JP2004055611A - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
JP2004055611A
JP2004055611A JP2002207277A JP2002207277A JP2004055611A JP 2004055611 A JP2004055611 A JP 2004055611A JP 2002207277 A JP2002207277 A JP 2002207277A JP 2002207277 A JP2002207277 A JP 2002207277A JP 2004055611 A JP2004055611 A JP 2004055611A
Authority
JP
Japan
Prior art keywords
layer
optical waveguide
gan
semiconductor light
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002207277A
Other languages
English (en)
Inventor
Toshiaki Fukunaga
福永 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002207277A priority Critical patent/JP2004055611A/ja
Publication of JP2004055611A publication Critical patent/JP2004055611A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

【課題】半導体発光素子において、高出力化を可能とし、高い信頼性を得る。
【解決手段】サファイア基板1上に、選択成長により形成されたGaN層7、n−GaNコンタクト層8およびn−Ga0.88Al0.12N下部クラッド層9を積層し、多数の微細孔を有するポーラスな陽極酸化アルミナ薄膜を下部クラッド層上に貼りあわせ、この陽極酸化アルミナ膜10の微細孔の内部にn−GaN光導波層11、Inx2Ga1−x2N/Inx1Ga1−x1N多重量子井戸活性層(0.5>x1>x≧0)12およびp−GaN光導波層13を成長させ、さらにp−GaN光導波層13上にp−Ga0.88Al0.12N上部クラッド層14、p−GaNコンタクト層15およびp側電極17を形成し、エッチングにより露出されたn−GaNコンタクト層8上にn側電極16を形成する。
【選択図】     図1

Description

【0001】
【発明の属する技術分野】
本発明は、p型およびn型の半導体層により活性層が挟まれたダブルへテロ接合構造を有する半導体発光素子に関するものである。
【0002】
【従来の技術】
活性層がp型およびn型の半導体層によって挟まれてなるダブルへテロ接合構造を有する半導体発光素子について様々な研究がなされている。例えば、積層体をへき開することによって得られた端面から光を発する半導体発光素子、層に平行な面から光を発する面発光型半導体発光素子、および、へき開によって得られた端面に反射膜を施し、これを共振器面とした半導体レーザ素子等を挙げることができる。これらの半導体発光素子は、高速な情報・画像処理、通信、計測、医療、および印刷等の装置における光源としての使用が期待されている。特に、活性層がGaN系の半導体からなる400nm帯の短波長の光を発する半導体発光素子は、この波長領域に感度を有する感光材料を用いた高性能な印刷装置等においては、露光光源として高出力と高い信頼性が要望されている。
【0003】
例えば、410nm帯の短波長半導体レーザ素子として、Jpn.J.Appl.Phys.Vol.37 (1998) pp.L1020において、サファイア基板上にGaN層を形成した後、GaN層上に形成したSiOをストライプパターン状のマスクとし、このSiOマスクにより露出するGaN層のストライプ状部分を成長の核として選択横成長により GaN厚膜を形成した後、このGaN厚膜を剥がして基板とし、このGaN基板(ELOG基板)上に、n−GaNバッファ層、n−InGaNクラック防止層、n−AlGaN/GaN変調ドープ超格子クラッド層、n−GaN光導波層、n−InGaN/InGaN 多重量子井戸活性層、p−AlGaNキャリアブロック層、p−GaN光導波層、p−AlGaN/GaN変調ドープ超格子クラッド層、p−GaNコンタクト層を積層してなり、端面コート膜としてSiO膜とTiO膜とを交互に積層した構成を用いているものが報告されている。この半導体レーザ素子においては、30mW程度の横基本横モード発振しか得られていない。
【0004】
【発明が解決しようとする課題】
高出力で信頼性の高い半導体レーザを得るためには、基板上の導波路が形成される箇所が低欠陥領域となっている必要がある。すなわち、高出力半導体レーザを得るためには半導体レーザに幅広のストライプ構造を備える必要があるが、この幅広ストライプ構造を有する半導体レーザにおいて高信頼性を得るためには、広範囲に亘って欠陥の少ないGaN基板を用いて半導体レーザを構成する必要がある。
【0005】
しかし、上記文献のELOG基板は、SiOマスクに露出する GaN層のストライプ状部分を成長の核としてGaN層を選択横成長させて形成するので、GaN層の選択横成長した領域においては欠陥が低減されたものとなるが、結晶成長軸の傾きが生じ、架橋部分においては欠陥密度が高くなり、広範囲に亘って欠陥の少ない領域を形成することができない。また、選択横成長で形成するGaN層を厚膜とすることにより欠陥密度はさらに増加するため、広範囲に亘って低欠陥領域を形成することは困難である。従って、特に、上記のような方法で作製された基板を用いる短波長半導体レーザ素子においては、広範囲で欠陥密度の低い基板が得られていないため、それらを用いて作製された半導体レーザ素子においては高出力化と高信頼性を得ることが困難となっている。
【0006】
本発明は上記事情に鑑みて、GaN系の活性層を有し、短波長領域の光を発する半導体発光素子において、100mW以上の高出力化が可能であり、低出力から高出力まで高い信頼性を有する半導体発光素子を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明の半導体発光素子は、第一導電型クラッド層、第一導電型あるいはアンドープの下部光導波層、活性層、第二導電型あるいはアンドープの上部光導波層および第二導電型クラッド層をこの順に備えた半導体発光素子において、
各層のうち少なくともGaN下部光導波層、InGaN活性層およびGaN上部光導波層が、多数の微細孔を有するポーラスな陽極酸化アルミナ膜の該微細孔の内部に形成されてなるものであることを特徴とするものである。
【0008】
また、本発明の他の形態の半導体発光素子は、一方の電極を備えた第一導電型コンタクト層上に、第一導電型クラッド層、GaN下部光導波層、InGaN活性層およびGaN上部光導波層、第二導電型クラッド層、第二導電型GaNコンタクト層および他方の電極をこの順に備えてなる半導体発光素子において、
第一導電型クラッド層、下部光導波層、活性層、上部光導波層および第二導電型クラッド層のうち少なくとも前記下部光導波層、活性層および上部光導波層が、多数の微細孔を有するポーラスな陽極酸化アルミナ膜の該微細孔の内部に形成されてなるものであり、
一方の電極が、電流が注入される領域に対応した領域以外の領域に形成されており、
活性層において発生した光が、前記各層が積層される方向に垂直な2つの面のうち、前記他方の電極が形成されている面と向かい合う他方の面から発せられることを特徴とするものである。
【0009】
また、本発明のさらに他の形態の半導体発光素子は、一方の電極を備えた第一導電型コンタクト層上に、第一導電型クラッド層、GaN下部光導波層、InGaN活性層およびGaN上部光導波層、第二導電型クラッド層、第二導電型GaNコンタクト層および他方の電極をこの順に備えてなる半導体発光素子において、
第一導電型クラッド層、下部光導波層、活性層、上部光導波層および第二導電型クラッド層のうち少なくとも下部光導波層、活性層および上部光導波層が、多数の微細孔を有するポーラスな陽極酸化アルミナ膜の該微細孔の内部に形成されてなるものであり、
各層が積層される方向に平行な向かい合う2つの端面の一方に前記光の波長に対する高反射率膜が形成されており、他方に低反射率膜が形成されており、前記光が該2つの反射膜によって共振せしめられ、前記低反射率膜が形成された端面からレーザ光として出射されることを特徴とするものである。
【0010】
なお、微細孔の孔径は、10nm以上50nm以下であることが望ましい。
【0011】
また、陽極酸化アルミナ膜の厚さは、0.5μm以上1μm以下であることが望ましい。
【0012】
また、陽極酸化アルミナ膜の下層の表面における微細孔の占める面積の割合は、50%以上90%以下であることが望ましい。
【0013】
また、本発明の半導体発光素子において、GaN上部光導波層より上に、電流が注入される領域の発振波長における積層方向の等価屈折率と、電流が注入される領域以外の領域の発振波長における積層方向の等価屈折率とにおいて屈折率差を生じさせ、電流が注入される領域に光を閉じ込める屈折率導波機構を備えた構造であってもよい。
【0014】
電流が注入される領域の最大幅は、10μm以上であることが望ましい。なお、該「幅」とは、ストライプ構造を備えた半導体発光素子については、光の導波方向に垂直な面において、層の積層方向と垂直な方向での最大幅、すなわち、一般的に用いられているストライプ幅を示す。面発光型の半導体発光素子の場合には、光の導波方向に垂直な面における最大幅を示す。
【0015】
なお、上記第一導電性および第二導電性は互いに逆極性を示すものであり、例えば、第一導電型をn型とすれば、第二導電型はp型であり、その逆も可能である。
【0016】
【発明の効果】
本発明の半導体発光素子によれば、第一導電型クラッド層、第一導電型あるいはアンドープの下部光導波層、活性層、第二導電型あるいはアンドープの上部光導波層および第二導電型クラッド層をこの順に備えた半導体発光素子において、
各層のうち少なくともGaN下部光導波層、InGaN活性層およびGaN上部光導波層が、多数の微細孔を有するポーラスな陽極酸化アルミナ膜の該微細孔の内部に形成されてなるものであることとすることにより、結果的に高出力化が可能であり、高い信頼性を得ることが可能である。
【0017】
以下、本発明の効果について以下に具体的に説明する。従来、GaN系の半導体層を積層して製造する半導体発光素子においては、通常ELOG基板等を用いて結晶欠陥の低減が図られてきたが、未だ結晶欠陥は多く、活性層への欠陥の影響が問題となっている。しかし、本発明のように、活性層および上下の光導波層を微細孔の内部に成長させたものとすることにより、結晶欠陥が低減された活性層および光導波層とすることができる。すなわち、陽極酸化アルミナ膜を設けたことにより、該アルミナ膜の下層の一定の領域がマスクされた状態となり、下層から受ける結晶欠陥の影響を低減させて活性領域層の結晶を成長させることができる。また、陽極酸化アルミナ膜の微細孔の中で転位が折れ曲がり、側面に到達した転位は消滅するので、下層の結晶欠陥の影響を受けること無く欠陥の少ない結晶を得ることができる。このようなことから、活性領域の結晶品質を向上させることができるので、高出力と高信頼性を得ることが可能である。特に活性層および上下光導波層の欠陥による素子の信頼性および電気特性に対する影響は大きいため、この領域における結晶欠陥低減の効果は大きい。
【0018】
さらに、結晶欠陥が低減された上部光導波層の上部に第二導電型クラッド層が形成されるので、第二導電型クラッド層およびその上部層において結晶欠陥を低減させることができ、素子全体としての結晶欠陥を低減させることができる。
【0019】
微細孔の孔径を、10nm以上50nm以下とすることにより、従来のELOG基板に比べて成長核形成密度を小さくできるため、結晶欠陥を良好に低減させることができる。
【0020】
陽極酸化アルミナ膜の下層の表面における微細孔の占める面積の割合を、50%以上90%以下とすることにより、さらに効果的に成長核形成密度を低減させることができる。
【0021】
また、屈折率導波機構を備えたことにより、活性領域層において横方向にも光を閉じ込めることができ、高品質な光を得ることができる。
【0022】
また、電流が注入される領域の最大幅が10μm以上である半導体発光素子においては、広範囲にわたって低欠陥な領域が求められるため本発明を適用することは効果的である。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて詳細に説明する。
【0024】
本発明の第1の実施の形態による半導体レーザ素子について製造方法に沿って説明する。その半導体レーザ素子の断面図を図1(a)に示し、平面図を図1(b)に示す。図1(a)は、図1(b)におけるI−I断面図である。
【0025】
なお、半導体層の成長用原料としては、トリメチルガリウム(TMG)、トリメチルインジュウム(TMI)、トリメチルアルミニウム(TMA)およびアンモニアを成長用原料とし、n型ドーパントガスとしてシランガスを用い、p型ドーパントとしてシクロペンタジエニルマグネシウム(CpMg)を用いる。
【0026】
図1(a)に示すように、有機金属気相成長法により、(0001)面サファイア基板1上に、温度500℃で、GaNバッファ層2を20nm程度の膜厚で形成する。続いて、1050℃にしてGaN層3を2μm程度の膜厚で成長させる。その後、SiO膜4(図示せず)を形成し、レジストを塗布後、通常のリソグラフィを用いて、
【数1】
Figure 2004055611
方向に、15μm程度の間隔(S)で幅5μm程度のSiO膜4(L1)を残すように、ストライプ状のラインアンドスペースのパターンを形成する。レジストとSiO膜4をマスクにして、塩素系のガスを用いて、GaNバッファ層2およびGaN層3をICP(Induced Coupled Plazma)ドライエッチングによりサファイア基板1上面まで除去する。このとき、サファイア基板1が若干エッチングされてもよい。
【0027】
レジストとSiO膜4を除去後、GaN層5を20μm程度選択成長させる。この時横方向の成長により、GaNバッファ層2とGaN層3とからなるストライプの壁面から結晶成長が進み、この結晶成長によるストライプが該ストライプの長手端面で繋がるように表面が平坦化する。
【0028】
次に、SiO膜6を形成し、通常のリソグラフィにより、GaNバッファ層2およびGaN層3からなるストライプの上部を覆うように、幅7μm程度(L2)のSiO膜6のストライプパターンを形成する。
【0029】
引き続き、GaN層7を成長させる。このとき横方向成長により、最終的にストライプ状のGaN層7がストライプの長手方向の側面同士が繋がるようにして表面が平坦化する。引き続き、n−GaNコンタクト層8およびn−Ga0.88Al0.12N下部クラッド層9をこの順に形成する。n−Ga0.88Al0.12N下部クラッド層9の上に、多数の微細孔を有するポーラスな陽極酸化アルミナ薄膜10を貼り合わせる。
【0030】
多数の微細孔を有するポーラスな陽極酸化アルミナ膜10は、1996年発行のJ.J.Appl.Phys.Vol.35 p.L126に記載されている方法を用いて陽極酸化アルミナ膜を形成し、穴の底部に酸化されないで残っているAl膜を選択的にエッチング除去することにより得ることができる。
【0031】
次に、n−GaN光導波層11、Inx2Ga1−x2N/Inx1Ga1−x1N多重量子井戸活性層(0.5>x1>x≧0)12、p−GaN光導波層13を微細孔の内部に成長させ、さらに、p−Ga0.88Al0.12N上部クラッド層14およびp−GaNコンタクト層15を形成する。
【0032】
p−GaNコンタクト層15上にSiO膜およびレジストを形成し、幅50μm程度のストライプ領域を残すため、ストライプ領域の図面右側のSiO膜とレジストを除去し、RIE(反応性イオンエッチング)でn−GaNコンタクト層8が露出するまでエッチングを行う。SiO膜およびレジストを除去し、通常のリソグラフィ技術により、Ti/Auからなるn側電極16と、p−GaNコンタクト層15の表面にストライプ状にNi/Auからなるp側電極17を形成する。基板1を研磨し、試料をへき開して形成した共振器面の一方に高反射率コート18、他方に低反射率コート19を行い、その後、チップ化して半導体レーザ素子を形成する。
【0033】
本実施の形態による半導体レーザ素子は、サファイア基板1上に選択成長により形成されたGaN層7、n−GaNコンタクト層8およびn−Ga0.88Al0.12N下部クラッド層9が形成され、該下部クラッド層9上に多数の微細孔を有するポーラスな陽極酸化アルミナ薄膜10が貼り合わせにより設けられ、該微細孔の内部にn−GaN光導波層11とInx2Ga1−x2N/Inx1Ga1−x1N多重量子井戸活性層(0.5>x1>x≧0)12とp−GaN光導波層13とが結晶成長され、さらに該光導波層13上にp−Ga0.88Al0.12N上部クラッド層14、p−GaNコンタクト層15およびp側電極17が形成され、エッチングにより露出されたn−GaNコンタクト層8上にn側電極16が形成されてなるものである。
【0034】
多重量子井戸活性層12で発生した光は、上下の光導波層11,13およびクラッド層9,14とにより活性層に閉じ込められ、低反射率コート19と高反射率コート18との間で共振せしめられ、低反射率コート19が施された端面からレーザ光として発振する。
【0035】
次に、本発明の第2の実施の形態による半導体レーザ素子について説明する。その半導体レーザ素子の断面図を図2(a)に示し、平面図を図2(b)に示す。図2(a)は、図2(b)におけるII−II断面図である。
【0036】
本実施の形態による半導体レーザ素子の層構成は、図2に示すように、上記第1の実施の形態による半導体レーザ素子と同様であって、ストライプ領域Waとストライプ領域の両側Wbとを残して、p−Ga0.88Al0.12N上部クラッド層14の途中までエッチングしてなるリッジ型の屈折率導波機構を備えたものである。すなわち、この屈折率導波機構により横方向の屈折率段差を有するものとすることができるので、電流が注入される領域に横方向からも良好に光が閉じ込められ、高品質なレーザ光を得ることができる。
【0037】
本実施の形態では、上部クラッド層14の途中までエッチングしてリッジを形成したが、上部光導波層11の途中まで除去してリッジを形成してもよい。
【0038】
上記第1および第2の実施の形態による半導体レーザ素子の発振波長λ(nm)は、活性層の組成を変えることにより、380<λ<550の範囲において制御が可能である。
【0039】
また、GaN層7の上にさらに200〜300μmの厚さの導電性のGaN層を形成し、その上にクラッド層9を形成するか、あるいはp−GaNコンタクト層8を200〜300μmの厚さで形成した場合は、サファイア基板1〜GaN層7までは最終的に除去してもよく、また、GaN層5およびGaN層7を導電性不純物を導入しながら成長した場合は最終的にサファイア基板1を除去してもよく、これにより、いずれの場合もn側電極16を裏面に形成することができる。これにより、n側電極16とp側電極17とを相対する位置に形成することができるので、レーザ光の品質を高めることができる。
【0040】
次に、本発明の第3の実施の形態による半導体発光ダイオードについて説明する。その半導体発光ダイオードの断面図を図3(a)に示し、平面図を図3(b)に示し、電極構造の他の形態を示す平面図を図3(c)に示す。図3(a)は、図3(b)におけるIII−III断面図である。
【0041】
本実施の形態による半導体発光ダイオードの層構成は、図3に示すように、上記第1の実施の形態による半導体レーザ素子と同様であって、ストライプ領域の両側をn−GaNコンタクト層8の途中まで除去したものであり、低反射率コート19および高反射率コート18を備えないものである。
【0042】
本実施の形態による半導体発光ダイオードにおいて、多重量子井戸活性層12で発生した光は、p側電極17によって反射されるため、サファイア基板1の裏面から発せされる。
【0043】
発生した光を良好に素子外に取り出すため、サファイア基板1の裏面に、該光の波長に対して無反射コーティングが施されていることが望ましい。
【0044】
また、図3(c)に示すように、電流を注入する領域が円形状になるように、該円形状の領域を残すようにn−GaNコンタクト層8まで除去し、その円形状に残った半導体層のp−GaNコンタクト層15上にp側電極17を形成し、円形状の半導体層の周りのn−GaNコンタクト層8上にn側電極16を形成したものであってもよい。なお、円形に限らず楕円形または他の形状であってもよい。
【0045】
本実施の形態による半導体発光ダイオードから発せられる光の波長λ(nm)においても、活性層の組成を変えることにより、380<λ<550の範囲において制御が可能である。
【0046】
また、上記第1から第3の実施の形態においては、微細孔の深さを、下部光導波層、活性層および上部光導波層の厚さの和程度としたが、微細孔の深さをこれより大きくして、さらに下部クラッド層および上部クラッド層の一部または全部まで微細孔の内部に形成されているようにしてもよい。
【0047】
微細孔の孔径は、活性層の無欠陥化のため小さい程好ましく、10nm以上50nm以下の範囲であることが望ましい。
【0048】
また、陽極酸化アルミナ酸化膜の厚さ、すなわち、微細孔の深さは、活性層と上下の光導波層との合計膜厚程度である0.5〜1μm程度が好ましい。多数の微細な穴が占める面積は、発光領域をできるだけ広くとるため、また成長核形成密度を低減するため、下部クラッド層9上面の表面積の50〜90%の範囲であることが望ましい。
【0049】
また、基板1の材料としてはサファイアの代わりに、SiC、ZnO、LiGaO、LiAlO、GaAs、GaP、Ge、Si、ZrB等を用いてもよい。
【0050】
また、半導体層は、n型から成長させているが、p型から成長させてもよく、その場合、上記導電性を反転して成長させればよい。
【0051】
本発明による半導体発光素子は、低欠陥な活性領域層を有し、信頼性の高い光を発するものであるので、情報・画像処理、通信、計測、医療、印刷等の装置の光源として利用可能であり、高速化および高性能化を実現させることが可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による半導体レーザ素子を示す断面図
【図2】本発明の第2の実施の形態による半導体レーザ素子を示す断面図
【図3】本発明の第3の実施の形態による半導体発光ダイオードを示す断面図
【符号の説明】
1  (0001)面サファイア基板
2  GaNバッファ層
3  GaN層
5  GaN層
6  SiO
7  GaN層
8  n−GaNコンタクト層
9  n−Ga0.88Al0.12N下部クラッド層
10  ポーラスな陽極酸化アルミナ膜
11  n−GaN光導波層
12  Inx2Ga1−x2N/Inx1Ga1−x1N多重量子井戸活性層
13  p−GaN光導波層
14  p−Ga0.88Al0.12N上部クラッド層
15  p−GaNコンタクト層
16  n側電極
17  p側電極
18  高反射率コート
19  低反射率コート

Claims (8)

  1. 第一導電型クラッド層、第一導電型あるいはアンドープの下部光導波層、活性層、第二導電型あるいはアンドープの上部光導波層および第二導電型クラッド層をこの順に備えた半導体発光素子において、
    前記各層のうち少なくとも前記GaN下部光導波層、InGaN活性層およびGaN上部光導波層が、多数の微細孔を有するポーラスな陽極酸化アルミナ膜の該微細孔の内部に形成されてなるものであることを特徴とする半導体発光素子。
  2. 一方の電極を備えた第一導電型コンタクト層上に、第一導電型クラッド層、GaN下部光導波層、InGaN活性層およびGaN上部光導波層、第二導電型クラッド層、第二導電型GaNコンタクト層および他方の電極をこの順に備えてなる半導体発光素子において、
    前記第一導電型クラッド層、下部光導波層、活性層、上部光導波層および第二導電型クラッド層のうち少なくとも前記下部光導波層、活性層および上部光導波層が、多数の微細孔を有するポーラスな陽極酸化アルミナ膜の該微細孔の内部に形成されてなるものであり、
    前記一方の電極が、電流が注入される領域に対応した領域以外の領域に形成されており、
    前記活性層において発生した光が、前記各層が積層される方向に垂直な2つの面のうち、前記他方の電極が形成されている面と向かい合う他方の面から発せられることを特徴とする半導体発光素子。
  3. 一方の電極を備えた第一導電型コンタクト層上に、第一導電型クラッド層、GaN下部光導波層、InGaN活性層およびGaN上部光導波層、第二導電型クラッド層、第二導電型GaNコンタクト層および他方の電極をこの順に備えてなる半導体発光素子において、
    前記第一導電型クラッド層、下部光導波層、活性層、上部光導波層および第二導電型クラッド層のうち少なくとも前記下部光導波層、活性層および上部光導波層が、多数の微細孔を有するポーラスな陽極酸化アルミナ膜の該微細孔の内部に形成されてなるものであり、
    前記各層が積層される方向に平行な向かい合う2つの端面の一方に前記光の波長に対する高反射率膜が形成されており、他方に低反射率膜が形成されており、前記光が該2つの反射膜によって共振せしめられ、前記低反射率膜が形成された端面からレーザ光として出射されることを特徴とする半導体発光素子。
  4. 前記微細孔の孔径が、10nm以上50nm以下であることを特徴とする請求項1、2または3記載の半導体発光素子。
  5. 前記陽極酸化アルミナ膜の厚さが、0.5μm以上1μm以下であることを特徴とする請求項1、2、3または4記載の半導体発光素子。
  6. 前記陽極酸化アルミナ膜の下層の表面における前記微細孔の占める面積の割合が、50%以上90%以下であることを特徴とする請求項1から5いずれか1項記載の半導体発光素子。
  7. 前記GaN上部光導波層より上に、前記電流が注入される領域の発振波長における積層方向の等価屈折率と、前記電流が注入される領域以外の領域の発振波長における積層方向の等価屈折率とにおいて屈折率差を生じさせ、前記電流が注入される領域に光を閉じ込める屈折率導波機構を備えたことを特徴とする請求項1から6いずれか1項記載の半導体発光素子。
  8. 前記電流が注入される領域の最大幅が、10μm以上であることを特徴とする請求項1から7いずれか1項記載の半導体発光素子。
JP2002207277A 2002-07-16 2002-07-16 半導体発光素子 Withdrawn JP2004055611A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002207277A JP2004055611A (ja) 2002-07-16 2002-07-16 半導体発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002207277A JP2004055611A (ja) 2002-07-16 2002-07-16 半導体発光素子

Publications (1)

Publication Number Publication Date
JP2004055611A true JP2004055611A (ja) 2004-02-19

Family

ID=31931786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002207277A Withdrawn JP2004055611A (ja) 2002-07-16 2002-07-16 半導体発光素子

Country Status (1)

Country Link
JP (1) JP2004055611A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682872B1 (ko) 2004-12-08 2007-02-15 삼성전기주식회사 고효율 반도체 발광 소자 및 그 제조방법
US9372307B1 (en) 2015-03-30 2016-06-21 International Business Machines Corporation Monolithically integrated III-V optoelectronics with SI CMOS
WO2016187421A1 (en) 2015-05-19 2016-11-24 Yale University A method and device concerning iii-nitride edge emitting laser diode of high confinement factor with lattice matched cladding layer
US10458038B2 (en) 2010-01-27 2019-10-29 Yale University Conductivity based on selective etch for GaN devices and applications thereof
CN111541148A (zh) * 2020-05-15 2020-08-14 陕西源杰半导体技术有限公司 一种25g抗反射激光器的制备工艺
US11018231B2 (en) 2014-12-01 2021-05-25 Yale University Method to make buried, highly conductive p-type III-nitride layers
US11043792B2 (en) 2014-09-30 2021-06-22 Yale University Method for GaN vertical microcavity surface emitting laser (VCSEL)
US11095096B2 (en) 2014-04-16 2021-08-17 Yale University Method for a GaN vertical microcavity surface emitting laser (VCSEL)
CN113328015A (zh) * 2021-06-04 2021-08-31 湘能华磊光电股份有限公司 提高亮度的发光二极管芯片制作方法
CN113990993A (zh) * 2021-09-01 2022-01-28 华灿光电(浙江)有限公司 用于降低欧姆接触电阻的发光二极管外延片及其制造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682872B1 (ko) 2004-12-08 2007-02-15 삼성전기주식회사 고효율 반도체 발광 소자 및 그 제조방법
US10458038B2 (en) 2010-01-27 2019-10-29 Yale University Conductivity based on selective etch for GaN devices and applications thereof
US11095096B2 (en) 2014-04-16 2021-08-17 Yale University Method for a GaN vertical microcavity surface emitting laser (VCSEL)
US11043792B2 (en) 2014-09-30 2021-06-22 Yale University Method for GaN vertical microcavity surface emitting laser (VCSEL)
US11018231B2 (en) 2014-12-01 2021-05-25 Yale University Method to make buried, highly conductive p-type III-nitride layers
US9372307B1 (en) 2015-03-30 2016-06-21 International Business Machines Corporation Monolithically integrated III-V optoelectronics with SI CMOS
WO2016187421A1 (en) 2015-05-19 2016-11-24 Yale University A method and device concerning iii-nitride edge emitting laser diode of high confinement factor with lattice matched cladding layer
CN107710381A (zh) * 2015-05-19 2018-02-16 耶鲁大学 涉及具有晶格匹配的覆层的高限制因子的iii族氮化物边发射激光二极管的方法和器件
JP2018517295A (ja) * 2015-05-19 2018-06-28 イェール ユニバーシティーYale University 格子整合クラッド層を有する高い閉じ込め係数のiii窒化物端面発光レーザーダイオードに関する方法およびデバイス
EP3298624A4 (en) * 2015-05-19 2019-01-02 Yale University A method and device concerning iii-nitride edge emitting laser diode of high confinement factor with lattice matched cladding layer
US10554017B2 (en) 2015-05-19 2020-02-04 Yale University Method and device concerning III-nitride edge emitting laser diode of high confinement factor with lattice matched cladding layer
CN111541148A (zh) * 2020-05-15 2020-08-14 陕西源杰半导体技术有限公司 一种25g抗反射激光器的制备工艺
CN113328015A (zh) * 2021-06-04 2021-08-31 湘能华磊光电股份有限公司 提高亮度的发光二极管芯片制作方法
CN113328015B (zh) * 2021-06-04 2022-06-03 湘能华磊光电股份有限公司 提高亮度的发光二极管芯片制作方法
CN113990993A (zh) * 2021-09-01 2022-01-28 华灿光电(浙江)有限公司 用于降低欧姆接触电阻的发光二极管外延片及其制造方法
CN113990993B (zh) * 2021-09-01 2023-10-13 华灿光电(浙江)有限公司 用于降低欧姆接触电阻的发光二极管外延片及其制造方法

Similar Documents

Publication Publication Date Title
US6455340B1 (en) Method of fabricating GaN semiconductor structures using laser-assisted epitaxial liftoff
JP3897186B2 (ja) 化合物半導体レーザ
JP2008141187A (ja) 窒化物半導体レーザ装置
JP2009065048A (ja) 半導体発光素子およびその製造方法
JP2002026456A (ja) 半導体装置、半導体レーザ及びその製造方法並びにエッチング方法
JP2007081399A (ja) キャビティ内コンタクトのための高融点金属ELOGマスクを備えているGaNレーザ
JP2007095758A (ja) 半導体レーザ
JP2006216772A (ja) 光集積型半導体発光素子
JP2011077326A (ja) 半導体レーザ集積素子及びその作製方法
JP2002237648A (ja) 半導体レーザ素子
JP2004055611A (ja) 半導体発光素子
JP5948776B2 (ja) 発光素子及びその製造方法
JP2002299739A (ja) 窒化物半導体レーザ素子及びその製造方法
JPH09266352A (ja) 半導体発光素子
JP2001223440A (ja) 半導体レーザ装置
JP2004055864A (ja) 半導体素子用基板の製造方法および半導体素子用基板ならびに半導体素子
JP2000091701A (ja) 反射鏡、半導体レーザ、反射鏡の形成方法および半導体レーザの製造方法
JP2006093682A (ja) 半導体レーザおよびその製造方法
JP4457417B2 (ja) 窒化物半導体レーザ素子
JP2000299530A (ja) 半導体発光装置
JPH09307190A (ja) AlInGaN系半導体発光素子および半導体発光装置
JPH11340573A (ja) 窒化ガリウム系半導体レーザ素子
JP2007281527A (ja) 半導体レーザ及びその製造方法
JP2002171028A (ja) レーザ素子
JP2002368332A (ja) 窒化物半導体発光素子及びその製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004