CN102782818A - 用于GaN装置的基于导电性的选择性蚀刻和其应用 - Google Patents

用于GaN装置的基于导电性的选择性蚀刻和其应用 Download PDF

Info

Publication number
CN102782818A
CN102782818A CN2011800076132A CN201180007613A CN102782818A CN 102782818 A CN102782818 A CN 102782818A CN 2011800076132 A CN2011800076132 A CN 2011800076132A CN 201180007613 A CN201180007613 A CN 201180007613A CN 102782818 A CN102782818 A CN 102782818A
Authority
CN
China
Prior art keywords
gan
layer
substrate
electrolyte
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800076132A
Other languages
English (en)
Other versions
CN102782818B (zh
Inventor
荣格·韩
孙乾
张宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yale University
Original Assignee
Yale University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yale University filed Critical Yale University
Priority to CN201610206389.4A priority Critical patent/CN105821435B/zh
Publication of CN102782818A publication Critical patent/CN102782818A/zh
Application granted granted Critical
Publication of CN102782818B publication Critical patent/CN102782818B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/12Etching of semiconducting materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1861Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29356Interference cavity within a single light guide, e.g. between two fibre gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29358Multiple beam interferometer external to a light guide, e.g. Fabry-Pérot, etalon, VIPA plate, OTDL plate, continuous interferometer, parallel plate resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3063Electrolytic etching
    • H01L21/30635Electrolytic etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/326Application of electric currents or fields, e.g. for electroforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • H01L21/7813Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate leaving a reusable substrate, e.g. epitaxial lift off
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/107Porous materials, e.g. for reducing the refractive index
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/24997Of metal-containing material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Weting (AREA)
  • Led Devices (AREA)

Abstract

本发明涉及在大面积(>1cm2)上以受控孔直径、孔密度和孔隙率生成NP氮化镓(GaN)的方法。本发明还揭示基于多孔GaN生成新颖光电子装置的方法。另外揭示一种用以分离并产生独立式结晶GaN薄层的层转移方案,所述方案使得涉及衬底再循环的新装置制造模式成为可能。本发明揭示的其它实施例涉及基于GaN的纳米晶体的制造和NP GaN电极在电解、水分解或光合过程应用中的使用。

Description

用于GaN装置的基于导电性的选择性蚀刻和其应用
关于联邦资助研究与发展的声明
在本发明的开发期间所执行的工作的一部分是根据由美国能源部(U.S.Departmentof Energy)授予的许可号DE-FC26-07NT43227、DE-FG0207ER46387和DE-SC0001134利用美国政府基金(U.S.Government funds)实施。美国政府对本发明拥有某些权利。
技术领域
本发明涉及处理基于GaN的半导体材料和由其形成装置的领域。
背景技术
在半导体处理领域,已对多孔硅材料关于其有益的光学和机械性质的发展给予相当多的关注。多孔硅通常是使用湿式电化学蚀刻工艺生成。
另一种特别感兴趣的材料是GaN。GaN装置在显示器、数据存储和照明应用中的重要性已经明确地建立。在过去二十年,已经在深度探索GaN的外延生长,但仍在寻找灵活的湿式蚀刻程序。
发明内容
本发明涉及用于生成纳米多孔NP GaN的方法。本发明的一种方法包含:将GaN暴露于电解质,将GaN耦合到电源的一个端子并将浸于电解质中的电极耦合到电源的另一个端子,以由此形成电路;并激励电路以增加GaN的至少一部分的孔隙率。因此,产生可用于许多基于半导体的电子和光学应用中的具有可调谐光学和机械性质的材料。还提供多种方法来控制GaN的孔隙率以生成有用的光学结构,例如具有增强的光提取性质的分布式布拉格反射器(distributed Bragg reflector)、法布里-珀珞滤光片(Fabry-Perot opticalfilter)和发光二极管。还提供使用NP GaN衬底的装置制造方法和用于将NP GaN层和装置分离的方法。最后,提供用于从NP GaN生成纳米晶体的方法和用于生成NP GaN电极用于电解、水分解或光合过程应用的方法。
下文参照随附图式详细阐述其它特征和优点以及各个实施例的结构和操作。应注意,本发明并不限于本文所阐述的特定实施例。所述实施例仅出于说明性的目的而呈现于本文中。额外实施例对于所属领域的技术人员基于本文所包含的教示将显而易见。
附图说明
随附图式并入本发明中且形成说明书的一部分,其图解说明本发明且与说明书一起进一步用以解释本发明的原理并使得所属领域的技术人员能够制造和使用本发明。
图1是根据本发明的实施例GaN电化学(EC)蚀刻工艺的图解说明。
图2是根据本发明的实施例所观察到的EC工艺的相图的图解说明。
图3a到图3d图解说明根据本发明的实施例从EC工艺所产生的NP GaN的SEM显微照片。
图4a和图4b图解说明根据本发明的实施例在EC工艺期间反复地从低电压切换到高电压所产生的多层NP GaN结构。
图5a和图5b图解说明根据本发明的实施例从EC工艺中所用的多层掺杂轮廓产生的另一多层NP GaN结构。
图6a和图6b图解说明根据本发明的实施例从EC工艺产生的更复杂的多层NP GaN结构。
图7图解说明根据本发明的实施例在NP GaN上再生长GaN的工艺。
图8a到图8c图解说明根据本发明的实施例具有包埋NP GaN层的LED装置的增强的光提取的原理。
图9a到图9c图解说明根据本发明的实施例制造的具有包埋NP GaN层的LED装置结构。
图10a到图10h图解说明根据本发明的实施例用于将NP GaN连续结晶层与体衬底分离的两种方法。
图11a到图11c图解说明根据本发明的实施例在电解质中连续结晶层与体衬底的完全分离。
图12a到图12d图解说明平面SEM图像:(a)在NP GaN隔膜从衬底断裂处,(b)NPGaN隔膜的表面,(c)所暴露下伏GaN的表面,和(d)从独立式GaN隔膜的边缘的斜视图。这些材料是根据本发明的实施例生成。
图13是根据本发明的实施例制造垂直薄膜装置和再循环/回收GaN和其它衬底的途径的示意图。
图14a到图14e图解说明根据本发明的实施例用于制作GaN纳米晶体的第一种工艺。
图15a到图15c图解说明根据本发明的实施例:(a)个别GaN纳米晶体的高分辨率TEM图像,(b)来自GaN纳米晶体聚集的GaN微粒,和(c)GaN纳米晶体的光致发光和吸光度测量。
图16a和图16b图解说明根据本发明的实施例用于制作包括NP隔膜的GaN纳米晶体的第二种工艺。
图17a到图17c显示根据本发明的实施例:(a)独立式GaN隔膜/膜在溶液中的图片,其包括一个较大的薄片(由上部的两个箭头指出)和若干较小的小片和碎片(底部箭头),(b)超声波处理1小时之后,和(c)胶状GaN纳米晶体在UV光下的发光照片。
图18是根据本发明的实施例使用NP GaN电极的水分解试验中所用的设备的图解说明。
图19图解说明根据本发明的实施例NP GaN电极在水分解试验中的有益用途,其导致降低的饱和电流密度。
具体实施方式
生成多孔GaN的方法
本发明提供在大面积(例如,大于1平方厘米)上生成具有受控孔直径、孔密度和孔隙率的纳米多孔(NP)氮化镓(GaN)的方法。另外,这些方法同样可适用于在较小的面积上生成NP GaN。
尽管整个说明书中着重于GaN,但这些技术也可应用于其它III-氮化物系统(例如InGaN)。因此,术语“GaN”在整个说明书中应广泛地解释为是指任何III-氮化物材料,例如InGaN、AlGaN等。因此,短语“NP GaN”也可解释为“NP InGaN”等。
纳米多孔GaN用于再生长、微加工、化学传感和其它应用(例如半导体电子和光学装置制造)中具有极大的潜力。其还具有用于如本文所述纳米技术应用中的适用性。本文所揭示的方法可用于直接产生平面GaN晶片,而不需要UV-激光、反应性离子蚀刻或诸如此类。所揭示的方法是有效的且与现有半导体制造技术相容。
纳米多孔GaN被视为III-氮化物化合物家族的新成员。尽管其具有极大增加的表面积,但其具有高结晶度和光电子质量。其几个重要的物理性质归纳如下:(1)NP GaN导电,其中所测量导电率与n型GaN相当(电注入装置的一种重要属性),(2)光学折射率可利用孔隙率进行调谐以用于光学限制和改造,(3)弹性柔度(或刚度)可得到极大改进(类似海绵的行为),而同时维持其单晶特性,和(4)可用同质外延方式实施NP GaN上的过度生长或再生长,其中可用小于10nm的GaN生长将NP表面'密封'成原子平滑度,同时仍可保留NP特性。
根据本发明的实施例,可通过利用电解质进行电化学(EC)蚀刻选择性地移除重度掺杂(即,1017cm-3到1019cm-3)的GaN。水平和垂直蚀刻两种工艺是可能的。水平蚀刻是从在未经掺杂的GaN顶层下面外延生长n型掺杂GaN层开始。接着采用干式蚀刻或解离以暴露双层或多层结构的侧壁。接着进行电化学蚀刻以水平并选择性地通过n型GaN下伏层,以实现底切。本发明阐述从表面垂直蚀刻平面n型GaN的方法,其中蚀刻在大体上垂直于晶片表面的方向上传播。这些方法详细揭示于下文中。
根据本发明实施例的EC蚀刻工艺示意性地图解说明于图1中。在实施例中,在室温下使用草酸作为电解质104。在其它实施例中,可使用其它电解质,例如KOH或HCL。n型掺杂GaN试样102和铂丝108构成阳极和阴极,其分别连接到电源106以形成电路。电源106用于激励电路,此电路驱动电流通过材料,此修改其物理性质并在材料中生成孔隙率轮廓。在各种实施例中,可通过使用测量装置(如110和112所显示)记录电流和电压并使用参考电极114(例如,由Ag/AgCl制成)来监控参考电极与阳极电极之间的电位差,来控制电流或电压。如在以下章节中所讨论,通常采用在5V到60V范围内的电压和在1018cm-3到1019cm-3范围内的n型GaN掺杂。
可采用各种时间依赖性激励技术,其中电压或电流可以脉冲方式、斜坡上升方式或类似方式输送。在此方法的实施例中,EC蚀刻之后,可将试样相继在去离子水、甲醇和戊烷中洗涤以在最后干燥工艺中使表面张力最小化,此确保任何残留蚀刻化学品的完全溶解。
通过n型掺杂的程度和所施加电压来控制EC蚀刻工艺。所观察到的蚀刻形态与所施加电压(5V到30V)和n型GaN掺杂(1018cm-3到1019cm-3)有关。草酸的浓度可在0.03M与0.3M之间变化,且未观察到强依赖性。EC蚀刻的“相图”显示于图2中。基于扫描电子显微镜(SEM)成像鉴别三个区,其包括未蚀刻202(区I)、NP Ga的形成204(II)和完全层移除或电抛光206(III,包括高于30V的电压),且电导率或所施加电压增加。在若干实施例中,举例来说,可在10V、15V和20V下在掺杂浓度在1017cm-3到1019cm-3范围内的n型GaN上执行EC蚀刻。
由上文所阐述方法产生的NP GaN形态图解说明于图3a到图3c中。图3a到图3c显示分别在10V(302)、15V(304)和20V(306)下制备的NP GaN的平面SEM图像。图3d是在15V下所制备的所得NP膜308的横截面SEM图像。
使用上文所阐述的电化学工艺,能够垂直地纳米钻孔穿过GaN层并产生具有不同孔径和孔隙率的GaN层,其相当于具有不同折射率的层。在若干实施例中,可通过改变所施加电压、电流或GaN掺杂轮廓产生GaN多层结构。具有所设计折射率轮廓的分层结构(包括四分之一波长分布式布拉格反射器(DBR))具有用于光学或生物医学应用的许多用途。
现在将阐述其中可生成有用的光电子结构和装置的实施例。基于GaN的光-电子装置可用于解决固态发光、显示器和电力电子器件中的若干问题。基于GaN的垂直腔表面发射激光(VCSEL)和共振腔发光二极管(RCLED)是所述装置的实例。这些装置的一个重要操作要求是需要通常呈分布式布拉格反射器(DBR)形式的高反射镜。VCSEL在有源区的两侧上需要高度反射的DBR镜以形成激光腔,同时对于RCLED,在有源区下面的高反射DBR可提高输出功率和发射光谱。DBR结构对于GaN VCSEL在两个方面特别重要。第一,随着DBR峰值反射率从90%增加到99%,GaN VCSEL的阈电流密度可减小一个数量级。第二,DBR将具有大的阻带带宽。这一点很重要,因为基于GaN的VCSEL的有源区通常由InGaN多重量子阱(MQW)构成,且InGaN MQW的发射峰值往往随生长条件或工艺参数的小的变化而波动。具有宽阻带的DBR可提供发射波长中所述光谱变化的足够覆盖。
揭示涉及形成NP GaN多层结构的方法的实施例。图4图解说明利用孔隙率对阳极氧化参数(例如所施加电压或电流密度402)的依赖性的实施例。例如,如图4a中所显示,通过在阳极氧化处理期间在高406或低402电压或电流密度之间切换,可获得具有高和低孔隙率(分别地,低和高折射率)的层,如图4b的408中所显示。图4b图解说明通过在阳极氧化处理期间在高和低电压或电流密度之间切换所获得的多层NP GaN的横截面SEM图像。特征410和414图解说明所得多层结构的高孔隙率,而特征412和416图解说明低孔隙率。
图5图解说明利用孔形态和孔隙率二者对个别层的电导率的依赖性的另一实施例,个别层的电导率进而可通过外延生长期间的掺杂浓度控制,如图5a中所显示。可通过掺杂源材料以具有高506和低504掺杂区来获得高512和低510孔隙率NP GaN层,其分别显示于图5b中。在此情形中,可使用恒定电压或电流蚀刻获得适宜孔隙率轮廓。
对于图4和图5中图解说明的实施例来说,所得有效介电函数具有深度依赖性,因为NP GaN层内仍保留不同的孔隙率和GaN纳米晶体尺寸二者。前述实施例具有不需要外延生长以实现具有不同掺杂剂浓度的层的优点,但低与高孔隙率GaN层之间的界面有时较粗糙。后面的实施例具有精确控制厚度和界面骤降度的优点。
在另一实施例中,使用脉冲蚀刻方法以对于极低折射率实现极高孔隙率,如图6a和图6b中所图解说明。此脉冲蚀刻不同于如图4和图5的实施例中所采用的折射率在光波长量级下的调制。图6中所图解说明的脉冲蚀刻包含高电压606与低电压604(或零电压)之间的交替。接着以重复循环进行蚀刻。使用脉冲蚀刻技术以实现极高孔隙率区612,如图6b中的SEM显微照片中所显示,而在脉冲蚀刻之前使用恒定低电压蚀刻产生低孔隙率层610,图6a中未显示。
在确定了NP GaN中孔隙率的控制之后,可以想象具有可调谐折射率的新型单晶NPGaN层。所述材料的实例显示于图6b的特征608中。举例来说,特征608图解说明在蓝宝石上的四片小片NP GaN外延层。折射率的变化改变光学腔长度,此使得在各试样之间法布里-珀珞干涉峰位移。在白色光照明下,这些材料出现彩虹色,其展示包括(例如)紫色、绿色、橙色和粉色的一系列色彩。
具有约30%孔隙率的NP GaN层可产生与AlN层同等的折射率对比,而在410-nm激光二极管中通常采用的AlGaN包覆层(Al-15%,厚度-0.5微米)可由具有约5%孔隙率的NP GaN层代替用于高效波导。
这些实施例提供一种简单灵活的途径来制造用于光学和生物医学应用的大规模NPGaN多层。其优点和用途包括:(1)具有增加的折射率对比的基于GaN的DBR对,(2)基于GaN低成本的VCSEL和RCLED,(3)法布里-珀珞滤光片,(4)用于能量转换的抗反射涂层,(5)光学生物传感器,和(6)用于III-氮化物材料和所生长装置的衬底。
用于装置应用的纳米多孔衬底
涉及使用NP衬底的方法的其它实施例包括用以以下各项的技术:(1)在蓝宝石(或III-氮化物、SiC、Si、ZnO、LiNbO3、LiAlO2等)衬底上通过电化学蚀刻制作极性、非极性和半极性NP III-氮化物结构,(2)在NP结构上生长高质量极性、非极性和半极性III-氮化物材料,(3)使用再生长的III-氮化物材料制造极性、非极性和半极性III-氮化物光电子装置(LED、激光等)和电子装置(例如高电子迁移率晶体管(HEMT)),和(4)在NP III-氮化物结构上通过HVPE使用再生长的III-氮化物材料产生极性、非极性和半极性III-氮化物体衬底。
图7图解说明工艺流程以及获得适用于装置制造的NP GaN模板的实施例的实验结果。在此实施例中,以使用标准外延技术生长的半极性(1122)GaN表面开始。此一表面显示于特征702中。尽管具有高缺陷密度(位错-3×109cm-2;堆栈错误-105cm-1),但此一表面适用于制造(例如)绿色发光LED。然而,可通过应用EC蚀刻技术的实施例以产生NP GaN表面(如平面图中特征704中所显示)来生成缺陷密度极大地减小的衬底。此表面的截面图像显示于图7的右下部分中。此图像图解说明多层结构,其包含在非多孔GaN 708层的顶部上的NP GaN层706,非多孔GaN 708层生长在蓝宝石衬底710上。
图解说明于图7的右上和右下部分的NP GaN表面提供高质量衬底,在其上生长具有减小的缺陷密度的GaN。在NP GaN模板(衬底)上生长高质量GaN的工艺称为“再生长”且此一在生长工艺的结果图解说明于图7的左下部分中,在其中(1122)已再生长半极性GaN。EC成孔工艺并不敏感地依赖于晶体学取向。图7中所阐述的工艺已在极性、非极性和半极性GaN层上重复,其包括成孔和再生长。
光子学应用
图8图解说明先前所揭示实施例用于制造InGaN/GaN有源结构的应用,所述有源结构由于存在包埋NP GaN层(图8c中的828)而具有增强的光提取性质。此一结构是通过在NP GaN模板上生长InGaN/GaN有源结构来形成,所述NP GaN模板如先前章节中所讨论制造且图解说明于图7中。图8c图解说明具有包埋NP GaN层828的InGaN/GaN有源区,而图8b图解说明较传统的InGaN/GaN有源区结构。
图8c图解说明蓝宝石衬底826,其上已生长未掺杂GaN层824和NP GaN层828。然后在NP层上生长另一未掺杂GaN层822,随后在所述另一未掺杂GaN层上生长多重量子阱(MQW)结构820。包埋NP GaN层828的存在增加装置818中的光散射,此导致增强的光提取。
图8b图解说明以传统方式生长的没有包埋NP层的InGaN/GaN有源结构。在此结构中,未掺杂GaN层814生长于蓝宝石衬底816上,然后是使用标准技术生长的MQWLED结构812。没有包埋NP层,光在810内经历多重全内反射和再吸收,此导致低效率的光提取。
图8a呈现光致发光(PL)随距激光光斑的横向距离而变的曲线。三条曲线804、806和808对应于根据上文所揭示实施例制造的装置,其包含:无多孔层,分别具有40nm孔径和70nm孔径的多孔层。此图图解说明,具有70nm孔的装置与另外两个装置相比,在具有包埋NP层的情况下光提取效率较大。
图9更详细的图解说明在NP GaN模板906上生长的LED的装置结构。右侧的图9b和9c显示在NP层上生长的LED的截面SEM和在LED层下面的经转换空隙932的近视图。特征920涵盖图9a中的示意性装置的装置层908到912,而左边的未掺杂层908在右边的显微照片中可视为特征930。左边的NP层904和906视为右边的空隙层932,而在左边由902指示的未掺杂GaN在显微照片中视为特征934。
连续结晶层的分离
图10图解说明本发明用于生成独立式GaN隔膜和层的其它实施例。一个实施例是基于均匀掺杂的GaN层1018,且利用EC蚀刻在低电压条件(图10a中的特征1004)下进行,此导致生成具有低密度(小于109cm-2)和小直径(约30nm)的纳米孔1020和1024并垂直向下传播。一旦实现所要的厚度(对应于最终隔膜的厚度),就增加蚀刻电压(从图10a中的1004),此对应于相图上蚀刻条件的横向移动(到图10a中的点1008)。此条件引起GaN的快速分枝并横向蚀刻进入低孔隙率层1024下面的高孔隙率层1026。连续结晶层1030的形成和分开示意性地图解说明于图10b到10e中。
对应于图10的实施例的实验结果图解说明于图11中。第一和第二电压条件分别设定为10V和15V。第一步骤期间的蚀刻速率为200nm/min;五分钟的蚀刻足以产生厚度约1微米的低孔隙率层。当将电压增加到15V时,电化学作用加速,且在GaN表面(阳极)和铂反电极二者处观察到生成气泡。在1分钟内实现GaN薄层与试样边缘的分开,如图11中的特征1104、1108和1112所显示。在15V下继续EC蚀刻导致整个层以大的宏观面积1108漂浮。在此情形下,已分开的薄层的尺寸为约1cm2,其受试样尺寸的限制,如由图11中的特征1104、1108、1112和1116所图解说明。将溶液中的独立式GaN薄膜从溶液中取出并转移到盖玻片1116(图10b)。可以设想此程序可延伸到较大的晶片(例如,2英寸或更大)。
图12中的SEM图像显示从NP GaN隔膜的表面所观察到的孔隙率(1204和1206)差异。图12a和12b中的水平箭头显示经分开隔膜具有比剩余表面1204微细NP形态1206。图12d显示独立式NP隔膜的边缘的倾斜SEM视图,其表明隔膜的NP特性得到很好的保留且分离过程局限于GaN衬底1216上蚀刻正面1214附近。
或者,在其它实施例中,具有经改造掺杂轮廓的GaN薄层有利于更简单的EC蚀刻程序。此过程图解说明于图10f到图10h中。在此实施例(程序B)中,在重度掺杂层1036上生长具有轻度掺杂层1034的两层GaN结构。利用此一经改造轮廓,EC蚀刻工艺仅需要恒定电压。在所述条件下,NP蚀刻自发地从图10a中的1014进行到1008,其垂直横穿相图而产生类似效应。已观察到极相似的结果(即,层1038和1044的分开),如那些图解说明于图11和12中者。鉴于现代外延技术的进步,使用包埋掺杂轮廓获得更好的控制和灵活性。
以上所揭示实施例可提供用于装置制造的GaN外延层的简单大面积转移,其可明显降低成本,同时增强其功能性。唯一的竞争技术是激光剥离(LLO),激光剥离昂贵、耗时、不能扩大,且具有不确定的良率。
所揭示实施例的应用包括将硅晶片上的GaN转移到与GaN具有良好热膨胀匹配的另一模板上。可在很大的硅晶片(大于约6英寸)上制备薄GaN层,同时保持假晶。这将是产生用于未来LED和晶体管工业的6英寸、8英寸或甚至12英寸NP GaN衬底的独特方法。
将薄膜从一个衬底转移到另一衬底的能力具有其它有用的装置应用,例如将NPGaN LED薄膜和晶体管转移到柔性和/或透明衬底。作为另一应用,可将GaN薄层从体HVPE生长的GaN衬底转移。同样地,此方法将是大量生产无位错NP GaN薄膜的简单且便宜的方法。
装置制造方法以及衬底再循环
图13中所显示的另一实施例图解说明将NP GaN用于III-氮化物材料和装置的衬底再循环的概念。使用上文中介绍的新颖电化学工艺,能够形成具有所要孔隙率轮廓的NP GaN层1304。可将纳米多孔结构1304加载回外延室用以退火和再生长。NP区经历转换变成大的气泡或空隙1310。GaN层或装置1312的额外再生长将同时产生包埋高孔隙率区并在热退火期间经历转换1310,其中大的气泡聚结以形成空隙1314。所述空隙促进平面内碎裂、层分离和外延晶片转移。
装置结构1322可生长(例如,使用诸如MOCVD等方法)于NP衬底1320上。装置结构可结合到载体晶片1324并可将组合的装置结构/载体晶片系统1326/1328与NP衬底分离。剩余NP衬底1330可进一步经平滑和回收,以便可重复所述过程。
我们注意到,可在Al2O3(作为LLO替代物)、SiC、Si、GaN和其它衬底上实施相同的概念。此实施例使得用于III-氮化物材料生长和装置制造的衬底能够再循环,此导致成本降低。
在晶片分裂之后剩余表面仍为NP,如先前在图12中所显示。另一实施例提供退火和外延平面化工艺的组合,所述工艺恢复Al2O3上的GaN的平滑度而不需要晶片抛光。所观察到的粗糙度包含高度为0.1微米到0.3微米且区域密度为109cm-2的凸块(mound)。此粗糙度水平类似于标准两步MOCVD工艺中所采用的经粗糙化并转换的LT GaN缓冲层。由于这些小丘和凸块的内在结晶度由最初的GaN下伏层保存,因此高温MOCVD生长期间这些凸块的无缺陷聚结发生1微米到2微米的生长,此使得整个复合结构在EC成孔之前与起始结构相同。
以上所揭示的装置制造实施例提供使用于III-氮化物薄膜生长和装置制造的衬底再循环的简单有效途径,此可显著降低成本同时增强功能性。
所揭示衬底再循环方法的若干经济优点和应用包括以下各项。这些方法可显著减小III-氮化物材料和制造的装置(例如垂直LED)的价格。这些方法同样地适于供与用于生长III-氮化物材料的其它通用衬底(例如蓝宝石、SiC、Si、GaN、A1N等)一起使用。这些方法还能够产生用于电子应用的绝缘体上GaN (GaNOI)结构以及能够产生高质量GaN外延层。
多孔GaN的纳米技术应用
本发明的另一实施例涉及基于NP GaN的纳米晶体的生成。使用先前实施例中所揭示的电化学工艺,可产生具有被极大弱化的机械强度的纤维状单晶GaN材料。机械强度的减小是由于纤维状材料的纵横比的改变和表面积的极大增加。NP GaN对通过超声波(或碾磨)工艺机械碎裂和破裂成荧光标记、光伏打、显示器照明和纳米电子学中所关注的纳米尺寸的纳米晶体更敏感。
用于产生GaN纳米晶体的实施例图解说明于图14a到图14e中。n型GaN层(例如,可为蓝宝石1402或GaN衬底1402上的外延层1406)首先使用上文所揭示的EC蚀刻实施例从顶表面开始成孔化1410。NP GaN的平面SEM图像显示于1418中。将蓝宝石1416上的所得NP GaN 1410放置于适宜溶液1426中(例如,包含水、极性或非极性溶液)并超声波处理(在一个实例实施例中,持续约2小时)。超声波处理之后,使用标准技术使表面包含GaN脊和短柱1422。在程序结束时,与澄清透明的去离子水1424相比,液体变得稍混浊1426。
超声溶液中所观察到的混浊是由于GaN纳米晶体(NC)聚集成微米尺寸的微粒,此造成漫反射。图15b显示由许多GaN NC 1512和1516构成的此一微粒的TEM图像。图15a中更高放大倍数的TEM图像显示,这些GaN NC 1506和1510具有无规取向,此表明最初NP GaN基质已充分碎裂。最后,经干燥的GaN微粒展示特性光致发光发射峰1522和吸收峰1520,如图15c中所显示。
成孔-超声波工艺的另一实施例纳入两阶段电化学蚀刻工艺。EC成孔中需要的特定步骤是产生具有极高孔隙率的包埋层以进行底切并释放上部NP GaN层成隔膜形式,如图16b中所显示和上文中所揭示(图10a-h)。独立式漂浮NP GaN隔膜1610可转移到图17a中所显示的容器中,并超声波处理成微细纳米晶体。这些实施例之间的差别是NPGaN在开始超声波处理时的形式:在先前实施例中,NP GaN是以外延方式附着到衬底,而在图15的实施例中,NP GaN膜/隔膜漂浮在溶液中且对基于超声波处理的碎裂更敏感。这些超声波处理的GaN NC的光学活性可通过当试样被UV光辐照时所发射的可见荧光来观察,如在图17c中所看到。
以上实施例提供生产胶状GaN和InGaN纳米晶体的优良方法。此新技术的经济优点和可能的应用包括(但不限于):使用纳米晶体制造发光二极管或激光二极管,纳米晶体作为荧光生物标记用于生物医学应用的用途,纳米晶体GaN或InGaN杂合物连同聚合物用光伏打应用的用途,和纳米晶体GaN或InGaN杂合物连同催化金属(如金、镍等)用于能量应用的用途。
另一实施例涉及NP GaN和NP InGaN作为光合过程、水分解和氢产生中的光-阳极或光-阴极的用途。上文已阐述用于产生NP GaN的电化学蚀刻工艺。使用NP GaN或NP InGaN具有以下优点:(1)增强光子吸收,(2)提高光合效率,和(3)减小光电极的降级。
图18图解说明使用NP GaN或InGaN电极1808作为阳极用于水分解试验的试验设备。在此实施例中,首先使用上文所揭示的EC蚀刻程序制造NP InGaN或GaN电极。将此一阳极放置于水1812中并连接到金属(例如,Pt)电极1810,以形成电路。入射到阳极上的太阳能辐射或来自另一源(例如Hg(Xe)灯1806)的辐射驱动电化学反应并引起水分解,同时释放氧1814和氢1815。
使用NP阳极的优点图解说明于图19中所呈现的测量中。使用NP阳极与其中电极不为多孔1902的情况相比使得电流饱和1904极大地减小。NP电极有效的具有较高表面积,此提供光激发载流子将到达半导体/电解质界面的更好的机会,导致更高的转换效率。
总结
应了解,打算使用具体实施方式部分而非发明内容和说明书摘要部分来解释权利要求书。发明内容和说明书摘要部分可列举一个或一个以上但并非发明者所预期的本发明所有实例性实施例或优点,且因此不打算以任何方式限制本发明和所附权利要求书。
特定实施例的上述说明将如此充分地揭示本发明的一般特性,以致于其它人可在不背离本发明的一般概念的情况下无需过多试验即可通过应用所属技术领域中的知识容易地修改及/或调整所述特定实施例以用于各种应用。因此,基于本文所提供的教示和指导,这些调整和修改打算在所揭示实施例的等效物的含意和范围内。应理解,本文的用词或术语是出于说明而非限制目的,因此所属技术领域的技术人员应根据教示和指导来解释说明书中的术语或用词。
本发明的广度和范围不应受任一上述实例性实施例的限制,而应仅根据上文权利要求书和其等价内容来界定。

Claims (56)

1.一种用于生成多孔GaN的方法,其包含:
(a)将GaN暴露于电解质;
(b)将所述GaN耦合到电源的一个端子并将浸于所述电解质中的电极耦合到所述电源的另一个端子以由此形成电路;以及
(c)激励所述电路以增加所述GaN的至少一部分的孔隙率。
2.根据权利要求1所述的方法,其进一步包含施加介于5V与60V范围内的电压,其中所述GaN耦合到所述电源的正端子。
3.根据权利要求1所述的方法,其进一步包含将所述GaN置放在包含蓝宝石、硅、碳化硅或体GaN的衬底上。
4.根据权利要求1所述的方法,其进一步包含在1017cm-3到1019cm-3的范围内掺杂所述GaN的至少一部分,以及提供KOH或HCl作为所述电解质。
5.根据权利要求1所述的方法,其进一步包含在1017cm-3到1019cm-3的范围内掺杂所述GaN的至少一部分,以及提供草酸作为所述电解质。
6.根据权利要求5所述的方法,其进一步包含施加介于5V与60V范围内的电压,其中所述经掺杂GaN耦合到所述电源的所述正端子。
7.根据权利要求5所述的方法,其中所述激励进一步包含控制所施加电压或电流以调整所述GaN孔隙率。
8.根据权利要求5所述的方法,其进一步包含在所述激励之前在所述GaN中形成掺杂轮廓以生成相应的孔隙率轮廓。
9.根据权利要求8所述的方法,其中所述激励进一步包含随时间在介于0V与60V之间的范围内的低值与高值之间控制所施加电压以生成所述孔隙率轮廓。
10.根据权利要求1所述的方法,其进一步包含:
(a)提供草酸作为所述电解质;
(b)将所述GaN耦合到所述电源的所述正端子;以及
(c)施加在介于0V与60V之间的范围内的电压。
11.根据权利要求10所述的方法,其进一步包含随时间在介于0V与60V之间的范围内的低值与高值之间切换所述电压以生成孔隙率轮廓。
12.根据权利要求10所述的方法,其进一步包含在所述GaN中生成n型多层掺杂轮廓,其中所述激励生成具有四分之一波长分布式布拉格反射器DBR的折射率周期性的孔隙率轮廓。
13.根据权利要求11所述的方法,其进一步包含在所述GaN中生成均匀n型掺杂,其中所述激励使得所述孔隙率轮廓具有四分之一波长分布式布拉格反射器DBR的折射率周期性。
14.根据权利要求12所述的方法,其进一步包含将未掺杂或均匀掺杂的GaN结构置放于两个所述DBR之间以形成法布里-珀珞滤光片。
15.根据权利要求13所述的方法,其进一步包含将未掺杂或均匀掺杂的GaN结构置放于两个所述DBR之间以形成法布里-珀珞滤光片。
16.根据权利要求11所述的方法,其进一步包含掺杂以在所述GaN中形成经掺杂表面层,其中所述激励将所述经掺杂表面层转换成NP表面层以增强光提取。
17.根据权利要求11所述的方法,其进一步包含:
(a)在所述GaN中形成掺杂轮廓;以及
(b)蚀刻所述层以形成NP模板。
18.根据权利要求17所述的方法,其进一步包含在所述模板上置放以下各项:
(a)n型GaN,
(b)p型GaN,以及
(c)位于(a)和(b)之间的InGaN/GaN有源层,以形成发光二极管LED。
19.根据权利要求8所述的方法,其进一步包含:
(a)在所述GaN材料中形成掺杂轮廓;以及
(b)蚀刻所述GaN材料以形成第一低孔隙率连续结晶层和在所述第一层下面的第二高孔隙率层,其中在机械上弱化所述第二层,以促进所述第一低孔隙率连续结晶层与所述衬底的分离。
20.根据权利要求9所述的方法,其进一步包含:
(a)在所述GaN材料中形成掺杂轮廓;以及
(b)蚀刻所述GaN材料以形成第一低孔隙率连续结晶层和在所述第一层下面的第二高孔隙率层,其中在机械上弱化所述第二层,以促进所述第一低孔隙率连续结晶层与所述衬底的分离。
21.根据权利要求11所述的方法,其进一步包含:
(a)在所述GaN材料中形成掺杂轮廓;以及
(b)蚀刻所述GaN材料以形成第一低孔隙率连续结晶层和在所述第一层下面的第二高孔隙率层,其中在机械上弱化所述第二层,以促进所述第一低孔隙率连续结晶层与所述衬底的分离。
22.根据权利要求21所述的方法,其中所述形成进一步包含以从1018cm-3到1019cm-3的范围内的浓度值均匀地掺杂所述GaN,且所述蚀刻包含
(i)施加第一电压V1并持续第一持续时间T1;以及
(ii)施加第二电压V2并持续第二持续时间T2
23.根据权利要求22所述的方法,其中所述浓度值为5×1018cm-3,V1在5分钟的所述第一持续时间T1内为10V,V2在1分钟的所述第二持续时间T2内为15V。
24.根据权利要求19所述的方法,其进一步包含:
(a)掺杂所述GaN以形成具有第一掺杂浓度N1的第一层和具有掺杂浓度N2的第二层;和
(b)施加固定值的所述电压并持续固定时期。
25.根据权利要求24所述的方法,其进一步包含:
(a)以浓度N1=3×1018cm-3和N2=1×1019cm-3掺杂所述GaN;以及
(b)施加12V的所述电压达5分钟。
26.根据权利要求19所述的方法,其进一步继续所述蚀刻处理,直到所述低孔隙率连续结晶层已完全与电解质中的所述衬底分离为止。
27.根据权利要求20所述的方法,其进一步继续所述蚀刻处理,直到所述低孔隙率连续结晶层已完全与电解质中的所述衬底分离为止。
28.根据权利要求21所述的方法,其进一步继续所述蚀刻处理,直到所述低孔隙率连续结晶层已完全与电解质中的所述衬底分离为止。
29.根据权利要求19所述的方法,其进一步包含:
(a)在所述低孔隙率连续结晶层已与电解质中的所述衬底分离之前停止所述蚀刻处理;
(b)晶片结合所述低孔隙率连续结晶层到目标晶片或聚合物印模;以及
(c)将所述经结合的低孔隙率连续结晶层与所述衬底机械分开。
30.根据权利要求19所述的方法,其进一步包含将所述GaN置放在包含蓝宝石、硅、碳化硅或体GaN的衬底上。
31.根据权利要求8所述的方法,其进一步包含:
(a)使用外延生长技术在所述多孔结构上生长装置或外延结构;
(b)通过在步骤(a)期间执行同时退火和转换在(a)中所述装置或外延结构的下面形成具有弱化的机械强度的包埋空隙层;
(c)晶片结合载体晶片到所述装置结构的表面;以及
(d)在所述包埋空隙层处将所述装置结构和所述载体晶片与衬底解离。
32.根据权利要求31所述的方法,其进一步包含:抛光所述衬底上的GaN的剩余部分;以及重复(a)到(d)。
33.根据权利要求31所述的方法,其进一步包含将所述GaN置放于包含蓝宝石、硅、碳化硅或体GaN的衬底上。
34.根据权利要求31所述的方法,其进一步包含使用MOCVD、HVPE或MBE中的一种外延方法生长所述装置结构。
35.根据权利要求20所述的方法,其进一步包含:
(a)在所述低孔隙率连续结晶层已与电解质中的所述衬底分离之前停止所述蚀刻处理;
(b)晶片结合所述低孔隙率连续结晶层到目标晶片或聚合物印模;以及
(c)将所述经结合的低孔隙率连续结晶层与所述衬底机械分开。
36.根据权利要求20所述的方法,其进一步包含将所述GaN置放在包含蓝宝石、硅、碳化硅或体GaN的衬底上。
37.根据权利要求9所述的方法,其进一步包含:
(a)使用外延生长技术在所述多孔结构上生长装置或外延结构;
(b)通过在步骤(a)期间执行同时退火和转换在(a)中所述装置或外延结构的下面形成具有弱化的机械强度的包埋空隙层;
(c)晶片结合载体晶片到所述装置结构的表面;以及
(d)在所述包埋空隙层处将所述装置结构和所述载体晶片与衬底解离。
38.根据权利要求37所述的方法,其进一步包含:抛光所述衬底上的GaN的剩余部分;以及重复(a)到(d)。
39.根据权利要求37所述的方法,其进一步包含将所述GaN置放在包含蓝宝石、硅、碳化硅或体GaN的衬底上。
40.根据权利要求37所述的方法,其进一步包含使用MOCVD、HVPE或MBE中的一种外延方法生长所述装置结构。
41.根据权利要求21所述的方法,其进一步包含:
(a)在所述低孔隙率连续结晶层已与电解质中的所述衬底分离之前停止所述蚀刻处理;
(b)晶片结合所述低孔隙率连续结晶层到目标晶片或聚合物印模;以及
(c)将所述经结合的低孔隙率连续结晶层与所述衬底机械分开。
42.根据权利要求21所述的方法,其进一步包含将所述GaN置放在包含蓝宝石、硅、碳化硅或体GaN的衬底上。
43.根据权利要求11所述的方法,其进一步包含:
(a)使用外延生长技术在所述多孔结构上生长装置或外延结构;
(b)通过在步骤(a)期间执行同时退火和转换在(a)中所述装置或外延结构的下面形成具有弱化的机械强度的包埋空隙层;
(c)晶片结合载体晶片到所述装置结构的表面;以及
(d)在所述包埋空隙层处将所述装置结构和所述载体晶片与衬底解离。
44.根据权利要求43所述的方法,其进一步包含:抛光所述衬底上的GaN的剩余部分;以及重复(a)到(d)。
45.根据权利要求43所述的方法,其进一步包含将所述GaN置放在包含蓝宝石、硅、碳化硅或体GaN的衬底上。
46.根据权利要求43所述的方法,其进一步包含使用MOCVD、HVPE或MBE中的一种外延方法生长所述装置结构。
47.一种制造纳米晶体的方法,其包含:
(a)以n型掺杂薄表面层提供包含GaN或InGaN中的至少一个的材料;
(b)将所述材料暴露于电解质;
(c)将所述材料耦合到电源的一个端子并将浸于所述电解质中的电极耦合到所述电源的另一个端子,以由此形成电路;
(d)激励所述电路以驱动电流通过所述电路,其中所述电流用以在所述材料的表面处产生薄的多孔层;以及
(e)使所述多孔层经受机械干扰以使所述多孔层破裂变成纳米晶体。
48.根据权利要求47所述的方法,其进一步包含使用超声波仪以声波的形式提供所述机械干扰。
49.一种制造电极的方法,其包含:
(a)以n型掺杂薄表面层提供包含GaN或InGaN中的至少一个的材料;
(b)将所述材料暴露于电解质;
(c)将所述材料耦合到电源的一个端子并将浸于所述电解质中的电极耦合到所述电源的另一个端子,以由此形成电路;以及
(d)激励所述电路以驱动电流通过所述材料,其中所述电流用以在表面上产生薄的多孔层,以制备适合作为用于电解、水分解或光合过程应用的电极的结构。
50.一种高效太阳能水分解的方法,其包含:
(a)提供根据权利要求49所述的方法制造的多孔GaN或InGaN阳极电极;
(b)提供金属阴极电极;
(c)将所述阳极和所述阴极暴露于电解质;
(d)电连接所述阳极和所述阴极以便形成电路;以及
(e)将所述阳极暴露于太阳能辐射以便在所述电路中诱导光电流且由此驱动光化学水分解化学反应。
51.一种根据权利要求12或13所述的方法制造的四分之一波长分布式布拉格反射器DBR。
52.一种根据权利要求14或15所述的方法制造的法布里-珀珞滤光片。
53.一种根据权利要求16所述的方法制造的NP表面层。
54.一种根据权利要求17所述的方法制造的NP模板。
55.一种或多种根据权利要求47制造的纳米晶体。
56.一种根据权利要求49制造的多孔电极。
CN201180007613.2A 2010-01-27 2011-01-27 用于GaN装置的基于导电性的选择性蚀刻和其应用 Active CN102782818B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610206389.4A CN105821435B (zh) 2010-01-27 2011-01-27 用于GaN装置的基于导电性的选择性蚀刻和其应用

Applications Claiming Priority (23)

Application Number Priority Date Filing Date Title
US29878810P 2010-01-27 2010-01-27
US61/298,788 2010-01-27
US32672210P 2010-04-22 2010-04-22
US61/326,722 2010-04-22
US34705410P 2010-05-21 2010-05-21
US34700110P 2010-05-21 2010-05-21
US61/347,054 2010-05-21
US61/347,001 2010-05-21
US36927410P 2010-07-30 2010-07-30
US36930610P 2010-07-30 2010-07-30
US36933310P 2010-07-30 2010-07-30
US36932210P 2010-07-30 2010-07-30
US36928710P 2010-07-30 2010-07-30
US61/369,333 2010-07-30
US61/369,306 2010-07-30
US61/369,274 2010-07-30
US61/369,287 2010-07-30
US61/369,322 2010-07-30
US37130810P 2010-08-06 2010-08-06
US61/371,308 2010-08-06
US38530010P 2010-09-22 2010-09-22
US61/385,300 2010-09-22
PCT/US2011/022701 WO2011094391A1 (en) 2010-01-27 2011-01-27 Conductivity based selective etch for gan devices and applications thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201610206389.4A Division CN105821435B (zh) 2010-01-27 2011-01-27 用于GaN装置的基于导电性的选择性蚀刻和其应用

Publications (2)

Publication Number Publication Date
CN102782818A true CN102782818A (zh) 2012-11-14
CN102782818B CN102782818B (zh) 2016-04-27

Family

ID=44319756

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201180007613.2A Active CN102782818B (zh) 2010-01-27 2011-01-27 用于GaN装置的基于导电性的选择性蚀刻和其应用
CN201610206389.4A Active CN105821435B (zh) 2010-01-27 2011-01-27 用于GaN装置的基于导电性的选择性蚀刻和其应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201610206389.4A Active CN105821435B (zh) 2010-01-27 2011-01-27 用于GaN装置的基于导电性的选择性蚀刻和其应用

Country Status (6)

Country Link
US (2) US9206524B2 (zh)
EP (2) EP3923352A1 (zh)
JP (3) JP5961557B2 (zh)
KR (1) KR20130007557A (zh)
CN (2) CN102782818B (zh)
WO (1) WO2011094391A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105981131A (zh) * 2014-02-10 2016-09-28 伦斯勒理工学院 半导体的选择性电化学蚀刻
CN106848016A (zh) * 2017-04-06 2017-06-13 中国科学院半导体研究所 GaN基多孔DBR的制备方法
CN107078190A (zh) * 2014-09-30 2017-08-18 耶鲁大学 用于GaN垂直微腔面发射激光器(VCSEL)的方法
CN107710381A (zh) * 2015-05-19 2018-02-16 耶鲁大学 涉及具有晶格匹配的覆层的高限制因子的iii族氮化物边发射激光二极管的方法和器件
CN107895690A (zh) * 2017-12-06 2018-04-10 肖之光 一种大面积、高反射率氮化镓/纳米多孔氮化镓分布布拉格反射镜的制备方法
CN108520911A (zh) * 2018-04-11 2018-09-11 山东大学 一种具有纳米多孔GaN分布布拉格反射镜的InGaN基蓝光发光二极管的制备方法
CN109440180A (zh) * 2018-10-10 2019-03-08 中国科学院半导体研究所 多孔ⅲ族氮化物及其制备方法
CN109830583A (zh) * 2019-01-31 2019-05-31 西安工程大学 一种具有GaN/纳米空腔的蓝光发光二极管的制备方法
CN109873297A (zh) * 2019-04-26 2019-06-11 山东大学 一种GaN基垂直腔面发射激光器及其制备方法
CN110093274A (zh) * 2019-05-13 2019-08-06 山东大学 一种增加细胞产生的细胞外囊泡数量的挤压装置及其应用
US10458038B2 (en) 2010-01-27 2019-10-29 Yale University Conductivity based on selective etch for GaN devices and applications thereof
CN112098481A (zh) * 2018-03-30 2020-12-18 厦门大学 一种用于氮化物半导体材料除氢激活的装置及氮化物半导体材料除氢激活的方法
US11018231B2 (en) 2014-12-01 2021-05-25 Yale University Method to make buried, highly conductive p-type III-nitride layers
US11095096B2 (en) 2014-04-16 2021-08-17 Yale University Method for a GaN vertical microcavity surface emitting laser (VCSEL)
US11631782B2 (en) 2018-01-26 2023-04-18 Cambridge Enterprise Limited Method for electrochemically etching a semiconductor structure
US11651954B2 (en) 2017-09-27 2023-05-16 Cambridge Enterprise Ltd Method for porosifying a material and semiconductor structure

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009053262A1 (de) * 2009-11-13 2011-05-19 Institut Für Solarenergieforschung Gmbh Verfahren zum Bilden von dünnen Halbleiterschichtsubstraten sowie Verfahren zum Herstellen eines Halbleiterbauelements, insbesondere einer Solarzelle, mit einem solchen Halbleiterschichtsubstrat
KR101550117B1 (ko) * 2011-02-18 2015-09-03 에피스타 코포레이션 광전 소자 및 그 제조 방법
TWI474507B (zh) * 2011-10-18 2015-02-21 Lextar Electronics Corp 固態發光元件之製作方法
KR101899479B1 (ko) * 2011-12-15 2018-09-20 서울바이오시스 주식회사 반극성 발광 다이오드 및 그것을 제조하는 방법
JP6018219B2 (ja) * 2011-12-14 2016-11-02 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. 発光ダイオードの製造方法
US10435812B2 (en) 2012-02-17 2019-10-08 Yale University Heterogeneous material integration through guided lateral growth
WO2013140320A1 (en) * 2012-03-19 2013-09-26 Koninklijke Philips N.V. Light emitting device grown on a silicon substrate
US9583353B2 (en) * 2012-06-28 2017-02-28 Yale University Lateral electrochemical etching of III-nitride materials for microfabrication
KR101984934B1 (ko) * 2012-11-21 2019-09-03 서울바이오시스 주식회사 기판 재생 방법 및 재생 기판
KR102052179B1 (ko) * 2012-12-13 2019-12-04 서울바이오시스 주식회사 기판 재생 방법 및 재생 기판
EP2736068B1 (en) * 2012-11-21 2019-03-27 Seoul Viosys Co., Ltd. Substrate recycling method
EP2743966B1 (en) * 2012-12-14 2020-11-25 Seoul Viosys Co., Ltd. Epitaxial layer wafer having void for separating growth substrate therefrom and semiconductor device fabricated using the same
KR20140077477A (ko) * 2012-12-14 2014-06-24 서울바이오시스 주식회사 기판 분리를 위한 공동을 갖는 에피 웨이퍼 및 그것을 제조하는 방법
EP2973667A4 (en) * 2013-03-14 2017-01-18 King Abdullah University Of Science And Technology Defect free single crystal thin layer
KR102116828B1 (ko) * 2013-04-29 2020-06-01 서울바이오시스 주식회사 기판 재생 방법
KR102061563B1 (ko) * 2013-08-06 2020-01-02 삼성전자주식회사 반도체 발광소자
US9058990B1 (en) 2013-12-19 2015-06-16 International Business Machines Corporation Controlled spalling of group III nitrides containing an embedded spall releasing plane
CN104701431B (zh) * 2014-11-27 2017-03-29 厦门市三安光电科技有限公司 一种发光二极管的外延结构及其制作方法
KR20160085952A (ko) 2015-01-08 2016-07-19 주식회사 바디프랜드 접힘 등받이부를 가진 의자형 마사지 장치
KR101666378B1 (ko) * 2015-01-13 2016-10-14 울산과학기술원 GaN 기반 다공성 피라미드 광전극 및 그 제조방법
US10753009B2 (en) * 2015-02-24 2020-08-25 The University Of Ottawa Localizing nanopore fabrication on a membrane by laser illumination during controlled breakdown
US10032870B2 (en) * 2015-03-12 2018-07-24 Globalfoundries Inc. Low defect III-V semiconductor template on porous silicon
JP2019531245A (ja) 2016-08-12 2019-10-31 イェール ユニバーシティーYale University 成長の際に窒素極性ファセットを排除することによる異種基板上で成長する積層欠陥のない半極性および非極性GaN
KR102495451B1 (ko) 2016-12-16 2023-02-02 엘화 엘엘씨 다공성 실리콘 카바이드 구조의 제조 및 에칭을 위한 방법
CN106848838B (zh) * 2017-04-06 2019-11-29 中国科学院半导体研究所 基于多孔DBR的GaN基VCSEL芯片及制备方法
WO2019023281A1 (en) 2017-07-24 2019-01-31 Microlink Devices, Inc. DEEP PHOTOACTIVATED WET MATERIAL BURNING USING HIGH POWER ULTRAVIOLET LIGHT EMITTING DIODES
US10535493B2 (en) 2017-10-10 2020-01-14 Kla-Tencor Corporation Photocathode designs and methods of generating an electron beam using a photocathode
WO2019079239A1 (en) * 2017-10-16 2019-04-25 Crystal Is, Inc. ELECTROCHEMICAL REMOVAL OF ALUMINUM NITRIDE SUBSTRATES FOR ELECTRONIC AND OPTOELECTRONIC DEVICES
JP2021511662A (ja) * 2018-01-18 2021-05-06 アイキューイー ピーエルシーIQE plc レーザ用途のための多孔性分散ブラッグ反射器
JP7261546B2 (ja) * 2018-07-13 2023-04-20 住友化学株式会社 構造体
CN110240906A (zh) * 2018-03-07 2019-09-17 中国科学院苏州纳米技术与纳米仿生研究所 Iii-v族半导体刻蚀液及其制备方法和应用
JP7137070B2 (ja) * 2018-12-03 2022-09-14 日本電信電話株式会社 窒化物半導体光電極の製造方法
CN110061109B (zh) * 2019-04-26 2020-10-30 山东大学 一种多孔GaN导电DBR及其制备方法
CN112018177B (zh) * 2019-05-31 2024-06-07 中国科学院苏州纳米技术与纳米仿生研究所 全垂直型Si基GaN UMOSFET功率器件及其制备方法
CN114503285A (zh) * 2019-10-03 2022-05-13 株式会社Flosfia 半导体元件
CN114787964A (zh) * 2019-10-31 2022-07-22 耶鲁大学 多孔iii族氮化物以及其使用和制造方法
FR3105567B1 (fr) 2019-12-19 2021-12-17 Commissariat Energie Atomique Procede pour fabriquer une structure gan/ingan relaxee
GB2593693B (en) * 2020-03-30 2022-08-03 Plessey Semiconductors Ltd LED precursor
JPWO2021221055A1 (zh) * 2020-04-28 2021-11-04
GB202006255D0 (en) 2020-04-28 2020-06-10 Poro Tech Ltd Wafer holder and method
US20220208848A1 (en) * 2020-12-30 2022-06-30 Facebook Technologies, Llc Engineered wafer with selective porosification for multi-color light emission
US11688829B2 (en) 2020-12-30 2023-06-27 Meta Platforms Technologies, Llc Engineered substrate architecture for InGaN red micro-LEDs
KR102424066B1 (ko) * 2020-12-31 2022-07-21 국민대학교산학협력단 웨이퍼로부터 다수 개의 led 구조물을 분리하는 방법
KR20230144553A (ko) * 2021-02-11 2023-10-16 소크프라 시앙스 에 제니 에스.에.쎄. 광전자 디바이스를 제조하기 위한 방법 및 시스템 그리고 이를 사용하여 제조된 광전자 디바이스
CN113451515A (zh) * 2021-05-13 2021-09-28 山东大学 一种GaN半导体材料作为双功能层的钙钛矿太阳能电池的制备方法
WO2023026059A1 (en) 2021-08-27 2023-03-02 Poro Technologies Ltd Method of forming porous iii-nitride material
GB2612040A (en) * 2021-10-19 2023-04-26 Iqe Plc Porous distributed Bragg reflector apparatuses, systems, and methods
PL439368A1 (pl) 2021-10-30 2023-05-02 Instytut Wysokich Ciśnień Polskiej Akademii Nauk Unipress Sposób wytwarzania obszaru o regularnie zmiennym współczynniku załamania światła w wybranej warstwie warstwowej struktury półprzewodnikowej
WO2024039869A1 (en) * 2022-08-19 2024-02-22 Lumileds Llc Shearing device and method for removing sapphire substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050184307A1 (en) * 2003-09-30 2005-08-25 Cree, Inc. Light emitting diode with porous sic substrate and method for fabricating
US20080296173A1 (en) * 2007-05-29 2008-12-04 Transphorm, Inc. Electrolysis transistor
US20090001416A1 (en) * 2007-06-28 2009-01-01 National University Of Singapore Growth of indium gallium nitride (InGaN) on porous gallium nitride (GaN) template by metal-organic chemical vapor deposition (MOCVD)
CN101443887A (zh) * 2006-03-10 2009-05-27 Stc.Unm公司 Gan纳米线的脉冲式生长及在族ⅲ氮化物半导体衬底材料中的应用和器件
US20090143227A1 (en) * 2004-02-02 2009-06-04 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4202454C1 (zh) * 1992-01-29 1993-07-29 Siemens Ag, 8000 Muenchen, De
JP3080831B2 (ja) 1994-02-03 2000-08-28 日本電気株式会社 多重量子井戸半導体レーザ
JPH08148280A (ja) * 1994-04-14 1996-06-07 Toshiba Corp 半導体装置およびその製造方法
US6324192B1 (en) 1995-09-29 2001-11-27 Coretek, Inc. Electrically tunable fabry-perot structure utilizing a deformable multi-layer mirror and method of making the same
JPH10135500A (ja) * 1996-03-18 1998-05-22 Sony Corp 薄膜半導体、太陽電池および発光素子の製造方法
US5919430A (en) 1996-06-19 1999-07-06 Degussa Aktiengesellschaft Preparation of crystalline microporous and mesoporous metal silicates, products produced thereby and use thereof
US5818861A (en) 1996-07-19 1998-10-06 Hewlett-Packard Company Vertical cavity surface emitting laser with low band gap highly doped contact layer
US20030189963A1 (en) 1996-11-12 2003-10-09 Deppe Dennis G. Low threshold microcavity light emitter
KR100413792B1 (ko) 1997-07-24 2004-02-14 삼성전자주식회사 질화갈륨 층과 공기층이 반복 적층된 분산브래그 반사기를구비한 단파장 면발광 반도체 레이저장치 및 그 제조 방법
JP4075021B2 (ja) * 1997-12-26 2008-04-16 ソニー株式会社 半導体基板の製造方法および薄膜半導体部材の製造方法
KR100480764B1 (ko) 1998-12-10 2005-06-16 삼성전자주식회사 Gan계 고반사율 분산 브래그 반사기를 갖는 광소자의 제조방법
US6320206B1 (en) 1999-02-05 2001-11-20 Lumileds Lighting, U.S., Llc Light emitting devices having wafer bonded aluminum gallium indium nitride structures and mirror stacks
JP3453544B2 (ja) 1999-03-26 2003-10-06 キヤノン株式会社 半導体部材の作製方法
JP2000349393A (ja) 1999-03-26 2000-12-15 Fuji Xerox Co Ltd 半導体デバイス、面発光型半導体レーザ、及び端面発光型半導体レーザ
JP2001223165A (ja) * 2000-02-10 2001-08-17 Hitachi Cable Ltd 窒化物半導体及びその製造方法
JP2002176226A (ja) 2000-09-22 2002-06-21 Toshiba Corp 光素子およびその製造方法
US20020070125A1 (en) * 2000-12-13 2002-06-13 Nova Crystals, Inc. Method for lift-off of epitaxially grown semiconductors by electrochemical anodic etching
US6434180B1 (en) 2000-12-19 2002-08-13 Lucent Technologies Inc. Vertical cavity surface emitting laser (VCSEL)
FR2823596B1 (fr) * 2001-04-13 2004-08-20 Commissariat Energie Atomique Substrat ou structure demontable et procede de realisation
US20020158265A1 (en) 2001-04-26 2002-10-31 Motorola, Inc. Structure and method for fabricating high contrast reflective mirrors
US6537838B2 (en) 2001-06-11 2003-03-25 Limileds Lighting, U.S., Llc Forming semiconductor structures including activated acceptors in buried p-type III-V layers
US7919791B2 (en) 2002-03-25 2011-04-05 Cree, Inc. Doped group III-V nitride materials, and microelectronic devices and device precursor structures comprising same
DE60326572D1 (de) 2002-05-15 2009-04-23 Panasonic Corp Lichtemittierendes halbleiterelement und zugehöriges produktionsverfahren
US7535100B2 (en) * 2002-07-12 2009-05-19 The United States Of America As Represented By The Secretary Of The Navy Wafer bonding of thinned electronic materials and circuits to high performance substrates
JP2004055611A (ja) 2002-07-16 2004-02-19 Fuji Photo Film Co Ltd 半導体発光素子
TW200409378A (en) 2002-11-25 2004-06-01 Super Nova Optoelectronics Corp GaN-based light-emitting diode and the manufacturing method thereof
AU2003295880A1 (en) * 2002-11-27 2004-06-23 University Of Toledo, The Integrated photoelectrochemical cell and system having a liquid electrolyte
US6990132B2 (en) 2003-03-20 2006-01-24 Xerox Corporation Laser diode with metal-oxide upper cladding layer
US7271896B2 (en) * 2003-12-29 2007-09-18 Intel Corporation Detection of biomolecules using porous biosensors and raman spectroscopy
JP2005244089A (ja) 2004-02-27 2005-09-08 Canon Inc 陽極化成装置及び処理方法並びに半導体基板の製造方法
KR100568298B1 (ko) 2004-03-30 2006-04-05 삼성전기주식회사 외부양자효율이 개선된 질화물 반도체 및 그 제조방법
EP1749308A4 (en) 2004-04-28 2011-12-28 Verticle Inc SEMICONDUCTOR DEVICES WITH VERTICAL STRUCTURE
US7768023B2 (en) * 2005-10-14 2010-08-03 The Regents Of The University Of California Photonic structures for efficient light extraction and conversion in multi-color light emitting devices
US7684458B2 (en) 2004-06-11 2010-03-23 Ricoh Company, Ltd. Surface-emission laser diode and fabrication process thereof
US8119537B2 (en) 2004-09-02 2012-02-21 Micron Technology, Inc. Selective etching of oxides to metal nitrides and metal oxides
TWI249966B (en) 2004-10-20 2006-02-21 Genesis Photonics Inc Light-emitting device having porous light-emitting layer
US7550395B2 (en) 2004-11-02 2009-06-23 The Regents Of The University Of California Control of photoelectrochemical (PEC) etching by modification of the local electrochemical potential of the semiconductor structure relative to the electrolyte
GB0424957D0 (en) 2004-11-11 2004-12-15 Btg Int Ltd Methods for fabricating semiconductor devices and devices fabricated thereby
US7751455B2 (en) 2004-12-14 2010-07-06 Palo Alto Research Center Incorporated Blue and green laser diodes with gallium nitride or indium gallium nitride cladding laser structure
WO2006113808A2 (en) 2005-04-20 2006-10-26 University Of Rochester Methods of making and modifying porous devices for biomedical applications
US7483466B2 (en) 2005-04-28 2009-01-27 Canon Kabushiki Kaisha Vertical cavity surface emitting laser device
JP4933193B2 (ja) 2005-08-11 2012-05-16 キヤノン株式会社 面発光レーザ、該面発光レーザにおける二次元フォトニック結晶の製造方法
KR100706796B1 (ko) 2005-08-19 2007-04-12 삼성전자주식회사 질화물계 탑에미트형 발광소자 및 그 제조 방법
TWI426620B (zh) 2005-09-29 2014-02-11 Sumitomo Chemical Co 第iii-v族氮化物半導體之製造方法及發光元件之製造方法
US7655489B2 (en) 2005-10-19 2010-02-02 The University Of Notre Dame Du Lac Monolithically-pumped erbium-doped waveguide amplifiers and lasers
TWI451597B (zh) 2010-10-29 2014-09-01 Epistar Corp 光電元件及其製造方法
US7501299B2 (en) 2005-11-14 2009-03-10 Palo Alto Research Center Incorporated Method for controlling the structure and surface qualities of a thin film and product produced thereby
US7737451B2 (en) 2006-02-23 2010-06-15 Cree, Inc. High efficiency LED with tunnel junction layer
JP5260958B2 (ja) 2006-03-14 2013-08-14 古河電気工業株式会社 面発光レーザ素子アレイ
JP4967463B2 (ja) 2006-06-06 2012-07-04 富士ゼロックス株式会社 面発光型半導体レーザ装置
US8174025B2 (en) * 2006-06-09 2012-05-08 Philips Lumileds Lighting Company, Llc Semiconductor light emitting device including porous layer
US7915624B2 (en) 2006-08-06 2011-03-29 Lightwave Photonics, Inc. III-nitride light-emitting devices with one or more resonance reflectors and reflective engineered growth templates for such devices, and methods
WO2008075692A1 (ja) 2006-12-20 2008-06-26 International Business Machines Corporation 面発光レーザーおよびその製造方法
JP2008211164A (ja) 2007-01-29 2008-09-11 Matsushita Electric Ind Co Ltd 窒化物半導体発光装置及びその製造方法
US8920625B2 (en) * 2007-04-27 2014-12-30 Board Of Regents Of The University Of Texas System Electrochemical method of making porous particles using a constant current density
JP5056299B2 (ja) * 2007-09-18 2012-10-24 日立電線株式会社 窒化物半導体下地基板、窒化物半導体積層基板および窒化物半導体下地基板の製造方法
WO2009048265A1 (en) 2007-10-12 2009-04-16 Industry Foundation Of Chonnam National University Method of selectively etching semiconductor region, separation method of semiconductor layer and separation method of semiconductor device from substrate
US7928448B2 (en) 2007-12-04 2011-04-19 Philips Lumileds Lighting Company, Llc III-nitride light emitting device including porous semiconductor layer
US20090173373A1 (en) 2008-01-07 2009-07-09 Wladyslaw Walukiewicz Group III-Nitride Solar Cell with Graded Compositions
JP4404162B2 (ja) 2008-02-27 2010-01-27 住友電気工業株式会社 窒化物半導体ウエハ−
JP4395812B2 (ja) 2008-02-27 2010-01-13 住友電気工業株式会社 窒化物半導体ウエハ−加工方法
CN102017082B (zh) 2008-03-13 2013-03-20 昭和电工株式会社 Ⅲ族氮化物半导体元件及其制造方法、ⅲ族氮化物半导体发光元件及其制造方法和灯
JP5205098B2 (ja) 2008-03-27 2013-06-05 Dowaエレクトロニクス株式会社 半導体発光素子およびその製造方法
US9070827B2 (en) 2010-10-29 2015-06-30 Epistar Corporation Optoelectronic device and method for manufacturing the same
US8946736B2 (en) 2010-10-29 2015-02-03 Epistar Corporation Optoelectronic device and method for manufacturing the same
JP4968232B2 (ja) 2008-10-17 2012-07-04 日立電線株式会社 窒化物半導体の製造方法
US8062916B2 (en) 2008-11-06 2011-11-22 Koninklijke Philips Electronics N.V. Series connected flip chip LEDs with growth substrate removed
JP5191934B2 (ja) 2009-03-19 2013-05-08 アズビル株式会社 状態監視システムおよび状態監視方法
JP4902682B2 (ja) 2009-03-27 2012-03-21 キヤノン株式会社 窒化物半導体レーザ
JP2012522388A (ja) 2009-03-31 2012-09-20 西安▲電▼子科技大学 紫外光発光ダイオード装置及びその製造方法
TWI671811B (zh) 2009-05-12 2019-09-11 美國伊利諾大學理事會 用於可變形及半透明顯示器之超薄微刻度無機發光二極體之印刷總成
JP2011054935A (ja) 2009-06-19 2011-03-17 Rohm & Haas Electronic Materials Llc ドーピング方法
WO2011013621A1 (ja) 2009-07-31 2011-02-03 日亜化学工業株式会社 窒化物半導体レーザダイオード
US8409998B2 (en) 2009-09-30 2013-04-02 Furukawa Electric Co., Ltd Method of manufacturing vertical-cavity surface emitting laser
KR101082788B1 (ko) 2009-10-16 2011-11-14 한국산업기술대학교산학협력단 다공성 질화물 반도체 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법
KR20130007557A (ko) 2010-01-27 2013-01-18 예일 유니버시티 GaN 소자의 전도도 기반 선택적 에칭 및 그의 응용
US20110188528A1 (en) 2010-02-04 2011-08-04 Ostendo Technologies, Inc. High Injection Efficiency Polar and Non-Polar III-Nitrides Light Emitters
GB201012483D0 (en) 2010-07-26 2010-09-08 Seren Photonics Ltd Light emitting diodes
TWI501421B (zh) 2010-09-21 2015-09-21 Epistar Corp 光電元件及其製造方法
WO2012051618A2 (en) * 2010-10-15 2012-04-19 The Regents Of The University Of California Method for producing gallium nitride substrates for electronic and optoelectronic devices
US8519430B2 (en) 2010-10-29 2013-08-27 Epistar Corporation Optoelectronic device and method for manufacturing the same
TWI419367B (zh) 2010-12-02 2013-12-11 Epistar Corp 光電元件及其製造方法
KR101550117B1 (ko) 2011-02-18 2015-09-03 에피스타 코포레이션 광전 소자 및 그 제조 방법
US8343788B2 (en) 2011-04-19 2013-01-01 Epistar Corporation Light emitting device and manufacturing method thereof
US20130140517A1 (en) 2011-06-29 2013-06-06 Purdue Research Foundation Thin and Flexible Gallium Nitride and Method of Making the Same
US9335262B2 (en) 2011-08-25 2016-05-10 Palo Alto Research Center Incorporated Gap distributed Bragg reflectors
FR2980784B1 (fr) 2011-10-04 2013-10-25 Swisstex France Dispositif pour abaisser la tension d'un fil entre un systeme de transformation dudit fil et un systeme de bobinage dudit fil
US20140339566A1 (en) 2011-12-14 2014-11-20 Seoul Viosys Co., Ltd. Semiconductor device and method of fabricating the same
KR101278063B1 (ko) 2012-02-06 2013-06-24 전남대학교산학협력단 나노포러스 구조를 이용한 반도체소자 분리방법
KR101351484B1 (ko) 2012-03-22 2014-01-15 삼성전자주식회사 질화물계 반도체 전방향 리플렉터를 구비한 발광소자
US9583353B2 (en) 2012-06-28 2017-02-28 Yale University Lateral electrochemical etching of III-nitride materials for microfabrication
US8497171B1 (en) 2012-07-05 2013-07-30 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET method and structure with embedded underlying anti-punch through layer
JP6170300B2 (ja) 2013-01-08 2017-07-26 住友化学株式会社 窒化物半導体デバイス
US9048387B2 (en) 2013-08-09 2015-06-02 Qingdao Jason Electric Co., Ltd. Light-emitting device with improved light extraction efficiency
US11095096B2 (en) 2014-04-16 2021-08-17 Yale University Method for a GaN vertical microcavity surface emitting laser (VCSEL)
JP7016259B6 (ja) 2014-09-30 2023-12-15 イェール ユニバーシティー 多孔質窒化ガリウム層およびそれを含む半導体発光デバイス
US11018231B2 (en) 2014-12-01 2021-05-25 Yale University Method to make buried, highly conductive p-type III-nitride layers
WO2016187421A1 (en) 2015-05-19 2016-11-24 Yale University A method and device concerning iii-nitride edge emitting laser diode of high confinement factor with lattice matched cladding layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050184307A1 (en) * 2003-09-30 2005-08-25 Cree, Inc. Light emitting diode with porous sic substrate and method for fabricating
US20090143227A1 (en) * 2004-02-02 2009-06-04 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
CN101443887A (zh) * 2006-03-10 2009-05-27 Stc.Unm公司 Gan纳米线的脉冲式生长及在族ⅲ氮化物半导体衬底材料中的应用和器件
US20080296173A1 (en) * 2007-05-29 2008-12-04 Transphorm, Inc. Electrolysis transistor
US20090001416A1 (en) * 2007-06-28 2009-01-01 National University Of Singapore Growth of indium gallium nitride (InGaN) on porous gallium nitride (GaN) template by metal-organic chemical vapor deposition (MOCVD)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458038B2 (en) 2010-01-27 2019-10-29 Yale University Conductivity based on selective etch for GaN devices and applications thereof
CN105981131A (zh) * 2014-02-10 2016-09-28 伦斯勒理工学院 半导体的选择性电化学蚀刻
CN105981131B (zh) * 2014-02-10 2019-12-03 伦斯勒理工学院 半导体的选择性电化学蚀刻
US11095096B2 (en) 2014-04-16 2021-08-17 Yale University Method for a GaN vertical microcavity surface emitting laser (VCSEL)
US11043792B2 (en) 2014-09-30 2021-06-22 Yale University Method for GaN vertical microcavity surface emitting laser (VCSEL)
CN107078190B (zh) * 2014-09-30 2020-09-08 耶鲁大学 用于GaN垂直微腔面发射激光器(VCSEL)的方法
CN107078190A (zh) * 2014-09-30 2017-08-18 耶鲁大学 用于GaN垂直微腔面发射激光器(VCSEL)的方法
US11018231B2 (en) 2014-12-01 2021-05-25 Yale University Method to make buried, highly conductive p-type III-nitride layers
US10554017B2 (en) 2015-05-19 2020-02-04 Yale University Method and device concerning III-nitride edge emitting laser diode of high confinement factor with lattice matched cladding layer
CN107710381A (zh) * 2015-05-19 2018-02-16 耶鲁大学 涉及具有晶格匹配的覆层的高限制因子的iii族氮化物边发射激光二极管的方法和器件
CN107710381B (zh) * 2015-05-19 2022-01-18 耶鲁大学 涉及具有晶格匹配的覆层的高限制因子的iii族氮化物边发射激光二极管的方法和器件
CN106848016A (zh) * 2017-04-06 2017-06-13 中国科学院半导体研究所 GaN基多孔DBR的制备方法
CN106848016B (zh) * 2017-04-06 2019-12-03 中国科学院半导体研究所 GaN基多孔DBR的制备方法
US11651954B2 (en) 2017-09-27 2023-05-16 Cambridge Enterprise Ltd Method for porosifying a material and semiconductor structure
CN107895690A (zh) * 2017-12-06 2018-04-10 肖之光 一种大面积、高反射率氮化镓/纳米多孔氮化镓分布布拉格反射镜的制备方法
US11631782B2 (en) 2018-01-26 2023-04-18 Cambridge Enterprise Limited Method for electrochemically etching a semiconductor structure
CN112098481A (zh) * 2018-03-30 2020-12-18 厦门大学 一种用于氮化物半导体材料除氢激活的装置及氮化物半导体材料除氢激活的方法
CN112098481B (zh) * 2018-03-30 2021-08-27 厦门大学 一种用于氮化物半导体材料除氢激活的装置
CN108520911A (zh) * 2018-04-11 2018-09-11 山东大学 一种具有纳米多孔GaN分布布拉格反射镜的InGaN基蓝光发光二极管的制备方法
CN109440180A (zh) * 2018-10-10 2019-03-08 中国科学院半导体研究所 多孔ⅲ族氮化物及其制备方法
CN109440180B (zh) * 2018-10-10 2021-01-05 中国科学院半导体研究所 多孔iii族氮化物及其制备方法
CN109830583A (zh) * 2019-01-31 2019-05-31 西安工程大学 一种具有GaN/纳米空腔的蓝光发光二极管的制备方法
CN109873297A (zh) * 2019-04-26 2019-06-11 山东大学 一种GaN基垂直腔面发射激光器及其制备方法
CN110093274A (zh) * 2019-05-13 2019-08-06 山东大学 一种增加细胞产生的细胞外囊泡数量的挤压装置及其应用

Also Published As

Publication number Publication date
JP2013518447A (ja) 2013-05-20
CN105821435B (zh) 2018-10-16
CN102782818B (zh) 2016-04-27
US20130011656A1 (en) 2013-01-10
CN105821435A (zh) 2016-08-03
EP3923352A1 (en) 2021-12-15
US10458038B2 (en) 2019-10-29
WO2011094391A1 (en) 2011-08-04
US9206524B2 (en) 2015-12-08
US20160153113A1 (en) 2016-06-02
JP5961557B2 (ja) 2016-08-02
JP2016048794A (ja) 2016-04-07
EP2529394A1 (en) 2012-12-05
KR20130007557A (ko) 2013-01-18
JP2016181709A (ja) 2016-10-13
EP2529394A4 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
CN102782818B (zh) 用于GaN装置的基于导电性的选择性蚀刻和其应用
Griffin et al. Porous nitride semiconductors reviewed
KR102591874B1 (ko) 재료를 다공화하기 위한 방법 및 반도체 구조체
US5569932A (en) Porous silicon carbide (SIC) semiconductor device
TWI520206B (zh) 至少部分分離磊晶層的方法
US11749779B2 (en) Process for manufacturing a relaxed GaN/InGaN structure
US20230361246A1 (en) Method for manufacturing a substrate comprising a relaxed ingan layer
US6884740B2 (en) Photoelectrochemical undercut etching of semiconductor material
JP2013518447A5 (zh)
CN101599466B (zh) 一种外延生长用的图形衬底及其制作方法
JP2008034483A (ja) 化合物半導体素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
KR20160010419A (ko) 무결점 단결정 박막 층
WO2018015368A1 (en) Nano-light source emitting polarized light
Hsieh et al. Sacrificial Structure for Effective Sapphire Substrate Liftoff Based on Photoelectrochemical Etching
WO2023026059A1 (en) Method of forming porous iii-nitride material
Ben Slimane III-Nitride Micro and Nano Structures for Solid State Lightning
Huang et al. Optical Properties of A-Plane InGaN/GaN Multiple Quantum Wells Grown on Nanorod Lateral Overgrowth Templates
JP2005353828A (ja) 発光素子及び発光素子の製造方法
MICRO Hock M. Ng and Aref Chowdhury Bell Laboratories, Lucent Technologies 600 Mountain Avenue, Murray Hill, NJ 07974, USA E-mail: hmng Qlucent. com
Ng et al. III-NITRIDES MICRO-AND NANO-STRUCTURES
Leach et al. Photoelectrochemical Etching of GaN Thin Films With Varying Carrier Concentrations

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant