WO2023109932A1 - 一种dsRNA、其制备方法及应用 - Google Patents

一种dsRNA、其制备方法及应用 Download PDF

Info

Publication number
WO2023109932A1
WO2023109932A1 PCT/CN2022/139462 CN2022139462W WO2023109932A1 WO 2023109932 A1 WO2023109932 A1 WO 2023109932A1 CN 2022139462 W CN2022139462 W CN 2022139462W WO 2023109932 A1 WO2023109932 A1 WO 2023109932A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nucleotide
antisense strand
dsrna
sense strand
Prior art date
Application number
PCT/CN2022/139462
Other languages
English (en)
French (fr)
Inventor
张瑱
邓永岩
李云飞
林晓燕
侯哲
张建羽
耿俊
黄龙飞
周雅琴
吕珍珍
Original Assignee
上海拓界生物医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海拓界生物医药科技有限公司 filed Critical 上海拓界生物医药科技有限公司
Publication of WO2023109932A1 publication Critical patent/WO2023109932A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present disclosure relates to a dsRNA that can be targeted and delivered into cells to play the role of RNA interference.
  • the present disclosure also relates to preparation methods and applications of dsRNA.
  • RNA interference is an effective way to silence gene expression. According to statistics, more than 80% of the disease-related proteins in the human body cannot be targeted by current conventional small molecule drugs and biological macromolecular preparations, and are non-druggable proteins. Using RNA interference technology, we can design appropriate siRNA based on the mRNA encoding these proteins, specifically target the target mRNA and degrade the target mRNA, so as to inhibit the production of related proteins. Therefore, siRNA has a very important prospect of drug development. However, in order to achieve the RNA interference effect for therapeutic purposes in vivo, it is necessary to deliver siRNA molecules to specific cells in vivo.
  • asialoglycoprotein receptor is a receptor specifically expressed in hepatocytes, which has high abundance on the surface of hepatocytes and is characterized by rapid intracellular and extracellular transitions.
  • Monosaccharide and polysaccharide molecules such as galactose, galactosamine, and N-acetylgalactosamine have high affinity for ASGPR.
  • GalNAc galactosamine molecular clusters
  • APOC3 is mainly synthesized in the liver and plays an important role in the production, metabolism and clearance of triglyceride-rich lipoproteins from plasma.
  • the expression of APOC3 in the liver can promote the secretion of triglyceride-rich very low-density lipoprotein (VLDL).
  • APOC3 can also inhibit the catabolism of triglyceride-rich lipoproteins by inhibiting the activity of lipoprotein lipase and hepatic lipase, and further increase serum triglyceride levels.
  • APOC3 can also inhibit the hepatic clearance of T-rich lipoproteins and their residual particles by interfering with T-rich lipoproteins and their binding to hepatic receptors.
  • Elevated ApoC3 levels are associated with elevated triglyceride levels and diseases such as cardiovascular disease, metabolic syndrome, obesity and diabetes.
  • APOC3 has emerged as a promising target for the treatment of diseases associated with hypertriglyceridemia.
  • Elevated serum triglyceride levels have been identified as an independent risk factor for cardiovascular disease and a contributory factor for the development of atherosclerosis. Individuals with severe hypertriglyceridemia are also at high risk of developing recurrent pancreatitis.
  • the present disclosure provides a double-stranded ribonucleic acid (dsRNA) comprising siRNA and one or more ligands conjugated thereto, the siRNA comprising a sense strand and an antisense strand, the antisense strand At least one nucleotide position from the 2nd to the 8th position of the 5' end contains a chemical modification represented by formula (I), a tautomer or a pharmaceutically acceptable salt thereof:
  • dsRNA double-stranded ribonucleic acid
  • Y is selected from O, NH and S;
  • Each X is independently selected from CR 4 (R 4 '), S, NR 5 and NH-CO, wherein R 4 , R 4 ', R 5 are independently H or C 1 -C 6 alkyl;
  • J 2 is H or C 1 -C 6 alkyl
  • Q 1 is Q 2 is R 2 ; or Q 1 is R 2 and Q 2 is
  • J 1 is H or C 1 -C 6 alkyl
  • R 1 and R 2 are directly connected to form a ring
  • B is a base
  • the ligand is a compound represented by formula (II) or a pharmaceutically acceptable salt thereof,
  • R 13 is a single or double bond, and when When it is a single bond, R 13 is independently CR 17 R 18 , NR 16 , O or S, when When it is a double bond, R 13 is independently CR 19 or N;
  • R 14 is independently CR 19 or N;
  • Ring A is cycloalkyl, heterocycloalkyl, aryl or heteroaryl, present or absent, and when ring A exists, R 15 is independently CR 19 or N, and when ring A does not exist, R 15 independently CR 17 R 18 , NR 16 or O;
  • R' and R" are independently hydrogen, deuterium, hydroxyl, alkyl, alkoxy, cycloalkyl, heterocycloalkyl, aryl or heteroaryl, the alkyl, alkoxy, cycloalkyl, Heterocycloalkyl, aryl or heteroaryl is optionally substituted by one or more substituents selected from halogen, hydroxy, oxo, nitro and cyano;
  • n1, p1 and q1 are independently 0, 1, 2, 3 or 4;
  • z1, z2, z3, z4, z5, z6, z7, z8 and z9 are independently an integer of 0-10;
  • r1 is an integer of 1-10.
  • the chemical modification represented by formula (I), its tautomer, or a pharmaceutically acceptable salt thereof is replaced with a 2'-methoxy modification.
  • At least one of the nucleotides at positions 2 to 8 at the 5' end of the antisense strand is a 2'-methoxy-modified nucleotide.
  • the chemical modification shown in formula (I) is selected from the chemical modification shown in formula (I-1):
  • Y is selected from O, NH and S;
  • Each X is independently selected from CR 4 (R 4 '), S, NR 5 and NH-CO, wherein R 4 , R 4 ', R 5 are independently H or C 1 -C 6 alkyl;
  • Each J 1 and J 2 are independently H or C 1 -C 6 alkyl
  • R 1 and R 2 are directly connected to form a ring
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • the chemical modification represented by formula (I) is selected from
  • Y is selected from O, NH and S;
  • Each X is independently selected from CR 4 (R 4 '), S, NR 5 and NH-CO, wherein R 4 , R 4 ', R 5 are independently H or C 1 -C 6 alkyl;
  • Each J 1 and J 2 are independently H or C 1 -C 6 alkyl
  • R 1 and R 2 are directly connected to form a ring
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • each X is independently selected from CR 4 (R 4 '), S, NR 5 and NH-CO, wherein R 4 , R 4 ', R 5 are each independently H or C 1 -C 3 alkyl groups;
  • Each J 1 and J 2 are independently H or C 1 -C 3 alkyl
  • R 1 and R 2 are directly connected to form a ring
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • each X is independently selected from CR 4 (R 4 '), S, NR 5 , and NH-CO, wherein R 4 , R 4 ', and R 5 are each independently H, methyl, ethyl radical, n-propyl or isopropyl;
  • Each J 1 and J 2 are independently H or methyl
  • R 1 and R 2 are directly connected to form a ring
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • each X is independently selected from CR 4 (R 4 '), S, NR 5 , and NH-CO, wherein R 4 , R 4 ', and R 5 are each independently H, methyl, ethyl radical, n-propyl or isopropyl;
  • Each J 1 and J 2 are independently H or methyl
  • R 1 and R 2 are directly connected to form a ring
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • J 1 and J 2 are independently H;
  • R 1 is selected from H, methyl and CH 2 OH;
  • R 2 is selected from H, OH, NH 2 , methyl and CH 2 OH;
  • R 3 is selected from H, OH, NH 2 , methyl and CH 2 OH;
  • R 1 and R 2 are directly connected to form a ring
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • J 1 and J 2 are independently H;
  • R 1 is selected from H, methyl and CH 2 OH;
  • R 2 is selected from H, methyl and CH 2 OH;
  • R 3 is selected from H, OH, NH 2 , methyl and CH 2 OH;
  • R 1 and R 2 are directly connected to form a ring
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • Y is O or NH
  • Each X is independently selected from CR 4 (R 4 '), NR 5 and NH-CO, R 4 , R 4 ', R 5 are independently H or C 1 -C 6 alkyl;
  • J 2 is H or C 1 -C 6 alkyl
  • R 3 is selected from H, OH, NH 2 , C 1 -C 6 alkyl, C 1 -C 6 alkoxy and (CH 2 ) p R 6 ;
  • Q 1 is Q 2 is R 2 ; or Q 1 is R 2 and Q 2 is
  • R 1 is selected from H, OH, C 1 -C 6 alkyl, C 1 -C 6 alkoxy and (CH 2 ) q R 7 ;
  • J 1 is H or C 1 -C 6 alkyl
  • R 2 is selected from H, OH, C 1 -C 6 alkyl, C 1 -C 6 alkoxy and (CH 2 ) r R 8 ;
  • R 1 and R 2 are directly connected to form a 3-6 membered ring;
  • B is a base
  • X is independently selected from CR 4 (R 4 ′) and NH—CO.
  • X is independently selected from CR 4 (R 4 ′).
  • R 3 is selected from H, C 1 -C 6 alkyl, and (CH 2 ) p R 6 .
  • R 3 is selected from H and C 1 -C 6 alkyl.
  • R 1 is selected from H, C 1 -C 6 alkyl, and (CH 2 ) q R 7 .
  • R 1 is selected from H and C 1 -C 6 alkyl.
  • R 2 is selected from H, OH, C 1 -C 6 alkyl, and (CH 2 ) r R 8 .
  • R 2 is selected from H, C 1 -C 6 alkyl, and (CH 2 ) r R 8 .
  • Y is O
  • Each X is independently selected from CR 4 (R 4 ') and NH-CO, R 4 and R 4 ' are independently H or C 1 -C 6 alkyl;
  • J 2 is H or C 1 -C 6 alkyl
  • R 3 is selected from H, C 1 -C 6 alkyl and (CH 2 ) p R 6 ;
  • Q 1 is Q 2 is R 2 ; or Q 1 is R 2 and Q 2 is
  • R 1 is selected from H, C 1 -C 6 alkyl and (CH 2 ) q R 7 ;
  • J 1 is H or C 1 -C 6 alkyl
  • R 2 is selected from H, OH, C 1 -C 6 alkyl and (CH 2 ) r R 8 ;
  • R 1 and R 2 are directly connected to form a 5-6 membered ring;
  • B is a base
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • Y is O
  • Each X is independently selected from CR 4 (R 4 '), R 4 and R 4 ' are independently H or C 1 -C 6 alkyl;
  • R 3 is selected from H and C 1 -C 6 alkyl
  • Q 1 is Q 2 is R 2 ; or Q 1 is R 2 and Q 2 is
  • R 1 is selected from H and C 1 -C 6 alkyl
  • J 1 is H or C 1 -C 6 alkyl
  • R 1 and R 2 are directly connected to form a 5-6 membered ring;
  • B is a base
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • Y is O.
  • X is independently selected from CR 4 (R 4 '), NR 5 and NH-CO, R 4 , R 4 ', and R 5 are independently H, methyl, ethyl, n-propyl or isopropyl.
  • X is independently selected from NH—CO, CH 2 and NH.
  • X is independently selected from NH—CO and CH 2 .
  • X is CH2 .
  • J 2 is H or methyl. In some embodiments, J is H.
  • R is selected from H and methyl.
  • R2 is selected from H, methyl, and CH2OH .
  • R1 and R2 are directly linked to form a 5-6 membered ring. In some embodiments, R and R are directly connected to form a 3-6 membered cycloalkyl. In some embodiments, R 1 and R 2 are directly connected to form cyclopentyl or cyclohexyl.
  • the chemical modification represented by the formula (I) is selected from any of the following structures:
  • B is selected from purine base, pyrimidine base, indole, 5-nitroindole and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • the chemical modification represented by the formula (I) is selected from any of the following structures:
  • B is selected from purine base, pyrimidine base, indole, 5-nitroindole and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • the chemical modification represented by the formula (I) is selected from any of the following structures:
  • B is selected from purine base, pyrimidine base, indole, 5-nitroindole and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • the chemical modification represented by the formula (I) is selected from any of the following structures:
  • B is selected from purine base, pyrimidine base, indole, 5-nitroindole and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • the nucleotide comprising the chemical modification represented by formula (I), its tautomer or a pharmaceutically acceptable salt thereof is selected from the group consisting of the chemical modification represented by formula (I'), its Nucleotides of tautomers or pharmaceutically acceptable salts thereof,
  • Y is selected from O, NH and S;
  • Each X is independently selected from CR 4 (R 4 '), S, NR 5 and NH-CO, wherein R 4 , R 4 ', R 5 are independently H or C 1 -C 6 alkyl;
  • J 2 is H or C 1 -C 6 alkyl
  • Q 1' for Q 2' is R 2 ; or Q 1' is R 2 and Q 2' is
  • J 1 is H or C 1 -C 6 alkyl
  • R 1 and R 2 are directly connected to form a ring
  • B is a base
  • M is O or S
  • R when X is NH-CO, R is not H.
  • the chemical modification shown in formula (I') is selected from the chemical modification shown in formula (I'-1):
  • Y is selected from O, NH and S;
  • Each X is independently selected from CR 4 (R 4 '), S, NR 5 and NH-CO, wherein R 4 , R 4 ', R 5 are independently H or C 1 -C 6 alkyl;
  • Each J 1 and J 2 are independently H or C 1 -C 6 alkyl
  • M is O or S
  • R 1 and R 2 are directly connected to form a ring
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • the chemical modification shown in formula (I') is selected from the chemical modification shown in formula (I'-2):
  • Y is selected from O, NH and S;
  • Each X is independently selected from CR 4 (R 4 '), S, NR 5 and NH-CO, wherein R 4 , R 4 ', R 5 are independently H or C 1 -C 6 alkyl;
  • Each J 1 and J 2 are independently H or C 1 -C 6 alkyl
  • R 1 and R 2 are directly connected to form a ring
  • M is O or S
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • each X is independently selected from CR 4 (R 4 '), S, NR 5 and NH-CO, wherein R 4 , R 4 ', R 5 are each independently H or C 1 -C 3 alkyl groups;
  • Each J 1 and J 2 are independently H or C 1 -C 3 alkyl
  • R 1 and R 2 are directly connected to form a ring
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • each X is independently selected from CR 4 (R 4 '), S, NR 5 , and NH-CO, wherein R 4 , R 4 ', and R 5 are each independently H, methyl, ethyl radical, n-propyl or isopropyl;
  • Each J 1 and J 2 are independently H or methyl
  • R 1 and R 2 are directly connected to form a ring
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • each X is independently selected from CR 4 (R 4 '), S, NR 5 , and NH-CO, wherein R 4 , R 4 ', and R 5 are each independently H, methyl, ethyl radical, n-propyl or isopropyl;
  • Each J 1 and J 2 are independently H or methyl
  • R 1 and R 2 are directly connected to form a ring
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • J 1 and J 2 are independently H;
  • R 1 is selected from H, methyl and CH 2 OH;
  • R 2 is selected from H, OH, NH 2 , methyl and CH 2 OH;
  • R 3 is selected from H, OH, NH 2 , methyl and CH 2 OH;
  • R 1 and R 2 are directly connected to form a ring
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • J 1 and J 2 are independently H;
  • R 1 is selected from H, methyl and CH 2 OH;
  • R 2 is selected from H, methyl and CH 2 OH;
  • R 3 is selected from H, OH, NH 2 , methyl and CH 2 OH;
  • R 1 and R 2 are directly connected to form a ring
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • Y is O or NH
  • Each X is independently selected from CR 4 (R 4 '), NR 5 and NH-CO, R 4 , R 4 ', R 5 are independently H or C 1 -C 6 alkyl;
  • J 2 is H or C 1 -C 6 alkyl
  • R 3 is selected from H, OH, NH 2 , C 1 -C 6 alkyl, C 1 -C 6 alkoxy and (CH 2 ) p R 6 ;
  • Q 1' is Q 2' is R 2 ; or Q 1' is R 2 and Q 2' is
  • R 1 is selected from H, OH, C 1 -C 6 alkyl, C 1 -C 6 alkoxy and (CH 2 ) q R 7 ;
  • J 1 is H or C 1 -C 6 alkyl
  • R 2 is selected from H, OH, C 1 -C 6 alkyl, C 1 -C 6 alkoxy and (CH 2 ) r R 8 ;
  • R 1 and R 2 are directly connected to form a 3-6 membered ring;
  • M is O or S
  • B is a base
  • X is independently selected from CR 4 (R 4 ′) and NH—CO.
  • X is independently selected from CR 4 (R 4 ′).
  • R 3 is selected from H, C 1 -C 6 alkyl, and (CH 2 ) p R 6 .
  • R 3 is selected from H and C 1 -C 6 alkyl.
  • R 1 is selected from H, C 1 -C 6 alkyl, and (CH 2 ) q R 7 .
  • R 1 is selected from H and C 1 -C 6 alkyl.
  • R 2 is selected from H, OH, C 1 -C 6 alkyl, and (CH 2 ) r R 8 .
  • R 2 is selected from H, C 1 -C 6 alkyl, and (CH 2 ) r R 8 .
  • Y is O
  • Each X is independently selected from CR 4 (R 4 ') and NH-CO, R 4 and R 4 ' are independently H or C 1 -C 6 alkyl;
  • J 2 is H or C 1 -C 6 alkyl
  • R 3 is selected from H, C 1 -C 6 alkyl and (CH 2 ) p R 6 ;
  • Q 1' is Q 2' is R 2 ; or Q 1' is R 2 and Q 2' is
  • R 1 is selected from H, C 1 -C 6 alkyl and (CH 2 ) q R 7 ;
  • J 1 is H or C 1 -C 6 alkyl
  • R 2 is selected from H, OH, C 1 -C 6 alkyl and (CH 2 ) r R 8 ;
  • R 1 and R 2 are directly connected to form a 5-6 membered ring;
  • M is O or S
  • B is a base
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • Y is O
  • Each X is independently selected from CR 4 (R 4 '), R 4 and R 4 ' are independently H or C 1 -C 6 alkyl;
  • R 3 is selected from H and C 1 -C 6 alkyl
  • Q 1' is Q 2' is R 2 ; or Q 1' is R 2 and Q 2' is
  • R 1 is selected from H and C 1 -C 6 alkyl
  • J 1 is H or C 1 -C 6 alkyl
  • R 1 and R 2 are directly connected to form a 5-6 membered ring;
  • M is O or S
  • B is a base
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • Y is O.
  • X is independently selected from CR 4 (R 4 '), NR 5 and NH-CO, R 4 , R 4 ', and R 5 are independently H, methyl, ethyl, n-propyl or isopropyl.
  • X is independently selected from NH—CO, CH 2 and NH.
  • X is independently selected from NH—CO and CH 2 .
  • X is CH2 .
  • J 2 is H or methyl. In some embodiments, J is H.
  • R is selected from H and methyl.
  • R2 is selected from H, methyl, and CH2OH .
  • R1 and R2 are directly linked to form a 5-6 membered ring. In some embodiments, R and R are directly connected to form a 3-6 membered cycloalkyl. In some embodiments, R 1 and R 2 are directly connected to form cyclopentyl or cyclohexyl.
  • the chemical modification represented by the formula (I') is selected from any of the following structures:
  • M is O or S
  • B is selected from purine bases, pyrimidine bases, indole, 5-nitroindole and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5 modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • the chemical modification represented by the formula (I') is selected from any of the following structures:
  • M is O or S
  • B is selected from purine bases, pyrimidine bases, indole, 5-nitroindole and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • the chemical modification represented by the formula (I') is selected from any of the following structures:
  • M is O or S
  • B is selected from purine bases, pyrimidine bases, indole, 5-nitroindole and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same base as if the nucleotide at that position on the antisense strand was unmodified.
  • the chemical modification represented by the formula (I') is selected from any of the following structures:
  • B is selected from the group consisting of purine bases, pyrimidine bases, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, isoguanine, hypoxanthine, xanthine, C2 modified purine, N8 modified purine, 2,6-diaminopurine, 6-dimethylamino Purine, 2-aminopurine, N6-alkyladenine, O6-alkylguanine, 7-deazapurine, cytosine, 5-methylcytosine, isocytosine, pseudocytosine, uracil, pseudourine Pyrimidine, 2-thiouridine, 4-thiouridine, C5-modified pyrimidine, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5- Nitroindole and 3-nitropyrrole.
  • B is the same as the base of the antisense strand when the nucleotide at this position is unmodified.
  • R 13 is CR 17 R 18 , NR 16 , O or S;
  • R 14 is CR 19 ;
  • R 15 is independently CR 17 R 18 , NR 16 or O;
  • R 16 to R 19 are independently hydrogen, deuterium or alkyl
  • m1, p1 and q1 are independently 0, 1, 2, 3 or 4;
  • z5, z6, z7, z8 and z9 are independently an integer of 0-10;
  • r1 is an integer of 1-10.
  • R 16 is hydrogen or C 1-6 alkyl
  • R 13 is CR 17 R 18 or O
  • R 14 is CR 19 ;
  • R 15 is independently CR 17 R 18 or O;
  • R 17 to R 19 are independently hydrogen or alkyl
  • n 1;
  • z8 and z9 are independently an integer of 0-10;
  • L 2 is -(CH 2 ) j15 -(OCH 2 CH 2 ) 1-4 -(CH 2 ) j16 - or
  • j15 and j16 are independently an integer of 0-4;
  • r1 is 3, 4, 5 or 6.
  • j11, j12, j13, and j14 are independently integers from 0-2 or 4-10. In some embodiments, j11, j12, j13, and j14 are independently 0, 1, 2, 6, 7, 8, 9, or 10.
  • L can be The definition of j12 is the same as that described in the previous scheme, wherein the terminal a1 is connected to B1, and the terminal b1 is connected to R11 .
  • L can be Wherein, terminal a1 is connected to B1 , and terminal b1 is connected to R11 .
  • R 11 can be a chemical bond and R 12 can be NR 16 , and the definition of R 16 is the same as described in any of the previous schemes.
  • R 16 can be hydrogen or C 1-6 alkyl.
  • R 16 can be hydrogen, methyl, ethyl, propyl, or isopropyl.
  • R 16 can be hydrogen
  • R 17 and R 18 can be hydrogen.
  • R 19 can be hydrogen
  • ring A when present, can be a C 6-12 aryl.
  • ring A can be phenyl
  • m1 can be 0 or 1.
  • m1 can be 3.
  • n1 can be 0 or 1.
  • p1 and q1 are independently 0 or 1.
  • z1, z2, z3, z4, z5, z6, z7, z8, and z9 can independently be an integer from 0-4. In some embodiments, z1, z2, z3, z4, z5, z6, z7, z8, and z9 can be 0, 1, or 2 independently.
  • B 1 can be any organic compound
  • B 1 can be any organic compound
  • the definitions of z5, z6, z7, z8 and z9 are the same as those described in the previous scheme.
  • B 1 can be any organic compound
  • L 2 can be -(CH 2 ) j15 -(OCH 2 CH 2 ) 1-4 -(CH 2 ) j16 -, j15 and j16 are as defined in the previous scheme.
  • L2 can be In some embodiments, L2 can be Among them, the left side is connected with O atom, and the right side is connected with B1 .
  • L 2 can be a C 1 -C 12 alkyl chain.
  • L2 can be any organic compound
  • L2 can be In some embodiments, L2 can be In some embodiments, L2 can be In some embodiments, L2 can be In some embodiments, L2 can be Among them, the a3 end is connected to the O atom, and the b3 end is connected to the B1 .
  • L2 can be Among them, the a3 end is connected to the O atom, and the b3 end is connected to the B1 .
  • r1 can be 3, 4, 5 or 6. In some embodiments, r1 can be 3.
  • Q3 can be In some embodiments, Q3 can be Wherein, the definitions of R 13 , R 14 , R 15 and n1 are the same as those described in the previous scheme.
  • R 13 , R 14 , R 15 , p1 and q1 are the same as those described in the previous scheme.
  • R 13 , R 14 , R 15 , p1 and q1 are the same as those described in the previous scheme.
  • Can be The definitions of p1 and q1 are the same as those described in the previous scheme.
  • R 13 , R 14 , n1, p1 and q1 are the same as those described in the previous scheme.
  • R 13 , R 14 , n1, p1 and q1 are the same as those described in the previous scheme.
  • Can be The definitions of n1, p1 and q1 are the same as those described in the previous scheme.
  • the ligand can be any of the following structures or a pharmaceutically acceptable salt thereof,
  • the ligand can be any of the following structures or a pharmaceutically acceptable salt thereof,
  • the ligand can be the following structure or a pharmaceutically acceptable salt thereof,
  • the chemical modification represented by the formula (I) is B is selected from guanine, adenine, cytosine and uracil; and the ligand is any of the following structures or a pharmaceutically acceptable salt thereof,
  • the chemical modification represented by the formula (I) is B is selected from guanine, adenine, cytosine and uracil, and the ligand is any of the following structures or a pharmaceutically acceptable salt thereof,
  • the chemical modification represented by the formula (I) is B is selected from guanine, adenine, cytosine and uracil; and, the ligand is the following structure or a pharmaceutically acceptable salt thereof,
  • the N- Acetyl-galactosamine moiety is N- Acetyl-galactosamine moiety.
  • the siRNA and the ligand are covalently or non-covalently linked.
  • the 3' end and/or the 5' end of the sense strand may be conjugated to the ligand.
  • the 3' end of the sense strand can be conjugated to the ligand.
  • the ligand is attached to the end of the siRNA via a phosphate group or a phosphorothioate group.
  • the ligand is attached to the end of the siRNA via a phosphodiester group or a phosphorothioate group.
  • the ligand is attached to the end of the siRNA via a phosphodiester group.
  • the ligand is indirectly linked to the end of the siRNA via a phosphate group or a phosphorothioate group.
  • the ligand is directly attached to the end of the siRNA via a phosphate group or a phosphorothioate group.
  • the ligand is directly linked to the 3' end of the sense strand of the siRNA via a phosphate group or a phosphorothioate group.
  • the phosphate group is a phosphate monoester group or a phosphodiester group. In some embodiments, the phosphate group is a phosphodiester group.
  • the phosphorothioate group is a phosphorothioate monoester group or a phosphorothioate diester group. In some embodiments, the phosphorothioate group is a phosphorothioate diester group.
  • a lipophilic group such as cholesterol can be introduced at the end of the sense strand of the siRNA.
  • the lipophilic group includes binding to small interfering nucleic acids with a covalent bond, such as introducing cholesterol, Lipoproteins, vitamin E, etc., in order to facilitate the interaction with intracellular mRNA through the cell membrane composed of lipid bilayers.
  • siRNA can also be modified by non-covalent bonds, such as binding phospholipid molecules, polypeptides, and cationic polymers through hydrophobic bonds or ionic bonds to increase stability and biological activity.
  • the nucleotide comprising the chemical modification represented by formula (I), its tautomer or a pharmaceutically acceptable salt thereof is located at the 5th, 6th, or 5th position of the 5' end of the antisense strand No. 7.
  • the nucleotide comprising the chemical modification represented by formula (I), its tautomer or a pharmaceutically acceptable salt thereof is located at position 7 at the 5' end of the antisense strand.
  • B is selected from adenine, guanine, 2,6-Diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-Diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-Diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is selected from adenine, guanine, 2,6-diaminopurine, 6-dimethylaminopurine, 2-aminopurine, cytosine, uracil, thymine, indole, 5-nitroindole, and 3-nitropyrrole.
  • B is the same as the base when the 5th nucleotide at the 5' end of the antisense strand is unmodified.
  • B is the same as the base when the 6th nucleotide at the 5' end of the antisense strand is unmodified.
  • B is the same as the base when the 7th nucleotide at the 5' end of the antisense strand is unmodified.
  • B is the same as the base when the 8th nucleotide at the 5' end of the antisense strand is unmodified.
  • At least one additional nucleotide in the sense strand and/or antisense strand is a modified nucleotide selected from the group consisting of: 2'-methoxy modified Nucleotides, 2'-substituted alkoxy-modified nucleotides, 2'-alkyl-modified nucleotides, 2'-substituted alkyl-modified nucleotides, 2'-amino-modified Nucleotides, 2'-substituted amino-modified nucleotides, 2'-fluoro-modified nucleotides, 2'-deoxynucleotides, 2'-deoxy-2'-fluoro-modified nucleosides acid, 3'-deoxy-thymidine nucleotides, isonucleotides, LNA, ENA, cET, UNA, GNA; in some embodiments, the modified nucleotides are independently selected from: 2'-methoxy modified Nucle
  • the sense strand contains three consecutive nucleotides with the same modification. In some embodiments, the three nucleotides with the same modification are 2'-fluoro-modified nucleotides.
  • the nucleotides at positions 2, 4, 6, 10, 12, 14, 16 and 18 of the antisense strand are each independently 2'- Fluoro-modified nucleotides.
  • the antisense strand is at least partially reverse complementary to the target sequence to mediate RNA interference; in some embodiments, there are no more than 5, no More than 4, no more than 3, no more than 2, no more than 1 mismatch; in some embodiments, the antisense strand is fully reverse complementary to the target sequence.
  • the sense strand and the antisense strand are at least partially reverse complementary to form a double-stranded region; in some embodiments, there are no more than 5 , no more than 4, no more than 3, no more than 2, no more than 1 mismatch; in some embodiments, the sense strand is fully reverse complementary to the antisense strand.
  • the sense and antisense strands each independently have 16 to 35, 16 to 34, 17 to 34, 17 to 33, 18 to 33, 18 to 32, 18 to 31, 18 to 30, 18 to 29, 18 to 28, 18 to 27, 18 to 26, 18 to 25, 18 to 24, 18 to 23, 19 to 25, 19 to 24, or 19 to 23 nucleotides (eg, 19, 20, 21, 22, 23 nucleotides).
  • the sense strand and the antisense strand are the same or different in length, the sense strand is 19-23 nucleotides in length, and the antisense strand is 19-26 nucleotides in length acid.
  • the length ratio of the sense strand and the antisense strand in the dsRNA provided by the present disclosure can be 19/20, 19/21, 19/22, 19/23, 19/24, 19/25, 19/26, 20 /20, 20/21, 20/22, 20/23, 20/24, 20/25, 20/26, 21/20, 21/21, 21/22, 21/23, 21/24, 21/25 , 21/26, 22/20, 22/21, 22/22, 22/23, 22/24, 22/25, 22/26, 23/20, 23/21, 23/22, 23/23, 23 /24, 23/25 or 23/26.
  • the sense and antisense strands have a length ratio of 19/21, 21
  • the siRNA comprises one or two blunt ends.
  • the siRNA comprises an overhang with 1 to 4 unpaired nucleotides, eg, 1, 2, 3, 4.
  • the siRNA comprises an overhang located 3' to the antisense strand.
  • the sense strand contains a nucleotide sequence (5'-3') represented by the following formula:
  • each X is independently Na or N b ; Na is a 2'-methoxy-modified nucleotide, and N b is a 2'-fluoro-modified nucleotide.
  • the sense strand contains a nucleotide sequence represented by the following formula:
  • N a is a 2'-methoxy-modified nucleotide
  • N b is a 2'-fluoro-modified nucleotide
  • the antisense strand contains a nucleotide sequence represented by the following formula:
  • N a ' is a 2'-methoxy modified nucleotide
  • N b ' is a 2'-fluoro modified nucleotide
  • W' represents a 2'-methoxy modified nucleotide or includes the formula (I) Chemically modified, tautomers or pharmaceutically acceptable salts thereof modified nucleotides shown in (I).
  • W' represents a 2'-methoxy modified nucleotide.
  • W' represents a nucleotide comprising a chemical modification represented by formula (I), a tautomer or a pharmaceutically acceptable salt thereof.
  • the chemical modification shown in formula (I) is selected from:
  • B is selected from guanine, adenine, cytosine and uracil; in some specific embodiments, the base between B and the 7th nucleotide at the 5' end of the antisense strand is not modified same.
  • the chemical modification shown in formula (I) is selected from:
  • M is O or S;
  • B is selected from guanine, adenine, cytosine or uracil;
  • the acid is the same as the base when it is not modified.
  • M is S. In some specific embodiments, M is O.
  • At least one phosphate group in the sense strand and/or the antisense strand is a phosphate group with a modification group that allows the siRNA to have an increased stability; in some embodiments, the phosphate group having a modifying group is a phosphorothioate group. In some embodiments, the phosphate group with a modifying group is a phosphorothioate group.
  • the phosphorothioate group is present in at least one of the following positions:
  • the sense strand and/or antisense strand include multiple phosphorothioate groups present in:
  • the sense strand comprises a nucleotide sequence represented by the following formula:
  • Nm represents any nucleotide modified by 2'-methoxy, such as C, G, U, A modified by 2'-methoxy
  • Nf represents any nucleotide modified by 2'-fluoro, such as 2 '- Fluoro-modified C, G, U, A;
  • the lowercase letter s When the lowercase letter s is in the middle, it means that the two nucleotides adjacent to the left and right of the letter s are connected by a phosphorothioate group; The adjacent one nucleotide terminus is a phosphorothioate group.
  • the antisense strand comprises a nucleotide sequence represented by the following formula: 5'-Nm'sNf'sNm'Nf'Nm'Nf'W'Nm'Nm'Nf'Nm'Nf'Nm 'Nf'Nm'Nf'Nm'Nf'Nm'sNm'-3';
  • Nm' represents any nucleotide modified by 2'-methoxy group, such as C, G, U, A modified by 2'-methoxy group
  • Nf' represents any nucleotide modified by 2'-fluoro group, For example, 2'-fluoro modified C, G, U, A;
  • the lowercase letter s When the lowercase letter s is in the middle, it means that the two nucleotides adjacent to the left and right of the letter s are connected by a phosphorothioate group.
  • One adjacent nucleotide terminal is a phosphorothioate group;
  • W' represents a 2'-methoxy modified nucleotide or a modified nucleotide comprising a chemical modification represented by formula (I), its tautomer or a pharmaceutically acceptable salt thereof.
  • W' represents a 2'-methoxy modified nucleotide.
  • W' represents a nucleotide comprising a chemical modification represented by formula (I), a tautomer or a pharmaceutically acceptable salt thereof.
  • the chemical modification represented by formula (I) is selected from:
  • B is selected from guanine, adenine, cytosine and uracil; in some embodiments, B is the same as the base when the 7th nucleotide at the 5' end of the antisense strand is not modified.
  • the chemical modification shown in formula (I) is selected from:
  • M is O or S;
  • B is selected from guanine, adenine, cytosine or uracil;
  • the acid is the same as the base when it is not modified.
  • M is S. In some specific embodiments, M is O.
  • the siRNA is an siRNA targeting the apolipoprotein C3 (APOC3) gene.
  • APOC3 apolipoprotein C3
  • the sense strand of the siRNA comprises at least 15 contiguous nucleotides that differ by no more than 3 nucleotides from any of the nucleotide sequences of SEQ ID NO: 1 to SEQ ID NO: 4 ,and / or,
  • the antisense strand comprises at least 19 contiguous nucleotides that differ by no more than 3 nucleotides from the nucleotide sequence of either of SEQ ID NO:5 or SEQ ID NO:6.
  • the sense strand of the siRNA comprises any one of SEQ ID NO:1 to SEQ ID NO:4, and/or, the antisense strand comprises SEQ ID NO:5 or SEQ ID NO:6 any of the .
  • the siRNA is any of the following:
  • the nucleotide sequence of the sense strand comprises SEQ ID NO:1, and the nucleotide sequence of the antisense strand comprises SEQ ID NO:5;
  • the nucleotide sequence of the sense strand comprises SEQ ID NO:2, and the nucleotide sequence of the antisense strand comprises SEQ ID NO:5;
  • the nucleotide sequence of the sense strand comprises SEQ ID NO:3, and the nucleotide sequence of the antisense strand comprises SEQ ID NO:6;
  • the nucleotide sequence of the sense strand comprises SEQ ID NO:4, and the nucleotide sequence of the antisense strand comprises SEQ ID NO:6.
  • the siRNA is any of the following:
  • the nucleotide sequence of the sense strand is selected from SEQ ID NO:1, and the nucleotide sequence of the antisense strand is selected from SEQ ID NO:5;
  • the nucleotide sequence of the sense strand is selected from SEQ ID NO:2, and the nucleotide sequence of the antisense strand is selected from SEQ ID NO:5;
  • the nucleotide sequence of the sense strand is selected from SEQ ID NO:3, and the nucleotide sequence of the antisense strand is selected from SEQ ID NO:6;
  • the nucleotide sequence of the sense strand is selected from SEQ ID NO:4, and the nucleotide sequence of the antisense strand is selected from SEQ ID NO:6.
  • SEQ ID NO: 1 is UAUUCUCAGUGCUCCCUA
  • SEQ ID NO: 2 is UAUUCUCAGUGCUCUCCUG;
  • SEQ ID NO: 3 is GCACCGUUAAGGACAAGUC
  • SEQ ID NO:4 is GCACCGUUAAGGACAAGUU
  • SEQ ID NO:5 is UAGGAGAGCACUGAGAAUACU
  • SEQ ID NO:6 is AACUUGUCCUUAACGGUGCUC.
  • the siRNA is any of the following:
  • the nucleotide sequence of the sense strand comprises 5'-UAUUCUCAGUGCUCUCCUZ b1 -3' (SEQ ID NO: 24), and the nucleotide sequence of the antisense strand comprises 5'-UAGGAGAGCACUGAGAAUACU-3' (SEQ ID NO: 5);
  • nucleotide sequence of the sense strand comprises 5'-GCACCGUUAAGGACAAGUZ b2 -3' (SEQ ID NO: 52), and the nucleotide sequence of the antisense strand comprises 5'-AACUUGUCCUUAACGGUGCUC-3' (SEQ ID NO: 6) ;
  • Z b1 is A or G; Z b2 is C or U.
  • the dsRNA can be any of the following structures or a pharmaceutically acceptable salt thereof:
  • Z is siRNA, and the 3' end of the sense strand of the siRNA is directly connected to the ligand through a phosphodiester group, and the definition of the siRNA is the same as described in any scheme of the present disclosure.
  • the dsRNA can be any of the following structures or a pharmaceutically acceptable salt thereof,
  • Z is siRNA, and the 3' end of the sense strand of the siRNA is directly connected to the ligand through a phosphodiester group, and the definition of the siRNA is the same as described in any scheme of the present disclosure.
  • the dsRNA can be any of the following structures or a pharmaceutically acceptable salt thereof,
  • Z is siRNA, and the 3' end of the sense strand of the siRNA is directly connected to the ligand through a phosphodiester group, and the definition of the siRNA is the same as that described in any previous scheme.
  • the dsRNA may be of the following structure or a pharmaceutically acceptable salt thereof,
  • Z is siRNA, and the 3' end of the sense strand of the siRNA is directly connected to the ligand through a phosphodiester group, and the definition of the siRNA is the same as described in any scheme of the present disclosure.
  • nucleotide sequence of the sense strand of the dsRNA described in the present disclosure comprises any one of SEQ ID NO:7 to SEQ ID NO:14, and/or,
  • nucleotide sequence of the antisense strand of the dsRNA described in the present disclosure comprises any of SEQ ID NO:17 or SEQ ID NO:18;
  • the dsRNA is any of the following:
  • the sense strand comprises the nucleotide sequence shown in SEQ ID NO:7, and the antisense strand comprises the nucleotide sequence shown in SEQ ID NO:17;
  • the sense strand comprises the nucleotide sequence shown in SEQ ID NO:9, and the antisense strand comprises the nucleotide sequence shown in SEQ ID NO:17;
  • the sense strand comprises the nucleotide sequence shown in SEQ ID NO:11, and the antisense strand comprises the nucleotide sequence shown in SEQ ID NO:18;
  • the sense strand comprises the nucleotide sequence shown in SEQ ID NO:13, and the antisense strand comprises the nucleotide sequence shown in SEQ ID NO:18;
  • the sense strand comprises the nucleotide sequence shown in SEQ ID NO:8, and the antisense strand comprises the nucleotide sequence shown in SEQ ID NO:17;
  • the sense strand comprises the nucleotide sequence shown in SEQ ID NO:10, and the antisense strand comprises the nucleotide sequence shown in SEQ ID NO:17;
  • the sense strand comprises the nucleotide sequence shown in SEQ ID NO:12
  • the antisense strand comprises the nucleotide sequence shown in SEQ ID NO:18;
  • the sense strand comprises the nucleotide sequence shown in SEQ ID NO:14
  • the antisense strand comprises the nucleotide sequence shown in SEQ ID NO:18.
  • the dsRNA is any of the following:
  • the sense strand is selected from SEQ ID NO:7, and the antisense strand is selected from SEQ ID NO:17;
  • the sense strand is selected from SEQ ID NO:9, and the antisense strand is selected from SEQ ID NO:17;
  • the sense strand is selected from SEQ ID NO:11, and the antisense strand is selected from SEQ ID NO:18;
  • the sense strand is selected from SEQ ID NO:13, and the antisense strand is selected from SEQ ID NO:18;
  • the sense strand is selected from SEQ ID NO:8, and the antisense strand is selected from SEQ ID NO:17;
  • the sense strand is selected from SEQ ID NO:10, and the antisense strand is selected from SEQ ID NO:17;
  • the sense strand is selected from SEQ ID NO:12, and the antisense strand is selected from SEQ ID NO:18;
  • the sense strand is selected from SEQ ID NO:14 and the antisense strand is selected from SEQ ID NO:18.
  • the dsRNA is any of the following:
  • the dsRNA is any of the following:
  • SEQ ID NO:10 is N-(SEQ ID NO:10).
  • SEQ ID NO: 11 is N-(SEQ ID NO: 11
  • SEQ ID NO: 12 is
  • SEQ ID NO: 13 is
  • SEQ ID NO: 14 is
  • SEQ ID NO: 17 is
  • SEQ ID NO: 18 is
  • s means that the two nucleotides adjacent to the left and right of the letter s are connected by phosphorothioate groups
  • the dsRNA is selected from TRD007972, TRD007996, TRD007997, TRD008081, TRD007972-1, TRD007996-1, TRD007997-1, or TRD008081-1.
  • the dsRNA is selected from the following structures or pharmaceutically acceptable salts thereof (in order of appearance, the sequences are, respectively, SEQ ID NO 8 and SEQ ID NO 17):
  • the pharmaceutically acceptable salts can be conventional salts in the art, including but not limited to: sodium salts, potassium salts, ammonium salts, amine salts and the like.
  • the dsRNA is TRD007972-1, which is of the following structure (in order of appearance, the sequences are, respectively, SEQ ID NO 8 and SEQ ID NO 17):
  • dsRNAs described in the present disclosure are selected from synthetic sources or prepared in vitro.
  • the present disclosure provides a synthetically derived or in vitro prepared compound selected from the dsRNAs described in the present disclosure.
  • the present disclosure provides a pharmaceutical composition comprising the above-mentioned dsRNA.
  • the pharmaceutical composition further comprises one or more pharmaceutically acceptable excipients.
  • Various delivery systems are known and can be used for the dsRNA or pharmaceutical compositions of the present disclosure, such as encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the compound, receptor-mediated intracellular Endocytosis, construction of nucleic acids as part of retroviral or other vectors.
  • the administration of the dsRNA or pharmaceutical composition of the present disclosure is conventional, and may be administered locally (e.g., by direct injection or implantation) or systemically, or orally, rectally, or gastrointestinally.
  • the parenteral route includes but not limited to subcutaneous injection, intravenous injection, intramuscular injection, intraperitoneal injection, transdermal administration, inhalation administration (such as aerosol), mucosal administration (such as sublingual, nasal intracranial administration), intracranial administration, etc.
  • a dsRNA or pharmaceutical composition provided herein can be administered by injection, eg, intravenous, intramuscular, intradermal, subcutaneous, intraduodenal, or intraperitoneal injection.
  • the dsRNA or pharmaceutical compositions provided by the present disclosure can be packaged in kits.
  • the present disclosure provides an application of the above-mentioned dsRNA or the above-mentioned pharmaceutical composition in the preparation of medicine.
  • the effective amount or effective dose of the dsRNA or pharmaceutical composition is about 0.001 mg/kg body weight to about 200 mg/kg body weight, about 0.01 mg/kg body weight to about 100 mg/kg body weight, or about 0.5 mg /kg body weight to about 50 mg/kg body weight.
  • the medicament can be used to prevent and/or treat diseases related to APOC3 gene expression.
  • the disease is selected from hypertriglyceridemia, obesity, hyperlipidemia, abnormal lipid and/or cholesterol metabolism, atherosclerosis, cardiovascular disease, coronary artery disease, hyperglycerol Triesteremia-induced pancreatitis, metabolic syndrome, type 2 diabetes mellitus, familial chylomicronemia syndrome, or familial partial lipodystrophy.
  • the medicament is useful for the prevention and/or treatment of diseases mediated by elevated triglyceride levels or elevated cholesterol levels.
  • the disease is selected from hypertriglyceridemia, obesity, hyperlipidemia, abnormal lipid and/or cholesterol metabolism, atherosclerosis, cardiovascular disease, coronary artery disease, hyperglycerol Triesteremia-induced pancreatitis, metabolic syndrome, type 2 diabetes mellitus, familial chylomicronemia syndrome, or familial partial lipodystrophy.
  • the present disclosure provides a use of the above-mentioned dsRNA or the above-mentioned pharmaceutical composition in the preparation of a medicament for preventing and/or treating a disease in a subject.
  • the disease may be a disease associated with APOC3 gene expression.
  • the disease is selected from hypertriglyceridemia, obesity, hyperlipidemia, abnormal lipid and/or cholesterol metabolism, atherosclerosis, cardiovascular disease, coronary artery disease, hyperglycerol Triesteremia-induced pancreatitis, metabolic syndrome, type 2 diabetes mellitus, familial chylomicronemia syndrome, or familial partial lipodystrophy.
  • the disease may be a disease mediated by elevated triglyceride levels or elevated cholesterol levels.
  • the disease is selected from hypertriglyceridemia, obesity, hyperlipidemia, abnormal lipid and/or cholesterol metabolism, atherosclerosis, cardiovascular disease, coronary artery disease, hyperglycerol Triesteremia-induced pancreatitis, metabolic syndrome, type 2 diabetes mellitus, familial chylomicronemia syndrome, or familial partial lipodystrophy.
  • the present disclosure provides a method for preventing and/or treating a disease, which comprises administering an effective amount or dose of the above-mentioned dsRNA or the above-mentioned pharmaceutical composition to a subject.
  • the disease may be a disease associated with APOC3 gene expression.
  • the disease is selected from hypertriglyceridemia, obesity, hyperlipidemia, abnormal lipid and/or cholesterol metabolism, atherosclerosis, cardiovascular disease, coronary artery disease, hyperglycerol Triesteremia-induced pancreatitis, metabolic syndrome, type 2 diabetes mellitus, familial chylomicronemia syndrome, or familial partial lipodystrophy.
  • the disease may be a disease mediated by elevated triglyceride levels or elevated cholesterol levels.
  • the disease is selected from hypertriglyceridemia, obesity, hyperlipidemia, abnormal lipid and/or cholesterol metabolism, atherosclerosis, cardiovascular disease, coronary artery disease, hyperglycerol Triesteremia-induced pancreatitis, metabolic syndrome, type 2 diabetes mellitus, familial chylomicronemia syndrome, or familial partial lipodystrophy.
  • the present disclosure provides a method for reducing the low-density lipoprotein level in a subject, which comprises administering to the subject an effective amount or dose of the above-mentioned dsRNA or the above-mentioned pharmaceutical composition.
  • the present disclosure provides a method for silencing APOC3 gene or its mRNA in a cell in vivo or in vitro, which includes the step of introducing the above-mentioned dsRNA or the above-mentioned pharmaceutical composition into the cell.
  • the present disclosure provides a method for inhibiting the expression of APOC3 gene or its mRNA, which comprises administering to a subject an effective amount or dose of the above-mentioned dsRNA or the above-mentioned pharmaceutical composition.
  • the dsRNA or pharmaceutical composition of the present disclosure can reduce the expression level of the target gene or its mRNA in cells, cell groups, tissues or subjects, including: administering a therapeutically effective amount of the dsRNA or pharmaceutical combination described herein to the object substances, thereby inhibiting the expression of the target gene or its mRNA in the subject.
  • the subject has previously been identified as having pathological upregulation of the target gene or mRNA thereof in the targeted cell, cell population, tissue or subject.
  • a subject as described in the present disclosure refers to a subject diagnosed with (or suspected of having, or susceptible to) a disease or condition that would benefit from reduction or inhibition of target mRNA expression.
  • the present disclosure provides a method for delivering oligonucleotides to the liver, which comprises administering to a subject an effective amount or dose of the above-mentioned dsRNA or the above-mentioned pharmaceutical composition.
  • RNAi RNA interference agent
  • dsRNA dsRNA or the above-mentioned pharmaceutical composition.
  • the present disclosure also provides a cell comprising the aforementioned dsRNA or the aforementioned pharmaceutical composition.
  • the present disclosure also provides a kit comprising the above dsRNA or the above pharmaceutical composition.
  • dsRNA or pharmaceutical composition when the above-mentioned dsRNA or pharmaceutical composition is contacted with cells expressing the target gene, for example: psiCHECK activity screening and luciferase reporter gene detection method, other methods such as PCR or based on branched DNA (bDNA), or based on The protein method, such as immunofluorescence analysis, such as Western Blot or flow cytometry, said dsRNA or pharmaceutical composition will inhibit the expression of the target gene by at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85% , at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%.
  • bDNA branched DNA
  • the remaining expression percentage of target gene mRNA caused by the above-mentioned dsRNA or pharmaceutical composition is not higher than 99%, not higher than 95%, not higher Not higher than 90%, not higher than 85%, not higher than 80%, not higher than 75%, not higher than 70%, not higher than 65%, not higher than 60%, not higher than 55%, not higher than 50% %, not more than 45%, not more than 40%, not more than 35%, not more than 30%, not more than 25%, not more than 20%, not more than 15%, or not more than 10% .
  • dsRNA or pharmaceutical composition when the above-mentioned dsRNA or pharmaceutical composition is contacted with cells expressing the target gene, for example: psiCHECK activity screening and luciferase reporter gene detection method, other methods such as PCR or based on branched DNA (bDNA), or based on dsRNA reduces off-target activity by at least 20%, at least 25%, at least 30%, at least 35%, while maintaining on-target activity, as determined by protein methods, such as immunofluorescence assays, e.g., Western Blot, or flow cytometry %, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, or at least 75%.
  • protein methods such as immunofluorescence assays, e.g., Western Blot, or flow cytometry %, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, or at least 75%.
  • dsRNA or pharmaceutical composition when the above-mentioned dsRNA or pharmaceutical composition is contacted with cells expressing the target gene, for example: psiCHECK activity screening and luciferase reporter gene detection method, other methods such as PCR or based on branched DNA (bDNA), or based on dsRNA reduces on-target activity by at most 20%, at most 19%, at most 15%, at most 10%, at most 5%, or by more than 1% as determined by immunofluorescence assays, e.g., Western Blot, or flow cytometry. % while reducing off-target activity by at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70% or at least 75%.
  • bDNA branched DNA
  • dsRNA or pharmaceutical composition when the above-mentioned dsRNA or pharmaceutical composition is contacted with cells expressing the target gene, for example: psiCHECK activity screening and luciferase reporter gene detection method, other methods such as PCR or based on branched DNA (bDNA), or based on dsRNA increases on-target activity by at least 1%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, as determined by protein methods, such as immunofluorescence assays, e.g., Western Blot, or flow cytometry %, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, or at least 80% of the Activity is reduced by at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, or at
  • the present disclosure also provides a method for preparing dsRNA or a pharmaceutical composition, which includes: synthesizing the ligand, siRNA, dsRNA or pharmaceutical composition described in the present disclosure.
  • Compounds of the present disclosure may exist in particular geometric or stereoisomeric forms. This disclosure contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers isomers, (D)-isomers, (L)-isomers, and their racemic and other mixtures, such as enantiomerically or diastereomerically enriched mixtures, all of which are within the scope of this disclosure. Additional asymmetric carbon atoms may be present in substituents such as alkyl groups. All such isomers, as well as mixtures thereof, are included within the scope of this disclosure. Compounds of the present disclosure containing asymmetric carbon atoms can be isolated in optically pure or racemic forms. Optically pure forms can be resolved from racemic mixtures or synthesized by using chiral starting materials or reagents.
  • Optically active (R)- and (S)-isomers as well as D and L-isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If one enantiomer of a compound of the present disclosure is desired, it can be prepared by asymmetric synthesis or derivatization with chiral auxiliary agents, wherein the resulting diastereomeric mixture is separated and the auxiliary group is cleaved to provide pure desired enantiomer.
  • a diastereoisomeric salt is formed with an appropriate optically active acid or base, and then a diastereomeric salt is formed by a conventional method known in the art. Diastereomeric resolution is performed and the pure enantiomers are recovered. Furthermore, the separation of enantiomers and diastereomers is usually accomplished by the use of chromatography using chiral stationary phases, optionally in combination with chemical derivatization methods (e.g. amines to amino groups formate).
  • the bond Indicates unassigned configuration, i.e. if chiral isomers exist in the chemical structure, the bond can be or or both and Two configurations.
  • the bond configuration is not specified, i.e. the key The configuration of can be E type or Z type, or contain both E and Z configurations.
  • tautomer or "tautomeric form” refers to structural isomers of different energies that can interconvert via a low energy barrier.
  • proton tautomers also known as prototropic tautomers
  • lactam-lactim isomerization
  • An example of a lactam-lactim equilibrium is between A and B as shown below.
  • the present disclosure also includes certain isotopically labeled compounds of the disclosure that are identical to those described herein, but wherein one or more atoms are replaced by an atom of an atomic mass or mass number different from that normally found in nature.
  • isotopes that can be incorporated into compounds of the present disclosure include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur, fluorine, iodine, and chlorine, such as 2 H, 3 H, 11 C, 13 C, 14 C, 13 N, 15 N, 15 O, 17 O, 18 O, 31 P, 32 P, 35 S, 18 F, 123 I, 125 I and 36 Cl, etc.
  • deuterium when a position is specifically designated as deuterium (D), the position is understood to have an abundance of deuterium (i.e., at least 10 % deuterium incorporation).
  • exemplary compounds having a natural abundance greater than deuterium can be at least 1000 times more abundant deuterium, at least 2000 times more abundant deuterium, at least 3000 times more abundant deuterium, at least 4000 times more abundant deuterium, at least 5000 times more abundant deuterium, at least 6000 times more abundant deuterium, or more abundant deuterium.
  • the present disclosure also includes compounds of Formula (I), Formula (I'), Formula (II) in various deuterated forms. Each available hydrogen atom attached to a carbon atom can be independently replaced by a deuterium atom.
  • deuterated starting materials can be used when preparing deuterated forms of compounds of formula (I), formula (I'), and formula (II), or they can be synthesized using conventional techniques using deuterated reagents, including But not limited to deuterated borane, trideuterioborane tetrahydrofuran solution, deuterated lithium aluminum hydride, deuterated ethyl iodide and deuterated methyl iodide, etc.
  • the "compound”, “chemical modification”, “ligand”, “dsRNA”, “nucleic acid” and “RNAi” of the present disclosure can be independently salt, mixed salt or non-salt (such as free acid or in the form of the free base).
  • a salt or mixed salt it may be a pharmaceutically acceptable salt.
  • “Pharmaceutically acceptable salt” may be selected from inorganic salts or organic salts, and may also include pharmaceutically acceptable acid addition salts and pharmaceutically acceptable base addition salts.
  • “Pharmaceutically acceptable acid addition salt” refers to a salt formed with an inorganic or organic acid that retains the biological effectiveness of the free base without other side effects.
  • Inorganic acid salts include but not limited to hydrochloride, hydrobromide, sulfate, nitrate, phosphate, etc.
  • organic acid salts include but not limited to formate, acetate, 2,2-dichloroacetate , Trifluoroacetate, Propionate, Caproate, Caprylate, Caprate, Undecylenate, Glycolate, Gluconate, Lactate, Sebacate, Hexanoate glutarate, malonate, oxalate, maleate, succinate, fumarate, tartrate, citrate, palmitate, stearate, oleate , cinnamate, laurate, malate, glutamate, pyroglutamate, aspartate, benzoate, mesylate, benzenesulfonate, p
  • “Pharmaceutically acceptable base addition salt” refers to a salt formed with an inorganic base or an organic base that can maintain the biological effectiveness of the free acid without other side effects.
  • Salts derived from inorganic bases include, but are not limited to, sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum, and the like.
  • Preferred inorganic salts are ammonium, sodium, potassium, calcium and magnesium salts, preferably sodium salts.
  • Salts derived from organic bases include, but are not limited to, those of primary, secondary, and tertiary amines, substituted amines, including natural substituted amines, cyclic amines, and basic ion exchange resins , such as ammonia, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, diethanolamine, triethanolamine, dimethylethanolamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, bicyclic Hexylamine, Lysine, Arginine, Histidine, Caffeine, Procaine, Choline, Betaine, Ethylenediamine, Glucosamine, Methylglucamine, Theobromine, Purine, Piperazine, Piperazine Pyridine, N-ethylpiperidine, polyamine resin, etc.
  • Preferred organic bases include isopropylamine, diethylamine, ethanolamine, trimethylamine,
  • Alkyl refers to a saturated aliphatic hydrocarbon group, such as straight chain and branched chain groups (C 1 -C 30 alkyl groups) including 1 to 30 carbon atoms, and for example, alkyl groups containing 1 to 6 carbon atoms (C 1 -C 6 alkyl), another example is an alkyl (C 1 -C 3 alkyl) having 1 to 3 carbon atoms.
  • Non-limiting examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, n-pentyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl and various branched isomers, etc.
  • alkenyl refers to a hydrocarbon group containing at least one double bond.
  • alkenyl include, but are not limited to, ethenyl, 1-propenyl, 2-propenyl, 1-butenyl, or 2-butenyl, and various branched isomers thereof.
  • alkynyl refers to a hydrocarbon group containing at least one triple bond.
  • alkynyl include, but are not limited to, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, or 2-butynyl, and various branched isomers thereof.
  • alkoxy refers to -O-(alkyl), wherein alkyl is as defined above.
  • alkoxy include: methoxy, ethoxy, propoxy, butoxy.
  • Cycloalkyl refers to a saturated or partially unsaturated monocyclic or polycyclic cyclic hydrocarbon substituent, the cycloalkyl ring contains 3 to 20 carbon atoms, preferably contains 3 to 6 carbon atoms, more preferably contains 5-6 carbon atom.
  • monocyclic cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cyclohexadienyl, etc.; multicyclic cycloalkyls include spiro Cycloalkyls of rings, parallel rings and bridged rings.
  • Heterocycloalkyl means a saturated or partially unsaturated monocyclic or polycyclic cyclic hydrocarbon substituent containing 3 to 20 ring atoms, one or more of which is selected from nitrogen, oxygen or S(O) m (where m is an integer from 0 to 2), but excluding ring portions of -OO-, -OS- or -SS-, the remaining ring atoms being carbon. Preferably it contains 3 to 12 ring atoms, of which 1 to 4 are heteroatoms; more preferably it contains 3 to 7 ring atoms.
  • Non-limiting examples of “heterocycloalkyl” include:
  • heterocycloalkyl ring may be fused to an aryl or heteroaryl ring, wherein the ring bonded to the parent structure is a heterocycloalkyl, non-limiting examples of which include:
  • Aryl means a 6 to 14 membered all-carbon monocyclic or fused polycyclic (that is, rings sharing adjacent pairs of carbon atoms) group, preferably 6 to 12 membered, having a conjugated pi-electron system, such as phenyl and naphthyl.
  • the aryl ring may be fused to a heteroaryl, heterocycloalkyl or cycloalkyl ring, where the ring bonded to the parent structure is an aryl ring, non-limiting examples of which include:
  • Heteroaryl refers to a heteroaromatic system comprising 1 to 4 heteroatoms, 5 to 14 ring atoms, wherein the heteroatoms are selected from oxygen, sulfur and nitrogen.
  • the heteroaryl group is preferably 6 to 12 membered, more preferably 5 or 6 membered.
  • Non-limiting examples thereof include: imidazolyl, furyl, thienyl, thiazolyl, pyrazolyl, oxazolyl, isoxazolyl, pyrrolyl, tetrazolyl, pyridyl, pyrimidinyl , Thiadiazole, pyrazinyl, triazolyl, indazolyl, benzimidazolyl, wait.
  • the heteroaryl ring may be fused to an aryl, heterocycloalkyl or cycloalkyl ring, wherein the ring bonded to the parent structure is a heteroaryl ring, non-limiting examples of which include:
  • hydroxyl refers to a -OH group.
  • halogen refers to fluorine, chlorine, bromine or iodine.
  • cyano refers to -CN.
  • amino refers to -NH2 .
  • nitro refers to -NO2 .
  • a "phosphate group” can be a phosphoric acid monoester group, a phosphoric diester group or a phosphoric acid triester group, preferably a phosphoric diester group; Group" has the same meaning.
  • phosphorothioate group refers to a phosphodiester group modified by replacing a non-bridging oxygen atom with a sulfur atom, which can be used (M is an S atom) are used interchangeably.
  • substitution means that one or more hydrogen atoms in a group, preferably at most 5, more preferably 1 to 3 hydrogen atoms are independently substituted by a corresponding number of substituents.
  • two (2) hydrogens on the atom are replaced.
  • group middle A moiety can be replaced by any group that enables linkage to adjacent nucleotides.
  • linked when referring to a link between two molecules, means that two molecules are connected by a covalent bond or that two molecules are associated by a non-covalent bond (for example, a hydrogen bond or an ionic bond), including direct connection, indirect connect.
  • a non-covalent bond for example, a hydrogen bond or an ionic bond
  • directly linked means that a first compound or group is linked to a second compound or group without any intervening atoms or groups of atoms.
  • directly linked means that a first compound or group is linked to a second compound or group through an intervening group, compound or molecule (eg, a linking group).
  • “Pharmaceutical composition” means a mixture containing one or more compounds described herein, or a physiologically acceptable salt or prodrug thereof, and other chemical components, as well as other components such as physiologically acceptable carriers and excipients. Forming agent.
  • the purpose of the pharmaceutical composition is to promote the administration to the organism, facilitate the absorption of the active ingredient and thus exert biological activity.
  • “Pharmaceutically acceptable excipients” include, but are not limited to, any adjuvants, carriers, glidants, sweeteners, Diluents, preservatives, dyes/colorants, flavor enhancers, surfactants, wetting agents, dispersing agents, suspending agents, stabilizers, isotonic agents, buffers, solvents or emulsifying agents.
  • the term “inhibit”, is used interchangeably with “reduce”, “silence”, “downregulate”, “suppress” and other similar terms, and includes any level of inhibition. Inhibition can be assessed by a reduction in the absolute or relative level of one or more of these variables compared to control levels.
  • the control level can be any type of control level used in the art, such as a pre-dose baseline level or from a similar untreated or control (eg buffer only or inert control) treated subject, cell , or sample-determined levels.
  • the residual expression of mRNA can be used to characterize the inhibition degree of siRNA on target gene expression, such as the remaining expression of mRNA is not higher than 99%, not higher than 95%, not higher than 90%, not higher than 85%, not higher than More than 80%, not more than 75%, not more than 70%, not more than 65%, not more than 60%, not more than 55%, not more than 50%, not more than 45%, not more than 40%, not higher than 35%, not higher than 30%, not higher than 25%, not higher than 20%, not higher than 15%, or not higher than 10%.
  • an “effective amount” or “effective dose” includes an amount sufficient to ameliorate or prevent a symptom or condition of a medical condition.
  • An effective amount also means an amount sufficient to allow or facilitate diagnosis.
  • Effective amounts for a particular patient or veterinary subject may vary depending on factors such as the condition being treated, the general health of the patient, the method, route and dosage of administration, and the severity of side effects.
  • An effective amount may be the maximum dose or dosing regimen that avoids significant side effects or toxic effects.
  • subject As used herein, “subject”, “patient”, “subject” or “individual” are used interchangeably and include humans or non-human animals such as mammals such as humans or monkeys.
  • sense strand also known as SS, SS strand or sense strand
  • antisense strand also known as AS or AS strand
  • AS or AS strand refers to The strand having a sequence complementary to the target mRNA sequence
  • the "5' region” of the sense strand or the antisense strand can be used interchangeably.
  • the 2nd to 8th nucleotides in the 5' region of the antisense strand can also be replaced with the 2nd to 8th nucleotides at the 5' end of the antisense strand.
  • the "3' region”, “3' end” and “3' end” of the sense strand or the antisense strand can also be used interchangeably.
  • the term "the nucleotide sequence of any of SEQ ID NO: 1 to SEQ ID NO: 4 differs by at least 15 consecutive nucleotides of no more than 3 nucleotide sequences "Acid" is intended to mean that the siRNA sense strand described herein comprises at least 15 contiguous nucleotides as with any sense strand of SEQ ID NO: 1 to SEQ ID NO: 4, or with SEQ ID NO: 1 to At least 15 consecutive nucleotides of any sense strand in SEQ ID NO: 4 differ by no more than 3 nucleotide sequences, optionally, differ by no more than 2 nucleotide sequences, optionally, differ by 1 nucleotide sequence Nucleotide sequence.
  • the siRNA sense strand described herein comprises at least 16 consecutive nucleotides of any sense strand of SEQ ID NO:1 to SEQ ID NO:4, or with SEQ ID NO:1 to SEQ ID NO: 4 At least 16 consecutive nucleotides of any sense strand differ by no more than 3 nucleotide sequences, optionally, differ by no more than 2 nucleotide sequences, optionally, differ by 1 nucleotide sequence;
  • the term "at least 15 consecutive nucleotides differing by no more than 3 nucleotides from either antisense strand of SEQ ID NO: 5 or SEQ ID NO: 6 " is intended to represent at least 15 contiguous nucleotides of any of the antisense strands of SEQ ID NO:5 or SEQ ID NO:6 described herein, or with any of SEQ ID NO:5 or SEQ ID NO:6
  • At least 15 contiguous nucleotides of the antisense strand differ by no more than 3 nucleotide sequences, optionally by no more than 2 nucleotide sequences, optionally by 1 nucleotide sequence.
  • G", “C”, “A”, “T” and “U” respectively represent nucleotides, which respectively contain guanine, cytosine, adenine, thymidine base with uracil.
  • the lowercase letter d indicates that the nucleotide adjacent to the right side of the letter d is a deoxyribonucleotide; the lowercase letter m indicates that the nucleotide adjacent to the left side of the letter m is a methoxy-modified nucleotide; The letter f indicates that the nucleotide adjacent to the left of the letter f is a fluorinated nucleotide; the lowercase letter s indicates that the two nucleotides adjacent to the left and right of the letter s are phosphorothioate groups connect.
  • 2'-fluoro (2'-F) modified nucleotide refers to a nucleotide in which the hydroxyl group at the 2' position of the ribose group of the nucleotide is replaced by fluorine
  • non-fluorine Modified nucleotides refer to nucleotides or nucleotide analogues in which the hydroxyl group at the 2' position of the ribose group of a nucleotide is replaced by a non-fluorine group.
  • 2'-methoxy (2'-OMe) modified nucleotide refers to a nucleotide in which the 2'-hydroxyl group of the ribose group is substituted with a methoxy group.
  • nucleotide difference exists between a nucleotide sequence and another nucleotide sequence, which means that the base type of the nucleotide at the same position has changed between the former and the latter, For example, when a nucleotide base in the latter is A, and the corresponding nucleotide base at the same position in the former is U, C, G or T, it is recognized as a difference between the two nucleotide sequences. There is a nucleotide difference at this position. In some embodiments, when the nucleotide at the original position is replaced by an abasic nucleotide or its equivalent, it can also be considered that a nucleotide difference occurs at that position.
  • dsRNA refers to a double-stranded RNA molecule capable of RNA interference, comprising a sense strand and an antisense strand.
  • the terms "complementary” or “reverse complementary” are used interchangeably and have the meaning known to those skilled in the art, that is, in a double-stranded nucleic acid molecule, the bases of one strand interact with the other. The bases on the strand pair up in a complementary fashion.
  • the purine base adenine always pairs with the pyrimidine base thymine (or, in RNA, uracil); the purine base guanine always pairs with the pyrimidine base cytosine.
  • Each base pair consists of a purine and a pyrimidine.
  • mismatch in the art means that in a double-stranded nucleic acid, the bases at the corresponding positions are not paired in a complementary form.
  • chemical modification includes all alterations of nucleotides by chemical means, such as the addition or removal of chemical moieties, or the substitution of one chemical moiety for another.
  • base includes any known DNA and RNA base, base analogs such as purine or pyrimidine, which also includes the natural compounds adenine, thymine, guanine, cytosine, uracil, inosine and Natural analogs. Base analogs can also be universal bases.
  • blunt end or blunt end are used interchangeably and refer to the absence of unpaired nucleotides or nucleotide analogs at a given end of an siRNA, ie, no nucleotide overhangs. In most cases, siRNAs with both blunt-ended ends will be double-stranded throughout their entire length.
  • the siRNA provided in the present disclosure can be obtained by conventional preparation methods in the art (such as solid-phase synthesis and liquid-phase synthesis). Among them, solid-phase synthesis has commercialized customized services.
  • a modified nucleotide group can be introduced into the siRNA described in the present disclosure by using a correspondingly modified nucleoside monomer, a method for preparing a correspondingly modified nucleoside monomer and introducing a modified nucleotide group Methods of siRNA are also well known to those skilled in the art.
  • Fig. 1 is the expression level of mRNA in TTR on the 7th day after administration of TRD002218 and TRD007205.
  • Figure 2 shows the mRNA expression levels in TTR of TRD002218 and TRD007205 on the 28th day after administration.
  • Embodiment 1 Preparation of chemical modification
  • Racemate compound 6 was passed through a chiral column (Daicel IE 250*4.6mm, 5 ⁇ m, A: n-hexane, B: ethanol) resolved to obtain 410mg 6A(-) and 435mg 6B(+).
  • compound 5 (6.8 g, 18.581 mmol) was dissolved in pyridine (80 mL), and TMSCl (14.250 mL, 111.489 mmol) was slowly added at 0° C., and stirred for 2 h. Then Isobutyryl chloride (2.044 mL, 19.511 mmol) was added at 0°C and stirred at 25°C for 1 h. LCMS showed the reaction was complete.
  • reaction solution was extracted with ethyl acetate (200mL) and water (200mL), the organic phase was dried and spin-dried, and the mixed sample was purified by a forward column (PE:EtOAc was passed through the column, and the peak was at 84%) to obtain yellow oily compound 7 (12g).
  • compound 1 (5g, 23.1272mmol), compound 2 (6.76g, 46.254mmol) and triphenylphosphine (7.28g, 27.753mmol) were dissolved in 30mL of dioxane, and slowly dropped at 0°C DEAD (5.502 mL, 27.753 mmol) was added. After the dropwise addition was completed, the temperature of the reaction was slowly raised to 25° C. to continue the reaction for 1 h.
  • dsRNA dsRNA
  • phosphoramidite monomer synthesized above is used to replace the original nucleotide of the parent sequence.
  • the synthesis process is briefly described as follows: On Dr. Oligo48 synthesizer (Biolytic), start with Universal CPG carrier, and link nucleoside phosphoramidite monomers one by one according to the synthesis procedure.
  • nucleoside phosphoramidite monomer at the 5' 7th position of the AS chain described above, other nucleoside monomer raw materials such as 2'-F RNA, 2'-O-methyl RNA and other nucleoside phosphoramidite monomers can be purchased From Shanghai Zhaowei or Suzhou Jima.
  • ETT 5-ethylthio-1H-tetrazole
  • PADS 0.22M PADS dissolved in acetonitrile and collidine
  • the oligoribonucleotide is cleaved from the solid support, and soaked at 50° C. for 16 hours using a 3:1 28% ammonia water and ethanol solution. Then centrifuged, the supernatant was transferred to another centrifuge tube, concentrated and evaporated to dryness, purified by C18 reverse chromatography, the mobile phase was 0.1M TEAA and acetonitrile, and 3% trifluoroacetic acid solution was used to remove DMTr.
  • the target oligonucleotides were collected and freeze-dried, identified as the target product by LC-MS, and then quantified by UV (260nm).
  • the obtained single-stranded oligonucleotides were annealed according to the equimolar ratio and complementary pairing, and finally the obtained dsRNA was dissolved in 1 ⁇ PBS and adjusted to the required concentration for the experiment.
  • Lipo 0.2 ⁇ L/well
  • plasmid 0.05 ⁇ L/well
  • Opti-MEM 10 ⁇ L/well.
  • Embodiment 4 Characterization of different chemical modifications
  • hmpNA from nucleotides synthesized from 2-hydroxymethyl-1,3-propanediol as the starting material
  • (+)hmpNA(A) is obtained by solid-phase synthesis of the nucleoside phosphoramidite monomer 1-1b in Example 1.1, and the absolute configuration is (S)-hmpNA(A);
  • (-)hmpNA(A) is obtained by solid-phase synthesis of nucleoside phosphoramidite monomer 1-1a in Example 1.1, and its absolute configuration is (R)-hmpNA(A);
  • (+)hmpNA(G) the absolute configuration is (S)-hmpNA(G);
  • (+)hmpNA(C) the absolute configuration is (S)-hmpNA(C);
  • (+)hmpNA(U) the absolute configuration is (R)-hmpNA(U);
  • TJ-NA067 The detection crystal is a colorless block (0.30 ⁇ 0.10 ⁇ 0.04mm3), which belongs to the monoclinic crystal system P21 space group.
  • the detection crystal is a colorless block (0.30 ⁇ 0.20 ⁇ 0.10mm3), belonging to the monoclinic crystal system P21 space group.
  • TJ-NA048 The detected crystal is colorless needle-shaped (0.30 ⁇ 0.04 ⁇ 0.04mm3), belonging to the monoclinic P1 space group.
  • dsRNA targeting different gene (ANGPTL3, HBV-S, HBV-X) mRNAs (sequences are shown in Table 4), using the compounds (+)hmpNA(A) and (-)hmpNA(A) of Example 1 And GNA (A) as a control modified the 7th position of the 5' end of the AS chain (the sequence is shown in Table 5), and then compared with the parent sequence on the target activity and off-target activity.
  • uppercase letters G, A, C, and U represent nucleotides containing guanine, adenine, cytosine, and uracil, respectively
  • lowercase letter m represents 2'-methoxy modification
  • lowercase letter f represents 2 '-Fluoro modification
  • the lowercase letter s indicates that the two nucleotides adjacent to the letter s are linked by phosphorothioate groups; the same below.
  • Embodiment 6 preparation NAG0052, L96
  • the starting material Compound 1 was purchased from Jiangsu Beida Pharmaceutical Technology Co., Ltd.
  • the synthetic route of compound NAG0052 is as follows:
  • TMSCN (13.5mL, 101mmol) was added to a solution of compound 2 (13.0g, 33.6mmol) in DCM (300mL) at one time, followed by dropwise addition of TMSOTf (9.14mL, 50.5mmol) in DCM (30 mL) solution. The reaction solution was stirred at 20°C for 15 hours.
  • the compound NAG0024 (271 mg, 0.151 mmol) was dissolved in anhydrous THF (2 mL) and anhydrous DMF (4 mL), and 3A molecular sieves were added, followed by addition of compound 12 (100 mg, 0.151 mmol), HOBt ( 25mg, 0.181mmol), DCC (38mg, 0.181mmol) and DIEA (39mg, 0.302mmol).
  • the reaction solution was reacted at 45°C for 16h. After LC-MS showed that the reaction was complete, it was quenched with water and filtered. After the filtrate was concentrated, it was purified by C18 reverse phase column (H 2 O/MeCN) to obtain compound 13 (210 mg, yield 57%).
  • the compound NAG0052 (157mg, 0.062mmol) containing a carboxylic acid group was dissolved in anhydrous DMF (3mL). After the substrate was completely dissolved, anhydrous acetonitrile (4mL), DIEA (0.03mL, 0.154mmol, 2.5eq ) and HBTU (35mg, 0.093mmol, 1.5eq). After the reaction solution was mixed evenly, macroporous amine methyl resin (476mg, blank load was 0.41mmol/g, target load was 0.1mmol/g) was added. The reaction solution was placed on a shaker (temperature: 25°C, rotation speed: 200 rpm) and shaken overnight. The reaction liquid was filtered, and the filter cake was washed successively with DCM and anhydrous acetonitrile, and the solid was collected and dried overnight in vacuum.
  • the above solid was dispersed in anhydrous acetonitrile (5 mL), and pyridine (0.18 mL), DMAP (3 mg), NMI (0.12 mL) and CapB1 (2.68 mL) were added sequentially.
  • the reaction solution was placed on a shaker (temperature: 25° C., rotation speed: 200 rpm) and shaken for 2 h.
  • the reaction liquid was filtered, and the filter cake was washed with anhydrous acetonitrile, and the solid was collected and vacuum-dried overnight to obtain a resin with a carrier.
  • the loading capacity was determined to be 0.1 mmol/g.
  • NAG0052 For the NAG0052 that has been connected to the resin, use the resin as a starting point, and connect the nucleoside monomers one by one from the 3'-5' direction according to the sequence of nucleotide arrangement. Each connection of a nucleoside monomer includes four steps of deprotection, coupling, capping, oxidation or sulfurization. The operation is conventional in the art.
  • NAG0052 is connected to the sequence through solid-phase synthesis, and after aminolysis, the structure of NAG0052 loses some functional groups to become NAG0052'.
  • the prepared dsRNA had the sense and antisense strands shown in Table 8 and Table 9.
  • TRD002218 is used as a reference positive compound
  • Z represents siRNA
  • mice Male 6-8 week-old C57BL/6 mice were randomly divided into 6 groups, 3 at each time point, and each group was given TRD007205, reference positive TRD002218 and PBS.

Abstract

提供一种dsRNA、其制备方法及应用。还提供包含该dsRNA的药物组合物、细胞或试剂盒。所述 dsRNA可以干扰APOC3基因的表达,预防和/或治疗相关疾病。

Description

一种dsRNA、其制备方法及应用
本公开要求申请日为2021年12月16日的中国专利申请202111542323.X的优先权,和申请日为2022年01月19日的中国专利申请202210059877.2的优先权,本公开引用上述中国专利申请的全文。
技术领域
本公开涉及一种dsRNA、该dsRNA可以被靶向递送到细胞内,发挥RNA干扰的作用。本公开还涉及dsRNA的制备方法及应用。
技术背景
RNA干扰(RNAi)是一种有效的沉默基因表达的方式。据统计,在人体内的疾病相关蛋白中,大约超过80%的蛋白质不能被目前常规的小分子药物以及生物大分子制剂所靶向,属于不可成药蛋白。利用RNA干扰技术,可以根据编码这些蛋白的mRNA,设计合适的siRNA,特异性靶向目标mRNA并降解目标mRNA,从而达到抑制相关的蛋白生成。因此siRNA具有非常重要的药物开发前景。然而要实现体内的治疗目的RNA干扰效应,需要向体内特定的细胞递送siRNA分子。
采用靶向配体缀合siRNA,利用靶向配体与细胞膜表面的受体分子结构,从而内吞进入到细胞内,是一种有效的药物递送方式。例如,去唾液酸糖蛋白受体(ASGPR)是肝细胞特异性表达的受体,在肝细胞表面具有高丰度,胞内外转换快速的特点。半乳糖、半乳糖胺、N-乙酰半乳糖胺等单糖和多糖分子对ASGPR有高亲和性。文献报道(10.16476/j.pibb.2015.0028)使用氨基半乳糖分子簇(GalNAc)可以有效递送RNA到肝细胞,GalNAc分子被设计成三价或四价的分子簇可以显著提高单价或二价的GalNAc分子靶向肝细胞的能力。
不同分子簇结构,和与RNA之间不同的连接方式会明显的影响siRNA在体内的活性,更高的活性意味着更好的治疗效果,或更低的给药剂量,在同等药效下,更低的给药剂量也意味着更低的毒性反应。因此合理设计靶向配体和siRNA的共价连接方式具有重要意义。
APOC3主要在肝脏中合成,并在富含甘油三酯的脂蛋白的产生、代谢以及从血浆的清除中发挥重要作用。肝脏中APOC3的表达可以促进富含甘油三酯的极低密度脂蛋白(VLDL)的分泌。另外,APOC3还可以通过抑制脂蛋白脂肪酶和肝脂肪酶的活性,来抑制富含甘油三酯的脂蛋白的分解代谢,进一步提高血清甘油三酯水平。此外,APOC3也可以通过干扰富含甘油三酯的脂蛋白和与肝受体的结合来抑制富含甘油三酯的脂蛋白和其残余颗粒的肝清除。
升高的ApoC3水平与升高的甘油三酯水平和诸如心血管疾病、代谢综合征、 肥胖和糖尿病之类的疾病相关联。近年来,APOC3已成为用于治疗与高甘油三酯血症相关的疾病的有前景的靶标。升高的血清甘油三酯水平被鉴定为心血管疾病的独立风险因素和发展为动脉粥样硬化的促成因素。具有重度高甘油三酯血症的个体也具有发展为复发性胰腺炎的高风险。
发明内容
第一方面,本公开提供了一种双链核糖核酸(dsRNA),其包含siRNA和一个或多个与其缀合的配体,所述siRNA包含有义链和反义链,所述反义链在其5’端的第2位至第8位中的至少一个核苷酸位置处包含式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐:
Figure PCTCN2022139462-appb-000001
其中:Y选自O、NH和S;
每个X独立地选自CR 4(R 4’)、S、NR 5和NH-CO,其中R 4、R 4’、R 5分别独立地为H或C 1-C 6烷基;
J 2为H或C 1-C 6烷基;
n=0、1或2;m=0、1或2;s=0或1;
R 3选自H、OH、卤素、NH 2、C 1-C 6烷基、C 1-C 6烷氧基、C 2-C 6烯基、C 2-C 6炔基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-烷基氨基和(CH 2) pR 6;其中R 6选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,p=1、2或3;
Q 1
Figure PCTCN2022139462-appb-000002
Q 2为R 2;或者Q 1为R 2,Q 2
Figure PCTCN2022139462-appb-000003
其中:
R 1选自H、C 1-C 6烷基、C 1-C 6烷氧基、C 2-C 6烯基、C 2-C 6炔基和(CH 2) qR 7;其中R 7选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,q=1、2或3;
J 1为H或C 1-C 6烷基;
R 2选自H、OH、卤素、NH 2、C 1-C 6烷基、C 1-C 6烷氧基、C 2-C 6烯基、C 2-C 6炔基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-烷基氨基和(CH 2) rR 8;其中R 8选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,r=1、2或3;
任选地,R 1和R 2直接相连成环;
B是碱基;
所述式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐修饰不是
Figure PCTCN2022139462-appb-000004
所述配体为如式(II)所示化合物或其药学上可接受的盐,
Figure PCTCN2022139462-appb-000005
其中,L 1为C 1-C 30烷基链、或包含被一个或多个氧、硫、氮原子或C=O间断的C 1-C 30烷基链;
R 11和R 12独立地为化学键、NR 16、C=O或-OC(=O)-;
Q 3
Figure PCTCN2022139462-appb-000006
Figure PCTCN2022139462-appb-000007
为单键或双键,且当
Figure PCTCN2022139462-appb-000008
为单键时,R 13独立地为CR 17R 18、NR 16、O或S,当
Figure PCTCN2022139462-appb-000009
为双键时,R 13独立地为CR 19或N;
R 14独立地为CR 19或N;
环A为存在或不存在的环烷基、杂环烷基、芳基或杂芳基,且当环A存在时,R 15独立地为CR 19或N,当环A不存在时,R 15独立地为CR 17R 18、NR 16或O;
R 16和R 19独立地为氢、氘、烷基、烷氧基、环烷基、杂环烷基、芳基、杂芳基、SR'、S(=O)R'、S(=O) 2R'、S(=O) 2NR'(R”)、NR'(R”)、C(=O)R'、C(=O)OR'或C(=O)NR'(R”),所述烷基、烷氧基、环烷基、杂环烷基、芳基或杂芳基任选被一个或多个选自卤素、羟基、氧代、硝基、氰基、C 1-6烷基、C 1-6烷氧基、C 3-7环烷基、3-12元杂环烷基、6-12元芳基、5-12元杂芳基、SR'、S(=O)R'、S(=O) 2R'、S(=O) 2NR'(R”)、NR'(R”)、C(=O)R'、C(=O)OR'和C(=O)NR'(R”)中的基团所取代;
R 17和R 18独立地为氢、氘、烷基、烷氧基、环烷基、杂环烷基、芳基、杂芳基、SR'、S(=O)R'、S(=O) 2R'、S(=O) 2NR'(R”)、NR'(R”)、C(=O)R'、C(=O)OR'或C(=O)NR'(R”),所述烷基、烷氧基、环烷基、杂环烷基、芳基或杂芳基任选被一个或多个选自卤素、羟基、氧代、硝基、氰基、C 1-6烷基、C 1-6烷氧基、C 3-7环烷基、3-12元杂环烷基、6-12元芳基、5-12元杂芳基、SR'、S(=O)R'、S(=O) 2R'、S(=O) 2NR'(R”)、 NR'(R”)、C(=O)R'、C(=O)OR'和C(=O)NR'(R”)中的基团所取代;
R'和R”独立地为氢、氘、羟基、烷基、烷氧基、环烷基、杂环烷基、芳基或杂芳基,所述烷基、烷氧基、环烷基、杂环烷基、芳基或杂芳基任选被一个或多个选自卤素、羟基、氧代、硝基和氰基中的取代基所取代;
m1、n1、p1和q1独立地为0、1、2、3或4;
B1为
Figure PCTCN2022139462-appb-000010
R b1、R b2、R b3、R b4、R b5、R b6和R b7独立地为-C(=O)-、-NHC(=O)-、-C(=O)O-、-C(=O)-(CH 2) z8-O-或-NHC(=O)-(CH 2) z9-O-;
z1、z2、z3、z4、z5、z6、z7、z8和z9独立地为0-10的整数;
L 2为C 1-C 30烷基链、或包含被一个或多个氧、硫、氮原子或C=O间断的C 1-C 30烷基链;
r1为1-10的整数。
在一些实施方案中(某些基团或特征的定义如下,未定义的基团或特征同其他任一方案所述,以下简称“在一些实施方案中”),当X为NH-CO时,R 1不是H。
在一些实施方案中,以2’-甲氧基修饰替换式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐。
在一些实施方案中,所述反义链在其5’端的第2位至第8位中的至少一个核苷酸为2’-甲氧基修饰的核苷酸。
在一些实施方案中,式(I)所示的化学修饰选自式(I-1)所示的化学修饰:
Figure PCTCN2022139462-appb-000011
其中:Y选自O、NH和S;
每个X独立地选自CR 4(R 4’)、S、NR 5和NH-CO,其中R 4、R 4’、R 5分别独立地为H或C 1-C 6烷基;
每个J 1、J 2分别独立地为H或C 1-C 6烷基;
n=0、1或2;m=0、1或2;s=0或1;
R 3选自H、OH、卤素、NH 2、C 1-C 6烷基、C 1-C 6烷氧基、C 2-C 6烯基、C 2-C 6 炔基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-烷基氨基和(CH 2) pR 6;其中R 6选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,p=1、2或3;
R 1选自H、C 1-C 6烷基、C 1-C 6烷氧基、C 2-C 6烯基、C 2-C 6炔基和(CH 2) qR 7;其中R 7选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,q=1、2或3;
R 2选自H、OH、卤素、NH 2、C 1-C 6烷基、C 1-C 6烷氧基、C 2-C 6烯基、C 2-C 6炔基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-烷基氨基和(CH 2) rR 8;其中R 8选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,r=1、2或3;
任选地,R 1和R 2直接相连成环;
B如式(I)中所定义。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,式(I)所示的化学修饰选自
Figure PCTCN2022139462-appb-000012
其中Y选自O、NH和S;
每个X独立地选自CR 4(R 4’)、S、NR 5和NH-CO,其中R 4、R 4’、R 5分别独立地为H或C 1-C 6烷基;
n=0、1或2;m=0、1或2;s=0或1;
每个J 1、J 2分别独立地为H或C 1-C 6烷基;
R 3选自H、OH、卤素、NH 2、C 1-C 6烷基、C 1-C 6烷氧基、C 2-C 6烯基、C 2-C 6 炔基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-烷基氨基和(CH 2) pR 6;其中R 6选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,p=1、2或3;
R 1选自H、C 1-C 6烷基、C 1-C 6烷氧基、C 2-C 6烯基、C 2-C 6炔基和(CH 2) qR 7;其中R 7选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,q=1、2或3;
R 2选自H、C 1-C 6烷基、C 1-C 6烷氧基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-烷基氨基和(CH 2) rR 8;其中R 8选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基;r=1、2或3;
任选地,R 1和R 2直接相连成环;
B如式(I)中所定义。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,每个X独立地选自CR 4(R 4’)、S、NR 5和NH-CO,其中R 4、R 4’、R 5分别独立地为H或C 1-C 3烷基;
n=0、1或2;m=0、1或2;s=0或1;
每个J 1、J 2分别独立地为H或C 1-C 3烷基;
R 3选自H、OH、卤素、NH 2、C 1-C 3烷基、C 1-C 3烷氧基、C 2-C 4烯基、C 2-C 4炔基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-烷基氨基和(CH 2) pR 6;其中R 6选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,p=1、2或3;
R 1选自H、C 1-C 3烷基、C 1-C 3烷氧基、C 2-C 4烯基、C 2-C 4炔基和(CH 2) qR 7;其中R 7选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 4烯基和C 2-C 4炔基,q=1、2或3;
R 2选自H、OH、卤素、NH 2、C 1-C 3烷基、C 1-C 3烷氧基、C 2-C 4烯基、C 2-C 4炔基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-烷基氨基和(CH 2) rR 8;其中R 8选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 4烯基和C 2-C 4炔基,r=1、2或3;
任选地,R 1和R 2直接相连成环;
B如式(I)中所定义。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基 吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,每个X独立地选自CR 4(R 4’)、S、NR 5和NH-CO,其中R 4、R 4’、R 5分别独立地为H、甲基、乙基、正丙基或异丙基;
n=0、1或2;m=0、1或2;s=0或1;
每个J 1、J 2分别独立地为H或甲基;
R 3选自H、OH、F、Cl、NH 2、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基、乙烯基、烯丙基、乙炔基、炔丙基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-甲基氨基、-O-乙基氨基和(CH 2) pR 6;其中R 6选自OH、F、Cl、甲氧基、乙氧基、N 3、乙烯基、烯丙基、乙炔基和炔丙基,p=1或2;
R 1选自H、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基、乙烯基、烯丙基、乙炔基、炔丙基和(CH 2) qR 7;其中R 7选自OH、F、Cl、甲氧基、乙氧基、N 3、乙烯基、烯丙基、乙炔基和炔丙基,q=1或2;
R 2选自H、OH、F、Cl、NH 2、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基、乙烯基、烯丙基、乙炔基、炔丙基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-甲基氨基、-O-乙基氨基和(CH 2) rR 8;其中R 8选自OH、F、Cl、甲氧基、乙氧基、N 3、乙烯基、烯丙基、乙炔基和炔丙基,r=1或2;
任选地,R 1和R 2直接相连成环;
B如式(I)中所定义。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,每个X独立地选自CR 4(R 4’)、S、NR 5和NH-CO,其中R 4、R 4’、R 5分别独立地为H、甲基、乙基、正丙基或异丙基;
n=0、1或2;m=0、1或2;s=0或1;
每个J 1、J 2分别独立地为H或甲基;
R 3选自H、OH、F、Cl、NH 2、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基、乙烯基、烯丙基、乙炔基、炔丙基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-甲基氨基、-O-乙基氨基和(CH 2) pR 6;其中R 6选自OH、F、Cl、甲氧基、乙氧基、N 3、乙烯基、烯丙基、乙炔基和炔丙基,p=1或2;
R 1选自H、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基、乙烯基、烯丙基、乙炔基、炔丙基和(CH 2) qR 7;其中R 7选自OH、F、Cl、甲氧基、乙氧基、N 3、乙烯基、烯丙基、乙炔基和炔丙基,q=1或2;
R 2选自H、OH、F、Cl、NH 2、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基、乙烯基、烯丙基、乙炔基、炔丙基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-甲基氨基、-O-乙基氨基和(CH 2) rR 8;其中R 8选自OH、F、Cl、甲氧基、乙氧基、N 3、乙烯基、烯丙基、乙炔基和炔丙基,r=1或2;
任选地,R 1和R 2直接相连成环;
B如式(I)中所定义。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,Y为O或NH;每个X独立地选自NH-CO、CH 2和NH;
n=0或1;m=0或1;s=0或1;
每个J 1、J 2分别独立地为H;
R 1选自H、甲基和CH 2OH;
R 2选自H、OH、NH 2、甲基和CH 2OH;
R 3选自H、OH、NH 2、甲基和CH 2OH;
任选地,R 1和R 2直接相连成环;
B如式(I)中所定义。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基 吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,Y为O或NH;每个X独立地选自NH-CO、CH 2和NH;
n=0或1;m=0或1;s=0或1;
每个J 1、J 2分别独立地为H;
R 1选自H、甲基和CH 2OH;
R 2选自H、甲基和CH 2OH;
R 3选自H、OH、NH 2、甲基和CH 2OH;
任选地,R 1和R 2直接相连成环;
B如式(I)中所定义。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,Y为O或NH;
每个X独立地选自CR 4(R 4’)、NR 5和NH-CO,R 4、R 4’、R 5分别独立地为H或C 1-C 6烷基;
J 2为H或C 1-C 6烷基;
n=0或1;m=0或1;s=0或1;
R 3选自H、OH、NH 2、C 1-C 6烷基、C 1-C 6烷氧基和(CH 2) pR 6;R 6选自OH、甲氧基和乙氧基,p=1、2或3;
Q 1
Figure PCTCN2022139462-appb-000013
Q 2为R 2;或者Q 1为R 2,Q 2
Figure PCTCN2022139462-appb-000014
R 1选自H、OH、C 1-C 6烷基、C 1-C 6烷氧基和(CH 2) qR 7;R 7选自OH、甲氧基和乙氧基,q=1、2或3;
J 1为H或C 1-C 6烷基;
R 2选自H、OH、C 1-C 6烷基、C 1-C 6烷氧基和(CH 2) rR 8;R 8选自OH、甲氧基和乙氧基,r=1、2或3;
任选地,R 1和R 2直接相连成3-6元环;
B是碱基;
所述式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐修饰不是
Figure PCTCN2022139462-appb-000015
在一些实施方案中,X独立地选自CR 4(R 4’)和NH-CO。
在一些实施方案中,X独立地选自CR 4(R 4’)。
在一些实施方案中,R 3选自H、C 1-C 6烷基和(CH 2) pR 6
在一些实施方案中,R 3选自H和C 1-C 6烷基。
在一些实施方案中,R 1选自H、C 1-C 6烷基和(CH 2) qR 7
在一些实施方案中,R 1选自H和C 1-C 6烷基。
在一些实施方案中,R 2选自H、OH、C 1-C 6烷基和(CH 2) rR 8
在一些实施方案中,R 2选自H、C 1-C 6烷基和(CH 2) rR 8
在一些实施方案中,Y为O;
每个X独立地选自CR 4(R 4’)和NH-CO,R 4和R 4’分别独立地为H或C 1-C 6烷基;
J 2为H或C 1-C 6烷基;
R 3选自H、C 1-C 6烷基和(CH 2) pR 6;R 6选自OH,p=1、2或3;
Q 1
Figure PCTCN2022139462-appb-000016
Q 2为R 2;或者Q 1为R 2,Q 2
Figure PCTCN2022139462-appb-000017
R 1选自H、C 1-C 6烷基和(CH 2) qR 7;R 7选自OH,q=1、2或3;
J 1为H或C 1-C 6烷基;
R 2选自H、OH、C 1-C 6烷基和(CH 2) rR 8;R 8选自OH,r=1、2或3;
任选地,R 1和R 2直接相连成5-6元环;
B是碱基。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,Y为O;
每个X独立地选自CR 4(R 4’),R 4和R 4’分别独立地为H或C 1-C 6烷基;
J 2为H;
R 3选自H和C 1-C 6烷基;
Q 1
Figure PCTCN2022139462-appb-000018
Q 2为R 2;或者Q 1为R 2,Q 2
Figure PCTCN2022139462-appb-000019
R 1选自H和C 1-C 6烷基;
J 1为H或C 1-C 6烷基;
R 2选自H、C 1-C 6烷基和(CH 2) rR 8;R 8选自OH,r=1、2或3;
任选地,R 1和R 2直接相连成5-6元环;
B是碱基。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基 吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,Y为O。
在一些实施方案中,X独立地选自CR 4(R 4’)、NR 5和NH-CO,R 4、R 4’、R 5分别独立地为H、甲基、乙基、正丙基或异丙基。在一些实施方案中,X独立地选自NH-CO、CH 2和NH。在一些实施方案中,X独立地选自NH-CO和CH 2。在一些实施方案中,X为CH 2
在一些实施方案中,J 2为H或甲基。在一些实施方案中,J 2为H。
在一些实施方案中,R 3选自H、OH、NH 2、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基和(CH 2) pR 6,R 6选自OH、甲氧基和乙氧基,p=1或2。在一些实施方案中,R 3选自H、甲基、乙基、正丙基、异丙基和(CH 2) pR 6,R 6选自OH,p=1或2。在一些实施方案中,R 3选自H和甲基。
在一些实施方案中,R 1选自H、OH、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基和(CH 2) qR 7,R 7选自OH,q=1或2。在一些实施方案中,R 1选自H、甲基、乙基、正丙基、异丙基和(CH 2) qR 7,R 7选自OH,q=1或2。在一些实施方案中,R 1选自H和甲基。
在一些实施方案中,R 2选自H、OH、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基和(CH 2) rR 8,R 8选自OH,r=1或2。在一些实施方案中,R 2选自H、OH、甲基、乙基、正丙基、异丙基和(CH 2) rR 8,R 8选自OH,r=1或2。在一些实施方案中,R 2选自H、甲基和CH 2OH。
在一些实施方案中,R 1和R 2直接相连成5-6元环。在一些实施方案中,R 1和R 2直接相连形成3-6元环烷基。在一些实施方案中,R 1和R 2直接相连形成环戊基或环己基。
在一些实施方案中,所述式(I)所示的化学修饰选自以下任一结构:
Figure PCTCN2022139462-appb-000020
其中:B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯中。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,所述式(I)所示的化学修饰选自以下任一结构:
Figure PCTCN2022139462-appb-000021
其中:B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯中。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,所述式(I)所示的化学修饰选自以下任一结构:
Figure PCTCN2022139462-appb-000022
其中:B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯中。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,所述式(I)所示的化学修饰选自以下任一结构:
Figure PCTCN2022139462-appb-000023
其中:B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯中。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,包含式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐的核苷酸选自包含式(I’)所示的化学修饰、其互变异构体或其药学上可接受的盐的核苷酸,
Figure PCTCN2022139462-appb-000024
其中:Y选自O、NH和S;
每个X独立地选自CR 4(R 4’)、S、NR 5和NH-CO,其中R 4、R 4’、R 5分别独立地为H或C 1-C 6烷基;
J 2为H或C 1-C 6烷基;
n=0、1或2;m=0、1或2;s=0或1;
R 3选自H、OH、卤素、NH 2、C 1-C 6烷基、C 1-C 6烷氧基、C 2-C 6烯基、C 2-C 6炔基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-烷基氨基和(CH 2) pR 6;其中R 6选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,p=1、2或3;
Q 1’
Figure PCTCN2022139462-appb-000025
Q 2’为R 2;或者Q 1’为R 2,Q 2’
Figure PCTCN2022139462-appb-000026
其中:
R 1选自H、C 1-C 6烷基、C 1-C 6烷氧基、C 2-C 6烯基、C 2-C 6炔基和(CH 2) qR 7;其中R 7选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,q=1、2或3;
J 1为H或C 1-C 6烷基;
R 2选自H、OH、卤素、NH 2、C 1-C 6烷基、C 1-C 6烷氧基、C 2-C 6烯基、C 2-C 6炔基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-烷基氨基和(CH 2) rR 8;其中R 8选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,r=1、2或3;
任选地,R 1和R 2直接相连成环;
B是碱基;
M为O或S;
所述式(I’)所示的化学修饰、其互变异构体或其药学上可接受的盐不是
Figure PCTCN2022139462-appb-000027
在一些实施方案中,当X为NH-CO时,R 1不是H。
在一些实施方案中,式(I’)所示的化学修饰选自式(I’-1)所示的化学修饰:
Figure PCTCN2022139462-appb-000028
其中:Y选自O、NH和S;
每个X独立地选自CR 4(R 4’)、S、NR 5和NH-CO,其中R 4、R 4’、R 5分别独立地为H或C 1-C 6烷基;
每个J 1、J 2分别独立地为H或C 1-C 6烷基;
n=0、1或2;m=0、1或2;s=0或1;
R 3选自H、OH、卤素、NH 2、C 1-C 6烷基、C 1-C 6烷氧基、C 2-C 6烯基、C 2-C 6炔基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-烷基氨基和(CH 2) pR 6;其中R 6选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,p=1、2或3;
R 1选自H、C 1-C 6烷基、C 1-C 6烷氧基、C 2-C 6烯基、C 2-C 6炔基和(CH 2) qR 7;其中R 7选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,q=1、2或3;
R 2选自H、OH、卤素、NH 2、C 1-C 6烷基、C 1-C 6烷氧基、C 2-C 6烯基、C 2-C 6炔基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-烷基氨基和(CH 2) rR 8;其中R 8选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,r=1、2或3;
M为O或S;
任选地,R 1和R 2直接相连成环;
B如式(I’)中所定义。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,式(I’)所示的化学修饰选自式(I’-2)所示的化学修饰:
Figure PCTCN2022139462-appb-000029
其中,Y选自O、NH和S;
每个X独立地选自CR 4(R 4’)、S、NR 5和NH-CO,其中R 4、R 4’、R 5分别独立地为H或C 1-C 6烷基;
n=0、1或2;m=0、1或2;s=0或1;
每个J 1、J 2分别独立地为H或C 1-C 6烷基;
R 3选自H、OH、卤素、NH 2、C 1-C 6烷基、C 1-C 6烷氧基、C 2-C 6烯基、C 2-C 6炔基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-烷基氨基和(CH 2) pR 6;其中R 6选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,p=1、2或3;
R 1选自H、C 1-C 6烷基、C 1-C 6烷氧基、C 2-C 6烯基、C 2-C 6炔基和(CH 2) qR 7;其中R 7选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,q=1、2或3;
R 2选自H、C 1-C 6烷基、C 1-C 6烷氧基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-烷基氨基和(CH 2) rR 8;其中R 8选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基;r=1、2或3;
任选地,R 1和R 2直接相连成环;
M为O或S;
B如式(I’)中所定义。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,每个X独立地选自CR 4(R 4’)、S、NR 5和NH-CO,其中R 4、R 4’、R 5分别独立地为H或C 1-C 3烷基;
n=0、1或2;m=0、1或2;s=0或1;
每个J 1、J 2分别独立地为H或C 1-C 3烷基;
R 3选自H、OH、卤素、NH 2、C 1-C 3烷基、C 1-C 3烷氧基、C 2-C 4烯基、C 2-C 4炔基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-烷基氨基和(CH 2) pR 6;其中R 6选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 6烯基和C 2-C 6炔基,p=1、2或3;
R 1选自H、C 1-C 3烷基、C 1-C 3烷氧基、C 2-C 4烯基、C 2-C 4炔基和(CH 2) qR 7;其中R 7选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 4烯基和C 2-C 4炔基,q=1、2或3;
R 2选自H、OH、卤素、NH 2、C 1-C 3烷基、C 1-C 3烷氧基、C 2-C 4烯基、C 2-C 4炔基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-烷基氨基和(CH 2) rR 8;其中R 8选自OH、卤素、甲氧基、乙氧基、N 3、C 2-C 4烯基和C 2-C 4炔基,r=1、2或3;
任选地,R 1和R 2直接相连成环;
B如式(I’)中所定义。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,每个X独立地选自CR 4(R 4’)、S、NR 5和NH-CO,其中R 4、R 4’、R 5分别独立地为H、甲基、乙基、正丙基或异丙基;
n=0、1或2;m=0、1或2;s=0或1;
每个J 1、J 2分别独立地为H或甲基;
R 3选自H、OH、F、Cl、NH 2、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基、乙烯基、烯丙基、乙炔基、炔丙基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-甲基氨基、-O-乙基氨基和(CH 2) pR 6;其中R 6选自OH、F、Cl、甲氧基、乙氧基、N 3、乙烯基、烯丙基、乙炔基和炔丙基,p=1或2;
R 1选自H、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基、乙烯基、烯丙基、乙炔基、炔丙基和(CH 2) qR 7;其中R 7选自OH、F、Cl、甲氧基、乙氧基、N 3、乙烯基、烯丙基、乙炔基和炔丙基,q=1或2;
R 2选自H、OH、F、Cl、NH 2、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基、乙烯基、烯丙基、乙炔基、炔丙基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-甲基氨基、-O-乙基氨基和(CH 2) rR 8;其中R 8选自OH、F、Cl、甲氧基、乙氧基、N 3、乙烯基、烯丙基、乙炔基和炔丙基,r=1或2;
任选地,R 1和R 2直接相连成环;
B如式(I’)中所定义。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌 呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,每个X独立地选自CR 4(R 4’)、S、NR 5和NH-CO,其中R 4、R 4’、R 5分别独立地为H、甲基、乙基、正丙基或异丙基;
n=0、1或2;m=0、1或2;s=0或1;
每个J 1、J 2分别独立地为H或甲基;
R 3选自H、OH、F、Cl、NH 2、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基、乙烯基、烯丙基、乙炔基、炔丙基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-甲基氨基、-O-乙基氨基和(CH 2) pR 6;其中R 6选自OH、F、Cl、甲氧基、乙氧基、N 3、乙烯基、烯丙基、乙炔基和炔丙基,p=1或2;
R 1选自H、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基、乙烯基、烯丙基、乙炔基、炔丙基和(CH 2) qR 7;其中R 7选自OH、F、Cl、甲氧基、乙氧基、N 3、乙烯基、烯丙基、乙炔基和炔丙基,q=1或2;0
R 2选自H、OH、F、Cl、NH 2、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基、乙烯基、烯丙基、乙炔基、炔丙基、S-CH 3、NCH 3(CH 3)、OCH 2CH 2OCH 3、-O-甲基氨基、-O-乙基氨基和(CH 2) rR 8;其中R 8选自OH、F、Cl、甲氧基、乙氧基、N 3、乙烯基、烯丙基、乙炔基和炔丙基,r=1或2;
任选地,R 1和R 2直接相连成环;
B如式(I’)中所定义。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,Y为O或NH;每个X独立地选自NH-CO、CH 2和NH;
n=0或1;m=0或1;s=0或1;
每个J 1、J 2分别独立地为H;
R 1选自H、甲基和CH 2OH;
R 2选自H、OH、NH 2、甲基和CH 2OH;
R 3选自H、OH、NH 2、甲基和CH 2OH;
任选地,R 1和R 2直接相连成环;
B如式(I’)中所定义。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,Y为O或NH;每个X独立地选自NH-CO、CH 2和NH;
n=0或1;m=0或1;s=0或1;
每个J 1、J 2分别独立地为H;
R 1选自H、甲基和CH 2OH;
R 2选自H、甲基和CH 2OH;
R 3选自H、OH、NH 2、甲基和CH 2OH;
任选地,R 1和R 2直接相连成环;
B如式(I’)中所定义。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,Y为O或NH;
每个X独立地选自CR 4(R 4’)、NR 5和NH-CO,R 4、R 4’、R 5分别独立地为H或C 1-C 6烷基;
J 2为H或C 1-C 6烷基;
n=0或1;m=0或1;s=0或1;
R 3选自H、OH、NH 2、C 1-C 6烷基、C 1-C 6烷氧基和(CH 2) pR 6;R 6选自OH、甲氧基和乙氧基,p=1、2或3;
Q 1’
Figure PCTCN2022139462-appb-000030
Q 2’为R 2;或者Q 1’为R 2,Q 2’
Figure PCTCN2022139462-appb-000031
R 1选自H、OH、C 1-C 6烷基、C 1-C 6烷氧基和(CH 2) qR 7;R 7选自OH、甲氧基和乙氧基,q=1、2或3;
J 1为H或C 1-C 6烷基;
R 2选自H、OH、C 1-C 6烷基、C 1-C 6烷氧基和(CH 2) rR 8;R 8选自OH、甲氧基和乙氧基,r=1、2或3;
任选地,R 1和R 2直接相连成3-6元环;
M为O或S;
B是碱基;
所述式(I’)所示的化学修饰、其互变异构体或其药学上可接受的盐不是
Figure PCTCN2022139462-appb-000032
在一些实施方案中,X独立地选自CR 4(R 4’)和NH-CO。
在一些实施方案中,X独立地选自CR 4(R 4’)。
在一些实施方案中,R 3选自H、C 1-C 6烷基和(CH 2) pR 6
在一些实施方案中,R 3选自H和C 1-C 6烷基。
在一些实施方案中,R 1选自H、C 1-C 6烷基和(CH 2) qR 7
在一些实施方案中,R 1选自H和C 1-C 6烷基。
在一些实施方案中,R 2选自H、OH、C 1-C 6烷基和(CH 2) rR 8
在一些实施方案中,R 2选自H、C 1-C 6烷基和(CH 2) rR 8
在一些实施方案中,Y为O;
每个X独立地选自CR 4(R 4’)和NH-CO,R 4和R 4’分别独立地为H或C 1-C 6烷基;
J 2为H或C 1-C 6烷基;
R 3选自H、C 1-C 6烷基和(CH 2) pR 6;R 6选自OH,p=1、2或3;
Q 1’
Figure PCTCN2022139462-appb-000033
Q 2’为R 2;或者Q 1’为R 2,Q 2’
Figure PCTCN2022139462-appb-000034
R 1选自H、C 1-C 6烷基和(CH 2) qR 7;R 7选自OH,q=1、2或3;
J 1为H或C 1-C 6烷基;
R 2选自H、OH、C 1-C 6烷基和(CH 2) rR 8;R 8选自OH,r=1、2或3;
任选地,R 1和R 2直接相连成5-6元环;
M为O或S;
B是碱基。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,Y为O;
每个X独立地选自CR 4(R 4’),R 4和R 4’分别独立地为H或C 1-C 6烷基;
J 2为H;
R 3选自H和C 1-C 6烷基;
Q 1’
Figure PCTCN2022139462-appb-000035
Q 2’为R 2;或者Q 1’为R 2,Q 2’
Figure PCTCN2022139462-appb-000036
R 1选自H和C 1-C 6烷基;
J 1为H或C 1-C 6烷基;
R 2选自H、C 1-C 6烷基和(CH 2) rR 8;R 8选自OH,r=1、2或3;
任选地,R 1和R 2直接相连成5-6元环;
M为O或S;
B是碱基。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,Y为O。
在一些实施方案中,X独立地选自CR 4(R 4’)、NR 5和NH-CO,R 4、R 4’、R 5分别独立地为H、甲基、乙基、正丙基或异丙基。在一些实施方案中,X独立地选自NH-CO、CH 2和NH。在一些实施方案中,X独立地选自NH-CO和CH 2。在一些实施方案中,X为CH 2
在一些实施方案中,J 2为H或甲基。在一些实施方案中,J 2为H。
在一些实施方案中,R 3选自H、OH、NH 2、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基和(CH 2) pR 6,R 6选自OH、甲氧基和乙氧基,p=1或2。在一些实施方案中,R 3选自H、甲基、乙基、正丙基、异丙基和(CH 2) pR 6,R 6选自OH,p=1或2。在一些实施方案中,R 3选自H和甲基。
在一些实施方案中,R 1选自H、OH、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基和(CH 2) qR 7,R 7选自OH,q=1或2。在一些实施方案中,R 1选自H、甲基、乙基、正丙基、异丙基和(CH 2) qR 7,R 7选自OH,q=1或2。在一些实施方案中,R 1选自H和甲基。
在一些实施方案中,R 2选自H、OH、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基、异丙氧基和(CH 2) rR 8,R 8选自OH,r=1或2。在一些实施方案中,R 2选自H、OH、甲基、乙基、正丙基、异丙基和(CH 2) rR 8,R 8选自OH,r=1或2。在一些实施方案中,R 2选自H、甲基和CH 2OH。
在一些实施方案中,R 1和R 2直接相连成5-6元环。在一些实施方案中,R 1和R 2直接相连形成3-6元环烷基。在一些实施方案中,R 1和R 2直接相连形成环戊基或环己基。
在一些实施方案中,所述式(I’)所示的化学修饰选自以下任一结构:
Figure PCTCN2022139462-appb-000037
Figure PCTCN2022139462-appb-000038
其中:M为O或S;
B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,所述式(I’)所示的化学修饰选自以下任一结构:
Figure PCTCN2022139462-appb-000039
其中:M为O或S;
B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,所述式(I’)所示的化学修饰选自以下任一结构:
Figure PCTCN2022139462-appb-000040
其中:M为O或S;
B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,所述式(I’)所示的化学修饰选自以下任一结构:
Figure PCTCN2022139462-appb-000041
Figure PCTCN2022139462-appb-000042
Figure PCTCN2022139462-appb-000043
以及它们结构中的腺嘌呤被置换为鸟嘌呤、胞嘧啶、尿嘧啶或胸腺嘧啶的那些。
在一些实施方案中,B选自嘌呤碱基、嘧啶碱基、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、异鸟嘌呤、次黄嘌呤、黄嘌呤、C2修饰的嘌呤、N8修饰的嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、N6-烷基腺嘌呤、O6-烷基鸟嘌呤、7-脱氮嘌呤、胞嘧啶、5-甲基胞嘧啶、异胞嘧啶、假胞嘧啶、尿嘧啶、假尿嘧啶、2-硫代尿苷、4-硫代尿苷、C5修饰的嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,B与所述反义链该位置处核苷酸未被修饰时的碱基相同。
在一些实施方案中,L 1为C 1-C 30烷基链、或包含被一个或多个氧、硫、氮原子或C=O间断的C 1-C 30烷基链;
R 11和R 12独立地为化学键、NR 16或C=O;
Q 3
Figure PCTCN2022139462-appb-000044
R 13为CR 17R 18、NR 16、O或S;
R 14为CR 19
R 15独立地为CR 17R 18、NR 16或O;
R 16至R 19独立地为氢、氘或烷基;
m1、p1和q1独立地为0、1、2、3或4;
B1为
Figure PCTCN2022139462-appb-000045
R b5、R b6和R b7独立地为-C(=O)-、-NHC(=O)-、-C(=O)O-、-C(=O)-(CH 2) z8-O-或-NHC(=O)-(CH 2) z9-O-;
z5、z6、z7、z8和z9独立地为0-10的整数;
L 2为C 1-C 30烷基链、或包含被一个或多个氧、硫、氮原子或C=O间断的C 1-C 30烷基链;
r1为1-10的整数。
在一些实施方案中,L 1为-(CH 2) j11-C(=O)-(CH 2) j12-;
R 11和R 12独立地为化学键、NR 16或C=O;
R 16为氢或C 1-6烷基;
Q 3
Figure PCTCN2022139462-appb-000046
R 13为CR 17R 18或O;
R 14为CR 19
R 15独立地为CR 17R 18或O;
R 17至R 19独立地为氢或烷基;
m1、p1和q1独立地为0或1;
B1为
Figure PCTCN2022139462-appb-000047
R b5、R b6和R b7独立地为-C(=O)-(CH 2) z8-O-或-NHC(=O)-(CH 2) z9-O-;
z8和z9独立地为0-10的整数;
L 2为-(CH 2) j15-(OCH 2CH 2) 1-4-(CH 2) j16-或
Figure PCTCN2022139462-appb-000048
j15和j16独立地为0-4的整数;
r1为3、4、5或6。
在一些实施方案中,L 1可为L 3或L 3-R 110-R 111-L 3,其中,L 3独立地为C 1-C 12烷基链、-(CH 2) j11-C(=O)-(CH 2) j12-或-(CH 2) j13-(CH 2CH 2O) 1-4-(CH 2) j14-,R 110和R 111独立地为化学键、-NR 112-、-C(=O)-或-OC(=O)-,R 112为氢或C 1-C 12烷基,j11、j12、j13和j14独立地为0-10的整数。在一些实施方案中,j11、j12、j13和j14独立地 为0-2或4-10的整数。在一些实施方案中,j11、j12、j13和j14独立地为0、1、2、6、7、8、9或10。
在一些实施方案中,L 1可为-(CH 2) j11-C(=O)-(CH 2) j12-,j11和j12的定义同前任一方案所述。
在一些实施方案中,L 1可为
Figure PCTCN2022139462-appb-000049
j12的定义同前任一方案所述,其中,a1端与B1相连,b1端与R 11相连。
在一些实施方案中,L 1可为
Figure PCTCN2022139462-appb-000050
Figure PCTCN2022139462-appb-000051
其中,a1端与B 1相连,b1端与R 11相连。
在一些实施方案中,R 11可为化学键且R 12可为C=O。
在一些实施方案中,R 11可为化学键且R 12可为NR 16,R 16的定义同前任一方案所述。
在一些实施方案中,R 11可为化学键且R 12可为-OC(=O)-。
在一些实施方案中,R 11可为NR 16且R 12可为C=O,R 16的定义同前任一方案所述。
在一些实施方案中,R 1可为NR 16且R 12可为-OC(=O)-,R 16的定义同前任一方案所述。
在一些实施方案中,R 12可为NR 16且R 11可为C=O,R 16的定义同前任一方案所述。
在一些实施方案中,R 12可为NR 16且R 11可为-OC(=O)-,R 16的定义同前任一方案所述。
在一些实施方案中,R 11可为NH且R 12可为C=O。
在一些实施方案中,R 12可为NH且R 11可为C=O。
在一些实施方案中,R 16可为氢或C 1-6烷基。
在一些实施方案中,R 16可为氢、甲基、乙基、丙基或异丙基。
在一些实施方案中,R 16可为氢。
在一些实施方案中,R 17和R 18可为氢。
在一些实施方案中,R 19可为氢。
在一些实施方案中,环A存在时,环A可为C 6-12芳基。
在一些实施方案中,环A可为苯基。
在一些实施方案中,m1可为0或1。
在一些实施方案中,m1可为3。
在一些实施方案中,n1可为0或1。
在一些实施方案中,p1和q1独立地为0或1。
在一些实施方案中,p1=1且q1=1。
在一些实施方案中,p1=1且q1=0。
在一些实施方案中,p1=0且q1=1。
在一些实施方案中,p1=0且q1=0。
在一些实施方案中,z1、z2、z3、z4、z5、z6、z7、z8和z9可独立地为0-4的整数。在一些实施方案中,z1、z2、z3、z4、z5、z6、z7、z8和z9可独立地为0、1或2。
在一些实施方案中,B 1可为
Figure PCTCN2022139462-appb-000052
R b1、R b2、R b3和R b4独立地为-C(=O)-或-NHC(=O)-,N原子与L 1相连,z1、z2、z3和z4的定义同前任一方案所述。
在一些实施方案中,B 1可为
Figure PCTCN2022139462-appb-000053
R b1、R b2、R b3和R b4独立地为-C(=O)-或-NHC(=O)-,N原子与L 1相连,R b1、R b3和R b4相同,z1、z2、z3和z4的定义同前任一方案所述。
在一些实施方案中,B 1可为
Figure PCTCN2022139462-appb-000054
在一些实施方案中,B 1可为
Figure PCTCN2022139462-appb-000055
在一些实施方案中,B 1可为
Figure PCTCN2022139462-appb-000056
R b5、R b6和R b7独立地为-C(=O)-(CH 2) z8-O-或-NHC(=O)-(CH 2) z9-O-,N原子与L 1相连,z5、z6、z7、z8和z9的定义同前任一方案所述。
在一些实施方案中,B 1可为
Figure PCTCN2022139462-appb-000057
R b5、R b6和R b7独立地为-C(=O)-(CH 2) z8-O-或-NHC(=O)-(CH 2) z9-O-,N原子与L 1相连,R b5、R b6和R b7相同,z5、z6、z7、z8和z9的定义同前任一方案所述。
在一些实施方案中,B 1可为
Figure PCTCN2022139462-appb-000058
在一些实施方案中,L 2可为L 4或L 4-R 13-R 14-L 4,其中,L 4独立地为C 1-C 12烷基链或-(CH 2) j15-(OCH 2CH 2) 1-4-(CH 2) j16-,R 113和R 114独立地为化学键、-NR 115-、-C(=O)-或-OC(=O)-,R 115独立地为氢或C 1-C 12烷基,j15和j16独立地为0-10的整数。在一些实施方案中,j15和j16独立地为0-6的整数。在一些实施方案中,j15和j16独立地为0、1、2、3或4。
在一些实施方案中,L 2可为-(CH 2) j15-(OCH 2CH 2) 1-4-(CH 2) j16-,j15和j16的定义同前任一方案所述。
在一些实施方案中,L 2可为
Figure PCTCN2022139462-appb-000059
在一些实施方案中,L 2可为
Figure PCTCN2022139462-appb-000060
其中,左侧与O原子相连,右侧与B 1相连。
在一些实施方案中,L 2可为C 1-C 12烷基链。
在一些实施方案中,L 2可为
Figure PCTCN2022139462-appb-000061
Figure PCTCN2022139462-appb-000062
在一些实施方案中,L 2可为
Figure PCTCN2022139462-appb-000063
在一些实施方案中,L 2可为
Figure PCTCN2022139462-appb-000064
在一些实施方案中,L 2可为
Figure PCTCN2022139462-appb-000065
在一些实施方案中,L 2可为
Figure PCTCN2022139462-appb-000066
其中,a3端与O原子相连,b3端与B 1相连。
在一些实施方案中,L 2可为
Figure PCTCN2022139462-appb-000067
其中,a3端与O原子相连,b3端与B 1相连。
在一些实施方案中,r1可为3、4、5或6。在一些实施方案中,r1可为3。
在一些实施方案中,Q 3可为
Figure PCTCN2022139462-appb-000068
在一些实施方案中,Q 3可为
Figure PCTCN2022139462-appb-000069
其中,R 13、R 14、R 15和n1的定义同前任一方案所述。
在一些实施方案中,
Figure PCTCN2022139462-appb-000070
可为
Figure PCTCN2022139462-appb-000071
其中,R 13、R 14、R 15、p1和q1的定义同前任一方案所述。
在一些实施方案中,
Figure PCTCN2022139462-appb-000072
可为
Figure PCTCN2022139462-appb-000073
Figure PCTCN2022139462-appb-000074
其中,R 13、R 14、R 15、p1和q1的定义同前任一方案所述。
在一些实施方案中,
Figure PCTCN2022139462-appb-000075
可为
Figure PCTCN2022139462-appb-000076
在 一些实施方案中,
Figure PCTCN2022139462-appb-000077
可为
Figure PCTCN2022139462-appb-000078
在一些实施方案中,
Figure PCTCN2022139462-appb-000079
可为
Figure PCTCN2022139462-appb-000080
p1和q1的定义同前任一方案所述。
在一些实施方案中,
Figure PCTCN2022139462-appb-000081
可为
Figure PCTCN2022139462-appb-000082
Figure PCTCN2022139462-appb-000083
Figure PCTCN2022139462-appb-000084
在一些实施方案中,
Figure PCTCN2022139462-appb-000085
可为
Figure PCTCN2022139462-appb-000086
Figure PCTCN2022139462-appb-000087
在一些实施方案中,
Figure PCTCN2022139462-appb-000088
可为
Figure PCTCN2022139462-appb-000089
Figure PCTCN2022139462-appb-000090
p1和q1的定义同前任一方案所述。
在一些实施方案中,
Figure PCTCN2022139462-appb-000091
可为
Figure PCTCN2022139462-appb-000092
其中,R 13、R 14、n1、p1和q1的定义同前任一方案所述。
在一些实施方案中,
Figure PCTCN2022139462-appb-000093
可为
Figure PCTCN2022139462-appb-000094
其中,R 13、R 14、n1、p1和q1的定义同前任一方案所述。
在一些实施方案中,
Figure PCTCN2022139462-appb-000095
可为
Figure PCTCN2022139462-appb-000096
在一些实施方案中,
Figure PCTCN2022139462-appb-000097
可为
Figure PCTCN2022139462-appb-000098
n1、p1和q1的定义同前任一方案所述。
在一些实施方案中,
Figure PCTCN2022139462-appb-000099
可为
Figure PCTCN2022139462-appb-000100
n1、p1和q1的定义同前任一方案所述。
在一些实施方案中,所述的配体可为以下任一结构或其药学上可接受的盐,
Figure PCTCN2022139462-appb-000101
Figure PCTCN2022139462-appb-000102
Figure PCTCN2022139462-appb-000103
Figure PCTCN2022139462-appb-000104
Figure PCTCN2022139462-appb-000105
在一些实施方案中,所述的配体可为以下任一结构或其药学上可接受的盐,
Figure PCTCN2022139462-appb-000106
Figure PCTCN2022139462-appb-000107
Figure PCTCN2022139462-appb-000108
Figure PCTCN2022139462-appb-000109
Figure PCTCN2022139462-appb-000110
Figure PCTCN2022139462-appb-000111
Figure PCTCN2022139462-appb-000112
Figure PCTCN2022139462-appb-000113
Figure PCTCN2022139462-appb-000114
Figure PCTCN2022139462-appb-000115
Figure PCTCN2022139462-appb-000116
Figure PCTCN2022139462-appb-000117
Figure PCTCN2022139462-appb-000118
Figure PCTCN2022139462-appb-000119
Figure PCTCN2022139462-appb-000120
在一些实施方案中,所述的配体可为以下结构或其药学上可接受的盐,
Figure PCTCN2022139462-appb-000121
在一些实施方案中,所述式(I)所示的化学修饰为
Figure PCTCN2022139462-appb-000122
Figure PCTCN2022139462-appb-000123
B选自鸟嘌呤、腺嘌呤、胞嘧啶和尿嘧啶;且所述配体为如下任一结构或其药学上可接受的盐,
Figure PCTCN2022139462-appb-000124
Figure PCTCN2022139462-appb-000125
Figure PCTCN2022139462-appb-000126
在一些实施方案中,所述式(I)所示的化学修饰为
Figure PCTCN2022139462-appb-000127
Figure PCTCN2022139462-appb-000128
B选自鸟嘌呤、腺嘌呤、胞嘧啶和尿嘧啶,且,所述配体为如下任一结构或其药学上可接受的盐,
Figure PCTCN2022139462-appb-000129
Figure PCTCN2022139462-appb-000130
在一些实施方案中,所述式(I)所示的化学修饰为
Figure PCTCN2022139462-appb-000131
Figure PCTCN2022139462-appb-000132
B选自鸟嘌呤、腺嘌呤、胞嘧啶和尿嘧啶;且,所述配体为如下结构或其药学上可接受的盐,
Figure PCTCN2022139462-appb-000133
在一些实施方案中,可以N-三氟乙酰基半乳糖胺、N-丙酰基半乳糖胺、N-正丁酰基半乳糖胺或N-异丁酰基半乳糖胺替换以上配体中的N-乙酰基-半乳糖胺部分。
在一些实施方案中,所述siRNA和所述配体共价或非共价连接。
在一些实施方案中,所述有义链的3’端和/或5’端可与所述配体缀合。
在一些实施方案中,所述有义链的3’端可与所述配体缀合。
在一些实施方案中,所述配体通过磷酸酯基团或硫代磷酸酯基团与所述siRNA末端连接。
在一些实施方案中,所述配体通过磷酸二酯基团或硫代磷酸二酯基团与所述 siRNA末端连接。
在一些实施方案中,所述配体通过磷酸二酯基团与所述siRNA末端连接。
在一些实施方案中,所述配体通过磷酸酯基团或硫代磷酸酯基团与所述siRNA末端间接连接。
在一些实施方案中,所述配体通过磷酸酯基团或硫代磷酸酯基团与所述siRNA末端直接连接。
在一些实施方案中,所述配体通过磷酸酯基团或硫代磷酸酯基团与所述siRNA的有义链3’末端直接连接。
在一些实施方案中,所述磷酸酯基团为磷酸一酯基团或磷酸二酯基团。在一些实施方案中,所述磷酸酯基团为磷酸二酯基团。
在一些实施方案中,所述硫代磷酸酯基团为硫代磷酸一酯基团或硫代磷酸二酯基团。在一些实施方案中,所述硫代磷酸酯基团为硫代磷酸二酯基团。
在一些实施方案中,为了促进siRNA进入细胞,可以在siRNA有义链的末端引入胆固醇等亲脂性的基团,亲脂性的基团包括以共价键与小干扰核酸结合,如末端引入胆固醇、脂蛋白、维生素E等,以利于通过由脂质双分子层构成的细胞膜与细胞内的mRNA发生作用。同时,siRNA也可以进行非共价键修饰,如通过疏水键或离子键结合磷脂分子、多肽、阳离子聚合物等增加稳定性和生物学活性。
在一些实施方案中,包含式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐的核苷酸位于反义链5’端的第5位、第6位或第7位。
在一些实施方案中,包含式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐的核苷酸位于反义链5’端的位于第7位。
在一些实施方案中,式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐修饰在其5’端的第5位时,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐修饰在其5’端的第6位时,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐修饰在其5’端的第7位时,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3-硝基吡咯。
在一些实施方案中,式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐修饰在其5’端的第8位时,B选自腺嘌呤、鸟嘌呤、2,6-二氨基嘌呤、6-二甲基氨基嘌呤、2-氨基嘌呤、胞嘧啶、尿嘧啶、胸腺嘧啶、吲哚、5-硝基吲哚和3- 硝基吡咯。
在一些实施方案中,B与所述反义链在其5’端的第5位核苷酸未被修饰时的碱基相同。
在一些实施方案中,B与所述反义链在其5’端的第6位核苷酸未被修饰时的碱基相同。
在一些实施方案中,B与所述反义链在其5’端的第7位核苷酸未被修饰时的碱基相同。
在一些实施方案中,B与所述反义链在其5’端的第8位核苷酸未被修饰时的碱基相同。
一些实施方案中,所述的有义链和/或反义链中至少一个另外的核苷酸为修饰的核苷酸,所述修饰的核苷酸选自:2'-甲氧基修饰的核苷酸、2'-经取代的烷氧基修饰的核苷酸、2'-烷基修饰的核苷酸、2'-经取代的烷基修饰的核苷酸、2'-氨基修饰的核苷酸、2'-经取代的氨基修饰的核苷酸、2'-氟代修饰的核苷酸、2'-脱氧核苷酸、2'-脱氧-2'-氟代修饰的核苷酸、3'-脱氧-胸腺嘧啶核苷酸、异核苷酸、LNA、ENA、cET、UNA、GNA;一些实施方案中,修饰的核苷酸相互独立地选自:2'-甲氧基修饰的核苷酸或2'-氟代修饰的核苷酸。
在一些实施方案中,所述的有义链含有连续三个具有相同修饰的核苷酸。在一些实施方案中,所述的三个具有相同修饰的核苷酸为2'-氟代修饰的核苷酸。
在一些实施方案中,按照5'端到3'端的方向,所述反义链的第2、4、6、10、12、14、16和18位的核苷酸各自独立地为2'-氟代修饰的核苷酸。
在一些实施方案中,所述反义链与靶序列至少部分地反向互补以介导RNA干扰;在一些实施方案中,所述反义链与靶序列之间存在不多于5个、不多于4个、不多于3个、不多于2个、不多于1个错配;在一些实施方案中,所述反义链与靶序列完全反向互补。
在一些实施方案中,所述有义链与反义链至少部分地反向互补以形成双链区;在一些实施方案中,所述有义链与反义链之间存在不多于5个、不多于4个、不多于3个、不多于2个、不多于1个错配;在一些实施方案中,所述有义链与反义链完全反向互补。
在一些实施方案中,所述有义链和反义链各自独立地具有16至35个、16至34个、17至34个、17至33个、18至33个、18至32个、18至31个、18至30个、18至29个、18至28个、18至27个、18至26个、18至25个、18至24个、18至23个、19至25个、19至24个、或19至23个核苷酸(例如19、20、21、22、23个核苷酸)。
在一些实施方案中,所述有义链和反义链长度相同或不同,所述有义链的长度为19-23个核苷酸,所述反义链的长度为19-26个核苷酸。这样,本公开提供的dsRNA中的有义链和反义链的长度比可以是19/20、19/21、19/22、19/23、19/24、 19/25、19/26、20/20、20/21、20/22、20/23、20/24、20/25、20/26、21/20、21/21、21/22、21/23、21/24、21/25、21/26、22/20、22/21、22/22、22/23、22/24、22/25、22/26、23/20、23/21、23/22、23/23、23/24、23/25或23/26。在一些实施方案中,所述有义链和反义链的长度比为19/21、21/23或23/25。在一些实施方案中,所述有义链和反义链的长度比为19/21。
在一些实施方案中,所述siRNA包含一个或两个平端。
在一些实施方案中,所述siRNA包含具有1至4个未配对核苷酸的突出端,例如1个、2个、3个、4个。
在一些实施方案中,所述siRNA包含位于所述反义链3’端的突出端。
在一些实施方案中,所述有义链含有如下式所示的核苷酸序列(5’-3’):
N aN aN aN aXN aN bN bN bN aN aN aN aN aN aN aN aN aN a
其中,每个X独立地为N a或N b;N a为2'-甲氧基修饰的核苷酸,N b为2'-氟代修饰的核苷酸。
在一些实施方案中,所述有义链含有如下式所示的核苷酸序列:
5’-N aN aN aN aN aN aN bN bN bN aN aN aN aN aN aN aN aN aN a-3’;或,
5’-N aN aN aN aN bN aN bN bN bN aN aN aN aN aN aN aN aN aN a-3’;
其中,N a为2'-甲氧基修饰的核苷酸,N b为2'-氟代修饰的核苷酸。
在一些实施方案中,所述反义链含有如下式所示的核苷酸序列:
5’-N a’N b’N a’N b’N a’N b’W’N a’N a’N b’N a’N b’N a’N b’N a’N b’N a’N b’N a’N a’N a’-3’;
其中,N a’为2'-甲氧基修饰的核苷酸,N b’为2'-氟代修饰的核苷酸;W’表示2'-甲氧基修饰的核苷酸或包含式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐修饰的核苷酸。
在一些具体的实施方案中,W’表示2'-甲氧基修饰的核苷酸。
在一些具体的实施方案中,W’表示包含式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐的核苷酸。
在一些具体的实施方案中,式(I)所示的化学修饰选自:
Figure PCTCN2022139462-appb-000134
其中:B选自鸟嘌呤、腺嘌呤、胞嘧啶和尿嘧啶;在一些具体的实施方案中,B与所述反义链在其5’端的第7位核苷酸未被修饰时的碱基相同。
在一些具体的实施方案中,式(I)所示的化学修饰选自:
Figure PCTCN2022139462-appb-000135
其中:M为O或S;其中:B选自鸟嘌呤、腺嘌呤、胞嘧啶或尿嘧啶;在一些具体的实施方案中,B与所述反义链在其5’端的第7位核苷酸未被修饰时的碱基相同。
在一些具体的实施方案中,M为S。一些具体的实施方案中,M为O。
在一些实施方案中,所述有义链和/或反义链中至少一个磷酸酯基为具有修饰基团的磷酸酯基,所述修饰基团使得所述siRNA在生物样品或环境中具有增加的稳定性;在一些实施方案中,所述具有修饰基团的磷酸酯基为硫代磷酸酯基。在一些实施方案中,所述具有修饰基团的磷酸酯基为硫代磷酸二酯基。
在一些实施方案中,所述硫代磷酸二酯基存在于以下位置中的至少一处:
所述有义链的5'端第1个核苷酸和第2个核苷酸之间;
所述有义链的5'端第2个核苷酸和第3个核苷酸之间;
所述反义链的5'端第1个核苷酸和第2个核苷酸之间;
所述反义链的5'端第2个核苷酸和第3个核苷酸之间;
所述反义链的3'端第1个核苷酸和第2个核苷酸之间;以及
所述反义链的3'端第2个核苷酸和第3个核苷酸之间。
在一些实施方案中,所述有义链和/或反义链中包括多个硫代磷酸二酯基,所述硫代磷酸二酯基存在于:
所述有义链的5'端第1个核苷酸和第2个核苷酸之间;和,
所述有义链的5'端第2个核苷酸和第3个核苷酸之间;和,
所述反义链的5'端第1个核苷酸和第2个核苷酸之间;和,
所述反义链的5'端第2个核苷酸和第3个核苷酸之间;和,
所述反义链的3'端第1个核苷酸和第2个核苷酸之间;和,
所述反义链的3'端第2个核苷酸和第3个核苷酸之间。
在一些实施方案中,所述有义链包含如下式所示的核苷酸序列:
5’-NmsNmsNmNmNfNmNfNfNfNmNmNmNmNmNmNmNmNmNm-3’,或,
5’-NmsNmsNmNmNmNmNfNfNfNmNmNmNmNmNmNmNmNmNm-3’,
其中,Nm表示2'-甲氧基修饰的任意核苷酸,例如2'-甲氧基修饰的C、G、U、A;Nf表示2'-氟代修饰的任意核苷酸,例如2'-氟代修饰的C、G、U、A;
小写字母s在中间时表示与该字母s左右相邻的两个核苷酸之间为硫代磷酸二酯基连接;小写字母s在3’端第一个时表示与该字母s左侧相邻的一个核苷酸末端为硫代磷酸二酯基。
在一些实施方案中,所述反义链包含如下式所示的核苷酸序列:5’-Nm’sNf’sNm’Nf’Nm’Nf’W’Nm’Nm’Nf’Nm’Nf’Nm’Nf’Nm’Nf’Nm’Nf’Nm’sNm’sNm’-3’;
其中,Nm’表示2'-甲氧基修饰的任意核苷酸,例如2'-甲氧基修饰的C、G、U、A;Nf’表示2'-氟代修饰的任意核苷酸,例如2'-氟代修饰的C、G、U、A;
小写字母s在中间时表示与该字母s左右相邻的两个核苷酸之间为硫代磷酸二酯基连接,小写字母s在3’端第一个时表示与该字母s左侧相邻的一个核苷酸末端为硫代磷酸二酯基;
W’表示2'-甲氧基修饰的核苷酸或包含式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐修饰的核苷酸。
在一些实施方案中,W’表示2'-甲氧基修饰的核苷酸。
在一些具体的实施方案中,W’表示包含式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐的核苷酸。
在一些实施方案中,式(I)所示的化学修饰选自:
Figure PCTCN2022139462-appb-000136
其中:B选自鸟嘌呤、腺嘌呤、胞嘧啶和尿嘧啶;在一些实施方案中,B与所述反义链在其5’端的第7位核苷酸未被修饰时的碱基相同。
一些实施方案中,式(I)所示的化学修饰选自:
Figure PCTCN2022139462-appb-000137
其中:M为O或S;其中:B选自鸟嘌呤、腺嘌呤、胞嘧啶或尿嘧啶;在一些具体的实施方案中,B与所述反义链在其5’端的第7位核苷酸未被修饰时的碱基相同。
在一些实施方案中,M为S。在一些具体的实施方案中,M为O。
在一些实施方案中,所述siRNA为靶向载脂蛋白C3(APOC3)基因的siRNA。
在一些实施方案中,所述siRNA的有义链包含与SEQ ID NO:1至SEQ ID NO:4中任一的核苷酸序列相差不超过3个核苷酸的至少15个连续核苷酸,和/或,
反义链包含与SEQ ID NO:5或SEQ ID NO:6中任一的核苷酸序列相差不超过3个核苷酸的至少19个连续核苷酸。
在一些实施方案中,所述siRNA的有义链包含SEQ ID NO:1至SEQ ID NO:4 中的任一项,和/或,反义链包含SEQ ID NO:5或SEQ ID NO:6中的任一项。
在一些实施方案中,所述siRNA为以下任一方案:
有义链的核苷酸序列包含SEQ ID NO:1,反义链的核苷酸序列包含SEQ ID NO:5;
有义链的核苷酸序列包含SEQ ID NO:2,反义链的核苷酸序列包含SEQ ID NO:5;
有义链的核苷酸序列包含SEQ ID NO:3,反义链的核苷酸序列包含SEQ ID NO:6;
有义链的核苷酸序列包含SEQ ID NO:4,反义链的核苷酸序列包含SEQ ID NO:6。
在一些实施方案中,所述siRNA为以下任一方案:
有义链的核苷酸序列选自SEQ ID NO:1,反义链的核苷酸序列选自SEQ ID NO:5;
有义链的核苷酸序列选自SEQ ID NO:2,反义链的核苷酸序列选自SEQ ID NO:5;
有义链的核苷酸序列选自SEQ ID NO:3,反义链的核苷酸序列选自SEQ ID NO:6;
有义链的核苷酸序列选自SEQ ID NO:4,反义链的核苷酸序列选自SEQ ID NO:6。
本公开中,按照5’-3’方向,
SEQ ID NO:1是UAUUCUCAGUGCUCUCCUA;
SEQ ID NO:2是UAUUCUCAGUGCUCUCCUG;
SEQ ID NO:3是GCACCGUUAAGGACAAGUC;
SEQ ID NO:4是GCACCGUUAAGGACAAGUU;
SEQ ID NO:5是UAGGAGAGCACUGAGAAUACU;
SEQ ID NO:6是AACUUGUCCUUAACGGUGCUC。
在一些实施方案中,所述siRNA为以下任一方案:
有义链的核苷酸序列包含5’-UAUUCUCAGUGCUCUCCUZ b1-3’(SEQ ID NO:24),反义链的核苷酸序列包含5’-UAGGAGAGCACUGAGAAUACU-3’(SEQ ID NO:5);
或者,有义链的核苷酸序列包含5’-GCACCGUUAAGGACAAGUZ b2-3’(SEQ ID NO:52),反义链的核苷酸序列包含5’-AACUUGUCCUUAACGGUGCUC-3’(SEQ ID NO:6);
其中,Z b1为A或G;Z b2为C或U。
在一些实施方案中,所述dsRNA可为以下任一结构或其药学上可接受的盐:
Figure PCTCN2022139462-appb-000138
Figure PCTCN2022139462-appb-000139
其中,Z为siRNA,所述siRNA的有义链的3’末端通过磷酸二酯基团与配体直接连接,所述siRNA的定义同本公开任一方案所述。
在一些实施方案中,所述dsRNA可为以下任一结构或其药学上可接受的盐,
Figure PCTCN2022139462-appb-000140
Figure PCTCN2022139462-appb-000141
Figure PCTCN2022139462-appb-000142
其中,Z为siRNA,所述siRNA的有义链的3’末端通过磷酸二酯基团与配体直接连接,所述siRNA的定义同本公开任一方案所述。
在一些实施方案中,所述dsRNA可为以下任一结构或其药学上可接受的盐,
Figure PCTCN2022139462-appb-000143
Figure PCTCN2022139462-appb-000144
其中,Z为siRNA,所述siRNA的有义链的3’末端通过磷酸二酯基团与配体直接连接,所述siRNA的定义同前任一方案所述。
在一些实施方案中,所述dsRNA可为以下结构或其药学上可接受的盐,
Figure PCTCN2022139462-appb-000145
其中,Z为siRNA,所述siRNA的有义链的3’末端通过磷酸二酯基团与配体直接连接,所述siRNA的定义同本公开任一方案所述。
在一些实施方案中,本公开所述dsRNA的有义链的核苷酸序列包含SEQ ID NO:7至SEQ ID NO:14中任一,和/或,
本公开所述dsRNA的反义链的核苷酸序列包含与SEQ ID NO:17或SEQ ID NO:18中任一;
在一些实施方案中,所述dsRNA为以下任一方案:
有义链包含SEQ ID NO:7所示的核苷酸序列,反义链包含SEQ ID NO:17所示的核苷酸序列;
有义链包含SEQ ID NO:9所示的核苷酸序列,反义链包含SEQ ID NO:17所示的核苷酸序列;
有义链包含SEQ ID NO:11所示的核苷酸序列,反义链包含SEQ ID NO:18所示的核苷酸序列;
有义链包含SEQ ID NO:13所示的核苷酸序列,反义链包含SEQ ID NO:18所示的核苷酸序列;
有义链包含SEQ ID NO:8所示的核苷酸序列,反义链包含SEQ ID NO:17所示 的核苷酸序列;
有义链包含SEQ ID NO:10所示的核苷酸序列,反义链包含SEQ ID NO:17所示的核苷酸序列;
有义链包含SEQ ID NO:12所示的核苷酸序列,反义链包含SEQ ID NO:18所示的核苷酸序列;
有义链包含SEQ ID NO:14所示的核苷酸序列,反义链包含SEQ ID NO:18所示的核苷酸序列。
在一些实施方案中,所述dsRNA为以下任一方案:
有义链选自SEQ ID NO:7,反义链选自SEQ ID NO:17;
有义链选自SEQ ID NO:9,反义链选自SEQ ID NO:17;
有义链选自SEQ ID NO:11,反义链选自SEQ ID NO:18;
有义链选自SEQ ID NO:13,反义链选自SEQ ID NO:18;
有义链选自SEQ ID NO:8,反义链选自SEQ ID NO:17;
有义链选自SEQ ID NO:10,反义链选自SEQ ID NO:17;
有义链选自SEQ ID NO:12,反义链选自SEQ ID NO:18;
有义链选自SEQ ID NO:14,反义链选自SEQ ID NO:18。
在一些实施方案中,所述dsRNA为以下任一方案:
包含SEQ ID NO:7,并且包含SEQ ID NO:17;
包含SEQ ID NO:9,并且包含SEQ ID NO:17;
包含SEQ ID NO:11,并且包含SEQ ID NO:18;
包含SEQ ID NO:13,并且包含SEQ ID NO:18;
包含SEQ ID NO:8,并且包含SEQ ID NO:17;
包含SEQ ID NO:10,并且包含SEQ ID NO:17;
包含SEQ ID NO:12,并且包含SEQ ID NO:18;或
包含SEQ ID NO:14,包含SEQ ID NO:18
在一些实施方案中,所述dsRNA为以下任一方案:
为SEQ ID NO:7和SEQ ID NO:17;
为SEQ ID NO:9和SEQ ID NO:17;
为SEQ ID NO:11和SEQ ID NO:18;
为SEQ ID NO:13和SEQ ID NO:18;
为SEQ ID NO:8和SEQ ID NO:17;
为SEQ ID NO:10和SEQ ID NO:17;
为SEQ ID NO:12和SEQ ID NO:18;或
为SEQ ID NO:14和SEQ ID NO:18。
本公开中,按照5’-3’方向,
SEQ ID NO:7是
UmsAmsUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmAm-NAG0052’;
SEQ ID NO:8是
UmsAmsUmUmCmUmCfAfGfUmGmCmUmCmUmCmCmUmAm-NAG0052’;
SEQ ID NO:9是
UmsAmsUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmGm-NAG0052’;
SEQ ID NO:10是
UmsAmsUmUmCmUmCfAfGfUmGmCmUmCmUmCmCmUmGm-NAG0052’;
SEQ ID NO:11是
GmsCmsAmCmCfGmUfUfAfAmGmGmAmCmAmAmGmUmCm-NAG0052’;
SEQ ID NO:12是
GmsCmsAmCmCmGmUfUfAfAmGmGmAmCmAmAmGmUmCm-NAG0052’;
SEQ ID NO:13是
GmsCmsAmCmCmGmUfUfAfAmGmGmAmCmAmAmGmUmUm-NAG0052’;
SEQ ID NO:14是
GmsCmsAmCmCfGmUfUfAfAmGmGmAmCmAmAmGmUmUm-NAG0052’;
SEQ ID NO:17是
UmsAfsGmGfAmGf(-)hmpNA(A)GmCmAfCmUfGmAfGmAfAmUfAmsCmsUm;
SEQ ID NO:18是
AmsAfsCmUfUmGf(-)hmpNA(U)CmCmUfUmAfAmCfGmGfUmGfCmsUmsCm。
其中,Af=腺嘌呤2'-F核糖核苷(adenine 2'-F ribonucleoside);Cf=胞嘧啶2'-F核糖核苷(cytosine 2'-F ribonucleoside);Uf=尿嘧啶2'-F核糖核苷(uracil 2'-F ribonucleoside);Gf=鸟嘌呤2'-F核糖核苷(guanine 2'-F ribonucleoside);Am=腺嘌呤2'-OMe核糖核苷(adenine 2'-OMe ribonucleoside);Cm=胞嘧啶2'-OMe核糖核苷(cytosine 2'-OMe ribonucleoside);Gm=鸟嘌呤2'-OMe核糖核苷(guanine2'-OMe ribonucleoside);Um=尿嘧啶2'-OMe核糖核苷(uracil 2'-OMe ribonucleoside);
s表示与该字母s左右相邻的两个核苷酸之间为硫代磷酸二酯基连接;
NAG0052’表示
Figure PCTCN2022139462-appb-000146
(-)hmpNA(A)表示
Figure PCTCN2022139462-appb-000147
(-)hmpNA(U)表示
Figure PCTCN2022139462-appb-000148
在一些实施方案中,所述dsRNA选自TRD007972、TRD007996、TRD007997、TRD008081、TRD007972-1、TRD007996-1、TRD007997-1或TRD008081-1。
在一些实施方案中,所述dsRNA选自如下结构或其药学上可接受的盐(按出现的顺序,序列分别是,SEQ ID NO 8和SEQ ID NO 17):
Figure PCTCN2022139462-appb-000149
其中,Af=腺嘌呤2'-F核糖核苷(adenine 2'-F ribonucleoside);Cf=胞嘧啶2'-F核糖核苷(cytosine 2'-F ribonucleoside);Uf=尿嘧啶2'-F核糖核苷(uracil 2'-F ribonucleoside);Am=腺嘌呤2'-OMe核糖核苷(adenine 2'-OMe ribonucleoside);Cm=胞嘧啶2'-OMe核糖核苷(cytosine 2'-OMe ribonucleoside);Gf=鸟嘌呤2'-F核糖核苷(guanine 2'-F ribonucleoside);Gm=鸟嘌呤2'-OMe核糖核苷(guanine 2'-OMe ribonucleoside);Um=尿嘧啶2'-OMe核糖核苷(uracil 2'-OMe ribonucleoside)。
Figure PCTCN2022139462-appb-000150
表示硫代磷酸二酯基,
Figure PCTCN2022139462-appb-000151
表示磷酸二酯基,
NAG0052’表示
Figure PCTCN2022139462-appb-000152
(-)hmpNA(A)表示
Figure PCTCN2022139462-appb-000153
在一些实施方案中,所述药学上可接受的盐可为本领域常规的盐,包括但不限于:钠盐、钾盐、铵盐、胺盐等。
在一些实施方案中,所述dsRNA为TRD007972-1,其为如下结构(按出现的顺序,序列分别是,SEQ ID NO 8和SEQ ID NO 17):
Figure PCTCN2022139462-appb-000154
其中,Af=腺嘌呤2'-F核糖核苷(adenine 2'-F ribonucleoside);Cf=胞嘧啶2'-F核糖核苷(cytosine 2'-F ribonucleoside);Uf=尿嘧啶2'-F核糖核苷(uracil 2'-F ribonucleoside);Am=腺嘌呤2'-OMe核糖核苷(adenine 2'-OMe ribonucleoside);Cm=胞嘧啶2'-OMe核糖核苷(cytosine 2'-OMe ribonucleoside);Gf=鸟嘌呤2'-F核糖核苷(guanine 2'-F ribonucleoside);Gm=鸟嘌呤2'-OMe核糖核苷(guanine 2'-OMe ribonucleoside);Um=尿嘧啶2'-OMe核糖核苷(uracil 2'-OMe ribonucleoside);Im=次黄嘌呤2'-OMe核糖核苷(Inosine 2'-OMe ribonucleoside)。
Figure PCTCN2022139462-appb-000155
表示硫代磷酸二酯基,
Figure PCTCN2022139462-appb-000156
表示磷酸二酯基,
NAG0052’表示
Figure PCTCN2022139462-appb-000157
(-)hmpNA(A)表示
Figure PCTCN2022139462-appb-000158
本公开所述的dsRNA选自合成来源或体外制备。
另一方面,本公开提供了一种合成来源的化合物或体外制备的化合物,选自本公开所述的dsRNA。另一方面,本公开提供了一种药物组合物,其包含上述的dsRNA。
在一些实施方案中,所述的药物组合物还包含一种或多种药学上可接受的赋形剂。各种递药系统是已知的并且可以用于本公开的dsRNA或药物组合物,例如封装在脂质体中、微粒、微囊、能够表达该化合物的重组细胞、受体介导的细胞内吞作用、构建核酸作为逆转录病毒或其他载体的一部分。
在一些实施方案中,本公开的dsRNA或药物组合物的给药方式是常规的,可通过局部给药(例如,直接注射或植入)或全身给药,也可通过口服、直肠或胃肠外途径进行给药,所述肠胃外途径包括但不限于皮下注射、静脉注射、肌肉注射、腹腔注射、透皮给药、吸入给药(如气溶胶)、粘膜给药(如舌下、鼻内给药)、颅内给药等。
在一些实施方案中,本公开提供的dsRNA或药物组合物可以通过注射给予,例如,静脉内、肌内、皮内、皮下、十二指肠内或腹膜内注射。
在一些实施方案中,本公开提供的dsRNA或药物组合物可被包装在试剂盒中。
另一方面,本公开提供了一种上述的dsRNA或上述的药物组合物在制备药物中的应用。
在一些实施方案中,所述的dsRNA或药物组合物的有效量或有效剂量为约0.001mg/kg体重至约200mg/kg体重、约0.01mg/kg体重至约100mg/kg体重或约0.5mg/kg体重至约50mg/kg体重。
在一些实施方案中,所述的药物可用于预防和/或治疗与APOC3基因表达相关的疾病。在一些实施方案中,所述疾病选自高甘油三酯血症、肥胖症、高脂血症、脂质和/或胆固醇代谢异常、动脉粥样硬化、心血管疾病、冠状动脉疾病、高甘油三酯血症诱导的胰腺炎、代谢综合征、II型糖尿病、家族性乳糜微粒血症综合征或家族性部分脂质营养不良。
在一些实施方案中,所述的药物可用于预防和/或治疗由升高的甘油三酯水平或升高的胆固醇水平介导的疾病。在一些实施方案中,所述疾病选自高甘油三酯 血症、肥胖症、高脂血症、脂质和/或胆固醇代谢异常、动脉粥样硬化、心血管疾病、冠状动脉疾病、高甘油三酯血症诱导的胰腺炎、代谢综合征、II型糖尿病、家族性乳糜微粒血症综合征或家族性部分脂质营养不良。
另一方面,本公开提供了一种上述的dsRNA或上述的药物组合物在制备用于预防和/或治疗受试者疾病的药物中的应用。
在一些实施方案中,所述的疾病可为与APOC3基因表达相关的疾病。在一些实施方案中,所述疾病选自高甘油三酯血症、肥胖症、高脂血症、脂质和/或胆固醇代谢异常、动脉粥样硬化、心血管疾病、冠状动脉疾病、高甘油三酯血症诱导的胰腺炎、代谢综合征、II型糖尿病、家族性乳糜微粒血症综合征或家族性部分脂质营养不良。
在一些实施方案中,所述的疾病可为由升高的甘油三酯水平或升高的胆固醇水平介导的疾病。在一些实施方案中,所述疾病选自高甘油三酯血症、肥胖症、高脂血症、脂质和/或胆固醇代谢异常、动脉粥样硬化、心血管疾病、冠状动脉疾病、高甘油三酯血症诱导的胰腺炎、代谢综合征、II型糖尿病、家族性乳糜微粒血症综合征或家族性部分脂质营养不良。
另一方面,本公开提供了一种预防和/或治疗疾病的方法,其包括向受试者给予有效量或有效剂量的上述的dsRNA或上述的药物组合物。
在一些实施方案中,所述的疾病可为与APOC3基因表达相关的疾病。在一些实施方案中,所述疾病选自高甘油三酯血症、肥胖症、高脂血症、脂质和/或胆固醇代谢异常、动脉粥样硬化、心血管疾病、冠状动脉疾病、高甘油三酯血症诱导的胰腺炎、代谢综合征、II型糖尿病、家族性乳糜微粒血症综合征或家族性部分脂质营养不良。
在一些实施方案中,所述的疾病可为由升高的甘油三酯水平或升高的胆固醇水平介导的疾病。在一些实施方案中,所述疾病选自高甘油三酯血症、肥胖症、高脂血症、脂质和/或胆固醇代谢异常、动脉粥样硬化、心血管疾病、冠状动脉疾病、高甘油三酯血症诱导的胰腺炎、代谢综合征、II型糖尿病、家族性乳糜微粒血症综合征或家族性部分脂质营养不良。
另一方面,本公开提供了一种降低受试者中的低密度脂蛋白水平的方法,其包括向受试者给予有效量或有效剂量的上述的dsRNA或上述的药物组合物。
另一方面,本公开提供了一种用于在体内或在体外沉默细胞中APOC3基因或其mRNA的方法,其包括将上述的dsRNA或上述的药物组合物引入该细胞中的步骤。
另一方面,本公开提供了一种抑制APOC3基因或其mRNA表达的方法,其包括向受试者给予有效量或有效剂量的上述的dsRNA或上述的药物组合物。
本公开的dsRNA或药物组合物可以在细胞、细胞群、组织或受试者等对象中降低靶基因或其mRNA的表达水平,包括:向对象给予治疗有效量的本文所述的 dsRNA或药物组合物,从而抑制靶基因或其mRNA在对象中的表达。
在一些实施方式中,所述对象已在先前被鉴定为在靶向的细胞、细胞群、组织或受试者中具有靶基因或其mRNA的病理性上调。
本公开中所述的受试者是指确诊患有(或疑似患有、或易感于)将会受益于靶mRNA表达之减少或抑制的疾病或病症的受试者。
另一方面,本公开提供了一种递送寡核苷酸至肝脏的方法,其包括向受试者给予有效量或有效剂量的上述的dsRNA或上述的药物组合物。
另一方面,本公开提供了一种RNAi(RNA干扰)试剂,其包含上述的dsRNA或上述的药物组合物。
另一方面,本公开还提供了一种细胞,其包含上述的dsRNA或上述的药物组合物。
另一方面,本公开还提供了一种试剂盒,其包含上述的dsRNA或上述的药物组合物。
本公开中,上述dsRNA或药物组合物当接触到表达靶基因的细胞时,由例如:psiCHECK活性筛选和荧光素酶报告基因检测法,其他如PCR或基于分支DNA(bDNA)的方法、或基于蛋白质的方法,如免疫荧光分析法,例如Western Blot或流式细胞术测定的,上述dsRNA或药物组合物会抑制靶基因的表达至少5%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、或至少99%。
本公开中,上述dsRNA或药物组合物当接触到表达靶基因的细胞时,由例如:psiCHECK活性筛选和荧光素酶报告基因检测法,其他如PCR或基于分支DNA(bDNA)的方法、或基于蛋白质的方法,如免疫荧光分析法,例如Western Blot或流式细胞术测定的,上述dsRNA或药物组合物引起的靶基因mRNA剩余表达百分比为不高于99%、不高于95%、不高于90%、不高于85%、不高于80%、不高于75%、不高于70%、不高于65%、不高于60%、不高于55%、不高于50%、不高于45%、不高于40%、不高于35%、不高于30%、不高于25%、不高于20%、不高于15%、或不高于10%。
本公开中,上述dsRNA或药物组合物当接触到表达靶基因的细胞时,由例如:psiCHECK活性筛选和荧光素酶报告基因检测法,其他如PCR或基于分支DNA(bDNA)的方法、或基于蛋白质的方法,如免疫荧光分析法,例如Western Blot、或流式细胞术测定的,dsRNA在保持在靶活性的同时,将脱靶活性减少了至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、 至少60%、至少65%、至少70%或至少75%。
本公开中,上述dsRNA或药物组合物当接触到表达靶基因的细胞时,由例如:psiCHECK活性筛选和荧光素酶报告基因检测法,其他如PCR或基于分支DNA(bDNA)的方法、或基于蛋白质的方法,如免疫荧光分析法,例如Western Blot、或流式细胞术测定的,dsRNA使在靶活性降低至多20%、至多19%、至多15%、至多10%、至多5%或超过1%的同时,将脱靶活性减少了至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%或至少75%。
本公开中,上述dsRNA或药物组合物当接触到表达靶基因的细胞时,由例如:psiCHECK活性筛选和荧光素酶报告基因检测法,其他如PCR或基于分支DNA(bDNA)的方法、或基于蛋白质的方法,如免疫荧光分析法,例如Western Blot、或流式细胞术测定的,dsRNA使在靶活性提高至少1%、至少5%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%或至少80%的同时,将脱靶活性减少了至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%或至少75%。
本公开还提供了一种制备dsRNA或药物组合物的方法,其包括:合成本公开所述的配体、siRNA、dsRNA或药物组合物。
术语解释
为了更容易理解本公开,以下具体定义了一些技术和科学术语。除非在本文中另有明确定义,本文使用的所有其它技术和科学术语都具有本公开所属领域的一般技术人员通常理解的含义。
本公开化合物可以存在特定的几何或立体异构体形式。本公开设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本公开的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本公开的范围之内。本公开的含有不对称碳原子的化合物可以以光学活性纯的形式或外消旋形式被分离出来。光学活性纯的形式可以从外消旋混合物拆分,或通过使用手性原料或手性试剂合成。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本公开某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异 构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本公开所述化合物的化学结构中,键
Figure PCTCN2022139462-appb-000159
表示未指定构型,即如果化学结构中存在手性异构体,键
Figure PCTCN2022139462-appb-000160
可以为
Figure PCTCN2022139462-appb-000161
Figure PCTCN2022139462-appb-000162
或者同时包含
Figure PCTCN2022139462-appb-000163
Figure PCTCN2022139462-appb-000164
两种构型。本公开所述化合物的化学结构中,键
Figure PCTCN2022139462-appb-000165
并未指定构型,即键
Figure PCTCN2022139462-appb-000166
的构型可以为E型或Z型,或者同时包含E和Z两种构型。
在本公开的化学结构式中,
Figure PCTCN2022139462-appb-000167
可以根据本文所述发明范围连接一个或多个任何基团;星号“*”表示手性中心。
在不指明构型的情况下,本公开的化合物和中间体还可以以不同的互变异构体形式存在,并且所有这样的形式包含于本公开的范围内。术语“互变异构体”或“互变异构体形式”是指可经由低能垒互变的不同能量的结构异构体。例如,质子互变异构体(也称为质子转移互变异构体)包括经由质子迁移的互变,如酮-烯醇及亚胺-烯胺、内酰胺-内酰亚胺异构化。内酰胺-内酰亚胺平衡实例是在如下所示的A和B之间。
Figure PCTCN2022139462-appb-000168
本公开中的所有化合物可以被画成A型或B型。所有的互变异构形式在本发明的范围内。化合物的命名不排除任何互变异构体。
本公开还包括一些与本文中记载的那些相同的,但一个或多个原子被原子量或质量数不同于自然中通常发现的原子量或质量数的原子置换的同位素标记的本公开化合物。可结合到本公开化合物的同位素的实例包括氢、碳、氮、氧、磷、硫、氟、碘和氯的同位素,诸如分别为 2H、 3H、 11C、 13C、 14C、 13N、 15N、 15O、 17O、 18O、 31P、 32P、 35S、 18F、 123I、 125I和 36Cl等。
除另有说明,当一个位置被特别地指定为氘(D)时,该位置应理解为具有大于氘的天然丰度(其为0.015%)至少1000倍的丰度的氘(即,至少10%的氘掺入)。示例中化合物的具有大于氘的天然丰度可以是至少1000倍的丰度的氘、至少2000倍的丰度的氘、至少3000倍的丰度的氘、至少4000倍的丰度的氘、至少5000倍的丰度的氘、至少6000倍的丰度的氘或更高丰度的氘。本公开还包括各种氘化形式的式(I)、式(I’)、式(II)化合物。与碳原子连接的各个可用的氢原子可独立地被氘原子替换。本领域技术人员能够参考相关文献合成氘化形式的式(I)、式(I’)、式(II)化合物。在制备氘代形式的式(I)、式(I’)、式(II)化合物时可使用市售的氘代起始物 质,或它们可使用常规技术采用氘代试剂合成,氘代试剂包括但不限于氘代硼烷、三氘代硼烷四氢呋喃溶液、氘代氢化锂铝、氘代碘乙烷和氘代碘甲烷等。
除另有说明,“任选地”、“任选”、“可选的”或“可选”是指意味着随后所描述的事件或环境可以但不必发生,该说明包括该事件或环境发生或不发生的场合。例如“任选地,R 1和R 2直接相连成环”是指R 1和R 2直接相连成环可以发生但不必须存在,该说明包括R 1和R 2直接相连成环的情形和R 1和R 2不成环的情形。
术语“约”、“大约”是指数值在由本领域一般技术人员所测定的具体值的可接受误差范围内,所述数值部分取决于怎样测量或测定(即测量体系的限度)。例如,“约”可意味着在1内或超过1的标准差。或者,“约”或“基本上包含”可意味着至多20%的范围,例如1%至15%之间、在1%至10%之间、在1%至5%之间、在0.5%至5%之间、在0.5%至1%之间变化,本公开中,数字或数值范围之前有术语“约”的每种情况也包括给定数的实施方案。除非另外说明,否则当具体值在本申请和权利要求中出现时,“约”或“基本上包含”的含义应该假定为在该具体值的可接受误差范围内。
本公开中,术语“包含”可替换为“由……组成”。
如无特殊说明,本公开的“化合物”、“化学修饰”、“配体”、“dsRNA”、“核酸”和“RNAi”均可独立地以盐、混合盐或非盐(例如游离酸或游离碱)的形式存在。当以盐或混合盐的形式存在时,其可为药学上可接受的盐。
“药学上可接受的盐”可选自无机盐或有机盐,也可包括药学上可接受的酸加成盐和药学上可接受的碱加成盐。
“药学上可接受的酸加成盐”是指能够保留游离碱的生物有效性而无其它副作用的,与无机酸或有机酸所形成的盐。无机酸盐包括但不限于盐酸盐、氢溴酸盐、硫酸盐、硝酸盐、磷酸盐等;有机酸盐包括但不限于甲酸盐、乙酸盐、2,2-二氯乙酸盐、三氟乙酸盐、丙酸盐、己酸盐、辛酸盐、癸酸盐、十一碳烯酸盐、乙醇酸盐、葡糖酸盐、乳酸盐、癸二酸盐、己二酸盐、戊二酸盐、丙二酸盐、草酸盐、马来酸盐、琥珀酸盐、富马酸盐、酒石酸盐、柠檬酸盐、棕榈酸盐、硬脂酸盐、油酸盐、肉桂酸盐、月桂酸盐、苹果酸盐、谷氨酸盐、焦谷氨酸盐、天冬氨酸盐、苯甲酸盐、甲磺酸盐、苯磺酸盐、对甲苯磺酸盐、海藻酸盐、抗坏血酸盐、水杨酸盐、4-氨基水杨酸盐、萘二磺酸盐等。这些盐可通过本领域已知的方法制备。
“药学上可接受的碱加成盐”是指能够保持游离酸的生物有效性而无其它副作用的、与无机碱或有机碱所形成的盐。衍生自无机碱的盐包括但不限于钠盐、钾盐、锂盐、铵盐、钙盐、镁盐、铁盐、锌盐、铜盐、锰盐、铝盐等。优选的无机盐为铵盐、钠盐、钾盐、钙盐及镁盐,优选钠盐。衍生自有机碱的盐包括但不限于以下的盐:伯胺类、仲胺类及叔胺类,被取代的胺类,包括天然的被取代胺类、环状胺类及碱性离子交换树脂,例如氨、异丙胺、三甲胺、二乙胺、三乙胺、三丙胺、乙醇胺、二乙醇胺、三乙醇胺、二甲基乙醇胺、2-二甲氨基乙醇、2-二乙氨 基乙醇、二环己胺、赖氨酸、精氨酸、组氨酸、咖啡因、普鲁卡因、胆碱、甜菜碱、乙二胺、葡萄糖胺、甲基葡萄糖胺、可可碱、嘌呤、哌嗪、哌啶、N-乙基哌啶、聚胺树脂等。优选的有机碱包括异丙胺、二乙胺、乙醇胺、三甲胺、二环己基胺、胆碱及咖啡因。这些盐可通过本领域已知的方法制备。
“烷基”指饱和的脂族烃基团,例如包括1至30个碳原子的直链和支链基团(C 1-C 30烷基),又例如含有1至6个碳原子的烷基(C 1-C 6烷基),又例如1至3个碳原子的烷基(C 1-C 3烷基)。非限制性实施例包括甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、仲丁基、正戊基、1,1-二甲基丙基、1,2-二甲基丙基、2,2-二甲基丙基及其各种支链异构体等。
术语“烯基”是指含有至少一个双键的烃基。烯基的非限制性实例包括但不限于:乙烯基、1-丙烯基、2-丙烯基、1-丁烯基或2-丁烯基及其各种支链异构体。
术语“炔基”指含有至少一个三键的烃基。炔基的非限制性实例包括但不限于:乙炔基、1-丙炔基、2-丙炔基、1-丁炔基或2-丁炔基及其各种支链异构体。
术语“烷氧基”指-O-(烷基),其中烷基的定义如上所述。烷氧基的非限制性实例包括:甲氧基、乙氧基、丙氧基、丁氧基。
“环烷基”指饱和或部分不饱和单环或多环环状烃取代基,环烷基环包含3至20个碳原子,优选包含3至6个碳原子,更优选包含5-6个碳原子。单环环烷基的非限制性实例包括环丙基、环丁基、环戊基、环戊烯基、环己基、环己烯基、环己二烯基等;多环环烷基包括螺环、并环和桥环的环烷基。
“杂环烷基”指饱和或部分不饱和单环或多环环状烃取代基,其包含3至20个环原子,其中一个或多个环原子为选自氮、氧或S(O) m(其中m是整数0至2)的杂原子,但不包括-O-O-、-O-S-或-S-S-的环部分,其余环原子为碳。优选包含3至12个环原子,其中1~4个是杂原子;更优选包含3至7个环原子。“杂环烷基”非限制性实例包括:
Figure PCTCN2022139462-appb-000169
Figure PCTCN2022139462-appb-000170
等等。
所述杂环烷基环可以稠合于芳基或杂芳基环上,其中与母体结构连接在一起的环为杂环烷基,其非限制性实例包括:
Figure PCTCN2022139462-appb-000171
等。
“芳基”指具有共轭的π电子体系的6至14元全碳单环或稠合多环(也就是共享毗邻碳原子对的环)基团,优选为6至12元,例如苯基和萘基。所述芳基环可以稠合于杂芳基、杂环烷基或环烷基环上,其中与母体结构连接在一起的环为芳基环,其非限制性实例包括:
Figure PCTCN2022139462-appb-000172
“杂芳基”指包含1至4个杂原子、5至14个环原子的杂芳族体系,其中杂原子选自氧、硫和氮。杂芳基优选为6至12元,更优选为5元或6元。例如。其非限制性实例包括:咪唑基、呋喃基、噻吩基、噻唑基、吡唑基、噁唑基(oxazolyl)、异噁唑基(isoxazolyl)、吡咯基、四唑基、吡啶基、嘧啶基、噻二唑、吡嗪基、三唑基、吲唑基、苯并咪唑基、
Figure PCTCN2022139462-appb-000173
等。
所述杂芳基环可以稠合于芳基、杂环烷基或环烷基环上,其中与母体结构连接在一起的环为杂芳基环,其非限制性实例包括:
Figure PCTCN2022139462-appb-000174
术语“羟基”指-OH基团。
术语“卤素”指氟、氯、溴或碘。
术语“氰基”指-CN。
术语“氨基”指-NH 2
术语“硝基”指-NO 2
术语“氧代”指=O取代基。
本公开中,“磷酸酯基团”可为磷酸一酯基团、磷酸二酯基团或磷酸三酯基团,优选磷酸二酯基团;“硫代磷酸酯基团”中的“磷酸酯基团”也具有同样的含义。
本公开中,硫代磷酸二酯基是指一个非桥接氧原子被硫原子替代而修饰的磷酸二酯基,可用
Figure PCTCN2022139462-appb-000175
(M为S原子)互换使用。
“取代”指基团中的一个或多个氢原子,优选为最多5个,更优选为1~3个氢原子彼此独立地被相应数目的取代基取代。当取代基是酮或氧代(即,=O)时,则原子上有两个(2个)氢被替代。
本公开上下文中,基团
Figure PCTCN2022139462-appb-000176
中的
Figure PCTCN2022139462-appb-000177
部分可以替换为能够与相邻核苷酸实现连接的任意基团。
术语“连接”,当表示两个分子之间的联系时,指两个分子通过共价键连接或者两个分子经由非共价键(例如,氢键或离子键)关联,包括直接连接、间接连接。
术语“直接连接”指第一化合物或基团与第二化合物或基团在没有任何间插原子或原子基团的情况下连接。
术语“间接连接”指第一化合物或基团与第二化合物或基团通过中间基团、化合物或分子(例如,连接基团)连接。
“药物组合物”表示含有一种或多种本文所述化合物或其生理学上可药用的盐或前体药物与其他化学组分的混合物,以及其他组分例如生理学可药用的载体和赋形剂。药物组合物的目的是促进对生物体的给药,利于活性成分的吸收进而发挥生物活性。
“药学上可接受的赋形剂”包括但不限于任何已经被美国食品和药物管理局(FDA)批准对于人类或家畜动物使用可接受的任何助剂、载体、助流剂、甜味剂、稀释剂、防腐剂、染料/着色剂、增香剂、表面活性剂、润湿剂、分散剂、助悬剂、稳定剂、等渗剂、缓冲剂、溶剂或乳化剂。
如本文所使用的,术语“抑制”,可以与“减少”、“沉默”、“下调”、“阻抑”和其 他类似术语交替使用,并且包括任何水平的抑制。抑制可通过这些变量中的一个或多个与对照水平相比的绝对或相对水平的减少来评估。该对照水平可以是本领域中使用的任何类型的对照水平,例如给药前基线水平或从类似的未经处理或经对照(例如仅缓冲液对照或惰性剂对照)处理的受试者、细胞、或样品确定的水平。例如,可以采用mRNA剩余表达量来表征siRNA对靶基因表达的抑制程度,如mRNA剩余表达量为不高于99%、不高于95%、不高于90%、不高于85%、不高于80%、不高于75%、不高于70%、不高于65%、不高于60%、不高于55%、不高于50%、不高于45%、不高于40%、不高于35%、不高于30%、不高于25%、不高于20%、不高于15%、或不高于10%。靶基因表达的抑制率可以采用
Figure PCTCN2022139462-appb-000178
Luciferase Assay System检测,分别读取萤火虫(Firefly)化学发光值和海肾(Renilla)化学发光值,计算相对值Ratio=Ren/Fir,抑制率(%)=1-(Ratio+siRNA/Ratioreporter only)*100%;本公开中,剩余mRNA表达量比例(或剩余活性%)=100%-抑制率(%)。
“有效量”或“有效剂量”包含足以改善或预防医学病症的症状或病症的量。有效量还意指足以允许或促进诊断的量。用于特定患者或兽医学受试者的有效量可依据以下因素而变化:如待治疗的病症、患者的总体健康情况、给药的方法途径和剂量以及副作用严重性。有效量可以是避免显著副作用或毒性作用的最大剂量或给药方案。
如本文所使用的,“对象”、“患者”、“受试者”或“个体”可互换使用,包括人类或者非人类动物,例如哺乳动物,例如人或猴。
如本文所使用的,有义链(又称SS、SS链或正义链)是指包含与靶mRNA序列相同或基本上相同的序列的链;反义链(又称AS或AS链)是指具有与靶mRNA序列互补的序列的链。
本公开中,正义链或反义链的“5’区域”也即“5’端”、“5’末端”,可替换使用。例如反义链5’区域的第2位至第8位的核苷酸,也可替换为反义链5’端的第2位至第8位的核苷酸。同理,正义链或反义链的“3’区域”、“3’末端”和“3’端”也可替换使用。
在描述本文所述的siRNA有义链的上下文中,术语“SEQ ID NO:1至SEQ ID NO:4任一的核苷酸序列相差不超过3个核苷酸序列的至少15个连续核苷酸”旨在表示本文所述的siRNA有义链包含如与SEQ ID NO:1至SEQ ID NO:4中任一有义链的至少15个连续核苷酸,或与SEQ ID NO:1至SEQ ID NO:4中任一有义链的至少15个连续核苷酸相差不超过3个核苷酸序列,任选地,相差不超过2个核苷酸序列,任选地,相差1个核苷酸序列。任选地,本文所述的siRNA有义链包含SEQ ID NO:1至SEQ ID NO:4任一有义链的至少16个连续核苷酸,或与SEQ ID NO:1至SEQ ID NO:4任一有义链的至少16个连续核苷酸相差不超过3个核苷酸序列,任选地,相差不超过2个核苷酸序列,任选地,相差1个核苷酸序列;
在描述本文所述的siRNA反义链的上下文中,术语“与SEQ ID NO:5或SEQ ID NO:6任一反义链相差不超过3个核苷酸序列的至少15个连续核苷酸”旨在表示本文所述的SEQ ID NO:5或SEQ ID NO:6中任一反义链的至少15个连续核苷酸,或与SEQ ID NO:5或SEQ ID NO:6中任一反义链的至少15个连续核苷酸相差不超过3个核苷酸序列,任选地,相差不超过2个核苷酸序列,任选地,相差1个核苷酸序列。
如无特别说明,在本公开上下文中,“G”、“C”、“A”、“T”与“U”分别代表核苷酸,其分别包含鸟嘌呤、胞嘧啶、腺嘌呤、胸苷与尿嘧啶的碱基。小写字母d表示该字母d右侧相邻的一个核苷酸为脱氧核糖核苷酸;小写字母m表示该字母m左侧相邻的一个核苷酸为甲氧基修饰的核苷酸;小写字母f表示该字母f左侧相邻的一个核苷酸为氟代修饰的核苷酸;小写字母s表示与该字母s左右相邻的两个核苷酸之间为硫代磷酸二酯基连接。
如本公开所使用的,术语“2'-氟代(2’-F)修饰的核苷酸”指核苷酸的核糖基2'位的羟基被氟取代形成的核苷酸,“非氟代修饰的核苷酸”指核苷酸的核糖基2'位的羟基被非氟基团取代形成的核苷酸或核苷酸类似物。
如本公开所使用的,术语“2'-甲氧基(2’-OMe)修饰的核苷酸”指核糖基的2'-羟基被甲氧基取代而形成的核苷酸。
在本公开的上下文中,一个核苷酸序列与另外一个核苷酸序列存在“核苷酸差异”,是指前者与后者相比,相同位置的核苷酸的碱基种类发生了改变,例如,在后者中一个核苷酸碱基为A时,在前者的相同位置处的对应核苷酸碱基为U、C、G或者T的情况下,认定为两个核苷酸序列之间在该位置处存在核苷酸差异。在一些实施方式中,以无碱基核苷酸或其等同物代替原位置的核苷酸时,也可认为在该位置处产生了核苷酸差异。
术语“dsRNA”是指能够进行RNA干扰的双链RNA分子,包含正义链和反义链。
如本文所使用的,术语“互补”或“反向互补”一词可互相替代使用,并具有本领域技术人员周知的含义,即,在双链核酸分子中,一条链的碱基与另一条链上的碱基以互补的方式相配对。在DNA中,嘌呤碱基腺嘌呤始终与嘧啶碱基胸腺嘧啶(或者在RNA中为尿嘧啶)相配对;嘌呤碱基鸟嘌呤始终与嘧啶碱基胞嘧啶相配对。每个碱基对都包括一个嘌呤和一个嘧啶。当一条链上的腺嘌呤始终与另一条链上的胸腺嘧啶(或尿嘧啶)配对,以及鸟嘌呤始终与胞嘧啶配对时,两条链被认为是彼此相互补的,以及从其互补链的序列中可以推断出该链的序列。与此相应地,“错配”在本领域中意指在双链核酸中,对应位置上的碱基并未以互补的形式配对存在。
术语“化学修饰”或“修饰”包括核苷酸经化学手段的所有改变,例如化学部分的添加或去除、或以一个化学部分取代另一个化学部分。
术语“碱基”包含任何已知的DNA和RNA碱基、碱基类似物,例如嘌呤或嘧啶,其还包括天然化合物腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶、尿嘧啶、次黄苷和天然类似物。碱基类似物还可以是通用碱基。
术语“平端”或“平末端”可互换使用,是指在siRNA的给定的末端没有非配对的核苷酸或核苷酸类似物,即,没有核苷酸突出。大多数情况下,两个末端都是平末端的siRNA将在其整个长度范围内是双链的。
本公开提供的siRNA可以通过本领域常规的制备方法(例如固相合成和液相合成的方法)得到。其中,固相合成已经有商业化订制服务。可以通过使用具有相应修饰的核苷单体来将修饰的核苷酸基团引入本公开所述的siRNA中,制备具有相应修饰的核苷单体的方法及将修饰的核苷酸基团引入siRNA的方法也是本领域技术人员所熟知的。
附图说明
图1为在TRD002218和TRD007205给药后第7天TTR中mRNA的表达量。
图2为TRD002218和TRD007205在给药后第28天TTR中mRNA的表达量。
具体实施方式
以下结合实施例进一步描述本公开,但这些实施例并非限制着本公开的范围。本公开实施例中未注明具体条件的实验方法,通常按照常规条件或按照原料或商品制造厂商所建议的条件。未注明具体来源的试剂,则该试剂可自任意分子生物学试剂的供应商以用于分子生物学应用的质量/纯度而获得。
实施例1:化学修饰的制备
1.1合成化合物1-1a和化合物1-1b
Figure PCTCN2022139462-appb-000179
将化合物1(500mg,3.42mmol)和三乙胺(Et 3N,692mg,6.84mmol,0.95mL)溶于二氯甲烷(DCM,10mL)中,冰浴下滴加4-甲苯磺酰氯(TsCl,717mg,3.76mmol)的二氯甲烷(10mL)溶液,滴加完毕后反应在室温下搅拌过夜,待反应完毕后,用水淬灭,水相用二氯甲烷(15mL)提取三次,合并的有机相先用饱和碳酸氢钠水溶液(10mL)洗涤,再用饱和食盐水(20mL)洗涤,随后减压蒸干溶剂得到粗品2(820mg,80%),直接用于下一步反应。MS m/z:C 14H 21O 5S,[M+H] +理论:301.10实测:301.2。
Figure PCTCN2022139462-appb-000180
将化合物3(239mg,1.22mmol)溶解于二甲基甲酰胺(DMF,10mL)中,冰浴下加入NaH(60%溶解在矿物油中,93mg,2.33mmol)溶液,该反应下搅拌30分钟,然后滴加化合物2(350mg,1.16mmol),滴加完毕后反应在60℃下搅拌5小时,反应完毕后,加水淬灭,水相用乙酸乙酯(15mL)提取三次,合并的有机相先用水(10mL)洗涤三次,再用饱和食盐水(10mL)洗涤,随后减压蒸干溶剂,经反相制备HPLC(C 18,条件:5-50%(A:H 2O,B:CH 3CN),流速:70mL/min),冻干后得到220mg化合物4。MS m/z:C 19H 21N 5O 3Na,[M+Na] +理论:390.16,实测:390.3。
Figure PCTCN2022139462-appb-000181
室温下将化合物4(1.50g,4.08mmol)溶解于20mL的醋酸和水(4:1)的混合溶液中,60℃下搅拌30分钟,待反应完毕后减压蒸干溶剂,经反相制备HPLC(C 18,条件:5-25%(A:H 2O,B:CH 3CN),流速:70mL/min),冻干后得到1.10g化合物5。MS m/z:C 16H 18N 5O 3,[M+H] +理论:328.13,实测:328.4。
Figure PCTCN2022139462-appb-000182
将化合物5(1.00g,3.05mmol)溶于吡啶(Py,10mL)中,冰浴下滴4,4'-双甲氧基三苯甲基氯(DMTrCl,1.50g,4.58mmol)的吡啶(5mL)溶液,滴加完毕后反应在室温下搅拌过夜,待反应完毕后,用水淬灭,减压蒸干溶剂,经反相制备HPLC(C 18,条件:5-80%(A:H 2O,B:CH 3CN),流速:70mL/min),冻干后得到1.00g化合物6。MS m/z:C 37H 36N 5O 5,[M-H] +理论:630.26,实测:630.5。消旋体化合物6经手 性柱(Daicel
Figure PCTCN2022139462-appb-000183
IE 250*4.6mm,5μm,A:正己烷,B:乙醇)拆分得410mg 6A(-)和435mg 6B(+)。
Figure PCTCN2022139462-appb-000184
将化合物6A(-)(200mg,0.32mmol),四氮唑(11mg,0.16mmol),N-甲基咪唑(5mg,0.06mmol),3A分子筛(500mg)溶于10mL的乙腈中,室温下加入化合物7(144mg,0.48mmol),在室温下搅拌过夜。反应完毕后,将分子筛过滤掉,加入二氯甲烷(30mL),饱和碳酸氢钠水溶液(10mL)洗涤三次,再用饱和食盐水(20mL)洗涤,滤液旋干并经反相制备HPLC(C 18,条件:5-100%(A:水,B:CH 3CN),流速:70mL/min),冻干后得到200mg化合物1-1a。MS m/z:C 40H 39N 6O 7P,[M-二异丙基+OH] +理论:747.26,实测:747.6。1H NMR(400MHz,Acetonitrile-d 3)δ7.56,7.54(2s,1H),7.36-7.27(m,2H),7.24-7.21(m,7H),6.83-6.80(m,4H),4.12-4.10(m,2H),3.75-3.68(m,10H),3.20-2.80(m,2H),2.68-2.54(m,4H),1.22-1.04(m,18H).
Figure PCTCN2022139462-appb-000185
将化合物6B(+)(200mg,0.32mmol),四氮唑(11mg,0.16mmol),N-甲基咪唑(5mg,0.06mmol),3A分子筛(500mg)溶于10mL的乙腈中,室温下加入化合物7(144mg,0.48mmol),在室温下搅拌过夜。反应完毕后,将分子筛过滤掉,加入二氯甲烷(30mL),饱和碳酸氢钠水溶液(10mL)洗涤三次,再用饱和食盐水(20mL)洗涤,滤液旋干并经反相制备HPLC(C 18,条件:5-100%(A:水,B:CH 3CN),流速:70mL/min),冻干后得到200mg化合物1-1b。MS m/z:C 40H 39N6O 7P,[M-二异丙基+OH] +理论:747.26,实测:747.5。
1.2合成化合物1-6a
Figure PCTCN2022139462-appb-000186
将化合物1(10g,68.404mmol),化合物2(15g,62.186mmol)和三苯基膦(32.62g,124.371mmol)溶于无水THF(30mL),于0℃下缓慢滴加DIAD(24.656mL,124.371mmol)。该反应液在25℃下反应12h。LCMS显示反应完成。将该反应液用乙酸乙酯(200mL)和水(200mL)萃取,有机相干燥将滤液浓缩,得到的残留物用正向柱纯化(DCM/MeOH=10/1)得目标产物3(20g).
Figure PCTCN2022139462-appb-000187
将化合物3(20g,28.585mmol)溶于醋酸(24mL,426.016mmol)和H 2O(12mL)中,60℃搅拌1小时。之后将反应液旋干加入THF(12mL)和H 2O(12mL),80℃搅拌7小时。LCMS显示反应完成。将反应液加入乙酸乙酯(200mL)和水(100mL)萃取,水相加入碳酸钠固体直到水相有大量固体析出。将固体过滤,用水洗涤,将滤饼用油泵拉干,得到目标化合物5(9g).
Figure PCTCN2022139462-appb-000188
在氮气保护下,将化合物5(6.8g,18.581mmol)溶于吡啶(80mL)中,于0℃下缓慢加入TMSCl(14.250mL,111.489mmol),搅拌2h。之后在0℃下加入Isobutyryl chloride(2.044mL,19.511mmol),于25℃下搅拌1h。LCMS显示反应完成。用二氯甲烷(200mL)和水(200mL)萃取,有机相干燥旋干后拌样,用正向柱纯化(DCM:MeOH=10:1)过柱,在4.8%处出峰),得到黄色油状化合物6(12g).
Figure PCTCN2022139462-appb-000189
在氮气保护下,将化合物6(5.5g,12.392mmol)溶于吡啶(30mL),加入MOLECULAR SIEVE 4A 1/16(7g,12.392mmol),然后在0℃下分批加入DMTrCl(5.04g,14.870mmol)固体,25℃反应2h。TLC(PE:EtOAc=1:1,Rf=0.69)显示反应已经完成。该反应液和TJN200879-040-P1合并一起处理。将反应液用乙酸乙酯(200mL)和水(200mL)萃取,有机相干燥旋干后拌样用正向柱纯化(PE:EtOAc过柱,在84%处出峰),得到黄色油状化合物7(12g)。
Figure PCTCN2022139462-appb-000190
将化合物7(12g,15.389mmol)溶于EtOAc(140mL),加入湿钯碳Pd/C(7g,15.389mmol)该反应液在25℃,氢气(15Psi)下反应2小时。TLC(PE:EtOAc=0:1,Rf=0.09)显示反应已经完成。将反应液过滤,滤饼用乙酸乙酯(30mL)冲洗三遍后,收集滤液。滤液旋干后加入50mL二氯甲烷和2mL三乙胺拌样用正向柱纯化(DCM:MeOH=10:1过柱,在0.5%处出峰),得到9g(黄色泡沫状固体).将所得消旋化合物SFC拆分,得到产品目标化合物7A(-)(3.9g)和目标化合物7B(+)(3.8g)。
Figure PCTCN2022139462-appb-000191
将化合物7A(-)(3.30g,5.40mmol),四氮唑(190mg,2.70mmol),1-甲基咪唑(90mg,1.10mmol),3A分子筛(500mg)溶于30mL的乙腈中,室温下加入化合物8(2.50g,8.10mmol),在室温下搅拌2h。反应完毕后,将分子筛过滤掉,加入DCM(150mL),饱和碳酸氢钠水溶液洗涤(30mL*3),再用饱和食盐水(30mL) 洗涤,滤液旋干并经反相制备HPLC(C18,Condition:5-100%(A:water,B:CH3CN),流速:70mL/min),冻干后得到1-6a(2.9g,66%)。MS m/z:C43H55N7O7P[M+H]+,理论:812.38,实测:812.5。1H NMR(400MHz,Acetonitrile-d3)δ7.56,7.54(2s,1H),7.36-7.27(m,2H),7.24-7.21(m,7H),6.83-6.80(m,4H),4.12-4.10(m,2H),3.75-3.68(m,10H),3.20-2.80(m,2H),2.68-2.54(m,4H),1.22-1.04(m,18H).
1.3合成化合物1-7a
Figure PCTCN2022139462-appb-000192
在氮气保护下,将化合物1(5g,23.1272mmol),化合物2(6.76g,46.254mmol)和三苯基磷(7.28g,27.753mmol)溶于30mL二氧六环中,于0℃缓慢滴加入DEAD(5.502mL,27.753mmol)。滴加完成后,反应缓慢升温至25℃继续反应1h。在反应液里加入100mL H 2O和100mL EtOAc萃取,有机相合并干燥过滤浓缩后拌样过柱,用正向柱纯化(PE:EtOAc=1:1过柱得目标产物(4g)。
Figure PCTCN2022139462-appb-000193
将化合物3(3.3g)溶于HOAc(16mL)和H 2O(4mL),油浴60℃加热0.5h。将反应液旋干得到的残留物用正向柱纯化(PE:EtOAc=0:1过柱),得到目标产物4(3g)。
Figure PCTCN2022139462-appb-000194
将化合物4(3g,8.873mmol)溶于5mL吡啶中,在氮气保护下于0℃缓慢滴加DMTrCl(3.91g,11.535mmol)的10mL吡啶的溶液。滴加完毕后反应升温至 25℃并继续反应1h。在反应液中加入50mL水和100mL乙酸乙酯萃取。水相再用100mL乙酸乙酯萃取三次,有机相合并干燥过滤浓缩用正向柱纯化(用PE:EtOAc=2:1)。得到目标产物5(4g).
Figure PCTCN2022139462-appb-000195
将化合物5(4g,5.769mmol)溶于甲醇(10mL),加入饱和的NH3甲醇溶液(40mL),0℃反应6h。将反应液旋干用正向柱纯化(用PE:EtOAc=0:1)得消旋化合物2.4g SFC拆分,得到目标产物6A(750mg,100%纯度)和目标产物6B(400mg,99.16%纯度)。
Figure PCTCN2022139462-appb-000196
将化合物6A(-)(700mg,1.40mmol),四氮唑(50mg,0.70mmol),1-甲基咪唑(23mg,0.28mmol),3A分子筛(500mg)溶于10mL的乙腈中,室温下加入化合物7(630mg,2.10mmol),在室温下搅拌2h。反应完毕后,将分子筛过滤掉,加入DCM(50mL),饱和碳酸氢钠水溶液洗涤(10mL*3),再用饱和食盐水(20mL)洗涤,滤液旋干并经反相制备HPLC(C18,Condition:5-100%(A:水B:CH 3CN),流速:70mL/min),冻干后得到1-7a(700mg,72%)。MS m/z:C38H47N4O7PNa[M+Na]+,理论:725.32,实测:725.5。
1.4合成化合物1-8a
Figure PCTCN2022139462-appb-000197
将化合物1(8.5g,76.508mmol),化合物2(30.64g,91.809mmol)溶于DMF(150mL),加入CS2CO3(29.91g,91.809mmol),反应于氮气保护下,90℃反应12h。LCMS检测反应完成。将反应液过滤,油泵旋干,正向柱分离纯化(80g,DCM/MeOH=10/1~5/1)得到目标产物3(13.5g,80%纯度)。
Figure PCTCN2022139462-appb-000198
将化合物3(10.5g,35.105mmol)溶于吡啶(65mL)和CH 3CN(65mL),向溶液中滴加BzCl(4.894mL,42.126mmol),于25℃反应2h。LCMS检测大部分原料反应完成,加H 2O(100mL)淬灭,EtOAc(100mL X 3)萃取,干燥旋干,柱分离(合并TJN200872-101)纯化(80g,PE/EtOAc=10/1~0/1,DCM/MeOH=10/1)得到目标产物4(14g,90%纯度)。
Figure PCTCN2022139462-appb-000199
将化合物4(14g,36.694mmol)溶于HOAc(56mL,314.796mmol)和H 2O(14mL),于60℃反应2h,LCMS显示反应完成。油泵浓缩,正向柱分离(40g,DCM/MeOH=1/0~5/1)得到目标产物5(8.4g,90%纯度&2.4g,80%纯度)。
Figure PCTCN2022139462-appb-000200
将化合物5(7.4g,21.957mmol),DMAP(0.54g,4.391mmol),MOLECULAR SIEVE 4A(11.1g,2.967mmol)溶于pyridine(60mL),冰浴下搅拌10min,然后加入DMTrCl(8.93g,26.348mmol),反应搅拌1.8h。LCMS检测约19%原料剩余,约60%目标MS。合并(TJN200872-105&106)一起纯化。向反应液中加入H 2O(50mL),经DCM(50mL X 3)萃取,干燥,旋干,柱分离(120g,PE/(EA:DCM:TEA=1:1:0.05)=1/0~0/1至DCM/MeOH=10/1)得到目标化合物6(11g,89%纯度,TJN200872-105&106&107),回收原料(3.0g,70%纯度)。
Figure PCTCN2022139462-appb-000201
化合物6(15g,22.041mmol)经SFC(DAICEL CHIRALPAK AD(250mm*50mm,10um);0.1%NH 3H 2O EtOH,B:45%-45%;200ml/min)分离得到目标产物6A(5.33g,94.29%纯度),目标产物6B(6.14g,97.91%纯度),化合物6回收1.0g。
Figure PCTCN2022139462-appb-000202
将化合物6B(-)(5.4g,8.92mmol),四氮唑(312mg,4.46mmol),1-甲基咪唑(146mg,1.78mmol),3A分子筛(500mg)溶于40mL的乙腈中,室温下加入化合物7(4g,13.4mmol),在室温下搅拌2h。反应完毕后,将分子筛过滤掉,加入DCM(200mL),饱和碳酸氢钠水溶液洗涤(30mL*3),再用饱和食盐水(50mL) 洗涤,滤液旋干并经反相制备HPLC(C18,Condition:5-100%(A:water,B:CH 3CN),流速:70mL/min),冻干后得到1-8a(5.8g,80%)。MS m/z:C45H51N5O7P,[M+H]+,理论:804.36,实测:804.4。
实施例2:dsRNA的合成
dsRNA的合成与通常的亚磷酰胺固相合成法无异,在合成AS链5’第7位修饰的核苷酸时,使用上述合成的亚磷酰胺单体替换母序列原核苷酸。合成过程简要描述如下:于Dr.Oligo48合成器(Biolytic)上,以Universal CPG载体为起始,根据合成程序逐个连接核苷亚磷酰胺单体。除上述描述的AS链5’第7位的核苷亚磷酰胺单体外,其余核苷单体原料2’-F RNA、2’-O-甲基RNA等核苷亚磷酰胺单体购自上海兆维或苏州吉玛。采用5-乙基硫-1H-四唑(ETT)作为活化剂(0.6M乙腈溶液),使用0.22M的PADS溶于1:1体积比的乙腈和三甲基吡啶(苏州柯乐玛)溶液作为硫化试剂,使用碘吡啶/水溶液(柯乐玛)作为氧化剂。
固相合成完成后,寡核糖核苷酸自该固体支撑物裂解,采用3:1的28%氨水和乙醇溶液在50℃条件下浸泡16小时。然后离心,将上清液转移到另一个离心管中,浓缩蒸发干后,使用C18反向色谱纯化,流动相为0.1M TEAA和乙腈,并使用3%三氟乙酸溶液脱除DMTr。目标寡核苷酸收集后冻干,并经LC-MS鉴定为目标产物,再经过UV(260nm)定量。
所得到的单链寡核苷酸,根据等摩尔比,按照互补配对,退火,最后所得到的dsRNA溶于1×PBS中,并调整至实验所需浓度备用。
实施例3:psiCHECK活性筛选实验
dsRNA样本合成见前述,质粒来源于生工生物工程(上海)股份有限公司。psiCHECK实验耗材如表1所示。
表1.psiCHECK实验耗材和试剂
Figure PCTCN2022139462-appb-000203
实验步骤:细胞铺板、细胞转染,其中,转染复合物具体配制量如表2所示。
表2. 96孔板每孔所需转染复合物用量
   用量/孔 Opti-MEM
质粒混合物 0.05μL 10μL
Lipofectamine 2000 0.2μL 10μL
注:Lipo:0.2μL/孔;质粒:0.05μL/孔;Opti-MEM:10μL/孔。
依照表3,根据不同的实验需求稀释至不同浓度作为工作液备用,现用现配。转染24h后,按照
Figure PCTCN2022139462-appb-000204
Luciferase Assay System检测试剂盒的实验操作方案进行检测。计算相对值Ratio=Ren/Fir(海肾/萤火虫比值);计算抑制率1-(Ratio+dsRNA/Ratioreporter only)*100%=抑制率(%);本公开中,剩余活性%(也称为mRNA剩余表达量%或mRNA剩余表达比例)=100%-抑制率(%)。
表3.多浓度点dsRNA稀释方案
终浓度(nM) 加水与dsRNA
/ /
40 4μL dsRNA(20μM)+96μL H 2O
13.33333333 30μL dsRNA+60μL H 2O
4.444444444 30μL dsRNA+60μL H 2O
1.481481481 30μL dsRNA+60μL H 2O
0.49382716 30μL dsRNA+60μL H 2O
0.164609053 30μL dsRNA+60μL H 2O
0.054869684 30μL dsRNA+60μL H 2O
0.018289895 30μL dsRNA+60μL H 2O
0.006096632 30μL dsRNA+60μL H 2O
0.002032211 30μL dsRNA+60μL H 2O
0.000677404 30μL dsRNA+60μL H 2O
实施例4:不同化学修饰表征
Figure PCTCN2022139462-appb-000205
其中:我们将由2-羟甲基-1,3-丙二醇为起始原料合成的核苷酸定义hmpNA;
(+)hmpNA(A)为实施例1.1节中核苷亚磷酰胺单体1-1b通过固相合成获得,绝对构型为(S)-hmpNA(A);
(-)hmpNA(A)为实施例1.1节中核苷亚磷酰胺单体1-1a通过固相合成获得,绝对构型为(R)-hmpNA(A);
类似的,替换hmpNA的碱基种类,通过固相合成获得以下结构并确认绝对构型:
(+)hmpNA(G),绝对构型为(S)-hmpNA(G);
(-)hmpNA(G),绝对构型为(R)-hmpNA(G);
(+)hmpNA(C),绝对构型为(S)-hmpNA(C);
(-)hmpNA(C),绝对构型为(R)-hmpNA(C);
(+)hmpNA(U),绝对构型为(R)-hmpNA(U);
(-)hmpNA(U),绝对构型为(S)-hmpNA(U)。
(S)-hmpNA(G),(R)-hmpNA(G),(S)-hmpNA(C),(R)-hmpNA(C),(S)-hmpNA(U)和(R)-hmpNA(U)的绝对构型由其中间体或衍生物经X-Ray衍射而确认。
中间体或衍生物的结构为:
Figure PCTCN2022139462-appb-000206
TJ-NA067:检测晶体为无色块状(0.30×0.10×0.04mm3),属于单斜晶系P21空间群。晶胞参数
Figure PCTCN2022139462-appb-000207
α=90°,β=118.015(4)°,γ=90°,
Figure PCTCN2022139462-appb-000208
Z=4。计算密度Dc=1.389g/cm3,单胞中电子数F(000)=504.0,单胞的线性吸收系数μ(Cu Kα)=0.840mm–1,衍射实验温度T=150.00(11)K。
Figure PCTCN2022139462-appb-000209
6A(+):检测晶体为无色块状(0.30×0.20×0.10mm3),属于单斜晶系P21空 间群。晶胞参数
Figure PCTCN2022139462-appb-000210
α=90°,β=113.876(3)°,γ=90°,
Figure PCTCN2022139462-appb-000211
Z=2。计算密度Dc=0.999g/cm3,单胞中电子数F(000)=1318.0,单胞的线性吸收系数μ(Cu Kα)=0.570mm–1,衍射实验温度T=100.01(18)K。
Figure PCTCN2022139462-appb-000212
TJ-NA048:检测晶体为无色针状(0.30×0.04×0.04mm3),属于单斜晶系P1空间群。晶胞参数
Figure PCTCN2022139462-appb-000213
α=85.007(4)°,β=88.052(4)°,γ=70.532(4)°,
Figure PCTCN2022139462-appb-000214
Z=2。计算密度Dc=1.366g/cm3,单胞中电子数F(000)=620.0,单胞的线性吸收系数μ(Cu Kα)=0.856mm–1,衍射实验温度T=150.00(13)K。
Figure PCTCN2022139462-appb-000215
TJ-NA092:检测晶体为无色棱柱状(0.30×0.10×0.10mm3),属于三斜晶系P1空间群。晶胞参数
Figure PCTCN2022139462-appb-000216
α=93.146(2)°,β=101.266(2)°,γ=96.134(2)°,
Figure PCTCN2022139462-appb-000217
Z=2。计算密度Dc=1.412g/cm3,单胞中电子数F(000)=228.0,单胞的线性吸收系数μ(Cu Kα)=0.945mm–1,衍射实验温度T=100.00(10)K。
实施例5:包含不同化学修饰的dsRNA的序列依赖性实验
已知Abasic修饰具有序列依赖性,因此发明人在多条不同序列上测试了本公开的实验化合物。使用了靶向不同基因(ANGPTL3、HBV-S、HBV-X)mRNA的dsRNA(序列如表4所示),使用实施例1的化合物(+)hmpNA(A)、(-)hmpNA(A)和作为对照的GNA (A)修饰AS链5’端第7位(序列如表5所示),再与母序列比 较在靶活性和脱靶活性。
表4.靶向不同基因的dsRNA序列
Figure PCTCN2022139462-appb-000218
在上表中,大写字母G、A、C、U分别表示包含鸟嘌呤、腺嘌呤、胞嘧啶和尿嘧啶的核苷酸,小写字母m表示2'-甲氧基修饰,小写字母f表示2'-氟代修饰,小写字母s表示与该字母s左右相邻的两个核苷酸之间为硫代磷酸二酯基连接;以下同。
表5.靶向不同基因的包含化学修饰的dsRNA序列
Figure PCTCN2022139462-appb-000219
Figure PCTCN2022139462-appb-000220
在靶活性实验结果参见表6,GNA (A)显现出明显的序列依赖性,不同序列的在靶活性差异明显。本公开的实验化合物没有显示出明显的序列依赖性,普遍适用性更强。
脱靶活性实验结果参见表7,可以看出,相对于母序列,本公开的实验化合物明显降低了dsRNA的脱靶活性。
表6.针对不同靶序列的dsRNA的在靶活性结果
Figure PCTCN2022139462-appb-000221
表7.针对不同靶序列的dsRNA的脱靶活性结果
Figure PCTCN2022139462-appb-000222
Figure PCTCN2022139462-appb-000223
实施例6:制备NAG0052、L96
化合物NAG0024、NAG0026购买自天津药明康德新药开发有限公司。除非特别说明,以下实施例中所用的试剂均为市售商品。
化合物3
(3)化合物NAG0052的合成
起始原料化合物1采购自江苏倍达医药科技有限公司。化合物NAG0052的合成路线如下所示:
Figure PCTCN2022139462-appb-000224
Figure PCTCN2022139462-appb-000225
上述路线中涉及的具体中间产物以及终产物的合成以及鉴定如下所述:
化合物2
在0℃以及氮气保护下,往化合物1(12.3mL,101mmol)的THF(300mL)溶液中分批加入NaH(12.2g,304mmol,纯度60%)。该混合物在20℃下搅拌1小时之后再次冷却到0℃,接着往体系中逐滴加入苄溴(36.3mL,304mmol),并且在20℃搅拌12小时。将该反应液用H 2O(100mL)淬灭后,用EtOAc(200mL x 2)萃取。合并后的有机相用饱和食盐水(100mL)洗涤,Na 2SO 4干燥,过滤,浓缩得到的残留物经过硅胶柱层析分离后得到目标化合物2(20.0g,51.8mmol,产率51%)。
LCMS:t R=2.615 and 2.820min in 30-90AB_7min_220&254_Shimadzu.lcm(Xtimate C18,3um,2.1*30mm),MS(ESI)m/z=351.2[M+Na] +
1H NMR:(400MHz,CDCl 3)δppm 7.35-7.12(m,10H),5.06-4.95(m,1H),4.51-4.39(m,4H),4.24-3.87(m,2H),3.50-3.40(m,2H),3.38-3.20(m,3H),2.20-1.91(m,2H)。
化合物3和4
在20℃以及氮气保护下,往化合物2(13.0g,33.6mmol)的DCM(300mL)溶液中一次性加入TMSCN(13.5mL,101mmol),接着逐滴加入TMSOTf(9.14mL,50.5mmol)的DCM(30mL)溶液。该反应液在20℃下搅拌15小时。反应结束之后用饱和NaHCO 3水溶液(80mL)淬灭该体系,并且用DCM(150mL x 2)萃取,合并后的有机相用饱和食盐水(80mL)洗涤,Na 2SO 4干燥,过滤以及浓缩后通过硅胶柱层析分离后得到目标化合物3(3.30g,9.18mmol,产率27%)以及淡黄色油状液体化合物4(8.50g,9.18mmol,产率70%)。
化合物3
1H NMR:(400MHz,CDCl 3)δppm 7.42-7.29(m,10H),4.81(t,J=7.8Hz,1H),4.65-4.49(m,4H),4.30-4.21(m,2H),3.65-3.57(m,1H),3.57-3.49(m,1H),2.49-2.40(m,2H)。
化合物4
1H NMR:(400MHz,CDCl 3)δppm 7.42-7.26(m,10H),4.93-4.87(m,1H),4.65-4.48(m,4H),4.43-4.38(m,1H),4.21-4.17(m,1H),3.79-3.70(m,1H),3.54(d,J=4.0Hz,1H),2.45-2.37(m,2H)。
化合物5
在0℃及氮气保护下将化合物4(3.00g,9.28mmol)的THF(15mL)溶液,滴加到LiAlH 4(0.79g,20.9mmol)的THF(15mL)溶液中,滴加完后体系在0℃反应1小时。TLC(PE:EtOAc=3:1)监测到原料完全消失。向反应液中缓慢加入十水硫酸钠,加至不冒泡为止。之后将反应液过滤,滤饼用二氯甲烷(60mL)洗涤三次后,收集滤液旋干,得目标化合物5(3.00g,产率90%).
1H NMR:(400MHz,DMSO-d 6)δppm 7.40-7.14(m,10H),4.54-4.38(m,4H),4.06-3.99(m,2H),3.91(q,J=6.4Hz,1H),3.48-3.37(m,2H),2.67-2.52(m,2H),2.21-2.18(m,1H),1.77-1.73(m,1H)。
化合物6
在氮气保护下,将化合物5(3.00g,8.25mmol)溶于DCM(30mL),加入TEA(3.44mL,24.7mmol)和CbzCl(1.76mL,12.4mmol),20℃反应2小时。LCMS显示反应完成。将反应液加入二氯甲烷(30mL)和水(60mL)萃取。有机相用水(60mL x 3)洗涤三次,无水硫酸钠干燥,浓缩用正向柱纯化(PE:EtOAc=1:1),得到目标化合物6(2.5g,产率90%)。
LCMS:t R=0.810min in 5-95AB_1min,MS(ESI)m/z=462.2[M+H] +
1H NMR:(400MHz,CDCl 3)δppm 7.39-7.29(m,15H),5.35(s,1H),5.15-5.01(m,2H),4.72(d,J=6.0Hz,1H),4.54-4.40(m,3H),4.26(s,1H),4.23-4.18(m,1H),4.11-4.04(m,1H),3.54-3.41(m,3H),3.37-3.25(m,1H),2.34-2.23(m,1H),1.85-1.79(m,1H)。
化合物7
在氮气保护下,将化合物6(2.00g,3.90mmol)溶于DCM(5mL),在-78℃下加入BCl 3的THF溶液(1M,27.3mL),反应1小时。TLC(DCM:MeOH=10:1)监测到原料完全消失。将反应液在-78℃下加入甲醇(20mL)淬灭,浓缩,用正向柱纯化(DCM:MeOH=10:1),得到目标化合物7(2.00g,产率60%)。
1H NMR:(400MHz,CD 3OD)δppm 7.41-7.23(m,5H),5.08(s,2H),4.25-4.07(m,2H),3.85-3.75(m,1H),3.63-3.56(m,1H),3.54-3.48(m,1H),3.30-3.27(m,2H),2.34-2.21(m,1H),1.71-1.64(m,1H)。
化合物8
在氮气保护下,将化合物7(0.50g,1.78mmol)溶于吡啶(5mL)中,在0℃下 加入4A分子筛(500mg)和DMTrCl(0.66mL,2.13mmol),之后升温至20℃反应1.5小时。TLC(PE:EtOAc=2:1)监测到原料完全消失。将反应液加入乙酸乙酯(60mL)和水(60mL)萃取,有机相用水(60mL x 3)洗涤三次后用无水硫酸钠干燥,浓缩,用正向柱纯化(PE:EtOAc=1:1),得到目标化合物8(800mg,产率90%)。
1H NMR:(400MHz,CDCl 3)δppm 7.44(d,J=7.6Hz,2H),7.37-7.23(m,11H),7.22-7.15(m,1H),6.84(d,J=8.8Hz,4H),5.09(s,2H),4.31-4.17(m,2H),4.02-3.91(m,1H),3.84-3.73(m,6H),3.33(s,1H),3.28(s,1H),3.19-3.01(m,2H),2.34-2.25(m,1H),1.70-1.62(m,1H)。
化合物9
将化合物8(800mg,1.234mmol)溶于EtOAc(5mL),加入Pd/C 10%(800mg,7.517mmol),反应在H 2条件(15Psi),20℃下反应1小时。LCMS显示反应已经完成。反应液过滤,滤饼用二氯甲烷(100mL)和甲醇(100mL)洗涤三次,浓缩,经过反相柱分离得到化合物9(300mg,54%)。
LCMS:t R=2.586min in 10-80CD_3min MS(ESI)m/z=450.2[M+H] +
化合物11
将化合物10(435mg,1.780mmol)溶于DCM(10mL),加入DIEA(0.441mL,2.67mmol)和HATU(677mg,1.78mmol)后,再加入化合物9(400mg,0.890mmol),20℃反应1小时。TLC(DCM:MeOH=10:1)监测反应完成。将反应液加入二氯甲烷(60mL)和水(60mL)萃取,有机相用水(60mL x 3)洗涤三次,无水硫酸钠干燥,浓缩用正向柱纯化(PE:EtOAc=0:1过柱,在100%处出产品峰),得到目标化合物11(600mg,产率90%)。
LCMS:t R=2.745min in 30-90CD_3min,MS(ESI)m/z=698.4[M+Na] +
1H NMR:(400MHz,CD 3OD)δppm 7.46-7.38(m,2H),7.35-7.24(m,6H),7.22-7.16(m,1H),6.90-6.78(m,4H),4.29-4.21(m,2H),4.02-3.95(m,1H),3.77(s,6H),3.66-3.62(m,3H),3.41(s,1H),3.18-3.04(m,2H),2.36-2.17(m,5H),1.71-1.50(m,5H),1.39-1.25(m,14H)。
化合物12
将化合物11(600mg,0.799mmol)溶于THF(3mL)和H 2O(1mL),加入LiOH.H 2O(134mg,3.20mmol),20℃反应12小时。TLC(DCM:MeOH=10:1)显示反应完成。将反应液旋干,用水(5mL)和甲醇(5mL)溶解,用反向柱纯化(H 2O:CH 3CN=1:1,在35%左右出峰),得到目标化合物12(460mg,产率100%,锂盐)。
LCMS:t R=1.346min in 10-80CD_3min,MS(ESI)m/z=684.3[M+Na] +
HPLC:t R=1.879min in 10-80CD_6min。
1H NMR:(400MHz,CD 3OD)δppm 7.47-7.39(m,2H),7.35-7.24(m,6H),7.22-7.15(m,1H),6.91-6.79(m,4H),4.31-4.18(m,2H),4.02-3.95(m,1H),3.78(s,6H),3.44-3.33(m,2H),3.18-3.04(m,2H),2.35-2.27(m,1H),2.24-2.10(m,4H), 1.70-1.51(m,5H),1.31-1.23(m,12H)。
化合物13
室温环境,氮气保护下,将化合物NAG0024(271mg,0.151mmol)溶解于无水THF(2mL)和无水DMF(4mL),加入3A分子筛,再依次加入化合物12(100mg,0.151mmol),HOBt(25mg,0.181mmol),DCC(38mg,0.181mmol)和DIEA(39mg,0.302mmol)。反应液45℃反应16h。LC-MS显示反应完全后,加水淬灭,过滤。滤液浓缩后,经C18反相柱纯化(H 2O/MeCN),得到化合物13(210mg,产率57%)。
化合物NAG0052
室温环境下,化合物13(230mg,0.094mmol)溶于吡啶(5mL),加入分子筛,加入DMAP(12mg,0.283mmol),丁二酸酐(28mg,0.283mmol)。氮气保护,50℃搅拌16小时。LCMS检测反应完全,过滤旋干。过C18反相柱纯化后,由制备HPLC二次纯化,得到目标化合物NAG0052(123mg,0.048mmol,产率51%)。
MS(ESI)m/z=2535.3[M-1] -.理论:2536.2。
1H NMR(400MHz,Acetonitrile-d 3)δ7.48-7.43(m,2H),7.37-7.12(m,11H),7.00-6.85(m,10H),6.66(s,1H),5.31(dd,J=3.4,1.1Hz,3H),5.20-5.13(m,1H),5.05(dd,J=11.3,3.4Hz,3H),4.56(d,J=8.5Hz,3H),4.30(dd,J=7.7,5.3Hz,1H),4.18-3.93(m,14H),3.79(s,10H),3.65(q,J=4.7,3.6Hz,13H),3.56-3.07(m,24H),2.56(s,6H),2.37(t,J=5.8Hz,10H),2.17(t,J=7.5Hz,9H),2.02-1.96(m,20H),1.88(s,8H),1.82-1.73(m,2H),1.60(dt,J=15.0,7.3Hz,16H),1.27(s,13H)。
(4)L96的合成
Figure PCTCN2022139462-appb-000226
按照专利申请WO2014025805A1记载的方法制备获得如上结构式所示的L96。
实施例7 dsRNA的合成
1.自制带有载体的树脂
将含有羧酸基团的化合物NAG0052(157mg,0.062mmol)溶于无水DMF(3mL),待底物完全溶解后,依次加入无水乙腈(4mL),DIEA(0.03mL,0.154mmol,2.5eq)和HBTU(35mg,0.093mmol,1.5eq)。反应液混合均匀后,再加入大孔胺甲基树脂(476mg,空白载量为0.41mmol/g,目标载量为0.1mmol/g)。将反应液放入 摇床上(温度:25℃,转速:200rpm)振摇过夜。反应液过滤,滤饼依次分别用DCM,无水乙腈洗涤,收集固体,真空干燥过夜。
将上步固体分散于无水乙腈(5mL),依次加入吡啶(0.18mL),DMAP(3mg),NMI(0.12mL)和CapB1(2.68mL)。将反应液放入摇床上(温度:25℃,转速:200rpm)振摇2h。反应液过滤,滤饼用无水乙腈洗涤,收集固体,真空干燥过夜,得到带有载体的树脂。载量经过测定为0.1mmol/g。
2.对于已经连接在树脂上的NAG0052,使用该树脂作为起始,按照核苷酸排布顺序自3’-5’方向逐一连接核苷单体。每连接一个核苷单体都包括脱保护、偶联、盖帽、氧化或硫化四步反应。操作为本领域常规。
化合物NAG0052经过固相合成连接到序列上,再经过胺解后,NAG0052结构脱去一部分官能团成为NAG0052’。
制得的dsRNA具有表8和表9中所示的有义链和反义链。
表8.dsRNA列表
dsRNA编号 有义链编号 反义链编号
TRD002218 TJR4373-SS TJR0414-AS
TRD007205 TJR013485S TJR0414-AS
表9.有义链和反义链的核酸序列
Figure PCTCN2022139462-appb-000227
以上配体的结构如下:
Figure PCTCN2022139462-appb-000228
Figure PCTCN2022139462-appb-000229
其中,TRD002218作为参比阳性化合物,Z表示siRNA。
实施例8 dsRNA在体内对靶基因mRNA表达量的抑制
本实验考察本公开的缀合不同结构的dsRNA在体内对靶基因mRNA表达量的抑制效率
将雄性6-8周龄C57BL/6小鼠随机分组,每组共6只,每个时间点各3只,分别向每组小鼠给予TRD007205、参比阳性TRD002218以及PBS。
所有动物依据体总计算给药量,采用皮下注射方式单次给药,dsRNA给药剂量(以siRNA的量计)为1mg/kg,给药体积为5mL/kg。给药7天、28天后处死小鼠,收集肝脏,用RNA later(Sigma Aldrich公司)保存;随后用组织匀浆仪匀浆肝组织,再用组织RNA提取试剂盒(凡知医疗科技,FG0412)根据操作说明书标注的操作步骤提取得到肝组织总RNA。将总RNA反转录成cDNA并采用实时荧光定量PCR方法检测肝组织中的TTR mRNA的表达量。在该荧光定量PCR法中,以甘油醛3-磷酸脫氫酶(GAPDH)基因作为内参基因,使用针对TTR和GAPDH的Taqman探针引物分别检测TTR和GAPDH的mRNA表达量。
表10.小鼠体内实验化合物分组信息:
Figure PCTCN2022139462-appb-000230
表11.检测引物的序列参见如下:
Figure PCTCN2022139462-appb-000231
Figure PCTCN2022139462-appb-000232
TTR mRNA表达量按照如下等式计算:
TTR mRNA表达量=【(测试组TTR mRNA表达量/测试组GAPDH mRNA表达量)/(对照组TTR mRNA表达量/对照组GAPDH mRNA表达量)】x 100%。
给药7天、28天后,本公开的缀合不同结构的dsRNA的在体内对靶基因mRNA表达量的抑制效率分别见图1和图2。由图1的结果可知,TRD007205在给药后7天对于TTR mRNA的表达抑制均具有良好的效果。由图2可知,给药28天后,TRD007205对靶基因mRNA表达量的抑制作用均优于TRD002218。
实施例9合成dsRNA
1.自制带有载体的树脂
具体操作同实施例7。
2.使用带有NAG0052的树脂作为起始,按照核苷酸排布顺序自3’-5’方向逐一连接核苷单体。每连接一个核苷单体都包括脱保护、偶联、盖帽、氧化或硫化四步反应。具体参照实施例2的合成方法。
制得的dsRNA具有表12和表13中所示的有义链和反义链。对应的裸序列如表14中所示。
表12.dsRNA列表
Figure PCTCN2022139462-appb-000233
表13.dsRNA的有义链和反义链
Figure PCTCN2022139462-appb-000234
Figure PCTCN2022139462-appb-000235
表14.dsRNA的有义链和反义链的核酸序列对应的裸序列
Figure PCTCN2022139462-appb-000236
其中,(-)hmpNA(A)、(-)hmpNA(G)、(-)hmpNA(C)、(-)hmpNA(U)的结构参见实施例4。
NAG0052’的结构为:
Figure PCTCN2022139462-appb-000237
A(GNA)的结构为:
Figure PCTCN2022139462-appb-000238
L10的结构为:
Figure PCTCN2022139462-appb-000239
实施例10 dsRNA对不同靶点的在靶活性
在HEK293A细胞中采用9个浓度梯度对dsRNA进行体外分子水平模拟在靶活性筛选。
以人APOC3基因构建dsRNA对应的在靶序列,插入到psiCHECK-2质粒中。该质粒包含海肾荧光素酶基因及萤火虫荧光素酶基因。作为双报告基因系统,dsRNA的靶序列插入到海肾荧光素酶基因的3’UTR区域,dsRNA对于靶标序列的活性可以通过经萤火虫荧光素酶校准后的海肾荧光素酶表达情况的检测来反映,检测使用Dual-Luciferase Reporter Assay System(Promega,E2940)。
HEK293A细胞培养于含10%胎牛血清的DMEM高糖培养基中,在37℃,5%CO 2条件下培养。转染前24h,将HEK293A细胞接种于96孔板,接种密度为每孔8×10 3个细胞,每孔100μL培养基。
按照说明书,使用Lipofectamine2000(ThermoFisher,11668019)对细胞共转染dsRNA及对应质粒,Lipofectamine2000每孔使用0.2μLL。质粒转染量为20ng每孔。对于在靶序列质粒,dsRNA共设置9个浓度点,最高浓度点终浓度为20nM,3倍梯度稀释,20nM,6.6667nM,2.2222nM,0.7407nM,0.2469nM,0.0823nM,0.0274nM,0.0091nM,0.0030nM。转染后24h,采用Dual-Luciferase Reporter Assay System(Promega,E2940)检测在靶水平。检测序列的在靶活性如表15所示。结果表明,TRD007972、TRD007996、TRD007997、TRD007972-1、TRD007996-1、 TRD007997-1化合物在psiCHECK系统针对APOC3基因具有高水平的在靶抑制活性。
表15.dsRNA psi-CHECK在靶活性筛选结果
Figure PCTCN2022139462-appb-000240
实施例11 dsRNA对人原代肝细胞(PHH)中人APOC3的抑制-7个浓度点抑制活性
在人原代肝细胞(PHH)中采用7个浓度梯度对dsRNA进行人原代肝细胞(PHH)活性筛选。各个dsRNA样品转染起始终浓度为20nM,5倍梯度稀释和7个浓度点。
PHH冻存于液氮中,转染前24h,将人原代肝细胞(PHH)复苏后接种于96孔板,接种密度为每孔3×10 4个细胞,每孔80μL培养基。
参照产品说明手册,使用Lipofectamine RNAi MAX(ThermoFisher,13778150)转染dsRNA,dsRNA转染的梯度终浓度为10nM,2nM,0.4nM,0.08nM,0.016 nM,0.0032nM和0.00064nM。在处理24小时后,使用高通量细胞RNA提取试剂盒进行细胞总RNA提取、RNA逆转录实验(Takara,6210B)和定量实时PCR检测(ThermoFisher,4444557),测定人APOC3的mRNA水平,根据GAPDH内参基因水平对人APOC3的mRNA水平进行校正。
其中,在定量实时PCR检测时,采用的是探针Q-PCR检测实验,其引物信息如表16所示。
表16.Taqman引物信息表
引物名称 SEQ ID NO 引物序列
hAPOC3-PF 46 TGCCTCCCTTCTCAGCTTCA
hAPOC3-PR 47 GGGAACTGAAGCCATCGGTC
hAPOC3-P 48 ATGAAGCACGCCACCAAGACCGCCA
hGAPDH-PF1-MGB 49 GACCCCTTCATTGACCTCAACTAC
hGAPDH-PR1-MGB 50 TTGACGGTGCCATGGAATTT
hGAPDH-P1-MGB 51 TTACATGTTCCAATATGATTCC
结果分析方法:
Q-PCR检测实验完毕后,按照系统自动设定的阈值获取相应的Ct值,可以通过Ct值比较,相对定量某个基因的表达:比较Ct指的是通过与内参基因Ct值之间的差值来计算基因表达差异,也称之是2 -△△Ct,△△Ct=[(Ct实验组目的基因-Ct实验组内参)-(Ct对照组目的基因-Ct对照组内参)]。抑制率(%)=(1-目的基因表达剩余量)*100%。
结果以相对于经过dsRNA处理的细胞的人APOC3mRNA表达剩余百分比来表示。抑制率的IC 50结果见表17。
结果表明,TRD007972、TRD007996、TRD007997、TRD007972-1、TRD007996-1、TRD007997-1在PHH细胞中针对APOC3基因具有高水平的在靶抑制活性。
表17.dsRNA在PHH细胞中多剂量抑制活性
Figure PCTCN2022139462-appb-000241
实施例12 psiCHECK反义链(AS链)脱靶水平验证
在HEK-293A细胞中采用9个浓度梯度对dsRNA进行体外分子水平模拟脱靶水平筛选。结果表明,本公开的dsRNA具有高活性的同时,还具有低脱靶性。psiCHECK活性筛选实验步骤参考实施例11。
构建dsRNA序列对应的脱靶序列,插入到psiCHECK-2质粒中。该质粒包含海肾荧光素酶基因及萤火虫荧光素酶基因。作为双报告基因系统,dsRNA的靶序列插入到海肾荧光素酶基因的3’UTR区域,dsRNA对于靶标序列的活性可以通过经萤火虫荧光素酶校准后的海肾荧光素酶表达情况的检测来反映,检测使用Dual-Luciferase Reporter Assay System(Promega,E2940)。
dsRNA对应的GSSM靶标质粒构建规则如下:
针对反义链,构建与反义链5’端1-8位完全互补,而其它位置的碱基完全不匹配的脱靶质粒GSSM,碱基错配对应规则为A与C互配、G与T互配。
结果如表18所示。
结果表明,TRD007972-1无种子区脱靶风险。
表18.AS链种子区psiCHECK脱靶活性筛选结果(GSSM)
Figure PCTCN2022139462-appb-000242

Claims (20)

  1. 一种双链核糖核酸(dsRNA),其中,所述双链核糖核酸包含siRNA和一个或多个与其缀合的配体,所述siRNA包含有义链和反义链,所述反义链在其5’端的第2位至第8位中的至少一个核苷酸位置处包含式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐:
    所述式(I)所示的化学修饰选自以下任一结构:
    Figure PCTCN2022139462-appb-100001
    B各自独立地为反义链5’端的第2位至第8位对应位置的碱基;
    所述配体具有以下结构或其药学上可接受的盐:
    Figure PCTCN2022139462-appb-100002
    所述siRNA为靶向载脂蛋白C3(APOC3)基因的siRNA。
  2. 如权利要求1所述的dsRNA,其中,所述siRNA的有义链包含与SEQ ID NO:1至SEQ ID NO:4中任一的核苷酸序列相差不超过3个核苷酸的至少15个连续核苷酸,和/或,
    反义链包含与SEQ ID NO:5或SEQ ID NO:6中任一的核苷酸序列相差不超过3个核苷酸的至少19个连续核苷酸;
    优选地,所述siRNA的有义链包含SEQ ID NO:1至SEQ ID NO:4中的任一项所示的核苷酸序列,和/或,
    反义链包含SEQ ID NO:5或SEQ ID NO:6中的任一项所示的核苷酸序列;
    更优选地,
    所述siRNA的有义链包含SEQ ID NO:1所示的核苷酸序列,并且反义链包含SEQ ID NO:5所示的核苷酸序列;
    有义链包含SEQ ID NO:2所示的核苷酸序列,并且反义链包含SEQ ID NO:5所示的核苷酸序列;
    有义链包含SEQ ID NO:3所示的核苷酸序列,并且反义链包含SEQ ID NO:6所示的核苷酸序列;或
    有义链包含SEQ ID NO:4所示的核苷酸序列,并且反义链包含SEQ ID NO:6所示的核苷酸序列。
  3. 如权利要求1或2所述的dsRNA,其中,所述有义链的3’端与所述配体缀合。
  4. 如权利要求1-3中任一项所述的dsRNA,其中,所述配体通过磷酸酯基团或硫代磷酸酯基团与所述siRNA有义链的3’端连接;优选通过磷酸二酯基团或硫代磷酸二酯基团连接,更优选通过磷酸二酯基团连接。
  5. 如权利要求1-4中任一项所述的dsRNA,其中,式(I)所示的化学修饰、其互变异构体或其药学上可接受的盐修饰的核苷酸位于反义链5’端的第5位、第6位或第7位,优选位于第7位。
  6. 如权利要求1-5中任一项所述的dsRNA,其中,
    所述的有义链和/或反义链中至少一个另外的核苷酸为修饰的核苷酸。
  7. 如权利要求1-6中任一项所述的dsRNA,其中,
    所述有义链含有如下式所示的核苷酸序列,或由其组成:
    5’-N aN aN aN aN aN aN bN bN bN aN aN aN aN aN aN aN aN aN a-3’;或,
    5’-N aN aN aN aN bN aN bN bN bN aN aN aN aN aN aN aN aN aN a-3’;
    其中,N a为2'-甲氧基修饰的核苷酸,N b为2'-氟代修饰的核苷酸。
  8. 如权利要求1-7中任一项所述的dsRNA,其中,所述反义链含有如下式所示的核苷酸序列,或由其组成:
    5’-N a’N b’N a’N b’N a’N b’W’N a’N a’N b’N a’N b’N a’N b’N a’N b’N a’N b’N a’N a’N a’-3’;
    其中,
    N a’为2'-甲氧基修饰的核苷酸,N b’为2'-氟代修饰的核苷酸;
    W’表示包含选自以下结构所示的化学修饰、其互变异构体或其药学上可接受的盐的核苷酸:
    Figure PCTCN2022139462-appb-100003
    其中:B对应于所述反义链5’端第7位的碱基。
  9. 如权利要求1-8中任一项所述的dsRNA,其中,所述有义链和/或反义链中至少一个磷酸酯基为具有修饰基团的磷酸酯基;优选地,所述具有修饰基团的磷酸酯基为硫代磷酸二酯基。
  10. 如权利要求9所述的dsRNA,其中,所述硫代磷酸二酯基存在于以下位置中的至少一处:
    所述有义链的5'端第1个核苷酸和第2个核苷酸之间;
    所述有义链的5'端第2个核苷酸和第3个核苷酸之间;
    所述反义链的5'端第1个核苷酸和第2个核苷酸之间;
    所述反义链的5'端第2个核苷酸和第3个核苷酸之间;
    所述反义链的3'端第1个核苷酸和第2个核苷酸之间;以及
    所述反义链的3'端第2个核苷酸和第3个核苷酸之间;
    优选地,
    所述有义链和/或反义链中包括多个硫代磷酸二酯基,所述硫代磷酸二酯基存在于:
    所述有义链的5'端第1个核苷酸和第2个核苷酸之间;和,
    所述有义链的5'端第2个核苷酸和第3个核苷酸之间;和,
    所述反义链的5'端第1个核苷酸和第2个核苷酸之间;和,
    所述反义链的5'端第2个核苷酸和第3个核苷酸之间;和,
    所述反义链的3'端第1个核苷酸和第2个核苷酸之间;和,
    所述反义链的3'端第2个核苷酸和第3个核苷酸之间。
  11. 一种dsRNA,其中,
    所述dsRNA包含SEQ ID NO:8所示的有义链和SEQ ID NO:17所示的反义链;或,
    包含SEQ ID NO:7所示的有义链和SEQ ID NO:17所示的反义链;或,
    包含SEQ ID NO:9所示的有义链和SEQ ID NO:17所示的反义链;或,
    包含SEQ ID NO:11所示的有义链和SEQ ID NO:18所示的反义链;或,
    包含SEQ ID NO:13所示的有义链和SEQ ID NO:18所示的反义链;或,
    包含SEQ ID NO:10所示的有义链和SEQ ID NO:17所示的反义链;或,
    包含SEQ ID NO:12所示的有义链和SEQ ID NO:18所示的反义链;或,
    包含SEQ ID NO:14所示的有义链和SEQ ID NO:18所示的反义链。
  12. 如权利要求1-11中任一项所述的dsRNA,其中,所述dsRNA选自如下结构或其药学上可接受的盐:
    Figure PCTCN2022139462-appb-100004
    其中,Af=腺嘌呤2'-F核糖核苷;Cf=胞嘧啶2'-F核糖核苷;Uf=尿嘧啶2'-F核糖核苷;Am=腺嘌呤2'-OMe核糖核苷;Cm=胞嘧啶2'-OMe核糖核苷;Gf=鸟嘌呤2'-F核糖核苷;Gm=鸟嘌呤2'-OMe核糖核苷;Um=尿嘧啶2'-OMe核糖核苷。
    Figure PCTCN2022139462-appb-100005
    表示硫代磷酸二酯基,
    Figure PCTCN2022139462-appb-100006
    表示磷酸二酯基,
    NAG0052’表示
    Figure PCTCN2022139462-appb-100007
    (-)hmpNA(A)表示
    Figure PCTCN2022139462-appb-100008
  13. 一种药物组合物,其包含如权利要求1-12中任一项所述的dsRNA;优选地,所述的药物组合物还包含一种或多种药学上可接受的赋形剂。
  14. 一种如权利要求1-12中任一项所述的dsRNA或如权利要求13所述的药物组合物在制备药物中的应用;
    所述的药物用于降低受试者中的低密度脂蛋白水平,或用于预防和/或治疗由升高的甘油三酯水平或升高的胆固醇水平介导的疾病;优选地,所述的由升高的甘油三酯水平或升高的胆固醇水平介导的疾病选自高甘油三酯血症、肥胖症、高脂血症、脂质和/或胆固醇代谢异常、动脉粥样硬化、心血管疾病、冠状动脉疾病、高甘油三酯血症诱导的胰腺炎、代谢综合征、II型糖尿病、家族性乳糜微粒血症综合征或家族性部分脂质营养不良。
  15. 一种抑制APOC3基因或其mRNA表达的方法,其包括向受试者给予有效量或有效剂量的如权利要求1-12中任一项所述的dsRNA或如权利要求13所述的药物组合物。
  16. 一种递送寡核苷酸至肝脏的方法,其包括向受试者给予有效量或有效剂量的如权利要求1-12中任一项所述的dsRNA或如权利要求13所述的药物组合物。
  17. 一种细胞,其包含如权利要求1-12中任一项所述的dsRNA。
  18. 一种载体,其包含如权利要求1-12中任一项所述的dsRNA。
  19. 一种试剂盒,其包含如权利要求1-12中任一项所述的dsRNA或如权利要求13中任一项所述的药物组合物。
  20. 一种制备dsRNA或药物组合物的方法,其包括:合成如权利要求1-12中任一项所述的配体、siRNA、dsRNA或如权利要求13所述的药物组合物。
PCT/CN2022/139462 2021-12-16 2022-12-16 一种dsRNA、其制备方法及应用 WO2023109932A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111542323 2021-12-16
CN202111542323.X 2021-12-16
CN202210059877 2022-01-19
CN202210059877.2 2022-01-19

Publications (1)

Publication Number Publication Date
WO2023109932A1 true WO2023109932A1 (zh) 2023-06-22

Family

ID=86774884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139462 WO2023109932A1 (zh) 2021-12-16 2022-12-16 一种dsRNA、其制备方法及应用

Country Status (2)

Country Link
TW (1) TW202334424A (zh)
WO (1) WO2023109932A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107075516A (zh) * 2014-08-20 2017-08-18 阿尔尼拉姆医药品有限公司 经修饰的双链rna试剂
CN107250362A (zh) * 2014-11-17 2017-10-13 阿尔尼拉姆医药品有限公司 载脂蛋白C3(APOC3)iRNA组合物及其使用方法
CN111378655A (zh) * 2018-12-28 2020-07-07 苏州瑞博生物技术有限公司 抑制CTGF基因表达的siRNA、含有该siRNA的药物组合物及其用途
CN111378657A (zh) * 2018-12-28 2020-07-07 苏州瑞博生物技术有限公司 抑制COL1A1基因表达的siRNA、含有该siRNA的药物组合物及其用途
CN111378656A (zh) * 2018-12-28 2020-07-07 苏州瑞博生物技术有限公司 一种抑制埃博拉病毒的核酸、含有该核酸的药物组合物及其用途
EP3719127A1 (en) * 2017-12-01 2020-10-07 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, composition and conjugate containing same, preparation method, and use
WO2022028457A1 (zh) * 2020-08-04 2022-02-10 上海拓界生物医药科技有限公司 抑制凝血因子XI表达的siRNA、组合物及其医药用途
WO2022028462A1 (zh) * 2020-08-04 2022-02-10 上海拓界生物医药科技有限公司 脱靶活性降低的修饰sirna

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107075516A (zh) * 2014-08-20 2017-08-18 阿尔尼拉姆医药品有限公司 经修饰的双链rna试剂
CN107250362A (zh) * 2014-11-17 2017-10-13 阿尔尼拉姆医药品有限公司 载脂蛋白C3(APOC3)iRNA组合物及其使用方法
EP3719127A1 (en) * 2017-12-01 2020-10-07 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, composition and conjugate containing same, preparation method, and use
CN111378655A (zh) * 2018-12-28 2020-07-07 苏州瑞博生物技术有限公司 抑制CTGF基因表达的siRNA、含有该siRNA的药物组合物及其用途
CN111378657A (zh) * 2018-12-28 2020-07-07 苏州瑞博生物技术有限公司 抑制COL1A1基因表达的siRNA、含有该siRNA的药物组合物及其用途
CN111378656A (zh) * 2018-12-28 2020-07-07 苏州瑞博生物技术有限公司 一种抑制埃博拉病毒的核酸、含有该核酸的药物组合物及其用途
WO2022028457A1 (zh) * 2020-08-04 2022-02-10 上海拓界生物医药科技有限公司 抑制凝血因子XI表达的siRNA、组合物及其医药用途
WO2022028462A1 (zh) * 2020-08-04 2022-02-10 上海拓界生物医药科技有限公司 脱靶活性降低的修饰sirna

Also Published As

Publication number Publication date
TW202334424A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2022028457A1 (zh) 抑制凝血因子XI表达的siRNA、组合物及其医药用途
EP2647713B1 (en) Modified single-strand polynucleotide
WO2022028462A1 (zh) 脱靶活性降低的修饰sirna
TW202122093A (zh) 化合物、藥物綴合物、試劑盒及其用途
WO2023274395A1 (zh) 一种核酸配体及其缀合物、其制备方法和用途
WO2023109932A1 (zh) 一种dsRNA、其制备方法及应用
WO2023109935A1 (zh) 一种dsRNA、其制备方法及应用
WO2023138659A1 (zh) 一种dsRNA、其应用及制备方法
WO2023138663A1 (zh) 一种dsRNA、其应用及制备方法
WO2023088427A1 (zh) 靶向血管紧张素原的siRNA及其医药用途
WO2023109938A1 (zh) 一种dsRNA、其制备方法及应用
WO2023109940A1 (zh) 靶向lpa的sirna及缀合物
WO2023208023A1 (zh) 氘代化学修饰和包含其的寡核苷酸
WO2022223015A1 (zh) 靶向第13型17β-羟基类固醇脱氢酶的siRNA和siRNA缀合物
WO2022206946A1 (zh) 乙型肝炎病毒siRNA和siRNA缀合物
JP2024511437A (ja) ポリヌクレオチド組成物、関連製剤、およびその使用方法
CN117813383A (zh) 用于抑制CIDEB基因表达的siRNA、药物及其应用
CN111378658A (zh) 抑制TIMP-1基因表达的siRNA、含有该siRNA的药物组合物及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906677

Country of ref document: EP

Kind code of ref document: A1