中测试带有星号(*)的修饰ssRNA,并且它们的IC50如下所示。
两个核苷之间的下标“s”表示硫代磷酸酯核苷间键合(从5’到3’)。两个核苷之间不存在下标“s”表示磷酸二酯核苷间键合。5’-端的“Pv”表示5’-(E)-乙烯基膦酸酯基团(PO(OH)2(CH=CH-)。其后跟着下标f、m、e或h的核苷为糖修饰核苷。下标“f”表示2’-氟代修饰核苷,下标“m”表示2’-O-甲基修饰核苷,而下标“e”表示2’-O-甲氧基乙基(MOE)修饰核苷。具有下标“h”的核苷为FHNA,并如下所示。
下标h或FHNA。
实施例46
靶向FVII、eIF4E和靶X的修饰ssRNA-体外研究
制备一系列修饰的单链RNA(ssRNA),并测试它们降低FVII、eIF4E和靶X mRNA在肝细胞或HeLa细胞中表达水平的能力。使用如本文所述的LIPOFECTAMINETM2000作为转染试剂将肝细胞或HeLa细胞用如下所示的修饰单链寡聚化合物处理。使用通过将归一化mRNA水平相对于所用浓度的对数绘图而生成的线性回归方程来计算IC50。独立地针对每种靶降低情况执行测定,并且修饰ssRNA的IC50如下所示。序列X1、X2和X3靶向靶X。
两个核苷之间的下标“s”表示硫代磷酸酯核苷间键合(从5’到3’)。两个核苷之间不存在下标“s”表示磷酸二酯核苷间键合。″N″为U、T、C、meC、G或A核苷。5’-端的“Pv”表示5’-(E)-乙烯基膦酸酯基团(PO(OH)2(CH=CH-)。meC表示5-甲基胞嘧啶核苷。其后跟着下标“d”的核苷为β-D-2’-脱氧核糖核苷。其后跟着下标“r”的核苷为核糖核苷。其后跟着下标f、m、e或k的核苷为糖修饰核苷。下标“f”表示2’-氟代修饰核苷,下标“m”表示2’-O-甲基修饰核苷,而下标“e”表示2’-O-甲氧基乙基(MOE)修饰核苷。具有下标“k”的核苷为(S)-cEt,并如下所示。
下标k或(S)-cEt。
实施例47
修饰ssRNA的稳定性评价-体内研究
修饰ssRNA的稳定性可使用如本文所述的程序进行体内评价。
从用修饰ssRNA处理过的BALB/C小鼠中在冰上收获和采集肝组织。
将100-200mg样品切碎并在400μL匀化缓冲液(20mM Tris,pH 8,20mM EDTA,0.1M NaCl,0.5%NP-40)中匀化。针对在含有10μg内标(SEQ ID NO:24,Isis NO:355868,27-mer,2′-O-甲氧基乙基修饰的硫代磷酸酯寡核苷酸)的对照肝脏匀浆(400μg/mL)的500μL等分试样中的每种ssRNA,绘制范围在1μg-75μg的标准曲线。然后使用酚/氯仿和如下所述的固相萃取技术萃取组织匀浆,其中将300μLNH4OH和800μL酚/氯仿/异戊醇用于酚/氯仿萃取。
酚/氯仿萃取
在0、5、10、20、30、40和60分钟时间点评价ssRNA的稳定性,以下除外:SEQ ID NO:25,Isis NO:408877,其在0、15、30、60、120和240分钟的时间点进行评价;以及SEQ ID NO:25,Isis NO:409044,其在0、0.5、1、2、4、8和18小时的时间点进行评价。在萃取前,将最终浓度为2.5μM的内标(SEQ ID NO:24,Isis NO:355868,27-mer,2′-O-甲氧基乙基修饰的硫代磷酸酯寡核苷酸)加到每个样品中。将样品用70μL NH4OH和240μL酚/氯仿/异戊醇(25:24:1)萃取。在14000rpm离心2分钟后,将上清液除去。将剩余的萃取物用另外的500μL水涡旋,除去含水层,并在14000rpm离心2分钟后与上清液合并。
固相萃取
将1M(500μL)的三乙基醋酸铵溶液加入到上清液。在9000rpm离心20分钟后,将混合物的含水层上样到预先调理的BiotageTM苯基固相萃取板(SPE板)。用水将SPE板洗涤数次。然后将样品用1.5mL1%的TEA在90%MeOH中的溶液洗脱,并通过蛋白沉淀板(PhenomenexTM)过滤。将洗脱液蒸发至干燥,并用50%的淬灭缓冲液(8M脲,50mM EDTA)和水稀释到200μL,然后进样。
LC-MS
将Agilent 1100系列LC/MSD系统串联到质谱仪。让质谱仪以电喷雾负电离模式运行。将雾化器氮气设置在325psi,并将干燥氮气设置在12L/min。干燥温度为325℃。将样品(25μL/孔)通过自动进样器引入,并通过XBridge OST C18 2.5μm 2.1mm×50mm HPLC色谱柱使用300μL/min的流速在55℃执行反相色谱分析。离子对缓冲液由以下组成:A:5mM三丁基醋酸铵(TBAA)在20%乙腈中的溶液,以及B:5mM TBAA在90%乙腈中的溶液,并且上样缓冲液为25mMTBAA在25%乙腈中的溶液。以30%至70%B持续9min,然后以80%B持续11min的梯度进行分离。
使用MSD ChemStation软件,通过丰度最高的离子的提取离子色谱图进行寡核苷酸和内标的定量分析。
实施例48
靶向PTEN的修饰ssRNA-多剂量体内研究
对6周龄的BALB/C小鼠(Jackson Laboratory,Bar Harbor,ME)皮下注射如下所示的得自实施例43的靶向PTEN的修饰单链寡聚化合物或盐水对照,一日两次,持续两天,剂量为25mg/kg(总计100mg);或一日两次,持续五天,剂量为30mg/kg(总计300mg)。也将在侧翼中具有2′-O-MOE修饰核苷的5-10-5缺口寡聚物(116847)包括在内,以用于比较。在最后一次施用后48小时,将小鼠处死。将肝脏组织匀化,并使用如本文所述的实时PCR定量mRNA水平,以用于与未处理的对照水平(%UTC)进行比较。结果以每个处理组相对于注射盐水对照的PTEN mRNA表达的平均%列出。在此类体内研究中进行的附加分析包括来自用修饰ssRNA处理过的动物的血浆化学、肝脏和肾脏重量以及肝脏、肾脏和脾脏组织。还相对于注射盐水的小鼠测量了血清中以下肝脏转氨酶水平:丙氨酸转氨酶(ALT)和天冬氨酸转氨酶(AST),结果如下所示。
相对于用盐水处理的对照,对于用修饰单链寡聚化合物处理的动物,ALT和AST水平以及肾脏和肝脏重量在正常限度内。组织病理学报告也表明用寡聚化合物处理过的动物中无肝脏、肾脏和脾脏异常。
实施例49
靶向PTEN的修饰ssRNA的稳定性:多剂量体内研究
使用如实施例47中所述的程序评价了实施例48中的修饰ssRNA的体内稳定性。对6周龄的BALB/C小鼠(Jackson Laboratory,BarHarbor,ME)皮下注射如下所示的靶向PTEN的修饰ssRNA,一日两次,持续两天,剂量为25mg/kg(总计100mg);或一日两次,持续五天,剂量为30mg/kg(总计300mg)。也将在侧翼中具有2′-O-MOE修饰核苷的5-10-5缺口寡聚物(116847)包括在内,以用于比较。在最后一次施用后48小时,将小鼠处死。
使用Chemstation软件,通过丰度最高电荷态(-4)的提取离子色谱图进行寡核苷酸标准品的定量分析。包含5’-末端膦酸酯基团的全长修饰ssRNA的肝脏浓度(μg/g)通过LC/MS测量,并且结果在下文给出。
实施例50
靶向PTEN的修饰ssRNA-体内剂量反应研究
对6周龄的BALB/C小鼠(Jackson Laboratory,Bar Harbor,ME)皮下注射靶向PTEN的修饰单链寡聚化合物(522247),一日两次,持续一天、两天、四天或六天,剂量为25mg/kg。也将在侧翼中具有2′-O-MOE修饰核苷的5-10-5缺口寡聚物(116847)包括在内,以用于比较。在最后一次施用后48小时,将小鼠处死。将肝脏组织匀化,并使用实时PCR定量mRNA水平,并将其归一化到如本文所述的RIBOGREENTM,以用于与未处理的对照水平(%UTC)进行比较。结果以每个处理组相对于注射盐水对照的PTEN mRNA表达的平均%列出。
相对于用盐水处理的对照,在用修饰的单链寡聚化合物处理的动物中,ALT水平、肝脏、肾脏、脾脏和体重在正常限度内。
实施例51
靶向FVII的修饰ssRNA体内剂量反应和稳定性研究
对6周龄的BALB/C小鼠(Jackson Laboratory,Bar Harbor,ME)皮下注射靶向FVII的修饰单链寡聚化合物,一日两次,持续一天、两天或四天,剂量为25mg/kg(529100)或5mg/kg(457869)。在最后一次施用后48小时,将小鼠处死。将肝脏组织匀化,并且使用实时PCR定量mRNA水平,并将其归一化到如本文所述的亲环素,以用于与未处理的对照水平(%UTC)进行比较。结果以每个处理组相对于注射盐水对照的PTEN mRNA表达的平均%列出。
还使用如实施例47中所述的程序评价了修饰ssRNA的体内稳定性。使用Chemstation软件,通过丰度最高电荷态(-4)的提取离子色谱图进行寡核苷酸标准品的定量分析。包含5’-末端膦酸酯基团的全长修饰ssRNA的肝脏浓度(μg/g)通过LC/MS测量,并且结果在下文给出。
SEQ ID NO. 组成(5’至3’)
/ISIS NO.
18/529100 Pv-TesUfsAmAfsGmAfsCmUfsUmGfsAmGfsAmUfsGmsAfsUmsCfsCmsAesAe
26/457869 GesTesAes meCesGes meCdsTdsTdsGdsGdsTds meCds meCds meCdsTdsAes meCesAesTesGe
两个核苷之间的下标“s”表示硫代磷酸酯核苷间键合(从5’到3’)。两个核苷之间不存在下标“s”表示磷酸二酯核苷间键合。5’-端的“Pv”表示5’-(E)-乙烯基膦酸酯基团(PO(OH)2(CH=CH-)。meC表示5-甲基胞嘧啶核苷。其后跟着下标“d”的核苷为β-D-2’-脱氧核糖核苷。其后跟着下标f、m或e的核苷为糖修饰核苷。下标“f”表示2’-氟代修饰核苷,下标“m”表示2’-O-甲基修饰核苷,而下标“e”表示2’-O-甲氧基乙基(MOE)修饰核苷。
实施例52
靶向靶X的修饰ssRNA-体内多剂量和稳定性研究
对6周龄的BALB/C小鼠(Jackson Laboratory,Bar Harbor,ME)皮下注射得自实施例46的靶向靶X的修饰单链寡聚合物或盐水对照,一日两次,持续六天,剂量为25mg/kg(总计300mg);或一日两次,持续两天,剂量为25mg/kg(总计100mg)。在最后一次施用后48小时,将小鼠处死。将肝脏组织匀化,并且使用实时PCR定量mRNA水平,并将其归一化到如本文所述的亲环素,以用于与未处理的对照水平(%UTC)进行比较。结果以每个处理组相对于注射盐水对照的靶X mRNA表达的平均%列出。
还使用如实施例47中所述的程序评价了修饰ssRNA的体内稳定性。使用Chemstation软件,通过丰度最高电荷态(-4)的提取离子色谱图进行寡核苷酸标准品的定量分析。包含5’-末端膦酸脂基团的全长修饰ssRNA的肝脏浓度(μg/g)通过LC/MS测量,并且结果在下面提供。
Claims (58)
1.一种具有式Ic的化合物:
其中:
T1为任选保护的磷部分;
M1为H、OH或OR1;
M2为OH、OR1或N(R1)(R2);
每个R1和R2独立地为C1-C6烷基或取代的C1-C6烷基;
r为0或1;
A具有下式之一:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(R3)(R4);
Q3为O、S、N(R5)或C(R6)(R7);
每个R3、R4、R5、R6和R7独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
M3为O、S、NR14、C(R15)(R16)、C(R15)(R16)C(R17)(R18)、C(R15)=C(R17)、OC(R15)(R16)或OC(R15)(Bx2);
R14为H、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
R15、R16、R17和R18各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
Bx1为杂环碱基部分;
或者若存在Bx2,则Bx2为杂环碱基部分,而Bx1为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
J4、J5、J6和J7各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
或者J4与J5或J7之一形成桥,其中所述桥包含选自O、S、NR19、C(R20)(R21)、C(R20)=C(R21)、C[=C(R20)(R21)]和C(=O)的1至3个连接的双基基团,而J5、J6和J7的其它两个各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
每个R19、R20和R21独立地为H、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X1]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X1为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=X2)J1、OC(=X2)N(J1)(J2)和C(=X2)N(J1)(J2);
X2为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;以及
当j为1时,Z不为卤素或N(E2)(E3)。
2.如权利要求1所述的化合物,其中M3为O、CH=CH、OCH2或OC(H)(Bx2)。
3.如权利要求1所述的化合物,其中M3为O。
4.如权利要求1至3任一项所述的化合物,其中J4、J5、J6和J7均为H。
5.如权利要求1至3任一项所述的化合物,其中J4与J5或J7之一形成桥。
6.如权利要求1至5任一项所述的化合物,其中A具有下式之
其中:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基或取代的C1-C6烷氧基。
7.如权利要求6所述的化合物,其中Q1和Q2均为H。
8.如权利要求6所述的化合物,其中Q1和Q2各自独立地为H或卤素。
9.如权利要求6所述的化合物,其中Q1和Q2之一为H,而Q1和Q2的另一个为F、CH3或OCH3。
11.如权利要求10所述的化合物,其中Rb为O,而Ra和Rc各自独立地为OCH3、OCH2CH3或OCH(CH3)2。
12.如权利要求1至11任一项所述的化合物,其中r为0,M1为O(CH2)2CN,而M2为N[CH(CH3)2]2。
13.如权利要求1至12任一项所述的化合物,其中G为卤素、OCH3、OCH2F、OCHF2、OCF3、OCH2CH3、O(CH2)2F、OCH2CHF2、OCH2CF3、OCH2-CH=CH2、O(CH2)2-OCH3、O(CH2)2-SCH3、O(CH2)2-OCF3、O(CH2)3-N(R10)(R11)、O(CH2)2-ON(R10)(R11)、O(CH2)2-O(CH2)2-N(R10)(R11)、OCH2C(=O)-N(R10)(R11)、OCH2C(=O)-N(R12)-(CH2)2-N(R10)(R11)或O(CH2)2-N(R12)-C(=NR13)[N(R10)(R11)],其中R10、R11、R12和R13各自独立地为H或C1-C6烷基。
14.如权利要求1至12任一项所述的化合物,其中G为卤素、OCH3、OCF3、OCH2CH3、OCH2CF3、OCH2-CH=CH2、O(CH2)2-OCH3、O(CH2)2-O(CH2)2-N(CH3)2、OCH2C(=O)-N(H)CH3、OCH2C(=O)-N(H)-(CH2)2-N(CH3)2或OCH2-N(H)-C(=NH)NH2。
15.如权利要求1至12任一项所述的化合物,其中G为F、OCH3或O(CH2)2-OCH3。
16.如权利要求1至12任一项所述的化合物,其中G为O(CH2)2-OCH3。
17.如权利要求1至16任一项所述的化合物,其中所述杂环碱基部分为嘧啶、取代的嘧啶、嘌呤或取代的嘌呤。
18.如权利要求1至17任一项所述的化合物,其中所述杂环碱基部分为尿嘧啶、胸腺嘧啶、胞嘧啶、5-甲基胞嘧啶、腺嘌呤或鸟嘌呤。
19.如权利要求1所述的化合物,其具有式Ie:
其中Bx为选自嘧啶、取代的嘧啶、嘌呤或取代的嘌呤的杂环碱基部分。
20.如权利要求19所述的化合物,其中A具有下式:
其中Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基或取代的C1-C6烷氧基。
21.如权利要求20所述的化合物,其中Q1和Q2各自独立地为H、F、CH3或OCH3。
23.一种包含具有式IIc的5′-末端化合物的寡聚化合物:
其中:
T1为任选保护的磷部分;
T2为将式IIc的所述化合物连接到所述寡聚化合物的核苷间连接基团;
A具有下式之一:
Q1和Q2各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(R3)(R4);
Q3为O、S、N(R5)或C(R6)(R7);
每个R3、R4、R5、R6和R7独立地为H、C1-C6烷基、取代的C1-C6烷基或C1-C6烷氧基;
M3为O、S、NR14、C(R15)(R16)、C(R15)(R16)C(R17)(R18)、C(R15)=C(R17)、OC(R15)(R16)或OC(R15)(Bx2);
R14为H、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
R15、R16、R17和R18各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
Bx1为杂环碱基部分;
或者若存在Bx2,则Bx2为杂环碱基部分,而Bx1为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
J4、J5、J6和J7各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
或者J4与J5或J7之一形成桥,其中所述桥包含选自O、S、NR19、C(R20)(R21)、C(R20)=C(R21)、C[=C(R20)(R21)]和C(=O)的1至3个连接的双基基团,而J5、J6和J7的其它两个各自独立地为H、卤素、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
每个R19、R20和R21独立地为H、C1-C6烷基、取代的C1-C6烷基、C1-C6烷氧基、取代的C1-C6烷氧基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基或取代的C2-C6炔基;
G为H、OH、卤素或O-[C(R8)(R9)]n-[(C=O)m-X1]j-Z;
每个R8和R9独立地为H、卤素、C1-C6烷基或取代的C1-C6烷基;
X1为O、S或N(E1);
Z为H、卤素、C1-C6烷基、取代的C1-C6烷基、C2-C6烯基、取代的C2-C6烯基、C2-C6炔基、取代的C2-C6炔基或N(E2)(E3);
E1、E2和E3各自独立地为H、C1-C6烷基或取代的C1-C6烷基;
n为1至约6;
m为0或1;
j为0或1;
每个取代的基团包含一个或多个任选保护的独立地选自以下的取代基团:卤素、OJ1、N(J1)(J2)、=NJ1、SJ1、N3、CN、OC(=X2)J1、OC(=X2)N(J1)(J2)和C(=X2)N(J1)(J2);
X2为O、S或NJ3;
每个J1、J2和J3独立地为H或C1-C6烷基;
当j为1时,Z不为卤素或N(E2)(E3);并且
其中所述寡聚化合物包含8至40个单体亚单位,并可与靶核酸的至少一部分杂交。
24.如权利要求23所述的寡聚化合物,其中M3为O、CH=CH、OCH2或OC(H)(Bx2)。
25.如权利要求23所述的寡聚化合物,其中M3为O。
26.如权利要求23至25任一项所述的寡聚化合物,其中J4、J5、J6和J7均为H。
27.如权利要求23至25任一项所述的寡聚化合物,其中J4与J5或J7之一形成桥。
29.如权利要求28所述的寡聚化合物,其中Q1和Q2均为H。
30.如权利要求28所述的寡聚化合物,其中Q1和Q2各自独立地为H或卤素。
31.如权利要求28所述的寡聚化合物,其中Q1和Q2之一为H,而Q1和Q2的另一个为F、CH3或OCH3。
33.如权利要求32所述的寡聚化合物,其中Rb为O,而Ra和Rc各自独立地为OCH3、OCH2CH3或OCH(CH3)2。
34.如权利要求23至33任一项所述的寡聚化合物,其中G为卤素、OCH3、OCH2F、OCHF2、OCF3、OCH2CH3、O(CH2)2F、OCH2CHF2、OCH2CF3、OCH2-CH=CH2、O(CH2)2-OCH3、O(CH2)2-SCH3、O(CH2)2-OCF3、O(CH2)3-N(R10)(R11)、O(CH2)2-ON(R10)(R11)、O(CH2)2-O(CH2)2-N(R10)(R11)、OCH2C(=O)-N(R10)(R11)、OCH2C(=O)-N(R12)-(CH2)2-N(R10)(R11)或O(CH2)2-N(R12)-C(=NR13)[N(R10)(R11)],其中R10、R11、R12和R13各自独立地为H或C1-C6烷基。
35.如权利要求23至33任一项所述的寡聚化合物,其中G为卤素、OCH3、OCF3、OCH2CH3、OCH2CF3、OCH2-CH=CH2、O(CH2)2-OCH3、O(CH2)2-O(CH2)2-N(CH3)2、OCH2C(=O)-N(H)CH3、OCH2C(=O)-N(H)-(CH2)2-N(CH3)2或OCH2-N(H)-C(=NH)NH2。
36.如权利要求23至33任一项所述的寡聚化合物,其中G为F、OCH3或O(CH2)2-OCH3。
37.如权利要求23至33任一项所述的寡聚化合物,其中G为O(CH2)2-OCH3。
38.如权利要求23至37任一项所述的寡聚化合物,其中所述杂环碱基部分为嘧啶、取代的嘧啶、嘌呤或取代的嘌呤。
39.如权利要求23至38任一项所述的寡聚化合物,其中所述杂环碱基部分为尿嘧啶、胸腺嘧啶、胞嘧啶、5-甲基胞嘧啶、腺嘌呤或鸟嘌呤。
40.如权利要求23所述的寡聚化合物,其中所述5′-末端化合物具有式IId:
其中Bx为选自嘧啶、取代的嘧啶、嘌呤或取代的嘌呤的杂环碱基部分。
42.如权利要求40所述的寡聚化合物,其中Q1和Q2各自独立地为H、F、CH3或OCH3。
45.如权利要求23至44任一项所述的寡聚化合物,其中每个核苷间连接基团独立地为磷酸二酯核苷间连接基团或硫代磷酸酯核苷间连接基团。
46.如权利要求23至44任一项所述的寡聚化合物,其中基本上每个核苷间连接基团都为硫代磷酸酯核苷间连接基团。
47.一种双链组合物,所述双链组合物包含:
第一寡聚化合物和第二寡聚化合物,其中所述第一寡聚化合物与所述第二寡聚化合物互补,并且所述第二寡聚化合物与核酸靶互补;
所述第一和第二寡聚化合物中的至少一者为根据权利要求23至46任一项所述的寡聚化合物;并且
其中所述组合物任选地包含一个或多个5′或3′末端基团。
48.一种抑制基因表达的方法,所述方法包括使细胞与如权利要求23至46任一项所述的寡聚化合物或如权利要求47所述的双链组合物接触,其中所述寡聚化合物包含约8至约40个单体亚单位并与靶RNA互补。
49.如权利要求48所述的方法,其中所述细胞在动物中。
50.如权利要求48所述的方法,其中所述细胞在人中。
51.如权利要求48所述的方法,其中所述靶RNA选自mRNA、pre-mRNA和micro RNA。
52.如权利要求48所述的方法,其中所述靶RNA为mRNA。
53.如权利要求478所述的方法,其中所述靶RNA为人mRNA。
54.如权利要求48所述的方法,其中所述靶RNA被裂解,从而抑制其功能。
55.如权利要求48所述的方法,进一步包括检测靶RNA的水平。
56.一种抑制基因表达的体外方法,所述方法包括使一种或多种细胞或组织与如权利要求23至46任一项所述的寡聚化合物或如权利要求47所述的双链组合物接触。
57.一种如权利要求23至46任一项所述的寡聚化合物或如权利要求47所述的双链组合物用于体内抑制基因表达的方法,所述方法包括使一种或多种细胞、组织或动物与如权利要求23至46任一项所述的寡聚化合物或如权利要求47所述的双链组合物接触。
58.一种如权利要求23至46任一项所述的寡聚化合物或如权利要求47所述的双链组合物,用于药物治疗。
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32899010P | 2010-04-28 | 2010-04-28 | |
US61/328,990 | 2010-04-28 | ||
US39310010P | 2010-10-14 | 2010-10-14 | |
US61/393,100 | 2010-10-14 | ||
US40968410P | 2010-11-03 | 2010-11-03 | |
US61/409,684 | 2010-11-03 | ||
PCT/US2011/033968 WO2011139702A2 (en) | 2010-04-28 | 2011-04-26 | Modified nucleosides and oligomeric compounds prepared therefrom |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103154014A true CN103154014A (zh) | 2013-06-12 |
CN103154014B CN103154014B (zh) | 2015-03-25 |
Family
ID=44904335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180021008.0A Active CN103154014B (zh) | 2010-04-28 | 2011-04-26 | 修饰核苷、其类似物以及由它们制备的寡聚化合物 |
Country Status (6)
Country | Link |
---|---|
US (4) | US8993738B2 (zh) |
EP (2) | EP2601204B1 (zh) |
JP (2) | JP6005628B2 (zh) |
KR (1) | KR101869570B1 (zh) |
CN (1) | CN103154014B (zh) |
WO (1) | WO2011139702A2 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107075516A (zh) * | 2014-08-20 | 2017-08-18 | 阿尔尼拉姆医药品有限公司 | 经修饰的双链rna试剂 |
CN110072530A (zh) * | 2016-09-02 | 2019-07-30 | 迪克纳制药公司 | 4′-磷酸酯类似物和包含其的寡核苷酸 |
CN110204583A (zh) * | 2019-07-01 | 2019-09-06 | 中国人民解放军军事科学院军事医学研究院 | 修饰核苷、核苷酸和修饰核酸聚合物及其制备方法和应用 |
CN112105625A (zh) * | 2018-03-07 | 2020-12-18 | 赛诺菲 | 核苷酸前体、核苷酸类似物以及含其的寡聚化合物 |
CN112424354A (zh) * | 2017-04-05 | 2021-02-26 | 赛伦斯治疗有限责任公司 | 在反义链的5’末端具有乙烯基膦酸酯的siRNA |
WO2023246935A1 (zh) * | 2022-06-23 | 2023-12-28 | 安沛治疗有限公司 | 包含喹啉修饰的靶特异性核酸分子 |
CN118063533A (zh) * | 2023-09-18 | 2024-05-24 | 广州必贝特医药股份有限公司 | 修饰的核苷酸化合物、其寡聚核苷酸及其应用 |
Families Citing this family (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8987435B2 (en) | 2008-10-24 | 2015-03-24 | Isis Pharmaceuticals, Inc. | Oligomeric compounds and methods |
KR101881596B1 (ko) | 2008-12-02 | 2018-07-24 | 웨이브 라이프 사이언시스 재팬 인코포레이티드 | 인 원자 변형된 핵산의 합성 방법 |
CN102596204B (zh) | 2009-07-06 | 2016-11-23 | 波涛生命科学有限公司 | 新的核酸前药及其使用方法 |
JP6006120B2 (ja) | 2010-02-08 | 2016-10-12 | アイオーニス ファーマシューティカルズ, インコーポレーテッドIonis Pharmaceuticals,Inc. | 対立遺伝子多様体の選択的低減 |
EP2625186B1 (en) * | 2010-04-28 | 2016-07-27 | Ionis Pharmaceuticals, Inc. | 5' modified nucleosides and oligomeric compounds prepared therefrom |
CN103154014B (zh) * | 2010-04-28 | 2015-03-25 | Isis制药公司 | 修饰核苷、其类似物以及由它们制备的寡聚化合物 |
WO2012039448A1 (ja) | 2010-09-24 | 2012-03-29 | 株式会社キラルジェン | 不斉補助基 |
ES2626488T3 (es) | 2011-07-19 | 2017-07-25 | Wave Life Sciences Pte. Ltd. | Procedimientos para la síntesis de ácidos nucleicos funcionalizados |
DK2742135T4 (da) | 2011-08-11 | 2020-07-13 | Ionis Pharmaceuticals Inc | Bindingsmodificerede gapped oligomeriske forbindelser og anvendelser deraf |
EP3640332A1 (en) * | 2011-08-29 | 2020-04-22 | Ionis Pharmaceuticals, Inc. | Oligomer-conjugate complexes and their use |
US9976138B2 (en) * | 2011-08-29 | 2018-05-22 | Ionis Pharmaceuticals, Inc. | Methods and compounds useful in conditions related to repeat expansion |
AU2012358238B2 (en) | 2011-12-22 | 2017-12-07 | C. Frank Bennett | Methods for modulating Metastasis-Associated-in-Lung-Adenocarcinoma-Transcript-1(MALAT-1) expression |
EP2812342B1 (en) | 2012-02-08 | 2017-11-15 | Ionis Pharmaceuticals, Inc. | Modulation of rna by repeat targeting |
WO2013142514A1 (en) | 2012-03-19 | 2013-09-26 | Isis Pharmaceuticals, Inc. | Methods and compositions for modulating alpha-1-antitrypsin expression |
CA2866392C (en) | 2012-03-30 | 2023-10-24 | Washington University | Methods for modulating tau expression for reducing seizure and modifying a neurodegenerative syndrome |
US9518261B2 (en) | 2012-05-22 | 2016-12-13 | Ionis Pharmaceuticals, Inc. | Modulation of enhancer RNA mediated gene expression |
CA2877905A1 (en) | 2012-06-25 | 2014-01-03 | Isis Pharmaceuticals, Inc. | Modulation of ube3a-ats expression |
SG11201500232UA (en) | 2012-07-13 | 2015-04-29 | Wave Life Sciences Pte Ltd | Chiral control |
EP2873674B1 (en) | 2012-07-13 | 2020-05-06 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant |
AU2013288048A1 (en) | 2012-07-13 | 2015-01-22 | Wave Life Sciences Ltd. | Asymmetric auxiliary group |
ES2907254T3 (es) | 2012-10-11 | 2022-04-22 | Ionis Pharmaceuticals Inc | Un compuesto antisentido modificado para su uso en el tratamiento de la enfermedad de Kennedy |
US9175291B2 (en) | 2012-10-11 | 2015-11-03 | Isis Pharmaceuticals Inc. | Modulation of androgen receptor expression |
WO2014059356A2 (en) | 2012-10-12 | 2014-04-17 | Isis Pharmaceuticals, Inc. | Selective antisense compounds and uses thereof |
US9701708B2 (en) | 2013-01-31 | 2017-07-11 | Ionis Pharmaceuticals, Inc. | Method of preparing oligomeric compounds using modified coupling protocols |
ES2961686T3 (es) | 2013-02-14 | 2024-03-13 | Ionis Pharmaceuticals Inc | Modulación de la expresión de apolipoproteína C-III (APOCIII) en poblaciones deficientes en lipoproteína lipasa (LPLD) |
WO2014130607A1 (en) | 2013-02-22 | 2014-08-28 | Sirna Therapeutics, Inc. | SHORT INTERFERING NUCLEIC ACID (siNA) MOLECULES CONTAINING A 2' INTERNUCLEOSIDE LINKAGE |
RU2745324C2 (ru) | 2013-03-14 | 2021-03-23 | Ионис Фармасьютикалз, Инк. | Композиции и способы модулирования экспрессии tau |
CN111593051A (zh) | 2013-05-01 | 2020-08-28 | Ionis制药公司 | 组合物和方法 |
EP3011028B1 (en) * | 2013-06-21 | 2019-06-12 | Ionis Pharmaceuticals, Inc. | Compositions and methods for modulation of target nucleic acids |
EP3017044B1 (en) | 2013-07-02 | 2020-02-26 | Ionis Pharmaceuticals, Inc. | Modulators of growth hormone receptor |
TWI772856B (zh) | 2013-07-19 | 2022-08-01 | 美商百健Ma公司 | 用於調節τ蛋白表現之組合物 |
EP3027617A4 (en) | 2013-07-31 | 2017-04-12 | Ionis Pharmaceuticals, Inc. | Methods and compounds useful in conditions related to repeat expansion |
DK3043827T3 (da) | 2013-09-13 | 2019-08-26 | Ionis Pharmaceuticals Inc | Modulatorer af komplement faktor b |
CA2931510A1 (en) | 2013-12-24 | 2015-07-02 | Ionis Pharmaceuticals, Inc. | Modulation of angiopoietin-like 3 expression |
EP3095461A4 (en) | 2014-01-15 | 2017-08-23 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant having immunity induction activity, and immunity induction activator |
US10322173B2 (en) | 2014-01-15 | 2019-06-18 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant having anti-allergic activity, and anti-allergic agent |
EP3095459A4 (en) | 2014-01-15 | 2017-08-23 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant having antitumor effect and antitumor agent |
CN106068325B (zh) | 2014-01-16 | 2021-07-09 | 波涛生命科学有限公司 | 手性设计 |
EP3647318B1 (en) | 2014-04-28 | 2021-06-30 | Ionis Pharmaceuticals, Inc. | Linkage modified oligomeric compounds |
PE20170010A1 (es) | 2014-05-01 | 2017-03-04 | Ionis Pharmaceuticals Inc | Composiciones y metodos para modular la expresion del factor b del complemento |
WO2015168661A1 (en) * | 2014-05-01 | 2015-11-05 | Smith Larry J | METHODS AND MODIFICATIONS THAT PRODUCE ssRNAi COMPOUNDS WITH ENHANCED ACTIVITY, POTENCY AND DURATION OF EFFECT |
EP3137605B1 (en) | 2014-05-01 | 2020-10-28 | Ionis Pharmaceuticals, Inc. | Compositions and methods for modulating angiopoietin-like 3 expression |
EP3137604B1 (en) | 2014-05-01 | 2020-07-15 | Ionis Pharmaceuticals, Inc. | Compositions and methods for modulating growth hormone receptor expression |
US10364433B2 (en) | 2014-11-14 | 2019-07-30 | The Regents Of The University Of California | Modulation of AGPAT5 expression |
WO2016086104A1 (en) | 2014-11-25 | 2016-06-02 | Ionis Pharmaceuticals, Inc. | Modulation of ube3a-ats expression |
CA2977965C (en) | 2015-02-26 | 2021-12-21 | Ionis Pharmaceuticals, Inc. | Allele specific modulators of p23h rhodopsin |
WO2016161378A1 (en) | 2015-04-03 | 2016-10-06 | University Of Massachusetts | Oligonucleotide compounds for treatment of preeclampsia and other angiogenic disorders |
US10633653B2 (en) | 2015-08-14 | 2020-04-28 | University Of Massachusetts | Bioactive conjugates for oligonucleotide delivery |
BR112018003291A2 (pt) | 2015-11-06 | 2018-09-25 | Ionis Pharmaceuticals, Inc. | modulando a expressão da apolipoproteina (a) |
JP2019503394A (ja) | 2016-01-31 | 2019-02-07 | ユニバーシティ・オブ・マサチューセッツUniversity Of Massachusetts | 分岐オリゴヌクレオチド |
KR102639586B1 (ko) | 2016-06-06 | 2024-02-23 | 애로우헤드 파마슈티컬스 인코포레이티드 | 5'-시클로-포스포네이트 변형된 뉴클레오티드 |
US11753638B2 (en) | 2016-08-12 | 2023-09-12 | University Of Massachusetts | Conjugated oligonucleotides |
JOP20190065A1 (ar) | 2016-09-29 | 2019-03-28 | Ionis Pharmaceuticals Inc | مركبات وطرق لتقليل التعبير عن tau |
WO2018067900A1 (en) | 2016-10-06 | 2018-04-12 | Ionis Pharmaceuticals, Inc. | Method of conjugating oligomeric compounds |
CA3043768A1 (en) | 2016-11-29 | 2018-06-07 | PureTech Health LLC | Exosomes for delivery of therapeutic agents |
EP3642341A4 (en) | 2017-06-23 | 2021-06-16 | University Of Massachusetts | TWO-DAY SELF-RELEASING SIRNA AND RELATED PROCEDURES |
EP3691657A4 (en) | 2017-10-04 | 2021-07-21 | Avidity Biosciences, Inc. | NUCLEIC ACID-POLYPEPTIDE COMPOSITIONS AND USES THEREOF |
WO2019105435A1 (zh) | 2017-12-01 | 2019-06-06 | 苏州瑞博生物技术有限公司 | 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途 |
WO2019105414A1 (zh) | 2017-12-01 | 2019-06-06 | 苏州瑞博生物技术有限公司 | 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途 |
US11492620B2 (en) | 2017-12-01 | 2022-11-08 | Suzhou Ribo Life Science Co., Ltd. | Double-stranded oligonucleotide, composition and conjugate comprising double-stranded oligonucleotide, preparation method thereof and use thereof |
JP7365052B2 (ja) | 2017-12-01 | 2023-10-19 | スーチョウ リボ ライフ サイエンス カンパニー、リミテッド | 核酸、当該核酸を含む組成物及び複合体ならびに調製方法と使用 |
CN118236391A (zh) | 2017-12-01 | 2024-06-25 | 苏州瑞博生物技术股份有限公司 | 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途 |
US11633482B2 (en) | 2017-12-29 | 2023-04-25 | Suzhou Ribo Life Science Co., Ltd. | Conjugates and preparation and use thereof |
MA51583A (fr) * | 2018-01-04 | 2020-11-11 | Avidity Biosciences Inc | Molécules d'acide nucléique hétéroduplex et leurs utilisations |
KR20200140322A (ko) | 2018-04-05 | 2020-12-15 | 사일런스 테라퓨틱스 게엠베하 | 안티센스 가닥의 5' 단부에 비닐포스포네이트를 갖는 siRNA |
KR20210018267A (ko) | 2018-05-07 | 2021-02-17 | 알닐람 파마슈티칼스 인코포레이티드 | 간외 전달 |
SG11202101288TA (en) | 2018-08-10 | 2021-03-30 | Univ Massachusetts | Modified oligonucleotides targeting snps |
CN111655849B (zh) | 2018-08-21 | 2024-05-10 | 苏州瑞博生物技术股份有限公司 | 一种核酸、含有该核酸的药物组合物和缀合物及其用途 |
CN111655297A (zh) | 2018-09-30 | 2020-09-11 | 苏州瑞博生物技术有限公司 | 一种siRNA缀合物及其制备方法和用途 |
US11166976B2 (en) | 2018-11-08 | 2021-11-09 | Aligos Therapeutics, Inc. | S-antigen transport inhibiting oligonucleotide polymers and methods |
CA3131700A1 (en) | 2019-02-27 | 2020-09-03 | Ionis Pharmaceuticals, Inc. | Modulators of malat1 expression |
BR112021019427A2 (pt) | 2019-03-29 | 2021-11-30 | Ionis Pharmaceuticals Inc | Compostos e métodos para modular ube3a-ats |
WO2020247782A1 (en) | 2019-06-06 | 2020-12-10 | Avidity Biosciences, Inc. | Nucleic acid-polypeptide compositions and uses thereof |
US12006499B2 (en) | 2019-06-06 | 2024-06-11 | Avidity Biosciences, Inc. | Una amidites and uses thereof |
AU2020329155A1 (en) | 2019-08-09 | 2022-03-10 | University Of Massachusetts | Chemically modified oligonucleotides targeting SNPs |
JP2022544587A (ja) | 2019-08-15 | 2022-10-19 | アイオーニス ファーマシューティカルズ, インコーポレーテッド | 結合修飾オリゴマー化合物及びその使用 |
KR20220163960A (ko) | 2020-03-06 | 2022-12-12 | 알리고스 테라퓨틱스 인코포레이티드 | 변경된 짧은 개재성 핵산(siNA) 분자 및 이의 용도 |
JP2023537798A (ja) | 2020-03-19 | 2023-09-06 | アビディティー バイオサイエンシーズ,インク. | 顔面肩甲上腕型筋ジストロフィーを処置するための組成物および方法 |
US20220380770A1 (en) | 2020-04-10 | 2022-12-01 | Aligos Therapeutics, Inc. | SHORT INTERFERING NUCLEIC ACID (siNA) MOLECULES AND USES THEREOF FOR CORONAVIRUS DISEASES |
CN117677699A (zh) | 2021-06-23 | 2024-03-08 | 马萨诸塞大学 | 用于治疗先兆子痫和其他血管生成病症的优化抗flt1寡核苷酸化合物 |
AU2022343115A1 (en) | 2021-09-08 | 2024-03-14 | Aligos Therapeutics, Inc. | Modified short interfering nucleic acid (sina) molecules and uses thereof |
CA3231695A1 (en) | 2021-09-08 | 2023-03-16 | Aligos Therapeutics, Inc. | Modified short interfering nucleic acid (sina) molecules and uses thereof |
KR20240055874A (ko) | 2021-09-16 | 2024-04-29 | 어비디티 바이오사이언시스 인크. | 안면견갑상완 근이영양증을 치료하는 조성물 및 방법 |
US20230346819A1 (en) * | 2022-02-22 | 2023-11-02 | Sanegene Bio Usa Inc. | 5'-modified carbocyclic ribonucleotide derivatives and methods of use |
AU2023234536A1 (en) | 2022-03-16 | 2024-09-26 | Empirico Inc. | Galnac compositions for improving sirna bioavailability |
WO2024062413A1 (en) * | 2022-09-21 | 2024-03-28 | Janssen Biotech, Inc. | Novel stabilized nucleoside phosphates and analogues thereof |
Family Cites Families (232)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2699808A (en) | 1944-10-06 | 1955-01-18 | Mark W Lowe | Apparatus for peeling tomatoes |
US2699508A (en) | 1951-12-21 | 1955-01-11 | Selectronics Inc | Method of mounting and construction of mounting for low frequency piezoelectric crystals |
US3687808A (en) | 1969-08-14 | 1972-08-29 | Univ Leland Stanford Junior | Synthetic polynucleotides |
US5132418A (en) | 1980-02-29 | 1992-07-21 | University Patents, Inc. | Process for preparing polynucleotides |
US4500707A (en) | 1980-02-29 | 1985-02-19 | University Patents, Inc. | Nucleosides useful in the preparation of polynucleotides |
US4458066A (en) | 1980-02-29 | 1984-07-03 | University Patents, Inc. | Process for preparing polynucleotides |
US4469863A (en) | 1980-11-12 | 1984-09-04 | Ts O Paul O P | Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof |
US4668777A (en) | 1981-03-27 | 1987-05-26 | University Patents, Inc. | Phosphoramidite nucleoside compounds |
US4973679A (en) | 1981-03-27 | 1990-11-27 | University Patents, Inc. | Process for oligonucleo tide synthesis using phosphormidite intermediates |
US4415732A (en) | 1981-03-27 | 1983-11-15 | University Patents, Inc. | Phosphoramidite compounds and processes |
US5023243A (en) | 1981-10-23 | 1991-06-11 | Molecular Biosystems, Inc. | Oligonucleotide therapeutic agent and method of making same |
US4476301A (en) | 1982-04-29 | 1984-10-09 | Centre National De La Recherche Scientifique | Oligonucleotides, a process for preparing the same and their application as mediators of the action of interferon |
JPS5927900A (ja) | 1982-08-09 | 1984-02-14 | Wakunaga Seiyaku Kk | 固定化オリゴヌクレオチド |
FR2540122B1 (fr) | 1983-01-27 | 1985-11-29 | Centre Nat Rech Scient | Nouveaux composes comportant une sequence d'oligonucleotide liee a un agent d'intercalation, leur procede de synthese et leur application |
US4605735A (en) | 1983-02-14 | 1986-08-12 | Wakunaga Seiyaku Kabushiki Kaisha | Oligonucleotide derivatives |
US4948882A (en) | 1983-02-22 | 1990-08-14 | Syngene, Inc. | Single-stranded labelled oligonucleotides, reactive monomers and methods of synthesis |
US4824941A (en) | 1983-03-10 | 1989-04-25 | Julian Gordon | Specific antibody to the native form of 2'5'-oligonucleotides, the method of preparation and the use as reagents in immunoassays or for binding 2'5'-oligonucleotides in biological systems |
DE3329892A1 (de) | 1983-08-18 | 1985-03-07 | Köster, Hubert, Prof. Dr., 2000 Hamburg | Verfahren zur herstellung von oligonucleotiden |
USRE34069E (en) | 1983-08-18 | 1992-09-15 | Biosyntech Gmbh | Process for the preparation of oligonucleotides |
US4587044A (en) | 1983-09-01 | 1986-05-06 | The Johns Hopkins University | Linkage of proteins to nucleic acids |
US5118800A (en) | 1983-12-20 | 1992-06-02 | California Institute Of Technology | Oligonucleotides possessing a primary amino group in the terminal nucleotide |
US5118802A (en) | 1983-12-20 | 1992-06-02 | California Institute Of Technology | DNA-reporter conjugates linked via the 2' or 5'-primary amino group of the 5'-terminal nucleoside |
US5550111A (en) | 1984-07-11 | 1996-08-27 | Temple University-Of The Commonwealth System Of Higher Education | Dual action 2',5'-oligoadenylate antiviral derivatives and uses thereof |
FR2567892B1 (fr) | 1984-07-19 | 1989-02-17 | Centre Nat Rech Scient | Nouveaux oligonucleotides, leur procede de preparation et leurs applications comme mediateurs dans le developpement des effets des interferons |
US5258506A (en) | 1984-10-16 | 1993-11-02 | Chiron Corporation | Photolabile reagents for incorporation into oligonucleotide chains |
US5430136A (en) | 1984-10-16 | 1995-07-04 | Chiron Corporation | Oligonucleotides having selectably cleavable and/or abasic sites |
US5367066A (en) | 1984-10-16 | 1994-11-22 | Chiron Corporation | Oligonucleotides with selectably cleavable and/or abasic sites |
US4828979A (en) | 1984-11-08 | 1989-05-09 | Life Technologies, Inc. | Nucleotide analogs for nucleic acid labeling and detection |
FR2575751B1 (fr) | 1985-01-08 | 1987-04-03 | Pasteur Institut | Nouveaux nucleosides de derives de l'adenosine, leur preparation et leurs applications biologiques |
US5166315A (en) | 1989-12-20 | 1992-11-24 | Anti-Gene Development Group | Sequence-specific binding polymers for duplex nucleic acids |
US5405938A (en) | 1989-12-20 | 1995-04-11 | Anti-Gene Development Group | Sequence-specific binding polymers for duplex nucleic acids |
US5034506A (en) | 1985-03-15 | 1991-07-23 | Anti-Gene Development Group | Uncharged morpholino-based polymers having achiral intersubunit linkages |
US5185444A (en) | 1985-03-15 | 1993-02-09 | Anti-Gene Deveopment Group | Uncharged morpolino-based polymers having phosphorous containing chiral intersubunit linkages |
US5235033A (en) | 1985-03-15 | 1993-08-10 | Anti-Gene Development Group | Alpha-morpholino ribonucleoside derivatives and polymers thereof |
US4762779A (en) | 1985-06-13 | 1988-08-09 | Amgen Inc. | Compositions and methods for functionalizing nucleic acids |
US5317098A (en) | 1986-03-17 | 1994-05-31 | Hiroaki Shizuya | Non-radioisotope tagging of fragments |
JPS638396A (ja) | 1986-06-30 | 1988-01-14 | Wakunaga Pharmaceut Co Ltd | ポリ標識化オリゴヌクレオチド誘導体 |
DE3788914T2 (de) | 1986-09-08 | 1994-08-25 | Ajinomoto Kk | Verbindungen zur Spaltung von RNS an eine spezifische Position, Oligomere, verwendet bei der Herstellung dieser Verbindungen und Ausgangsprodukte für die Synthese dieser Oligomere. |
US5276019A (en) | 1987-03-25 | 1994-01-04 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
US5264423A (en) | 1987-03-25 | 1993-11-23 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
US4904582A (en) | 1987-06-11 | 1990-02-27 | Synthetic Genetics | Novel amphiphilic nucleic acid conjugates |
WO1988010264A1 (en) | 1987-06-24 | 1988-12-29 | Howard Florey Institute Of Experimental Physiology | Nucleoside derivatives |
US5585481A (en) | 1987-09-21 | 1996-12-17 | Gen-Probe Incorporated | Linking reagents for nucleotide probes |
US5188897A (en) | 1987-10-22 | 1993-02-23 | Temple University Of The Commonwealth System Of Higher Education | Encapsulated 2',5'-phosphorothioate oligoadenylates |
US4924624A (en) | 1987-10-22 | 1990-05-15 | Temple University-Of The Commonwealth System Of Higher Education | 2,',5'-phosphorothioate oligoadenylates and plant antiviral uses thereof |
US5525465A (en) | 1987-10-28 | 1996-06-11 | Howard Florey Institute Of Experimental Physiology And Medicine | Oligonucleotide-polyamide conjugates and methods of production and applications of the same |
DE3738460A1 (de) | 1987-11-12 | 1989-05-24 | Max Planck Gesellschaft | Modifizierte oligonukleotide |
WO1989005358A1 (en) | 1987-11-30 | 1989-06-15 | University Of Iowa Research Foundation | Dna and rna molecules stabilized by modifications of the 3'-terminal phosphodiester linkage and their use as nucleic acid probes and as therapeutic agents to block the expression of specifically targeted genes |
US5403711A (en) | 1987-11-30 | 1995-04-04 | University Of Iowa Research Foundation | Nucleic acid hybridization and amplification method for detection of specific sequences in which a complementary labeled nucleic acid probe is cleaved |
US5082830A (en) | 1988-02-26 | 1992-01-21 | Enzo Biochem, Inc. | End labeled nucleotide probe |
WO1989009221A1 (en) | 1988-03-25 | 1989-10-05 | University Of Virginia Alumni Patents Foundation | Oligonucleotide n-alkylphosphoramidates |
US5278302A (en) | 1988-05-26 | 1994-01-11 | University Patents, Inc. | Polynucleotide phosphorodithioates |
US5109124A (en) | 1988-06-01 | 1992-04-28 | Biogen, Inc. | Nucleic acid probe linked to a label having a terminal cysteine |
US5216141A (en) | 1988-06-06 | 1993-06-01 | Benner Steven A | Oligonucleotide analogs containing sulfur linkages |
US5175273A (en) | 1988-07-01 | 1992-12-29 | Genentech, Inc. | Nucleic acid intercalating agents |
US5262536A (en) | 1988-09-15 | 1993-11-16 | E. I. Du Pont De Nemours And Company | Reagents for the preparation of 5'-tagged oligonucleotides |
US5194599A (en) | 1988-09-23 | 1993-03-16 | Gilead Sciences, Inc. | Hydrogen phosphonodithioate compositions |
US5512439A (en) | 1988-11-21 | 1996-04-30 | Dynal As | Oligonucleotide-linked magnetic particles and uses thereof |
US5599923A (en) | 1989-03-06 | 1997-02-04 | Board Of Regents, University Of Tx | Texaphyrin metal complexes having improved functionalization |
US5457183A (en) | 1989-03-06 | 1995-10-10 | Board Of Regents, The University Of Texas System | Hydroxylated texaphyrins |
US5391723A (en) | 1989-05-31 | 1995-02-21 | Neorx Corporation | Oligonucleotide conjugates |
US5256775A (en) | 1989-06-05 | 1993-10-26 | Gilead Sciences, Inc. | Exonuclease-resistant oligonucleotides |
US4958013A (en) | 1989-06-06 | 1990-09-18 | Northwestern University | Cholesteryl modified oligonucleotides |
US5451463A (en) | 1989-08-28 | 1995-09-19 | Clontech Laboratories, Inc. | Non-nucleoside 1,3-diol reagents for labeling synthetic oligonucleotides |
US5134066A (en) | 1989-08-29 | 1992-07-28 | Monsanto Company | Improved probes using nucleosides containing 3-dezauracil analogs |
US5254469A (en) | 1989-09-12 | 1993-10-19 | Eastman Kodak Company | Oligonucleotide-enzyme conjugate that can be used as a probe in hybridization assays and polymerase chain reaction procedures |
US5591722A (en) | 1989-09-15 | 1997-01-07 | Southern Research Institute | 2'-deoxy-4'-thioribonucleosides and their antiviral activity |
US5399676A (en) | 1989-10-23 | 1995-03-21 | Gilead Sciences | Oligonucleotides with inverted polarity |
US5721218A (en) | 1989-10-23 | 1998-02-24 | Gilead Sciences, Inc. | Oligonucleotides with inverted polarity |
US5264562A (en) | 1989-10-24 | 1993-11-23 | Gilead Sciences, Inc. | Oligonucleotide analogs with novel linkages |
ATE269870T1 (de) | 1989-10-24 | 2004-07-15 | Isis Pharmaceuticals Inc | 2'-modifizierte oligonukleotide |
US5264564A (en) | 1989-10-24 | 1993-11-23 | Gilead Sciences | Oligonucleotide analogs with novel linkages |
US5292873A (en) | 1989-11-29 | 1994-03-08 | The Research Foundation Of State University Of New York | Nucleic acids labeled with naphthoquinone probe |
US5177198A (en) | 1989-11-30 | 1993-01-05 | University Of N.C. At Chapel Hill | Process for preparing oligoribonucleoside and oligodeoxyribonucleoside boranophosphates |
US5130302A (en) | 1989-12-20 | 1992-07-14 | Boron Bilogicals, Inc. | Boronated nucleoside, nucleotide and oligonucleotide compounds, compositions and methods for using same |
US5486603A (en) | 1990-01-08 | 1996-01-23 | Gilead Sciences, Inc. | Oligonucleotide having enhanced binding affinity |
US5623065A (en) | 1990-08-13 | 1997-04-22 | Isis Pharmaceuticals, Inc. | Gapped 2' modified oligonucleotides |
US5587470A (en) | 1990-01-11 | 1996-12-24 | Isis Pharmaceuticals, Inc. | 3-deazapurines |
US5670633A (en) | 1990-01-11 | 1997-09-23 | Isis Pharmaceuticals, Inc. | Sugar modified oligonucleotides that detect and modulate gene expression |
US5681941A (en) | 1990-01-11 | 1997-10-28 | Isis Pharmaceuticals, Inc. | Substituted purines and oligonucleotide cross-linking |
US5459255A (en) | 1990-01-11 | 1995-10-17 | Isis Pharmaceuticals, Inc. | N-2 substituted purines |
US5578718A (en) | 1990-01-11 | 1996-11-26 | Isis Pharmaceuticals, Inc. | Thiol-derivatized nucleosides |
US5646265A (en) | 1990-01-11 | 1997-07-08 | Isis Pharmceuticals, Inc. | Process for the preparation of 2'-O-alkyl purine phosphoramidites |
US5587361A (en) | 1991-10-15 | 1996-12-24 | Isis Pharmaceuticals, Inc. | Oligonucleotides having phosphorothioate linkages of high chiral purity |
US5220007A (en) | 1990-02-15 | 1993-06-15 | The Worcester Foundation For Experimental Biology | Method of site-specific alteration of RNA and production of encoded polypeptides |
US5149797A (en) | 1990-02-15 | 1992-09-22 | The Worcester Foundation For Experimental Biology | Method of site-specific alteration of rna and production of encoded polypeptides |
AU7579991A (en) | 1990-02-20 | 1991-09-18 | Gilead Sciences, Inc. | Pseudonucleosides and pseudonucleotides and their polymers |
US5214136A (en) | 1990-02-20 | 1993-05-25 | Gilead Sciences, Inc. | Anthraquinone-derivatives oligonucleotides |
US5321131A (en) | 1990-03-08 | 1994-06-14 | Hybridon, Inc. | Site-specific functionalization of oligodeoxynucleotides for non-radioactive labelling |
US5470967A (en) | 1990-04-10 | 1995-11-28 | The Dupont Merck Pharmaceutical Company | Oligonucleotide analogs with sulfamate linkages |
GB9009980D0 (en) | 1990-05-03 | 1990-06-27 | Amersham Int Plc | Phosphoramidite derivatives,their preparation and the use thereof in the incorporation of reporter groups on synthetic oligonucleotides |
EP0745689A3 (en) | 1990-05-11 | 1996-12-11 | Microprobe Corporation | A dipstick for a nucleic acid hybridization assay |
US5602240A (en) | 1990-07-27 | 1997-02-11 | Ciba Geigy Ag. | Backbone modified oligonucleotide analogs |
US5688941A (en) | 1990-07-27 | 1997-11-18 | Isis Pharmaceuticals, Inc. | Methods of making conjugated 4' desmethyl nucleoside analog compounds |
US5610289A (en) | 1990-07-27 | 1997-03-11 | Isis Pharmaceuticals, Inc. | Backbone modified oligonucleotide analogues |
US5618704A (en) | 1990-07-27 | 1997-04-08 | Isis Pharmacueticals, Inc. | Backbone-modified oligonucleotide analogs and preparation thereof through radical coupling |
US5623070A (en) | 1990-07-27 | 1997-04-22 | Isis Pharmaceuticals, Inc. | Heteroatomic oligonucleoside linkages |
US5223618A (en) | 1990-08-13 | 1993-06-29 | Isis Pharmaceuticals, Inc. | 4'-desmethyl nucleoside analog compounds |
US5218105A (en) | 1990-07-27 | 1993-06-08 | Isis Pharmaceuticals | Polyamine conjugated oligonucleotides |
US5541307A (en) | 1990-07-27 | 1996-07-30 | Isis Pharmaceuticals, Inc. | Backbone modified oligonucleotide analogs and solid phase synthesis thereof |
US5489677A (en) | 1990-07-27 | 1996-02-06 | Isis Pharmaceuticals, Inc. | Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms |
US5677437A (en) | 1990-07-27 | 1997-10-14 | Isis Pharmaceuticals, Inc. | Heteroatomic oligonucleoside linkages |
US5378825A (en) | 1990-07-27 | 1995-01-03 | Isis Pharmaceuticals, Inc. | Backbone modified oligonucleotide analogs |
DE69126530T2 (de) | 1990-07-27 | 1998-02-05 | Isis Pharmaceutical, Inc., Carlsbad, Calif. | Nuklease resistente, pyrimidin modifizierte oligonukleotide, die die gen-expression detektieren und modulieren |
US5608046A (en) | 1990-07-27 | 1997-03-04 | Isis Pharmaceuticals, Inc. | Conjugated 4'-desmethyl nucleoside analog compounds |
US5138045A (en) | 1990-07-27 | 1992-08-11 | Isis Pharmaceuticals | Polyamine conjugated oligonucleotides |
US5386023A (en) | 1990-07-27 | 1995-01-31 | Isis Pharmaceuticals | Backbone modified oligonucleotide analogs and preparation thereof through reductive coupling |
BR9106729A (pt) | 1990-08-03 | 1993-07-20 | Sterling Winthrop Inc | Composto,processos para inibir a degradacao por nuclease de compostos e para estabilizar sequencias de nicleotideos ou oligonucleosideos,composicao utilizavel para inibir expressao de genes e processo para inibir expressao de genes em um mamifero necessitando de tal tratamento |
US5245022A (en) | 1990-08-03 | 1993-09-14 | Sterling Drug, Inc. | Exonuclease resistant terminally substituted oligonucleotides |
US5177196A (en) | 1990-08-16 | 1993-01-05 | Microprobe Corporation | Oligo (α-arabinofuranosyl nucleotides) and α-arabinofuranosyl precursors thereof |
US5512667A (en) | 1990-08-28 | 1996-04-30 | Reed; Michael W. | Trifunctional intermediates for preparing 3'-tailed oligonucleotides |
US5214134A (en) | 1990-09-12 | 1993-05-25 | Sterling Winthrop Inc. | Process of linking nucleosides with a siloxane bridge |
US5561225A (en) | 1990-09-19 | 1996-10-01 | Southern Research Institute | Polynucleotide analogs containing sulfonate and sulfonamide internucleoside linkages |
CA2092002A1 (en) | 1990-09-20 | 1992-03-21 | Mark Matteucci | Modified internucleoside linkages |
US5432272A (en) | 1990-10-09 | 1995-07-11 | Benner; Steven A. | Method for incorporating into a DNA or RNA oligonucleotide using nucleotides bearing heterocyclic bases |
KR930702373A (ko) | 1990-11-08 | 1993-09-08 | 안토니 제이. 페이네 | 합성 올리고누클레오티드에 대한 다중 리포터(Reporter)그룹의 첨합 |
US5672697A (en) * | 1991-02-08 | 1997-09-30 | Gilead Sciences, Inc. | Nucleoside 5'-methylene phosphonates |
US5371241A (en) | 1991-07-19 | 1994-12-06 | Pharmacia P-L Biochemicals Inc. | Fluorescein labelled phosphoramidites |
US5571799A (en) | 1991-08-12 | 1996-11-05 | Basco, Ltd. | (2'-5') oligoadenylate analogues useful as inhibitors of host-v5.-graft response |
DE59208572D1 (de) | 1991-10-17 | 1997-07-10 | Ciba Geigy Ag | Bicyclische Nukleoside, Oligonukleotide, Verfahren zu deren Herstellung und Zwischenprodukte |
US5594121A (en) | 1991-11-07 | 1997-01-14 | Gilead Sciences, Inc. | Enhanced triple-helix and double-helix formation with oligomers containing modified purines |
US5484908A (en) | 1991-11-26 | 1996-01-16 | Gilead Sciences, Inc. | Oligonucleotides containing 5-propynyl pyrimidines |
TW393513B (en) | 1991-11-26 | 2000-06-11 | Isis Pharmaceuticals Inc | Enhanced triple-helix and double-helix formation with oligomers containing modified pyrimidines |
EP0637965B1 (en) | 1991-11-26 | 2002-10-16 | Isis Pharmaceuticals, Inc. | Enhanced triple-helix and double-helix formation with oligomers containing modified pyrimidines |
US5792608A (en) | 1991-12-12 | 1998-08-11 | Gilead Sciences, Inc. | Nuclease stable and binding competent oligomers and methods for their use |
US5359044A (en) | 1991-12-13 | 1994-10-25 | Isis Pharmaceuticals | Cyclobutyl oligonucleotide surrogates |
US5700922A (en) | 1991-12-24 | 1997-12-23 | Isis Pharmaceuticals, Inc. | PNA-DNA-PNA chimeric macromolecules |
US5565552A (en) | 1992-01-21 | 1996-10-15 | Pharmacyclics, Inc. | Method of expanded porphyrin-oligonucleotide conjugate synthesis |
US5595726A (en) | 1992-01-21 | 1997-01-21 | Pharmacyclics, Inc. | Chromophore probe for detection of nucleic acid |
FR2687679B1 (fr) | 1992-02-05 | 1994-10-28 | Centre Nat Rech Scient | Oligothionucleotides. |
US5633360A (en) | 1992-04-14 | 1997-05-27 | Gilead Sciences, Inc. | Oligonucleotide analogs capable of passive cell membrane permeation |
US5434257A (en) | 1992-06-01 | 1995-07-18 | Gilead Sciences, Inc. | Binding compentent oligomers containing unsaturated 3',5' and 2',5' linkages |
NL9300058A (nl) | 1992-06-18 | 1994-01-17 | Stichting Rega V Z W | 1,5-anhydrohexitol nucleoside analoga en farmaceutisch gebruik daarvan. |
EP0577558A2 (de) | 1992-07-01 | 1994-01-05 | Ciba-Geigy Ag | Carbocyclische Nukleoside mit bicyclischen Ringen, Oligonukleotide daraus, Verfahren zu deren Herstellung, deren Verwendung und Zwischenproduckte |
US5272250A (en) | 1992-07-10 | 1993-12-21 | Spielvogel Bernard F | Boronated phosphoramidate compounds |
US5652355A (en) | 1992-07-23 | 1997-07-29 | Worcester Foundation For Experimental Biology | Hybrid oligonucleotide phosphorothioates |
AU678769B2 (en) | 1992-07-27 | 1997-06-12 | Hybridon, Inc. | Oligonucleotide alkylphosphonothioates |
RU95114435A (ru) | 1992-12-14 | 1997-05-20 | Ханивелл Инк. (Us) | Система с бесщеточным двигателем постоянного тока |
US5574142A (en) | 1992-12-15 | 1996-11-12 | Microprobe Corporation | Peptide linkers for improved oligonucleotide delivery |
ES2086997T3 (es) | 1993-01-25 | 1996-07-01 | Hybridon Inc | Oligonucleotido-alquilfosfonatos y -alquilfosfonotioatos. |
US5314893A (en) | 1993-01-25 | 1994-05-24 | Bristol-Myers Squibb Co. | Antiviral tetrahydropyrans |
US5476925A (en) | 1993-02-01 | 1995-12-19 | Northwestern University | Oligodeoxyribonucleotides including 3'-aminonucleoside-phosphoramidate linkages and terminal 3'-amino groups |
GB9304620D0 (en) | 1993-03-06 | 1993-04-21 | Ciba Geigy Ag | Compounds |
GB9304618D0 (en) | 1993-03-06 | 1993-04-21 | Ciba Geigy Ag | Chemical compounds |
WO1994022864A1 (en) | 1993-03-30 | 1994-10-13 | Sterling Winthrop Inc. | Acyclic nucleoside analogs and oligonucleotide sequences containing them |
AU6412794A (en) | 1993-03-31 | 1994-10-24 | Sterling Winthrop Inc. | Oligonucleotides with amide linkages replacing phosphodiester linkages |
WO1994022890A1 (en) | 1993-03-31 | 1994-10-13 | Sterling Winthop Inc. | Novel 5'-substituted nucleosides and oligomers produced therefrom |
DK0626387T3 (da) | 1993-05-12 | 1999-09-27 | Novartis Ag | Nukleosider og oligonukleotider med 2'-ethergrupper |
GB9311682D0 (en) | 1993-06-05 | 1993-07-21 | Ciba Geigy Ag | Chemical compounds |
US5502177A (en) | 1993-09-17 | 1996-03-26 | Gilead Sciences, Inc. | Pyrimidine derivatives for labeled binding partners |
US5457187A (en) | 1993-12-08 | 1995-10-10 | Board Of Regents University Of Nebraska | Oligonucleotides containing 5-fluorouracil |
AU691550B2 (en) | 1993-12-09 | 1998-05-21 | Thomas Jefferson University | Compounds and methods for site-directed mutations in eukaryotic cells |
US5446137B1 (en) | 1993-12-09 | 1998-10-06 | Behringwerke Ag | Oligonucleotides containing 4'-substituted nucleotides |
US5519134A (en) | 1994-01-11 | 1996-05-21 | Isis Pharmaceuticals, Inc. | Pyrrolidine-containing monomers and oligomers |
US5596091A (en) | 1994-03-18 | 1997-01-21 | The Regents Of The University Of California | Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides |
US5627053A (en) | 1994-03-29 | 1997-05-06 | Ribozyme Pharmaceuticals, Inc. | 2'deoxy-2'-alkylnucleotide containing nucleic acid |
US5625050A (en) | 1994-03-31 | 1997-04-29 | Amgen Inc. | Modified oligonucleotides and intermediates useful in nucleic acid therapeutics |
US5646269A (en) | 1994-04-28 | 1997-07-08 | Gilead Sciences, Inc. | Method for oligonucleotide analog synthesis |
US5525711A (en) | 1994-05-18 | 1996-06-11 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Pteridine nucleotide analogs as fluorescent DNA probes |
US5597696A (en) | 1994-07-18 | 1997-01-28 | Becton Dickinson And Company | Covalent cyanine dye oligonucleotide conjugates |
US5864031A (en) | 1994-07-29 | 1999-01-26 | Amgen Inc. | Process for preparing 5-dithio-modified oligonucleotides |
US5580731A (en) | 1994-08-25 | 1996-12-03 | Chiron Corporation | N-4 modified pyrimidine deoxynucleotides and oligonucleotide probes synthesized therewith |
US5597909A (en) | 1994-08-25 | 1997-01-28 | Chiron Corporation | Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use |
US5681940A (en) | 1994-11-02 | 1997-10-28 | Icn Pharmaceuticals | Sugar modified nucleosides and oligonucleotides |
US5652356A (en) | 1995-08-17 | 1997-07-29 | Hybridon, Inc. | Inverted chimeric and hybrid oligonucleotides |
GB9606158D0 (en) | 1996-03-23 | 1996-05-29 | Ciba Geigy Ag | Chemical compounds |
US5656408A (en) | 1996-04-29 | 1997-08-12 | Xerox Corporation | Coated carrier particles |
AU3340797A (en) | 1996-06-28 | 1998-01-21 | Novartis Ag | Modified oligonucleotides |
CA2268434C (en) | 1996-10-09 | 2007-05-01 | Krzysztof W. Pankiewicz | Mycophenolic bisphosphonate derivatives and their preparation from tetraphosphonate bicyclic trisanhydrides |
US6770748B2 (en) | 1997-03-07 | 2004-08-03 | Takeshi Imanishi | Bicyclonucleoside and oligonucleotide analogue |
JP3756313B2 (ja) | 1997-03-07 | 2006-03-15 | 武 今西 | 新規ビシクロヌクレオシド及びオリゴヌクレオチド類縁体 |
ATE246700T1 (de) | 1997-06-10 | 2003-08-15 | Glaxo Group Ltd | Benzimidazolderivate |
EP2341058A3 (en) | 1997-09-12 | 2011-11-23 | Exiqon A/S | Oligonucleotide Analogues |
US6794499B2 (en) | 1997-09-12 | 2004-09-21 | Exiqon A/S | Oligonucleotide analogues |
JP2002516256A (ja) | 1998-05-26 | 2002-06-04 | アイ・シー・エヌ・フアーマシユーテイカルズ・インコーポレイテツド | 二環式糖成分を有する新規ヌクレオシド |
US6043352A (en) | 1998-08-07 | 2000-03-28 | Isis Pharmaceuticals, Inc. | 2'-O-Dimethylaminoethyloxyethyl-modified oligonucleotides |
CN1273478C (zh) | 1999-02-12 | 2006-09-06 | 三共株式会社 | 新型核苷及低聚核苷酸类似物 |
US7084125B2 (en) | 1999-03-18 | 2006-08-01 | Exiqon A/S | Xylo-LNA analogues |
US7053207B2 (en) | 1999-05-04 | 2006-05-30 | Exiqon A/S | L-ribo-LNA analogues |
US6525191B1 (en) | 1999-05-11 | 2003-02-25 | Kanda S. Ramasamy | Conformationally constrained L-nucleosides |
JP4151751B2 (ja) | 1999-07-22 | 2008-09-17 | 第一三共株式会社 | 新規ビシクロヌクレオシド類縁体 |
US6147200A (en) | 1999-08-19 | 2000-11-14 | Isis Pharmaceuticals, Inc. | 2'-O-acetamido modified monomers and oligomers |
JP2003519231A (ja) | 1999-12-30 | 2003-06-17 | カー・ユ・ルーベン・リサーチ・アンド・ディベロップメント | シクロヘキセン核酸 |
WO2002018388A1 (fr) | 2000-08-29 | 2002-03-07 | Takeshi Imanishi | Analogues de nucleosides et derives d'oligonucleotides renfermant ces analogues |
GB2366290A (en) | 2000-08-30 | 2002-03-06 | Leuven K U Res & Dev | Hexitol Nucleosides |
US6426220B1 (en) | 2000-10-30 | 2002-07-30 | Isis Pharmaceuticals, Inc. | Antisense modulation of calreticulin expression |
EP1446412B1 (en) | 2001-09-04 | 2012-03-07 | Exiqon A/S | Novel lna compositions and uses thereof |
JP2005524662A (ja) * | 2002-02-28 | 2005-08-18 | ビオタ インコーポレーティッド | ヌクレオシド5’−一リン酸模倣物およびこれらのプロドラッグ |
US20060074035A1 (en) | 2002-04-17 | 2006-04-06 | Zhi Hong | Dinucleotide inhibitors of de novo RNA polymerases for treatment or prevention of viral infections |
US7569575B2 (en) | 2002-05-08 | 2009-08-04 | Santaris Pharma A/S | Synthesis of locked nucleic acid derivatives |
EP1520022B1 (en) | 2002-07-10 | 2015-07-22 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Rna-interference by single-stranded rna molecules |
DK3222724T3 (en) | 2002-08-05 | 2018-12-03 | Silence Therapeutics Gmbh | ADDITIONALLY UNKNOWN FORMS OF INTERFERRING RNA MOLECULES |
US20040219565A1 (en) | 2002-10-21 | 2004-11-04 | Sakari Kauppinen | Oligonucleotides useful for detecting and analyzing nucleic acids of interest |
EP1560840B1 (en) | 2002-11-05 | 2015-05-06 | Isis Pharmaceuticals, Inc. | Compositions comprising alternating 2'-modified nucleosides for use in gene modulation |
AU2003291753B2 (en) | 2002-11-05 | 2010-07-08 | Isis Pharmaceuticals, Inc. | Polycyclic sugar surrogate-containing oligomeric compounds and compositions for use in gene modulation |
CA2463719A1 (en) | 2003-04-05 | 2004-10-05 | F. Hoffmann-La Roche Ag | Nucleotide analogs with six membered rings |
CN1788024A (zh) | 2003-05-12 | 2006-06-14 | 联合碳化化学及塑料技术公司 | 控制气相聚合反应中聚合物粉末的方法 |
WO2005020885A2 (en) | 2003-05-21 | 2005-03-10 | Isis Pharmaceuticals, Inc. | Compositions and methods for the treatment of severe acute respiratory syndrome (sars) |
WO2004106356A1 (en) | 2003-05-27 | 2004-12-09 | Syddansk Universitet | Functionalized nucleotide derivatives |
JP2005060664A (ja) | 2003-07-31 | 2005-03-10 | Asahi Glass Co Ltd | 含フッ素化合物、含フッ素ポリマーとその製造方法およびそれを含むレジスト組成物 |
US7683036B2 (en) | 2003-07-31 | 2010-03-23 | Regulus Therapeutics Inc. | Oligomeric compounds and compositions for use in modulation of small non-coding RNAs |
US7427672B2 (en) | 2003-08-28 | 2008-09-23 | Takeshi Imanishi | Artificial nucleic acids of n-o bond crosslinkage type |
WO2005026356A1 (en) | 2003-09-12 | 2005-03-24 | Commonwealth Scientific And Industrial Research Organisation | Modified gene-silencing nucleic acid molecules and uses thereof |
WO2005027962A1 (en) | 2003-09-18 | 2005-03-31 | Isis Pharmaceuticals, Inc. | 4’-thionucleosides and oligomeric compounds |
US20110070192A1 (en) | 2003-11-14 | 2011-03-24 | Bruno Tse | Method of preparation of novel nucleoside analogs and uses |
WO2006031461A2 (en) | 2004-09-09 | 2006-03-23 | Isis Pharmaceuticals, Inc. | Pyrrolidinyl groups for attaching conjugates to oligomeric compounds |
WO2006038865A1 (en) | 2004-10-01 | 2006-04-13 | Betagenon Ab | Nucleotide derivatives for the treatment of type 2 diabetes and other disorders |
EP1812569A2 (en) | 2004-11-08 | 2007-08-01 | K.U. Leuven Research and Development | Modified nucleosides for rna interference |
WO2007020018A1 (en) | 2005-08-12 | 2007-02-22 | Universite Libre De Bruxelles | Use of purinergic and pyrimidinergic receptor agonists for dendritic cells based immunotherapies |
EP2314594B1 (en) | 2006-01-27 | 2014-07-23 | Isis Pharmaceuticals, Inc. | 6-modified bicyclic nucleic acid analogs |
US8935416B2 (en) | 2006-04-21 | 2015-01-13 | Fortinet, Inc. | Method, apparatus, signals and medium for enforcing compliance with a policy on a client computer |
WO2007134181A2 (en) | 2006-05-11 | 2007-11-22 | Isis Pharmaceuticals, Inc. | 5'-modified bicyclic nucleic acid analogs |
KR101129509B1 (ko) | 2006-10-03 | 2012-04-13 | 알닐람 파마슈티칼스 인코포레이티드 | 지질 함유 조성물 |
US20100190837A1 (en) | 2007-02-15 | 2010-07-29 | Isis Pharmaceuticals, Inc. | 5'-Substituted-2-F' Modified Nucleosides and Oligomeric Compounds Prepared Therefrom |
DK2170917T3 (da) | 2007-05-30 | 2012-10-08 | Isis Pharmaceuticals Inc | N-Substituerede bicycliske nukleinsyreanaloge med aminomethylenbro |
ES2386492T3 (es) | 2007-06-08 | 2012-08-21 | Isis Pharmaceuticals, Inc. | Análogos de ácidos nucleicos bicíclicos carbocíclicos |
CA2692579C (en) | 2007-07-05 | 2016-05-03 | Isis Pharmaceuticals, Inc. | 6-disubstituted bicyclic nucleic acid analogs |
EP2188298B1 (en) | 2007-08-15 | 2013-09-18 | Isis Pharmaceuticals, Inc. | Tetrahydropyran nucleic acid analogs |
US8530640B2 (en) | 2008-02-07 | 2013-09-10 | Isis Pharmaceuticals, Inc. | Bicyclic cyclohexitol nucleic acid analogs |
US20090274686A1 (en) * | 2008-05-02 | 2009-11-05 | Yat Sun Or | Nucleoside phosphonate derivatives |
US8604192B2 (en) | 2008-09-24 | 2013-12-10 | Isis Pharmaceuticals, Inc. | Cyclohexenyl nucleic acids analogs |
AU2009308217B2 (en) * | 2008-10-24 | 2016-01-21 | Ionis Pharmaceuticals, Inc. | 5' and 2' bis-substituted nucleosides and oligomeric compounds prepared therefrom |
US8987435B2 (en) | 2008-10-24 | 2015-03-24 | Isis Pharmaceuticals, Inc. | Oligomeric compounds and methods |
AT507215B1 (de) | 2009-01-14 | 2010-03-15 | Boehler Edelstahl Gmbh & Co Kg | Verschleissbeständiger werkstoff |
US8536320B2 (en) | 2009-02-06 | 2013-09-17 | Isis Pharmaceuticals, Inc. | Tetrahydropyran nucleic acid analogs |
WO2011123621A2 (en) | 2010-04-01 | 2011-10-06 | Alnylam Pharmaceuticals Inc. | 2' and 5' modified monomers and oligonucleotides |
CN103154014B (zh) | 2010-04-28 | 2015-03-25 | Isis制药公司 | 修饰核苷、其类似物以及由它们制备的寡聚化合物 |
EP2625186B1 (en) | 2010-04-28 | 2016-07-27 | Ionis Pharmaceuticals, Inc. | 5' modified nucleosides and oligomeric compounds prepared therefrom |
US9311307B2 (en) | 2011-06-03 | 2016-04-12 | Apple Inc. | Context sensitive entry points |
US9400902B2 (en) | 2012-05-22 | 2016-07-26 | Trimble Navigation Limited | Multi-modal entity tracking and display |
US9984408B1 (en) | 2012-05-30 | 2018-05-29 | Amazon Technologies, Inc. | Method, medium, and system for live video cooperative shopping |
US9778708B1 (en) | 2016-07-18 | 2017-10-03 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Dual sided latching retainer for computer modules |
-
2011
- 2011-04-26 CN CN201180021008.0A patent/CN103154014B/zh active Active
- 2011-04-26 WO PCT/US2011/033968 patent/WO2011139702A2/en active Application Filing
- 2011-04-26 EP EP11721850.3A patent/EP2601204B1/en active Active
- 2011-04-26 JP JP2013508162A patent/JP6005628B2/ja active Active
- 2011-04-26 KR KR1020127030987A patent/KR101869570B1/ko active IP Right Grant
- 2011-04-26 EP EP16187500.0A patent/EP3173419A1/en not_active Withdrawn
- 2011-04-26 US US13/642,827 patent/US8993738B2/en active Active
-
2015
- 2015-02-20 US US14/627,960 patent/US9321799B2/en active Active
-
2016
- 2016-03-17 US US15/073,386 patent/US10087210B2/en active Active
- 2016-04-11 JP JP2016078844A patent/JP2016166222A/ja not_active Withdrawn
-
2018
- 2018-08-30 US US16/117,435 patent/US11084844B2/en active Active
Non-Patent Citations (3)
Title |
---|
SAHAR ABBAS: "《commercially avaiable 5"-DMT Phosphoramidites as Reagents for the Synthesis of Vinylphosphonate-linked Oligonucleic Acids》", 《ORGANIC LETTERS》 * |
WHITTAKER B: "《Stereoselecitve synthesis of highly functionalised Pstereogenic nucleosides via palladium-catalysed P-C cross-coupling reactions》", 《TETRAHEDRON LETTERS》 * |
ZHANGYUN ZHAO: "《synthesis and preliminary biochemical studies with 5 PRG?-Deoxy-5PRG?-methy》", 《TETRAHEDRON LETTERS》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107075516A (zh) * | 2014-08-20 | 2017-08-18 | 阿尔尼拉姆医药品有限公司 | 经修饰的双链rna试剂 |
CN114181942A (zh) * | 2014-08-20 | 2022-03-15 | 阿尔尼拉姆医药品有限公司 | 经修饰的双链rna试剂 |
CN110072530A (zh) * | 2016-09-02 | 2019-07-30 | 迪克纳制药公司 | 4′-磷酸酯类似物和包含其的寡核苷酸 |
CN112424354A (zh) * | 2017-04-05 | 2021-02-26 | 赛伦斯治疗有限责任公司 | 在反义链的5’末端具有乙烯基膦酸酯的siRNA |
CN112105625A (zh) * | 2018-03-07 | 2020-12-18 | 赛诺菲 | 核苷酸前体、核苷酸类似物以及含其的寡聚化合物 |
CN110204583A (zh) * | 2019-07-01 | 2019-09-06 | 中国人民解放军军事科学院军事医学研究院 | 修饰核苷、核苷酸和修饰核酸聚合物及其制备方法和应用 |
CN110204583B (zh) * | 2019-07-01 | 2021-03-23 | 中国人民解放军军事科学院军事医学研究院 | 修饰核苷、核苷酸和修饰核酸聚合物及其制备方法和应用 |
WO2023246935A1 (zh) * | 2022-06-23 | 2023-12-28 | 安沛治疗有限公司 | 包含喹啉修饰的靶特异性核酸分子 |
CN118063533A (zh) * | 2023-09-18 | 2024-05-24 | 广州必贝特医药股份有限公司 | 修饰的核苷酸化合物、其寡聚核苷酸及其应用 |
CN118063533B (zh) * | 2023-09-18 | 2024-08-27 | 广州必贝特医药股份有限公司 | 修饰的核苷酸化合物、其寡聚核苷酸及其应用 |
Also Published As
Publication number | Publication date |
---|---|
EP2601204A2 (en) | 2013-06-12 |
EP3173419A1 (en) | 2017-05-31 |
JP2016166222A (ja) | 2016-09-15 |
WO2011139702A3 (en) | 2013-05-02 |
KR20130105294A (ko) | 2013-09-25 |
WO2011139702A2 (en) | 2011-11-10 |
US20180371005A1 (en) | 2018-12-27 |
US11084844B2 (en) | 2021-08-10 |
US10087210B2 (en) | 2018-10-02 |
JP6005628B2 (ja) | 2016-10-12 |
US9321799B2 (en) | 2016-04-26 |
CN103154014B (zh) | 2015-03-25 |
US20130084576A1 (en) | 2013-04-04 |
JP2013532122A (ja) | 2013-08-15 |
EP2601204B1 (en) | 2016-09-07 |
US20160186185A1 (en) | 2016-06-30 |
US8993738B2 (en) | 2015-03-31 |
US20150159163A1 (en) | 2015-06-11 |
KR101869570B1 (ko) | 2018-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103154014B (zh) | 修饰核苷、其类似物以及由它们制备的寡聚化合物 | |
CN101490074B (zh) | 5’-修饰的双环核酸类似物 | |
EP2447274B1 (en) | Oligomeric compounds and methods | |
EP2625186B1 (en) | 5' modified nucleosides and oligomeric compounds prepared therefrom | |
EP1677822B1 (en) | 4'-thionucleosides and oligomeric compounds | |
EP2176280B1 (en) | 6-disubstituted bicyclic nucleic acid analogs | |
CN102908630B (zh) | 6-修饰的双环核酸类似物 | |
EP2606057B1 (en) | Modified 5' diphosphate nucleosides and oligomeric compounds prepared therefrom | |
WO2008154401A2 (en) | Carbocyclic bicyclic nucleic acid analogs | |
EP2358397A2 (en) | 5' and 2' bis-substituted nucleosides and oligomeric compounds prepared therefrom |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |