CN107075516A - 经修饰的双链rna试剂 - Google Patents

经修饰的双链rna试剂 Download PDF

Info

Publication number
CN107075516A
CN107075516A CN201580056832.8A CN201580056832A CN107075516A CN 107075516 A CN107075516 A CN 107075516A CN 201580056832 A CN201580056832 A CN 201580056832A CN 107075516 A CN107075516 A CN 107075516A
Authority
CN
China
Prior art keywords
nucleotides
ome
modification
antisense strand
dsrna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580056832.8A
Other languages
English (en)
Inventor
M·迈尔
D·福斯特
S·米尔斯泰恩
S·库奇曼奇
V·贾达夫
K·拉杰夫
M·玛诺哈兰
R·帕马
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alnylam Pharmaceuticals Inc
Original Assignee
Alnylam Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alnylam Pharmaceuticals Inc filed Critical Alnylam Pharmaceuticals Inc
Priority to CN202111550874.0A priority Critical patent/CN114181942A/zh
Publication of CN107075516A publication Critical patent/CN107075516A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/313Phosphorodithioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3222'-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3231Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/332Abasic residue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/335Modified T or U
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/344Position-specific modifications, e.g. on every purine, at the 3'-end
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/346Spatial arrangement of the modifications having a combination of backbone and sugar modifications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/533Physical structure partially self-complementary or closed having a mismatch or nick in at least one of the strands
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/50Methods for regulating/modulating their activity
    • C12N2320/51Methods for regulating/modulating their activity modulating the chemical stability, e.g. nuclease-resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/50Methods for regulating/modulating their activity
    • C12N2320/52Methods for regulating/modulating their activity modulating the physical stability, e.g. GC-content

Abstract

本发明的一个方面涉及能够抑制靶基因表达的双链RNA(dsRNA)试剂。该dsRNA试剂的有义链包括至少一个热不稳定性核苷酸,和至少一个出现在与该反义链的种子区(位置2‑8)的相对位点处的所述热不稳定性核苷酸;并且该dsRNA试剂的反义链包括至少两个为该核苷酸提供小于或等于2’‑OMe修饰的空间体积的空间体积的经修饰的核苷酸,其中所述经修饰的核苷酸被11个核苷酸长度分开。本发明的其他方面涉及包括这些适于治疗性用途的dsRNA试剂的药物组合物,以及通过给予这些dsRNA试剂来抑制靶基因表达的方法,例如用于治疗各种疾病病症。

Description

经修饰的双链RNA试剂
本申请要求于2014年12月18日提交的美国临时申请号62/093,919、于2014年11月24日提交的美国临时申请号62/083,744,以及于2014年8月20日提交的美国临时申请号62/039,507的优先权权益,将所有的这些申请通过引用以其全部内容结合在此。
发明领域
本发明涉及具有有利于抑制靶基因表达的特定基序的RNAi双链体试剂,以及适于治疗性用途的RNAi组合物。另外,本发明提供了通过给予这些RNAi双链体试剂来抑制靶基因表达的方法,例如用于治疗各种疾病。
背景
RNA干扰或“RNAi”是最初由费尔(Fire)和同事创造的术语,用来描述观察到双链RNAi(dsRNA)可以阻断基因表达(费尔等人(1998)自然(Nature)391,806-811;艾巴施(Elbashir)等人(2001)基因与发育(Genes Dev.)15,188-200)。短dsRNA在许多有机体(包括脊椎动物)中指导基因特异性的转录后沉默,并且已经为研究基因功能提供了一个新的工具。RNAi由RNA诱导沉默复合体(RISC)介导,RISC是一种破坏与沉默触发物同源的信使RNA的序列特异性多组分核酸酶。已知RISC包含来自双链RNA触发物的短RNA(大约22个核苷酸),但是这一活性的蛋白组分仍是未知的。
基于RNA干扰(RNAi)的药物开发需要具有良好基因沉默特性的双链RNA(dsRNA)分子。RNAi中的最初步骤是RNA诱导沉默复合体(RISC)的活化,这需要降解dsRNA双链体的有义链。已知有义链作为被在双链体区的中部的Argonaute 2裂解的第一RISC底物。有义链的裂解的5'-端和3'-端片段从核酸内切酶Ago2移除后,RISC立刻被反义链活化(兰德(Rand)等人(2005)细胞(Cell)123,621)。
据信当有义链的裂解被抑制时,靶标mRNA的内切核苷酸裂解会受损(洛伊什纳(Leuschner)等人,(2006)欧洲分子生物学组织报告(EMBO Rep.),7,314;兰德等人,(2005)细胞123,621;施瓦兹(Schwarz)等人(2004)当代生物学(Curr.Biol.)14,787)。洛伊什纳等人证明向有义链中的Ago2裂解位点中掺入2'-O-Me核糖抑制海拉细胞中的RNAi(洛伊什纳等人(2006)欧洲分子生物学组织报告,7,314)。用硫代磷酸酯修饰观察到类似效果,这显示在哺乳动物中有效的RNAi也需要有义链的裂解。
莫里西(Morrissey)等人使用了除其他位点和修饰之外还在Ago2裂解位点处包含2'-F修饰的残基的siRNA双链体,并且获得了与未经修饰的siRNA相比可相容的沉默(莫里西等人(2005)肝病学(Hepatology)41,1349)。然而,莫里西的修饰不是基序特异性的,例如只要嘧啶残基存在,一个修饰便包括在有义链和反义链上的所有嘧啶上的2'-F修饰,而没有任何选择性;并且因此基于这些教导,有义链的裂解位点处的特异性基序修饰对基因沉默活性是否具有任何实质作用是不确定的。
穆汉恩(Muhonen)等人使用了在有义链或反义链上的Ago2裂解位点处包含两个2'-F修饰的残基的siRNA双链体并且发现这被容忍(穆汉恩等人(2007)化学与生物多样性(Chemistry&Biodiversity)4,858-873)。然而,穆汉恩的修饰也是序列特异性的,例如对于每一具体链而言,穆汉恩仅修饰所有的嘧啶或所有的嘌呤,而没有任何选择性。
庄(Choung)等人使用了包含替代性修饰的siRNA双链体,通过2'-OMe或2'-F、2'-OMe和硫代磷酸酯修饰的不同组合以将血清中的siRNA稳定为Sur10058(庄等人(2006)生物化学和生物物理研究通讯(Biochemical and Biophysical Research Communications)342,919-927)。庄建议为了增加siRNA的稳定性不应该用2'-OMe修饰反义链的裂解位点处的残基。
因此对用于改进siRNA基因治疗的基因沉默疗效的iRNA双链体试剂存在持续的需要。本发明即针对这一需要。
发明概述
本发明提供了针对任选地缀合至至少一个配体的dsRNA试剂的有利于抑制靶基因表达的有效的核苷酸或化学基序,以及适于治疗性用途的RNAi组合物。
在一个方面中,本发明涉及用于抑制靶基因表达的双链RNA(dsRNA)试剂。该dsRNA试剂包括有义链和反义链,每条链具有14至40个核苷酸。该dsRNA试剂由式(I)表示:
在式(I)中,B1、B2、B3、B1'、B2'、B3'、和B4'各自独立地是含有修饰的核苷酸,该修饰选自下组,该组由以下各项组成:2'-O-烷基、2'-经取代的烷氧基、2'-经取代的烷基、2'-卤代、ENA、和BNA/LNA。在一个实施例中,B1、B2、B3、B1'、B2'、B3'、和B4'各自含有2'-OMe修饰。在一个实施例中,B1、B2、B3、B1'、B2'、B3'、和B4'各自含有2'-OMe或2'-F修饰。在一个实施例中,至少一个B1、B2、B3、B1'、B2'、B3'、和B4'含有2'-O-N-甲基乙酰胺基(2'-O-NMA)修饰。
C1是一种位于与反义链的种子区相对的位点处(即,该反义链的5'-端的位置2-8)的热不稳定性核苷酸。例如,C1位于与该反义链的5'-端的位置2-8处的核苷酸配对的有义链的位置处。在一个实例中,C1是位于从该有义链的5'-端的位置15处。C1核苷酸携带可以包括脱碱基修饰的热不稳定性修饰;与双链体中相对的核苷酸的错配;和糖修饰,比如2'-脱氧修饰或无环核苷酸(例如,解锁核酸(UNA)或甘油核酸(GNA))。在一个实施例中,C1具有热不稳定性修饰,其选自下组,该组由以下各项组成:i)与在该反义链中相对的核苷酸的错配;ii)脱碱基修饰,其选自下组,该组由以下各项组成:
和iii)糖修饰,其选自下组,该组由以下各项组成:
其中,B是经修饰的或未经修饰的核碱基,R1和R2独立地是H、卤素、OR3、或烷基;并且R3是H、烷基、环烷基、芳基、芳烷基、杂芳基或糖。在一个实施例中,在C1中的该热不稳定性修饰是一个错配,该错配选自下组,该组由以下各项组成:G:G、G:A、G:U、G:T、A:A、A:C、C:C、C:U、C:T、U:U、T:T、和U:T;并且任选地,在该错配对中至少一个核碱基是2'-脱氧核碱基。在一个实例中,在C1中的该热不稳定性修饰是GNA或
T1、T1'、T2'、和T3'各自独立地表示一种包括修饰的核苷酸,该修饰为该核苷酸提供小于或等于2'-OMe修饰的空间体积的空间体积。空间体积是指修饰的空间效应的总和。用于测定核苷酸的修饰的空间效应的方法对于本领域技术人员是已知的。该修饰可以在该核苷酸的核糖的2'位置处,或对非核糖核苷酸的修饰、无环核苷酸,或类似于或等于核糖的2'位置的该核苷酸的骨架,并且为该核苷酸提供小于或等于2'-OMe修饰的空间体积的空间体积。例如,T1、T1'、T2'、和T3'各自独立地选自DNA、RNA、LNA、2'-F、和2'-F-5'-甲基。在一个实施例中,T1是DNA。在一个实施例中,T1'是DNA、RNA或LNA。在一个实施例中,T2'是DNA或RNA。在一个实施例中,T3'是DNA或RNA。
n1、n3、和q1的长度独立地是4至15个核苷酸。
n5、q3、和q7的长度独立地是1-6个核苷酸。
n4、q2、和q6的长度独立地是1-3个核苷酸;可替代地,n4是0。
q5的长度独立地是0-10个核苷酸。
n2和q4的长度独立地是0-3个核苷酸。
可替代地,n4的长度是0-3个核苷酸。
在一个实施例中,n4可以是0。在一个实例中,n4是0,并且q2和q6是1。在另一个实例中,n4是0,并且q2和q6是1,具有该有义链的位置1-5(从该有义链的5'-端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及该反义链的位置18-23(从该反义链的5'-端计数)中的两个硫代磷酸酯核苷酸间键联修饰。
在一个实施例中,n4、q2、和q6各自是1。
在一个实施例中,n2、n4、q2、q4、和q6各自是1。
在一个实施例中,C1在该有义链的5'-端的位置14-17处,当该有义链的长度是19-22个核苷酸,并且n4是1时。在一个实施例中,C1是在该有义链的5'-端的位置15处。
在一个实施例中,T3'开始于从该反义链的5'端的位置2处。在一个实例中,T3'是在从该反义链的5'端的位置2处,并且q6等于1。
在一个实施例中,T1'开始于从该反义链的5'端的位置14处。在一个实例中,T1'是在从该反义链的5'端的位置14处,并且q2等于1。
在一个示例性实施例中,T3'开始于从从该反义链的5'端的位置2处,并且T1'开始于从该反义链的5'端的位置14处。在一个实例中,T3'开始于该反义链的5'端的位置2处,并且q6等于1,以及T1'开始于从该反义链的5'端的位置14处,并且q2等于1。
在一个实施例中,T1'和T3'被11个核苷酸的长度分开(即,不计数T1'和T3'核苷酸)。
在一个实施例中,T1'是在从该反义链的5'端的位置14处。在一个实例中,T1'是在从该反义链的5'端的位置14处,并且q2等于1,并且该修饰在2'位置处,或在提供相比2'-OMe核糖较小空间的非核糖、无环或骨架中的位置处。
在一个实施例中,T3'是在从该反义链的5'端的位置2处。在一个实例中,T3'是在从该反义链的5'端的位置2处,并且q6等于1,并且该修饰在2'位置处,或在提供小于或等于2'-OMe核糖空间体积的非核糖、无环或骨架中的位置处。
在一个实施例中,T1是在该有义链的裂解位点处。在一个实例中,T1是在从该有义链的5'端的位置11处,当该有义链的长度是19-22个核苷酸,并且n2是1时。在一个示例性实施例中,T1是在该有义链的裂解位点处在从该有义链的5'端的位置11处,当该有义链的长度是19-22个核苷酸,并且n2是1时。
在一个实施例中,T2'开始于从该反义链的5'端的位置6处。在一个实例中,T2’是从该反义链的5'端的位置6-10处,并且q4是1。
在一个示例性实施例中,T1是在该有义链的裂解位点处,例如,在从该有义链的5'端的位置11处,当该有义链的长度是19-22个核苷酸,并且n2是1时;T1’是在从该反义链的5'端的位置14处,并且q2等于1,并且对T1’的修饰是在核糖的2'位置处,或在提供相比2'-OMe核糖较小空间体积的非核糖、无环或骨架中的位置处;T2’是在从该反义链的5'端的位置6-10处,并且q4是1;以及T3’是在从该反义链的5'端的位置2处,并且q6等于1,并且对T3’的修饰是在2'位置处,或在提供小于或等于2'-OMe核糖空间体积的非核糖、无环或骨架中的位置处。
在一个实施例中,T2'开始于从该反义链的5'端的位置8处。在一个实例中,T2'开始于从该反义链的5'端的位置8处,并且q4是2。
在一个实施例中,T2'开始于从该反义链的5'端的位置9处。在一个实例中,T2’是在从该反义链的5'端的位置9处,并且q4是1。
在一个实施例中,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是1,B3'是2'-OMe或2'-F,q5是6,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有该有义链的位置1-5(从该有义链的5'-端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'-端计数)中的两个硫代磷酸酯核苷酸间键联修饰。
在一个实施例中,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是1,B3'是2'-OMe或2'-F,q5是6,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有该有义链的位置1-5(从该有义链的5'-端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'-端计数)中的两个硫代磷酸酯核苷酸间键联修饰。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链(从该有义链的5'端计数)的位置1-5中的两个硫代磷酸酯核苷酸间键联修饰,和位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及该反义链(从该反义链的5'端计数)的位置18-23中的两个硫代磷酸酯核苷酸间键联修饰。
在一个实施例中,B1是2'-OMe或2'-F,n1是6,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'OMe,n5是3,B1'是2'-OMe或2'-F,q1是7,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1。
在一个实施例中,B1是2'-OMe或2'-F,n1是6,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是7,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链(从该有义链的5'端计数)的位置1-5中的两个硫代磷酸酯核苷酸间键联修饰,和位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及该反义链(从该反义链的5'端计数)的位置18-23中的两个硫代磷酸酯核苷酸间键联修饰。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是1,B3'是2'-OMe或2'-F,q5是6,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1。
在一个实施例中,B1是2’-OMe或2’-F,n1是8,T1是2’F,n2是3,B2是2’-OMe,n3是7,n4是0,B3是2’-OMe,n5是3,B1’是2’-OMe或2’-F,q1是9,T1’是2’-F,q2是1,B2’是2’-OMe或2’-F,q3是4,T2’是2’-F,q4是1,B3’是2’-OMe或2’-F,q5是6,T3’是2’-F,q6是1,B4’是2’-OMe,并且q7是1;具有该有义链位置1-5(从该有义链的5’端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及该反义链位置18-23(从该反义链的5’端计数)中的硫代磷酸酯核苷酸间键联修饰。
在一个实施例中,B1是2’-OMe或2’-F,n1是8,T1是2’F,n2是3,B2是2’-OMe,n3是7,n4是0,B3是2’OMe,n5是3,B1’是2’-OMe或2’-F,q1是9,T1’是2’-F,q2是1,B2’是2’-OMe或2’-F,q3是5,T2’是2’-F,q4是1,B3’是2’-OMe或2’-F,q5是5,T3’是2’-F,q6是1,B4’是2’-OMe,并且q7是1;在该反义链的3'-端处任选地具有至少2个另外的TT。
在一个实施例中,B1是2’-OMe或2’-F,n1是8,T1是2’F,n2是3,B2是2’-OMe,n3是7,n4是0,B3是2’-OMe,n5是3,B1’是2’-OMe或2’-F,q1是9,T1’是2’-F,q2是1,B2’是2’-OMe或2’-F,q3是5,T2’是2’-F,q4是1,B3’是2’-OMe或2’-F,q5是5,T3’是2’-F,q6是1,B4’是2’-OMe,并且q7是1;在该反义链的3'-端处任选地具有至少2个另外的TT;具有在有义链的位置1-5(从该有义链的5’端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及该反义链的位置18-23(从该反义链的5’端计数)中的两个硫代磷酸酯核苷酸间键联修饰。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及在该反义链的位置18-23(从5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰。
该dsRNA试剂可以在该有义链或反义链的5'-端处包括一个含磷基团。该5'-端含磷基团可以是5'-端磷酸酯(5'-P)、5'-端硫代磷酸酯(5'-PS)、5'-端二硫代磷酸酯(5'-PS2)、5’-端乙烯基膦酸酯(5'-VP)、5'-端甲基膦酸酯(MePhos)、或5'-脱氧-5'-C-丙二酸单酰当该5'-端含磷基团是5'-端乙烯基膦酸酯(5'-Vp)时,该5'-Vp可以是5'-E-VP异构体(即,反式-乙烯基磷酸酯,)、5'-Z-VP异构体(即,顺式-乙烯基磷酸酯,),或其混合物。
在一个实施例中,该dsRNA试剂在该有义链的5'-端包括一个含磷基团。在一个实施例中,该dsRNA试剂在该反义链的5'-端包括一个含磷基团。
在一个实施例中,该dsRNA试剂包括一个5'-P。在一个实施例中,该dsRNA试剂在反义链上包括一个5'-P。
在一个实施例中,该dsRNA试剂包括一个5'-PS。在一个实施例中,该dsRNA试剂包括在反义链上的一个5'-PS。
在一个实施例中,该dsRNA试剂包括一个5'-VP。在一个实施例中,该dsRNA试剂包括在反义链上的5'-VP。在一个实施例中,该dsRNA试剂包括在反义链上的一个5'-E-VP。在一个实施例中,该dsRNA试剂包括在反义链上的一个5'-Z-VP。
在一个实施例中,该dsRNA试剂包括一个5'-PS2。在一个实施例中,该dsRNA试剂包括在反义链上的一个5'-PS2
在一个实施例中,该dsRNA试剂包括一个5'-PS2。在一个实施例中,该dsRNA试剂包括在反义链上的一个5'-脱氧-5'-C-丙二酸单酰。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1。该dsRNA试剂还包括一个5'-PS。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1。该dsRNA试剂还包括一个5'-P。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1。该dsRNA试剂还包括一个5'-VP。该5'-VP可以是5'-E-VP、5'-Z-VP、或其组合物。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1。该dsRNA试剂还包括一个5'-PS2
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1。该dsRNA试剂还包括一个5'-脱氧-5'-C-丙二酸单酰。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰。该dsRNA试剂还包括一个5'-P。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰。该dsRNA试剂还包括一个5'-PS。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰。该dsRNA试剂还包括一个5'-VP。该5'-VP可以是5'-E-VP、5'-Z-VP、或其组合物。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰。该dsRNA试剂还包括一个5'-PS2
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰。该dsRNA试剂还包括一个5'-脱氧-5'-C-丙二酸单酰。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1。该dsRNA试剂还包括一个5'-P。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1。该dsRNA试剂还包括一个5'-PS。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1。该dsRNA试剂还包括一个5'-VP。该5'-VP可以是5'-E-VP、5'-Z-VP、或其组合物。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1。该dsRNA试剂还包括一个5'-PS2
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1。该dsRNA试剂还包括一个5'-脱氧-5'-C-丙二酸单酰。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-P。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-PS。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-VP。该5'-VP可以是5'-E-VP、5'-Z-VP、或其组合物。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-PS2
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-脱氧-5'-C-丙二酸单酰。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1。该dsRNA试剂还包括一个5'-P。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1。该dsRNA试剂还包括一个5'-PS。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1。该dsRNA试剂还包括一个5'-VP。该5'-VP可以是5'-E-VP、5'-Z-VP、或其组合物。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1。该dsRNA试剂还包括一个5'-PS2
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1。该dsRNA试剂还包括一个5'-脱氧-5'-C-丙二酸单酰。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'-端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-P。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'-端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-PS。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'-端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-VP。该5'-VP可以是5'-E-VP、5'-Z-VP、或其组合物。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'-端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-PS2
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'-端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-脱氧-5'-C-丙二酸单酰。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1。该dsRNA试剂还包括一个5'-P。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1。该dsRNA试剂还包括一个5'-PS。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1。该dsRNA试剂还包括一个5'-VP。该5'-VP可以是5'-E-VP、5'-Z-VP、或其组合物。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1。该dsRNA试剂还包括一个5'-PS2
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1。该dsRNA试剂还包括一个5'-脱氧-5'-C-丙二酸单酰。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-P。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-PS。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-VP。该5'-VP可以是5'-E-VP、5'-Z-VP、或其组合物。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-PS2
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-脱氧-5'-C-丙二酸单酰。
在一个实施例中,本发明的dsRNA试剂的100%、95%、90%、85%、80%、75%、70%、65%、60%、55%、50%、45%、40%、35%或30%是经修饰的。例如,当50%的该dsRNA试剂是经修饰的时,存在于dsRNA试剂中的50%的所有核苷酸含有如在此描述的修饰。
在一个实施例中,该dsRNA试剂的每个有义链和反义链独立地由以下各项进行修饰:无环核苷酸、LNA、HNA、CeNA、2'-甲氧基乙基、2'-O-甲基、2'-O-烯丙基、2'-C-烯丙基、2'-脱氧、2'-氟、2'-O-N-甲基乙酰胺基(2'-O-NMA)、2'-O-二甲基氨基乙氧基乙基(2'-O-DMAEOE)、2'-O-氨基丙基(2'-O-AP)、或2'-ara-F。
在一个实施例中,该dsRNA试剂的每个有义链和反义链含有至少两种不同的修饰。
在一个实施例中,式(I)的dsRNA试剂进一步包括1-10个核苷酸长度的一个或多个3'和/或5’突出端。在一个实例中,式(I)的dsRNA试剂包括一个在该反义链的3'-端处的3'突出端和在该反义链的5'-端处的一个平端。在另一个实例中,该dsRNA试剂具有一个在该有义链的5'-端的5'突出端。
在一个实施例中,本发明的dsRNA试剂不包含任何2'-F修饰。
在一个实施例中,该dsRNA试剂的有义链和/或反义链包括硫代磷酸酯或甲基膦酸酯核苷酸间键联的一个或多个嵌段。在一个实例中,该有义链包括两个硫代磷酸酯或甲基膦酸酯核苷酸间键联的一个嵌段。在一个实例中,该反义链包括两个硫代磷酸酯或甲基膦酸酯核苷酸间键联的两个嵌段。例如,硫代磷酸酯或甲基膦酸酯核苷酸间键联的两个嵌段被16-18个磷酸酯核苷酸间键联分开。
在一个实施例中,该dsRNA试剂的每个有义链和反义链具有15-30个核苷酸。在一个实例中,该有义链具有19-22个核苷酸,并且该反义链具有19-25个核苷酸。在另一个实例中,该有义链具有21个核苷酸,并且该反义链具有23个核苷酸。
在一个实施例中,在该双链体中的反义链的5'-端的位置1处的核苷酸选自下组,该组由以下各项组成:A、dA、dU、U、和dT。在一个实施例中,从该反义链的5'-端的第一、第二和第三碱基对中的至少一个是AU碱基对。
在一个实施例中,本发明的dsRNA试剂的反义链与靶RNA是100%互补的,与其杂交并通过RNA干扰抑制其表达。在另一个实施例中,本发明的dsRNA试剂的反义链与靶RNA是至少95%、至少90%、至少85%、至少80%、至少75%、至少70%、至少65%、至少60%、至少55%、或至少50%的互补。
在一个方面中,本发明涉及一种如在此定义的能够抑制靶基因表达的dsRNA试剂。该dsRNA试剂包括有义链和反义链,每条链具有14至40个核苷酸。该有义链含有至少一个热不稳定性核苷酸,其中至少一种所述的热不稳定性核苷酸在与该反义链的种子区(即,在该反义链的5'-端的位置2-8处)相对的位点处或接近的位点处发生。在本说明书中描述的每个实施例和方面涉及由式(I)表示的dsRNA,还可以应用于含有热不稳定性核苷酸的dsRNA。
该热不稳定性核苷酸可以发生在,例如,当该有义链的长度是21个核苷酸时,该有义链的5'-端的位置14-17之间。该反义链含有至少两个经修饰的小于空间上要求的2'-OMe修饰的核酸。优选地,这两个经修饰的小于空间上需要的2'-OMe的核酸被11个核苷酸长度分开。例如,这两个经修饰的核酸是在该反义链的5’端的位置2和14处。
在一个实施例中,该dsRNA试剂进一步包括至少一个ASGPR配体。例如,该ASGPR配体是通过一个二价或三价支链接头附接的一种或多种GalNAc衍生物,比如:在一个实例中,该ASGPR配体被附接至该有义链的3'端。
例如,如在此定义的dsRNA试剂可以包括i)在该有义链或反义链的5'-端处的一个含磷基团;ii)具有该有义链的位置1-5中的两个硫代磷酸酯核苷酸间键联修饰(从该有义链的5'-端计数),和位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,和该反义链的位置18-23(从该反义链的5'-端计数)中的两个硫代磷酸酯核苷酸间键联修饰;以及iii)一个配体,比如,在该有义链或反义链的5'-端或3'-端的ASGPR配体(例如,一个或多个GalNAc衍生物)。例如,该配体可以在该有义链的3'-端。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰。该dsRNA试剂还包括一个5'-P和一个靶向配体。在一个实施例中,该5'-P是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰。该dsRNA试剂还包括一个5'-PS和一个靶向配体。在一个实施例中,该5'-PS是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端处。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰。该dsRNA试剂还包括一个5'-Vp(例如,一个5'-E-VP、5'-Z-VP、或其组合物),和一个靶向配体。在一个实施例中,该5'-Vp是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰。该dsRNA试剂还包括一个5'-PS2和一个靶向配体。在一个实施例中,该5'-PS2是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端处。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸酯核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸酯核苷酸间键联修饰。该dsRNA试剂还包括一个5'-脱氧-5'-C-丙二酸单酰和一个靶向配体。在一个实施例中,该5'-脱氧-5'-C-丙二酸单酰是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端处。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-P和一个靶向配体。在一个实施例中,该5'-P是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-PS和一个靶向配体。在一个实施例中,该5'-PS是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端处。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-Vp(例如,一个5'-E-VP、5'-Z-VP、或其组合物)和一个靶向配体。在一个实施例中,该5'-Vp是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-PS2和一个靶向配体。在一个实施例中,该5'-PS2是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端处。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-OMe,并且q7是1;具有在该有义链的位置1-5(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-脱氧-5'-C-丙二酸单酰和一个靶向配体。在一个实施例中,该5'-脱氧-5'-C-丙二酸单酰是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端处。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'-端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-P和一个靶向配体。在一个实施例中,该5'-P是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'-端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-PS和一个靶向配体。在一个实施例中,该5'-PS是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端处。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'-端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-VP(例如,一个5'-E-VP、5'-Z-VP、或其组合物)和一个靶向配体。在一个实施例中,该5'-VP是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'-端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-PS2和一个靶向配体。在一个实施例中,该5'-PS2是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端处。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,T2'是2'-F,q4是2,B3'是2'-OMe或2'-F,q5是5,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及在该反义链的位置18-23(从该反义链的5'-端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-脱氧-5'-C-丙二酸单酰和一个靶向配体。在一个实施例中,该5'-脱氧-5'-C-丙二酸单酰是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端处。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-P和一个靶向配体。在一个实施例中,该5'-P是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-Ps和一个靶向配体。在一个实施例中,该5'-PS是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端处。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-Vp(例如,一个5'-E-VP、5'-Z-VP、或其组合物)和一个靶向配体。在一个实施例中,该5'-VP是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-PS2和一个靶向配体。在一个实施例中,该5'-PS2是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端处。
在一个实施例中,B1是2'-OMe或2'-F,n1是8,T1是2'F,n2是3,B2是2'-OMe,n3是7,n4是0,B3是2'-OMe,n5是3,B1'是2'-OMe或2'-F,q1是9,T1'是2'-F,q2是1,B2'是2'-OMe或2'-F,q3是4,q4是0,B3'是2'-OMe或2'-F,q5是7,T3'是2'-F,q6是1,B4'是2'-F,并且q7是1;具有在该有义链的位置1-5(从该有义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰,和在位置1和2处的两个硫代磷酸核苷酸间键联修饰,以及该反义链的位置18-23(从该反义链的5'端计数)中的两个硫代磷酸核苷酸间键联修饰。该dsRNA试剂还包括一个5'-脱氧-5'-C-丙二酸单酰和一个靶向配体。在一个实施例中,该5'-脱氧-5'-C-丙二酸单酰是在该反义链的5'-端处,并且该靶向配体是在该有义链的3'-端处。
在一个具体实施例中,本发明的该dsRNA试剂包括:
(a)一个有义链,其具有:
(i)21个核苷酸的长度;
(ii)一个附接至3'端的ASGPR配体,其中所述的ASGPR配体包括通过三价支链接头附接的三种GalNAc衍生物;和
(iii)在位置1、3、5、7、9至11、13、17、19、和21处的2'-F修饰,以及在位置2、4、6、8、12、14至16、18、和20处的2'-OMe修饰(从5'端计数);
(b)一个反义链,其具有:
(i)23个核苷酸的长度;
(ii)在位置1、3、5、9、11至13、15、17、19、21、和23处的2'-OMe修饰,以及在位置2、4、6至8、10、14、16、18、20、和22(从5'端计数)处的2'F修饰;和
(iii)在核苷酸位置21和22之间,和在核苷酸位置22和23之间(从5'端计数)的硫代磷酸酯核苷酸间键联;
其中该dsRNA试剂具有在该反义链的3'-端的两个核苷酸突出端,和在该反义链的5'-端的一个平端。
在另一个具体实施例中,本发明的dsRNA试剂包括:
(a)一个有义链,其具有:
(i)21个核苷酸的长度;
(ii)一个附接至3'端的ASGPR配体,其中所述的ASGPR配体包括通过三价支链接头附接的三种GalNAc衍生物;
(iii)在位置1、3、5、7、9至11、13、15、17、19、和21处的2'-F修饰,以及在位置2、4、6、8、12、14、16、18、和20(从5'端计数)的2'-OMe修饰;和
(iv)在核苷酸位置1和2之间,和在核苷酸位置2和3(从5'端计数)之间的硫代磷酸酯核苷酸间键联;
(b)一个反义链,其具有:
(i)23个核苷酸的长度;
(ii)在位置1、3、5、7、9、11至13、15、17、19、和21至23处的2'-OMe修饰,以及在位置2、4、6、8、10、14、16、18、和20(从5'端计数)处的2'F修饰;和
(iii)在核苷酸位置1和2之间、核苷酸位置2和3之间、核苷酸位置21和22之间、和核苷酸位置22和23之间的硫代磷酸酯核苷酸间键联(从5'端计数);
其中该dsRNA试剂具有在该反义链的3'-端的两个核苷酸突出端,和在该反义链的5'-端的一个平端。
在另一个具体实施例中,本发明的dsRNA试剂包括:
(a)一个有义链,其具有:
(i)21个核苷酸的长度;
(ii)一个附接至3'端的ASGPR配体,其中所述的ASGPR配体包括通过三价支链接头附接的三种GalNAc衍生物;
(iii)在位置1至6、8、10、和12至21处的2'-OMe修饰、在位置7,和9处的2'-F修饰,以及在位置11处的脱氧核苷酸(例如,dT)(从5'端计数);和
(iv)在核苷酸位置1和2之间,和在核苷酸位置2和3(从5'端计数)之间的硫代磷酸酯核苷酸间键联;
(b)一个反义链,其具有:
(i)23个核苷酸的长度;
(ii)在位置1、3、7、9、11、13、15、17、和19至23处的2'-OMe修饰,和在位置2、4至6、8、10、12、14、16、和18(从5'端计数)处的2'-F修饰;和
(iii)在核苷酸位置1和2之间、核苷酸位置2和3之间、核苷酸位置21和22之间、和核苷酸位置22和23之间的硫代磷酸酯核苷酸间键联(从5'端计数);
其中该dsRNA试剂具有在该反义链的3'-端的两个核苷酸突出端,和在该反义链的5'-端的一个平端。
在另一个具体实施例中,本发明的dsRNA试剂包括:
(a)一个有义链,其具有:
(i)21个核苷酸的长度;
(ii)一个附接至3'端的ASGPR配体,其中所述的ASGPR配体包括通过三价支链接头附接的三种GalNAc衍生物;
(iii)在位置1至6、8、10、12、14、和16至21处的2'-OMe修饰,以及在位置7、9、11、13、和15处的2'-F修饰;和
(iv)在核苷酸位置1和2之间,和在核苷酸位置2和3(从5'端计数)之间的硫代磷酸酯核苷酸间键联;
(b)一个反义链,其具有:
(i)23个核苷酸的长度;
(ii)在位置1、5、7、9、11、13、15、17、19、和21至23处的2'-OMe修饰,以及在位置2至4、6、8、10、12、14、16、18、和20处的2'-F修饰(从5'端计数);和
(iii)在核苷酸位置1和2之间、核苷酸位置2和3之间、核苷酸位置21和22之间、和核苷酸位置22和23之间的硫代磷酸酯核苷酸间键联(从5'端计数);
其中该dsRNA试剂具有在该反义链的3'-端的两个核苷酸突出端,和在该反义链的5'-端的一个平端。
在另一个具体实施例中,本发明的dsRNA试剂包括:
(a)一个有义链,其具有:
(i)21个核苷酸的长度;
(ii)一个附接至3'端的ASGPR配体,其中所述的ASGPR配体包括通过三价支链接头附接的三种GalNAc衍生物;
(iii)在位置1至9,和12至21处的2'-OMe修饰,以及在位置10,和11处的2'-F修饰;和
(iv)在核苷酸位置1和2之间,和在核苷酸位置2和3(从5'端计数)之间的硫代磷酸酯核苷酸间键联;
(b)一个反义链,其具有:
(i)23个核苷酸的长度;
(ii)在位置1、3、5、7、9、11至13、15、17、19、和21至23处的2'-OMe修饰,以及在位置2、4、6、8、10、14、16、18、和20(从5'端计数)处的2'-F修饰;和
(iii)在核苷酸位置1和2之间、核苷酸位置2和3之间、核苷酸位置21和22之间、和核苷酸位置22和23之间的硫代磷酸酯核苷酸间键联(从5'端计数);
其中该dsRNA试剂具有在该反义链的3'-端的两个核苷酸突出端,和在该反义链的5'-端的一个平端。
在另一个具体实施例中,本发明的dsRNA试剂包括:
(a)一个有义链,其具有:
(i)21个核苷酸的长度;
(ii)一个附接至3'端的ASGPR配体,其中所述的ASGPR配体包括通过三价支链接头附接的三种GalNAc衍生物;
(iii)在位置1、3、5、7、9至11、和13处的2'-F修饰,以及在位置2、4、6、8、12、和14至21处的2'-OMe修饰;和
(iv)在核苷酸位置1和2之间,和在核苷酸位置2和3(从5'端计数)之间的硫代磷酸酯核苷酸间键联;
(b)一个反义链,其具有:
(i)23个核苷酸的长度;
(ii)在位置1、3、5至7、9、11至13、15、17至19、和21至23处的2'-OMe修饰,以及在位置2、4、8、10、14、16、和20处的2'-F修饰(从5'端计数);和
(iii)在核苷酸位置1和2之间、核苷酸位置2和3之间、核苷酸位置21和22之间、和核苷酸位置22和23之间的硫代磷酸酯核苷酸间键联(从5'端计数);
其中该dsRNA试剂具有在该反义链的3'-端的两个核苷酸突出端,和在该反义链的5'-端的一个平端。
在另一个具体实施例中,本发明的dsRNA试剂包括:
(a)一个有义链,其具有:
(i)21个核苷酸的长度;
(ii)一个附接至3'端的ASGPR配体,其中所述的ASGPR配体包括通过三价支链接头附接的三种GalNAc衍生物;
(iii)在位置1、2、4、6、8、12、14、15、17、和19至21处的2'-OMe修饰,以及在位置3、5、7、9至11、13、16、和18处的2'-F修饰;和
(iv)在核苷酸位置1和2之间,和在核苷酸位置2和3(从5'端计数)之间的硫代磷酸酯核苷酸间键联;
(b)一个反义链,其具有:
(i)25个核苷酸的长度;
(ii)在位置1、4、6、7、9、11至13、15、17、和19至23处的2'-OMe修饰,在位置2、3、5、8、10、14、16、和18处的2'-F修饰,以及在位置24和25处的脱氧核苷酸(例如,dT)(从5'端计数);和
(iii)在核苷酸位置1和2之间、核苷酸位置2和3之间、核苷酸位置21和22之间、和核苷酸位置22和23之间的硫代磷酸酯核苷酸间键联(从5'端计数);
其中该dsRNA试剂在该反义链的3'-端具有四个核苷酸突出端,和在该反义链的5'-端的一个平端。
在另一个具体实施例中,本发明的dsRNA试剂包括:
(a)一个有义链,其具有:
(i)21个核苷酸的长度;
(ii)一个附接至3'端的ASGPR配体,其中所述的ASGPR配体包括通过三价支链接头附接的三种GalNAc衍生物;
(iii)在位置1至6、8、和12至21处的2'-OMe修饰,以及在位置7、和9至11处的2'-F修饰;和
(iv)在核苷酸位置1和2之间,和在核苷酸位置2和3(从5'端计数)之间的硫代磷酸酯核苷酸间键联;
(b)一个反义链,其具有:
(i)23个核苷酸的长度;
(ii)在位置1、3至5、7、8、10至13、15、和17至23处的2'-OMe修饰,以及在位置2、6、9、14、和16处的2'-F修饰(从5'端计数);和
(iii)在核苷酸位置1和2之间、核苷酸位置2和3之间、核苷酸位置21和22之间、和核苷酸位置22和23之间的硫代磷酸酯核苷酸间键联(从5'端计数);
其中该dsRNA试剂具有在该反义链的3'-端的两个核苷酸突出端,和在该反义链的5'-端的一个平端。
在另一个具体实施例中,本发明的dsRNA试剂包括:
(a)一个有义链,其具有:
(i)21个核苷酸的长度;
(ii)一个附接至3'端的ASGPR配体,其中所述的ASGPR配体包括通过三价支链接头附接的三种GalNAc衍生物;
(iii)在位置1至6、8、和12至21处的2'-OMe修饰,以及在位置7、和9至11处的2'-F修饰;和
(iv)在核苷酸位置1和2之间,和在核苷酸位置2和3(从5'端计数)之间的硫代磷酸酯核苷酸间键联;
(b)一个反义链,其具有:
(i)23个核苷酸的长度;
(ii)在位置1、3至5、7、10至13、15、和17至23处的2'-OMe修饰,以及在位置2、6、8、9、14、和16处的2'-F修饰(从5'端计数);和
(iii)在核苷酸位置1和2之间、核苷酸位置2和3之间、核苷酸位置21和22之间、和核苷酸位置22和23之间的硫代磷酸酯核苷酸间键联(从5'端计数);
其中该dsRNA试剂具有在该反义链的3'-端的两个核苷酸突出端,和在该反义链的5'-端的一个平端。
在另一个具体实施例中,本发明的dsRNA试剂包括:
(a)一个有义链,其具有:
(i)19个核苷酸的长度;
(ii)一个附接至3'端的ASGPR配体,其中所述的ASGPR配体包括通过三价支链接头附接的三种GalNAc衍生物;
(iii)在位置1至4、6、和10至19处的2'-OMe修饰,以及在位置5、和7至9处的2'-F修饰;和
(iv)在核苷酸位置1和2之间,和在核苷酸位置2和3(从5'端计数)之间的硫代磷酸酯核苷酸间键联;
(b)一个反义链,其具有:
(i)21个核苷酸的长度;
(ii)在位置1、3至5、7、10至13、15、和17至21处的2'-OMe修饰,以及在位置2、6、8、9、14、和16处的2'-F修饰(从5'端计数);和
(iii)在核苷酸位置1和2之间、核苷酸位置2和3之间、核苷酸位置19和20之间、和核苷酸位置20和21之间的硫代磷酸酯核苷酸间键联(从5'端计数);
其中该dsRNA试剂具有在该反义链的3'-端的两个核苷酸突出端,和在该反义链的5'-端的一个平端。
在一个实施例中,在此描述的该dsRNA试剂进一步包括在从该反义形式的5'-端计数的位置7处、在从有义链的5'-端计数的位置15处、在从该有义链的5'-端计数的位置21处、或在其组合位置处的热不稳定性修饰。
在一个方面中,本发明涉及一种能够抑制靶基因表达的dsRNA试剂。该dsRNA试剂包括有义链和反义链,每条链具有14至40个核苷酸。该有义链含有至少一种热不稳定性核苷酸,其中至少一个所述的热不稳定性核苷酸在与该反义链的种子区相对的位点处或接近的位点处(即,在该反义链的5'-端的位置2-8处)发生,例如,当有义链的长度是21个核苷酸时,该热不稳定性核苷酸在该有义链的5'-端的位置14-17之间发生。该反义链包括小于被11个核苷酸长度分开的空间上需要的2'-OMe修饰的两个经修饰的核酸。例如,这两个经修饰的核酸是在该反义链的5’端的位置2和14处。
在一个实施例中,该dsRNA试剂的有义链进一步包括在该有义链的裂解位点处的易被核酸内切酶修饰的核苷酸。在一个实例中,该易被核酸内切酶修饰的核苷酸是在从该有义链的5'端的位置11处。
在一个实施例中,该反义链进一步包括为该核苷酸提供小于或等于2'-OMe修饰的空间体积的空间体积的第三经修饰的核苷酸,并且该第三经修饰的核苷酸是在从该反义链的5'端的位置6-10处。例如,第三经修饰的核苷酸是在从该反义链的5'端的位置10处。
针对该热不稳定性核苷酸的实施例与式(I)中针对C1的上述描述的各种实施例是类似的。针对经修饰的、小于空间上需要的2'-OMe修饰的核酸的实施例与针对在式(I)中的T1’、T2'、和T3’的上述描述的各种实施例是类似的。描述结合至式I的dsRNA试剂T的长度、突出端、另外的修饰、和配体的实施例在此处是合适的。
本发明进一步涉及如在此描述的用于抑制靶基因表达的dsRNA试剂的用途。在一个实施例中,本发明进一步涉及用于抑制在体外的靶基因表达的dsRNA试剂的用途。
本发明进一步涉及如在此描述的用于抑制受试者中的靶基因表达的dsRNA试剂。该受试者可以是任何动物,优选地是哺乳动物,更优选地是小鼠、大鼠、绵羊、牛、狗、猫、或人。
在一个方面中,本发明涉及一种能够抑制靶基因表达的dsRNA试剂。该dsRNA试剂包括有义链和反义链,每条链具有14至40个核苷酸。该有义链包括接近该有义链的裂解位点处的易被核酸内切酶修饰的核苷酸(例如,DNA、RNA、或2'-F)。例如,该易被核酸内切酶修饰的核苷酸是在从该有义链的5'端的位置11处。发生在接近裂解位点的该核酸内切酶易发生的修饰可以影响该裂解位点的敏感性。例如,接近该裂解位点的热不稳定性修饰可以提供在裂解位点处的核酸内切酶敏感性。该反义链包括小于被11个核苷酸长度分开的空间上需要的2'-OMe修饰的两个经修饰的核酸。例如,这两个经修饰的核酸是在该反义链的5’端的位置2和14处。
在另一个方面中,本发明进一步提供了一种用于通过皮下或静脉内给予向受试者的特定靶标递送本发明的dsRNA的方法。本发明进一步提供了用于在通过皮下或静脉内给予向受试者的特定靶标递送所述试剂的方法中使用的本发明的dsRNA试剂。
附图简要说明
图1A-1C是显示在10nM和0.1nM浓度下评估在有义链的位置17处的不同的修饰对体外有效性的影响的图:(A)siRNA用与亲本AS链配对的非F有义链靶向mTTR;(B)siRNA用非F有义链与配对非F AS链靶向mTTR;(C)siRNA用与亲本AS链配对的非F有义链靶向ANG、ApoC3和TTRSC。
图2是显示在10nM和0.1nM浓度下评估对跨越该有义链位置16-18的体外的热不稳定性GNA修饰的有效性影响的位置效应图。
图3是显示在10nM和0.1nM浓度下评估的在反义链位置2处的修饰对siRNA靶向mTTR、ApoC3、TTRSC和TMP的体外有效性的影响的图。
图4是显示在10nM和0.1nM浓度下评估的在反义链的位置14处的修饰对siRNA靶向mTTR、ApoC3、和TTRSC的体外有效性的影响的图。
图5是显示2.5mg/kg的单次SC剂量之后,小鼠的mTTR沉默的图。
图6是显示相比亲本2PS(AD-43527)和6PS(AD-57727)的非F siRNA AD-61398和AD-64273的剂量反应的图;单次SC剂量,给药后96h测定蛋白质水平。
图7是显示相比用亲本基序:AD-57727的非FAD-61398,在小鼠中给予1mg/kgsiRNA的QW SC剂量后,血浆中mTTR蛋白质的减少的图。
图8是显示在小鼠中(n=3只/组)给予3mg/kg的单次SC剂量之后的TMPRSS6 mRNA的沉默的图:用亲本基序:AD-60490的非F设计的比较。
图9是显示在小鼠中(n=3只/组)给予3mg/kg的单次SC剂量后7天的TMPRSS6 mRNA的沉默:用亲本基序:AD-60490的非F设计的比较。
图10显示相比亲本化合物AD-57727的活性,两个基序(基序1和基序2)的体外活性的结果。
图11显示该siRNA靶向mTTR的沉默活性的体外评估。
图12显示用化学稳定性增强共轭(SEC-C)的增强的活性,其中在给药后第7天测定肝脏的活性(mRNA)。
图13描绘了显示相比亲本化合物,用新基序(基序1和2)的活性的大约4倍的提高的图。
图14描绘了显示跨越三种序列的基序1和基序2的明显改善的持续时间的图。
图15描绘了显示在单次3mg/kg SC剂量hAAV 1x 1011GC/小鼠下的ApoC3-GalNAc3SAR的结果的图。
图16阐明了负载Ago2的siRNA和5'-乙烯基膦酸酯(5'-VP)、经修饰的磷酸酯模拟稳定的磷酸酯的示意图。将该5'-磷酸酯通过细胞溶质Clp1激酶添加,并且作为用于Ago2负载的关键锚。
图17描绘了显示5'-Vp的存在通常如何提高体内的活性的图。将该评估在四种不同的ApoB序列上进行。针对四种缀合物(具有或不具有5'-VP修饰),在3mg/kg的单次SC剂量后7天分析LDL水平。
图18描绘了可以代替PS键,并且提供促进内源性磷酸化作用的更稳定的化学成份(包括二硫代磷酸酯(PS2)和甲基膦酸酯(MePhos))的不同化学修饰。
图19显示末端修饰的体外评估(包括2'-OMe-MePhos、2'-OMe-PS、dN(PS2)、和2'F-PS)的图。在10nM和0.1nM处,在两个ApoB缀合物上进行原代小鼠肝细胞(n=4)转染。
图20显示在反义5'-端处的小改变可以显著地提高体内的有效性。左边的图显示在反义链的位置1处的2'F-PS可以提高5'P-依赖性序列(用单次3mg/kg SC剂量,在第3天测定F9活性)的活性。右边的图显示相似于VP(用单次10mg/kg SC剂量,针对ApoB在第3天测定LDL),通过dN(PS)2超过亲本提高了约3倍的效力。
图21A-B显示相对5'-E-VP修饰(在该反义链的5'-端处)含有5'-OH的ApoB siRNA的体外和体内的活性的SAR分析。图21A显示用体外转染小鼠1°肝细胞的结果。图21B显示单次剂量(SC剂量给药)后3天的LDL水平。
图22显示相对5'-Z-VP修饰对mTTR和F9 siRNA-GalNAc缀合物的5'-E-VP修饰的体外效力的结果。这些结果是来自体外转染的小鼠原代肝细胞。
图23显示相对5'-Z-VP修饰对F9 siRNA-GalNAc缀合物(单次SC剂量)的5'-E-VP修饰的体内比较的结果。
图24A-C是显示在体外PTEN沉默测定的原代小鼠肝细胞中针对(A)5'-OH、(B)5'-C-丙二酸单酰、和(C)5′-磷酸酯PTEN siRNA的剂量-反应曲线的图。所有值是来自一式三份实验。
图25显示在大鼠肝脏去污溶酶体中进行孵化的5'-OH、5'-C-丙二酸单酰、和5′-磷酸酯siRNA的酶稳定性的结果。该siRNA靶序列在表10中示出。将数据归一化至未处理的对照。
图26显示通过来自原代小鼠肝细胞的Ago2的免疫沉淀反应,以及通过Ago2-负载的单链的RT-PCR扩增测定的5'-OH、5'-C-丙二酸单酰、和5′-磷酸酯siRNA(反义链上的5'-修饰)的RISC负载的结果。将测定的内源性miR122的水平作为对照。该siRNA靶序列在表10中示出。
图27是显示使用siRNA修饰的具有单个(S)-GNA核苷酸的TTR的体外敲低的图。用10nM siRNA在原代小鼠肝细胞中孵化24小时后测定TTR mRNA的水平。使用RT-qPCR测定TTRmRNA,并且将其归一化至PBS处理的细胞。所有的数据点是四个测量值的平均。
图28A是显示使用siRNA修饰的具有单个(S)-GNA碱基对的TTR的体外敲低的图。用10nM siRNA在原代小鼠肝细胞中孵化24小时后测定TTR mRNA的水平。使用RT-qPCR测定TTRmRNA,并且将其归一化至PBS处理的细胞。所有的数据点是四个测量值的平均。图28B显示混合的和匹配的双链体,其中含有单个(S)-GNA核苷酸的有义链和反义链配对为GNA:RNA异源碱基对。
图29是显示在小鼠血清中的TTR的在体内水平的图。动物接受了2.5mg/kg siRNA的单次剂量。在给药前或给药后的指示时间,将动物放血,使用夹心ELISA测定法利用HRP-缀合物抗体和3,3',5,5'-四甲基联苯胺用于在450nm下读出来测定血清样品。所有样品一式两份进行测量,并且每个数据点是每个群组中小鼠的平均值(n=3)。
图30是显示TTR mRNA水平体内定量的图。动物接受了2.5mg/kg siRNA的单次剂量。在给药后的指示时间,在完整的肝脏匀浆中进行RNA提取。如上通过RT-qPCR测定TTRmRNA,使用ΔΔCt方法,用GAPDH作为对照转录物,并且将其归一化至PBS处理的动物。深色条带指示针对第21天的结果;以及黑色条指示针对第7天的结果。
发明详述
诸位发明人发现在从该反义链的5’-端的核苷酸位置2和14处具有2’-OMe修饰,抑制dsRNA试剂的基因沉默活性。通过在2'位置处或在反义链和/或有义链的特定位置处提供空间体积小于2'-OMe修饰的非核糖、无环或骨架中的等效位置处引入化学修饰,该dsRNA试剂能够恢复该基因的沉默活性。诸位发明人还确定,将热不稳定性核苷酸引入该反义链的种子区的相对位点处的有义链(即,在该反义链的5'-端的位置2-8处)提供了更好的基因沉默活性。
该dsRNA试剂的有义链和反义链可以被完全修饰。该dsRNA试剂任选地与脱唾液酸糖蛋白受体(ASGPR)配体缀合,例如在有义链上。所得的dsRNA试剂呈现有效的体内基因沉默活性。
因此,本发明提供了一种能够抑制靶基因表达的双链RNAi(dsRNA)试剂。该dsRNA试剂包括有义链和反义链。该dsRNA试剂的每条链可以具有在12-40个核苷酸范围内的长度。例如,每条链可以在14-40个核苷酸长度、17-37个核苷酸长度、25-37个核苷酸长度、27-30个核苷酸长度、17-23个核苷酸长度、17-21个核苷酸长度、17-19个核苷酸长度、19-25个核苷酸长度、19-23个核苷酸长度、19-21个核苷酸长度、21-25个核苷酸长度、或21-23个核苷酸长度。
该有义链和反义链典型地形成一个双链体dsRNA。dsRNA试剂的双链体区可以具有12-40个核苷酸对长度。例如,该双链体区可以在14-40个核苷酸对长度、17-30个核苷酸对长度、25-35个核苷酸长度、27-35个核苷酸对长度、17-23个核苷酸对长度、17-21个核苷酸对长度、17-19个核苷酸对长度、19-25个核苷酸对长度、19-23个核苷酸对长度、19-21个核苷酸对长度、21-25个核苷酸对长度、或21-23个核苷酸对长度。在另一个实例中,该双链体区的长度是选自15、16、17、18、19、20、21、22、23、24、25、26、和27个核苷酸对。
在一个实施例中,本发明的dsRNA试剂可以在一条链的3’-端或5’-端或两端处包含dsRNA试剂的一个或多个突出端区和/或封端基团。该突出端的长度可以是1-10个核苷酸、1-6个核苷酸,例如,2-6个核苷酸、1-5个核苷酸、2-5个核苷酸、1-4个核苷酸、2-4个核苷酸、1-3个核苷酸、2-3个核苷酸、或1-2个核苷酸。这些突出端可以是一个链比另一个链更长的结果,或具有相同长度的两个链交错的结果。该突出端可以与该靶标mRNA形成一个错配,或它可以与靶向的基因序列互补或可以是其他序列。第一链和第二链还可以例如通过另外的碱基连接以形成一个发夹,或通过其他非碱基接头连接。
在一个实施例中,本发明的dsRNA试剂的突出端区中的核苷酸可以各自独立地是一个经修饰的或未经修饰的核苷酸,包括但不限于2'-糖修饰的,例如,2-F 2'-O甲基、胸苷(T)、2'-O-甲氧基乙基-5-甲基尿苷(Teo)、2'-O-甲氧基乙基腺苷(Aeo)、2'-O-甲氧基乙基-5-甲基胞苷(m5Ceo),及其任何组合。例如,TT可以是任一链上的任一端的一个突出端序列。该突出端可以与该靶标mRNA形成一个错配,或它可以与靶向的基因序列互补或可以是其他序列。
本发明的dsRNA试剂的有义链、反义链或两条链处的5'-或3'-突出端可以被磷酸化。在一些实施例中,该突出端区含有两个在这两个核苷酸之间具有一个硫代磷酸酯的核苷酸,其中这两个核苷酸可以是相同或不同的。在一个实施例中,该突出端存在于有义链、反义链或两条链的3'端处。在一个实施例中,这个3’-突出端存在于反义链中。在一个实施例中,这个3’-突出端存在于有义链中。
本发明的dsRNA试剂可以仅包括一个单个的突出端,它可以加强该dsRNA的干扰活性而不影响其总的稳定性。例如,该单链突出端位于该有义链的3'末端处,或可替代地,在该反义链的3'末端处。该dsRNA还可以具有一个位于反义链的5'端(或有义链的3'端)处的平端,或反之亦然。通常,该dsRNA的反义链在3’端处具有一个核苷酸突出端,并且5’端是平的。虽然不受理论束缚,但该反义链的5'端处的不对称平端和该反义链的3'端突出端促进引导链加载到RISC过程中。例如,该单个的突出端包括长度是至少两个、三个、四个、五个、六个、七个、八个、九个、或十个核苷酸。
在一个实施例中,本发明的dsRNA试剂在该dsRNA双链体的两端处还可以具有两个平端。
在一个实施例中,本发明的dsRNA试剂是一个具有19个nt长度的双端平物,其中该有义链含有至少一个热不稳定性核苷酸,其中至少一个热不稳定性核苷酸在与该反义链的种子区相对的位点处或接近的位点处(即,在该反义链的5'-端的位置2-8处)发生。例如,该热不稳定性核苷酸在该有义链的5'-端的位置14-17之间发生。该反义链含有小于空间上需要的2'-OMe的至少两个修饰的核酸;优选地,这两个经修饰的、小于空间上需要的2'-OMe的核酸在该反义链的5’端的位置2和14处。
在一个实施例中,本发明的dsRNA试剂是一个具有20个nt长度的双端平物,其中该有义链含有至少一个热不稳定性核苷酸,其中至少一个热不稳定性核苷酸在与该反义链的种子区相对的位点处或接近的位点处(即,在该反义链的5'-端的位置2-8处)发生。例如,该热不稳定性核苷酸在该有义链的5'-端的位置14-17之间发生。该反义链含有小于空间上需要的2'-OMe的至少两个经修饰的核酸;优选地,这两个经修饰的、小于空间上需要的2'-OMe的核酸在该反义链的5’端的位置2和14处。
在一个实施例中,本发明的dsRNA试剂是一个具有21个nt长度的双端平物,其中该有义链含有至少一个热不稳定性核苷酸,其中至少一个热不稳定性核苷酸在与该反义链的种子区相对的位点处或接近的位点处(即,在该反义链的5'-端的位置2-8处)发生。例如,该热不稳定性核苷酸在该有义链的5'-端的位置14-17之间发生。该反义链含有小于空间上需要的2'-OMe的至少两个经修饰的核酸;优选地,这两个经修饰的、小于空间上需要的2'-OMe的核酸在该反义链的5’端的位置2和14处。
在一个实施例中,本发明的dsRNA试剂包括21个核苷酸(nt)长度的有义链和一个23个核苷酸(nt)长度的反义链,其中该有义链含有至少一个热不稳定性核苷酸,其中至少一个热不稳定性核苷酸在与该反义链的种子区相对的位点处或接近的位点处(即,在该反义链的5'-端的位置2-8处)发生。例如,当该有义链的长度是21个核苷酸时,该热不稳定性核苷酸在该有义链的5'-端的位置14-17之间发生。该反义链含有小于空间上需要的2'-OMe的至少两个经修饰的核酸;优选地,这两个经修饰的、小于空间上需要的2'-OMe的核酸在该反义链的5’端的位置2和14处,其中该dsRNA的一端是平的,然而另一端包括一个2nt的突出端。优选地,该2个nt的突出端在该反义链的3'端处。任选地,该dsRNA进一步包括一个配体(优选地是一个受体配位基,即ASGPR配体)。
在一个实施例中,本发明的dsRNA试剂包括有义链和反义链,其中:该有义链的长度是25-30个核苷酸残基,其中所述有义链的由5'端核苷酸(位置1)开始的位置1至23包括至少8个核糖核苷酸;反义链的长度是36-66个核苷酸残基,并且由3'端核苷酸开始,在与有义链的位置1-23配对的位置处包括至少8个核糖核苷酸,以形成一种双链体;其中至少反义链的3'端核苷酸与有义链未配对,并且多达6个连续的3'端核苷酸与有义链未配对,因此形成1-6个核苷酸的3’单链突出端;其中反义链的5'端包括从10-30个与有义链未配对连续的核苷酸,因此形成一个10-30各核苷酸的单链5'突出端;其中当有义链和反义链经比对达到最大互补性时,至少该有义链5'端和3'端核苷酸与反义链的核苷酸碱基配对,因此在有义链与反义链之间基本上形成一个双链体区;并且当所述双链核酸被引入到一种哺乳动物细胞中时,反义链与一种靶RNA沿着反义链长度的至少19个核糖核苷酸充分互补以减少靶基因表达;并且其中该有义链含有至少一种热不稳定性核苷酸,其中至少一种热不稳定性核苷酸在与该反义链的种子区相对的位点处或接近的位点处(即,在该反义链的5'-端的位置2-8处)发生。例如,该热不稳定性核苷酸在该有义链的5'-端的位置14-17之间发生。该反义链含有小于空间上需要的2'-OMe的至少两个经修饰的核酸;优选地,这两个经修饰的、小于空间上需要的2'-OMe的核酸在该反义链的5’端的位置2和14处。
在一个实施例中,本发明的dsRNA试剂包括有义链和反义链,其中所述dsRNA试剂包括一个具有至少25个和至多29个核苷酸长度的有义链,以及具有至多30个核苷酸长度的反义链,其中在从5’端的位置11处包括易受酶降解的经修饰的核苷酸的有义链。该反义链包括在该反义链的5’端的位置2和14处的小于空间上需要的2'-OMe的两个经修饰的核酸;其中所述有义链的所述3'端和所述反义链的所述5'端形成一个平端,并且所述反义链在其3'端比该有义链长1-4个核苷酸,其中该双链体区的长度是至少25个核苷酸,并且沿着所述反义链长度的至少19个nt,所述的反义链与靶mRNA充分互补,当所述dsRNA试剂被引入哺乳动物细胞中时以减少靶基因表达,并且其中所述的dsRNA的dicer裂解优选地产生包含所述反义链的所述3'端的siRNA,从而在该哺乳动物中减少靶基因表达。任选地,该dsRNA试剂进一步包括一种配体。
在一个实施例中,该有义链包括从5'端的位置11处的易受酶降解的一个经修饰的核苷酸。该反义链包括在该反义链的5'端的位置2和14处的小于空间上需要的2'-OMe的两个经修饰的核酸。
在一个实施例中,反义链包括在该反义链的5'端的位置2和14处的小于空间上需要的2'-OMe的两个经修饰的核酸。
在一个实施例中,dsRNA试剂的有义链和反义链中的每个核苷酸可以被修饰。每个核苷酸可以被相同或不同的修饰来修饰,该修饰可以包括非连接的磷酸酯氧中的一个或两个和/或连接的磷酸酯氧中的一个或多个的一种或多种改变;核糖的组分(例如,核糖上的2′羟基)的改变;用“脱磷”连接子全部置换磷酸酯部分;修饰或置换天然存在的碱基;以及置换或修饰核糖-磷酸酯骨架。
由于核酸是亚单位的聚合物,因此许多修饰出现在核酸内重复的一个位置处,例如一种碱基或一种磷酸酯部分或一种磷酸酯部分的一个非连接O的修饰。在一些情况下,该修饰将出现在该核酸中的所有标的位置处,但在许多情形下它不会这样。例如,一个修饰可以仅出现在3’或5’末端位置处,可以仅出现在一个末端区中,例如在一条链的一个末端核苷酸上或在最后2个、3个、4个、5个或10个核苷酸中的一个位置处。修饰可以出现在双链区、单链区或两者中。修饰可以仅出现在RNA的双链区中或可以仅出现在RNA的单链区中。例如,一个非连接O位置处的一个硫代磷酸酯修饰可以仅存在于一个或两个末端处,可以仅存在于一个末端区中,例如在一条链的一个末端核苷酸上或最后2个、3个、4个、5个或10个核苷酸中的一个位置处,或可以存在于双链和单链区中,特别是在末端处。一个或多个5’端可以被磷酸化。
为了增强稳定性,可能的是例如在突出端中包括特定碱基或在单链突出端中(例如,在一个5’或3’突出端或两者中)包括被修饰的核苷酸或核苷酸替代物。例如,可以令人希望的在突出端中包括嘌呤核苷酸。在一些实施例中,一个3’或5’突出端中的全部或一些碱基可以用例如在此描述的修饰进行修饰。修饰可以包括,例如使用核糖的2’位置处的修饰与本领域中已知的修饰,例如使用2’-脱氧-2’-氟(2’-F)或2’-O-甲基修饰的脱氧核糖核苷酸代替核碱基的核糖,以及磷酸酯基中的修饰(例如硫代磷酸酯修饰)。突出端不必与靶序列同源。
在一个实施例中,有义链和反义链的每个残基独立地被LNA、HNA、CeNA、2'-甲氧基乙基、2'-O-甲基、2'-O-烯丙基、2'-C-烯丙基、2'-脱氧、或2'-氟基修饰。这些链可以含有多于一个修饰。在一个实施例中,有义链和反义链的每个残基独立地被2’-O-甲基或2’-氟代修饰。
至少两个不同修饰典型地存在于有义链和反义链上。那两个修饰可以是2'-脱氧、2'-O-甲基或2'-氟修饰、无环核苷酸或其他修饰。
在一个实施例中,有义链和反义链各自包括选自2'-O-甲基或2'-脱氧的两个不同修饰的核苷酸。
在一个实施例中,有义链和反义链的每个残基独立地被2'-O-甲基核苷酸、2'-脱氧核苷酸、2′-脱氧氟代核苷酸、2'-O-N-甲基乙酰胺基(2'-O-NMA)核苷酸、2'-O-二甲基氨基乙氧基乙基(2'-O-DMAEOE)核苷酸、2'-O-氨基丙基(2'-O-AP)核苷酸、或2'-ara-F核苷酸修饰。
在一个实施例中,本发明的dsRNA试剂包括交替模式的修饰,特别地在如式I中示出的B1、B2、B3、B1’、B2'、B3'、B4’区。如在此使用的术语“交替基序”或“交替模式”是指具有一种或多种修饰的基序,每个修饰发生在一条链的交替核苷酸上。交替核苷酸可以指每隔一个核苷酸一个或每隔三个核苷酸一个,或一种类似模式。例如,如果A、B以及C各自表示针对核苷酸的一种修饰类型,那么交替基序可以是“ABABABABABAB……”、“AABBAABBAABB……”、“AABAABAABAAB……”、“AAABAAABAAAB……”、“AAABBBAAABBB……”或“ABCABCABCABC……”等。
交替基序中所包含的修饰的类型可以是相同或不同的。例如,如果A、B、C、D各自表示针对核苷酸的一种修饰类型,那么交替模式(即每隔一个核苷酸上的修饰)可以是相同的,但有义链或反义链中的每一者可以选自交替基序内的修饰的若干种可能,比如“ABABAB……”、“ACACAC……”、“BDBDBD……”或“CDCDCD……”等。
在一个实施例中,本发明的dsRNA试剂包括用于有义链上的交替基序的修饰模式相对于用于反义链上的交替基序的修饰模式移位。该移位可以是如此以使得有义链的核苷酸的修饰基团相应于反义链的核苷酸的不同修饰基团,并且反之亦然。例如,当有义链与dsRNA双链体中的反义链配对时,有义链中的交替基序可以从该链的5’-3’起由“ABABAB”开始,并且反义链中的交替基序可以在双链体区内从该链的3’-5’起由“BABABA”开始。作为另一个实例,有义链中的交替基序可以从该链的5'-3’起由“AABBAABB”开始,并且反义链中的交替基序可以在双链体区内从该链的3'-5’起由“BBAABBAA”开始,以使得在该有义链和该反义链之间存在修饰模式的完全或部分移位。
本发明的dsRNA试剂可以进一步包括至少一个硫代磷酸酯或甲基膦酸酯核苷酸间键联。该硫代磷酸酯或甲基膦酸酯核苷酸间键联修饰可以出现在有义链或反义链或两者的链的任何位置中的任何核苷酸上。例如,该核苷酸间键联修饰可以出现在该有义链和/或反义链上的每个核苷酸上;每个核苷酸间键联修饰可以按一种交替模式出现在该有义链或反义链上;或该有义链或反义链可以按一种交替模式包括两个核苷酸间键联修饰。该有义链上的核苷酸间键联修饰的交替模式可以与该反义链相同或不同,并且该有义链上的核苷酸间键联修饰的交替模式可以相对于该反义链上的核苷酸间键联修饰的交替模式具有移位。
在一个实施例中,该dsRNA试剂在突出端区中包括硫代磷酸酯或甲基膦酸酯核苷酸间键联修饰。例如,该突出端区包括在这两个核苷酸之间具有一个硫代磷酸酯或甲基膦酸酯核苷酸间键联的两个核苷酸。还可以作核苷酸间键联修饰以使突出端核苷酸与双链体区内的末端配对的核苷酸键联。例如,至少2个、3个、4个或所有的突出端核苷酸可以通过硫代磷酸酯或甲基膦酸酯核苷酸间键联来连接,并且任选地,可以存在将突出端核苷酸与紧挨着该突出端核苷酸的一个配对的核苷酸连接的另外的硫代磷酸酯或甲基膦酸酯核苷酸间键联。例如,在末端三个核苷酸之间可以存在至少两个硫代磷酸酯核苷酸间键联,其中这三个核苷酸中的两个是突出端核苷酸,并且第三个是紧挨着该突出端核苷酸的配对的核苷酸。优选地,这三个末端核苷酸可以在反义链的3'端处。
在一个实施例中,该dsRNA试剂的有义链包括具有被1、2、3、4、5、6、7、8、9、10、11、12、13、14、15或16个磷酸酯核苷酸间键联分开的两个至十个硫代磷酸酯或甲基膦酸酯核苷酸间键联的1-10个嵌段,其中这些硫代磷酸酯或甲基膦酸酯核苷酸间键联之一是位于该寡核苷酸序列中的任何位置处,并且所述有义链与包括硫代磷酸酯、甲基膦酸酯和磷酸酯核苷酸间键联的任何组合的反义链或包括硫代磷酸酯或甲基膦酸酯或磷酸酯键联的反义链配对。
在一个实施例中,该dsRNA试剂的反义链包括具有被1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、或18个磷酸酯核苷酸间键联分开的两个硫代磷酸酯或甲基膦酸酯核苷酸间键联的两个嵌段,其中这些硫代磷酸酯或甲基膦酸酯核苷酸间键联之一是位于该寡核苷酸序列中的任何位置处,并且所述反义链与包括硫代磷酸酯、甲基膦酸酯和磷酸酯核苷酸间键联的任何组合的有义链或包括硫代磷酸酯或甲基膦酸酯或磷酸酯键联的反义链配对。
在一个实施例中,该dsRNA试剂的反义链包括具有被1、2、3、4、5、6、7、8、9、10、11、12、13、14、15或16个磷酸酯核苷酸间键联分开的三个硫代磷酸酯或甲基膦酸酯核苷酸间键联的两个嵌段,其中这些硫代磷酸酯或甲基膦酸酯核苷酸间键联之一是位于寡核苷酸序列中的任何位置处,并且所述反义链与包括硫代磷酸酯、甲基膦酸酯和磷酸酯核苷酸间键联的任何组合的有义链或包括硫代磷酸酯或甲基膦酸酯或磷酸酯键联的反义链配对。
在一个实施例中,该dsRNA试剂的反义链包括具有被1、2、3、4、5、6、7、8、9、10、11、12、13或14个磷酸酯核苷酸间键联分开的四个硫代磷酸酯或甲基膦酸酯核苷酸间键联的两个嵌段,其中这些硫代磷酸酯或甲基膦酸酯核苷酸间键联之一是位于在寡核苷酸序列中的任何位置,并且所述反义链与包括硫代磷酸酯、甲基膦酸酯和磷酸酯核苷酸间键联的任何组合的有义链或包括硫代磷酸酯或甲基膦酸酯或磷酸酯键联的反义链配对。
在一个实施例中,该dsRNA试剂的反义链包括具有被1、2、3、4、5、6、7、8、9、10、11或12个磷酸酯核苷酸间键联分开的五个硫代磷酸酯或甲基膦酸酯核苷酸间键联的两个嵌段,其中这些硫代磷酸酯或甲基膦酸酯核苷酸间键联之一是位于在寡核苷酸序列中的任何位置处,并且所述反义链与包括硫代磷酸酯、甲基膦酸酯和磷酸酯核苷酸间键联的任何组合的有义链或包括硫代磷酸酯或甲基膦酸酯或磷酸酯键联的反义链配对。
在一个实施例中,该dsRNA试剂的反义链包括具有被1、2、3、4、5、6、7、8、9或10个磷酸酯核苷酸间键联分开的六个硫代磷酸酯或甲基膦酸酯核苷酸间键联的两个嵌段,其中这些硫代磷酸酯或甲基膦酸酯核苷酸间键联之一是位于在该寡核苷酸序列中的任何位置处,并且所述反义链与包括硫代磷酸酯、甲基膦酸酯和磷酸酯核苷酸间键联的任何组合的有义链或包括硫代磷酸酯或甲基膦酸酯或磷酸酯键联的反义链配对。
在一个实施例中,该dsRNA试剂的反义链包括具有被1、2、3、4、5、6、7或8个磷酸酯核苷酸间键联分开的七个硫代磷酸酯或甲基膦酸酯核苷酸间键联的两个嵌段,其中这些硫代磷酸酯或甲基膦酸酯核苷酸间键联之一是位于在该寡核苷酸序列中的任何位置处,并且所述反义链与包括硫代磷酸酯、甲基膦酸酯和磷酸酯核苷酸间键联的任何组合的有义链或包括硫代磷酸酯或甲基膦酸酯或磷酸酯键联的反义链配对。
在一个实施例中,该dsRNA试剂的反义链包括具有被1、2、3、4、5或6个磷酸酯核苷酸间键联分开的八个硫代磷酸酯或甲基膦酸酯核苷酸间键联的两个嵌段,其中这些硫代磷酸酯或甲基膦酸酯核苷酸间键联之一是位于在该寡核苷酸序列中的任何位置处,并且所述反义链与包括硫代磷酸酯、甲基膦酸酯和磷酸酯核苷酸间键联的任何组合的有义链或包括硫代磷酸酯或甲基膦酸酯或磷酸酯键联的反义链配对。
在一个实施例中,该dsRNA试剂的反义链包括具有被1、2、3或4个磷酸酯核苷酸间键联分开的九个硫代磷酸酯或甲基膦酸酯核苷酸间键联的两个嵌段,其中这些硫代磷酸酯或甲基膦酸酯核苷酸间键联之一是位于在该寡核苷酸序列的任何位置处,并且所述反义链与包括硫代磷酸酯、甲基膦酸酯和磷酸酯核苷酸间键联的任何组合的有义链或包括硫代磷酸酯或甲基膦酸酯或磷酸酯键联的反义链配对。
在一个实施例中,本发明的dsRNA试剂在该有义链和/或反义链的1-10个末端位置中进一步包括一个或多个硫代磷酸酯或甲基膦酸酯核苷酸间键联修饰。例如,在该有义链和/或反义链的一端或两端处至少2、3、4、5、6、7、8、9或10个核苷酸可以经由硫代磷酸酯或甲基膦酸酯核苷酸间键联而键联。
在一个实施例中,本发明的dsRNA试剂在该有义链和/或反义链各自的1-10个双链体内部区中进一步包括一个或多个硫代磷酸酯或甲基膦酸酯核苷酸间键联修饰。例如,在从该有义链的5'端起计数的双链体区的位置8-16处至少至少2、3、4、5、6、7、8、9或10个核苷酸可以经由硫代磷酸酯或甲基膦酸酯核苷酸间键联而键联;该dsRNA试剂在1-10个末端位置中可以任选地进一步包括一个或多个硫代磷酸酯或甲基膦酸酯核苷酸间键联修饰。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1-5中进一步包括一至五个硫代磷酸酯或甲基膦酸酯核苷酸间键联修饰并且在位置18-23中进一步包括一至五个硫代磷酸酯或甲基膦酸酯核苷酸间键联修饰(从5'端计数),以及在该反义链的位置1和2处进一步包括一至五个硫代磷酸酯或甲基膦酸酯核苷酸间键联修饰并且在位置18-23中进一步包括一至五个(从5’端计数)。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1-5中进一步包括一个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括一个硫代磷酸酯或甲基膦酸酯核苷酸间键联修饰(从5’端计数),以及在该反义链的位置1和2处进一步包括一个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括两个硫代磷酸酯或甲基膦酸酯核苷酸间键联修饰(从5’端计数)。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1-5中进一步包括两个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括一个硫代磷酸酯核苷酸间键联修饰(从5'端计数),以及在该反义链的位置1和2处进一步包括一个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括两个硫代磷酸酯核苷酸间键联修饰(从5'端计数)。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1-5中进一步包括两个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括两个硫代磷酸酯核苷酸间键联修饰(从5'端计数),以及在该反义链的位置1和2处进一步包括一个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括两个硫代磷酸酯核苷酸间键联修饰(从5'端计数)。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1-5中进一步包括两个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括两个硫代磷酸酯核苷酸间键联修饰(从5'端计数),以及在该反义链的位置1和2处进一步包括一个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括一个硫代磷酸酯核苷酸间键联修饰(从5'端计数)。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1-5中进一步包括一个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括一个硫代磷酸酯核苷酸间键联修饰(从5'端计数),以及在该反义链的位置1和2处进一步包括两个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括两个硫代磷酸酯核苷酸间键联修饰(从5'端计数)。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1-5中进一步包括一个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括一个硫代磷酸酯核苷酸间键联修饰(从5'端计数),以及在该反义链的位置1和2处进一步包括两个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括一个硫代磷酸酯核苷酸间键联修饰(从5'端计数)。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1-5中进一步包括一个硫代磷酸酯核苷酸间键联修饰(从5'端计数),并且在该反义链的位置1和2处进一步包括两个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括一个硫代磷酸酯核苷酸间键联修饰(从5'端计数)。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1-5中进一步包括两个硫代磷酸酯核苷酸间键联修饰(从5'端计数),并且在该反义链的位置1和2处进一步包括一个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括两个硫代磷酸酯核苷酸间键联修饰(从5'端计数)。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1-5中进一步包括两个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括一个硫代磷酸酯核苷酸间键联修饰(从5'端计数),以及在该反义链的位置1和2处进一步包括两个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括一个硫代磷酸酯核苷酸间键联修饰(从5'端计数)。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1-5中进一步包括两个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括一个硫代磷酸酯核苷酸间键联修饰(从5'端计数),以及在该反义链的位置1和2处进一步包括两个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括两个硫代磷酸酯核苷酸间键联修饰(从5'端计数)。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1-5中进一步包括两个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括一个硫代磷酸酯核苷酸间键联修饰(从5'端计数),以及在该反义链的位置1和2处进一步包括一个硫代磷酸酯核苷酸间键联修饰并且在位置18-23中进一步包括两个硫代磷酸酯核苷酸间键联修饰(从5'端计数)。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1和2处进一步包括两个硫代磷酸酯核苷酸间键联修饰并且在位置20和21处进一步包括两个硫代磷酸酯核苷酸间键联修饰(从5'端计数),以及在该反义链的位置1处进一步包括一个硫代磷酸酯核苷酸间键联修饰并且在位置21处进一步包括一个硫代磷酸酯核苷酸间键联修饰(从5'端计数)。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1处进一步包括一个硫代磷酸酯核苷酸间键联修饰并且在位置21处进一步包括一个硫代磷酸酯核苷酸间键联修饰(从5'端计数),以及在该反义链的位置1和2处进一步包括两个硫代磷酸酯核苷酸间键联修饰并且在位置20和21处进一步包括两个硫代磷酸酯核苷酸间键联修饰(从5'端计数)。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1和2处进一步包括两个硫代磷酸酯核苷酸间键联修饰并且在位置20和21处进一步包括两个硫代磷酸酯核苷酸间键联修饰(从5'端计数),以及在该反义链的位置1处进一步包括一个硫代磷酸酯核苷酸间键联修饰并且在位置21处进一步包括一个硫代磷酸酯核苷酸间键联修饰(从5'端计数)。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1处进一步包括一个硫代磷酸酯核苷酸间键联修饰并且在位置21处进一步包括一个硫代磷酸酯核苷酸间键联修饰(从5'端计数),以及在该反义链的位置1和2处进一步包括两个硫代磷酸酯核苷酸间键联修饰并且在位置21和22处进一步包括两个硫代磷酸酯核苷酸间键联修饰(从5'端计数)。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1和2处进一步包括两个硫代磷酸酯核苷酸间键联修饰并且在位置22和23处进一步包括两个硫代磷酸酯核苷酸间键联修饰(从5'端计数),以及在该反义链的位置1处进一步包括一个硫代磷酸酯核苷酸间键联修饰并且在位置21处进一步包括一个硫代磷酸酯核苷酸间键联修饰(从5'端计数)。
在一个实施例中,本发明的dsRNA试剂在该有义链的位置1处进一步包括一个硫代磷酸酯核苷酸间键联修饰并且在位置21处进一步包括一个硫代磷酸酯核苷酸间键联修饰(从5'端计数),以及在该反义链的位置1和2处进一步包括两个硫代磷酸酯核苷酸间键联修饰并且在位置23和23处进一步包括两个硫代磷酸酯核苷酸间键联修饰(从5'端计数)。
在一个实施例中,本发明的dsRNA试剂在双链体内包括与靶标的一个或多个错配或其组合。该错配可以存在于突出端区或双链体区中。碱基对可以基于其促进解离或熔融的倾向来分等级(例如对于一个具体配对的缔合或解离自由能,最简单的方法是基于一个个别对检查这些对,但也可以使用紧接着的相邻物或类似分析)。就促进解离而言:A:U优选于G:C;G:U优选于G:C;并且I:C优选于G:C(I=肌苷)。错配,例如非规范的配对或除了规范以外的配对(如在此其他地方所描述)优选于规范的配对(A:T、A:U、G:C);并且包括通用碱基的配对优选于规范的配对。
在一个实施例中,本发明的dsRNA试剂包括双链体区内由反义链的5'端起的前1个、2个、3个、4个或5个碱基对中的至少一个,可以独立地选自下组:A:U、G:U、I:C以及错配的对(例如非标准的或除标准以外的配对)或包括一种通用碱基以促进该双链体的5'端处的该反义链解离的配对。
在一个实施例中,该双链体区内从该反义链中的5’端起的1位置处的核苷酸选自下组,该组由以下各项组成:A、dA、dU、U以及dT。可替代地,从该反义链的5’端起在该双链体区内的前1、2或3个碱基对中的至少一个是AU碱基对。例如,从该反义链的5’-端起在该双链体区内的第一个碱基对是AU碱基对。
发明人发现将4'-修饰的和/或5'-修饰的核苷酸引入单链的或双链的寡核苷酸的任何位置处的二核苷酸的磷酸二酯(PO)、硫代磷酸酯(PS)、和/或二硫代磷酸酯(PS2)键联的3'-端可以对核苷酸间键联发挥空间效应,并且因此保护或稳定该核苷酸间键联对抗核酸酶。
在一个实施例中,5'-修饰的核苷被引入到单链的或双链的siRNA的任何位置处的二核苷酸的3'-端处。例如,5'-烷基化的核苷被引入到单链的或双链的siRNA的任何位置处的二核苷酸的3'-端处。在核糖的5'位置处的烷基基团可以是外消旋的或手性纯的R或S异构体。一种示例性5'-烷基化的核苷是5'-甲基核苷。该5'-甲基可以是外消旋的或手性纯的R或S异构体。
在一个实施例中,4'-修饰的核苷被引入到单链的或双链的siRNA的任何位置处的二核苷酸的3'-端处。例如,4'-烷基化的核苷被引入到单链的或双链的siRNA的任何位置处的二核苷酸的3'-端处。在核糖的4'位置处的烷基基团可以是外消旋的或手性纯的R或S异构体。一种示例性4'-烷基化的核苷是4'-甲基核苷。该4'-甲基可以是外消旋的或手性纯的R或S异构体。可替代地,4'-O-烷基化的核苷可以被引入到单链的或双链的siRNA的任何位置处的二核苷酸的3'-端。该核糖的4'-O-烷基可以是外消旋的或手性纯的R或S异构体。一种示例性4'-O-烷基化的核苷是4'-O-甲基核苷。该4'-O-甲基可以是外消旋的或手性纯的R或S异构体。
在一个实施例中,5'-烷基化的核苷被引入到dsRNA的有义链或反义链上的任何位置处,并且这样的修饰保持或改善该dsRNA的效力。该5'-烷基可以是外消旋或手性纯的R或S异构体。一种示例性5'-烷基化的核苷是5'-甲基核苷。该5'-甲基可以是外消旋的或手性纯的R或S异构体。
在一个实施例中,4'-烷基化的核苷被引入到dsRNA的有义链或反义链上的任何位置处,并且这样的修饰保持或改善该dsRNA的效力。该4'-烷基可以是外消旋或手性纯的R或S异构体。一种示例性4'-烷基化的核苷是4'-甲基核苷。该4'-甲基可以是外消旋的或手性纯的R或S异构体。
在一个实施例中,4'-O-烷基化的核苷被引入到dsRNA的有义链或反义链的任何位置处,并且这样的修饰保持或改善该dsRNA的效力。该5'-烷基可以是外消旋或手性纯的R或S异构体。一种示例性4'-O-烷基化的核苷是4'-O-甲基核苷。该4'-O-甲基可以是外消旋的或手性纯的R或S异构体。
在一个实施例中,该dsRNA试剂的有义链序列是由式(Is)来表示:
其中:
B1、B2、和B3各自独立地表示含有一种修饰的核苷酸,该修饰选自下组,该组由以下各项组成:2'-O烷基、2'-经取代的烷氧基、2'-经取代的烷基、2'-卤代、ENA、和BNA/LNA;
C1是位于反义链种子区相对位置处(即,该反义链的5'-端的位置2-8)的一种热不稳定性核苷酸(例如,无环核苷酸(比如UNA或GNA)、错配、脱碱基、或DNA);
T1表示包括在2'位置处或在非核糖、无环或骨架中的等效位置处化学修饰的核苷酸,其提供小于2'-OMe修饰的空间体积的核苷酸;例如,T1选自下组,该组由以下各项组成:DNA、RNA、LNA、2'-F、和2'-F-5'-甲基;
n1或n3的长度独立地是4至15个核苷酸;
n5的长度是1-6个核苷酸;
n4的长度是1-3个核苷酸;可替代地n4是0,并且
n2的长度是0-3个核苷酸。
在一个实施例中,该dsRNA试剂的有义链序列具有19、20、21、或22个核苷酸长度,其由式(Is)来表示:
其中:
B1、B2、和B3各自独立地表示含有一种修饰的核苷酸,该修饰选自下组,该组由以下各项组成:2'-O烷基、2'-经取代的烷氧基、2'-经取代的烷基、2'-卤代、ENA、和BNA/LNA;
C1是位于反义链种子区相对位置处(即,该反义链的5'-端的位置2-8)的一种热不稳定性核苷酸(例如,无环核苷酸(比如UNA或GNA)、错配、脱碱基、或DNA);
T1表示包括一种化学修饰的核苷酸,该化学修饰选自下组,该组由以下各项组成:DNA、RNA、LNA、2'-F、和2'-F-5'-甲基;
n1或n3的长度独立地是4至15个核苷酸;
n5的长度是1-6个核苷酸;
n4的长度是1-3个核苷酸;可替代地n4是0并且
n2的长度是0-3个核苷酸。
在一个实施例中,式(Is)的dsRNA试剂进一步包括1-10个核苷酸长度的一个或多个3'和/或5’突出端。在一个实例中,式(Is)的dsRNA试剂包括一个5'突出端。
在一个实施例中,C1包括从该有义链的5'-端的位置14、15、16或17处的一个热不稳定性核苷酸。例如,C1是无环核苷酸(例如,UNA或GNA)、错配、脱碱基、或DNA。在一个具体实例中,C1是GNA。
在一个实施例中,T1包括从该有义链的5'-端的位置11处的DNA、RNA、LNA、2'-F、或2'-F-5'-甲基。
在一个实施例中,本发明的dsRNA试剂包括一个有义链(Is),其中C1是无环核苷酸(例如,UNA或GNA)、错配、脱碱基、或DNA;并且T1包括从该有义链的5'-端的位置11处的DNA、RNA、LNA、2'-F、或2'-F-5'-甲基。
在一个实施例中,该dsRNA试剂的反义链序列由式(Ia)来表示:
其中:
B1'、B2'、B3’、和B4'各自独立地表示含有一种修饰的核苷酸,该修饰选自下组,该组由以下各项组成:2'-O烷基、2'-经取代的烷氧基、2'-经取代的烷基、2'-卤代、ENA、和BNA/LNA;
T1'、T2'、和T3'各自独立地表示包括在2'位置处或在非核糖、无环或骨架中的等效位置处的化学修饰的核苷酸,其提供小于2'-OMe修饰的空间体积的核苷酸;例如,T1'、T2'、和T3’各自独立地选自下组,该组由以下各项组成:DNA、RNA、LNA、2'-F、和2'-F-5'-甲基;
q1的长度独立地是4至15个核苷酸;
q3或q7的长度独立地是1-6个核苷酸;
q2或q6的长度独立地是1-3个核苷酸;
q4的长度独立地是0-3个核苷酸;并且
q5的长度独立地是0-10个核苷酸。
在一个实施例中,该dsRNA试剂的反义链序列具有19、20、21、22、23、24、或25个核苷酸长度,其由式(Ia)来表示:
其中:
B1'、B2'、B3’、和B4'各自独立地表示含有一种修饰的核苷酸,该修饰选自下组,该组由以下各项组成:2'-O烷基、2'-经取代的烷氧基、2'-经取代的烷基、2'-卤代、ENA、和BNA/LNA;
T1’、T2'、和T3'各自独立地表示包括一种化学修饰的核苷酸,该化学修饰选自下组,该组由以下各项组成:DNA、RNA、LNA、2'-F、和2'-F-5'-甲基;
q1的长度独立地是4至15个核苷酸;
q3或q7的长度独立地是1-6个核苷酸;
q2或q6的长度独立地是1-3个核苷酸;
q4的长度独立地是0-3个核苷酸;并且
q5的长度独立地是0-10个核苷酸。
在一个实施例中,式(Ia)的dsRNA进一步包括1-10个核苷酸长度的一个或多个3'和/或5’的突出端。在一个实例中,式(Ia)的dsRNA包括一个3'突出端。
在一个实施例中,本发明涉及用于抑制靶基因表达的双链RNA(dsRNA)试剂。该dsRNA试剂包括有义链和反义链,每条链具有14至40个核苷酸:
其中:
B1、B2、B3、B1'、B2'、B3’、和B4'各自独立地表示含有一种修饰的核苷酸,该修饰选自下组,该组由以下各项组成:2'-O烷基、2'-经取代的烷氧基、2'-经取代的烷基、2'-卤代、ENA、和BNA/LNA;
C1是一种无环核苷酸(例如,UNA或GNA);
T1、T1'、T2'、和T3'各自独立地表示包括一种化学修饰的核苷酸,该化学修饰选自下组,该组由以下各项组成:DNA、RNA、LNA、2'-F、和2'-F-5'-甲基;
n1、n3、或q1的长度独立地是4至15个核苷酸;
n5、q3或q7的长度独立地是1-6个核苷酸;
n4、q2或q6的长度独立地是1-3个核苷酸;可替代地n4是0,
n2或q4的长度独立地是0-3个核苷酸;
q5的长度独立地是0-10个核苷酸;并且
其中这些反义链和/或有义链的dsRNA试剂具有1-10个核苷酸长度的一个或多个3'和/或5'突出端。
在一个实施例中,本发明涉及用于抑制靶基因表达的双链RNA(dsRNA)试剂。该dsRNA试剂包括有义链和反义链,每条链具有14至40个核苷酸:
其中:
B1、B2、B3、B1'、B2'、B3’、和B4'各自独立地表示含有一种修饰的核苷酸,该修饰选自下组,该组由以下各项组成:2'-O烷基、2'-经取代的烷氧基、2'-经取代的烷基、2'-卤代、ENA、和BNA/LNA;
C1是一种无环核苷酸(例如,UNA或GNA);
T1、T1'、T2'、和T3'各自独立地表示包括一种化学修饰的核苷酸,该化学修饰选自下组,该组由以下各项组成:DNA、RNA、LNA、2'-F、和2'-F-5'-甲基;
n1、n3、或q1的长度独立地是4至15个核苷酸;
n5、q3或q7的长度独立地是1-6个核苷酸;
n4、q2或q6的长度独立地是1-3个核苷酸;可替代地n4是0,
n2或q4的长度独立地是0-3个核苷酸;
q5的长度独立地是0-10个核苷酸;并且
其中在该反义链的3'-端处,该dsRNA试剂具有2个核苷酸长度的3'突出端。
在一个实施例中,本发明涉及用于抑制靶基因表达的双链RNA(dsRNA)试剂。该dsRNA试剂包括有义链和反义链,每条链具有15-30个核苷酸:
其中:
B1、B2、B3、B1'、B2'、B3’、和B4'各自独立地表示含有2'-OMe修饰的核苷酸;
C1是一种无环核苷酸GNA;
T1、T1、T2'、和T3’各自独立地是DNA或RNA;
n1、n3、或q1的长度独立地是4至15个核苷酸;
n5、q3或q7的长度独立地是1-6个核苷酸;
N4、q2或q6的长度独立地是1-3个核苷酸;可替代地,n44、q2或q6的长度独立地是1-3个核苷酸;可替代地,n4是0,
n2或q4的长度独立地是0-3个核苷酸;
q5的长度独立地是0-10个核苷酸;并且
其中该dsRNA试剂在该反义链的3'-端处具有一个1-6个核苷酸长度的3'突出端。
在一个实施例中,本发明涉及用于抑制靶基因表达的双链RNA(dsRNA)试剂。该dsRNA试剂包括有义链和反义链,每条链具有19-23个核苷酸:
其中:
B1、B2、B3、B1'、B2'、B3'、和B4'各自独立地表示含有2'-OMe修饰的核苷酸;
C1是一种无环核苷酸GNA;
T1、T1'、T2'、和T3’独立地是DNA或RNA;
n1、n3、q1、或q3的长度独立地是4至15个核苷酸;
n5、q3或q7的长度独立地是1-6个核苷酸;
n4、q2或q6的长度独立地是1-3个核苷酸;可替代地n4是0,
n2、q4或q5的长度独立地是0-3个核苷酸;
q5的长度独立地是0-10个核苷酸;并且
其中在该反义链的3'-端处,该dsRNA试剂具有2个核苷酸长度的3'突出端。
在一个实施例中,本发明涉及用于抑制靶基因表达的双链RNA(dsRNA)试剂。该dsRNA试剂包括有义链和反义链,每条链具有14至40个核苷酸:
其中:
B1、B2、B3、B1'、B2'、B3’、和B4'各自独立地表示含有一种修饰的核苷酸,该修饰选自下组,该组由以下各项组成:2'-O烷基、2'-经取代的烷氧基、2'-经取代的烷基、2'-卤代、ENA、和BNA/LNA;
C1是一种无环核苷酸(例如,UNA或GNA);
T1、T1'、T2'、和T3'各自独立地表示包括一种化学修饰的核苷酸,该化学修饰选自下组,该组由以下各项组成:DNA、RNA、LNA、2'-F、和2'-F-5'-甲基;
n1、n3、或q1的长度独立地是4至15个核苷酸;
n5、q3或q7的长度独立地是1-6个核苷酸;
n4、q2或q6的长度独立地是1-3个核苷酸;可替代地n4是0,
n2或q4的长度独立地是0-3个核苷酸;
q5的长度独立地是0-10个核苷酸;并且
其中在该有义链的5'-端处,dsRNA试剂具有一个1-10个核苷酸长度的5'突出端。
在一个实施例中,本发明涉及用于抑制靶基因表达的双链RNA(dsRNA)试剂。该dsRNA试剂包括有义链和反义链,每条链具有14至40个核苷酸:
其中:
B1、B2、B3、B1'、B2'、B3’、和B4'各自独立地表示含有一种修饰的核苷酸,该修饰选自下组,该组由以下各项组成:2'-O烷基、2'-经取代的烷氧基、2'-经取代的烷基、2'-卤代、ENA、和BNA/LNA;
C1是一种无环核苷酸(例如,UNA或GNA);
T1、T1'、T2'、和T3'各自独立地表示包括一种化学修饰的核苷酸,该化学修饰选自下组,该组由以下各项组成:DNA、RNA、LNA、2'-F、和2'-F-5'-甲基;
n1、n3、或q1的长度独立地是4至15个核苷酸;
n5、q3或q7的长度独立地是1-6个核苷酸;
n4、q2或q6的长度独立地是1-3个核苷酸;可替代地n4是0,
n2或q4的长度独立地是0-3个核苷酸;
q5的长度独立地是0-10个核苷酸;并且
其中在该有义链的5'-端处,该dsRNA试剂具有一个1-6个核苷酸长度的5'突出端。
在一个实施例中,本发明涉及用于抑制靶基因表达的双链RNA(dsRNA)试剂。该dsRNA试剂包括有义链和反义链,每条链具有14至40个核苷酸:
其中:
B1、B2、B3、B1'、B2'、B3’、和B4'各自独立地表示含有一种修饰的核苷酸,该修饰选自下组,该组由以下各项组成:2'-O烷基、2'-经取代的烷氧基、2'-经取代的烷基、2'-卤代、ENA、和BNA/LNA;
C1是一种无环核苷酸(例如,UNA或GNA);
T1、T1'、T2'、和T3'各自独立地表示包括一种化学修饰的核苷酸,该化学修饰选自下组,该组由以下各项组成:DNA、RNA、LNA、2'-F、和2'-F-5'-甲基;
n1、n3、或q1的长度独立地是4至15个核苷酸;
n5、q3或q7的长度独立地是1-6个核苷酸;
n4、q2或q6的长度独立地是1-3个核苷酸;可替代地n4是0,
n2或q4的长度独立地是0-3个核苷酸;
q5的长度独立地是0-10个核苷酸;并且
其中在该有义链的5'-端处,该dsRNA试剂具有一个1-10个核苷酸长度的5'突出端,并且在该反义链的5'-端处具有一个1-10个核苷酸长度的3'突出端。
热不稳定性修饰。
通过在与反义链的种子区相对的位点处(即,在该反义链的5'-端的位置2-8处)的有义链中引入热不稳定性修饰,通过增加dsRNA双链体分离或熔化的倾向(减少双链体缔合的自由能),dsRNA试剂可以被优化用于RNA干扰。这种修饰可以增加该反义链的种子区中的双链体分离或熔化的倾向。
这些热不稳定性修饰可以包括脱碱基修饰;与相对链中相对的核苷酸的错配;以及糖修饰,比如2'-脱氧修饰或无环核苷酸,例如,解锁核酸(UNA)或甘油核酸(GNA)。
示例性脱碱基修饰是:
示例性糖修饰是:
术语“无环核苷酸”是指具有无环核糖的任何核苷酸,例如,其中核糖碳(例如,C1'-C2'、C2'-C3'、C3'-C4'、C4'-O4'、或C1'-O4')之间的任何键从该核苷酸是不存在的和/或至少一种核糖碳或氧(例如,C1'、C2'、C3'、C4'或O4’)是从该核苷酸独立地或结合地不存在。在一些实施例中,无环核苷酸是其中B是经修饰的或未经修饰的核碱基,R1和R2独立地是H、卤素、OR3、或烷基;并且R3是H、烷基、环烷基、芳基、芳烷基、杂芳基或糖)。术语“UNA”是指解锁无环核酸,其中该糖的任何键被去除,形成一个解锁的“糖”残基。在一个实例中,UNA还包括具有被去除的C1'-C4’之间的键的单体(即,C1’和C4'碳之间的共价碳-氧-碳键)。在另一个实例中,将该糖的C2'-C3'键(即,C2’和C3'碳之间的共价碳-碳键)去除。(参见米哈伊洛夫(Mikhailov)等人,四面体通讯(Tetrahedron Letters),26(17):2059(1985);以及弗鲁特(Fluiter)等人,分子生物系统(Mol.Biosyst.),10:1039(2009),将其通过引用以其全文结合在此)。无环衍生物提供了更大的主链柔性,而不影响沃森-克里克(Watson-Crick)配对。该无环核苷酸可以通过2'-5'或3'-5'键联而连接。
术语‘GNA’是指一种乙二醇核酸,该乙二醇核酸是类似于DNA或RNA的聚合物,但是在“主链”的组成方面而不同,因为该乙二醇核酸是由磷酸二酯键连接的重复甘油单元组成的:
该热不稳定性修饰可以是热不稳定性核苷酸和dsRNA双链体中相反链中的相对的核苷酸之间的错配(即,非互补性碱基对)。示例性错配碱基对包括G:G、G:A、G:U、G:T、A:A、A:C、C:C、C:U、C:T、U:U、T:T、U:T、或其组合物。本领域已知的其他错配碱基对也是从属于本发明的。错配可以存在于天然发生的核苷酸或经修饰的核苷酸的核苷酸之间,即,错配的碱基配对可以存在于来自各个核苷酸的核碱基之间,与核苷酸的核糖上的修饰无关。在某些实施例中,该dsRNA试剂在错配的配对中含有至少一个核碱基,该核碱基是2'-脱氧核碱基;例如,在有义链中的2'-脱氧核碱基。
脱碱基核苷酸、无环核苷酸修饰(包括UNA和GNA)、和错配修饰的更多的实例已经在WO 2011/133876中进行了详细描述,将其通过引用以其全文结合在此。
热不稳定性修饰还可以包括具有与相对碱基形成氢键的减少的或丧失的活性的通用碱基以及磷酸酯修饰。
针对dsRNA双链体的中心区域的去稳定化,已经评估了在相反链中与碱基形成氢键的能力受损或完全丧失的核碱基修饰,如在WO 2010/0011895中所述的,将其通过引用以其全文结合在此。示例性核碱基修饰是:
已知与天然磷酸二酯键联相比降低dsRNA双链体的热稳定性的示例性磷酸酯修饰是:
在一个实施例中,本发明的dsRNA试剂可以包括2'-5'键联(与2'-H、2'-OH和2'-OMe,以及于P=O或P=S)。例如,2'-5'键联修饰可以用于促进核酸酶抗性或抑制有义链至反义链的连接,或可以用于在该有义链的5'端处通过RISC来避免有义链的激活。
在另一个实施例中,本发明的dsRNA试剂可以包括L糖(例如,L核糖、具有2'-H、2'-OH和2'-OMe的L-阿拉伯糖)。例如,这些L糖修饰可以用于促进核酸酶抗性或抑制有义链至反义链的连接,或可以用于在该有义链的5'端处通过RISC来避免有义链的激活。
在一个实施例中,该dsRNA试剂是一种多聚体,包含至少两个由式(I)表示的双链体,其中所述双链体由一个接头连接。该连接子可以是可裂解的或不可裂解的。任选地,所述多聚体进一步包括一个配体。每个dsRNA试剂可以靶向相同基因或两个不同基因;或每个dsRNA试剂可以靶向两个不同靶位点处的相同基因。
在一个实施例中,该dsRNA试剂是一种多聚体,其含有由式(I)表示的三个、四个、五个、六个或更多个双链体,其中所述双链体由一个接头连接。该连接子可以是可裂解的或不可裂解的。任选地,所述多聚体进一步包括一个配体。每个dsRNA试剂可以靶向相同基因或两个不同基因;或每个dsRNA试剂可以靶向两个不同靶位点处的相同基因。
在一个实施例中,由式(I)表示的两种dsRNA试剂在5’端处彼此键联,并且3’端中的一者或两者任选地与一个配体缀合。每个dsRNA可以靶向相同基因或两种不同基因;或每个dsRNA可以在两个不同靶标位点处靶向相同基因。
不同公开物描述了多聚体siRNA并且全部可以与本发明的dsRNA一起使用。这样的公开物包括WO 2007/091269、美国专利号7858769、WO 2010/141511、WO 2007/117686、WO2009/014887以及WO 2011/031520,将其全部内容特此结合。
包含一个或多个碳水化合物部分与一种dsRNA试剂的结合的dsRNA试剂可以优化该dsRNA试剂的一种或多种特性。在许多情况下,该碳水化合物部分将连接到该dsRNA试剂的一个被修饰的亚单位。例如,一种dsRNA试剂的一个或多个核糖核苷酸亚单位的核糖可以被另一个部分(例如一个碳水化合物配体附接至其上的一个非碳水化合物(优选环状)载体)置换。其中亚单位的核糖已经如此被置换的核糖核苷酸亚单位在此被称为核糖置换修饰亚单位(RRMS)。一种环状载体可以是一个碳环系统,即所有环原子均是碳原子,或一个杂环系统,即一个或多个环原子可以是一个杂原子,例如氮、氧、硫。该环状载体可以是一个单环系统,或可以含有两个或更多个环,例如稠合环。该环状载体可以是一个完全饱和的环系统,或它可以含有一个或多个双键。
该配体可以通过一个载体附接到多核苷酸上。这些载体包括(i)至少一个“骨架附接点”、优选两个“骨架附接点”,和(ii)至少一个“系拴附接点”。如在此使用的“骨架附接点”是指一个官能团(例如一个羟基基团),或通常,可供用于并且适用于将该载体结合到一种核糖核酸的骨架(例如含硫骨架)中的一个键(例如磷酸酯或修饰的磷酸酯)。在一些实施例中,“系栓附接点”(TAP)是指该环状载体的、连接一个选择的部分的一个组成环原子,例如一个碳原子或一个杂原子(相异于提供骨架附接点的原子)。该部分可以是例如一种碳水化合物,例如单糖、二糖、三糖、四糖、寡糖以及多糖。任选地,该选择的部分通过一个介入系拴物连接到该环状载体上。因此,该环状载体将经常包括一个官能团(例如氨基基团),或通常提供适用于将另一个化学实体(例如一个配体)结合或系拴到组成型环上的一个键。
在一个实施例中,本发明的dsRNA试剂可以经由载体与一种配体缀合,其中该载体可以是环基或非环基;优选地,该环基选自吡咯烷基、吡唑啉基、吡唑烷基、咪唑啉基、咪唑烷基、哌啶基、哌嗪基、[1,3]二氧戊环、噁唑烷基、异噁唑烷基、吗啉基、噻唑烷基、异噻唑烷基、喹喔啉基、哒嗪酮基、四氢呋喃基以及十氢萘;优选地,该非环基选自丝氨醇主链或二乙醇胺主链。
本发明的双链RNA(dsRNA)试剂可以任选地缀合到一个或多个配体上。该配体可以在3’端、5’端或两端处附接到有义链、反义链或两条链。例如,该配体可以缀合至该有义链,特别是在该有义链的3’端。
在一个实施例中,本发明的dsRNA试剂是5’磷酸化的或在5’主要端处包括一个磷酰类似物。5’-磷酸酯修饰包括与RISC介导的基因沉默相容的那些修饰。适合的修饰包括:5’-单磷酸酯((HO)2(O)P-O-5’);5’-二磷酸酯((HO)2(O)P-O-P(HO)(O)-O-5’);5’-三磷酸酯((HO)2(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5’);5’-鸟苷帽(7-甲基化的或非甲基化的)(7m-G-O-5’-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5’);5’-腺苷帽(Appp),和任何经修饰的或未经修饰的核苷酸帽结构(N-O-5’-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5’);5’-单硫代磷酸酯(硫代磷酸酯;(HO)2(S)P-O-5’);5’-单二硫代磷酸酯(二硫代磷酸酯;(HO)(HS)(S)P-O-5’),5’-硫代磷酸酯((HO)2(O)P-S-5’);氧/硫取代的单磷酸酯、二磷酸酯和三磷酸酯的任何另外的组合物(例如,5’-α-硫代三磷酸酯、5’-γ-硫代三磷酸酯,等),5’-氨基磷酸酯((HO)2(O)P-NH-5’、(HO)(NH2)(O)P-O-5’),5’-烷基磷酸酯(R=烷基=甲基、乙基、异丙基、丙基等,例如,RP(OH)(O)-O-5’-、5’-烯基磷酸酯(即,乙烯基、经取代的乙烯基),(OH)2(O)P-5’-CH2-),5’-烷基醚磷酸酯(R=烷基醚=甲氧基甲基(MeOCH2-)、乙氧基甲基,等,例如,RP(OH)(O)-O-5’-)。在一个实例中,修饰可以位于dsRNA试剂的反义链上。
配体
多种多样的实体可以偶联到本发明的寡核苷酸。优选的部分是优选地直接地或经由一个介入系栓物间接地共价偶联的配体。
在优选实施例中,一种配体改变了它所并入的分子的分布、靶向或寿命。在优选的实施例中,一种配体例如与缺乏这样一种配体的一个种类相比对选定靶标提供了增强的亲和力,选定的靶标例如是分子、细胞或细胞类型、区室、受体,例如身体的一个细胞区室或器官区室、组织、器官或区域。对一种选定靶标提供增强的亲和力的配体也被称为靶向配体。
一些配体可以具有内体溶解特性。该内体溶解配体促进内体的溶解和/或本发明的组合物或其组分从内体向细胞的细胞质的运载。该内体溶解配体可以是一种显示出pH依赖性膜活性和融合性的多阴离子肽或肽模拟物。在一个实施例中,该内体溶解配体在内体pH下呈现其活性构象。“活性”构象是其中该内体溶解配体促进内体的溶解和/或本发明的组合物或其组分从内体向细胞的细胞质运输的构象。示例性核内体溶解配体包括GALA肽(苏巴劳(Subbarao)等人,生物化学(Biochemistry),1987,26:2964-2972),将其通过引用以其全文结合在此,EALA肽(沃格尔(Vogel)等人,美国化学会志(J.Am.Chem.Soc.),1996,118:1581-1586,将其通过引用以其全文结合在此),以及其衍生物(特克(Turk)等人,生物化学与生物物理学学报(Biochem.Biophys.Acta),2002,1559:56-68,将其通过引用以其全文结合在此)。在一个实施例中,该内体溶解组分可以包含将响应于pH变化而经历电荷变化或质子化的一种化学基团(例如一种氨基酸)。该内体溶解组分可以是直链或支链的。
配体可以改进运载、杂交以及特异性特性,并且还可以改进所得天然或被修饰的寡核糖核苷酸或包括在此描述的单体的任何组合的一种聚合分子和/或天然或被修饰的核糖核苷酸的核酸酶抗性。
一般配体可以包括例如用于增强摄取的治疗性调节物;例如用于监测分布的诊断性化合物或报告基因基团;交联剂;以及赋予核酸酶抗性的部分。一般实例包括脂质、类固醇、维生素、糖、蛋白质、肽、多胺以及肽模拟物。
配体可以包括一种天然存在的物质,如一种蛋白质(例如,人血清白蛋白(HSA)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)或球蛋白);一种碳水化合物(例如,一种右旋糖酐、支链淀粉、甲壳质、壳聚糖、菊糖、环糊精或透明质酸);或一种脂质。该配体还可以是一种重组或合成分子,如一种合成聚合物,例如一种合成聚氨基酸、一种寡核苷酸(例如一种适体)。聚氨基酸的实例包括作为一种聚赖氨酸(PLL)、聚L-天冬氨酸、聚L-谷氨酸、苯乙烯-马来酸酐共聚物、聚(L-丙交酯-共-乙交酯)共聚物、二乙烯基醚-马来酸酐共聚物、N-(2-羟丙基)甲基丙烯酰胺共聚物(HMPA)、聚乙二醇(PEG)、聚乙烯醇(PVA)、聚氨基甲酸酯、聚(2-乙基丙烯酸)、N-异丙基丙烯酰胺聚合物或聚磷嗪的聚氨基酸。聚胺的实例包括:聚乙烯亚胺、聚赖氨酸(PLL)、精胺、亚精胺、聚胺、假肽-聚胺、肽模拟聚胺、树枝状聚合物聚胺、精氨酸、脒、鱼精蛋白、阳离子脂质、阳离子卟啉、聚胺的季盐、或α螺旋肽。
配体还可以包括靶向基团,例如与指定的细胞类型如肾细胞结合的细胞或组织靶向剂,例如凝集素、糖蛋白、脂质或蛋白质,例如抗体。靶向基团可以是促甲状腺激素、促黑激素、凝集素、糖蛋白、表面活性蛋白A、粘蛋白碳水化合物、多价乳糖、多价半乳糖、N-乙酰基-半乳糖胺、N-乙酰基-葡糖胺多价甘露糖、多价海藻糖、糖基化的聚氨基酸、多价半乳糖、转铁蛋白、双膦酸盐、聚谷氨酸盐、聚天冬氨酸盐、脂质、胆固醇、类固醇、胆酸、叶酸盐、维生素B12、生物素、RGD肽、RGD肽模拟物或适体。表2示出了靶向配体及其相关受体的一些实例。
配体的其他实例包括染料、插入剂(例如吖啶)、交联剂(例如补骨脂素、丝裂霉素C)、卟啉(TPPC4、特沙弗林(texaphyrin)、噻啉(Sapphyrin))、多环芳香族烃(例如吩嗪、二氢吩嗪)、人工核酸内切酶或一种螯合剂(例如EDTA)、亲脂性分子,例如胆固醇、胆酸、金刚烷乙酸、1-芘丁酸、二氢睾酮、1,3-双-O(十六基)甘油、香叶氧基己基、十六基甘油、茨醇、薄荷醇、1,3-丙二醇、十七基、棕榈酸、肉豆蔻酸、O3-(油酰基)石胆酸、O3-(油酰基)胆烯酸、二甲氧基三苯甲基或吩噁嗪)以及肽结合物(例如触足蛋白肽、Tat肽)、烷化剂、磷酸盐、氨基、巯基、PEG(例如PEG-40K)、MPEG、[MPEG]2、聚氨基、烷基、被取代的烷基、放射性标记的标记物、酶、半抗原(例如生物素)、运载/吸附促进剂(例如阿司匹林、维生素E、叶酸)、合成核糖核酸酶(例如咪唑、双咪唑、组织胺、咪唑簇、吖啶-咪唑结合物、四氮杂大环的Eu3+络合物)、二硝基苯基、HRP或AP。
配体可以是蛋白质,例如糖蛋白,或肽,例如对一种共配体具有一种特异性亲和力的分子,或抗体,例如结合一种指定细胞类型(如一种癌细胞、内皮细胞或骨细胞)的一种抗体。配体也可以包括激素和激素受体。它们还可以包括非肽类种类,如脂质、凝集素、碳水化合物、维生素、辅因子、多价乳糖、多价半乳糖、N-乙酰基-半乳糖胺、N-乙酰基-葡糖胺多价甘露糖、多价岩藻糖或适体。该配体可以是例如脂多糖,p38MAP激酶的活化剂或NF-κB的活化剂。
该配体可以是可以例如通过破坏细胞的细胞骨架(例如通过破坏细胞微管、微丝和/或中间丝)增加iRNA试剂摄入到细胞中的物质,例如药物。药物可以例如是泰素(taxon)、长春新碱、长春碱、松胞菌素、诺考达唑、促微丝聚合剂(japlakinolide)、红海海绵素A、鬼笔环肽、海洋苔藓素(swinholide)A、茚满诺星(indanocine)或myoservin。
该配体可以通过例如活化一种炎症应答来增加寡核苷酸摄取到该细胞中。具有这种作用的示例性配体包括肿瘤坏死因子α(TNF-α)、白细胞介素-1β或γ干扰素。
在一方面,该配体是一种脂质或基于脂质的分子。这种脂质或基于脂质的分子优选地结合血清蛋白,例如人血清白蛋白(HSA)。结合HSA的配体允许缀合物分布至一个靶组织,例如身体的非肾靶组织。例如,该靶组织可以是肝脏,包括肝脏的实质细胞。可以结合HSA的其他分子也可以用作配体。例如可以使用萘普生或阿司匹林。脂质或基于脂质的配体可以(a)增加缀合物对降解的抗性,(b)增加靶向或运输到靶细胞或细胞膜中,和/或(c)可以用来调节与血清蛋白(例如HSA)的结合。
基于脂质的配体可以用来调节(例如,控制)缀合物与靶组织的结合。例如,与HSA更强烈结合的脂质或基于脂质的配体将更不可能靶向肾并且因此较不可能从身体清除。与HSA较不强烈结合的脂质或基于脂质的配体可以用来使缀合物靶向肾。
在一个优选实施例中,基于脂质的配体结合HSA。优选地,它以足够的亲和力结合HSA,以使得该缀合物将优选地分布至非肾组织。然而,优选的是这种亲和力并不是这样强,以使得HSA-配体结合不能逆转。
在另一个优选实施例中,基于脂质的配体微弱或根本不结合HSA,这样使得缀合物将优选地分布至肾。作为基于脂质的配体的替代或除它之外,还可以使用靶向肾细胞的其他部分。
另一方面,该配体是由靶细胞(例如正在增殖的细胞)摄取的部分,例如维生素。这些特别有用于治疗特征在于不想要的细胞增殖(例如具有恶性或非恶性类型,例如癌细胞)的病症。示例性维生素包括维生素A、E和K。其他示例性维生素包括是B维生素,例如,叶酸、B12、核黄素、生物素、吡哆醛或由癌细胞摄取的其他维生素或营养素。还包括HAS、低密度脂蛋白(LDL)以及高密度脂蛋白(HDL)。
另一方面,该配体是细胞渗透剂,优选地是螺旋细胞渗透剂。优选地,该试剂是两亲的。一种示例性试剂是肽,比如tat或触角足蛋白。如果该试剂是肽,则它可以被修饰,包括肽酰基模拟物、反转异构体、非肽键联或假肽键联和D-氨基酸的使用。该螺旋剂优选地是一种α-螺旋剂,该α-螺旋剂优选具有一个亲脂性相和一个疏脂性相。
该配体可以是肽或肽模拟物。肽模拟物(在此也称作寡肽模拟物)是能够折叠成与天然肽相似的限定三维结构的分子。肽或肽模拟物部分可以是约5-50氨基酸长的,例如约5、10、15、20、25、30、35、40、45或50个氨基酸长。肽或肽模拟物可以例如是细胞渗透肽、阳离子肽、两亲肽或疏水肽(例如主要由Tyr、Trp或Phe组成)。肽部分可以是树状肽、约束肽或交联肽。在另一个替代中,该肽部分可以包含疏水性膜转位序列(MTS)。一种含有疏水性MTS的示例性肽是具有氨基酸序列AAVALLPAVLLALLAP的RFGF。含有一个疏水性MTS的一种RFGF类似物(例如氨基酸序列AALLPVLLAAP)也可以是一个靶向部分。该肽部分可以是一个“递送”肽,该递送肽可以携带大的极性分子,包括肽、寡核苷酸和跨细胞膜的蛋白。例如,已经发现来自HIV Tat蛋白(GRKKRRQRRRPPQ)和果蝇触足蛋白(RQIKIWFQNRRMKWKK)的序列能够充当递送肽。一种肽或肽模拟物可以由一个随机DNA序列(如由一个噬菌体展示文库或一珠一化合物(OBOC)组合文库鉴别的一种肽)编码(拉姆(Lam)等人,自然(Nature),354:82-84,1991)将其通过引用以其全文结合在此)。优选地,经由一个并入的单体单元系拴到一种iRNA试剂的肽或肽模拟物是一种细胞靶向肽,如一种精氨酸-甘氨酸-天冬氨酸(RGD)肽或RGD模拟物。肽部分的长度可以在从约5个氨基酸至约40个氨基酸的范围内。这些肽部分可以具有结构修饰,如以便增加稳定性或引导构象特性。可以利用以下描述的任何结构修饰。一种RGD肽部分可以用于靶向一种肿瘤细胞,如一种内皮肿瘤细胞或一种乳癌肿瘤细胞(齐茨曼(Zitzmann)等人,癌症研究(Cancer Res.),62:5139-43,2002,将其通过引用以其全文结合在此)。一种RGD肽可以促进一种iRNA试剂靶向多种其他组织(包括肺、肾脏、脾脏或肝脏)的肿瘤(青木(Aoki)等人,癌症基因治疗(Cancer Gene Therapy)8:783-787,2001,将其通过引用以其全文结合在此).优选地,RGD肽将促进iRNA试剂靶向肾。该RGD肽可以是线性的或环状的,并且可以被修饰(例如糖基化或甲基化)以促进靶向特定组织。例如,一种糖基化的RGD肽可以将一种iRNA试剂递送到一种表达αVβ3(豪布纳(Haubner)等人,核医学杂志(Jour.Nucl.Med.),42:326-336,2001,将其通过引用以其全文结合在此)。可以使用靶向富含增殖细胞的标志物的肽。例如,含有RGD的肽和肽模拟物可以靶向癌细胞,具体而言展现一种整合素的细胞。因此,可以使用RGD肽、含有RGD的环状肽、包含D-氨基酸的RGD肽以及合成性RGD模拟物。除了RGD以外,可以使用靶向整合素配体的其他部分。通常,这类配体可以用来控制正在增殖的细胞和血管生成。这种类型的配体的优选缀合物靶向PECAM-1、VEGF、或其他癌基因(例如一种在此描述的癌基因)。
“细胞渗透肽”能够渗透细胞例如微生物细胞(比如,细菌或真菌细胞)或哺乳动物细胞(比如,人细胞)。一种微生物细胞渗透肽可以是,例如一种α-螺旋线性肽(例如LL-37或Ceropin P1)、一种含有二硫键的肽(例如α-防御素、β-防御素或细菌素)或一种仅含有一种或两种主要氨基酸的肽(例如PR-39或吲哚力西丁(indolicidin))。细胞渗透肽还可以包括核定位信号(NLS)。例如,细胞渗透肽可以是二重的两亲性肽,比如MPG,该肽来源于HIV-1gp41的融合肽结构域和SV40大T抗原的NLS(斯米尼(Simeoni)等人,核酸研究(Nucl.AcidsRes.)31:2717-2724,2003,将其通过引用以其全文结合在此)。
在一个实施例中,一种靶向肽可以是一种两亲α-螺旋肽。示例性两亲α-螺旋肽包括但不限于,天蚕素、莱科毒素(lycotoxin)、摩西鱼毒肽(paradaxin)、蟾蜍肽抗生素(buforin)、CPF、铃蟾抗菌肽样肽(BLP)、蛇毒抗菌肽(cathelicidin)、角毒素(ceratotoxin)、柄海鞘(S.clava)肽、盲鳗肠道抗菌肽(HFIAP)、爪蟾抗菌肽、brevinins-2、蛙皮抗菌肽(dermaseptin)、蜂毒肽、pleurocidin、H2A肽、非洲爪蟾肽、esculentinis-1以及caerins。许多因素将优选地被认为维持螺旋稳定性的完整性。例如,将使用最大数目的螺旋稳定化残基(例如leu、ala或lys),并且将使用最小数目的螺旋去稳定化残基(例如脯氨酸或环状单体单元)。将考虑加帽残基(例如Gly是一种示例性N-加帽残基)和/或可以将C-末端酰胺化用于提供一个额外H-键以稳定该螺旋。具有相反电荷、间隔i±3或i±4个位置的残基之间的盐桥的形成可以提供稳定性。例如,阳离子残基(如赖氨酸、精氨酸、高精氨酸、鸟氨酸或组氨酸)可以与阴离子残基谷氨酸盐或天冬氨酸盐形成盐桥。
肽和肽模拟物配体包括具有天然存在的或修饰的肽的那些,例如,D或L肽;α、β或γ肽;N-甲基肽;氮杂肽;具有一个或多个酰胺的肽,即,键联被一种或多种脲、硫脲、氨基甲酸酯或磺酰基脲键联置换的肽;或环肽。
该靶向配体可以是能够靶向一种特定受体的任何配体。实例是:叶酸盐、GalNAc、半乳糖、甘露糖、甘露糖-6P、糖簇(如GalNAc簇、甘露糖簇、半乳糖簇)或一种适体。一个簇是两个或更多个糖单元的组合。这些靶向配体还包括整合素受体配体、趋化因子受体配体、转铁蛋白、生物素、血清素受体配体、PSMA、内皮素、GCPII、生长抑素、LDL以及HDL配体。这些配体还可以基于核酸,例如一种适体。该适体可以是未被修饰的或具有在此披露的修饰的任何组合。
内体释放剂包括咪唑、聚咪唑或寡咪唑、PEI、肽、融合肽、聚羧酸酯、聚阳离子、掩蔽的寡或聚阳离子或阴离子、缩醛、聚缩醛、缩酮/聚缩酮、原酸酯、具有掩蔽或非掩蔽的阳离子或阴离子电荷的聚合物、具有掩蔽或非掩蔽的阳离子或阴离子电荷的树状聚合物。
PK调节剂代表药代动力学调节剂。PK调节剂包括亲脂体、胆酸、类固醇、磷脂类似物、肽、蛋白结合剂、PEG、维生素等。示例性PK调节剂包括但不局限于胆固醇、脂肪酸、胆酸、石胆酸、二烷基甘油酯、二酰基甘油酯、磷脂、鞘脂、萘普生、布洛芬、维生素E、生物素等。包含许多硫代磷酸酯键联的寡核苷酸也已知与血清蛋白结合,因此骨架中包含多个硫代磷酸酯键联的短寡核苷酸,例如,具有约5个碱基、10个碱基、15个碱基或20个碱基的寡核苷酸,作为配体(例如作为PK调节配体)也是从属于本发明的。
另外,结合血清组分(例如血清蛋白)的适体作为PK调节配体也从属于本发明。
属于本发明的其他配体缀合物描述在以下美国专利申请中:2004年8月10日提交的USSN:10/916,185;2004年9月21日提交的USSN:10/946,873;2007年8月3日提交的USSN:10/833,934;2005年4月27日提交的USSN:11/115,989以及2007年11月21日提交的USSN:11/944,227;这些专利申请的全部内容出于所有目的通过引用结合。
当存在两个或更多个配体时,这些配体可以都具有相同特性,都具有不同特性,或一些配体具有相同特性而其他配体具有不同特性。例如,一种配体可以具有靶向特性、具有内体溶解活性或具有PK调节特性。在一个优选实施例中,全部这些配体都具有不同特性。
可以将配体偶联到寡核苷酸的不同位置,例如3’末端、5’末端和/或在一个内部位置。在优选的实施例中,将该配体经由一个介入系栓物(例如一个在此描述的载体)附接到这些寡核苷酸。当将一个单体并入正在生长的链中时,该配体或系拴物的配体可以存在于所述单体上。在一些实施例中,可以在已经将一个“前体”单体并入正在生长的链中后,将配体经由偶联到所述“前体”单体来并入。例如,可以将具有例如一个氨基封端的系拴物(即不具有缔合的配体)的一个单体(例如TAP-(CH2)nNH2)并入一条正在生长的寡核苷酸链。在一个随后的操作中,即在将该前体单体并入该链中后,随后可以将具有一个亲电基团(例如一个五氟苯酯或醛基)的一个配体通过将该配体的该亲电基团与该前体单体的系栓物的末端亲核基团偶联来附接到该前体单体。
在另一个实例中,可以并入具有一个适用于参与点击化学(Click Chemistry)反应的化学基团的一个单体,例如一个叠氮化物或炔烃封端的系拴物/接头。在一个随后的操作中,即在将该前体单体并入该链中后,可以将一种具有一个互补化学基团(例如一个炔烃或叠氮化物)的配体通过将该炔烃与该叠氮化物偶联在一起来附接至该前体单体。
对于双链寡核苷酸而言,可以将配体附接到一条或两条链上。在一些实施例中,双链iRNA试剂包含一种与有义链缀合的配体。在其他实施例中,双链iRNA试剂包含一种与反义链缀合的配体。
在一些实施例中,可以将配体与核酸分子的核碱基、糖部分或核苷间键联进行缀合。与嘌呤核碱基或其衍生物的缀合可以在任何位置处(包括内环和外环原子)出现。在一些实施例中,将一种嘌呤核碱基的2-、6-、7-或8-位附接至一个缀合物部分。与嘧啶核碱基或其衍生物的缀合物也可以在任何位置处出现。在一些实施例中,可以将一种嘧啶核碱基的2-、5-以及6-位用一个缀合物部分取代。与核苷的糖部分的缀合可以在任何碳原子处出现。可以被附接至一个缀合物部分的一个糖部分的示例性碳原子包括2'、3'以及5'碳原子。还可以将1'位附接至一个缀合物部分,比如在一个脱碱基残基中。核苷间键联还可以具有缀合物部分。对于含磷键联(例如磷酸二酯、硫代硫酸酯、二硫代磷酸酯、氨基磷酰酯等),可以直接将该缀合物部分附接至该磷原子或与该磷原子结合的一个O、N或S原子。对于含胺或酰胺的核苷间键联(例如PNA),可以将该缀合物部分附接至该胺或酰胺的氮原子或一个相邻碳原子。
可以使用RNA干扰领域中的任何适合配体,但该配体典型地是一种碳水化合物,例如单糖(如GalNAc)、二糖、三糖、四糖、多糖。
使该配体与该核酸结合的连接物包括以上论述的那些。例如,该配体可以是通过单价、二价或三价支链接头附接的一种或多种GalNAc(N-乙酰葡糖胺)衍生物。
在一个实施例中,本发明的dsRNA与一种二价和三价支链连接物缀合,包括式(IV)-(VII)中的任一者中所示的结构:
其中:
q2A、q2B、q3A、q3B、q4A、q4B、q5A、q5B以及q5C对于每次出现独立地表示0-20并且其中该重复单元可以是相同或不同的;
P2A、P2B、P3A、P3B、P4A、P4B、P5A、P5B、P5C、T2A、T2B、T3A、T3B、T4A、T4B、T5A、T5B、T5C对于每次出现各自独立地是:CO、NH、O、S、OC(O)、NHC(O)、CH2、CH2NH或CH2O;
Q2A、Q2B、Q3A、Q3B、Q4A、Q4B、Q5A、Q5B、Q5C对于每次出现独立地是:不存在、亚烷基、经取代的亚烷基,其中一个或多个亚甲基可以被以下各项中的一个或多个中断或封端:O、S、S(O)、SO2、N(RN)、C(R’)=C(R”)、C≡C或C(O);
R2A、R2B、R3A、R3B、R4A、R4B、R5A、R5B、R5C对于每次出现各自独立地是:不存在、NH、O、S、CH2、C(O)O、C(O)NH、NHCH(Ra)C(O)、-C(O)-CH(Ra)-NH-、CO、CH=N-O、 或杂环基;
L2A、L2B、L3A、L3B、L4A、L4B、L5A、L5B和L5C表示配体;即,对于每次出现各自独立地表示单糖(如GalNAc)、二糖、三糖、四糖、寡糖或多糖;并且
Ra是H或氨基酸侧链。
三价缀合的GalNAc衍生物特别可用于与RNAi试剂一起用于抑制靶基因表达,如具有式(VII)的那些:
其中L5A、L5B和L5C表示单糖,如GalNAc衍生物。
缀合GalNAc衍生物的适合的二价和三价支链连接物基团的实例包括但不限于以下化合物:
定义
如在此使用,术语“dsRNA”、“siRNA”和“iRNA试剂”可交换用于可以介导一种靶标RNA(例如mRNA,例如一种编码蛋白质的基因的转录物)的沉默的试剂。为方便起见,这样的mRNA在此也被称为有待被沉默的mRNA。这样的一个基因也称为一个靶基因。通常,有待被沉默的RNA是一个内源基因或病原体基因。另外,除了mRNA以外的RNA(例如tRNA)以及病毒RNA也可以被靶向。
如在此使用,短语“介导RNAi”是指以一种序列特异性方式沉默靶标RNA的能力。尽管不希望被理论所束缚,但是应认为沉默采用了RNAi机制或过程以及一种指导RNA,例如一种具有21至23个核苷酸的siRNA试剂。
如在此使用,“特异可杂交的”和“互补的”是用来指示足够程度的互补性以使得在本发明的化合物与一种靶标RNA分子之间发生稳定且特异性结合的术语。特异性结合需要一个足够程度的互补性以避免寡聚化合物与非靶标序列在特异性结合是所希望的条件下的非特异性结合,即在测定或治疗性处理的情况下的生理条件下或在体外测定的情况下的进行这些测定的条件下。这些非靶标序列典型地至少5个核苷酸不同。
在一个实施例中,本发明的dsRNA试剂与一种靶标RNA(例如一种靶标mRNA)“充分互补”,以使得该dsRNA试剂沉默由该靶标mRNA编码的蛋白质的生产。在另一个实施例中,本发明的该dsRNA试剂与一种靶标RNA“完全互补”,例如该靶标RNA与该dsRNA双链体试剂退火例如以形成一种在具有完全互补性的区域中唯一地由沃森-克里克碱基对组成的杂交体。一种“充分互补的”靶标RNA可以包括一个与一种靶标RNA完全互补的内部区(例如具有至少10个核苷酸)。此外,在一些实施例中,本发明的dsRNA试剂确切地以一个单个核苷酸的区别加以辨别。在这种情况下,如果在(例如具有该单个核苷酸区别的7个核苷酸内)的区域中发现完全互补,则该dsRNA试剂才会介导RNAi。
如在此使用,术语“寡核苷酸”是指一个例如具有少于100、200、300或400个核苷酸长度的核酸分子(RNA或DNA)。
术语‘BNA’是指桥联的核酸,并且通常是指受约束的或不能接近的RNA。BNA可以含有5-元、6-元、或甚至7-元的具有“固定的”C3’-内切糖缩拢的桥联结构。通常将该桥掺入到该核糖的2'-、4'-位处以提供一个2'、4'-BNA核苷酸(例如,LNA、或ENA)。BNA核苷酸的实例包括以下核苷:
术语‘LNA’是指锁核酸,并且通常是指受约束的或不能接近的RNA。LNA是一种经修饰的RNA核苷酸。LNA核苷酸的核糖部分是用额外的桥(例如,亚甲基桥或乙烯桥)连接相同核糖的2′羟基至4′碳来修饰的。例如,该桥可以在3′-内切North)构象中将该核糖“锁定”:
术语‘ENA’是指乙烯桥联核酸,并且通常是指受约束的或不能接近的RNA。
此处的“裂解位点”表示通过使用iRNA试剂由RISC机制而裂解的在靶基因或在有义链中的主链键联。并且该靶向裂解位点区包括在该裂解位点的两侧的至少一个或至少两个核苷酸。对于有义链,裂解位点是有义链中的主链键联,如果该有义链本身是通过RNAi机制裂解的靶标,则其将被裂解。可以使用本领域已知的方法来测定裂解位点,例如在苏兹赫克(Soutschek)等人,自然(Nature)(2004)432,173-178中详细描述的5'-RACE测定,将其通过引用以其全文结合在此。正如本领域已知的,针对圆锥型双链的RNAi试剂的裂解位点区包括两个21-核苷酸长链(其中该链形成具有在3'端处的2-核苷酸单个链的突出端的19个连续的碱基对的双链区),该裂解位点区对应于从该有义链的5'-端的位置9-12。
术语“卤基”是指具有氟、氯、溴或碘的任何基团。术语“烷基”是指可以是直链或支链、包含指定数目的碳原子的饱和的及非饱和的非芳香烃链(这些烷基包括但不限于丙基、烯丙基或炔丙基),这些烷基可任选地插有N、O或S。例如,C1-C10指示该基团中可以具有从1至10个(包括端点)碳原子。术语“烷氧基”是指-O-烷基基团。术语“亚烷基”是指二价烷基(即,-R-)。术语“亚烷基二氧代”是指具有结构-O-R-O-的二价种类,其中R表示一个亚烷基。术语“氨基烷基”是指被氨基取代的烷基。术语“巯基”是指-SH基团。术语“硫代烷氧基”是指-S-烷基基团。
术语“芳基”是指6碳单环的或10碳二环的芳香环系统,其中每个环的0、1、2、3或4个原子可以被一个取代基取代。芳基的实例包括苯基、萘基等。术语“芳烷基”(arylalkyl)或术语“芳烷基”(aralkyl)是指被一个芳基取代的烷基。术语“芳基烷氧基”是指被芳基取代的烷氧基。
如在此使用,术语“环烷基”包括具有3至12个碳(例如3至8个碳以及例如3至6个碳)的饱和的及部份非饱和的环烃基团,其中环烷基额外地可以是任选取代的。环烷基包括但不限于环丙基、环丁基、环戊基、环戊烯基、环己基、环己烯基、环庚基以及环辛基。
术语“杂芳基”是指具有1-3个杂原子(如果是单环的)、1-6个杂原子(如果是二环的)或1-9个杂原子(如果是三环的)的芳香族5-8元单环的、8-12元二环的或11-14元三环的环系统,所述杂原子选自O、N或S(例如,如果是单环的、二环的或三环的,分别是碳原子以及1-3个、1-6个或1-9个N、O或S杂原子),其中每个环的0、1、2、3或4个原子可以被一个取代基取代。杂芳基的实例包括吡啶基、呋喃基(furyl或furanyl)、咪唑基、苯并咪唑基、嘧啶基、苯硫基(thiophenyl)或噻吩基(thienyl)、喹啉基、吲哚基、噻唑基等。术语“杂芳烷基”(heteroarylalkyl)或术语“杂芳烷基”(heteroaralkyl)是指被一个杂芳基取代的烷基。术语“杂芳基烷氧基”是指被杂芳基取代的烷氧基。
术语“杂环基”是指具有1-3个杂原子(如果是单环的)、1-6个杂原子(如果是二环的)或1-9个杂原子(如果是三环的)的非芳香族5-8元单环的、8-12元二环的或11-14元三环的环系统,所述杂原子选自O、N或S(例如,如果是单环的、二环的或三环的,分别是碳原子以及1-3个、1-6个或1-9个N、O或S杂原子),其中每个环的0、1、2或3个原子可以被一个取代基取代。杂环基的实例包括三唑基、四唑基、哌嗪基、吡咯烷基、二噁烷基、吗啉基、四氢呋喃基等。
术语“氧代”是指一个氧原子,当附接至碳时形成一个羰基,当附接至氮时形成一种N-氧化物,并且当附接至硫时形成亚砜或砜。
术语“酰基”是指烷基羰基、环烷基羰基、芳基羰基、杂环基羰基或杂芳基羰基取代基,其中的任一个可以进一步被取代基取代。
术语“取代的”是指一种给定结构中的一个或多个氢基被规定取代基的基团置换,这些规定取代基包括但不限于:卤基、烷基、烯基、炔基、芳基、杂环基、巯基、烷硫基、芳硫基、烷硫基烷基、芳硫基烷基、烷基磺酰基、烷基磺酰基烷基、芳基磺酰基烷基、烷氧基、芳氧基、芳烷氧基、氨基羰基、烷基氨基羰基、芳基氨基羰基、烷氧基羰基、芳氧基羰基、卤代烷基、氨基、三氟甲基、氰基、硝基、烷基氨基、芳基氨基、烷基氨基烷基、芳基氨基烷基、氨基烷基氨基、羟基、烷氧基烷基、羧基烷基、烷氧基羰基烷基、氨基羰基烷基、酰基、芳烷氧基羰基、羧酸、磺酸、磺酰基、膦酸、芳基、杂芳基、杂环基以及脂肪族化合物。应该理解的是,该取代基可以进一步被取代。
可裂解的连接基团
一种可裂解的连接基团在细胞外是足够稳定的,但它在进入靶标细胞时被裂解以释放该接头结合在一起的两个部分。根据本发明的dsRNA试剂的优选的实施例,可裂解的连接基团在靶细胞中或第一参比条件下(可以例如将其选择成模拟或代表胞内条件)的裂解比受试者的血液中或第二参比条件(可以例如将其选择成模拟或代表血液或血清中发现的条件)下快至少10倍或更优选地至少100倍。
可裂解的连接基团易于受到裂解因子(例如pH、氧化还原电位或降解分子的存在)的影响。通常,裂解因子在细胞内比在血清或血液中更普遍或以更高水平或活性被发现。此类降解因子的实例包括:氧化还原因子,它们被选择用于特定底物或者无底物特异性,包括例如氧化酶或还原酶或者在细胞中存在的还原因子如硫醇(它可以通过还原作用降解一种可氧化还原裂解的连接基团);酯酶;内体或可以创造酸性环境的因子,例如形成五或更低的pH的那些;可以通过作为一种广义酸起作用而水解或降解一种酸可裂解的连接基团的酶,肽酶(它可以是底物特异性的),以及磷酸酶。
一种可裂解的连锁群(例如二硫键)可以对pH敏感。人血清的pH是7.4,而平均的细胞内pH稍低,范围为约7.1-7.3。内体具有更大酸性pH,处于5.5-6.0范围内,并且溶酶体具有在约5.0的甚至更大酸性pH。一些接头将具有在优选的pH处被裂解的可裂解连接基,因而在细胞内部从配体释放阳离子脂质或释放至所需的细胞区室。
接头可以包括一种可被特定酶裂解的可裂解的连接基团。并入接头的可裂解的连接基团的类型可以取决于有待被靶向的细胞。例如,肝靶向配体可以通过一种包括酯基的接头而被连接至一种阳离子脂质。肝脏细胞富含酯酶,并且因此该接头将在肝脏细胞中比在不富含酯酶的细胞类型中更有效地裂解。富含酯酶的其他细胞类型包括肺、肾皮质以及睾丸的细胞。
当靶向富含肽酶的细胞类型(如肝细胞和滑膜细胞)时,可以使用含有肽键的接头。
通常,一种候选的可裂解的连接基团的适合性可以通过测试降解剂(或条件)裂解该候选的连接基团的能力来进行评估。还希望的是也测试该候选的可切割的连接基团在血液中或当与其他非靶组织接触时抵抗切割的能力。因此,可以确定在一个第一条件与一个第二条件之间进行裂解的相对敏感性,其中该第一条件被选择为指示在一个靶细胞中的裂解并且该第二条件被选择为指示在其他组织或生物流体(例如,血液或血清)中的裂解。这些评估可以在无细胞系统中、在细胞中、在细胞培养物中、在器官或组织培养物中或在整个动物中进行。可能有用的是,在无细胞或培养条件下作出初步评价并且通过在完整动物中进一步评价来证实。在优选的实施例中,与血液或血清(或在经选择以模拟胞外条件的体外条件下)相比,可用候选化合物在细胞(或在经选择以模拟胞内条件的体外条件下)中至少2、4、10或100倍地被裂解。
氧化还原可裂解的连接基团
一类可裂解的连接基团是氧化还原可裂解的连接基团,其可用于根据本发明的dsRNA试剂中。其在还原或氧化时被裂解。可还原裂解的连接基团的一个实例是二硫化物连接基团(-S-S-)。为了确定一种候选的可切割连接基团是否是适合的“可还原切割的连接基团”,或例如是否适合于与一种特定iRNA部分和特定靶向剂一起使用,可以参考在此描述的方法。例如可以通过用二硫苏糖醇(DTT)或本领域中已知的其他使用还原剂的试剂进行孵育来对一种候选物进行评估,这模拟了会在细胞(例如靶细胞)中观察到的裂解速率。还可以在被选择成模拟血液或血清条件的条件下对这些候选物进行评估。在一个优选实施例中,候选化合物在血液中遭裂解最多10%。在优选实施例中,与血液(或在经选择以模拟胞外条件的体外条件下)相比,可用候选化合物在细胞(或在经选择以模拟胞内条件的体外条件下)中至少2、4、10或100倍地降解。可以在被选择为模拟细胞内介质的条件下,使用标准的酶动力学测定来确定候选化合物的裂解速率,并且将其与被选择为模拟胞外介质的条件下的速率相比较。
基于磷酸酯的可裂解的连接基团
基于磷酸酯的可裂解的连接基团可以用于根据本发明的dsRNA试剂,其通过降解或水解该磷酸酯基团的试剂而被裂解。在细胞中裂解磷酸酯基团的试剂的一个实例是酶,例如细胞中的磷酸酶。基于磷酸酯的连接基团的实例是-O-P(O)(ORk)-O-、-O-P(S)(ORk)-O-、-O-P(S)(SRk)-O-、-S-P(O)(ORk)-O-、-O-P(O)(ORk)-S-、-S-P(O)(ORk)-S-、-O-P(S)(ORk)-S-、-S-P(S)(ORk)-O-、-O-P(O)(Rk)-O-、-O-P(S)(Rk)-O-、-S-P(O)(Rk)-O-、-S-P(S)(Rk)-O-、-S-P(O)(Rk)-S-、-O-P(S)(Rk)-S-。优选的实施例是-O-P(O)(OH)-O-、-O-P(S)(OH)-O-、-O-P(S)(SH)-O-、-S-P(O)(OH)-O-、-O-P(O)(OH)-S-、-S-P(O)(OH)-S-、-O-P(S)(OH)-S-、-S-P(S)(OH)-O-、-O-P(O)(H)-O-、-O-P(S)(H)-O-、-S-P(O)(H)-O-、-S-P(S)(H)-O-、-S-P(O)(H)-S-、-O-P(S)(H)-S-。一个优选实施例是-O-P(O)(OH)-O-。可以使用类似于以上描述的那些的方法来评估这些候选物。
酸可裂解的连接基团
酸可裂解的连接基团可以用于根据本发明的dsRNA试剂,是在酸条件下裂解的连接基团。在优选实施例中,酸可裂解的连接基团在pH为约6.5或更低(例如,约6.0、5.5、5.0或更低)的酸性环境下裂解或由可以充当广义酸的试剂(如酶)裂解。在细胞中,具体的低pH细胞器(如核内体或溶酶体)可以为酸可裂解的连接基团提供一种裂解环境。酸可裂解的连接基团的实例包括但不限于腙、酯以及氨基酸的酯。酸可裂解的基团可以具有通式-C=NN-、C(O)O或-OC(O)。一个优选实施例是当附接到酯(烷氧基基团)的氧的碳是芳基基团、取代的烷基基团或叔烷基基团(如二甲基戊基或叔丁基)时。可以使用类似于以上描述的那些的方法来评估这些候选物。
基于酯的连接基团
基于酯的可裂解连接基团可以用于根据本发明的dsRNA试剂,其通过比如在细胞中的酯酶和酰胺酶来裂解的。基于酯的可裂解的连接基团的实例包括但不限于亚烷基、亚烯基以及亚炔基基团的酯。酯可切割的连接基团具有通式-C(O)O-、或-OC(O)-。可以使用类似于以上描述的那些的方法来评估这些候选物。
基于肽的裂解基团
基于肽的可裂解的连接基团可用于根据本发明的dsRNA试剂中,被例如细胞中的肽酶和蛋白酶的酶裂解。基于肽的可裂解的连接基团是在氨基酸之间形成的肽键以产生寡肽(例如二肽、三肽等)和多肽。基于肽的可裂解的基团不包括酰胺基团(-C(O)NH-)。该酰胺基团可以在任何亚烷基、亚烯基或亚炔基之间形成。肽键是在氨基酸之间形成以产生肽以及蛋白质的特定类型的酰胺键。基于肽的裂解基团通常限于在氨基酸之间形成以产生肽以及蛋白质的肽键(即,酰胺键),并且不包括整个酰胺官能团。基于肽的可裂解的连接基团具有通式-NHCHRAC(O)NHCHRBC(O)-,其中RA和RB是这两个邻接氨基酸的R基团。可以使用类似于以上描述的那些的方法来评估这些候选者。如在此使用,“碳水化合物”是指以下这样一种化合物,它是一种本身由具有至少6个碳原子的一个或多个单糖单位构成的碳水化合物(其可以是线性的、支链的或环状的),其中氧、氮或硫原子结合至每一碳原子;或者它是一种具有以下这样的一个碳水化合物部分作为其一部分的化合物,该碳水化合物由具有至少六个碳原子的一个或多个单糖单位构成(其可以是线性的、支链的或环状的),其中氧、氮或硫原子结合至每一碳原子。代表性碳水化合物包括糖(单糖、二糖、三糖和含有约4-9个单糖单位的寡糖)和多糖如淀粉,糖原,纤维素和多糖树胶。具体单糖包括C5及以上(优选C5-C8)糖;二糖和三糖,包括具有两个或三个单糖单位的糖(优选C5-C8)。
本发明进一步涉及如在此描述的用于抑制靶基因表达的dsRNA试剂的用途。在一个实施例中,本发明进一步涉及用于抑制在体外的靶基因表达的dsRNA试剂的用途。
本发明进一步涉及如在此描述的用于抑制受试者中的靶基因表达的dsRNA试剂。该受试者可以是任何动物,比如哺乳动物,例如,小鼠、大鼠、绵羊、牛、狗、猫、或人。
在一个实施例中,本发明的dsRNA试剂在缓冲液中给予。
在一个实施例中,在此描述的siRNA化合物可以被配制用于给予给一位受试者。一种被配制的siRNA组合物可以采取多种状态。在一些实例中,该组合物是至少部分结晶、均匀结晶和/或无水的(例如少于80%、50%、30%、20%或10%的水)。在另一个实例中,该siRNA处于水相中,例如处于包括水的一种溶液中。
这些水相或结晶组合物可以被并入一种递送运载体中,例如一种脂质体(特别用于水相)或一种颗粒(例如如一种可以适用于一种结晶组合物的微粒)。通常,如在此描述,该siRNA组合物以与预期给药方法相容的方式配制。例如,在具体实施例中,该组合物通过以下方法中的至少一个来制备:喷雾干燥、冻干、真空干燥、蒸发、流化床干燥或这些技术的一种组合;或与一种脂质一起声处理、冷冻干燥、缩合以及其他自组装。
一种siRNA制剂可以与另一种试剂(例如另一种治疗剂或使siRNA稳定化的一种试剂(例如与siRNA复合以形成iRNP的一种蛋白质))组合配制。再其他试剂包括螯合剂(例如EDTA(例如以去除二价阳离子,如Mg2+))、盐、RNA酶抑制剂(例如一种广泛特异性RNA酶抑制剂,如RNAsin)等。
在一个实施例中,该siRNA制剂包括另一种siRNA化合物,例如可以针对一种第二基因或针对相同基因介导RNAi的一种第二siRNA。再其他制剂可以包括至少3种、5种、十种、二十种、五十种或一百种或更多种不同siRNA种类。这样的siRNA可以针对类似数目的不同基因介导RNAi。
在一个实施例中,该siRNA制剂包括至少一种第二治疗剂(例如除一种RNA或一种DNA以外的一种试剂)。例如,一种用于治疗病毒性疾病(如HIV)的siRNA组合物可能包括一种已知的抗病毒剂(如蛋白酶抑制剂或逆转录酶抑制剂)。在另一个实例中,一种用于治疗癌症的siRNA组合物可能进一步包括一种化疗剂。
可以用于给予的根据本发明的dsRNA剂的示例性制剂在下文进行讨论。
脂质体。为了便于阐释,在这一部分很大程度上相对于未修饰的siRNA化合物讨论了配制品、组合物和方法。然而,可以理解的是,可以用其他siRNA化合物(例如,修饰的siRNA)实践这些配制品、组合物和方法,并且这样的实践属于本发明。一种siRNA化合物制剂可以被配制用于在一种膜状分子组装体(例如,脂质体或胶束)中递送,该siRNA化合物是例如一种双链siRNA化合物或ssiRNA化合物(例如,一种前体,该前体例如一种可以被加工成ssiRNA化合物的较大的siRNA化合物、或一种编码siRNA化合物(例如一种双链siRNA化合物或ssiRNA化合物或其前体)的DNA)。如在此所使用,术语“脂质体”是指由设置在至少一个双层(例如一个双层或多个双层)中的两亲性脂质构成的囊泡。脂质体包括单层的或多层的囊泡,其具有一个形成自亲脂材料的膜以及一个水性内部。该水性部分包含该siRNA组合物。该亲脂性材料将该水性内部与一个水性外部分离,该水性外部典型地不包括该siRNA组合物,但在一些实例中,它可以包括。脂质体对于将活性成分转移以及递送至作用位点是有用的。因为脂质体膜与生物膜结构上类似,当脂质体被施加到一种组织时,该脂质体双层与细胞膜的双层融合。随着脂质体与细胞的融合进行,包括该siRNA的内部水性内含物被递送到该细胞中,其中该siRNA可以特异性结合到一种靶标RNA并且可以介导RNAi。在一些情况下,这些脂质体还被特异性靶向以例如将该siRNA指引到特定细胞类型。
包含一种siRNA的脂质体可以通过多种方法制备。在一个实例中,脂质体的脂质组分被溶解在洗涤剂中以使得用脂质组分形成胶束。例如该脂质组分可以是一种两亲性阳离子脂质或脂质缀合物。该洗涤剂可以具有高的临界胶束浓度并且可以是非离子的。示例性的洗涤剂包括胆酸盐、CHAPS、辛基葡糖苷、脱氧胆酸盐和月桂酰肌氨酸。然后将该siRNA制剂添加到包括该脂质组分的这些胶束。该脂质上的阳离子基团与该siRNA相互作用并且在该siRNA周围缩合以形成一种脂质体。在缩合之后,通过例如透析去除该洗涤剂以产生一种siRNA脂质体制剂。
如果必要,可以在缩合反应过程中添加协助缩合的载体化合物,例如通过控制添加。例如,该载体化合物可以是除了核酸以外的一种聚合物(例如,精胺或亚精胺)。还可以调节pH以促进缩合。
用于生产并入一种多核苷酸/阳离子脂质复合体作为递送运载体的结构组分的稳定的多核苷酸递送运载体的方法的另外说明描述于例如WO 96/37194中。脂质体形成还可以包括以下各项中所述的示例性方法中的一个或多个方面:费尔格纳P.L.(Felgner,P.L.)等人,美国国家科学院院刊(Proc.Natl.Acad.Sci.),USA 8:7413-7417,1987;美国专利号4,897,355;美国专利号5,171,678;班厄姆(Bangham)等人,大分子生物学(M.Mol.Biol.)23:238,1965;奥尔森(Olson)等人,生物化学与生物物理学学报(Biochim.Biophys.Acta)557:9,1979;思卓卡(Szoka)等人,国家科学院院刊(Proc.Natl.Acad.Sci.)75:4194,1978;梅休(Mayhew)等人,生物化学与生物物理学学报(Biochim.Biophys.Acta)775:169,1984;金姆(Kim)等人,生物化学与生物物理学学报(Biochim.Biophys.Acta)728:339,1983;以及福永(Fukunaga)等人,内分泌学(Endocrinol.)115:757,1984,将其通过引用以其全文结合在此。用于制备用作递送运载体的具有适当尺寸的脂质聚集体的常用技术包括声处理和冻融加挤压(参见,例如迈尔(Mayer)等人,生物化学与生物物理学学报(Biochim.Biophys.Acta)858:161,1986将其通过引用以其全文结合在此)。当一致小(50nm到200nm)并且相对均匀的聚集体是所希望的时候,可以使用微流化(梅休(Mayhew)等人,生物化学与生物物理学学报775:169,1984,将其通过引用以其全文结合在此)。这些方法容易适于将siRNA制剂包装到脂质体中。
pH敏感的或带负电的脂质体包埋核酸分子而非与其进行复合。因为核酸分子和脂质都带类似的电,所以发生排斥而非复合体形成。尽管如此,一些核酸分子包埋于这些脂质体的水性内部中。pH敏感的脂质体已经用以将编码胸苷激酶基因的DNA递送到培养物中的细胞单层。在靶细胞内检测到外源基因的表达(周(Zhou)等人,控制释放期刊(Journal ofControlled Release),19,(1992)269-274,将其通过引用以其全文结合在此)。
脂质体组合物的一个主要类型包括除了天然来源的磷脂酰胆碱以外的磷脂。例如中性脂质体组合物可以从二肉豆蔻酰基磷脂酰胆碱(DMPC)或二棕榈酰基磷脂酰胆碱(DPPC)中形成。阴离子脂质体组合物通常可以形成自二肉豆蔻酰磷脂酰甘油,而阴离子融合脂质体主要形成自二油酰基磷脂酰乙醇胺(DOPE)。另一个类型的脂质体组合物从磷脂酰胆碱(PC),例如像大豆PC和蛋PC中形成。另一个类型从磷脂和/或磷脂酰胆碱和/或胆固醇的混合物中形成。
在体外将脂质体引入到细胞中的其他方法的实例包括美国专利号5,283,185;美国专利号5,171,678;WO 94/00569;WO 93/24640;WO 91/16024;费尔格纳(Felgner),生物化学杂志(J.Biol.Chem.)269:2550,1994;纳贝尔(Nabel),美国国家科学院院刊(Proc.Natl.Acad.Sci.)90:11307,1993;纳贝尔(Nabel),人类基因疗法(Human GeneTher.)3:649,1992;格申(Gershon),生物化学(Biochem.)32:7143,1993;以及施特劳斯(Strauss)欧洲分子生物学学会杂志(EMBO J.)11:417,1992。
在一个实施例中,使用阳离子脂质体。阳离子脂质体具有能够融合至细胞膜的优势。尽管非阳离子脂质体不能够如与质膜一般有效地融合,但在体内由巨噬细胞吸收并且可以用于将siRNA递送到巨噬细胞。
脂质体的另外的优势包括:从天然磷脂获得的脂质体是生物相容的且生物可降解的;脂质体可以并入范围广泛的水和脂质可溶性药物;脂质体可以保护其内部区室中的囊封的siRNA免于代谢和降解(Rosoff(罗索夫),“Pharmaceutical Dosage Forms(药物剂型)”,Lieberman(利伯曼),Rieger(列赫尔)以及Banker(班克)(编),1988,第1卷,第245页)。在制备脂质体配制品方面的重要的考虑是脂质表面电荷、囊泡尺寸以及这些脂质体的水性体积。
一种带正电的合成阳离子脂质N-[1-(2,3-二油烯氧基)丙基]-N,N,N-三甲基氯化铵(DOTMA)可以用于形成与核酸自发地相互作用以形成能够与组织培养细胞的细胞膜的带负电的脂质融合的脂质-核酸复合体的小脂质体,从而导致siRNA的递送(关于DOTMA及其与DNA一起的使用的描述,参见,例如费尔格纳(Felgner),P.L.等人,美国国家科学院院刊(Proc.Natl.Acad.Sci.),8:7413-7417,1987和美国专利号4,897,355,将其通过引用以其全文结合在此)。
可以将一种DOTMA类似物、1,2-双(油酰氧基)-3-(三甲基氨)丙烷(DOTAP)与磷脂组合使用形成DNA络合囊泡。LipofectinTM(毕士大(Bethesda)研究实验室,盖瑟斯堡(Gaithersburg),马里兰州(Md.)),是一种有效试剂,用于递送高度阴离子性核酸到活组织培养细胞中,这些细胞包括带正电荷的DOTMA脂质体,其自发地与带负电荷的多核苷酸相互作用以形成复合物。当使用足够的带正电荷的脂质体时,所得复合物的净电荷也为正。以这种方式制备的带正电荷的复合物自发地附接到带负电荷的细胞表面上,与质膜融合,并且有效地将功能性核酸递送到例如组织培养物细胞中。另一种可商购的阳离子脂质体1,2-双(油酰氧基)-3,3-(三甲基氨)丙烷(“DOTAP”)(宝灵曼公司(Boehringer Mannheim),印第安纳波利斯,印第安纳州)不同于DOTMA在于该油酰基部分被酯连接而不是醚连接。
其他报道的阳离子脂质化合物包括已经与多种部分缀合的那些,包括例如羧基精胺,它已经与两种类型的脂质之一结合并且包括化合物,如5-羧基精胺基甘氨酸二八油酰基酰胺(“DOGS”)(TransfectamTM,普洛麦格(Promega),麦迪逊(Madison),威斯康星州(Wisconsin))和二棕榈酰磷脂酰乙醇胺5-羧基精胺基-酰胺(“DPPES”)(参见例如美国专利号5,171,678)。
另一种阳离子脂质缀合物包括用胆固醇(“DC-Chol”)对该脂质进行的衍生,其已被配制成脂质体与DOPE的组合(参见高(Gao),X和黄(Huang),L.,生物化学与生物物理学研究通讯(Biochim.Biophys.Res.Commun.)179:280,1991)。过将聚赖氨酸缀合至DOPE制成的脂质聚赖氨酸已被报道在血清存在下是有效于转染的(周(Zhou),X等人,生物化学和生物物理学报1065:8,1991,将其通过引用以其全文结合在此)。对于某些细胞系,这些含有共轭阳离子脂质的脂质体据说显示出较低的毒性,并且比含DOTMA组合物提供更有效的转染。其他可商购的阳离子脂质产品包括DMRIE和DMRIE-HP(维考(Vical),拉霍亚(La Jolla),加利福尼亚州)和Lipofectamine(DOSPA)(生命科技公司(Life Technology,Inc.),盖瑟斯堡,马里兰州)。适合用于寡核苷酸的递送的其他阳离子脂质被描述于WO 98/39359和WO 96/37194中。
脂质体配制品特别适用于局部给予,脂质体比其他配制品呈现若干优势。这样的优势包括与所给予的药物的高全身性吸收相关的副作用减小、在所希望的靶标处所给予的药物的积聚增加以及将siRNA给予到皮肤中的能力。在一些实现方式中,脂质体用于将siRNA递送到表皮细胞并且还增强siRNA渗透到皮组织中,例如到皮肤中。例如,可以局部应用这些脂质体。已经记录了被配制为脂质体的药物向皮肤的局部递送(参见,例如,韦纳(Weiner)等人,药物靶向杂志(Journal of Drug Targeting),1992,第2卷,405-410和杜普莱西斯(du Plessis)等人,抗病毒研究(Antiviral Research),18,1992,259-265;曼尼诺(Mannino),R.J.和富尔德-富格利特(Fould-Fogerite),S.,生物技术(Biotechniques)6:682-690,1988;伊塔尼(Itani),T.等人,基因(Gene)56:267-276.1987;尼古劳(Nicolau),C.等人,酶学方法(Meth.Enz.)149:157-176,1987;斯特劳宾格(Straubinger),R.M.和帕帕哈乔泡洛斯(Papahadjopoulos),D.酶学方法(Meth.Enz.)101:512-527,1983;王(Wang),C.Y.和黄(Huang),美国国家科学院院刊(Proc.Natl.Acad.Sci.USA)84:7851-7855,1987),将其通过引用以其全文结合在此)。
还已经检验非离子型脂质体系统以确定它们在递送药物至皮肤中的用途,具体地包含非离子表面活性剂和胆固醇的系统。包括Novasome I(二月桂酸甘油酯/胆固醇/聚氧乙烯-10-硬脂酰醚)以及Novasome II(二硬脂酸甘油酯/胆固醇/聚氧乙烯-10-硬脂酰醚)的非离子型脂质体配制品用于将一种药物递送入小鼠皮肤的真皮。这样的具有siRNA的配制品适于治疗一种皮肤失调。
包括siRNA的脂质体可以被制得高度可变形。这样的变形可以使脂质体能够通过比该脂质体的平均半径小的孔渗透。例如传递体是一种可变形的脂质体的类型。传递体可以通过将表面边缘活化剂(通常为表面活性剂)添加到一种标准的脂质体组合物中制成。包括siRNA的传递体可以例如通过注射皮下递送,从而将siRNA递送到皮肤中的角质细胞。为了跨过完整的哺乳动物皮肤,脂质囊泡必须在适合的透皮梯度的影响下穿过一系列的细孔,每一孔具有小于50nm的直径。此外,由于这些脂质特性,这些传递体可以是自优化的(适应例如皮肤中的孔的形状)、自我修复性的,并且可频繁地到达它们的靶标而不片段化,并且通常是自我负载性的。
属于本发明的其他配制品描述于以下美国临时申请序列号中:2008年1月2日提交的序列号61/018,616、2008年1月2日提交的序列号61/018,611、2008年3月26日提交的序列号61/039,748、2008年4月22日提交的序列号61/047,087以及2008年5月8日提交的序列号61/051,528中。2007年10月3日提交的PCT申请号PCT/US 2007/080331还描述了属于本发明的配制品。
表面活性剂。为了便于阐释,在这一部分很大程度上相对于未修饰的siRNA化合物讨论了配制品、组合物和方法。然而,可以理解的是,可以用其他siRNA化合物(例如,修饰的siRNA化合物)实践这些配制品、组合物和方法,并且这样的实践是在本发明的范围内。表面活性剂在如乳液(包括微乳液)和脂质体的配制品中获得广泛应用(参见上文)。siRNA(或一种前体,例如一种可以被加工为一种siRNA的较大的dsiRNA,或一种编码siRNA或前体的DNA)组合物可以包括一种表面活性剂。在一个实施例中,siRNA被配制为一种包括一种表面活性剂的乳液。对许多不同类型的表面活性剂(天然的和合成的两者)的特性进行分类并评级的最普通的方法是通过使用亲水/亲油平衡值(HLB)。亲水基团的性质提供了将配制品中所用的不同表面活性剂分类的最有用手段(列赫尔,“药物剂型”,马塞尔德克尔公司(Marcel Dekker,Inc.),纽约(New York),纽约州(NY),1988,第285页)。
如果该表面活性剂分子没有离子化,它被分类为一种非离子型表面活性剂。非离子表面活性剂在药物产品中获得广泛应用并且在很宽的pH值范围内是可用的。总体上,取决于它们的结构,它们的HLB值范围为从2至大约18。非离子型表面活性剂包括非离子型酯,例如乙二醇酯、丙二醇酯、甘油酯、聚甘油酯、脱水山梨糖醇酯、蔗糖酯以及乙氧基化酯。非离子型烷醇酰胺以及醚(例如脂肪醇乙氧基化物、丙氧基化醇、以及乙氧基化/丙氧基化嵌段聚合物)也包括在这一类别中。聚氧乙烯表面活性剂是该非离子型表面活性剂类别中最常用的成员。
如果该表面活性剂分子在其溶解或分散在水中时携带负电荷,则该表面活性剂被分类为阴离子型。阴离子型表面活性剂包括羧化物(例如皂)、酰基乳酸酯、氨基酸的酰基酰胺、硫酸酯(例如烷基硫酸酯以及乙氧基化的烷基硫酸酯)、磺酸酯(例如烷基苯磺酸酯、酰基羟乙基磺酸酯、酰基牛磺酸酯以及磺基琥珀酸酯)、以及磷酸酯。该阴离子型表面活性剂类别中最重要的成员是烷基硫酸酯和皂类。
如果该表面活性剂分子在其溶解或分散在水中时携带正电荷,则该表面活性剂被分类为阳离子型。阳离子型表面活性剂包括季铵盐以及乙氧基化胺。这些季铵盐是这一类别的最常用的成员。
如果该表面活性剂分子具有携带正电荷或负电荷的能力,该表面活性剂被分类为两性型。两性型表面活性剂包括丙烯酸衍生物、取代的烷基酰胺、N-烷基甜菜碱以及磷脂。
已经综述了表面活性剂在药品、配制品和在乳剂中的用途(列赫尔(Rieger),“药物剂型”(Pharmaceutical Dosage Forms),马塞尔德克公司(Marcel Dekker,Inc.),纽约州纽约(New York,NY),1988,第285页)。
胶束和其他膜状配制品。为了便于阐释,在这一部分很大程度上相对于未修饰的siRNA化合物讨论了胶束以及其他配制品、组合物和方法。然而,可以理解的是,可以用其他siRNA化合物(例如,修饰的siRNA化合物)实践这些胶束以及其他配制品、组合物和方法,并且这样的实践属于本发明。一种siRNA化合物组合物可以被提供为一种胶束配制品,该siRNA化合物是例如一种双链siRNA化合物或ssiRNA化合物(例如,一种前体,该前体例如一种可以被加工成ssiRNA化合物的较大的siRNA化合物、或一种编码siRNA化合物(例如一种双链siRNA化合物或ssiRNA化合物或其前体)的DNA)。“胶束”在此定义为一种特定类型的分子集合体,其中两亲性分子排列在一个球形结构中,使得这些分子的所有疏水部分向内定向,而使亲水部分与周围的水相接触。如果环境是疏水性的,则存在相反的排列。
适合用于通过透皮的膜递送的混合胶束配制品可以通过混合该siRNA组合物的水溶液、碱金属C8-C22烷基硫酸盐以及胶束形成化合物来制备。示例性的胶束形成化合物包括卵磷脂、透明质酸、透明质酸的药学上可接受的盐、乙醇酸、乳酸、甘菊提取物、黄瓜提取物、油酸、亚油酸、亚麻酸、油酸单甘油酯、单油酸酯、单月桂酸酯、琉璃苣油、月见草油、薄荷醇、三羟基氧胆烷基甘氨酸和其药学上可接受的盐、甘油、聚甘油、赖氨酸、聚赖氨酸、三油酸甘油酯、聚氧乙烯醚及其类似物、聚多卡醇烷基醚及其类似物、鹅脱氧胆酸盐、脱氧胆酸盐、及其混合物。胶束形成化合物可以在添加碱金属烷基硫酸盐的同时或之后添加。混合胶束会随着基本上任何种类的这些成分的混合(但剧烈的混合)形成,以提供更小尺寸的胶束。
在一个方法中,制备一种第一胶束组合物,其包含该siRNA组合物以及至少该碱金属烷基硫酸盐。然后将该第一胶束组合物与至少三种胶束形成化合物混合,以形成混合胶束组合物。在另一种方法中,该胶束组合物是通过将该siRNA组合物、碱金属烷基硫酸盐和至少一种胶束形成的化合物混合,然后添加剩余的胶束形成化合物(剧烈混合下)来制备。
可将苯酚和/或间甲酚添加到该混合胶束组合物中以稳定该配制品并防止细菌生长。可替代地,可随着胶束形成成分一起添加苯酚和/或间甲酚。也可以在该混合胶束组合物形成之后加入等渗剂,如甘油。
对于作为喷雾的胶束配制品的递送,该配制品可被装入气溶剂分配器中并将该分配器用推进剂填充。在该分配器中推进剂(其在压力下)处于液体形式。对各成分的比例进行调整,以便使该水相和推进剂相成为一体,即存在一个相。如果有两个相,有必要在分配这些内容物的部分(例如通过计量阀)之前摇动该分配器。药物试剂的分配量是从计量阀中以细雾推进。
推进剂可以包括含氢氯氟烃、含氢氟烃、二甲醚和二乙醚。在某些实施例中,也可以使用HFA 134a(1,1,1,2四氟乙烷)。
这些必需成分的特定浓度可以通过相对简单的实验来确定。对于经口腔的吸收,通常希望的是增加例如至少两倍或三倍的对于通过经胃肠道注射或给予的剂量。
颗粒.。为了便于阐释,在这一部分很大程度上相对于修饰的siRNA化合物讨论了颗粒、配制品、组合物以及方法。然而,可以理解的是,可以用其他siRNA化合物(例如,未修饰的siRNA化合物)实践这些颗粒、配制品、组合物以及方法,并且这样的实践属于本发明。在另一个实施例中,一种siRNA化合物制剂可以被并入进一种颗粒(例如微颗粒),该siRNA化合物是例如一种双链siRNA化合物或ssiRNA化合物(例如,一种前体,该前体例如一种可以被加工成ssiRNA化合物的较大的siRNA化合物、或一种编码siRNA化合物(例如一种双链siRNA化合物或ssiRNA化合物或其前体)的DNA)。微颗粒可以通过喷雾干燥来产生,但也可以通过其他方法包括冷冻干燥、蒸发、流化床干燥、真空干燥或这些技术的组合来产生。
药物组合物
本发明的iRNA试剂可以被配制用于药物用途。本发明进一步涉及一种包括在此定义的dsRNA试剂的药物组合物。药学上可接受的组合物包括一个治疗有效量的以上任一实施例中的dsRNA试剂中的一种或多种,单独使用或与一种或多种药学上可接受的载体(添加剂)、赋形剂和/或稀释剂配制在一起。
这些药物组合物可以被专门地配制用于以固体或液体形式给予,包括适于以下的形式:(1)口服给药,例如灌药(水性或非水性溶液或悬浮液)、片剂(例如靶向用于经颊、经舌下以及全身性吸收的片剂)、大丸剂、散剂、颗粒剂、用于施用到舌的糊剂;(2)不经肠给药,例如通过皮下、肌肉内、静脉内或硬膜外注射,如例如一种无菌溶液或悬浮液或持续释放配制品;(3)局部施用,例如以施用到皮肤的一种乳膏、软膏或一种控制释放贴剂或喷雾剂形式;(4)阴道内或直肠内,例如以子宫托、乳膏或泡沫形式;(5)舌下;(6)经眼;(7)经皮;或(8)经鼻。使用皮下或静脉内方法递送可以是特别有利的。
如在此使用,短语“治疗有效量”意指一种化合物、材料或包括本发明的化合物的组合物的在适用于任何医学治疗的合理效益/风险比下在动物中的细胞的至少一个亚群中有效产生某些所希望的治疗效果的量。
短语“药学上可接受的”在此用以指位于正确医学判断的范围内、适于与人类和动物的组织接触而无过量毒性、刺激、过敏反应或其他问题或并发症、与一个合理效益/风险比相称的那些化合物、材料、组合物和/或剂型。
如在此所用,短语“药学上可接受的载体”意指参与将标的化合物从身体的一个器官或部位携载或运载到身体的另一个器官或部位的一种药学上可接受的物质、组合物或媒剂,如一种液体或固体填充剂、稀释剂、赋形剂、制造助剂(例如润滑剂、滑石镁、硬脂酸钙或硬脂酸锌或硬脂酸)或溶剂囊封材料。每种载体必须在与该配制品的其他成分相容并且对患者无害的意义上是“可接受的”。可充当药学上可接受的载体的材料的一些实例包括:(1)糖,如乳糖、葡萄糖和蔗糖;(2)淀粉,如玉米淀粉和马铃薯淀粉;(3)纤维素及其衍生物,如羧甲基纤维素钠、乙基纤维素和醋酸纤维素;(4)粉末状黄芪胶;(5)麦芽;(6)明胶;(7)润滑剂,例如硬脂酸镁、月桂基硫酸钠和滑石;(8)赋形剂,如可可脂和栓剂蜡;(9)油,如花生油、棉籽油、红花油、芝麻油、橄榄油、玉米油和大豆油;(10)二醇,如丙二醇;(11)多元醇,如甘油、山梨醇、甘露醇和聚乙二醇;(12)酯,如油酸乙酯和月桂酸乙酯;(13)琼脂;(14)缓冲剂,如氢氧化镁和氢氧化铝;(15)海藻酸;(16)无热原水;(17)等渗盐水;(18)林格氏溶液;(19)乙醇;(20)pH缓冲溶液;(21)聚酯,聚碳酸酯和/或聚酐;(22)膨胀剂,例如多肽和氨基酸(23)血清成分,如血清白蛋白、HDL和LDL;以及(22)在药物配制品中使用的其他非毒性相容物质。
这些配制品可以方便地以单位剂量形式呈现并且可以通过配药学领域熟知的任何方法进行制备。可以与载体材料组合以产生单一剂型的活性成分的量将取决于所治疗的宿主、具体给药方式而变化。可以与载体材料组合以产生单一剂型的活性成分的量通常将是产生治疗效果的化合物的量。通常,在百分之百中,这一量将在从约百分之0.1到约百分之九十九、优选从约百分之5到约百分之70、最优选从约百分之10到约百分之30活性成分的范围内。
在某些实施例中,一种本发明的配制品包括一种选自下组的赋形剂,该组由以下各项组成:环糊精、纤维素、脂质体、胶束形成剂(例如胆汁酸)以及聚合载体(例如聚酯和聚酸酐);以及一种本发明的化合物。在某些实施例中,一种前述配制品使一种本发明的化合物变得经口生物可用。
iRNA试剂制剂可以与另一种试剂(例如另一种治疗剂或使iRNA稳定化的一种试剂(例如与iRNA复合以形成iRNP的一种蛋白质))组合配制。再其他试剂包括螯合剂(例如EDTA(例如以去除二价阳离子,如Mg2+))、盐、RNA酶抑制剂(例如一种广泛特异性RNA酶抑制剂,如RNAsin)等。
制备这些配制品或组合物的方法包括使得一种本发明的化合物与载体以及任选地一种或多种辅助成分缔合的步骤。通常,通过使得一种本发明的化合物与液体载体或细粉状固体载体或两者均匀并且紧密地缔合并且然后(必要时)使产物成形来制备这些配制品。
在一些情况下,为了延长一种药物的作用,令人希望的是减缓该药物从皮下或肌肉内注射的吸收。这可以通过使用具有不良水溶解度的结晶或非晶材料的一种液体悬浮液来实现。药物的吸收速率进而取决于其溶解速率,溶解速率反过来可以取决于晶体尺寸以及晶型。可替代地,不经肠给予的药物形式的延迟吸收通过将该药物溶解或悬浮在油性运载体中来实现。
可以通过从其他药物类推将根据本发明的化合物配制为用于以任何便利方式给药以在人类或兽医学中使用。
术语“治疗(treatment)”旨在还涵盖预防、治疗(therapy)以及治愈。接受这一治疗的患者通常是任何有需要的动物,包括灵长类动物(特别是人类)以及其他哺乳动物,如马、牛、猪和羊;以及家禽和宠物。
双链RNAi试剂体内地产生于细胞中,例如产生自被递送至该细胞中的外源DNA模板。例如,这些DNA模板可以被插入载体中并且被用作基因治疗载体。基因治疗载体可以通过例如静脉内注射、局部给予(美国专利号5,328,470,将其通过引用以其全文结合在此),或通过定向性注射(参见,例如,陈(Chen)等人(1994)美国国家科学院院刊(Proc.Natl.Acad.Sci.USA)91:3054-3057,将其通过引用以其全文结合在此)被递送至一个受试者。该基因治疗载体的药物制剂可以包括在一种可接受的稀释剂中的该基因治疗载体,或者可以包括一种该基因递送运载体被嵌入其中的缓释基质。这些DNA模板例如可以包括两个转录单位,一个产生包括了dsRNA试剂的顶链(top strand)的转录物,而一个产生包括了dsRNA试剂的底链(bottom strand)的转录物。当这些模板被转录时,该dsRNA试剂得以产生并且被加工成介导基因沉默的siRNA试剂片段。
递送途径
在此定义的dsRNA试剂或在此定义的包括dsRNA试剂的药物组合物可以使用不同的递送途径给予患者。可以通过多种途径将一种包括iRNA的组合物递送至一位受试者。示例性途径包括:静脉内的、皮下的、局部的、直肠的、肛门的、阴道的、经鼻的、经肺的、经眼的。
可以将本发明的iRNA分子和/或dsRNA试剂并入适于给予的药物组合物中。这样的组合物典型地包括一种或多种iRNA以及一种药学上可接受的载体。如在此所用,语言“药学上可接受的载体”旨在包括与药物给药相容的任何和所有溶剂、分散介质、涂层、抗细菌剂和抗真菌剂、等渗剂和吸收延迟剂等。将这样的介质和试剂用于药学上活性物质在本领域中是熟知的。除非在任何常规介质或试剂与该活性化合物不相容的情况下,否则涵盖其在这些组合物中的使用。补充性活性化合物也可以并入组合物中。
取决于希望局部还是全身性治疗以及取决于有待治疗的区域,可以将本发明的组合物以多种方式给予。给予可以是局部的(包括经眼的、阴道的、直肠的、鼻内的、经皮的)、口服的或不经肠的。不经肠给予包括静脉滴注,皮下的、腹膜内的或肌肉内的注射,或鞘内的或心室内的给予。
给予的途径和部位可以被选择成增强靶向。例如,为了靶向肌细胞,肌肉内注射进感兴趣的肌肉内将是一种合逻辑的选择。可以通过将iRNA以气雾剂形式给予来靶向肺细胞。可以通过用iRNA包衣一种气囊式导管并且机械地引入DNA来靶向血管内皮细胞。
剂量
在一个方面中,本发明的特征是一种向一位受试者(例如一位人类受试者)给予一种dsRNA试剂(例如一种siRNA试剂)的方法。在另一方面,本发明涉及在此定义的用于抑制在受试者中的靶基因表达的dsRNA试剂。该方法或医疗用途包括给予一个单位剂量的dsRNA试剂,例如一种siRNA试剂,例如以下双链siRNA试剂:(a)双链部分长14-30个核苷酸(nt),例如21-23个nt,(b)与一种靶标RNA(例如一种内源或病原体靶标RNA)互补,并且任选地,(c)包括至少一个长1-5个核苷酸的3'突出端。在一个实施例中,该单位剂量小于10mg/kg的体重、或小于10、5、2、1、0.5、0.1、0.05、0.01、0.005、0.001、0.0005、0.0001、0.00005或0.00001mg/kg的体重,并且小于200nmole的RNA试剂(例如,约4.4x 1016个拷贝)/kg的体重、或小于1500、750、300、150、75、15、7.5、1.5、0.75、0.15、0.075、0.015、0.0075、0.0015、0.00075、0.00015nmole的RNA试剂/kg的体重。
该确定的量可以是一个有效治疗或预防一种疾病或失调(例如一种与靶标RNA有关的疾病或失调)的量。该单位剂量例如可以通过注射(例如,静脉内的、皮下的或肌肉内的)、一个吸入剂量或一个局部施用来给予。在一些实施例中,剂量可以小于10、5、2、1或0.1mg/kg的体重。
在一些实施例中,该单位剂量以相比于每天一次不太频繁地给予,例如低于每2、4、8或30天一次。在另一个实施例中,该单位剂量不以一个频率给予(例如,一个不规律的频率)。例如,可以单次给予该单位剂量。
在一个实施例中,以其他传统的治疗形态给予该有效剂量。在一个实施例中,该受试者患有一种病毒感染并且该形态是一种抗病毒剂而非一种dsRNA试剂,例如而非一种siRNA试剂。在另一个实施例中,该受试者患有动脉硬化,而有效剂量的dsRNA试剂(例如,一种siRNA试剂)是例如在手术介入(例如血管成形术)之后组合给予。
在一个实施例中,给予一位受试者一个初始剂量的dsRNA试剂以及一个或多个维持剂量的dsRNA试剂,该dsRNA试剂是例如一种siRNA试剂(例如,一种前体,该前体例如一种可以被加工成siRNA试剂的较大的dsRNA试剂、或一种编码dsRNA试剂(例如一种siRNA试剂或其前体)的DNA)。该维持剂量或这些维持剂量与该初始剂量相比可以是相同或更低的,例如少一半的初始剂量。一种维持方案可以包括用从每天0.01μg到15mg/kg的体重范围内,例如每天10、1、0.1、0.01、0.001或0.00001mg/kg的体重的一个或多个剂量治疗该受试者。例如以至多每2、5、10或30天一次给予该维持剂量。此外,该治疗方案可以持续一段时间,该时间将取决于具体疾病的性质、其严重程度以及该患者的总体病状而变化。在某些实施例中,该剂量可以至多每天一次,例如至多每24、36、48或更多小时一次,例如至多每5或8天一次递送。治疗后,可以针对患者病症的变化并且针对疾病状态的症状的缓解对该患者进行监测。该化合物的剂量可以在该患者不显著响应于当前剂量水平的情况下增加,或者该剂量可以在观测到疾病状态的症状缓解时、在已经消除了疾病状态时或在观测到不希望的副作用时减少。
如在特定情况下适当希望或考虑的,该有效剂量能以一个单个剂量或以两个或更多个剂量给予。如果希望促进重复或频繁输注,那么可能可取的是植入一个递送装置,例如一个泵、半永久性支架(例如静脉内、腹膜内、脑池内或囊内)或储集器。
在一个实施例中,该组合物包括多个dsRNA试剂种类。在另一个实施例中,该dsRNA试剂种类具有相对于一种天然存在的靶序列与另一个种类不重叠且不相邻的序列。在另一个实施例中,该多个dsRNA试剂种类特异性针对不同的天然存在的靶基因。在另一个实施例中,该dsRNA试剂是等位基因特异性的。
在此描述的本发明的dsRNA试剂能以多种方式给予给哺乳动物,特别是大的哺乳动物,例如非人灵长类动物或人类。
在一个实施例中,该dsRNA试剂(例如一种siRNA试剂)组合物的给予是不经肠的,例如静脉内的(例如,作为一种团注剂或作为一种可扩散的输注)、皮内的、腹膜内的、肌肉内的、囊内的、心室内的、颅内的、皮下的、经粘膜的、经颊的、舌下的、内窥镜的、直肠的、口服的、阴道的、局部的、经肺的、鼻内的、尿道的或经眼的。可以由该受试者或由另一个人(例如,一位医疗服务人员)提供给予。可以按测量的剂量或以递送定量剂量的分配器提供该药剂。下面对选定的递送模式进行更详细地讨论。
本发明提供了用于直肠给予或递送在此描述的dsRNA试剂的方法、组合物以及试剂盒。
在具体的实施例中,本发明涉及本发明用于上述描述的方法中的dsRNA试剂。
抑制靶基因表达的方法
本发明的实施例还涉及用于抑制靶基因表达的方法。该方法包括以足够抑制该靶基因表达的量给予在以上任一实施例中的dsRNA试剂的步骤。本发明进一步涉及如在此定义的用于抑制在靶细胞中的靶基因表达的dsRNA试剂的用途。在一个优选的实施例中,本发明进一步涉及dsRNA试剂用于抑制在体外的靶细胞中的靶基因表达的用途。
另一方面,本发明涉及一种调节细胞中的靶基因表达的方法,该方法包括向所述细胞提供一种本发明的dsRNA试剂。在一个实施例中,该靶基因选自下组,该组由以下各项组成:因子VII、Eg5、PCSK9、TPX2、apoB、SAA、TTR、RSV、PDGFβ基因、Erb-B基因、Src基因、CRK基因、GRB2基因、RAS基因、MEKK基因、JNK基因、RAF基因、Erk1/2基因、PCNA(p21)基因、MYB基因、JUN基因、FOS基因、BCL-2基因、hepciden、活化蛋白C、细胞周期蛋白D基因、VEGF基因、EGFR基因、细胞周期蛋白A基因、细胞周期蛋白E基因、WNT-1基因、β-连环蛋白基因、c-MET基因、PKC基因、NFKB基因、STAT3基因、生存素基因、Her2/Neu基因、拓扑异构酶I基因、拓扑异构酶IIα基因、在p73基因中的突变、在p21(WAF1/CIP1)基因中的突变、在p27(KIP1)基因中的突变、在PPM1D基因中的突变、在RAS基因中的突变、在小窝蛋白I基因中的突变、在MIB I基因中的突变、在MTAI基因中的突变、在M68基因中的突变、在肿瘤抑制基因中的突变以及在p53肿瘤抑制基因中的突变。
在具体的实施例中,本发明涉及本发明用于上述描述的方法中的dsRNA试剂。
本发明由以下实例进一步展示,这些实例不应被视为是进一步限制性的。贯穿本申请引用的所有参考文献、未决专利申请和公开的专利的内容清楚地特此通过引用而结合。
实例
实例1.siRNA双链体的体外筛选
细胞培养和转染:
使人类Hep3B细胞或大鼠H.II.4.E细胞(ATCC,马纳萨斯(Manassas),VA)在37℃下在5%CO2的的氛围中的的氛围中在补充有10%FBS、链霉素、和谷氨酰胺(ATCC)的RPMI(ATCC)中生长到接近汇合,随后通过胰蛋白酶化从板释放。通过将14.8μl Opti-MEM加0.2μl脂染胺(Lipofectamine)RNAiMax/孔(英杰(Invitrogen),卡尔斯巴德(Carlsbad)加利福尼亚州(CA),目录号13778-150)添加至5μl siRNA双链体/孔到一个96孔板中进行转染,并且在室温下孵育15分钟。然后添加不具有抗生素、包含约2x 104个Hep3B细胞的80μl完全生长培养基到siRNA混合物。在RNA纯化之前将细胞孵育24小时或120小时。在10nM和0.1nM最终双链体浓度下进行单个剂量实验,并且使用8、4倍连续稀释用10nM最终双链体浓度的最大剂量进行剂量反应实验。
使用DYNABEADS mRNA分离试剂盒(英杰公司,部件号:610-12)的总RNA分离:
将细胞收获并溶解于150μl溶解/结合缓冲液中,然后使用一个Eppendorf热混合器在850rpm下混合5分钟(贯穿加工的搅拌速度相同)。将10微升磁珠和80μl溶解/结合缓冲液混合物添加至圆底板,并且混合1分钟。使用磁性表座捕获磁珠并且将该上清液移除而不扰动这些珠粒。在移出上清液后,将裂解的细胞添加至剩余的磁珠并且混合5分钟。在去除上清液之后,将磁珠用150μl洗涤缓冲液A洗涤2次并且混合1分钟。珠粒再次被捕获并且去除上清液。然后将珠粒用150μl洗涤缓冲液B洗涤,捕获,并且去除上清液。接着将珠粒用150μl洗脱缓冲液洗涤,捕获,并且去除上清液。允许珠粒干燥持续2分钟。干燥之后,添加50μl的洗脱缓冲液,并且在70℃下混合5分钟。用磁体捕获珠粒持续5分钟。将40μl上清液去除,并且添加到另一个96孔板中。
使用ABI高容量cDNA逆转录试剂盒(应用生物系统(Applied Biosystems),福斯特 市(Foster City),加利福尼亚州,目录号4368813)的cDNA合成:
将每个反应的母混合物(1μl 10X缓冲液、0.4μl 25X dNTP、1μl随机引物、0.5μl反转录酶、0.5μlRNA酶抑制剂和1.6μl的H2O)添加到5μl总RNA中。使用Bio-Rad C-1000或S-1000热循环仪(Hercules,Ca),通过以下步骤来产生cDNA:25℃10min、37℃120min、85℃5sec,4℃保持。
实时PCR:
将2μl cDNA添加至一个384孔板(罗氏(Roche)目录号04887301001)中的一种母混合物中,该母混合物含有0.5μl GAPDH TaqMan探针(应用生物系统目录号4326317E(人类)目录号4308313(啮齿动物))、0.5μl TTR TaqMan探针(应用生物系统目录号HS00174914_m1(人类)目录号Rn00562124_m1(大鼠))和5μl Lightcycler 480探针母混合物(罗氏(Roche)目录号04887301001)。在一个罗氏LC 480实时PCR机(罗氏)中进行实时PCR。除非另外说明,否则在至少两个独立转染中测试每种双链体,并且一式两份测定每个转染。
为了计算相对倍数变化,使用ΔΔCt方法来分析实时数据,并且相对于用10nMAD-1955转染的细胞或模拟转染的细胞进行的测定进行归一化。使用4参数拟合模型,使用XLFit来计算IC50,并且将IC50相对于在相同剂量范围内用AD-1955转染的细胞或原初细胞进行归一化或相对于其自身最低剂量进行归一化。针对每个个别转染以及组合来计算IC50,其中将一个单个IC50拟合到来自两个转染的数据。
本发明的具有不同基序修饰的示例性siRNA双链体的基因沉默的结果示于下表中。
实例2.RNA合成和双链体退火
1.寡核苷酸合成:
在AKTAoligopilot合成器或ABI 394合成器上合成所有寡核苷酸。除非另有说明,以下各项用于寡核苷酸合成:可商购的可控孔度玻璃固相支持体(dT-CPG,原初合成公司(Prime Synthesis))以及具有标准保护基的RNA亚磷酰胺,5'-O-二甲氧三苯甲基N6-苯甲酰基-2'-叔-丁基二甲基甲硅烷基-腺苷-3'-O-N,N’-二异丙基-2-氰乙基亚磷酰胺,5'-O-二甲氧三苯甲基-N4-乙酰基-2'-叔-丁基二甲基甲硅烷基-胞苷-3'-O-N,N’-二异丙基-2-氰乙基亚磷酰胺,5'-O-二甲氧三苯甲基-N2--异丁基-2'-叔-丁基二甲基甲硅烷基-鸟苷-3'-O-N,N’-二异丙基-2-氰乙基亚磷酰胺,以及5'-O-二甲氧三苯甲基-2'-叔-丁基二甲基甲硅烷基-尿苷-3'-O-N,N’-二异丙基-2-氰乙基亚磷酰胺(皮尔斯核酸技术公司(Pierce Nucleic Acids Technologies))。2'-F亚磷酰胺、5'-O-二甲氧三苯甲基-N4-乙酰基-2'-氟-胞苷-3'-O-N,N’-二异丙基-2-氰基乙基-亚磷酰胺以及5'-O-二甲氧三苯甲基-2'-氟-尿苷-3'-O-N,N’-二异丙基-2-氰基乙基-亚磷酰胺购自普洛麦格公司(Promega)。所有亚磷酰胺都以0.2M于乙腈(CH3CN)中的浓度使用,除鸟苷之外,鸟苷以0.2M于10%THF/ANC(v/v)中的浓度使用。使用16分钟的偶联/再循环时间。活化剂是5-乙基硫基四唑(0.75M,美国国际化学(American International Chemicals)),用于PO-氧化,使用碘/水/吡啶,并且用于PS-氧化,使用在2,6-二甲基吡啶/ACN(1:1v/v)中的PADS(2%)。
使用包含相对应的配体的一个固相支持体合成配体缀合的链。例如,通过用相对应的碳水化合物固相支持体开始合成来实现在一个序列的3'端处引入一个碳水化合物部分/配体(例如GalNAc)。类似地,通过在胆固醇支持体上开始合成来在3'端处引入一个胆固醇部分。通常,该配体部分经由如先前实例中所述的一个所选系拴物而系拴到反-4-羟基脯氨醇以获得一个羟基脯氨醇-配体部分。该羟基脯氨醇-配体部分然后经由一个琥珀酸酯连接子偶联到一个固体支持体,或经由标准亚磷酸化条件转化为亚磷酰胺,以获得所希望的碳水化合物缀合物构筑嵌段。从相对应的亚磷酰胺或固相支持体(购自生物研究技术公司(Biosearch Technologies))合成荧光团标记的siRNA。内部制造的负载是38.6微摩尔/克的油烯基石胆酸(GalNAc)3聚合物支持体。还内部制造的负载是42.0微摩尔/克的甘露糖(Man)3聚合物支持体。
除非另外规定,否则通过使相对应的亚磷酰胺在标准亚磷酰胺偶联条件下偶联到正在生长的链来实现所选配体在所希望的位置处,例如在序列的5'端处的结合。在5-(乙基硫基)-1H-四唑活化剂存在下,将0.1M亚磷酰胺在无水CH3CN中的溶液与固体结合寡核苷酸进行延长的15分钟偶联。使用标准碘-水如报道(1)那样,实施核苷酸间亚磷酸酯氧化成磷酸酯,或通过用叔-丁基过氧化氢/乙腈/水(10:87:3)以10分钟氧化等待时间共轭寡核苷酸。通过使用硫转移试剂如DDTT(购自AM化学(AM Chemicals))、PADS和或博凯奇(Beaucage)试剂将亚磷酸酯氧化成硫代磷酸酯而引入硫代磷酸酯。将胆固醇亚磷酰胺内部合成,并且二氯甲烷中以0.1M的浓度使用。胆固醇亚磷酰胺的偶联时间是16分钟。
2.去保护-I(核碱基去保护)
在完成合成之后,将支持体转移到一个100ml玻璃瓶(VWR)。将寡核苷酸从该支持体裂解,同时在55℃下用80mL乙醇氨的混合物[氨:乙醇(3:1)]使碱基和磷酸酯基团去保护6.5h。将瓶在冰上简单冷却,并且然后将乙醇化氨混合物过滤到一个新的250ml瓶中。将CPG用2x 40mL份的乙醇/水(1:1v/v)洗涤。然后通过旋转蒸发将混合物的体积减少到约30ml。然后将该混合物在干冰上冷冻,并且在一个speed vac上在真空下干燥。
3.脱保护II(2'-TBDMS基团的移除)
将经干燥的残余物再悬浮于26ml三乙胺、三乙胺三氢氟化物(TEA.3HF)或吡啶-HF以及DMSO(3:4:6)中,并且在60℃下加热90分钟以去除2'位处的叔丁基二甲基硅烷基(TBDMS)基团。然后将反应物用50ml的20mM乙酸钠淬灭,并且将pH调节到6.5,并且储存于冷冻器中直到纯化。
4.分析
将寡核苷酸通过高效液相层析(HPLC)分析,随后纯化,并且取决于序列和或结合的配体的性质来选择缓冲液和柱。
5.HPLC纯化
将配体结合的寡核苷酸通过反相制备型HPLC纯化。将未结合的寡核苷酸通过在一个内部填充的TSK凝胶柱上阴离子交换HPLC来纯化。缓冲液是10%CH3CN中的20mM磷酸钠(pH 8.5)(缓冲液A)和10%CH3CN、1MNaBr中的20mM磷酸钠(pH 8.5)(缓冲液B)。将含有全长寡核苷酸的洗脱份汇集,脱盐,并且冻干。将约0.15OD的脱盐的寡核苷酸在水中稀释到150μl,并且然后吸取至专用小瓶中用于CGE和LC/MS分析。最终通过LC-ESMS和CGE分析化合物。
6.siRNA制备
对于siRNA的制备,将等摩尔量的有义链和反义链在1x PBS中在95℃下加热5分钟并且缓慢冷却至室温。通过HPLC分析证实双链体的完整性。
实例3:ANGPTL3 siRNA上的不同化学修饰的体外沉默活性
细胞培养和转染
将Hep3B细胞(ATCC,马纳萨斯,弗吉尼亚州)在37℃下在5%CO2的氛围中在补充有10%FBS、链霉素以及谷氨酰胺(ATCC)的RPMI(ATCC)中生长到接近汇合,随后通过胰蛋白酶化从板释放。通过添加14.8μl Opti-MEM加0.2μl脂染胺RNAiMax/孔(英杰公司,卡尔斯巴德加利福尼亚州,目录号13778-150)到5μl siRNA双链体/孔到一个96孔板中进行转染,并且在室温下孵育15分钟。然后将不具有抗生素、包含约2x 104个Hep3B细胞的80μl完全生长培养基添加到siRNA混合物。在RNA纯化之前将细胞孵育24小时或120小时。除非另行说明,否则在10nM与0.1nM最终双链体浓度下进行单个剂量实验,并且在10、1、0.5、0.1、0.05、0.01、0.005、0.001、0.0005、0.0001、0.00005以及0.00001nM最终双链体浓度下进行剂量反应实验。
使用ABI高容量cDNA逆转录试剂盒(应用生物系统,福斯特市,加利福尼亚州,目录号4368813)的cDNA合成
按每个反应将具有2μl 10X缓冲液、0.8μl 25X dNTP、2μl随机引物、1μl逆转录酶、1μl RNase抑制剂以及3.2μl H2O的主混合物添加至10μl总RNA中。使用一个Bio-Rad C-1000或S-1000热循环器(赫苦斯(Hercules),加利福尼亚州)通过以下步骤产生cDNA:25℃10分钟,37℃120分钟,85℃5秒,4℃保持。
实时PCR
添加2μl cDNA到一个384孔板(罗氏,目录号04887301001)中的一种主体混合物中,该主体混合物包含0.5μl GAPDH TaqMan探针(应用生物系统公司,目录号4326317E)、0.5μl ANGPTL TaqMan探针(应用生物系统公司,目录号Hs00205581_m1)以及5μlLightcycler 480探针主体混合物(罗氏,目录号04887301001)/孔。实时PCR在ABI 7900HT实时PCR系统(应用生物系统公司(Applied Biosystems))上使用ΔΔCt(RQ)测定而完成。除非在总结表中另外指出,否则在两个独立转染中测试每种双链体,并且一式两份测定每个转染。
为了计算相对倍数变化,将实时数据使用ΔΔCt方法分析,并且相对于用10nMAD-1955转染的细胞或模拟转染的细胞进行的测定进行归一化。使用4参数拟合模型,使用XLFit来计算IC50,并且将IC50相对于在相同剂量范围内用AD-1955转染的细胞或原初细胞进行归一化或相对于其自身最低剂量进行归一化。用作阴性对照的AD-1955序列靶向荧光素酶并且具有以下序列:
有义链:cuuAcGcuGAGuAcuucGAdTsdT;
反义链:UCGAAGuACUcAGCGuAAGdTsdT。
可以将上述不同实施例组合以提供另外的实施例。在本说明书中引用的所有美国专利、美国专利申请公开物、国外专利、国外专利申请以及非专利申请通过引用以其全文结合在此。必要时,可以修改这些实施例的方面,以利用不同专利、申请以及公开物的概念提供又另外的实施例。
可以根据以上详细说明对这些实施例作出这些以及其他改变。通常,在以下权利要求书中,使用的术语不应该被解释为将权利要求书限制为在本说明书中披露的具体实施例而应该将这些权利要求解释为包括所有可能的实施例连同这样的权利要求所要求的等效物的全部范围。因此,权利要求书不被该披露所限制。
实例4:siRNA上的化学修饰和经修饰的siRNA的体外沉默。
有义链设计
配体设计和缀合位点
有义链缀合至3'-位置处的GalNAc配体,与亲本化合物相同。
有义位置11
用核酸酶敏感修饰(例如,DNA)来修饰在推定的裂解位点(当该有义链的长度是21个核苷酸,并且该反义链的长度是23个核苷酸时,相反的AS位置11)处的有义链位置11。来自许多不同缀合物的统计分析的数据表明该位置的重要性。
有义链3'-区(位置16-18)的热不稳定性:
该区域是用热不稳定性修饰来修饰的,比如GNA或对相反AS链的错配。位置16或17的修饰似乎是最具影响的。图1和表1强调该位置/区以及热不稳定性对体外有效性的影响。使用GNA或其他热不稳定性修饰(比如,脱碱基(Y34)或与反义链的错配)获得与亲本模板设计相当的有效敲低。在另一方面,针对与相反的AS链互补的2'-OMe或DNA修饰通常观察到减少的沉默。
Y34:
L96:
图2和表2显示3'-区(位置16-18)上的热不稳定性修饰GNA的位置效应。该结果表明位置16和17上的GNA修饰显示出类似于亲本设计的良好的有效性,然而位置18上的GNA显示活性的降低。
反义链设计
AS位置2
通过缀合物大数据集的统计分析和通过AS链的位置步已经将这个位置鉴定为对空间上需要的2'-修饰敏感(包括2'-OMe)。然而,发明人发现在非F设计的背景下若干个修饰(包括DNA,在一些情况下的RNA,以及在2’-位置处没有空间体积的其他修饰)可以是耐受良好的。将来自体外沉默研究的结果汇总在图3和表3中,表明在位置2处的DNA以及RNA通常保持类似于亲本模板设计的非F设计的活性,然而2’-OME通常不是耐受良好的,并且引起活性降低。
AS位置14
通过缀合物大数据集的统计分析和通过AS链的位置步已经将这个位置鉴定为对空间上需要的2'-修饰敏感(包括2'-OMe)。然而,已经发现在非F设计的背景下若干个修饰(包括DNA,在一些情况下的RNA,以及在2’-位置处没有空间体积的其他修饰)可以是耐受良好的。将来自体外沉默研究的结果汇总在图4和表4中,表明在位置14处的DNA以及RNA通常保持类似于亲本模板设计的非F设计的活性,然而2’-OME通常不是耐受良好的,并且引起活性降低。
体内评估
靶向mTTR的siRNA
以2.5mg/kg的单次siRNA剂量给予动物(n=3只/组),并且在给药前和给药后第4、7、13、22、29、和36天测定FVII血清蛋白水平。图5显示针对相比亲本化合物AD-57727的2个非F siRNA AD-61398和64273的FVII蛋白浓度-时间图。在图6中,显示相比亲本化合物,在三个不同的剂量水平下,对于两个非F siRNA在剂量后96h mTTR蛋白的减少。在图7中,显示了对于重复剂量方案(1mg/kg,QW)直至第42天(总共6个剂量),mTTR血清蛋白减少的图。
总体上,该研究表明该非F siRNA AD-61398和AD-642733展示出类似于亲本模板设计的在体内的有效性和效力。
靶向TMPRSS6的siRNA
表6.靶向TMPRSS6的siRNA的序列和化学反应。
结果表明非F设计的不同的体内效力取决于修饰的确切位置和有义链和AS链的组合。尽管体外数据表明非F化合物具有与亲本相似的效力/有效性,发现在体内最具活性的非F化合物AD-64604仍然比亲本AD-60940具有显著更低的有效性(参见图8)。
对非F设计进行进一步的改进,并且如表7中所汇总的进行评价。图9显示3mg/kg的单次SC剂量后7天,肝脏中的TMPRSS6mRNA沉默。
如图9所示,该改进产生了至少一种具有与亲本(AD-60940)相当的体内有效性的非F化合物(AD-65105)。该化合物含有在位置6和11处的具有DNA的有义链,以及在位置2中具有RNA和在位置10,14中具有DNA的反义链。
基序设计
当设计基序时,使用如与亲本化合物相同的方法将该有义链缀合至3’-位置处的GalNAc配体。根据本发明的实施例设计另外的基序。将具有代表性的序列在表8中列出。
表8.具有代表性的序列
体外的结果
如图10所示,跨越十个代表三个靶标,两种基序的序列,发现相比亲本化合物AD-57727,这些序列在活性方面具有统计学上显著的改进,其中基序1(对有义链和反义链的六个硫代磷酸酯核苷酸间键联修饰;从该有义链的5’-端开始的有义链的位置7和9-11处的四个2’-F修饰,以及从该反义链的5’-端开始的反义链的位置2、6、14、和16处的四个2’-F修饰)以及基序2(对有义链和反义链的六个硫代磷酸酯核苷酸间键联修饰;从该有义链的5’-端开始的有义链的位置7和9-11处的四个2’-F修饰,以及从该反义链的5’-端开始的反义链的位置2、6、8-9、14、和16处的六个2’-F修饰)。
体内评估
通过qPCR来评估siRNA的靶沉默。评估该基序的性能以靶向mTTR。以3mg/kg的单次siRNA剂量给予动物(n=3只/组),并且测定肝脏水平(第一次在给药前,然后在给药后第7天和第22天测定)如图11所示。
图12显示用化学稳定性增强共轭(SEC-C)的增强的活性,其中在给药后第7天测定肝脏的活性(mRNA)。动物接受了3mg/kg(s.c.)的单次剂量。该数据证明了该基序对体内活性的影响。
图13显示用给药后第7天评估的数据与母体化合物相比,新基序(基序1和2)具有增强的活性(活性提高约4倍)。该数据证明了该基序对体内活性的影响。倍数改进在序列之间是一致的。
图14显示了所有三个序列的显著改善的持续时间,这表明新基序显示出增强的持续时间。
图15显示了在单次3mg/kg SC剂量hAAV 1x 1011GC/小鼠下的ApoC3-GalNAc3SAR的结果。
实例5:在反义链的5’端处的VP和PS2修饰
下述是针对含有5’-乙烯基磷酸酯(VP)的寡核苷酸的合成以及含有2’-脱氧胸苷(其通过在该寡核苷酸的5’-端处的二硫代磷酸酯(PS2)键联而连接)的寡核苷酸的合成的示例性方案。本领域技术人员将理解,这些相同的或相似的技术可以用于合成类似的寡核苷酸。本领域技术人员已知的其他合成技术也可以用于合成和制备这些和类似的寡核苷酸以及修饰,包括,但不限于在威泰克(Whittaket)等人,“通过钯催化的P-C交叉偶联反应,高度官能化的P-立体异构核苷的立体选择性合成”(“Stereoselective synthesis ofhighly functionalized P-stereogenic nucleosides via palladium-catalyzed P-Ccross-coupling reactions”),四面体通讯(Tetrahedron Letters)49:6984-87(2008);赵(Zhao)和卡拉瑟斯(Caruthers),“连接胸苷寡核苷酸的5’-脱氧-5’-次甲基膦酸酯的合成和初步生物化学研究,”(“Synthesis and Preliminary Biochemical Studies with 5’-Deoxy-5’-methylidyne Phosphonate Linked Thymidine Oligonucleotides,”)四面体通讯(Tetrahedron Letters)37(35):6239-42(1996);以及美国专利申请公开号2013/0084576中公开的合成技术,将所有的这些申请通过引用以其全部内容结合在此。
针对含有5’-乙烯基磷酸酯的寡核苷酸的合成方案
新戊酰氧甲基-(POM)-经保护的VP的引入
耦合和氧化:在标准合成条件下,使用用于激活的在乙腈中的0.25M 5-(乙基硫基)-1H-四唑来进行亚酰胺的耦合。用3-(二甲氨基亚甲基)氨基-3H-1,2,4-二噻唑-5-硫酮(DDTT)或苯乙酰二硫化物(PADS)进行标准的巯基化方案将亚磷酸三酯转化为硫代磷酸酯键联。由于乙烯基膦酸酯结构嵌段在5’-位置处不含DMT保护基团,因此省去了最终的脱三苯甲基化步骤。
脱保护和裂解:合成含有乙烯基膦酸酯的寡核苷酸后,在NH3和EtOH水溶液的3:1混合物中通过在60℃下5小时或35℃下16小时,添加1%-2.5%按体积计40%甲胺溶液来进行脱保护。
乙基保护的VP的引入
耦合和氧化:在标准合成条件下,使用用于激活的在乙腈中的0.25M 5-(乙基硫基)-1H-四唑来进行亚酰胺的耦合。用3-(二甲氨基亚甲基)氨基-3H-1,2,4-二噻唑-5-硫酮(DDTT)或苯乙酰二硫化物(PADS)进行标准的巯基化方案来氧化该亚磷酸三酯,并且引入该硫代磷酸酯键联。由于乙烯基膦酸酯结构嵌段在5’-位置处不含DMT保护基团,因此省去了最终的脱三苯甲基化步骤。
脱保护和裂解:制备乙腈(ACN)和吡啶(Pyr)50:1(v/v)的溶液,并且添加分子筛以保持该混合物尽可能的干燥。向该混合物中,每135mL的该ACN/Pyr溶液中添加3.5mL(5g)的碘代三甲基硅烷(TMSI)。该溶液必须是新鲜制备的,并且具有一天的最大保质期。然后,制备0.5M的巯基乙醇在1:1(v/v)乙腈-三乙胺的溶液,并且添加分子筛。使用在树脂上和合成柱中的含有5’-VP的寡核苷酸,将TMSI溶液在约5-10Cv下缓慢添加,并且允许其反应15min。该步骤重复两次,得到大约45分钟的总暴露时间。随后,用ACN充分洗涤该树脂,随后在柱上流动约5-10柱体积的巯基乙醇溶液,允许其反应10min。该步骤重复一次,得到20分钟的总暴露时间。用ACN又一次彻底洗涤后,将支持体结合的寡核苷酸脱保护,并且使用标准条件从该支持体上裂解。
针对通过该寡核苷酸的5’-端处的二硫代磷酸酯键联而连接的含有2’-脱氧胸苷的寡核苷酸的合成的方案
耦合和氧化:亚磷酰胺溶液的制备是来自可商购的dT-硫代亚磷酰胺(格伦研究公司(Glen Research))根据制造商的方案在干燥乙腈中,在0.15M浓度下进行。在标准条件下使用在乙腈中的0.25M 5-(乙基硫基)-1H-四唑,持续17分钟的总耦合时间来进行耦合。从合成循环中省略加帽步骤。使用3-(二甲氨基亚甲基)氨基-3H-1,2,4-二噻唑-5-硫酮(DDTT),通过将试剂递送和反应时间延长至3x 10分钟来进行氧化(巯基化)。使用标准的合成条件来进行最终的脱三苯甲基。
脱保护和裂解:用0.5M哌啶在ACN(2x 15分钟暴露时间)来洗涤该固相支持体(在柱上),然后将该树脂转移到合适的容器中,并且在标准条件下(例如,在60℃下5小时或在35℃下16小时的3:1NH:EtOH水溶液)进行处理以从固相支持体中裂解并且从该寡核苷酸上脱保护。
针对寡核苷酸合成方法的剩余步骤是类似于在实例2中所述的步骤。
图16阐明了负载Ago2的siRNA的示意图。通常,5’-磷酸酯-官能化的siRNA(ESC化学反应)显示出提高的体外活性。例如,当在体外转染时,经测试的约80%的序列已经显示出提高的固有效力,并且约30%显示约10倍的IC50益处。然而,在体内,5’-磷酸酯在内/溶酶体区室中迅速丧失。在图16中还显示经修饰的磷酸酯、模拟的稳定磷酸酯、5’-乙烯基膦酸酯(5’-VP)附接至经修饰的寡核苷酸的5’端。该磷酸酯最初是由默克(Merck)设计的。
本发明的一个实施例是针对5’端-修饰用于效力改善(RISC负载)的5’-末端修饰。末端修饰提供稳定的磷酸酯模拟物,并且促进内源性的磷酸化作用。
图17描绘了显示基于四种不同的ApoB序列的5’-VP的存在通常如何提高体内的活性的图表。针对四种缀合物(具有或不具有5'-VP修饰),在3mg/kg的单次SC剂量后7天分析LDL水平。从该图表看出,在特定ApoB序列中看出ED50的3倍的提高。使用另外的化合物/靶标(包括ApoC3、Tmpssr6、和TTR)已经证实了在体内的益处。将该ApoB序列在表9中列出。
表9
图18描绘了可以代替PS键的不同的化学修饰,包括二硫代磷酸酯(PS2),和甲基膦酸酯(MePhos),该修饰促进内源性的磷酸化作用。经修饰的siRNA通常不是针对Clp1激酶的良好底物,可能是由于在AS链的第一个核苷酸处的2’OMe修饰的干扰。然而,2’-OMe修饰连同硫代磷酸酯键联对于外切核酸酶保护是需要的。用例如2’F取代2’-OMe修饰,并且修饰该PS键可以促进外切核酸酶保护,同时保持代谢稳定性。
图19显示末端修饰的体外评估(包括2'-OMe-MePhos、2'-OMe-PS、dN(PS2)、和2'F-PS)的图。如图表中所示,该dn(PS2)键联和2’F-PS显示出相对于该亲本(2’OMe-PS)的提高的体外活性。特别地,dN(PS)2在体外去污溶酶体测定中是稳定的,然而2’F-PS显示出代谢性倾向。在两种ApoB缀合物上,在10nM和0.1nM处进行原代小鼠肝细胞的转染(n=4)。
图20显示在反义5'-端处的小改变可以显著地提高体内的有效性。图20A显示在该反义链的位置1处的2’F-PS可以提高5’P依赖性序列的活性,并且图20B显示相似于5’-VP,通过dN(PS)2超过亲本改善了约3倍的效力。
实例6:对siRNA活性的5’-VP修饰和评价
用新戊酰基氧基甲基保护基的5’乙烯基膦酸酯亚磷酰胺的合成:
方案1
针对方案1的试剂盒反应条件:(a)戴斯-马丁氧化剂(Dess-Martinperiodinane),DCM,0℃;(b)NaH、四(新戊酰氧甲基)双磷酸酯、THF、-78℃,随后通过在0℃下搅拌,70%(E和Z异构体);(c)甲酸:水,1:1,24小时,通过二氧化硅柱层析或通过RP-HPLC(反相HPLC)而分开的E和Z异构体;(d)2-氰基乙基N,N,N′,N′-四异丙基亚磷酰二胺,5-(乙基硫基)-1H-四唑,ACN,6小时,室温,65%。
四(新戊酰氧甲基)-双-磷酸酯(X)的合成
将四甲基甲烯双磷酸酯(120g,0.51mol)、NaI(308g,2mol)、氯甲基新戊酸盐(387g,2.5mol)和乙腈(400ml)混合,并且将其回流过夜。TLC(薄层层析)在EtOAc中用5%甲醇证实产物的形成。将该反应混合物用乙醚(1000ml)进行稀释,并且用水(2×1000ml)进行洗涤,用Na2SO3进行干燥,并且蒸发。用冰冷的己烷洗涤该固体残余物,并且在真空中进行干燥以给出148g(45%)呈浅黄色固体的X。
1H NMR(500MHz,CDCI3):δ5.73-5.63(m,8H),2.65(t,2H),1.22(s,36H);31P NMR(500MHz,CDCI3):δ18.61。
化合物2的制备
向化合物1(3.0g,8mmol)在150mL的无水二氯甲烷的用冰预冷的溶液中添加戴斯-马丁氧化剂(Dess-Martin periodinane)(DMP)(1.4当量;4.7g,11.2mmol)。将该反应混合物在0℃下搅拌1小时,然后在室温下搅拌3小时。TLC证实该产物的形成。然后将该反应混合物添加至10%Na2S2O3和饱和的NaHCO3(1:1)的200ml溶液中,随后添加200ml乙酸乙酯。在减压下,将该粗醛萃取于乙酸乙酯中进行干燥和浓缩。该粗醛不经纯化直接用于下一步骤。
产率=2.87gm(97%);通过NMR的纯度是大约70%;LC-MS:m/z371。
化合物3的制备
在-78℃下,向NaH(0.58g,24mmol)在20mL的THF的悬浮液中添加双磷酸酯(X)在14ml THF(12.6gm,20mmol)来制备四金属氧酸盐(POM)-双膦酸酯钠盐的溶液,并且搅拌15分钟。
在-78℃下,向上述制备的四(POM)双磷酸酯钠盐溶液中逐滴添加醛2(2.86g)在40mL的无水THF溶液。将该反应混合物在-78℃下搅拌1小时,在0℃下再搅拌1小时,然后在室温下搅拌1小时。TLC证实该产物的形成(EtOAc:己烷7:3)。向300ml饱和的氯化铵中添加该粗反应混合物,并且用300ml乙酸乙酯进行萃取。将该有机层用盐水洗涤,经硫酸钠干燥。然后将该溶液在减压下浓缩,并且将该残余物通过硅胶柱层析法(EtOAc在己烷=20%-100%)进行纯化,以给出以72%产率的E/Z异构体(88/12)混合物的化合物3(4.0g)。
化合物4的制备
在室温下,将化合物3(4g,5.7mmol)在200mL的HCOOH/H2O(1:1,v:v)的溶液搅拌24小时。TLC证实该产物(MeOH:CH2Cl2=5:95)的形成。
在减压下,将该溶液浓缩,并且将该残余物硅胶柱层析法(MeOH:CH2Cl2=7:93v/v)进行纯化。将级分在RP-HPLC(C18柱,缓冲液A=0.05%TFA在水中,缓冲液B=0.05%TFA在ACN;梯度5%-95%,超过25分钟)上进行测试以确定两种异构体(E和Z异构体)的纯度。E异构体在14.1分钟下洗脱,并且Z异构体在14.9分钟下洗脱。来自硅胶层析法的最初的级分包含E和Z异构体的混合物,并且剩余的该级分是E异构体。将含有E和Z异构体混合物的级分在RP-HPLC上进行纯化。获得的4-E异构体(2.3g,71%产率)。
E异构体:
1H NMR(400MHz,乙腈-d3):δ8.98(s,1H),7.30(d,J=8.1Hz,1H),6.80(ddd,J=23.7,17.2,5.0Hz,1H),6.02(ddd,J=21.6,17.1,1.7Hz,1H),5.77(d,J=3.2Hz,1H),5.57(m,5H),4.32(m,1H),4.01(dd,J=7.0,5.4Hz,1H),3.82(dd,J=5.5,3.2Hz,1H),3.41(s,3H),1.14(d,J=1.5Hz,18H);31P NMR(162MHz,乙腈-d3):δ18.29。
Z异构体:
1H NMR(500MHz,乙腈-d3):δ9.50(s,1H),7.44(d,J=8.1Hz,1H),6.69(ddd,J=54.4,13.3,8.7Hz,1H),5.93(ddd,J=17.8,13.3,1.3Hz,1H),5.80(d,J=2.9Hz,1H),5.69-5.58(m,5H),5.22(m,1H),4.01(dd,J=7.1,5.3Hz,1H),3.88(dd,J=5.3,2.9Hz,1H),3.49(s,3H),1.19(d,J=5.8Hz,18H);31P NMR(202MHz,乙腈-d3):δ18.75。
化合物5的制备
向化合物4-E异构体(2.1g,3.62mmol)和乙基硫基四唑(0.46g,3.62mmol)在ACN(40mL)的溶液中添加2-氰基乙基N,N,N′,N′-四异丙基,亚磷酰二胺(1.311g,4.35mmol)。将混合物在室温下搅拌2小时。TLC在己烷:EtOAc(2:8在0.15%TEA)中证实该产物的形成。将该反应混合物过滤、浓缩,并且加载到二氧化硅柱上。将该样品用在己烷中的20%至100%的EtOAc和TEA(0.15%)溶液洗脱,以得到呈白色泡沫的化合物5(1.75g,62%)。
E异构体:
1H NMR(400MHz,乙腈-d3):δ9.09(s,1H),7.38(d,J=8.1Hz,1H),6.89(m,1H),6.10(dddd,J=21.4,17.1,2.8,1.7Hz,1H),5.86(t,J=3.8Hz,1H),5.67-5.55(m,5H),4.66-4.50(m,1H),4.40-4.20(m,1H),3.99(m,1H),3.92-3.57(m,4H),3.44(s,3H),2.73-2.64(m,2H),2.14(s,1H),1.24-1.14(m,30H);31P NMR(162MHz,乙腈-d3):δ151.79(d,J=71.3Hz),18.07(d,J=54.0Hz)。
Z异构体:
1H NMR(400MHz,乙腈-d3):δ9.02(s,1H),7.41(dd,J=8.1,1.6Hz,1H),6.62(dddd,J=53.7,13.1,9.7,7.0Hz,1H),5.97(dd,J=17.4,13.1Hz,1H),5.80(dd,J=7.0,3.5Hz,1H),5.70-5.52(m,5H),5.41(m,1H),4.40-4.10(m,1H),4.06-3.98(m,1H),3.93-3.56(m,4H),3.47(s,3H),2.68(m,2H),2.14(s,1H),1.33-1.11(m,30H);31P NMR(202MHz,乙腈-d3):δ150.81(d,J=141.4Hz),15.17。
针对含有5’-乙烯基磷酸酯的寡核苷酸的合成方案
合成乙烯基膦酸酯单体和5’-VP修饰的寡核苷酸的方法类似于文献(WO 2008/100447对陈(Chen)等人;利马(Lima)等人,“单链siRNA激活动物中的RNAi”(“Single-Stranded siRNAs Activate RNAi in Animals,”)细胞(Cell)150:883-894(2012);普拉卡什(Prakash)等人,“支持单链siRNA活性的代谢稳定性的5-磷酸类似物的鉴定”(“Identification of metabolically stable 5-phosphate analogs that supportsingle-stranded siRNA activity,”)核酸研究(Nucleic Acids Research)43:2993-3011(2015),将其通过引用以其全文结合在此)中的方法。简言之,用乙醚保护5’-磷酸酯,然后,该乙醚保护的磷酸酯经过两步脱保护:1)在无水条件下TMS-I在固相支持体上,并且2)标准的寡核苷酸脱保护以获得一个5’-VP修饰的寡核苷酸。该过程还在实例5中进行了讨论。
代谢稳定性的(E-)和(Z-)5′-乙烯基膦酸酯对siRNA活性的影响
双链的小干扰RNA(siRNA)与5′-磷酸化的反义链促进有效地负载到RNA诱导沉默复合体(RISC)上,以引出稳健的RNAi介导的基因沉默。通过合成的siRNA的Clp1激酶的内源性的5′-磷酸化作用因此是对于RISC负载和链选择是关键的(威兹(Weitzer)等人,“人类RNA激酶hClp1在3’转移RNA外显子和短干扰RNA上有活性,”(“The human RNA kinasehClp1is active on 3’transfer RNA exons and short interfering RNAs,”)自然(Nature)447:222-226(2007))。具有代谢稳定性键联的磷酸酯模拟物已经被用于核苷修饰作为抗病毒剂(WO 2008/100447对陈(Chen)等人),因为siRNA的5′端修饰提高基因沉默活性超过对应的非磷酸化的siRNA,特别是单链siRNA(利马(Lima)等人,“单链siRNA激活动物中的RNAi”(“Single-Stranded siRNAs Activate RNAi in Animals,”)细胞(Cell)150:883-894(2012);普拉卡什(Prakash)等人,“支持单链siRNA活性的代谢稳定性的5-磷酸类似物的鉴定”(“Identification of metabolically stable 5-phosphate analogs thatsupport single-stranded siRNA activity,”)核酸研究(Nucleic Acids Research)43:2993-3011(2015))。
在该实例中,在体外和体内评价磷酸酯模拟物在双链siRNA中的效果。
将该实例中使用的siRNA序列在下表中示出。
双链体ID 有义序列 反义序列
AD-66572 usgsgaagCfaGfUfAfuguugauggaL96 usCfscauCfaAfCfauacUfgCfuuccasasa
AD-68365.3 usgsgaagCfaGfUfAfuguugauggaL96 VPuCfcauCfaAfCfauacUfgCfuuccasasa
AD-68431.1 usgsgaagCfaGfUfAfuguugauggaL96 VPUfCfcauCfaAfCfauacUfgCfuuccasasa
AD-68433.1 usgsgaagCfaGfUfAfuguugauggaL96 VP(Tam)CfcauCfaAfCfauacUfgCfuuccasasa
u=2’OMe,5'OH U
Vpu=2’OMe,5'VP U
VPUf=2’F,5'VP U
VP(Tam)=2’N-甲基乙酰胺,5'VP T
将具有E-和Z-几何结构的5′-乙烯基膦酸酯(VP)对双链siRNA活性的影响进行比较。结果表明针对具有5′-反式-(E-)VP的化学修饰的siRNA的体内有效性可以是改善的,其很好地模拟天然的磷酸酯,然而,5’-顺式-(Z-)VP没有显示出有效性的提高,表明该Z-异构体不能很好地模拟天然的磷酸酯。
图21A-B显示相对5'-E-VP修饰(在该反义链的5'-端处)含有5'-OH的ApoB siRNA的体外和体内的活性的SAR分析。图21A显示用体外转染小鼠1°肝细胞的结果。图21B显示单次剂量(SC剂量给药)后3天的LDL水平。图21B的结果表明用5’-E-VP修饰的ApoB siRNA显示出提高的活性。
图22显示相对5'-Z-VP修饰对mTTR和F9 siRNA-GalNAc缀合物的5'-E-VP修饰的体外效力的结果。这些结果是来自体外转染的小鼠原代肝细胞。如图所示,用5’-E-VP修饰的siRNA缀合物显示出保持或提高的效力,然而用5’-Z-VP修饰的siRNA缀合物显示出降低的效力。
图23显示相对5’-Z-VP修饰对F9 siRNA-GalNAc缀合物(单次SC剂量)的5'-E-VP修饰的体内比较的结果。结果表明用5’-E-VP修饰的siRNA缀合物显示出提高的基因沉默活性超过5’-OH对照,然而用5’-Z-VP修饰的siRNA缀合物显示出与5’-OH对照相似的活性。
这些图的结果显示反义链的5’-磷酸化对于有效的RNAi介导的基因沉默是所需的。用模拟天然磷酸盐的5′-反式-乙烯基膦酸酯(5’-E-VP)可以提高化学修饰的siRNA的有效性。
实例7:5’-C-丙二酸单酰修饰和对siRNA活性的评价
将5′-C-丙二酸单酰核苷酸合成和并入到siRNA的5′端:
通用实验条件:在无水条件下在氩气氛下进行所有的湿敏感反应。在TeledyneISCO(林肯(Lincoln),内布拉斯加(NE))Combi闪光系统上使用预包装好的ReadySepTeledyne ISCO硅胶柱来进行快速层析。在API-US光谱仪的沃特斯(Waters)(米尔福德(Milford),马萨诸塞州(MA))Q-T上,使用正模式的直接流注射(毛细管电压=3000kV,椎体=35,源温度=120℃,以及脱溶剂气温=350℃)来记录电喷射离子化—高分辨质谱(ESI-HRMS)光谱。在室温下,在瓦里安(Varian)光谱仪(帕洛阿尔托(Palo Alto),加利福尼亚州(CA))上,在400MHz(1H)和126MHz(13C)下记录1H和13C NMR光谱,并且化学位移以ppm参照该残留溶剂峰。耦合常数以Hertz给出。将信号拆分模式描述为单峰(s)、双峰(d)、三重峰(t)、四重峰(q)、宽峰(br),或多重峰(m)。在质子去耦模式下在162MHz下记录31P NMR光谱,并且化学位移参照外部H3PO4(80%)。在60℃下,在安捷伦(Agilent)(圣克拉拉(Santa Clara),加利福利亚州(CA))6130单个四级LC/MS系统上,使用XBridge C8柱(2.1×50mm,2.5μm)来进行LC/ESI-MS。缓冲液A由100mM 1,1,1,3,3,3-六氟-2-丙醇(HFIP)和在H2O的16.3mM三乙胺(TEA)组成,并且缓冲液B是100%的甲醇。
方案2
针对方案2的试剂和条件:(a)苄基氧甲基缩醛(BOM)氯,DBU,DMF,30分钟,0℃,定量(黑须(Kurosu)等人,对鉴定具有分枝杆菌(mycobactericidal)活性的新的卡普若米星(capuramycin)类似物的合成研究(“Synthetic studies towards the identificationof novel capuramycin analogs with mycobactericidal activity,”)杂环化合物(Heterocycles)77:217-225(2009);黑须(Kurosu)等人,卡普若米星(capuramycin)的简洁合成(“Concise Synthesis of Capuramycin,”)有机化学通讯(Org.Lett.)11:2393-2396(2009),将其通过引用以其全文结合在此);(b)甲基三苯氧基碘化磷,DMF,15分钟,室温,92%;(c)甲醇钠,丙二酸二甲酯,1,2-DME,24小时,回流,92%;(d)10%Pd/C,H2atm,i-PrOH/H2O(10:1,v/v),0.05当量的甲酸,12小时,室温,98%(阿列维(Aleiwi)等人,“一种尿苷脲基氮的BOM基的可靠的Pd介导的氢解脱保护”(“A reliable Pd-mediatedhydrogenolytic deprotection of BOM group of uridine ureido nitrogen,”)四面体通讯(Tetrahedron Lett.)53:3758-3762(2012),将其通过引用以其全文结合在此);(e)NEt3-3HF,THF,48小时,室温,88%;(d)2-氰基乙基N,N-二异丙基氯代亚磷酰胺,DIEA,DCM,18小时,室温,56%;(g)1M哌啶水溶液,24小时,室温;然后30%氨/乙醇水溶液(3:1,v/v),36小时,室温,定量,Z+=哌啶鎓。
N3-苄基氧甲基-2′-O-甲基-3′-O-叔丁基二甲基甲硅烷基尿苷(2)的合成
将2′-O-甲基-3′-O-叔丁基二甲基甲硅烷基-尿苷(1,20g,53.7mmol)转换为2(26.5g,定量的)随后是先前报道的方法的一个变体。
N3-苄基氧甲基-5′-脱氧-5′-碘-2′-O-甲基-3′-O-叔丁基二甲基甲硅烷基尿苷 (3)的合成
将化合物2(10g,20.3mmol)溶解于100mL的无水DMF中,并且添加20g(40.6mmol)的甲基三苯氧基碘化磷。将混合物在室温下搅拌15分钟。向该反应中添加甲醇(200mL),并且将该混合物另外搅拌15分钟。将该溶剂蒸干;将该残余物溶解于二氯甲烷(DCM),并且用5%的Na2S2O3溶液洗涤,随后用水洗涤。将该有机层收集、经Na2SO4干燥、过滤,并且蒸干。将该粗残余物通过柱层析法纯化,使用在己烷中的0-50%乙酸乙酯(EtOAc)作为洗脱剂以获得呈白色泡沫的3(11.2g,92%)。
1H NMR(400MHz,DMSO-d6):δ7.77(d,J=8.2Hz,1H),7.30(m,5H),5.90(d,J=5.2Hz,1H),5.85(d,J=8.2Hz,1H),5.33(d,J=13.0Hz,1H),5.30(d,J=13.0Hz,1H),4.58(s,2H),4.23(t,J=4.5Hz,1H),4.07(t,J=5.1Hz,1H),3.87(q,J=6.1Hz,1H),3.55(dd,J=10.6,6.3Hz,1H),3.39(dd,J=10.6,6.3Hz,1H),3.32(s,3H),0.89(s,9H),0.14(s,3H),0.12(s,3H)。13C NMR(126MHz,DMSO-d6):δ161.7,150.7,140.2,138.0,128.2,127.4,127.3,101.6,87.9,83.3,80.8,72.7,71.0,70.1,57.6,25.6,17.7,6.2,-4.7,-4.8。
HRMS-ESI针对C24H35IN2NaO6Si(M+Na)+的计算是:625.1207;发现:625.1205。
N3-苄基氧甲基-5′-脱氧-5′-C-(二甲基丙二酰基)-2′-O-甲基-3′-O-叔丁基二甲 基甲硅烷基尿苷(4)的合成
将甲醇钠(2g,33mmol)置于干燥的圆底烧瓶中,添加丙二酸二甲酯(12mL,100mmol)和无水1,2-二甲氧基乙烷(DME,100mL),并且将该混合物进行回流。化合物3(10g,16.5mmol)与无水乙腈共蒸发两次后,将其溶解于70mL的无水DME中,并且将其添加至丙二酸二甲酯和甲醇钠的回流溶液中。回流持续24小时。将该反应混合物冷却至室温,并且添加甲醇(50mL)以猝灭该反应。在真空中蒸发溶剂和挥发物。将该粗残余物通过柱层析法纯化,使用在己烷中的0-100%EtOAc作为洗脱剂以获得呈无色油状物的化合物4(9.2g,92%)。
1H NMR(400MHz,DMSO-d6):δ7.66(d,J=8.2Hz,1H),7.30(m,5H),5.80(d,J=8.2Hz,1H),5.76(d,J=4.0Hz,1H),5.33(d,J=13.4Hz,1H),5.30(d,J=13.4Hz,1H),4.58(s,2H),4.14(t,J=5.4Hz,1H),3.91(m,1H),3.76(m,1H),3.64(m,4H),3.60(s,3H),3.33(s,3H),2.37-2.09(m,2H),0.87(s,9H),0.09(s,3H),0.08(s,3H)。13C NMR(126MHz,DMSO-d6):δ169.1,168.8,161.9,150.6,140.4,138.0,128.1,127.4,127.3,101.3,88.6,88.5,81.3,80.9,73.1,71.0,70.0,59.7,57.5,52.5,48.0,31.5,25.6,17.7,-4.76,-5.06。
HRMS-ESI针对C29H42N2NaO10Si(M+Na)+的计算是:629.2506;发现:629.2508。
5′-脱氧-5′-C-(二甲基丙二酰基)-2′-O-甲基-3′-O-叔丁基二甲基甲硅烷基尿苷 (5)的合成
将化合物4(8.7g,14.3mmol)溶解于660mL的异丙醇/水(10:1,v/v),并且添加0.9g的10%Pd/C,随后添加27mL(0.7mmol)的甲酸。在真空下除去烧瓶中的空气;将反应烧瓶用氢气冲洗,并且在氢气氛下、在常压下、在室温下搅拌12小时。将该反应混合物通过硅藻土过滤,并且用乙醇冲洗。将该滤过物收集,并且蒸干。通过硅胶层析法将该粗残余物纯化,使用在DCM中的0-5%地MeOH作为洗脱剂。将该适合的级分合并,并且蒸干,以获得呈白色泡沫的5(6.7g,98%)。
1H NMR(400MHz,DMSO-d6):δ11.38(d,J=1.8Hz,1H),7.61(d,J=8.1Hz,1H),5.71(d,J=4.3Hz,1H),5.65(dd,J=8.0Hz,J=2.1Hz,1H),4.16(t,J=5.3Hz,1H),3.91(t,J=4.8Hz,1H),3.73(m,1H),3.63(m,4H),3.61(s,3H),3.31(s,3H),2.24-2.07(m,2H),0.87(s,9H),0.08(s,3H),0.08(s,3H)。13C NMR(126MHz,DMSO-d6):δ169.2,168.9,163.0,150.4,141.2,141.2,102.1,87.7,81.2,80.9,73.1,57.5,52.5,52.4,52.3,48.0,31.6,25.6,17.7,-4.8,-5.1。
HRMS-ESI针对C21H34N2NaO9Si(M+Na)+的计算是:509.1931;发现:509.1929。
5′-脱氧-5′-C-(二甲基丙二酰基)-2′-O-甲基尿苷(6)的合成
在室温下,在圆底烧瓶中将化合物5(6.7g,13.8mmol)用三乙胺-三氟化氢(11mL,202.5mmol)在150mL的无水THF中搅拌48小时。将溶剂在真空中蒸发至原体积的三分之二。通过硅胶层析法将该残余物纯化,使用在DCM中的0-5%地MeOH作为洗脱剂。将该适合的级分合并,并且蒸干,以获得呈白色泡沫的6(4.5g,88%)。
1H NMR(400MHz,DMSO-d6):δ11.37(s,1H),7.56(d,J=8.1Hz,1H),5.72(d,J=4.3Hz,1H),5.64(d,J=8.1Hz,1H),5.24(d,J=6.3Hz,1H),3.94(q,J=5.7Hz,1H),3.86(t,J=4.8Hz,1H),3.72(m,1H),3.64(m,4H),3.61(m,3H),3.34(s,3H),2.25-2.07(m,2H)。13CNMR(126MHz,DMSO-d6):δ169.2,169.0,163.0,150.3,141.0,102.0,87.4,81.6,80.8,71.9,57.6,52.5,52.4,48.0,31.9。
HRMS-ESI针对C15H20N2NaO9(M+Na)+的计算是:395.1067;发现:395.1070。
5′-脱氧-5′-C-(二甲基丙二酰基)-2′-O-甲基尿苷-3′-O-(O-(2-氰基乙基)-N,N- 二-异丙基)亚磷酰胺(7)的合成
化合物6(3.0g,8mmol)与无水乙腈共蒸发三次,然后在真空下经P2O5干燥过夜。将该干燥的残余物溶解于60mL的无水DCM中;依次添加二异丙基乙胺(4.5mL,24mmol)和2-氰基乙基N,N-二异丙基氯代亚磷酰胺(2.2mL,10.0mmol)。在氩气氛下搅拌1小时后,另外添加1.0mL(4.0mmol)的2-氰基乙基N,N-二异丙基氯代亚磷酰胺,并且持续再搅拌18小时。将该反应混合物用150mL的DCM进行稀释,并且用200mL的饱和碳酸氢钠溶液进行洗涤。将该有机层用硫酸钠干燥并且通过过滤除去。在真空中蒸发该溶剂,并且将该粗残余物通过硅胶层析法纯化。该洗脱剂是己烷/EtOAc/NEt3(66:33:1,v/v/v在分级梯度至己烷/EtOAc/NEt333:66:1,v/v/v)。将该适合的级分合并,并且蒸干,与无水乙腈共蒸发,并且在高真空下进行干燥以获得呈白色泡沫的7(3.2g,56%)。
1H NMR(400MHz,CD3CN,非对映异构物的混合物):δ8.97(s,1H),7.36(m,1H),5.78(d,J=4.2Hz,1H),5.64(d,J=8.1Hz,1H),4.23-3.80(m,4H),3.77-3.59(m,8H),3.45-3.41(m,3H),2.68(t,J=5.9Hz,2H),2.44-2.31(m,2H),1.42-1.00(m,12H).31P NMR(162MHz,CD3CN,非对映异构物的混合物):δ151.8,151.6。13C NMR(126MHz,CD3CN,非对映异构物的混合物):δ170.6,170.2,163.8,151.3,141.3,119.6,103.0,102.9,89.6,89.2,82.9,82.5,82.4,81.8,81.3,81.2,75.3,75.2,75.1,75.0,59.8,59.7,59.3,59.1,58.9,58.8,53.3,53.2,49.5,49.4,44.2,44.15,44.1,44.0,33.0,25.0,24.9,24.8,21.0,20.9。
HRMS-ESI针对C24H38N4O10P(M+H)+的计算是:573.2326;发现:573.2321。
5′-脱氧-5′-C-丙二酸单酰-2′-O-甲基尿苷,哌啶鎓盐(8)的合成
在室温下,将化合物6(0.1g,0.3mmol)用1M哌啶水溶液(10mL,10mmol)搅拌24小时。将该溶剂在真空中蒸发,并且将该残余物溶解于30%氨/乙醇(3:1,v/v)的混合物中,并且在室温下搅拌36小时。将该溶剂在真空中蒸发,并且获得呈无色油状物的8(定量的)。
1H NMR(400MHz,D2O):δ7.75(d,J=8.1Hz,1H),5.92(m,2H),4.16(t,J=5.5Hz,1H),4.06(t,J=4.7Hz,1H),3.99(m,1H),3.50(s,3H),3.27(t,J=7.0Hz,1H),3.17(t,J=5.7Hz,6H),2.27-2.06(m,2H),1.87-1.54(m,8H)。13C NMR(126MHz,D2O):δ179.5,179.2,168.0,153.0,142.5,103.1,88.5,83.7,83.3,72.7,58.9,55.9,45.3,34.7,23.0,22.2。
HRMS-ESI(M+H)+针对C13H17N2O9的计算是:345.0929;发现:345.0919。
寡核苷酸合成
在ABI-394DNA/RNA合成仪上,使用基于用该仪器提供的改进的合成循环来合成寡核苷酸。将在乙腈中的0.25M 5-(S-乙基硫基)-1H-四唑的溶液作为激活剂。该亚磷酰胺溶液在无水乙腈中是0.15M。该氧化试剂是在THF/吡啶/H2O中的0.02M I2。N,N-二甲基-N′-(3-硫代-3H-1,2,4-二硫唑-5-基)甲烷酰亚酰胺(DDTT),0.1M在吡啶中,将其用作硫化剂。该脱三苯甲基试剂是在DCM中的3%二氯乙酸(DCA)。在5′-磷酸酯化合物的情况下,格伦研究公司(Glen Research)的化学磷酸化作用试剂(目录号10-1902-02)用于5′-单磷酸酯的引入。完成自动合成后,用在乙腈中的0.1M哌啶洗涤该固相支持体10分钟,然后用无水乙腈洗涤,并且用氩气进行干燥。然后将该寡核苷酸从支持体中手动释放,并且使用30%NH4OH/乙醇(3:1,v/v)或40%甲胺(0.5mL/μmol的固相支持体)的混合物分别在55℃下6小时或在60℃下15分钟来进行脱保护。通过过滤收集溶剂,并且用DMSO(1.5mL/μmol的固相支持体)冲洗该载体。
在室温下,用1M哌啶水溶液(1.5mL/μmol的固相支持体)第一次处理5′-C-丙二酸单酰固相支持的寡核苷酸24小时,并且将该溶液过滤掉且蒸干。将该残余物溶解于30%NH4OH/乙醇(3:1,v/v,2mL/μmol的固相支持体)的混合物中,并且在室温下摇动36小时,然后蒸干。在室温下,以120-150分钟,通过阴离子交换HPLC来纯化粗寡核苷酸,使用在0.02MTris-HCl中的0.22M至0.42M NaClO4的线性梯度,pH 8.5/50%(v)乙腈。将所有的单链纯化至>85%HPLC(260nm)纯度,然后通过尺寸排阻层析,使用用Sephadex G25(GE医疗集团(GEHealthcare))定制的AP-2玻璃柱(20×300mm,沃特斯(Waters))脱盐,用无菌无核酸酶水洗脱。产生siRNA双链体的杂交是通过将等摩尔量的互补链混合至在1×PBS缓冲液(pH 7.4)中的20μM的终浓度,并且在95℃下在水浴中加热5分钟,随后缓慢冷却至室温而进行的。
5’-C-丙二酸单酰修饰对基因沉默活性和稳定性的评价
双链RNA的5’-磷酸化作用对于将小干扰RNA(siRNA)有效负载到RNA诱导的沉默复合体(RISC)中,导致RNAi介导的基因沉默是需要的。内源性或外源性siRNA通常容易被细胞溶质激酶磷酸化,并且在大多数情况下,合成的5’-单磷酸的存在是不需要。然而,在化学修饰的siRNA的某些情况下,代谢稳定性的5’-磷酸酯模拟物可导致更高的稳定性,增加的RISC负载和更有效的基因沉默。
在该实例中,评价了使用固相合成,作为化学修饰的siRNA的反义链的5’-末端处的经修饰的核苷酸并入5’-C-丙二酸单酰部分的作用。该5’-C-丙二酸单酰可以作为二价阴离子在生理pH下类似于5’-单磷酸酯二阴离子存在。评价在反义链上含有5’-C-丙二酸单酰基团的siRNA的体外基因沉默活性、代谢稳定性和RISC载量,并且与相应的5’-磷酸化和非磷酸化的对应物进行比较。
细胞培养和转染
原代小鼠肝细胞获自美国生命技术公司(Life Technologies),并且将其在具有10%胎牛血清(FBS)的威廉姆斯氏培养基E(Williams E Medium)中进行培养。通过在384孔板上向每个孔中一所希望的浓度将4.9μL的Opti-MEM加0.1μL的Lipofectamine RNAiMax(英杰公司(Invitrogen))每孔添加至5μL的每个siRNA双链体中来进行转染。将该混合物在室温下孵育20分钟,并且向该siRNA混合物中添加含有5,000个细胞的40μL的完全生长培养基。在RNA分离之前将细胞孵育24小时。针对10,000,000个细胞的转染随后进行相似的步骤。使用8个6倍系列稀释液在20nM至75pM或50nM至187.5pM的范围内进行剂量反应实验。
RNA分离
使用Dynabeads mRNA分离试剂盒(英杰公司)分离RNA。将细胞在每孔含有3μL珠子的75μL裂解/结合缓冲液中裂解,并在静电摇床上混合10分钟。缓冲液根据生产商的方案而制备。使用磁性板支持体在Biotek EL406上进行自动洗涤步骤。将珠子在缓冲液A(90μL)中洗涤一次,在缓冲液B中洗涤一次,并且在缓冲液E中洗涤两次,洗涤过程中伴随抽吸步骤。
cDNA合成
使用ABI高容量cDNA逆转录试剂盒(应用生物系统(Applied Biosystems))来完成DNA合成。每个反应中,每孔添加1μL 10×缓冲液、0.4μL 25×dNTP、1μL随机引物、0.5μL逆转录酶、0.5μL RNA酶抑制剂、和6.6μL的水的混合物。将板密封,在静电振荡器上搅动10分钟,然后在37℃下孵育2小时。然后,将这些板在80℃下搅动8分钟。
实时PCR
在384孔的50个板(罗氏(Roche))中,向含有0.5μL小鼠GAPDH TaqMan探针(应用生物系统(Applied Biosystems),目录号4308313)、0.5μL小鼠ApoB或PTEN TaqMan探针(应用生物系统(Applied Biosystems),目录号分别是Mm01545156_m1和Mm01212532_m1)、和5μLLightcycler480探针母混合物(罗氏(Roche))每孔的母混合物中添加cDNA(2μL)。实时PCR在ABI 7900HTRT-PCR系统(应用生物系统(Applied Biosystems))上使用ΔΔCt(RQ)测定而完成。每个双链体和浓度以四个生物重复进行测定。为了计算相对倍数变化,使用ΔΔCt方法分析实时数据,并且将这些数据归一化为利用以下这样的细胞而进行的测定:这些细胞是用10nM非特异性siRNA转染的细胞。使用XLFit,使用4参数拟合模型来计算IC50的值。
表10.在基于细胞的测定中,针对5′-C-丙二酸单酰、5′-磷酸酯和5′-OH siRNA在PTEN和ApoB沉默中的IC50值。
注:
aP表示5′-单磷酸酯;M表示5′-丙二酸酯(即,5′-C-丙二酸单酰);斜体的大写字母和正常小写字母分别表示2′-脱氧-2′-氟(2′-F),和2′-O-甲基(2′-OMe)糖修饰;·表示硫代磷酸酯(PS)键联;dT表示2′-脱氧胸苷核苷酸;GalNAc表示羟基丙基三价N-乙酰基-半乳糖胺配体(耐尔(Nair)等人,“多价N-乙酰半乳糖胺缀合的siRNA定位于肝细胞和激发稳健的RNAi介导的基因沉默”(“Multivalent N-Acetylgalactosamine-Conjugated siRNALocalizes in Hepatocytes and Elicits Robust RNAi-Mediated Gene Silencing,”)美国化学协会期刊(J.Am.Chem.Soc.)136,16958-16961(2014),将其通过引用以其全文结合在此)。
b对于在原代小鼠肝细胞中基因沉默的半最大抑制浓度(IC50)。所有值是来自一式三份实验。
去污溶酶体的稳定性测定
将大鼠肝去污溶酶体(Xenotech,定制产品PR14044)解冻至室温,并且在20mM柠檬酸钠缓冲液(pH 5.0)中稀释至0.5单位/mL。通过将100μL的0.5单位/mL的酸性磷酸酯酶去污溶酶体与25μL的0.4mg/mL siRNA在微量离心管中混合而制备样品。在设定为37℃和300rpm的埃彭道夫(Eppendorf)热混合器中孵育4小时或24小时后,向每个样品中添加300μL的菲罗门(Phenomenex)裂解上样缓冲液和12.5μL的0.4mg/mL内标siRNA。针对时间0的样品是通过将100μL的0.5单位/mL酸性磷酸酯酶去污溶酶体与25μL的0.4mg/mL siRNA样品、300μL的菲罗门(Phenomenex)裂解上样缓冲液、和12.5μL的0.4mg/mL内标siRNA混合而制备的。使用菲罗门(Phenomenex)Clarity OTX Starter试剂盒,从每个时间点样品(0小时、4小时、24小时)提取siRNA。然后将该样品用500μL的不含核酸酶的水重新悬浮,并且通过LC/MS来分析50μL的样品。
RISC免疫沉淀反应和RT-PCR测定
将siRNA转染的原代小鼠肝细胞(10,000,000个细胞)在裂解缓冲液(50mM Tris-HCl,pH 7.5,100mM NaCl,1%NP-40,0.1%SDS)中用蛋白酶抑制剂(西格玛-奥德里奇公司(Sigma-Aldrich))来进行裂解。用蛋白质BCA试剂盒(赛默飞科技公司(ThermoScientific)来测定裂解物浓度。对于每个反应,使用2mg的总裂解物。抗Ago2抗体是购自美国瓦克化学公司(Wako Chemicals)(克隆编号:2D4)。对照小鼠IgG是来自圣克鲁斯生物技术公司(Santa Cruz Biotechnology)(sc-2025)。使用Dynabeads(美国生命技术公司(LifeTechnologies))来沉淀抗体。通过茎-环RT进行Ago2相关的siRNA和内源性miR122的测定,随后基于先前公开的方法进行TaqMan PCR分析。
5’-脱氧-5’-C-丙二酸单酰尿苷和人类Ago2MID结构域之间的相互作用的数值模
hAgo2MID(氨基酸432-578;残基440-572以电子密度分辩)和UMP(PDB ID码3LUJ)以及全长hAgo2和miR-20a(PDB ID码4F3T)之间的可用的复合物的晶体结构的识别模式表明5’末端的磷酸酯的识别非常相似。两个结构之间的唯一区别是在具有全长Ago2的复合物中,来自PIWI结构域(Arg-812)的残基有助于5’-磷酸酯的识别。因此,将UMP:MID复合物用作针对模拟5’-丙二酸单酰尿苷和该hAgo2MID结构域之间的相互作用的基础。从蛋白质数据库检索UMP:MID复合物的三维坐标(http://www.rcsb.org)。使用程序UCSF嵌合体(版本1.5.3),来自晶体结构的所有水分子被缺失,并且该5’-磷酸酯基团被转化为5’-C-丙二酸单酰部分。然后加入氢原子,并且在用Amber力场优化的hAgo2MID结构域的5’-磷酸酯袋上的5’-脱氧-5’-C-丙二酸单酰尿苷的几何学和它的定位以及H键合/非键合相互作用(分别针对标准氨基酸和非标准残基的ff12SB和Gasteiger电荷),如在UCSF嵌合体中实施。
图24A-C是显示在体外PTEN沉默测定的原代小鼠肝细胞中针对(A)5'-OH、(B)5'-C-丙二酸单酰、和(C)5′-磷酸酯PTEN siRNA的剂量-反应曲线的图。所有值是来自一式三份实验。
图25显示在大鼠肝脏去污溶酶体中进行孵化的5'-OH、5'-C-丙二酸单酰、和5′-磷酸酯siRNA的酶稳定性的结果。该siRNA靶序列在表10中示出。在去污溶酶体的存在下,将该siRNA在0.4mg/mL(大约5mM)的浓度下分别孵育4小时和24小时。通过HPLC测定百分比全长链。将数据归一化至未处理的对照。
图26显示通过来自原代小鼠肝细胞的Ago2的免疫沉淀反应,以及通过Ago2-负载的单链的RT-PCR扩增测定的5'-OH、5'-C-丙二酸单酰、和5′-磷酸酯siRNA(反义链上的5'-修饰)的RISC负载的结果。将测定的内源性miR122的水平作为对照。该siRNA靶序列在表10中示出。siRNA 7、8、和9以10nM转染到细胞中。反义链的水平以nM siRNA链/mg细胞裂解物给出。
这些图的结果显示,与相应的5’-磷酸化和非磷酸化对应物相比,5’-C-丙二酸单酰siRNA保持或改善了体外基因沉默、高水平的Ago2负载,并且赋予siRNA双链体的反义链显著改善的代谢稳定性。计算机模拟研究显示5’-C-丙二酸单酰基团在hAgo2MID的5’-磷酸酯结合袋中具有有利的拟合。因此,5’-C-丙二酸单酰、代谢稳定性的5’C-丙二酸单酰、代谢稳定性的5’-磷酸酯生物电子等排具有用于治疗的siRNA的优异的拟生态特性。
实例8:使用三烷基铝或二烷基锌的5’-C-烷基核苷的立体选择合成的方法
通过向5’-核苷醛添加温和的烷基亲核体的针对5’-C-烷基核苷的合成的通用方案
R=TBS,任何保护基团,或任何取代基
X=H、F、OMe、OMOE、ONMA、OPG(PG-任何保护基团)、OR″(R″-任何烷基基团)
B=未保护的或保护的U、T、C、A、G,或任何经修饰的核酸碱基
R′=Me或任何烷基取代
可替代地,代替AlR’3或ZnR’2(上述在方案2中列出),SnR’4、TiR’4、和各种其他金属(除了Li和Mg)可以与R’基团在该反应方案中使用。
方案3
针对通过闭合酐环的5’-烷基核苷的差向异构体立体特异性相与转换的通用方案
R=TBS,任何保护基团或任何取代基
X=H、F、OH、OMe、OMOE、ONMA、OPG(PG-任何保护基团)、OR"(R″-任何烷基基团)
B=未保护的或保护的U、T、C、或任何经修饰的嘧啶核酸碱基
R′=Me或任何烷基取代基
LG=OMs、OTs,或任何优良的离去基团
LGX′=MsCl,TsCl,或任何强酸氯酸酐或酸酐
碱=DBU或任何碱试剂
溶剂=THF,二噁烷或任何水溶性有机溶剂
方案4
使用戴斯-马丁氧化剂(Dess-Martin periodinane)合成嘧啶5′-醛2a-d。
5′-脱氧-3′-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2′-O-甲基-5′-氧-尿苷2a。在氩气氛下,将戴斯-马丁氧化剂(Dess-Martin periodinane)(40.7g,96mmol)添加至3′-OTBS保护的尿苷1a(29.8g,80mmol)在无水DCM(600mL)的搅拌的和冷却的(0℃)溶液中。将该冷却水浴移除,并且将该混合物在室温下搅拌4小时,之后通过TLC观察不到起始醇1a。将混合物冷却至0℃,并且倒入剧烈搅拌的10%的硫代硫酸钠溶液(250mL)和饱和碳酸氢钠溶液(350mL)的混合物中。在室温下搅拌45分钟后,发生显著的沉淀。将该沉淀物过滤掉并且用DCM(200mL x 2)洗涤该固体。将滤液置于分液漏斗中,分离该有机相,并且经无水硫酸钠干燥。将来自过滤漏斗的固体转移至锥形烧瓶中,添加丙酮(450mL),将该悬浮液搅拌15分钟,过滤,并用丙酮(200mL x 2)洗涤该固体。将该丙酮提取物蒸发,将残余物与DCM提取物合并,蒸发该溶剂,将残余物溶于ACN-丙酮1:1混合物(200mL)中,再次蒸发该溶剂,并且将该固体残余物在真空中干燥以给予粗醛2a27.6g(93%)。醛含量大约71%(由H1 NMR在ACN-d3的CHO/NH比率来测定),将其不经进一步纯化用于下一步骤。该产物可以在-20℃在氩气氛下储存而不显著分解。主要部分的1H NMR(400MHz,ACN-d3):δ0.15(s,6H);0.93(s,9H);3.37(s,3H);3.62-3.68(m,2H);3.81(dd,J=4.6,5.9Hz,1H);4.48(d,J=3.4Hz,1H);4.59(ddd,J=0.4,3.4,4.5Hz,1H);5.70(d,J=8.2Hz,1H);5.94(d,J=6.0Hz,1H);7.71(d,J=8.2Hz,1H);9.17(bs,1H);9.68(d,J=0.5Hz,1H)。
2',5'-二脱氧-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2'-氟-5'-氧-尿苷2b类似地由在无水DCM(550mL)中的1b(13.8g,38mmol)和DMP(19.5g,46mmol)而制备。在室温下搅拌过夜后,将该混合物冷却、猝灭,并且用DCM萃取,以给予含有大约60%的目标产物2b的12.7g(93%)的粗醛。主要部分的1H NMR(400MHz,ACN-d3):δ0.13(s,3H);0.14(s,3H);0.92(s,9H);4.41(d,J=6.0Hz,1H);4.67(ddd,J=4.9,6.0,13.6Hz,1H);5.15(ddd,J=2.8,4.9,52.5Hz,1H);5.68(d,J=8.1Hz,1H);5.89(dd,J=2.8,18.3Hz,1H);7.55(d,J=8.1Hz,1H);9.26(bs,1H);9.64(d,J=1.0Hz,1H)。
5'-脱氧-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-5'-氧-胸苷2c类似地由在无水DCM(500mL)中的1c(17.9g,50mmol)和DMP(25.4g,60mmol)而制备。在0℃下搅拌3小时后,将该混合物猝灭,并且用DCM萃取,以给予含有大约63%的目标产物2c的20.0g(定量的)的粗醛。主要部分的1H NMR(400MHz,ACN-d3):δ0.135(s,3H);0.140(s,3H);0.92(s,9H);1.85(d,J=1.2Hz,3H);2.08-2.24(m,2H);4.38(d,J=2.2Hz,1H);4.75(dt,J=2.2,5.7Hz,1H);6.24(dd,J=6.2,7.9Hz,1H);7.55(d,J=1.3Hz,1H);9.18(bs,1H);9.65(d,J=0.5Hz,1H)。
N-乙酰基-5'-脱氧-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2'-O-甲基-5'-氧-胞苷2d类似地由在无水DCM(600mL)中的1d(33.1g,80mmol)和DMP(40.7g,96mmol)而制备。在室温下搅拌4小时后,将该混合物猝灭并且类似于2a的情况进行处理,以给予含有目标产物2d的大约56%的粗醛33.2g(100%)。主要部分的1H NMR(400MHz,ACN-d3):δ0.108(s,3H);0.117(s,3H);0.92(s,9H);2.14(s,3H);3.44(s,3H);3.90-3.94(m,1H);4.49-4.52(m,2H);5.92(d,J=3.8Hz,1H);7.33(d,J=7.5Hz,1H);8.10(d,J=7.5Hz,1H);9.13(bs,1H);9.72(s,1H)。
嘌呤5'-醛2e-f的合成使用戴斯-马丁氧化剂(戴斯-马丁氧化剂(Dess-Martin periodinane))合成,“无水猝灭”
N-苯甲酰基-5'-脱氧-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2'-O-甲基-5'-氧-腺苷2e。在氩气氛下,向在无水DCM(300mL)中的3'-OTBS保护的腺苷1e(20.0g,40mmol)的搅拌的和冷却的(0℃)溶液中添加戴斯-马丁氧化剂(Dess-Martinperiodinane)(20.4g,48mmol)。将该冷却水浴移除,并且将该混合物在室温下搅拌3小时,之后通过TLC观察不到起始醇1e。向其中添加异丙醇(0.61mL,8mmol),并且继续搅拌另外1小时。在真空下除去该溶剂,并且添加乙酸乙酯(220mL),然后缓慢添加己烷(150mL)超过4小时,同时搅拌。将该混合物在室温下搅拌过夜,过滤,并且用乙酸乙酯-己烷(1:1)混合物将该固体洗涤两次。将该滤过物在真空中蒸发,并且将该残余物与干燥乙腈(300mL)共蒸发。添加乙腈(100mL)以形成悬浮液,将其搅拌过夜,过滤,并且用乙腈将该固体洗涤两次。将该滤过物在真空中蒸发以给予白色泡沫状残余物,将其在高真空下干燥以给予含有大约54%的目标产物2e的20.2g(100%)的粗醛,将其不经进一步纯化用于下一步骤。主要部分的1H NMR(400MHz,ACN-d3):δ0.188(s,3H);0.190(s,3H);0.97(s,9H);3.34(s,3H);4.49(dd,J=4.3,6.3Hz,1H);4.51(dd,J=1.0,2.9Hz,1H);4.90(dd,J=3.0,4.2Hz,1H);6.24(d,J=6.3Hz,1H);7.54(t,J=7.3Hz,2H);7.61-7.67(m,1H);7.97-8.03(m,2H);8.44(s,1H);8.66(s,1H);9.50(bs,1H);9.82(d,J=1.0Hz,1H)。
N-异丁酰基-5'-脱氧-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2'-O-甲基-5'-氧-鸟苷2f类似地由在无水DCM(300mL)中的1f(19.3g,40mmol)和DMP(20.4g,48mmol)而制备。在室温下搅拌3小时后,添加异丙醇(0.61mL,8mmol),并且继续搅拌另外1小时。在真空下除去该溶剂,并且添加乙酸乙酯(225mL),然后缓慢添加己烷(150mL)超过30分钟,同时搅拌。将该混合物在室温下搅拌5小时,过滤,并且用乙酸乙酯-己烷(1:1.5)混合物将该固体洗涤两次。将该滤过物在真空中蒸发,并且将该残余物与甲苯(250mL)和干燥乙腈(250mL)的混合物共蒸发,随后与乙腈(250mL)共蒸发。将该白色泡沫状残余物在真空中蒸发以给予含有大约53%的目标产物2f的21.5g的粗醛,将其不经进一步纯化用于下一步骤。主要部分的1H NMR(400MHz,ACN-d3):δ0.167(s,3H);0.175(s,3H);0.95(s,9H);1.18(d,J=6.8Hz,3H);1.19(d,J=6.8Hz,3H);2.66-2.77(m,1H);3.31(s,3H);4.31(dd,J=4.3,7.0Hz,1H);4.48(dd,J=1.0,2.3Hz,1H);4.69(ddd,J=0.4,2.4,4.3Hz,1H);6.01(d,J=7.0Hz,1H);8.03(s,1H);9.45(s,1H);9.79(d,J=1.1Hz,1H);12.05(bs,1H)。
温和的Me-亲核体向核苷5′-醛的立体选择性添加。
A.一般观察
立体选择性的核碱基依赖性:如下表所示,可以使用三甲基铝(如表中所示的AlMe3)以高水平的立体选择性合成5′-Me嘧啶核苷的(S)-差向异构体,而5′-Me嘌呤的(S)-差向异构体可以使用二甲基锌(如表中所示的ZnMe2)立体选择性合成。
2b:B=U
2d:B=CAc
2e:B=ABz
2f:B=Gi-Bu
AlMe3
(S:R)
ZnMe2
(S:R)
立体选择性的溶剂依赖性:如表中所示,可以使用在THF中的三甲基铝(如表中所示的AlMe3)以高水平的立体选择性合成5′-Me嘧啶核苷的(S)-差向异构体,而5′-Me嘌呤可以使用二甲基锌在非配位溶剂中立体选择性合成(如表中所示的ZnMe2)。嘌呤立体异构体的等摩尔混合物可以用三甲基铝在THF(对于A衍生物)或在非配位溶剂(DCM)(对于G衍生物)中而获得。
2b:Bx=U
2e:Bx=ABz
AlMe3
(S:R)
ZnMe2
(S:R)
依赖于2′-取代的立体选择性:配位和更大体积的2’-OMe取代基比较小的非配位的2′-F或2′-H提供更好的选择性。
b.针对5′-氧-核苷与三甲基铝的反应步骤。
2a:Bx=U,X=OMe
2b:Bx=U,X=F
2c:Bx=T,X=H
2d:Bx=CAc,X=OMe
2e:Bx=ABz,X=OMe
2f:B=Gi-Bu,X=OMe
5'-(S)-C-甲基-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2'-O-甲基-尿苷3a和5'-(R)-C-甲基-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2'-O-甲基-尿苷4a。在氩气氛下,向AlMe3(2M在庚烷中,102mL,204mmol)和无水THF(200mL)的搅拌和冷却(0℃)混合物中通过插管缓慢添加大约15分钟含有大约68%的目标化合物(25.3g,≤68mmol)的粗醛2a在无水THF(200mL)的溶液。去除冷却水浴,将该混合物在室温下搅拌17小时,冷却至0℃,并且通过小心添加500mL的氯化铵的饱和水溶液和20%的磷酸的混合物(1:1)而将该反应猝灭,随后添加400mL的乙酸乙酯。将该有机相分离,用饱和盐水洗涤两次,经无水硫酸钠干燥,在真空中将该溶剂去除以给予25.6g的粗残余物。将该残余物在330g CombiFlash硅胶柱上,用含有在己烷中的1%的三乙胺的乙酸乙酯的梯度(50%至90%)来进行快速柱层析,以给予3a(17.5g,67%),以及3a和4a的混合物(1.25g,5%)。将后者溶解于15mL热的乙酸乙酯中,然后缓慢天加15mL的己烷。允许该混合物冷却至室温、搅拌过夜、过滤沉淀、用乙酸乙酯-己烷1:2的混合物洗涤、干燥,以给予纯的4a(0.81g,65%在结晶,3%在反应)。3a:1HNMR(400MHz,DMSO-d6):δ0.08(s,6H);0.87(s,9H);1.14(d,J=6.7Hz,3H);3.33(s,3H);3.68(dd,J=1.8,4.4Hz,1H);3.76-3.84(m,2H);4.27(t,J=4.6Hz,1H,H2');5.17(d,J=4.4Hz,1H,OH);5.65(d,J=8.1Hz,1H);5.83(d,J=4.7Hz,1H,H1');8.05(d,J=8.1Hz,1H);11.3(s,1H)。13C NMR(126MHz,DMSO-d6):δ-4.95;-4.82;17.78;20.05;25.61;57.56;64.73;70.57;82.61;85.83;87.96;101.79;140.19;150.48;163.08。HRMS m/z针对[C17H30N2O6Si+H]+的计算值:387.1951;发现:387.1962。4a:1H NMR(400MHz,DMSO-d6):δ0.09(s,6H);0.88(s,9H);1.10(d,J=6.6Hz,3H);3.28(s,3H);3.64(dd,J=2.2,4.2Hz,1H,H4');3.77(dt,J=4.6,6.5Hz,1H,H5');3.86(dd,J=4.8,6.8Hz,1H,H2');4.40(dd,J=2.2,4.7Hz,1H,H3');5.16(d,J=4.9Hz,1H,OH);5.67(dd,J=2.2,8.1Hz,1H);5.86(d,J=6.8Hz,1H,H1');7.89(d,J=8.2Hz,1H);11.36(d,J=1.8Hz,1H)。13C NMR(126MHz,DMSO-d6):δ0.60;0.69;23.19;25.19;62.84;71.50;74.48;87.10;90.47;94.80;107.69;145.93;156.11;168.37。HRMS m/z calc.针对[C17H30N2O6Si+H]+:387.1951;发现:387.1960。
5'-(S)-C-甲基-2'-脱氧-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2'-氟-尿苷3b和5'-(R)-C-甲基-2'-脱氧-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2'-氟-尿苷4b类似地通过在0℃下,在氩气氛下向AlMe3(2M在庚烷中,8mL,16mmol)和无水THF(10mL)的混合物中添加含有大约55%的目标化合物(1.80g,≤5mmol)的粗醛2b在无水THF(10mL)的溶液而制备,随后在室温下搅拌过夜。将该粗残余物(1.88g)经80g的CombiFlash硅胶柱,用含有在己烷中的1%的三乙胺的50%的乙酸乙酯进行层析,以给予3b(0.88g,47%)和4b(0.17g,9%)以及小的中间混合级分。3b:1H NMR(400MHz,DMSO-d6):δ0.088(s,3H);0.094(s,3H);0.86(s,9H);1.19(d,J=6.5Hz,3H);3.72(d,J=6.8Hz,1H);3.75-3.83(m,1H);4.31(ddd,J=4.4,6.8,18.3Hz,1H,H3');5.06(ddd,J=2.4,4.4,53.1Hz,1H,H2');5.20(d,J=4.7Hz,1H,OH);5.63(d,J=8.1Hz,1H);5.91(dd,J=2.3,16.9Hz,1H,H1');7.99(d,J=8.1Hz,1H);11.4(s,1H)。13C NMR(126MHz,丙酮-d6):δ-4.84;-4.53;18.75;20.70;26.14;66.02;71.29;71.42;87.98;88.50;88.77;93.20;94.71;102.58;141.37;151.41;163.74。19F NMR(376MHz,丙酮-d6):δ-207.60(dt,J=16.6,53.1Hz,1F)。HRMS m/z针对[C16H27FN2O5Si+H]+的计算:375.1752;发现:375.1744。4b:1H NMR(400MHz,DMSO-d6):δ0.096(s,3H);0.102(s,3H);0.87(s,9H);1.11(d,J=6.7Hz,3H);3.74-3.78(m,1H);3.84-3.94(m,1H);4.43(dt,J=4.8,12.2Hz,1H,H3');5.10(dt,J=4.2,52.8Hz,1H,H2');5.21(d,J=4.7Hz,1H,OH);5.65(d,J=8.1Hz,1H);5.94(dd,J=4.0,15.8Hz,1H,H1');7.89(d,J=8.1Hz,1H);11.4(s,1H)。13C NMR(126MHz,CD3OD):δ-4.56;-4.10;19.11;19.89;26.45;67.67;70.62;70.74;88.28;88.55;89.99;92.89;94.40;103.39;142.71;152.28;165.67。19F NMR(376MHz,丙酮-d6):δ-208.28(dt,J=14.3,52.8Hz,1F)。HRMS m/z针对[C16H27FN2O5Si+H]+的计算:375.1752;发现:375.1760。
5'-(S)-C-甲基-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-胸苷3c和5'-(R)-C-甲基-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-胸苷4c类似地通过在0℃下,在氩气氛下向AlMe3(2M在庚烷中,6mL,12mmol)和无水THF(10mL)的混合物中添加含有大约60%的目标化合物(1.21g,≤3.4mmol)的粗醛2c在无THF水溶液(10mL)的溶液而制备,随后在室温下搅拌过夜。将该粗残余物(1.21g)经2个连续的硅胶快速柱(CombiFlash 80g和24g)用含有在己烷中的1%的三乙胺的乙基乙醚的梯度(80%至100%)进行层析。分别拉出含有分离的差向异构体的级分,并将中间混合级分合并,并且进行第二次柱层析。获得0.65g(52%)的3c和0.11g(9%)的4c,以及小的中间混合级分。3c:1H NMR(400MHz,DMSO-d6):δ0.07(s,6H);0.86(s,9H);1.13(d,J=6.5Hz,3H);1.76(d,J=1.0Hz,3H);2.01(ddd,J=3.0,6.0,13.2Hz,1H,H2'A);2.13(ddd,J=5.9,7.7,13.4Hz,1H,H2'B);3.58(t,J=2.7Hz,1H,H4');3.74-3.83(m,1H,H5');4.40(五重峰,J=2.8Hz,1H,H3');5.02(d,J=4.6Hz,1H,OH);6.15(dd,J=6.0,7.7Hz,1H,H1');7.84(d,J=1.2Hz,1H);11.27(s,1H)。13C NMR(126MHz,ACN-d3):δ-4.58;-4.39;12.72;18.63;20.65;26.20;41.14;67.55;73.94;85.97;97.74;111.06;137.89;151.76;165.10。HRMS m/z针对[C17H30N2O5Si+Na]+的计算值:393.1822;发现:393.1825。4c:1H NMR(400MHz,DMSO-d6):δ0.081(s,3H);0.084(s,3H);0.87(s,9H);1.10(d,J=6.5Hz,3H);1.76(d,J=1.1Hz,3H);1.95(ddd,J=1.7,5.5,13.1Hz,1H,H2'A);2.14(ddd,J=5.4,9.0,13.2Hz,1H,H2'B);3.55(dd,J=1.6,4.7Hz,1H,H4');3.73(dt,J=4.9,6.4Hz,1H,H5');4.49(dt,J=1.4,5.3Hz,1H,H3');5.03(d,J=5.0Hz,1H,OH);6.15(dd,J=5.5,8.9Hz,1H,H1');7.66(d,J=1.2Hz,1H);11.29(s,1H)。13C NMR(126MHz,ACN-d3):δ-4.52;-4.25;12.67;18.55;20.21;26.19;41.10;68.26;72.46;86.07;92.35;111.27;137.75;151.83;165.09。HRMS m/z针对[C17H30N2O5Si+H]+的计算值:371.2002;发现:371.1992。
N-乙酰基-5'-(S)-C-甲基-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2'-O-甲基-胞苷3d类似地通过在0℃下,在氩气氛下向AlMe3(2M在庚烷中,12mL,24mmol)和无水THF(20mL)的混合物中添加含有大约56%的目标化合物(2.80g,≤6.8mmol)在无水THF(20mL)的粗醛2d的溶液而制备,随后在室温下搅拌过夜。将该粗残余物(3.03g)经2个连续的硅胶快速柱(CombiFlash 80g和40g),用在己烷中的乙酸乙酯的梯度(70%至100%)进行层析,以给予1.09g(37%)的较小极性的(S)-差向异构体3d以及0.60g的含有没有进一步分开的3d和4d的混合物的更多极性的级分。3d:1H NMR(400MHz,DMSO-d6):δ0.05(s,6H);0.85(s,9H);1.21(d,J=6.5Hz,3H);2.09(s,3H);3.43(s,3H);3.70-3.76(m,2H);3.77-3.85(m,1H);4.21(dd,J=4.8,7.0Hz,1H);5.19(d,J=4.4Hz,1H);5.83(d,J=2.0Hz,1H);7.18(d,J=7.5Hz,1H);8.58(d,J=7.5Hz,1H);10.90(s,1H)。
注:在三乙胺的存在下,N-乙酰胞苷在硅胶柱不是很稳定,并且趋于经历歧化以形成N-脱保护的和N-二乙酰化的衍生物。因此,不使用三乙胺来分离异构体3d和4d。然而,三乙胺的添加对于在TLC上更好地分离异构体是有用的。
N-苯甲酰基-5'-(S)-C-甲基-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2'-O-甲基-腺苷3e和N-苯甲酰基-5'-(R)-C-甲基-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2'-O-甲基-腺苷4e类似地通过通过在0℃下,在氩气氛下向AlMe3(2M在庚烷中,51mL,102mmol)和无水THF(100mL)的混合物中添加含有大约50%的目标化合物(16.9g,≤34mmol)的粗醛2e在无水THF(100mL)的溶液而制备,随后在室温下搅拌过夜。将该粗残余物(15.9g)经硅胶快速柱(CombiFlash 220g),用在己烷中的乙酸乙酯的梯度(70%至100%)进行层析,以给予经纯化的差向异构体(约1:1):8.52g,49%。将该异构体通过制备型C18RP-HPLC,使用Gilson PLC 2020纯化系统:用25mM三乙基碳酸氢铵和65%的乙腈,使用等度方法注射和洗脱1g的混合物来进行进一步的分离。将具有HPLC纯度>95%的适当级分合并,并且蒸干,以给予0.15g的3e(dr>97%)和0.25g的4e纯的立体异构体。3e:1H NMR(400MHz,DMSO-d6):δ0.124(s,3H);0.126(s,3H);0.91(s,9H);1.17(d,J=6.4Hz,3H);3.32(s,3H);3.81-3.90(m,2H);4.40(dd,J=4.9,5.7Hz,1H);4.54(dd,J=3.2,4.5Hz,1H);5.19(d,J=5.7Hz,1H);6.16(d,J=5.7Hz,1H);7.55(t split,J=7.8Hz,2H);7.64(t split,J=7.4Hz,1H);8.03(d,J=1.4Hz,1H);8.05(s,1H);8.76(s,1H);8.80(s,1H);11.23(s,1H)。4e:1H NMR(500MHz,DMSO-d6):δ0.146(s,3H);0.147(s,3H);0.93(s,9H);1.10(d,J=6.4Hz,3H);3.25(s,3H);3.75(dd,J=1.1,5.6Hz,1H);3.89(六重峰,J=5.7Hz,1H);4.60(dd,J=4.5,7.4Hz,1H);4.63(dd,J=1.2,4.6Hz,1H);5.32(d,J=4.7Hz,1H);6.11(d,J=7.4Hz,1H);7.55(t,J=8.0Hz,2H);7.64(t分流,J=7.5Hz,1H);8.03(d,J=1.4Hz,1H);8.05(d,J=0.9Hz,1H);8.76(s,1H);8.77(s,1H);11.23(s,1H)。
N-异丁酰基-5'-(S)-C-甲基-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2'-O-甲基-鸟苷3f和N-异丁酰基-5'-(R)-C-甲基-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2'-O-甲基-鸟苷4f类似地通过在78℃下,在氩气氛下,向AlMe3(2M在庚烷中,10mL,20mmol)和无水DCM(10mL)的混合物中添加含有大约53%的目标化合物(1.63g,≤3.4mmol)的粗醛2f在无水DCM(10mL)溶液而制备,随后缓慢(在水浴中)加热至室温过夜。将该粗残余物(1.59g)经硅胶快速柱(CombiFlash 40g)用在氯仿中的甲醇的梯度(0至4%)进行层析,以给予0.14g的较小极性的(R)-异构体4f、0.36g的3f和4f的中间混合物、和0.25g的较大极性的(S)-异构体3f。用在氯仿中的3%的甲醇,在第二等度柱(CombiFlash 40g)上分离该中间级分,以给予另外的0.20g的4f和0.16g的3f。3F的总产率:0.34g(23%)和4f:0.41g(27%)。3f:1H NMR(400MHz,DMSO-d6):δ0.10(s,3H);0.11(s,3H);0.89(s,9H);1.11(d,J=6.8Hz,6H);1.12(d,J=6.4Hz,3H);2.77(septet,J=6.8Hz,1H);3.29(s,3H);3.76(t,J=2.6Hz,1H);3.79-3.87(m,1H);4.20(dd,J=4.8,6.3Hz,1H);4.44(dd,J=2.6,4.6Hz,1H);5.12(d,J=4.6Hz,1H);5.88(d,J=6.3Hz,1H);8.36(s,1H);11.61(s,1H);12.10(s,1H)。4f:1H NMR(400MHz,DMSO-d6):δ0.12(s,3H);0.13(s,3H);0.90(s,9H);1.08(d,J=6.4Hz,3H);1.11(d,J=6.8Hz,6H);2.76(七重峰,J=6.8Hz,1H);3.25(s,3H);3.66(d,J=5.6Hz,1H);3.76(六重峰,J=6.0Hz,1H);4.36(dd,J=4.6,7.8Hz,1H);4.54(d,J=4.5Hz,1H);5.16(d,J=5.1Hz,1H);5.83(d,J=7.8Hz,1H);8.32(s,1H);11.60(s,1H);12.10(s,1H)。
c.针对嘌呤5'-氧-核苷与二甲基锌的立体选择反应的步骤。
N-苯甲酰基-5'-(S)-C-甲基-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2'-O-甲基-腺苷3e。在氩气氛下,向ZnMe2(2M在甲苯,6mL,12mmol)和无水DCM(10mL)的搅拌和冷却(-78℃)的混合物中缓慢逐滴添加大约20分钟的含有大约55%的目标化合物(1.69g,≤3.4mmol)的粗醛2e在无水DCM(10mL)的溶液。允许该溶液缓慢加热(在水浴中)至室温过夜,将其冷却至0℃,并且通过小心添加10%的磷酸而猝灭。将该有机相分离,用5%的盐水洗涤,并且经无水硫酸钠干燥。在真空中将该溶剂去除,并且通过在40g CombiFlash硅胶柱,用在己烷中的乙酸乙酯的梯度(70%至100%)进行快速层析来纯化该粗残余物(1.57g),以给予约90%非对映体纯度的3e(0.96g,55%)。将该化合物溶解于5mL的乙醚,并且将己烷(4mL)缓慢添加,同时搅拌,引起结晶。将该混合物在室温下搅拌过夜,过滤,并且将该固体用乙醚-己烷1:2混合物洗涤两次以给予0.69g(73%结晶)具有约97%非对映体纯度的3e。
N-异丁酰基-5'-(S)-C-甲基-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2'-O-甲基-鸟苷3f类似地通过在-78℃下,在氩气氛下向ZnMe2(2M在甲苯,8.5mL,17mmol)和无水DCM(10mL)的混合物中添加含有大约53%的目标化合物(1.63g,≤3.4mmol)的粗醛2f在无水DCM(10mL)的溶液而制备,随后缓慢加热(在水浴中)至室温过夜。将含有3f比4f约3:1比率的该粗残余物(1.56g)经硅胶快速柱(CombiFlash 40g)用在氯仿中的2%的甲醇进行层析,以给予0.13g的4f和3f的混合物,随后是纯净的3f 0.48g(32%)。
d.5'-烷基-差向异构体的立体特异性相与转换
5'-(S)-C-甲基-5'-O-甲磺酰基-3'-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2'-O-甲基-尿苷5a。在氩气氛下,向(S)-差向异构体(3a)(8.32g,21.6mmol)和无水吡啶(5.8mL,72mmol)在无水DCM(80mL)的冷却的(0℃)和搅拌溶液中逐滴添加超过约5分钟的甲磺酰氯(5.5mL,72mmol)。除去冷却水浴,将该混合物在室温下搅拌48小时,冷却至0℃,通过小心添加饱和的碳酸氢钠溶液(200mL)来淬灭。除去冷却水浴,将混合物在室温下剧烈搅拌1小时,分离该有机相,用10%的磷酸连续洗涤,用5%的盐水洗涤两次,并且经无水硫酸钠干燥。将该溶剂在真空中除去,并且将残余物在高真空下干燥,以给予基本上纯的呈橙色泡沫状的5a(9.79g,98%)。5a:1H NMR(400MHz,DMSO-d6):δ0.09(s,3H);0.10(s,3H);0.87(s,9H);1.42(d,J=6.5Hz,3H);3.20(s,3H);3.33(s,3H);3.86(t,J=4.9Hz,1H);3.89(t,J=4.9Hz,1H);4.29(t,J=5.1Hz,1H);4.91(dt,J=6.4,11.3Hz,1H);5.68(dd,J=2.2,8.1Hz,1H);5.86(d,J=4.7Hz,1H);7.65(d,J=8.2Hz,1H);11.42(s,1H)。
6,9-环氧-2H,6H-嘧啶并[2,1-b][1,3]氧氮杂环庚烷-2-酮-7,8,10-三氢-9-(R)-甲基-8-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-7-甲氧基-[6R-(6α,7α,8α,9α)]6a。在氩气氛下,在60℃下,将甲磺酸盐5a(2.33g,5mmol)和DBU(1.5mL,10mmol)在无水DMSO(10mL)的溶液搅拌27小时,冷却至0℃,并且添加乙酸乙酯(40mL),随后添加5%的NaCl水溶液(80mL)。将该有机相分离,用5%NaCl和10%磷酸水溶液的1:1混合物进行洗涤,随后用5%NaCl、饱和的碳酸氢钠、和饱和的NaCl依次洗涤。经无水硫酸钠干燥后,将该溶剂在真空中去除以给予粗的无水产物6a(1.57g),将其用30mL的二乙基乙醚回流45分钟,冷却至室温,搅拌2小时,白色沉淀物被过滤,用二乙基乙醚洗涤两次,并且进行干燥以给予0.88g(48%)的纯净的6a。6a:1H NMR(400MHz,DMSO-d6):δ0.06(s,3H);0.7(s,3H);0.84(s,9H);1.36(d,J=6.7Hz,3H);3.29(s,3H);4.13(dd,J=0.8,6.0Hz,1H);4.27(s,1H);4.32(q,J=6.8Hz,1H);4.62(d,J=5.9Hz,1H);5.78(s,1H);5.89(d,J=7.4Hz,1H);7.95(d,J=7.4Hz,1H)。13CNMR(126MHz,DMSO-d6):δ-5.22;-4.81;16.79;17.91;25.59;57.93;71.42;81.77;86.33;91.16;96.24;109.09;142.58;156.29;170.67。
5’-(R)-C-甲基-3’-O-[(1,1-二甲基乙基)二甲基甲硅烷基]-2’-O-甲基-尿苷4a(来自5a)。在氩气氛下,将甲磺酸5a(3.72g,8mmol)、DBU(2.4mL、16mmol)、和水(10mL)在THF(50mL)的溶液回流67小时。将该溶剂在真空中除去,将残余物在乙酸乙酯(120mL)和80mL5%的NaCl和30mL 10%的磷酸的混合物之间分配,分离该有机相,用5%的NaCl洗涤两次,然后通过饱和NaCl。经无水硫酸钠干燥后,将该粗残余物(3.04g)与30mL的二乙基乙醚和15mL的己烷的混合物回流1小时,冷却至室温,搅拌过夜,过滤白色沉淀,并且用乙醚-己烷1:1混合物洗涤两次,以给予2.32g(75%)的4a。
本实例中描述的方法可用于合成针对任何治疗应用(例如,抗病毒和抗肿瘤应用)的各种5'-烷基核苷,包括寡核苷酸和小分子。
实例9:通过引入4’和5'-经修饰的核苷酸至PO、PS、或PS2键联的3'-端,磷酸二酯 (PO)、硫代磷酸酯(PS)和二硫代磷酸酯(PS2)的空间阻断。
发明人发现将4'-修饰的和/或5'-修饰的核苷酸引入单链的或双链的寡核苷酸的任何位置处的二核苷酸的磷酸二酯(PO)、硫代磷酸酯(PS)、和/或二硫代磷酸酯(PS2)键联的3'-端可以对核苷酸间键联发挥空间效应,并且因此保护或稳定该核苷酸间键联对抗核酸酶。
在这一实例中,将含有4'-O-甲基化的或5'-甲基化的核苷酸的F7 siRNA体外基因沉默活性在选择的位置处进行评价,并且将结果在表11中示出。
表11:在选择的位置处含有4'-O-甲基化的或5'-甲基化的核苷酸的F7siRNA的体外的基因沉默活性
实例10:在siRNA双链体中的乙二醇核酸(GNA)的手性依赖性活性
siRNA双链体的化学修饰对于稳定这些分子抵抗核酸酶降解,促进其吸收到细胞中,以及影响活性RISC以及RNAi介导的靶沉默的形成是必要的。热不稳定型修饰并入siRNA双链体的某些位置可以通过在RISC负载期间改善链的偏好和/或有义链解离而导致效力的增加。
在这一实例中,在siRNA双链体的背景下,评估三碳、无环核酸类似物、乙二醇核酸(GNA)。合成含有GNA的siRNA双链体。(S)-GNA寡聚体形成具有与典型的RNA A型双链体相似的结构的同型双链体,以及在A/T-丰富的序列中与RNA,但不与DNA的交叉配对。研究含有(S)-或(R)-GNA的siRNA双链体的热稳定性和核酸酶抗性。使用X线衍射晶体分析法的结构研究提供了对这些GNA取代基在RNA双链体内的影响的进一步的认识。在生物学研究中测定含有GNA的siRNA双链体的手性依赖性基因沉默活性。
结果展示于图27-30中。
图27是显示使用siRNA修饰的具有单个(S)-GNA核苷酸的TTR的体外敲低的图。用10nM siRNA在原代小鼠肝细胞中孵化24小时后测定TTR mRNA的水平。使用RT-qPCR测定TTRmRNA,并且将其归一化至PBS处理的细胞。所有的数据点是四个测量值的平均。图27显示单个(S)-GNA核苷酸掺入对体外siRNA活性的影响。
图28A是显示使用siRNA修饰的具有单个(S)-GNA碱基对的TTR的体外敲低的图。用10nM siRNA在原代小鼠肝细胞中孵化24小时后测定TTR mRNA的水平。使用RT-qPCR测定TTRmRNA,并且将其归一化至PBS处理的细胞。所有的数据点是四个测量值的平均。图28B显示混合的和匹配的双链体,其中含有单个(S)-GNA核苷酸的有义链和反义链配对为GNA:RNA异源碱基对。图28显示单个(S)-GNA碱基对掺入对体外siRNA活性的影响。
图29是显示在小鼠血清中的TTR的在体内水平的图。动物接受了2.5mg/kg siRNA的单次剂量。在给药前或给药后的指示时间,将动物放血,使用夹心ELISA测定法利用HRP-缀合物抗体和3,3',5,5'-四甲基联苯胺用于在450nm下读出来测定血清样品。所有样品一式两份进行测量,并且每个数据点是每个群组中小鼠的平均值(n=3)。图29说明了使用GNA-修饰的siRNA双链体,在小鼠体内的基因沉默对血清TTR水平的影响。
图30是显示TTR mRNA水平体内定量的图。动物接受了2.5mg/kg siRNA的单次剂量。在给药后的指示时间,在完整的肝脏匀浆中进行RNA提取。如上通过RT-qPCR测定TTRmRNA,使用ΔΔCt方法,用GAPDH作为对照转录物,并且将其归一化至PBS处理的动物。图30说明了使用GNA-修饰的siRNA双链体,在小鼠体内的基因沉默对肝脏mRNA水平的影响。
在上述图中显示的结果表明GNA的并入引起产生的双链体的位置依赖性的热不稳定性。不稳定的程度是核苷酸依赖性的;然而对于A或U核苷酸的取代引起相比对于G或C核苷酸的GNA取代更小的ΔTM。将单个GNA核苷酸并入siRNA双链体的种子区,引起在体外的TTR mRNA的敲低的相似的水平。另外,siRNA含有在种子区中的GNA碱基对,以及混合的和匹配的双链体,表明相比对应的亲本siRNA,该siRNA具有在体外高水平的敲低。
体内基因沉默与针对包含单个GNA取代的双链体的体外结果相关良好。当与单取代的siRNA相比时,GNA的双取代导致体内沉默活性的丧失。
在本说明书中引用的所有美国专利、美国专利申请公开物、国外专利、国外专利申请以及非专利申请通过引用以其全文结合在此。必要时,可以修改这些实施例的方面,以利用不同专利、申请以及公开物的概念提供又另外的实施例。
可以根据以上详细说明对这些实施例作出这些以及其他改变。通常,在以下权利要求书中,使用的术语不应该被解释为将权利要求书限制为在本说明书中披露的具体实施例而应该将这些权利要求解释为包括所有可能的实施例连同这样的权利要求所要求的等效物的全部范围。因此,权利要求书不被该披露所限制。

Claims (63)

1.一种能够抑制靶基因表达的双链RNA(dsRNA)试剂,包括有义链和反义链,每条链具有14至40核苷酸,其中该dsRNA试剂由式(I)表示:
其中:
B1、B2、B3、B1'、B2'、B3’、和B4'各自独立地表示含有一种修饰的核苷酸,该修饰选自下组,该组由以下各项组成:2'-O烷基、2'-经取代的烷氧基、2'-经取代的烷基、2'-卤代、ENA、和BNA/LNA;
C1是一种位于与该反义链的种子区(位置2-8)相对的位点处的热不稳定性核苷酸;
T1、T1’、T2’、和T3’各自独立地表示包括一种修饰的核苷酸,该修饰为该核苷酸提供小于或等于2’-OMe修饰的空间体积的空间体积;
每个n1、n3、和q1的长度独立地是4至15个核苷酸;
每个n5、q3、和q7的长度独立地是1-6个核苷酸;
每个q2和q6的长度独立地是1-3个核苷酸;
q5的长度独立地是0-10个核苷酸;并且
每个n2、n4、和q4的长度独立地是0-3个核苷酸。
2.如权利要求1所述的dsRNA试剂,其中n4、q2、和q6各自是1。
3.如权利要求1所述的dsRNA试剂,其中n2、n4、q2、q4、和q6各自是1。
4.如权利要求1所述的dsRNA试剂,其中T1’和T3’被11个核苷酸长度分开。
5.如权利要求1所述的dsRNA试剂,其中C1位于与该反义链的5’-端的位置5-8相对的位点处。
6.如权利要求5所述的dsRNA试剂,其中当该有义链的长度是19-22个核苷酸,并且n4是1时,C1位于该有义链的5’-端的位置14-17处。
7.如权利要求1所述的dsRNA试剂,其中T1’位于从该反义链的5’端的位置14处,并且q2是1。
8.如权利要求1所述的dsRNA试剂,其中T3’位于从该反义链的5’端的位置2处,并且q6是1。
9.如权利要求1所述的dsRNA试剂,其中T1位于该有义链的裂解位点处。
10.如权利要求1所述的dsRNA试剂,其中当该有义链的长度是19-22个核苷酸,并且n2是1时,T1位于从该有义链的5’端的位置11处。
11.如权利要求1所述的dsRNA试剂,其中T2’位于从该反义链的5’端的位置6-10处,并且q4是1。
12.如权利要求1所述的dsRNA试剂,其中B1、B2、B3、B1’、B2’、B3’、和B4’各自含有2’-OMe修饰。
13.如权利要求1所述的dsRNA试剂,其中C1具有选自下组的热不稳定性修饰,该组由以下各项组成
与在该反义链中相对的核苷酸的错配;
选自下组的脱碱基修饰,该组由以下各项组成:
以及
选自下组的糖修饰,该组由以下各项组成:
其中B是经修饰的或未经修饰的核碱基,R1和R2独立地是H、卤素、OR3、或烷基;并且R3是H、烷基、环烷基、芳基、芳烷基、杂芳基或糖。
14.如权利要求13所述的dsRNA试剂,其中该热不稳定性修饰是一种选自下组的错配,该组由以下各项组成:G:G、G:A、G:U、G:T、A:A、A:C、C:C、C:U、C:T、U:U、T:T、和U:T;并且任选地,在该错配对中至少一个核碱基是2’-脱氧核碱基。
15.如权利要求13所述的dsRNA试剂,其中该热不稳定性修饰是GNA或
16.如权利要求1所述的dsRNA试剂,其中T1、T1’、T2’和T3’各自独立地选自DNA、RNA、LNA、2’-F、和2’-F-5’-甲基。
17.如权利要求1所述的dsRNA试剂,其中T1是DNA。
18.如权利要求1所述的dsRNA试剂,其中T1’是DNA、RNA或LNA。
19.如权利要求1所述的dsRNA试剂,其中T2’是DNA或RNA。
20.如权利要求1所述的dsRNA试剂,其中T3’是DNA或RNA。
21.如权利要求1所述的dsRNA试剂,其中每个有义链和反义链独立地由以下各项进行修饰:无环核苷酸、LNA、HNA、CeNA、2’-甲氧基乙基、2’-O-甲基、2’-O-烯丙基、2’-C-烯丙基、2’-脱氧、2’-氟、2’-O-N-甲基乙酰胺基(2’-O-NMA)、2’-O-二甲基氨基乙氧基乙基(2’-O-DMAEOE)、2’-O-氨基丙基(2’-O-AP)、或2’-ara-F。
22.如权利要求1所述的dsRNA试剂,其中每个有义链和反义链含有至少两个不同的修饰。
23.如权利要求1所述的dsRNA试剂,其中该dsRNA试剂不含有任何2’-F修饰。
24.如权利要求1所述的dsRNA试剂,其中该有义链和/或反义链包括一个或多个硫代磷酸酯或甲基膦酸酯核苷酸间键联的嵌段。
25.如权利要求24所述的dsRNA试剂,其中该有义链包括两个硫代磷酸酯或甲基膦酸酯核苷酸间键联的一个嵌段。
26.如权利要求24所述的dsRNA试剂,其中该反义链包括被16-18个磷酸酯核苷酸间键联分开的两个硫代磷酸酯或甲基膦酸酯核苷酸间键联的两个嵌段。
27.如权利要求1所述的dsRNA试剂,每个有义链和反义链具有15-30个核苷酸。
28.如权利要求1所述的dsRNA试剂,其中该有义链具有19-22个核苷酸,并且该反义链具有19-25个核苷酸。
29.如权利要求1所述的dsRNA试剂,其中该有义链具有21个核苷酸,并且该反义链具有23个核苷酸。
30.如权利要求1所述的dsRNA试剂,其中该dsRNA试剂具有1-10个核苷酸长度的3’和/或5’突出端。
31.如权利要求1所述的dsRNA试剂,其中该dsRNA试剂具有在该反义链的3’-端处的一个3’突出端,以及在该反义链的5’-端处的一个平端。
32.如权利要求1所述的dsRNA试剂,其中该dsRNA试剂具有在该有义链的5’-端处的一个5’突出端。
33.如权利要求1所述的dsRNA试剂,其中在双链体中的该反义链的5’-端的位置1处的核苷酸选自下组,该组由以下各项组成:A、dA、dU、U、和dT。
34.如权利要求1所述的dsRNA试剂,其中从该反义链的5’-端的第一、第二和第三碱基对中的至少一个是AU碱基对。
35.如权利要求1所述的dsRNA试剂,进一步包括至少一个ASGPR配体。
36.如权利要求35所述的dsRNA试剂,其中该ASGPR配体附接至该有义链的3’端。
37.如权利要求35所述的dsRNA试剂,其中该ASGPR配体是通过一种二价或三价支链接头而附接的一种或多种GalNAc衍生物。
38.如权利要求37所述的dsRNA试剂,其中该ASGPR配体是:
39.一种能够抑制靶基因表达的dsRNA试剂,包括有义链和反义链,每条链具有14至40个核苷酸,其中:
该有义链含有至少一个热不稳定性核苷酸,并且至少一个所述的热不稳定性核苷酸出现在与该反义链的种子区(位置2-8处)相对的位点处;并且
该反义链含有至少两个经修饰的、为该核苷酸提供小于或等于2’-OMe修饰的空间体积的空间体积的核苷酸,其中所述经修饰的核苷酸被11个核苷酸长度分开。
40.如权利要求39所述的dsRNA试剂,其中该有义链进一步包括该有义链的裂解位点处的易被核酸内切酶修饰的核苷酸。
41.如权利要求39所述的dsRNA试剂,其中该反义链进一步包括为该核苷酸提供小于或等于2’-OMe修饰的空间体积的空间体积的第三经修饰的核苷酸,并且该第三经修饰的核苷酸位于从该反义链的5’端的位置6-10处。
42.如权利要求39所述的dsRNA试剂,其中该热不稳定性核苷酸位于该有义链的5’-端的位置14-17处。
43.如权利要求39所述的dsRNA试剂,其中为该核苷酸提供小于或等于2’-OMe修饰的空间体积的空间体积的两个经修饰的核苷酸位于从该反义链的5’端的位置2和14处。
44.如权利要求40所述的dsRNA试剂,其中该易被核酸内切酶修饰的核苷酸位于从该有义链的5’端的位置11处。
45.如权利要求41所述的dsRNA试剂,其中为该核苷酸提供小于或等于2’-OMe修饰的空间体积的空间体积的第三经修饰的核苷酸位于从该反义链的5’端的位置10处。
46.如权利要求39所述的dsRNA试剂,其中该热不稳定性核苷酸含有选自下组的修饰,该组由以下各项组成
与在该反义链中相对的核苷酸的错配;
选自下组的脱碱基修饰,该组由以下各项组成:
以及
选自下组的糖修饰,该组由以下各项组成:
其中B是经修饰的或未经修饰的核碱基,R1和R2独立地是H、卤素、OR3、或烷基;并且R3是H、烷基、环烷基、芳基、芳烷基、杂芳基或糖。
47.如权利要求39所述的dsRNA试剂,其中为该核苷酸提供小于或等于2’-OMe修饰的空间体积的空间体积的经修饰的核苷酸包括独立地选自DNA、RNA、LNA、2’-F、和2’-F-5’-甲基的修饰。
48.如权利要求39所述的dsRNA试剂,其中每个有义链和反义链独立地由以下各项进行修饰:无环核苷酸、LNA、HNA、CeNA、2’-甲氧基乙基、2’-O-甲基、2’-O-烯丙基、2’-C-烯丙基、2’-脱氧、2’-氟、2’-O-N-甲基乙酰胺基(2’-O-NMA)、2’-O-二甲基氨基乙氧基乙基(2’-O-DMAEOE)、2’-O-氨基丙基(2’-O-AP)、或2’-ara-F。
49.如权利要求39所述的dsRNA试剂,其中每个有义链和反义链含有至少两个不同的修饰。
50.如权利要求39所述的dsRNA试剂,其中该dsRNA试剂不含有任何2’-F修饰。
51.如权利要求39所述的dsRNA试剂,其中该有义链具有19-22个核苷酸,并且该反义链具有19-25个核苷酸。
52.如权利要求39所述的dsRNA试剂,其中该有义链具有21个核苷酸,并且该反义链具有23个核苷酸。
53.如权利要求39所述的dsRNA试剂,其中该dsRNA试剂具有在该反义链的3’-端处的一个3’突出端,以及在该反义链的5’-端处的一个平端。
54.如权利要求39所述的dsRNA试剂,进一步包括至少一个ASGPR配体。
55.如权利要求54所述的dsRNA试剂,其中该ASGPR配体是通过一种二价或三价支链接头而附接的一种或多种GalNAc衍生物。
56.一种药物组合物,包括单独的或与一种药学上可接受的载体或赋形剂组合的根据以上权利要求中任一项所述的dsRNA试剂。
57.一种用于抑制靶基因表达的方法,包括以一个足够抑制该靶基因表达的量给予根据以上权利要求中任一项所述的dsRNA试剂的步骤。
58.如权利要求57所述的方法,其中通过皮下或静脉内给药来给予该dsRNA试剂。
59.一种通过给予根据以上权利要求中任一项所述的dsRNA试剂来向一位受试者的特定靶标递送多核苷酸的方法。
60.如权利要求59所述的方法,其中所述给予步骤通过一种包括以下各项的给予手段进行:肌肉内的、支气管内的、胸膜内的、腹膜内的、动脉内的、经淋巴的、静脉内的、皮下的、脑脊髓的或其组合。
61.一种用于向一位受试者的特定靶标递送多核苷酸的方法,该方法包括:通过皮下给药将根据以上权利要求中任一项所述的dsRNA试剂递送进该受试者,以使得该多核苷酸被递送至该受试者的特定靶标。
62.如权利要求1所述的dsRNA试剂,其中式(I)进一步包括一个5’-乙烯基磷酸酯(VP)。
63.如权利要求1所述的dsRNA试剂,其中式(I)进一步包括一个经由该反义链或有义链的5’-端处的二硫代磷酸酯(PS2)键联而连接的2’-脱氧胸苷。
CN201580056832.8A 2014-08-20 2015-08-14 经修饰的双链rna试剂 Pending CN107075516A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111550874.0A CN114181942A (zh) 2014-08-20 2015-08-14 经修饰的双链rna试剂

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201462039507P 2014-08-20 2014-08-20
US62/039,507 2014-08-20
US201462083744P 2014-11-24 2014-11-24
US62/083,744 2014-11-24
US201462093919P 2014-12-18 2014-12-18
US62/093,919 2014-12-18
PCT/US2015/045407 WO2016028649A1 (en) 2014-08-20 2015-08-14 Modified double-stranded rna agents

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202111550874.0A Division CN114181942A (zh) 2014-08-20 2015-08-14 经修饰的双链rna试剂

Publications (1)

Publication Number Publication Date
CN107075516A true CN107075516A (zh) 2017-08-18

Family

ID=53969461

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202111550874.0A Pending CN114181942A (zh) 2014-08-20 2015-08-14 经修饰的双链rna试剂
CN201580056832.8A Pending CN107075516A (zh) 2014-08-20 2015-08-14 经修饰的双链rna试剂

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202111550874.0A Pending CN114181942A (zh) 2014-08-20 2015-08-14 经修饰的双链rna试剂

Country Status (12)

Country Link
US (9) US10233448B2 (zh)
EP (3) EP3186377A1 (zh)
JP (4) JP7289610B2 (zh)
KR (3) KR20240010762A (zh)
CN (2) CN114181942A (zh)
CA (1) CA2958758A1 (zh)
EA (1) EA201790420A1 (zh)
IL (2) IL250448B (zh)
MX (1) MX2017002144A (zh)
NZ (2) NZ730296A (zh)
SG (3) SG10201913791QA (zh)
WO (1) WO2016028649A1 (zh)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945132A (zh) * 2017-12-01 2020-03-31 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN110945130A (zh) * 2017-12-01 2020-03-31 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN110944675A (zh) * 2017-12-01 2020-03-31 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN110945131A (zh) * 2017-12-01 2020-03-31 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN110997919A (zh) * 2017-12-01 2020-04-10 苏州瑞博生物技术有限公司 双链寡核苷酸、含双链寡核苷酸的组合物与缀合物及制备方法和用途
CN110997917A (zh) * 2017-12-01 2020-04-10 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN111050807A (zh) * 2017-12-01 2020-04-21 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN111378659A (zh) * 2018-12-29 2020-07-07 苏州瑞博生物技术有限公司 抑制stat3基因表达的核酸、含有该核酸的药物组合物及其用途
CN111378657A (zh) * 2018-12-28 2020-07-07 苏州瑞博生物技术有限公司 抑制COL1A1基因表达的siRNA、含有该siRNA的药物组合物及其用途
CN111378658A (zh) * 2018-12-28 2020-07-07 苏州瑞博生物技术有限公司 抑制TIMP-1基因表达的siRNA、含有该siRNA的药物组合物及其用途
CN111378655A (zh) * 2018-12-28 2020-07-07 苏州瑞博生物技术有限公司 抑制CTGF基因表达的siRNA、含有该siRNA的药物组合物及其用途
CN111655297A (zh) * 2018-09-30 2020-09-11 苏州瑞博生物技术有限公司 一种siRNA缀合物及其制备方法和用途
CN111655849A (zh) * 2018-08-21 2020-09-11 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的药物组合物和缀合物及其用途
CN111973619A (zh) * 2019-05-23 2020-11-24 苏州瑞博生物技术股份有限公司 核酸、含有该核酸的药物组合物与siRNA缀合物及制备方法和用途
CN112007040A (zh) * 2019-05-31 2020-12-01 苏州瑞博生物技术股份有限公司 用于治疗乙型病毒性肝炎的联合用药物
CN112424354A (zh) * 2017-04-05 2021-02-26 赛伦斯治疗有限责任公司 在反义链的5’末端具有乙烯基膦酸酯的siRNA
CN112423795A (zh) * 2018-12-28 2021-02-26 苏州瑞博生物技术股份有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN112423794A (zh) * 2018-12-28 2021-02-26 苏州瑞博生物技术股份有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN112876534A (zh) * 2019-11-29 2021-06-01 苏州瑞博生物技术股份有限公司 肝靶向化合物及缀合物
CN113227376A (zh) * 2019-05-22 2021-08-06 苏州瑞博生物技术股份有限公司 核酸、药物组合物与缀合物及制备方法和用途
CN113286888A (zh) * 2019-05-22 2021-08-20 苏州瑞博生物技术股份有限公司 核酸、药物组合物与缀合物及制备方法和用途
CN113330117A (zh) * 2019-01-18 2021-08-31 苏州瑞博生物技术股份有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN113795280A (zh) * 2019-05-24 2021-12-14 苏州瑞博生物技术股份有限公司 核酸、药物组合物与缀合物及制备方法和用途
CN113891939A (zh) * 2019-05-24 2022-01-04 苏州瑞博生物技术股份有限公司 核酸、药物组合物与缀合物及制备方法和用途
CN114685585A (zh) * 2020-12-31 2022-07-01 苏州瑞博生物技术股份有限公司 核苷酸序列、双链寡核苷酸、药物组合物与缀合物及制备方法和用途
CN114945669A (zh) * 2019-11-06 2022-08-26 阿尔尼拉姆医药品有限公司 肝外递送
US11633482B2 (en) 2017-12-29 2023-04-25 Suzhou Ribo Life Science Co., Ltd. Conjugates and preparation and use thereof
WO2023109932A1 (zh) * 2021-12-16 2023-06-22 上海拓界生物医药科技有限公司 一种dsRNA、其制备方法及应用

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890000B (zh) 2011-06-21 2017-09-01 阿尔尼拉姆医药品有限公司 血管生成素样3(ANGPTL3)iRNA组合物及其使用方法
CN105861503A (zh) * 2011-11-18 2016-08-17 阿尔尼拉姆医药品有限公司 修饰的RNAi试剂
EP2872147B1 (en) 2012-07-13 2022-12-21 Wave Life Sciences Ltd. Method for making chiral oligonucleotides
PT2999785T (pt) 2013-05-22 2018-07-09 Alnylam Pharmaceuticals Inc Composições de irna de serpina1 e métodos de uso das mesmas
SG10201913791QA (en) * 2014-08-20 2020-03-30 Alnylam Pharmaceuticals Inc Modified double-stranded rna agents
AU2015350120B2 (en) * 2014-11-17 2021-05-27 Alnylam Pharmaceuticals, Inc. Apolipoprotein C3 (APOC3) iRNA compositions and methods of use thereof
EA201792263A1 (ru) 2015-04-13 2018-08-31 Элнилэм Фармасьютикалз, Инк. КОМПОЗИЦИИ НА ОСНОВЕ iRNA ПРОТИВ АНГИОПОЭТИН-ПОДОБНОГО БЕЛКА 3 (ANGPTL3) И СПОСОБЫ ИХ ПРИМЕНЕНИЯ
IL296476A (en) 2015-07-31 2022-11-01 Alnylam Pharmaceuticals Inc Preparations of transthyretin (ttr) irna and methods of using them for the treatment or prevention of ttr-related diseases
EP3408391A4 (en) 2016-01-31 2019-08-28 University of Massachusetts BRANCHED OLIGONUCLEOTIDES
SG11201806544XA (en) * 2016-02-01 2018-08-30 Arrakis Therapeutics Inc Compounds and methods of treating rna-mediated diseases
MA45469A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Acides nucléiques de bêta-caténine et leurs utilisations
MA45470A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Acides nucléiques kras et leurs utilisations
MA45328A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Compositions acide nucléique-polypeptide et utilisations de celles-ci
MA45349A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Acides nucléiques egfr et leurs utilisations
MX2018015109A (es) 2016-06-06 2019-04-22 Arrowhead Pharmaceuticals Inc Nucleotidos modificados con 5'-ciclo-fosfonato.
CA3033368A1 (en) 2016-08-12 2018-02-15 University Of Massachusetts Conjugated oligonucleotides
CN110325540A (zh) * 2016-11-07 2019-10-11 纳诺索尔公司 转录后化学修饰的双链rna
WO2018089582A1 (en) 2016-11-10 2018-05-17 San Diego State University Research Foundation Compounds for fluorescence sensing of duplex formation
WO2018098328A1 (en) * 2016-11-23 2018-05-31 Alnylam Pharmaceuticals, Inc. Modified rna agents with reduced off-target effect
TW202313978A (zh) * 2016-11-23 2023-04-01 美商阿尼拉製藥公司 絲胺酸蛋白酶抑制因子A1 iRNA組成物及其使用方法
WO2018111978A1 (en) 2016-12-14 2018-06-21 Janssen Biotech, Inc. Cd137 binding fibronectin type iii domains
EP3554562A4 (en) 2016-12-14 2020-11-04 Janssen Biotech, Inc. DOMAINS OF TYPE III FIBRONECTIN BINDING TO CD8A
KR20230166146A (ko) * 2016-12-16 2023-12-06 알닐람 파마슈티칼스 인코포레이티드 트랜스티레틴(TTR) iRNA 조성물을 사용하여 TTR-관련 질병을 치료하거나 예방하는 방법
FI3607069T3 (fi) 2017-04-05 2023-01-13 Tuotteita ja koostumuksia
EP3550022A1 (en) * 2018-04-05 2019-10-09 Silence Therapeutics GmbH Products and compositions
CA3074320A1 (en) 2017-09-14 2019-03-21 Arrowhead Pharmaceuticals, Inc. Rnai agents and compositions for inhibiting expression of angiopoietin-like 3 (angptl3), and methods of use
US11806360B2 (en) 2017-09-19 2023-11-07 Alnylam Pharmaceuticals, Inc. Compositions and methods for treating transthyretin (TTR) mediated amyloidosis
MA50753A (fr) * 2017-10-04 2020-08-12 Avidity Biosciences Inc Compositions d'acide nucléique-polypeptide et utilisations de celles-ci
MX2020004898A (es) * 2017-11-13 2020-10-05 Silence Therapeutics Gmbh Ácidos nucleicos para inhibir la expresión de un gen diana que comprende enlaces fosforoditioato.
JP2021505132A (ja) 2017-11-30 2021-02-18 アラーキス セラピューティクス, インコーポレイテッド 核酸結合光プローブおよびその使用
EP3720448A4 (en) 2017-12-06 2021-11-03 Avidity Biosciences, Inc. COMPOSITIONS AND METHODS OF TREATMENT OF MUSCLE ATROPHY AND MYOTONIC DYSTROPHY
US11597932B2 (en) 2017-12-21 2023-03-07 Alnylam Pharmaceuticals, Inc. Chirally-enriched double-stranded RNA agents
US11485752B2 (en) 2017-12-26 2022-11-01 Guangzhou Ribobio Co., Ltd. Modified oligonucleotides and compound that can be used for synthesizing same
CN112055597A (zh) * 2018-03-02 2020-12-08 迪克纳制药公司 用于治疗胆管缺乏相关病况的方法和组合物
EP3775209A1 (en) * 2018-04-05 2021-02-17 Silence Therapeutics GmbH Sirnas with at least two ligands at different ends
US11560563B2 (en) 2018-04-05 2023-01-24 Silence Therapeutics Gmbh SiRNAs with vinylphosphonate at the 5′ end of the antisense strand
WO2019217397A2 (en) * 2018-05-07 2019-11-14 Alnylam Pharmaceuticals, Inc. Compositions and methods for improving strand biased
US20210238595A1 (en) * 2018-05-16 2021-08-05 Alnylam Pharmaceuticals, Inc. Modified rna agents with reduced off-target effect
US11279930B2 (en) * 2018-08-23 2022-03-22 University Of Massachusetts O-methyl rich fully stabilized oligonucleotides
WO2020069055A1 (en) * 2018-09-28 2020-04-02 Alnylam Pharmaceuticals, Inc. Transthyretin (ttr) irna compositions and methods of use thereof for treating or preventing ttr-associated ocular diseases
US20220049252A1 (en) * 2018-12-10 2022-02-17 Amgen Inc. CHEMICALLY-MODIFIED RNAi CONSTRUCTS AND USES THEREOF
TW202039844A (zh) * 2018-12-19 2020-11-01 美商阿尼拉製藥公司 類澱粉前驅蛋白(APP)RNAi劑組成物及其使用方法
JP2022538404A (ja) * 2019-06-21 2022-09-02 アルナイラム ファーマシューティカルズ, インコーポレイテッド 構造的に明確なsiRNA-二重可変ドメイン免疫グロブリンコンジュゲート
EP4013767A4 (en) 2019-08-15 2023-10-25 Ionis Pharmaceuticals, Inc. COMPOUND-MODIFIED OLIGOMERIC COMPOUNDS AND USES THEREOF
WO2021076546A1 (en) 2019-10-14 2021-04-22 Aro Biotherapeutics Company Cd71 binding fibronectin type iii domains
US11781138B2 (en) 2019-10-14 2023-10-10 Aro Biotherapeutics Company FN3 domain-siRNA conjugates and uses thereof
WO2021092145A1 (en) * 2019-11-06 2021-05-14 Alnylam Pharmaceuticals, Inc. Transthyretin (ttr) irna composition and methods of use thereof for treating or preventing ttr-associated ocular diseases
WO2021178778A1 (en) * 2020-03-06 2021-09-10 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of transthyretin (ttr)
CN115666589A (zh) 2020-03-19 2023-01-31 艾维迪提生物科学公司 治疗面肩肱型肌营养不良的组合物和方法
WO2022011214A1 (en) 2020-07-10 2022-01-13 Alnylam Pharmaceuticals, Inc. Circular sirnas
WO2022155418A1 (en) * 2021-01-15 2022-07-21 Alnylam Pharmaceuticals, Inc. Modified oligonucleotides
CA3205809A1 (en) * 2021-01-22 2022-07-28 Mark K. SCHLEGEL Modified double stranded oligonucleotides
JP2024508714A (ja) 2021-02-12 2024-02-28 アルナイラム ファーマシューティカルズ, インコーポレイテッド スーパーオキシドジスムターゼ1-(SOD1-)関連神経変性疾患を治療または予防するためのスーパーオキシドジスムターゼ1(SOD1)iRNA組成物およびその使用方法
CA3212128A1 (en) 2021-03-04 2022-09-09 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (angptl3) irna compositions and methods of use thereof
WO2022189861A1 (en) 2021-03-08 2022-09-15 Tollys Carbohydrate conjugates of tlr3 ligands and uses thereof
CA3174095A1 (en) 2021-06-23 2022-12-29 Vignesh Narayan HARIHARAN Optimized anti-flt1 oligonucleotide compounds for treatment of preeclampsia and other angiogenic disorders
BR112023027398A2 (pt) * 2021-06-24 2024-03-12 Sirnaomics Inc Produtos e composições
WO2023283403A2 (en) 2021-07-09 2023-01-12 Alnylam Pharmaceuticals, Inc. Bis-rnai compounds for cns delivery
AU2022314619A1 (en) 2021-07-21 2024-01-04 Alnylam Pharmaceuticals, Inc. Metabolic disorder-associated target gene irna compositions and methods of use thereof
WO2023014677A1 (en) 2021-08-03 2023-02-09 Alnylam Pharmaceuticals, Inc. Transthyretin (ttr) irna compositions and methods of use thereof
CA3231330A1 (en) 2021-09-16 2023-03-23 Avidity Biosciences, Inc. Compositions and methods of treating facioscapulohumeral muscular dystrophy
WO2023064530A1 (en) 2021-10-15 2023-04-20 Alnylam Pharmaceuticals, Inc. Extra-hepatic delivery irna compositions and methods of use thereof
WO2023069495A1 (en) * 2021-10-19 2023-04-27 Alnylam Pharmaceuticals, Inc. Oligonucleotides with 2'-deoxy-2'-f-2'-c-methyl nucleotides
CN116003494A (zh) * 2022-01-05 2023-04-25 大睿生物医药科技(上海)有限公司 具有核苷酸类似物的双链rna
TW202400787A (zh) 2022-03-16 2024-01-01 美商安彼瑞可股份有限公司 改良siRNA生物可利用性之GalNAc組合物
CN117534717A (zh) * 2024-01-09 2024-02-09 凯莱英生命科学技术(天津)有限公司 5′-(e)-乙烯基磷酸酯的合成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013074974A2 (en) * 2011-11-18 2013-05-23 Alnylam Pharmaceuticals, Inc. Modified rnai agents
CN103154014A (zh) * 2010-04-28 2013-06-12 Isis制药公司 修饰核苷、其类似物以及由它们制备的寡聚化合物
US20130323836A1 (en) * 2010-04-22 2013-12-05 Isis Pharmaceuticals, Inc. 5'-end derivatives
WO2014043292A1 (en) * 2012-09-12 2014-03-20 Quark Pharmaceuticals, Inc. Double-stranded oligonucleotide molecules to p53 and methods of use thereof

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1861608A (en) 1929-12-21 1932-06-07 Emerson Electric Mfg Co Fan and means for directing the air current therethrough
US1861108A (en) 1930-01-24 1932-05-31 Eugene O Brace Integral clutch and transmission control
US3974808A (en) 1975-07-02 1976-08-17 Ford Motor Company Air intake duct assembly
US4708708A (en) 1982-12-06 1987-11-24 International Paper Company Method and apparatus for skiving and hemming
US4897355A (en) 1985-01-07 1990-01-30 Syntex (U.S.A.) Inc. N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US5328470A (en) 1989-03-31 1994-07-12 The Regents Of The University Of Michigan Treatment of diseases by site-specific instillation of cells or site-specific transformation of cells and kits therefor
FR2645866B1 (fr) 1989-04-17 1991-07-05 Centre Nat Rech Scient Nouvelles lipopolyamines, leur preparation et leur emploi
NL8901881A (nl) 1989-07-20 1991-02-18 Rockwool Grodan Bv Drainagekoppelelement.
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
US5283185A (en) 1991-08-28 1994-02-01 University Of Tennessee Research Corporation Method for delivering nucleic acids into cells
EP0646178A1 (en) 1992-06-04 1995-04-05 The Regents Of The University Of California expression cassette with regularoty regions functional in the mammmlian host
EP0648265A4 (en) 1992-06-18 1996-12-04 Genpharm Int PROCESS FOR THE PRODUCTION OF NON-HUMAN TRANSGENIC ANIMALS HAVING AN ARTIFICIAL YEAST CHROMOSOME.
EP0833613A1 (en) 1995-05-26 1998-04-08 Somatix Therapy Corporation Delivery vehicles comprising stable lipid/nucleic acid complexes
US6034135A (en) 1997-03-06 2000-03-07 Promega Biosciences, Inc. Dimeric cationic lipids
US8273866B2 (en) * 2002-02-20 2012-09-25 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SINA)
CA2533701A1 (en) * 2003-07-31 2005-02-17 Isis Pharmaceuticals, Inc. Oligomeric compounds and compositions for use in modulation of small non-coding rnas
CA2554212A1 (en) 2004-02-10 2005-08-25 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using multifunctional short interfering nucleic acid (multifunctional sina)
CH698304B1 (de) 2005-10-10 2009-07-15 Fatzer Ag Drahtseilanker, insbesondere für Steinschlag- oder Lawinenschutzverbauungen.
EP2395012B8 (en) * 2005-11-02 2018-06-06 Arbutus Biopharma Corporation Modified siRNA molecules and uses thereof
EP1989307B1 (en) 2006-02-08 2012-08-08 Quark Pharmaceuticals, Inc. NOVEL TANDEM siRNAS
MX2008012993A (es) 2006-04-07 2008-12-18 Idera Pharmaceuticals Inc Compuestos de acido ribonucleico inmunomodulador estabilizado para receptores tipo toll-7 y receptores tipo toll-8.
WO2008100447A2 (en) 2007-02-09 2008-08-21 Gilead Sciences, Inc. Nucleoside analogs for antiviral treatment
CN101795715A (zh) 2007-07-09 2010-08-04 艾德拉药物股份有限公司 稳定化免疫调控性rna(simra)化合物
US10131904B2 (en) * 2008-02-11 2018-11-20 Rxi Pharmaceuticals Corporation Modified RNAi polynucleotides and uses thereof
EP2321414B1 (en) 2008-07-25 2018-01-10 Alnylam Pharmaceuticals, Inc. Enhancement of sirna silencing activity using universal bases or mismatches in the sense strand
US20100183704A1 (en) * 2008-09-25 2010-07-22 Novartis Ag dsRNA FOR TREATING VIRAL INFECTION
CN102575252B (zh) 2009-06-01 2016-04-20 光环生物干扰疗法公司 用于多价rna干扰的多核苷酸、组合物及其使用方法
ES2538347T3 (es) 2009-08-27 2015-06-19 Idera Pharmaceuticals, Inc. Composiciones para inhibir expresión genética y usos de las mismas
WO2011109427A2 (en) 2010-03-01 2011-09-09 Alnylam Pharmaceuticals, Inc. Improving the biological activity of sirna through modulation of its thermodynamic profile
US10913767B2 (en) 2010-04-22 2021-02-09 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising acyclic and abasic nucleosides and analogs
JP6108628B2 (ja) 2011-03-29 2017-04-05 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. Tmprss6遺伝子の発現を阻害する組成物および方法
RU2631805C2 (ru) 2011-06-21 2017-09-26 Элнилэм Фармасьютикалз, Инк. Композиции и способы ингибирования экспрессии генов аполипопротеина с-iii (арос3)
US9228188B2 (en) 2011-06-21 2016-01-05 Alnylam Pharmaceuticals, Inc. Compositions and method for inhibiting hepcidin antimicrobial peptide (HAMP) or HAMP-related gene expression
CN103890000B (zh) 2011-06-21 2017-09-01 阿尔尼拉姆医药品有限公司 血管生成素样3(ANGPTL3)iRNA组合物及其使用方法
EP3388068A1 (en) 2011-06-21 2018-10-17 Alnylam Pharmaceuticals, Inc. Composition and methods for inhibition of expression of protein c (proc) genes
EP3366312A1 (en) 2011-06-23 2018-08-29 Alnylam Pharmaceuticals, Inc. Serpina 1 sirnas: compositions of matter and methods of treatment
KR102385013B1 (ko) 2011-11-18 2022-04-12 알닐람 파마슈티칼스 인코포레이티드 트랜스티레틴(TTR) 관련 질병을 치료하기 위한 RNAi 제제, 조성 및 그의 사용방법
US9133461B2 (en) 2012-04-10 2015-09-15 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the ALAS1 gene
US9127274B2 (en) 2012-04-26 2015-09-08 Alnylam Pharmaceuticals, Inc. Serpinc1 iRNA compositions and methods of use thereof
EP4253395A3 (en) 2012-08-06 2023-11-29 Alnylam Pharmaceuticals, Inc. Processes for the preparation of carbohydrate conjugated rna agents
US9611474B2 (en) * 2012-09-12 2017-04-04 Quark Pharmaceuticals, Inc. Double-stranded oligonucleotide molecules to DDIT4 and methods of use thereof
EP3336187A1 (en) * 2012-12-05 2018-06-20 Alnylam Pharmaceuticals, Inc. Pcsk9 irna compositions and methods of use thereof
HUE034987T2 (en) 2013-03-14 2018-05-02 Alnylam Pharmaceuticals Inc C5 complementary component IRNS preparations and methods for their use
PT2999785T (pt) 2013-05-22 2018-07-09 Alnylam Pharmaceuticals Inc Composições de irna de serpina1 e métodos de uso das mesmas
BR112015029276B1 (pt) 2013-05-22 2022-07-12 Alnylam Pharmaceuticals, Inc Agente de irna fita dupla capaz de inibir a expressão de tmprss6, composição farmacêutica e uso dos mesmos
AR097738A1 (es) 2013-09-23 2016-04-13 Alnylam Pharmaceuticals Inc Métodos para tratar o prevenir enfermedades asociadas con la transtiretina (ttr)
EP3052626A1 (en) 2013-10-02 2016-08-10 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the lect2 gene
UA124961C2 (uk) 2013-10-04 2021-12-22 Елнілем Фармасьютикалз, Інк. ДВОНИТКОВА РИБОНУКЛЕЇНОВА КИСЛОТА (dsRNA) ДЛЯ ІНГІБУВАННЯ ЕКСПРЕСІЇ ALAS1
EP3065783A4 (en) * 2013-11-06 2017-06-21 Merck Sharp & Dohme Corp. Dual molecular delivery of oligonucleotides and peptide containing conjugates
IL282401B (en) 2013-12-12 2022-08-01 Alnylam Pharmaceuticals Inc Complementary component irna compositions and methods for using them
EP3960860A3 (en) 2014-02-11 2022-06-08 Alnylam Pharmaceuticals, Inc. Ketohexokinase (khk) irna compositions and methods of use thereof
AU2015264038B2 (en) 2014-05-22 2021-02-11 Alnylam Pharmaceuticals, Inc. Angiotensinogen (AGT) iRNA compositions and methods of use thereof
SG10201913791QA (en) * 2014-08-20 2020-03-30 Alnylam Pharmaceuticals Inc Modified double-stranded rna agents
KR102318555B1 (ko) 2020-03-19 2021-10-29 한국과학기술연구원 광소자용 역나노콘과 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130323836A1 (en) * 2010-04-22 2013-12-05 Isis Pharmaceuticals, Inc. 5'-end derivatives
CN103154014A (zh) * 2010-04-28 2013-06-12 Isis制药公司 修饰核苷、其类似物以及由它们制备的寡聚化合物
WO2013074974A2 (en) * 2011-11-18 2013-05-23 Alnylam Pharmaceuticals, Inc. Modified rnai agents
WO2014043292A1 (en) * 2012-09-12 2014-03-20 Quark Pharmaceuticals, Inc. Double-stranded oligonucleotide molecules to p53 and methods of use thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JESPER B. BRAMSEN等: "A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity", 《NUCLEIC ACIDS RESEARCH》 *
MOHAMMED AMARZGUIOUI等: "Tolerance for mutations and chemical modifications in a siRNA", 《NUCLEIC ACIDS RESEARCH》 *
SORIM CHOUNG等: "Chemical modification of siRNAs to improve serum stability without loss of efficacy", 《IOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS》 *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112424354A (zh) * 2017-04-05 2021-02-26 赛伦斯治疗有限责任公司 在反义链的5’末端具有乙烯基膦酸酯的siRNA
CN111050807A (zh) * 2017-12-01 2020-04-21 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN110945132B (zh) * 2017-12-01 2024-04-05 苏州瑞博生物技术股份有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN110945131A (zh) * 2017-12-01 2020-03-31 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN110997919A (zh) * 2017-12-01 2020-04-10 苏州瑞博生物技术有限公司 双链寡核苷酸、含双链寡核苷酸的组合物与缀合物及制备方法和用途
CN110997917A (zh) * 2017-12-01 2020-04-10 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN110945130A (zh) * 2017-12-01 2020-03-31 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN110945132A (zh) * 2017-12-01 2020-03-31 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN110944675A (zh) * 2017-12-01 2020-03-31 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
US11660347B2 (en) 2017-12-01 2023-05-30 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, composition and conjugate containing same, preparation method, and use thereof
CN110997917B (zh) * 2017-12-01 2024-04-09 苏州瑞博生物技术股份有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN110945130B (zh) * 2017-12-01 2024-04-09 苏州瑞博生物技术股份有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN110997919B (zh) * 2017-12-01 2024-04-02 苏州瑞博生物技术股份有限公司 双链寡核苷酸、含双链寡核苷酸的组合物与缀合物及制备方法和用途
US11492620B2 (en) 2017-12-01 2022-11-08 Suzhou Ribo Life Science Co., Ltd. Double-stranded oligonucleotide, composition and conjugate comprising double-stranded oligonucleotide, preparation method thereof and use thereof
US11633482B2 (en) 2017-12-29 2023-04-25 Suzhou Ribo Life Science Co., Ltd. Conjugates and preparation and use thereof
US11918600B2 (en) 2018-08-21 2024-03-05 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, pharmaceutical composition and conjugate containing nucleic acid, and use thereof
CN111655849A (zh) * 2018-08-21 2020-09-11 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的药物组合物和缀合物及其用途
US11896674B2 (en) 2018-09-30 2024-02-13 Suzhou Ribo Life Science Co., Ltd. SiRNA conjugate, preparation method therefor and use thereof
CN111655297A (zh) * 2018-09-30 2020-09-11 苏州瑞博生物技术有限公司 一种siRNA缀合物及其制备方法和用途
CN112423795A (zh) * 2018-12-28 2021-02-26 苏州瑞博生物技术股份有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN111378657B (zh) * 2018-12-28 2024-03-15 苏州瑞博生物技术股份有限公司 抑制COL1A1基因表达的siRNA、含有该siRNA的药物组合物及其用途
CN111378657A (zh) * 2018-12-28 2020-07-07 苏州瑞博生物技术有限公司 抑制COL1A1基因表达的siRNA、含有该siRNA的药物组合物及其用途
CN111378658A (zh) * 2018-12-28 2020-07-07 苏州瑞博生物技术有限公司 抑制TIMP-1基因表达的siRNA、含有该siRNA的药物组合物及其用途
CN112423794A (zh) * 2018-12-28 2021-02-26 苏州瑞博生物技术股份有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN111378655B (zh) * 2018-12-28 2024-03-19 苏州瑞博生物技术股份有限公司 抑制CTGF基因表达的siRNA、含有该siRNA的药物组合物及其用途
CN111378658B (zh) * 2018-12-28 2024-03-15 苏州瑞博生物技术股份有限公司 抑制TIMP-1基因表达的siRNA、含有该siRNA的药物组合物及其用途
CN111378655A (zh) * 2018-12-28 2020-07-07 苏州瑞博生物技术有限公司 抑制CTGF基因表达的siRNA、含有该siRNA的药物组合物及其用途
CN111378659B (zh) * 2018-12-29 2024-01-30 苏州瑞博生物技术股份有限公司 抑制stat3基因表达的核酸、含有该核酸的药物组合物及其用途
CN111378659A (zh) * 2018-12-29 2020-07-07 苏州瑞博生物技术有限公司 抑制stat3基因表达的核酸、含有该核酸的药物组合物及其用途
CN113330117A (zh) * 2019-01-18 2021-08-31 苏州瑞博生物技术股份有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
CN113227376B (zh) * 2019-05-22 2024-04-09 苏州瑞博生物技术股份有限公司 核酸、药物组合物与缀合物及制备方法和用途
CN113227376A (zh) * 2019-05-22 2021-08-06 苏州瑞博生物技术股份有限公司 核酸、药物组合物与缀合物及制备方法和用途
CN113286888A (zh) * 2019-05-22 2021-08-20 苏州瑞博生物技术股份有限公司 核酸、药物组合物与缀合物及制备方法和用途
CN113286888B (zh) * 2019-05-22 2023-12-22 苏州瑞博生物技术股份有限公司 核酸、药物组合物与缀合物及制备方法和用途
CN111973619B (zh) * 2019-05-23 2024-01-30 苏州瑞博生物技术股份有限公司 核酸、含有该核酸的药物组合物与siRNA缀合物及制备方法和用途
CN111973619A (zh) * 2019-05-23 2020-11-24 苏州瑞博生物技术股份有限公司 核酸、含有该核酸的药物组合物与siRNA缀合物及制备方法和用途
CN113891939A (zh) * 2019-05-24 2022-01-04 苏州瑞博生物技术股份有限公司 核酸、药物组合物与缀合物及制备方法和用途
CN113891939B (zh) * 2019-05-24 2024-04-02 苏州瑞博生物技术股份有限公司 核酸、药物组合物与缀合物及制备方法和用途
CN113795280B (zh) * 2019-05-24 2024-04-05 苏州瑞博生物技术股份有限公司 核酸、药物组合物与缀合物及制备方法和用途
CN113795280A (zh) * 2019-05-24 2021-12-14 苏州瑞博生物技术股份有限公司 核酸、药物组合物与缀合物及制备方法和用途
CN112007040B (zh) * 2019-05-31 2024-01-30 苏州瑞博生物技术股份有限公司 用于治疗乙型病毒性肝炎的联合用药物
CN112007040A (zh) * 2019-05-31 2020-12-01 苏州瑞博生物技术股份有限公司 用于治疗乙型病毒性肝炎的联合用药物
CN114945669A (zh) * 2019-11-06 2022-08-26 阿尔尼拉姆医药品有限公司 肝外递送
CN112876534B (zh) * 2019-11-29 2024-02-09 苏州瑞博生物技术股份有限公司 肝靶向化合物及缀合物
CN112876534A (zh) * 2019-11-29 2021-06-01 苏州瑞博生物技术股份有限公司 肝靶向化合物及缀合物
CN114685585A (zh) * 2020-12-31 2022-07-01 苏州瑞博生物技术股份有限公司 核苷酸序列、双链寡核苷酸、药物组合物与缀合物及制备方法和用途
WO2023109932A1 (zh) * 2021-12-16 2023-06-22 上海拓界生物医药科技有限公司 一种dsRNA、其制备方法及应用

Also Published As

Publication number Publication date
EA201790420A1 (ru) 2017-07-31
US10233448B2 (en) 2019-03-19
US20220002727A1 (en) 2022-01-06
SG10201903290YA (en) 2019-05-30
US10612027B2 (en) 2020-04-07
KR20230019498A (ko) 2023-02-08
KR20240010762A (ko) 2024-01-24
JP7370311B2 (ja) 2023-10-27
SG10201913791QA (en) 2020-03-30
WO2016028649A1 (en) 2016-02-25
IL280941A (en) 2021-04-29
US20230110876A1 (en) 2023-04-13
US11427822B2 (en) 2022-08-30
IL250448A0 (en) 2017-03-30
US20220056448A1 (en) 2022-02-24
JP2017525705A (ja) 2017-09-07
US20220389424A1 (en) 2022-12-08
KR20170099832A (ko) 2017-09-01
US11401517B2 (en) 2022-08-02
SG11201701166UA (en) 2017-03-30
US20190241891A1 (en) 2019-08-08
NZ767118A (en) 2024-02-23
CA2958758A1 (en) 2016-02-25
NZ730296A (en) 2023-09-29
JP2021073182A (ja) 2021-05-13
JP7289610B2 (ja) 2023-06-12
KR102494171B1 (ko) 2023-02-02
EP3812462A1 (en) 2021-04-28
US20210017519A1 (en) 2021-01-21
KR102630289B1 (ko) 2024-01-31
US11549109B2 (en) 2023-01-10
US20190241893A1 (en) 2019-08-08
JP2021073183A (ja) 2021-05-13
MX2017002144A (es) 2017-08-15
JP2024020209A (ja) 2024-02-14
EP3186377A1 (en) 2017-07-05
US20170275626A1 (en) 2017-09-28
EP3808846A1 (en) 2021-04-21
US10612024B2 (en) 2020-04-07
US20230183701A1 (en) 2023-06-15
CN114181942A (zh) 2022-03-15
IL250448B (en) 2021-03-25

Similar Documents

Publication Publication Date Title
CN107075516A (zh) 经修饰的双链rna试剂
JP6850827B2 (ja) オリゴヌクレオチドの送達剤としての糖質コンジュゲート
CN104080794B (zh) RNAi试剂、组合物及其用于治疗甲状腺素运载蛋白(TTR)相关疾病的使用方法
KR20190086001A (ko) 표적외 효과가 감소된 변형 rna 작용제
CN104105790A (zh) 修饰的RNAi试剂
CN110520531A (zh) 产品和组合物
CN108165548A (zh) 减小大小的自递送RNAi化合物
JP2007535922A (ja) C5修飾ピリミジンを含むオリゴヌクレオチド
JP2021507709A (ja) キラル富化二本鎖rna剤
JP7384833B2 (ja) オフターゲット効果が低下した修飾rna剤
EP3790557A2 (en) Compositions and methods for improving strand biased
JP2022550979A (ja) 修飾オリゴヌクレオチド
WO2023288045A2 (en) Simple chemical approaches to introduce 2,6-diaminopurine and 2-aminoadenine conjugates into oligonucleotides
NZ794670A (en) Modified RNA agents with reduced off-target effect
EA043057B1 (ru) Средства, представляющие собой модифицированную двухнитевую рнк
NZ624471B2 (en) Modified rnai agents

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination