CN102544100A - 带有集成二极管的自对准沟槽mosfet - Google Patents

带有集成二极管的自对准沟槽mosfet Download PDF

Info

Publication number
CN102544100A
CN102544100A CN2011103215177A CN201110321517A CN102544100A CN 102544100 A CN102544100 A CN 102544100A CN 2011103215177 A CN2011103215177 A CN 2011103215177A CN 201110321517 A CN201110321517 A CN 201110321517A CN 102544100 A CN102544100 A CN 102544100A
Authority
CN
China
Prior art keywords
substrate
hard mask
oxide
metal
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103215177A
Other languages
English (en)
Other versions
CN102544100B (zh
Inventor
雷燮光
安荷·叭剌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpha and Omega Semiconductor Cayman Ltd
Original Assignee
Alpha and Omega Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpha and Omega Semiconductor Inc filed Critical Alpha and Omega Semiconductor Inc
Publication of CN102544100A publication Critical patent/CN102544100A/zh
Application granted granted Critical
Publication of CN102544100B publication Critical patent/CN102544100B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/7688Filling of holes, grooves or trenches, e.g. vias, with conductive material by deposition over sacrificial masking layer, e.g. lift-off
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0635Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors and diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/66704Lateral DMOS transistors, i.e. LDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66719With a step of forming an insulating sidewall spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明带有集成二极管的自对准沟槽MOSFET利用自对准方式,可以制备带有集成二极管的晶体管器件。这种器件包括一个掺杂的半导体衬底,具有一个或多个电绝缘的栅极电极,形成在衬底中的沟槽中。一个或多个本体区形成在每个栅极沟槽附近的那部分衬底中。一个或多个源极区以自对准的方式,形成在每个栅极沟槽附近的本体区顶部。一个或多个厚绝缘物部分形成在栅极电极上方,栅极电极在衬底的顶面上,带有相邻的厚绝缘物部分之间的间距。金属形成在厚绝缘物部分上方的衬底上方。金属穿过厚绝缘物部分之间的间距,构成到衬底的自对准接头。集成二极管形成在自对准接头下方。

Description

带有集成二极管的自对准沟槽MOSFET
技术领域
本发明主要涉及沟槽MOSFET器件,更确切的说是涉及带有集成肖特基二极管的自对准沟槽MOSFET器件的制备方法。 
背景技术
当今的许多电路设计对于开关性能和导通状态电阻等器件性能参数方面,具有严格的要求。沟槽功率金属氧化物半导体场效应管(MOSFET)器件常用于这种电路。现有的制备沟槽MOSFET的技术都非常复杂和昂贵,在制备时通常需要6个或更多个掩膜。 
图1表示传统的沟槽MOSFET器件100的剖面图。如图1所示,沟槽102形成在半导体晶圆104中,晶圆104含有一个硅衬底。作为示例,硅衬底含有一个外延层108,外延层108形成在一个重掺杂的底部衬底层(图中没有表示出)上。本体区106形成在外延层108的顶部。源极区110形成在本体区106的顶部。用多晶硅填充沟槽,使栅极电极101形成在沟槽102中。通过氧化层114,栅极电极101与硅绝缘。金属112形成在晶圆104的顶部。在该器件中,在源极区110的顶面下,栅极电极101的顶部凹陷,源极区110需要很深的结点、很大的源极接触区(可能较小的台面结构),并且由于对齐问题,它不能与沟槽接头(即沟槽到源极和本体区的接头)兼容。 
图2表示另一种传统的沟槽MOSFET器件200的剖面图。器件200的结构与器件100类似,包括形成在含有硅衬底的半导体晶圆204中。作为示例,硅衬底可以含有一个外延层208,形成在重掺杂的底部衬底层(图中没有表示出)上。本体区206形成在外延层208的顶部。源极区210形成在本体区206的顶部。形成在沟槽202中的栅极电极201为多晶硅竖起(PSU)型,氧化物214使它与硅晶圆204绝缘。PSU栅极电极201的顶部附近为氧化物垫片207,氧化物垫片207形成在半导体晶圆204的顶面上。金属212形成在晶圆204上方。在该器件中,栅极电极201在源极区210的顶面上延伸。 由于氧化物垫片207,这种类型的器件具有很浅的结点、较大的晶胞间距(例如0.2微米至0.3微米),但是却能与沟槽接头兼容。然而,这会带来工艺控制问题,例如控制栅极电极201和金属212的顶角之间的厚度以及薄氧化物的完整性。 
图3表示另一种传统的沟槽MOSFET器件300的剖面图。如图3所示,栅极沟槽302和接触沟槽303形成在半导体晶圆304中,半导体晶圆304含有一个半导体衬底,半导体衬底含有形成在重掺杂的底部衬底层(图中没有表示出)上的一个外延层308。本体区306形成在外延层308的顶部。源极区310形成在本体区306的顶部。金属312形成在晶圆304顶部。栅极电极301通过氧化层314,与硅晶圆304和金属312绝缘。然而,利用同一个掩膜,最初在一个单独的步骤中形成栅极沟槽302和接触沟槽303;因此,利用额外的掩膜在后续工艺中,保护接触或栅极沟槽,使接触沟槽和栅极沟槽有所区别。该工艺虽然可以避免对准问题,但是与制备接触沟槽的自对准方法相比,还需要一个额外的掩膜。美国专利号7,767,526提出了这种工艺,下文还将详细介绍。特此引用美国专利号7,767,526,以作参考。 
美国专利号6,916,745提出了制备含有自对准配件的沟槽MOSFET的一种方法。在这种方法中,硅层的一部分被除去了,形成沟槽的中间部分以及沟槽的外部,从硅层的裸露表面区域开始,延伸到硅层中。沟槽的中间部分在硅层中延伸得比在沟槽的外部延伸得更深。用多晶硅填充沟槽,并回刻多晶硅,形成栅极电极,使多晶硅部分填充沟槽外部下面的沟槽。 
美国专利号5,801,417提出了一种凹陷的栅极功率MOSFET,形成在含有P-本体层、N-漏极层和对于IGBT可选的P+层的衬底上。首先,将形成在衬底上的沟槽保护层形成图案,使裸露的区域设置成条纹或矩形以及被保护的区域。带有内表面的预设厚度的侧壁垫片接触受保护的层侧壁。第一沟槽形成在衬底区域中,侧壁对准到侧壁垫片的外表面,深度方面穿过P-本体层,至少延伸到预设深度。栅极氧化物形成在沟槽壁上,栅极多晶硅再次填充沟槽到衬底上表面附近的水平上。侧壁垫片之间的氧化物覆盖了多晶硅。然后,保护层使垫片内表面之间的上部衬底表面裸露出来,除去这部分保护层。对这个区域进行掺杂,在本体层上方形成一个源极层,然后形成第二沟槽,其侧壁对准到垫片的内表面。第二沟槽定义了垂直方向的源极和本体层,它们 沿栅极氧化层堆栈,以便在第二沟槽的对边上形成垂直通道。源极和本体层具有横向厚度,由侧壁垫片的内、外表面的预设间距来确定。第二沟槽中的源极导线接触N-源极和P-本体层、以及在第二沟槽基极的增强型P+区。 
美国专利号7,390,717提出了一种沟槽型功率半导体器件的制备工艺,包括在半导体表面上制备内部垫片。将垫片作为掩膜,在半导体本体中制备带有栅极的沟槽。除去垫片后,在半导体本体中沿沟槽边缘制备源极植入,然后激发。从而在沟槽上方,形成绝缘罩。然后沿罩的边缘,形成外部垫片。将这些垫片作为掩膜,刻蚀半导体表面,并形成高导电性接触区。然后,除去外部垫片,形成源极和漏极接头。还可选择,不激活源极植入物。更确切地说,是在形成外部垫片之前,进行第二次源极植入。然后形成外部垫片,刻蚀部分第二次源极植入物,激活任意剩余的源极植入物,并形成接触区。栅极电极可以向下凹陷,也可以延伸到半导体表面上。 
阿尔法&欧米伽半导体公司的美国专利号7,767,526提出了一种利用复合掩膜制备沟槽栅极MOSFET器件的工艺,复合掩膜包括一个单独的掩膜,预定义栅极沟槽和本体接触沟槽。首先,形成一个初始的硬掩膜层(例如氧化物),并在半导体衬底的表面上形成图案,为单独的沟槽刻蚀,预定义本体接触沟槽和栅极沟槽的位置。这些预定义的沟槽,在衬底中同时刻蚀到第一预设深度。然后,在硬掩膜上方使用一个栅极沟槽掩膜。栅极沟槽掩膜覆盖了本体接触沟槽,并在栅极沟槽处具有开口。将栅极沟槽(而不是本体接触沟槽)刻蚀到第二预设深度,并用初始的硬掩膜和栅极沟槽掩膜的组合覆盖其他区域。 
阿尔法&欧米伽半导体有限公司的美国专利公开号20090242973提出了一种制备垂直功率MOSFET器件的方法,该方法利用带有导电多晶硅垫片的氧化罩技术。该方法包括在N-外延层中制备预设深度的沟槽,在沟槽中形成一个栅极电极,在N-外延层的顶部植入并扩散掺杂物,以形成一个P-本体层和源极区,在栅极电极和源极区的上方制备氧化物,刻蚀部分氧化物使所选的那部分源极区裸露出来,将未被氧化物覆盖的所选源极区向下刻蚀到p-本体层,并且沿剩余部分的源极区和氧化物的侧壁沉积形成N+掺杂多晶硅垫片。N+掺杂多晶硅垫片将接触区增大到源极区。 
阿尔法&欧米伽半导体公司的美国专利公开号20100032751提出了一种 制备垂直功率MOSFET器件的方法,该方法利用带有垫片的多晶硅竖起(PSU)技术。该方法包括在外延层(可以包括本体区)中制备沟槽,在沟槽中形成一个栅极电极(栅极氧化物沉积在栅极电极和外延层之间),在栅极电极上方制备一个罩状绝缘体,回刻罩状绝缘体周围,使栅极电极与外延层的表面上方相平或突出,在外延层上制备一个多晶硅垫片,自对准到罩状绝缘体,至少将一部分多晶硅垫片的掺杂物扩散到本体层中,以便在多晶硅垫片下形成一个源极区,在本体中植入本体接触区,自对准到多晶硅垫片。 
发明内容
本发明的目的是提供带有集成二极管的自对准沟槽MOSFET,制备该沟槽MOSFET只需利用极少的光致抗蚀剂掩膜。 
为了实现以上目的,本发明是通过以下技术方案实现的: 
一种自对准的晶体管器件,包括: 
一个掺杂的半导体衬底,具有一个或多个电绝缘的栅极电极形成在衬底中的栅极沟槽中; 
一个或多个本体区,形成在每个栅极沟槽附近衬底的顶部;一个或多个源极区,以自对准的方式,形成在每个栅极沟槽附近的本体区顶部; 
一个或多个厚绝缘物部分,形成在衬底顶面上的栅极电极上方,带有相邻的厚绝缘物部分之间的空间; 
一个或多个金属层,形成在衬底上方的厚绝缘物部分上方,其中穿过厚绝缘物部分之间的空间,所述的金属形成一个到衬底的自对准接头,其中一个集成的二极管形成在所述的自对准接头下方,其中所述的集成的二极管是一个快速回复二极管。 
其中配置金属、本体区和衬底,使集成二极管成为一个肖特基二极管。 
其中配置金属、本体区和衬底,使集成二极管成为一个低注入效率的P-N结二极管。 
其中栅极沟槽还包括一个位于栅极电极下方的屏蔽电极。 
还包括一个集电极区,其掺杂的导电类型与掺杂衬底相反,其中集电极区形成衬底的一侧,栅极沟槽形成在衬底的另一侧,使该器件成为一个绝缘栅双极晶体管(IGBT)。 
一种用于制备半导体器件的方法,包括: 
a)在半导体衬底上制备一个硬掩膜结构; 
b)在硬掩膜结构中形成开口; 
c)在硬掩膜结构中开口的侧壁上形成垫片; 
d)通过刻蚀衬底的裸露区域,形成栅极沟槽,其中垫片确定栅极沟槽的侧壁; 
e)在栅极沟槽的侧壁上,制备栅极绝缘物; 
f)用第一导电材料填充栅极沟槽,回刻第一导电材料,以形成第一导电区,其中导电材料区的顶面凹陷在衬底的顶面下方; 
g)在a)-f)之前、之中或之后,制备一个或多个源极区以及一个或多个本体区,其中本体区形成在衬底顶部的所选区域,源极区形成在本体区的顶部;并且 
h)在第一导电材料区上方,制备一个厚绝缘层,所述的厚绝缘层向上展伸至硬掩膜结构;并且 
i)将所述的厚绝缘层作为刻蚀掩膜,除去硬掩膜结构,使硬掩膜结构下方的半导体衬底裸露出来。 
还包括:将厚绝缘层作为刻蚀掩膜,通过刻蚀到半导体衬底中,制备源极/本体接触沟槽。 
其中在所述的除去硬掩膜结构之后,无需制备额外的垫片,就可以制备源极/本体接触沟槽。 
在f)之前还包括:在栅极沟槽中制备第二导电区,使第一导电区稍后形成在栅极沟槽中的第二导电区上方,并且在第一和第二导电区中间形成一个中间电极电介质层。 
还包括在所述的制备厚绝缘层之前,除去垫片。 
其中g)是在除去垫片之后进行。 
其中垫片是由氧化物或氮化物构成。 
其中硬掩膜结构是由一个三明治结构组成,并且含有一个形成在衬底上的薄氧化层,以及形成在薄氧化层上的两个或多个额外层。 
其中硬掩膜结构含有一个在薄氧化层上方的多晶硅层以及一个在多晶硅层上方的氮化层。 
其中硬掩膜结构含有一个氧化物-氮化物-氧化物(ONO)结构。 
在c)之前还包括穿过硬掩膜结构中所述的开口,刻蚀到半导体衬底中。 
其中在c)之前,没有穿过硬掩膜结构中所述的开口,刻蚀到半导体衬底中的步骤。 
还包括:j)除去硬掩膜结构后,制备源极金属和栅极金属,其中集成二极管形成在金属和衬底之间的结处。 
其中步骤j)还包括:除去硬掩膜结构后,在衬底上方制备一个金属扩散势垒。 
其中配置金属、本体区以及衬底,使集成二极管成为一个肖特基二极管。 
其中配置金属、本体区以及衬底,使集成二极管成为一个低注入效率的P-N结二极管。 
还包括在衬底的一侧,与形成栅极沟槽的一侧相对的地方,制备一个集电极区,其中集电极区的特点是,掺杂的极性与掺杂衬底相反,从而使半导体器件成为一个绝缘栅双极晶体管(IGBT)。 
一种用于制备半导体器件的方法,包括: 
在半导体衬底上制备一个具有缝隙的牺牲结构; 
在牺牲结构所述的缝隙处,在侧壁上制备一个或多个垫片; 
在垫片之间的半导体衬底中制备沟槽; 
在沟槽中制备栅极电极,通过栅极绝缘物,与半导体衬底绝缘,其中栅极电极的顶部从半导体衬底的表面凹陷; 
用厚绝缘物填充剩余的部分沟槽,至少填充到牺牲结构的顶部; 
除去牺牲结构,保留栅极电极上方的厚绝缘物;并且 
在之前被牺牲结构覆盖的区域中,形成到衬底的接头,使接头通过覆盖着栅极电极顶部的厚绝缘物,自对准到栅极沟槽。 
还包括在半导体衬底中,刻蚀接触沟槽,在接触沟槽中形成接头。 
还包括在接头下方制备肖特基二极管。 
还包括在接头下方制备低注入效率的P-N结二极管。 
还包括在所述的制备垫片之前,在牺牲结构所述的缝隙处,刻蚀到半导体衬底中。 
其中在所述的制备垫片之前,没有刻蚀到半导体衬底中的步骤。 
附图说明
图1表示一种传统的深多晶硅凹陷沟槽MOSFET的剖面图; 
图2表示一种传统的多晶硅竖起(PSU)沟槽MOSFET的剖面图; 
图3表示一种传统的复合掩膜沟槽MOSFET的剖面图; 
图4表示依据本发明的一个实施例,集成肖特基二极管的自对准沟槽MOSFET的剖面图; 
图5A-5L表示图4所示类型的自对准沟槽MOSFET的制备步骤的剖面图; 
图6A-6B表示依据本发明的另一个实施例,集成肖特基二极管的自对准沟槽MOSFET的剖面图; 
图7A-7B表示依据本发明的另一个实施例,集成肖特基二极管的自对准沟槽MOSFET的剖面图; 
图8A-8X表示依据本发明的另一个实施例,集成肖特基二极管的自对准屏蔽栅极沟槽MOSFET的制备步骤的剖面图; 
图8Y-8Z表示图8X所示器件的可选实施例; 
图9A-9Z表示依据本发明的另一个实施例,集成肖特基二极管的自对准屏蔽栅极沟槽MOSFET的可选制备步骤的剖面图; 
图10表示依据本发明的一个可选实施例,一种沟槽绝缘栅双极晶体管(IGBT)的剖面图; 
图11A-11B表示依据本发明的另一个可选实施例,集成肖特基二极管的自对准沟槽IGBT器件的剖面图; 
图12A-12B表示依据本发明的另一个可选实施例,集成肖特基二极管的自对准沟槽IGBT器件的剖面图。 
具体实施方式
以下结合附图,通过详细说明一个较佳的具体实施例,对本发明做进一步阐述。 
尽管为了解释说明,以下详细说明包含了许多具体细节,但是本领域的任何技术人员都应理解基于以下细节的多种变化和修正都属本发明的范围。因此,本发明的典型实施例的提出,对于请求保护的发明没有任何一般性的 损失,而且不附加任何限制。 
本发明的实施例包括利用极少的光致抗蚀剂掩膜,制备集成肖特基二极管的自对准沟槽晶体管(例如沟槽MOSFET)的方法。 
图4表示依据本发明的一个实施例,集成肖特基二极管的自对准沟槽MOSFET器件400的俯视图。如图4所示,栅极沟槽402形成在半导体晶圆404中,半导体晶圆404含有一个半导体衬底,其中一个外延层407形成在适当掺杂的下部半导体衬底层上(图中没有表示出),例如对于N-通道器件来说,是N-型硅衬底,对于P-通道器件来说,是P-型硅。分开的本体区406形成在每个栅极沟槽402附近的外延层407的顶部。源极区410以自对准的方式,形成在本体区406的顶部。金属416形成在晶圆404上方,其导电扩散势垒414(例如势垒金属)位于金属416和晶圆404之间。栅极电极401形成在沟槽402中,通过厚绝缘物部分412,与硅晶圆404和扩散势垒414绝缘,绝缘物部分412在晶圆404的表面上突出。栅极电极401在晶圆404的顶面下凹陷,并通过厚绝缘物(例如氧化物)部分412,与金属416电绝缘,厚绝缘物部分412形成在晶圆404顶面上的栅极电极401上方。金属416穿过厚绝缘物部分412之间的空间,可以电接触本体区406和源极区410。 
金属416最好含有铝(Al)。扩散势垒414最好含有Ti/TiN,以便形成带有硅的肖特基势垒二极管。肖特基二极管区420形成在金属处——相邻的本体区406之间的半导体结,金属就是在这个地方接触轻掺杂的外延层407。在正常运行时,通常给该器件加偏压,从而使肖特基二极管反向偏置。 
图5A-5L表示利用四个掩膜,制备图4所示类型的集成肖特基二极管的自对准沟槽MOSFET的工艺。如图5A所示,N型衬底502(例如对于N-通道器件来说,是N-型外延层生长在一个N型硅晶圆上,对于P-通道器件来说,是P-型外延层生长在一个P型硅晶圆上)可以作为器件的漏极。通过沉积或热氧化,可以在衬底上制备一个薄氧化层504。未掺杂的多晶硅层506沉积在氧化层504上方,氮化层508可以沉积在未掺杂的多晶硅层506上方。薄氧化层504、多晶硅层506以及氮化层508的组合有时为了简便,可称为“三明治结构”或“硬掩膜”结构。硬掩膜也可以看成是一类牺牲结构,在制备过程中使用,稍后可以将它除去。作为示例,不作为局限,薄氧化层504的厚度约为 
Figure BSA00000596335500081
至 
Figure BSA00000596335500082
未掺杂的多晶硅层506的厚度约为 
Figure BSA00000596335500083
至 
Figure BSA00000596335500091
氮化层508的厚度约为 
Figure BSA00000596335500092
至 
然后,在氮化层508上方,使用一个光致抗蚀剂(PR)层(图中没有表示出),并利用沟槽掩膜(图中没有表示出)形成图案。如图5B所示,回刻氮化层508和多晶硅层506,从而形成栅极沟槽开口509。 
在图5C中,进行本体植入和本体扩散。用掺杂离子轰击该器件。在没有被氮化物508保护的有源区中(例如在沟槽开口509处),植入物形成本体区,例如510。掺杂离子的导电类型与衬底502的掺杂类型相反。在某些实施例中,对于N-通道器件来说,掺杂离子可以是硼离子。可以在大约60KeV至180KeV的能量下,1.8X1013个离子/cm2左右的剂量水平下,植入硼离子。也可使用其他类型的离子。例如,对于P-通道器件来说,可以使用磷或砷离子。 
在图5D中,进行源极植入和源极扩散。再次用掺杂离子轰击该器件。在某些实施例中,对于N-通道器件来说,可以在大约40KeV至80KeV的能量下,4X1015个离子/cm2左右的剂量水平下,植入砷离子,以便形成源极区。还可选择,对于P-通道器件来说,植入硼离子,形成源极区。源极区(例如512)形成在本体区(例如510)之内。由于氧化层504足够薄,使植入的离子可以穿过它,并且多晶硅层506和氮化层508的剩余部分作为植入掩膜,所以不需要额外的掩膜植入器件的本体和源极。因此,可以以自对准的全面植入的方式进行本体和源极植入。可以沿多晶硅层506和氮化层508的剩余部分的边缘(例如通过全面沉积和回刻)制备硬掩膜垫片514(例如由氧化物或氮化物制成),然后如图5E所示,除去薄氧化层504的裸露部分。 
如图5F所示,通过将半导体衬底502回刻到预设的深度,制备栅极沟槽516,垫片514限定沟槽516的侧壁。垫片514使自对准刻蚀工艺不需要额外的掩膜。 
如图5G所示,在沟槽516的侧壁和底部生长一个薄栅极氧化物518。然后,如图5H所示,在沟槽516中沉积多晶硅520,并将多晶硅520回刻到衬底502的顶面以下。 
在图5I中,绝缘物522(例如氧化物)的厚度范围是 
Figure BSA00000596335500094
可以沉积绝缘物522填充沟槽开口,并覆盖源极和栅极多晶硅区,随后回流使绝缘层522的表面平整。在某些实施例中,利用化学气相沉积(CVD)工 艺,沉积厚度约为 
Figure BSA00000596335500101
的低温氧化物(LTO)以及含有硼酸的硅玻璃(BPSG)。 
在图5J中,通过干刻蚀工艺,回刻绝缘物522,其中向下刻蚀氧化物,一直刻蚀到氮化层508的顶面以下的端点。如图5K所示,刻蚀掉氮化层508以及多晶硅层506。通过轻氧化物刻蚀,也可以刻蚀掉氧化层504的剩余部分,以形成源极/本体接头。仅进行很短时间的轻氧化物刻蚀,以除去薄氧化层504,同时无需使用掩膜,就能完整保留较厚的绝缘层522。因此,氮化层508、多晶硅层506以及氧化层504可以作为一种牺牲结构。 
势垒材料524最好由Ti/TiN制成,并且沉积在绝缘层522上方,以及衬底502裸露的表面上。金属层526最好由Al制成,其厚度约为3μm~6μm,可以沉积在该结构上方。刻蚀金属526并退火,利用金属掩膜制备源极金属和栅极金属(栅极金属没有表示出),从而制成如图5L所示的器件。也可以在器件的背面制备一个背部金属(图中没有表示出),作为漏极金属。 
图5A-5L所示的制备工艺具有很少的光致抗蚀剂掩膜总数,工艺也不复杂。利用图5A-5L所示的工艺制备的自对准的沟槽MOSFET晶胞结构,具有很高的晶胞密度,沟槽接头可以与本发明的其他实施例兼容,在下图6A-6B以及7A-7B中还将详细介绍 
图6A-6B表示依据本发明的另一个实施例,集成肖特基二极管的可选自对准沟槽MOSFET的剖面图。图6A所示的MOSFET 600的结构与上述图4所示的MOSFET 400的结构或图5L所示的完整器件相类似。作为示例,MOSFET 600含有一个栅极沟槽616,并且形成在半导体衬底602(例如一个半导体晶圆)中,半导体衬底602含有在N-型硅底部衬底层(例如对于N-通道MOSFET来说)上的一个N-型外延层。还可选择,衬底含有一个P-型外延层,形成在P-型底部衬底上(例如对于P-通道MOSFET来说)。本体区610形成在外延层顶部。本体区掺杂离子的导电类型与衬底602相反。源极区612形成在本体区610的顶部。金属626形成在半导体晶圆602上方,金属扩散势垒624位于金属626和晶圆602之间。栅极电极620形成在沟槽616中,并通过栅极绝缘物618(例如栅极氧化物),与硅晶圆602和扩散势垒624绝缘,栅极绝缘物618布满栅极沟槽616以及形成在栅极电极620上方的厚绝缘部分622。栅极电极620在半导体晶圆602的顶面下方凹陷。器件600 和器件400之间主要的不同在于,沟槽接头630形成在厚绝缘物部分622之间的晶圆602内,沟槽接头630的底部位于本体区610的顶面稍下。金属626填充沟槽接头。沟槽接头630可以较好地接触源极612和本体区610。可以利用上述图5A-5L所述的类似工艺制备沟槽接头630;图5K之后,在硅材料602中为沟槽接头630进行沟槽刻蚀。该沟槽刻蚀可以将厚绝缘物部分622作为硬掩膜,用于沟槽接头630的自对准。还可选择,在利用沟槽刻蚀制备沟槽接头630之前,可以首先在厚绝缘物部分622上制备垫片。在本体区610之间,沟槽接头630的底部制备肖特基接头。 
图6B所示的MOSFET 601除了沟槽接头631是双沟槽向下刻蚀到晶圆602中,在本体层610的中间停止之外,其他都与MOSFET 600类似。此外,本体区610靠近沟槽接头的部分604,可以植入适当的掺杂物,以便更好的接触本体区610。作为示例,进行上述第一沟槽刻蚀,将沟槽刻蚀到图6A所示的深度附近。通过植入,在沟槽的底部形成一个重掺杂的本体接触区604。利用扩散工艺,将本体接触区604扩散到沟槽边缘。然后,利用第二沟槽刻蚀,加深沟槽接头,仅仅保留本体接触区604的边缘部分。这使得在本体区610之间的接触沟槽631的底部,可以形成一个肖特基接触。 
图7A-7B表示依据本发明的另一个实施例,带有很低注入效率的本体二极管的自对准沟槽MOSFET的剖面图。图7A所示的器件700的结构除了本体区702的较薄部分在栅极沟槽620之间的金属扩散势垒624和金属626下方,以及金属扩散势垒624和衬底602之间延伸之外,其他都与图6B所示的器件601类似。从而在接触沟槽下面的本体区702的轻掺杂部分,形成很低注入效率的P-N结体二极管区720。因此,自对准的沟槽MOSFET包括一个集成的低注入效率的P-N结体二极管。例如,通过接触沟槽下方的轻掺杂本体区702,可以获得低注入。 
图7B所示的器件701除了代替金属616通过扩散势垒624直接接触,用钨(W)等导电插头填充接触沟槽708,然后在扩散势垒706以及导电插头708上方沉积铝等金属704之外,其他都与器件700类似。 
在本发明的另一个实施例中,上述集成肖特基二极管的自对准沟槽MOSFET的制备方法,可以与制备屏蔽栅极沟槽MOS器件的方法相结合,例如美国专利申请号12/583,192以及12/722,384中所述的示例,特此引用其 全文,以作参考。作为示例,但不作为局限,图8A-8X所示的剖面图表示依据本发明的一个实施例,集成肖特基二极管的自对准、屏蔽栅极MOSFEI的制备工艺。 
如图8A所示,衬底802(例如一个N型硅底部衬底层,并在它上面生长一个次重掺杂的N-型外延层,或者是一个P型衬底,并在它上面生长一个P-型外延层)作为器件的漏极。可以如上所述,制备一个硬掩膜三明治结构。例如,通过沉积或热氧化,在衬底上制备一个很薄的绝缘层803(例如氧化物)。在氧化层803上方沉积一个未掺杂的导电层804(例如多晶硅),然后在未掺杂的导电层804上方沉积一个氮化层806。作为示例,但不作为局限,薄氧化层的厚度约为 
Figure BSA00000596335500121
至 
Figure BSA00000596335500122
未掺杂的多晶硅层的厚度约为 
Figure BSA00000596335500123
至 
Figure BSA00000596335500124
氮化层的厚度约为 
Figure BSA00000596335500125
至 
Figure BSA00000596335500126
然后,在氮化层806的上方使用一个光致抗蚀剂(PR)层808,并形成图案,作为第一掩膜。剩余的PR层808形成一个截止沟槽开口810以及有源栅极沟槽开口812。 
随后,利用硬掩膜(HM)刻蚀,刻蚀掉氮化层806和多晶硅层804的裸露部分。导电层804的刻蚀在薄绝缘层803的表面上停止;然后,可以回刻薄绝缘层803,使掩膜开口810和812处的半导体衬底802的表面裸露出来。然后,如图8C所示,除去剩余的PR 808。薄绝缘层803、多晶硅层804以及氮化层806的剩余部分,作为后续工艺的硬掩膜。 
在图8D中,沉积一层氧化物或氮化物,并沿水平表面各向异性地回刻。在一些实施例中,氧化层或氮化层的厚度约为 
Figure BSA00000596335500127
因此,进行全面的各向异性回刻之后,沿硬掩膜开口810、812的侧壁,会形成氮化物垫片814(有时称为硬掩膜垫片)。 
然后,如图8E所示,进行全面的硅刻蚀工艺,以制备截止沟槽816以及有源沟槽814。根据器件的用途,所制成的沟槽深度大约在1.5μm至2.5μm左右,并且沟槽侧壁的倾斜角约为87°至88°。氮化物垫片814使自对准的刻蚀工艺不再需要额外的掩膜。正如下文将要介绍地那样,氮化物垫片保留了来自于原始的硬掩膜层803、804和806的间距,从而可以形成自对准的源极/本体接触沟槽。氮化物垫片还有许多其他的用途,例如可以在栅极多晶硅上形成一个多晶硅硅化物。此处所提及的,并且广为半导体制备领域的技术人 员所熟知的一词“多晶硅硅化物”,是指在多晶硅上方形成的硅化物。由于硅刻蚀负载系数的特性,宽沟槽开口比窄沟槽开口所制成的沟槽更深。例如,如图8E所示,由于截至沟槽开口810比有源栅极沟槽开口812宽,因此在全面的刻蚀工艺中,截至沟槽816就要比有源栅极沟槽818刻蚀得更深。 
在图8F中,在氮化层806的上方、以及沟槽816、818的侧壁和底部,沉积或热生长一个绝缘衬里820(例如氧化物)。衬里820比稍后形成的栅极氧化物还要厚。在一些实施例中,可以选择生长一个大约 
Figure BSA00000596335500131
的牺牲氧化层,并除去,以改善硅表面。作为示例,生长一层大约 
Figure BSA00000596335500132
的氧化物,然后形成大约 
Figure BSA00000596335500133
的一层高温氧化物(HTO)。对于高压器件来说,氧化物衬里820可能更厚,例如1000至 
Figure BSA00000596335500134
如图8G所示,可以沉积导电材料822(例如多晶硅)。在一些实施例中,导电材料的厚度约为 
Figure BSA00000596335500135
大于沟槽的最大宽度的一半。因此,侧壁上的导电材料层结合起来,完全填充了所有的沟槽。这个导电材料层有时称为源极多晶硅、屏蔽多晶硅或多晶硅1。 
如图8H所示,利用干刻蚀,回刻导电材料822。在本例中,有源栅极沟槽中剩余的导电材料826的厚度约为 
Figure BSA00000596335500136
在截止沟槽中剩余的导电材料824的厚度约为 
Figure BSA00000596335500137
至 
可以沉积一个中间多晶硅电介质/氧化物(IPO)828,并压实。沟槽侧壁上的氧化物厚度标记为t1。在一些实施例中,t1大约在 
Figure BSA00000596335500139
至 
Figure BSA000005963355001310
的范围内,才能完全填充较窄的沟槽(例如有源栅极沟槽以及源极多晶硅吸引沟槽(图中没有表示出)),但仅能部分填充较宽的沟槽(例如截止沟槽830)。厚度t1应小于截止/栅极滑道沟槽830等宽沟槽的宽度的一半。由于没有完全填充较宽的沟槽,从而为后面的工艺留下了一个缝隙。在有源沟槽832等较窄的沟槽中,氧化层的厚度t1大于沟槽宽度的一半,因此氧化物衬里可以结合起来,完全填充沟槽。 
如图8J所示,回刻并抛光IPO层828,直到氧化物828的顶面与氮化物806的顶面相平为止,这作为刻蚀的终点。 
图8K表示另一层绝缘材料834(例如氧化物)形成在器件上。在一些实施例中,绝缘层834的厚度约为 至 
Figure BSA000005963355001312
该氧化物的厚度控制第二掩膜下的湿刻蚀(下一个步骤)的切角。该氧化物薄膜也可以保护器件所 有的非有源区中的氮化物。受保护的氮化物有利于稍后对硅进行无掩膜的完全刻蚀。 
然后,在该结构的表面上旋涂一层光致抗蚀剂836,并使用第二掩膜。图8L表示除去裸露部分后的PR覆盖物836的图案。PR覆盖物延伸到838处的截止区中,填充了840处的截止沟槽,从上面稍稍延伸到842处的有源区中。如下所述,结合图8M,将通过刻蚀除去PR 836下面的那部分氧化物。掩膜的重叠以及湿刻蚀的切口都有助于最终结构的形成。因此,光致抗蚀剂覆盖物836在有源区中延伸的距离,对于将要通过刻蚀除去多少绝缘材料,起着部分决定作用。其他因素还包括刻蚀时间以及绝缘(例如氧化物)层的厚度。氧化物切口的深度可以在0.6μm至1.5μm的范围内。 
然后,对层834中的绝缘材料进行各向同性刻蚀(例如湿刻蚀)。除去该区域中没有被光致抗蚀剂836覆盖的绝缘材料,使剩余的材料834达到所需高度。光致抗蚀剂836的边缘附近的一些绝缘材料834也被除去。沿截止沟槽侧壁844的那部分氧化物,位于光致抗蚀剂836的边缘846附近,除去这部分氧化物,同时完整保留沿其他侧壁的氧化物。可以通过调整光致抗蚀剂层836的边缘846的位置以及刻蚀时间,来控制所刻蚀的绝缘材料的量。如果边缘846进一步延伸到有源区中,会使较少的材料被刻蚀,如果将该边缘拉开远离有源区,则会有相反的效果。在不同的实施例中,刻蚀掉的氧化物的量有所不同。在本例中,刻蚀掉足够的氧化物,使剩余的构成中间多晶硅氧化物848的氧化物具有一致的厚度。在靠近截止区的截止沟槽边缘上,保留一个厚层。沟槽中导电材料上方的氧化层,例如氧化层848和850也称为中间电极电介质(IED)或中间多晶硅电介质(IPD)。覆盖着截止区的绝缘材料有时也称为截止保护区。中间电极电介质厚度的范围可以从一百埃左右到一万埃左右。 
然后,除去PR,沉积或热生长一层栅极绝缘物(例如栅极氧化物)。在一些实施例中,附加的氧化层大约 
Figure BSA00000596335500141
厚。因此,如图8N所示,栅极绝缘物852、854以及856形成在裸露的沟槽侧壁上。截止沟槽860具有不对称的侧壁,绝缘物858在截止区那侧,薄氧化物852在有源区那侧。 
如图8O所示,沉积并回刻另一种导电材料(例如多晶硅)。作为示例,但不作为局限,在各种沟槽中,沉积大约 
Figure BSA00000596335500142
至 
Figure BSA00000596335500143
的多晶硅。回刻 所沉积的多晶硅,构成栅极多晶硅结构,标记为862、864、866。在本例中,栅极多晶硅的表面在半导体衬底的顶部下方,大约凹陷 
Figure BSA00000596335500151
还可选择,沉积一层金属(例如钛或钴)并退火,以构成一个栅极多晶硅硅化物。在金属与多晶硅相接触的地方,可以形成一个多晶硅硅化物层。沉积在氧化物或氮化物上方的金属钛或钴,并不会构成硅化物或多晶硅硅化物,可以通过工艺将金属除去,而且这种工艺不会除去多晶硅硅化物。因此,在868、870、872处的多晶硅硅化物,形成在栅极多晶硅结构862、864、866上。 
在图8P中,通过湿刻蚀工艺,除去截止沟槽和有源栅极沟槽中裸露的氮化物垫片,以及其他裸露的氮化物材料。图8C之后的氮化物垫片都保护硬掩膜层803和804。 
如图8Q所示,例如用掺杂离子轰击部分制成的器件,可以进行本体植入。可以带角度的植入离子。在不被氮化物保护的有源区中,植入构成874等本体区。在一些实施例中,对于N-通道器件来说,使用的是硼离子,在60KeV~180KeV时,掺杂剂量约为1.8X1013个离子/cm2。也可以使用其他类型的离子。例如,对于P-通道器件来说,可以用磷或砷离子,制备本体区。 
在图8R中,进行源极植入(例如用零倾斜角(即在正常入射时))。再次用掺杂离子轰击器件。在一些实施例中,使用的是砷离子,在40KeV~80KeV时,掺杂剂量约为4X1015个离子/cm2。878等源极区878在876等本体区内形成。作为示例,可以在源极植入之前,进行本体扩散;然后在源极植入之后,进行源极扩散。 
植入器件的本体和源极,不再需要额外的掩膜。可以以自对准的全面植入方式,进行本体和源极植入。在879等截止保护区中,氧化物-多晶硅-氮化物-氧化物势垒阻挡了植入离子,并且防止在半导体衬底中形成源极和本体区,从而改善了器件在其断开或闭锁状态下的性能。 
在图8S中,沉积更多的 
Figure BSA00000596335500152
的绝缘材料880(例如氧化物),填充在栅极多晶硅区上方的沟槽开口中。在一些实施例中,利用化学气相沉积(CVD)工艺,沉积厚度约为 
Figure BSA00000596335500153
的低温氧化物(LTO)和含有硼酸的硅玻璃(BPSG)。 
在图8T中,通过干刻蚀工艺,回刻氧化物,并且向下刻蚀氧化物,在多晶硅层804的终点刻蚀停止,这将作为后面工艺的自对准硬掩膜。 
如图8U所示,源极/本体接触沟槽882,也就是有源晶胞接触沟槽,形成在有源晶胞区中,用于通过刻蚀掉剩余的多晶硅硬掩膜804,连接到源极和本体区上,穿过剩余的氧化物硬掩膜803(氧化物硬掩膜相当的薄,可以除去它,同时最大程度地完整保留其他的氧化区),然后进入硅衬底。根据器件的用途,硅刻蚀的深度约在0.6μm至0.9μm之间。刻蚀裸露的硅区域,而被氧化物和/或氮化物保护的区域不被刻蚀。由于该刻蚀工艺不需要额外的掩膜,因此称为自对准接触工艺。在工艺开始阶段制备的氮化物垫片保护了硬掩膜间距,从而使有源晶胞接触沟槽可能具有自对准的特性。 
在图8V中,沉积Ti和TiN等势垒金属,然后通过RTP,在接触区附近形成Ti硅化物。在一些实施例中,所用的Ti和TiN的厚度分别为 
Figure BSA00000596335500161
和 
Figure BSA00000596335500162
然后,沉积钨(W)。在一些实施例中,沉积大约 
Figure BSA00000596335500163
至 
Figure BSA00000596335500164
的W。将所沉积的W回刻到氧化物表面,以形成884等单独的W插头。在沉积势垒金属之前,可以选择在接触沟槽的底部,进行P+植入,以形成本体接触区885。在一些实施例中,可以一直刻蚀沟槽接头884,一直到触及本体区876下面的那部分半导体衬底802(例如本体区下面衬底的外延层部分),以形成一个集成的肖特基二极管。 
在图8W中,沉积金属层886。在一些实施例中,可以利用铝-铜(AlCu),制备大约3μm至6μm厚的金属层。利用第四掩膜,形成源极金属区以及栅极金属区的图案。例如,利用金属掩膜,可以沉积光致抗蚀剂888并形成图案。制成光致抗蚀剂888之后,可以在金属刻蚀工艺中,刻蚀掉890等开口下面的金属。 
然后,除去剩余的光致抗蚀剂层888,并使金属退火。在一些实施例中,可以在450℃左右,对金属退火大约30分钟。图8X所示的剖面图,表示带有栅极金属892以及源极金属894的完整器件的示例。 
图8Y和8Z表示图8X所示器件的可选实施例。在图8Y中,制备接触沟槽和本体区,使接触沟槽的底部终止在半导体衬底的轻掺杂(例如N-型)部分中,而不是在本体区中,从而在接触沟槽的底部构成肖特基二极管895。图8Z所示的器件除了与本体区的导电类型相同的轻掺杂的植入物897,形成在接触沟槽底部,使低注入效率的P-N结二极管896形成在接触沟槽底部之外,其他都与图8Y所示的器件类似。肖特基二极管和本发明所述的低注入 效率P-N结二极管的不同之处在于,普通的P-N结体二极管固定出现在MOSFET中;肖特基二极管和低注入效率的P-N结二极管是带有极少或不带有少子注入的快速回复二极管。 
图9A-9Z所示的剖面图,表示依据本发明的另一个实施例,制备集成肖特基二极管的自对准屏蔽栅极沟槽MOSFET的可选工艺。 
如图9A所示,使用N-型半导体衬底902(例如对于N-通道MOSFET来说,是一个N-型外延层生长在N型硅晶圆上)作为器件的漏极。对于P-通道MOSFET来说,衬底902可以选用一个带有P-型外延层的P型硅晶圆。三明治或硬掩膜结构903形成在半导体衬底902的表面上。在本例中,硬掩膜结构903可以是一种氧化物-氮化物-氧化物(ONO)结构,该结构包括一个底部薄氧化层904以及一个顶部氧化层905夹着一个厚氮化层906,可以形成在衬底902上。在一些实施例中,氮化层906的厚度约为 
Figure BSA00000596335500171
至 
Figure BSA00000596335500172
然后,如图9B所示,在ONO硬掩膜结构903上方,使用光致抗蚀剂(PR)层908并形成图案,作为第一掩膜。剩余的PR层908形成截止沟槽开口910以及有源栅极沟槽开口912。随后,如图9C所示,进行硬掩膜(HM)刻蚀,刻蚀掉ONO硬掩膜结构903的裸露部分。然后,如图9C所示,除去剩余的PR 908。ONO硬掩膜结构903的剩余部分,作为后续工艺的硬掩膜,以便将衬底902的顶部向下刻蚀到预设深度,如图9D所示。还可选择,不必在此时刻蚀半导体衬底,如图8D所示地那样,可以在半导体衬底902的顶面上方的硬掩膜开口中制备沟槽(例如氧化物或氮化物)垫片。 
在图9E中,沉积一层氧化物或氮化物,并且各向异性地回刻。在一些实施例中,氧化物或氮化物层的厚度约为 
Figure BSA00000596335500174
在全面的各向异性回刻后,沿沟槽侧壁形成硬掩膜垫片(例如氧化物垫片)914。 
如图9F所示,全面的硅刻蚀工艺进一步加深了沟槽。根据器件的用途,所制成的沟槽深度大约在1.5μm至2.5μm左右,沟槽侧壁的倾斜角约为87°至88°。氮化物垫片914用于自对准刻蚀工艺,不再需要额外的掩膜。由于硅刻蚀负载系数的特性,宽沟槽开口比窄沟槽开口所制成的沟槽更深。例如,如图9F所示,由于栅极滑道/截至沟槽开口910比有源栅极沟槽开口912宽,截至沟槽916就要比有源栅极沟槽918刻蚀得更深。 
然后,如图9G所示,除去氧化物垫片914。还可选择,如图8A-8X所示的那样,将氧化物垫片保留到后面的工艺。 
如图9H所示,在沟槽916、918的侧壁和底部,沉积或热生长一个氧化物衬里920。氧化物衬里920比稍后制成的栅极氧化物厚。在一些实施例中,可以选择生长一层大约 
Figure BSA00000596335500181
的牺牲氧化层,然后除去,以改善硅表面。作为示例,可以生长一层大约 的氧化物,然后制成一层大约 
Figure BSA00000596335500183
的高温氧化物(HTO)。对于电压更高的器件来说,氧化物衬里820可以更厚,例如1000至 
Figure BSA00000596335500184
如图9I所示,可以沉积多晶硅922等导电材料。在一些实施例中,导电材料的厚度约为 大于最宽的沟槽宽度的一半。因此,侧壁上的导电材料层结合起来,完全填充了所有的沟槽。这个导电材料层有时称为源极多晶硅、屏蔽多晶硅或多晶硅1。 
如图9J所示,利用干刻蚀,回刻导电材料922。在本例中,有源栅极沟槽中剩余的导电材料926的厚度约为 
Figure BSA00000596335500186
在截止沟槽中剩余的导电材料924的厚度约为 
Figure BSA00000596335500187
至 
Figure BSA00000596335500188
如图9K所示,可以沉积一个中间多晶硅电介质/氧化物(IPO)928,并压实。沟槽侧壁上的氧化物厚度标记为t1。在一些实施例中,t1大约在 
Figure BSA00000596335500189
Figure BSA000005963355001810
至 的范围内,才能完全填充较窄的沟槽(例如有源栅极沟槽以及源极多晶硅吸引沟槽),但仅能部分填充较宽的沟槽(例如截止沟槽930)。因此没有完全填充较宽的沟槽,为后面的工艺留下了一个缝隙。在有源沟槽932等较窄的沟槽中,氧化层的厚度t1大于沟槽宽度的一半,因此氧化物衬里可以结合起来,完全填充沟槽。 
如图9L所示,回刻并抛光IPO层928,直到氧化物928的顶面与氮化物906的顶面相平为止,这作为刻蚀的终点。 
图9M表示添加另一层氧化物934。在一些实施例中,氧化层的厚度约为 至 
Figure BSA000005963355001813
该氧化物的厚度控制下一个刻蚀步骤中第二掩膜下的湿刻蚀的切角。该氧化物薄膜也可以保护器件所有的非有源区中的氮化物——受保护的氮化物有利于稍后对硅进行无掩膜的完全刻蚀。 
然后,在该结构的表面上旋涂一层光致抗蚀剂936,并使用第二掩膜。图9N表示依据制备工艺,除去所选部分后的光致抗蚀剂覆盖物936的图案。 光致抗蚀剂覆盖物延伸到标记为938处的截止区中,填充了940处的截止沟槽,从上面延伸到942处的有源区中。如下所述,结合图9O,将通过刻蚀除去PR下面的那部分氧化物。掩膜的重叠以及湿刻蚀的切口都有助于最终结构的形成。因此,光致抗蚀剂覆盖物936在有源区中延伸的距离,对于将要通过刻蚀除去多少绝缘材料,起着部分决定作用。其他因素还包括刻蚀时间以及氧化层的厚度。氧化物切口的深度可以在0.6μm至1.5μm的范围内。 
然后,对氧化物进行湿刻蚀。除去该区域中没有被光致抗蚀剂覆盖的氧化物,使剩余的氧化物达到所需高度。光致抗蚀剂的边缘附近的氧化物也被除去。尤其是截止沟槽中的那部分氧化物,位于光致抗蚀剂边缘946附近,除去这部分氧化物。可以通过调整边缘946的位置以及刻蚀时间,来控制所刻蚀的氧化物的量。如果边缘946进一步延伸到有源区中,会使较少的材料被刻蚀,如果将该边缘拉开远离有源区,则会有相反的效果。在不同的实施例中,刻蚀掉的氧化物的量有所不同。在本例中,刻蚀掉足够的氧化物,使剩余的构成中间多晶硅氧化物948的氧化物具有一致的厚度。初始的底部氧化层904必须非常薄,以便在湿刻蚀时,使氮化层906下方泄露的刻蚀剂最少。还可选择,保留之前制成的垫片,用于保护器件。沟槽中导电材料上方的氧化层,例如氧化层948和950也称为中间电极电介质(IED)或中间多晶硅电介质(IPD)。覆盖着截止区的氧化物有时也称为截止保护区。中间电极电介质厚度的范围可以从一百埃左右到一万埃左右。 
然后,除去光致抗蚀剂936,沉积或热生长一层栅极氧化物。在一些实施例中,附加的氧化层大约 
Figure BSA00000596335500191
厚。因此,如图9P所示,栅极氧化物952、954以及956形成在裸露的沟槽侧壁上。截止沟槽960在其侧壁上具有不对称的氧化物覆盖,厚氧化物958在截止区那侧,薄氧化物952在有源区那侧。 
如图9Q所示,沉积并回刻另一种导电材料(例如多晶硅)。作为示例,但不作为局限,在不同的沟槽中,可以沉积大约 
Figure BSA00000596335500192
至 
Figure BSA00000596335500193
的多晶硅。回刻所沉积的多晶硅,构成栅极多晶硅结构,标记为962、964、966。在本例中,多晶硅的表面在硬掩膜垫片底部的参考水平面下方,大约凹陷 
Figure BSA00000596335500194
Figure BSA00000596335500195
可以沉积一层金属(例如钛或钴)并退火,以构成一个栅极多晶硅硅化物结构968、970、972,在962、964、966处金属与多晶硅相接触。沉积在氧化物或氮化物上方的金属,并不会构成硅化物或多晶硅硅化物,可以通过 工艺将金属除去,而且这种工艺不会除去多晶硅硅化物。 
如图9R所示,例如用掺杂离子轰击部分制成的器件,可以进行本体植入。可以带角度的植入离子。在不被氮化物保护的有源区中,植入构成974等本体区。在一些实施例中,对于N-通道器件来说,使用的是硼离子,在60KeV~180KeV时,掺杂剂量约为1.8X1013个离子/cm2。也可以使用其他类型的离子。例如,对于P-通道器件来说,可以用磷离子。 
在图9S中,进行源极植入(例如用零倾斜角(即在正常入射时))。再次用掺杂离子轰击器件。在一些实施例中,使用的是砷或磷离子(对于N-通道器件来说),在40KeV~80KeV时,掺杂剂量约为4X1015个离子/cm2。978等源极区形成在976等本体区内。作为示例,可以在源极植入之前,进行本体扩散;然后在源极植入之后,进行源极扩散。对于P-通道器件来说,可以用硼离子制备源极区。 
植入器件的本体和源极,不再需要额外的掩膜。可以以自对准的全面植入方式,进行本体和源极植入。在截止区中,氧化物-多晶硅-氮化物-氧化物势垒阻挡了植入离子,并且防止形成源极和本体区,从而改善了器件在其断开或闭锁状态下的性能。 
在图9T中,沉积 
Figure BSA00000596335500201
的绝缘物980(例如氧化物),填充在栅极多晶硅区上方的沟槽开口中。在一些实施例中,利用化学气相沉积(CVD)工艺,沉积厚度约为 
Figure BSA00000596335500202
的低温氧化物(LTO)和含有硼酸的硅玻璃(BPSG)。 
参见图9U,通过干刻蚀工艺,回刻绝缘物980。在氮化层906的终点刻蚀停止,这将作为后面工艺的自对准硬掩膜。 
如图9V所示,将裸露的氮化物906/氧化物904硬掩膜回刻到硅衬底902。如图9W所示,进一步刻蚀硅衬底902,形成源极/本体接触沟槽982,以便连接到源极和本体区上。根据器件的用途,硅刻蚀的深度约在0.6μm至0.9μm之间。刻蚀裸露的硅区域,而被氧化物和/或氮化物保护的区域不被刻蚀。由于该刻蚀工艺不需要额外的掩膜,因此称为自对准接触工艺。在工艺开始阶段制备的垫片保护了沟槽之间的半导体台面结构,从而使有源晶胞接触沟槽可能具有自对准的特性。 
在图9X中,沉积Ti和TiN等势垒金属,然后例如通过快速热处理(RTP), 在接触区附近形成Ti硅化物。在一些实施例中,所用的Ti和TiN的厚度分别为 
Figure BSA00000596335500211
和 
Figure BSA00000596335500212
然后,全面沉积钨(W)。在一些实施例中,沉积大约 
Figure BSA00000596335500213
至 
Figure BSA00000596335500214
的W。将所沉积的W回刻到氧化物表面,以形成984等单独的W插头。如果本体区为P型(例如当衬底为N型衬底时)在沉积势垒金属之前,可以选择在接触沟槽的底部,进行P+植入,以便较好的本体接触。还可选择,如果本体区为N型(例如当衬底为P型衬底时)在沉积势垒金属之前,可以选择在接触沟槽的底部,进行N+植入。对于集成肖特基二极管来说,可以一直刻蚀沟槽接头984,一直到触及本体区下面的那部分半导体衬底902(例如本体区下面衬底的外延层部分)。 
利用第四掩膜,形成源极金属区以及栅极金属区。确切地说,如图9Y所示,在半导体衬底上方,沉积金属层986(例如铝-铜(AlCu))。作为示例,但不作为局限,金属层的厚度大约3μm至6μm厚。利用金属掩膜,可以沉积光致抗蚀剂988并形成图案。刻蚀掉制图工艺留下的990等金属下方开口,从而将金属层分成电绝缘的源极金属和栅极金属区。 
除去剩余的光致抗蚀剂之后,并使金属退火。在一些实施例中,可以在450℃左右,对金属退火大约30分钟。图9Z所示的剖面图,表示带有栅极金属992以及源极金属994的完整器件的示例。 
本发明的实施例适用于自对准地制备MOSFET器件等晶体管器件,这些器件的源极、本体以及接触沟槽都是自对准的。这种制备方法比以前的工艺制备的器件间距更小,所用的掩膜更少,而且不存在不对准问题。 
尽管以上内容是本发明较佳实施例的完整说明,但是还可能使用各种替代、修正以及等效方案。例如,与图8A-8X所示类似,图9A-9Z表示氮化物垫片在器件上保留到本体区植入。而且,与图9A所示类似,图8A-8X所示的工艺使用的是带有厚氮化物的初始的ONO硬掩膜。通过添加一个集电极区,本发明的实施例也可用于绝缘栅双极晶体管(IGBT)器件;作为示例,集电极区可以是一个在半导体衬底底部的层,其导电类型与半导体衬底的其余地方相反。IGBT器件是三端功率半导体器件,具有高效率且能够快速切换。在一个单独的器件中,通过引入一个绝缘栅FET用于控制输入,以及一个双极功率晶体管作为开关,IGBT将MOSFET的金属氧化物半导体(MOS)栅极驱动特性,与双极晶体管的高电流、低饱和电压性能相结合。作为示例, 但不作为局限,图10表示依据本发明的一个实施例,所制备的IGBT器件1000的示例。器件1000与图4所示的MOSFET器件400来说。因此,使用相同的参考数字标识这两种器件的可选件。这两种器件的可选件参照上述图4。除了共同的可选件之外,IGBT器件1000还包括一个集电极区1002,位于半导体晶圆404的一侧附近,沟槽402形成在半导体晶圆404的另一侧。用导电类型与半导体晶圆404相反的掺杂物掺杂集电极区。例如,如果晶圆404的其余部分为N-型掺杂,那么集电极区1002可以是P-型掺杂。同样地,如果晶圆404为P-型掺杂,那么集电极区1002可以是N-型掺杂。例如通过沉积合适的金属,集电极1004可以形成在靠近集电极区1002的晶圆表面上。为了使IGBT器件1000的肖特基二极管能够工作,必须使集电极区1002的图案具有可以使集电极1004接触集电极区之间的衬底的区域。要注意的是,制备器件1000可以参照上述图5A-图5L所示的工艺,再加上制备集电极区1002的步骤,例如通过用合适的掺杂物植入到晶圆背部。这次植入可以在制备过程中任意方便的时刻进行,例如在制备沟槽之前,或者器件制成之后。电极1004也可以在制备过程中任意方便的时刻制备,例如在植入后进行金属沉积。 
要注意的是,与图6A、6B所示的MOSFET器件600、601类似的器件,都可以分别配置成如图11A、11B所示的IGBT器件1100、1101。IGBT器件1100、1101的结构分别与器件600、601类似,这些器件中相同的可选件都用相同的参考数字标识出来。IGBT器件1100、1101还包括集电极区1102以及(可选)集电极1104。 
还要注意的是,与图7A、7B所示的MOSFET器件700、701类似的器件,都可以分别配置成如图12A、12B所示的IGBT器件1200、1201。IGBT器件1200、1201的结构分别与器件700、701类似,这些器件中相同的可选件都用相同的参考数字标识出来。IGBT器件1200、1201还包括集电极区1202以及(可选)集电极1204。 
要注意的是,制备IGBT器件可以参照上述图8A-8X以及图9A-9Z所示的工艺,再加上制备集电极区的步骤,例如通过用合适的掺杂物植入到承载器件的晶圆背部。这次植入可以在制备过程中任意方便的时刻进行,例如在制备沟槽之前,或者器件制成之后,或在背部研磨工艺之后。集电极也可以 在制备过程中任意方便的时刻制备在晶圆的背部,例如在植入掺杂物后进行金属沉积。 
因此,本发明的范围不应由上述说明决定,与之相反,本发明的范围应参照所附的权利要求书及其全部等效内容。任何可选件(无论首选与否),都可与其他任何可选件(无论首选与否)组合。在以下权利要求中,除非特别声明,否则不定冠词“一个”或“一种”都指下文内容中的一个或多个项目的数量。除非用“意思是”明确指出限定功能,否则所附的权利要求书并不应认为是意义和功能的局限。 

Claims (28)

1.一种自对准的晶体管器件,其特征在于,包括:
一个掺杂的半导体衬底,具有一个或多个电绝缘的栅极电极形成在衬底中的栅极沟槽中;
一个或多个本体区,形成在每个栅极沟槽附近衬底的顶部;一个或多个源极区,以自对准的方式,形成在每个栅极沟槽附近的本体区顶部;
一个或多个厚绝缘物部分,形成在衬底顶面上的栅极电极上方,带有相邻的厚绝缘物部分之间的空间;
一个或多个金属层,形成在衬底上方的厚绝缘物部分上方,其中穿过厚绝缘物部分之间的空间,所述的金属形成一个到衬底的自对准接头,其中一个集成的二极管形成在所述的自对准接头下方,其中所述的集成的二极管是一个快速回复二极管。
2.根据权利要求1所述的器件,其特征在于,其中配置金属、本体区和衬底,使集成二极管成为一个肖特基二极管。
3.根据权利要求1所述的器件,其特征在于,其中配置金属、本体区和衬底,使集成二极管成为一个低注入效率的P-N结二极管。
4.根据权利要求1所述的器件,其特征在于,其中栅极沟槽还包括一个位于栅极电极下方的屏蔽电极。
5.根据权利要求1所述的器件,其特征在于,还包括一个集电极区,其掺杂的导电类型与掺杂衬底相反,其中集电极区形成衬底的一侧,栅极沟槽形成在衬底的另一侧,使该器件成为一个绝缘栅双极晶体管(IGBT)。
6.一种用于制备半导体器件的方法,其特征在于,包括:
a)在半导体衬底上制备一个硬掩膜结构;
b)在硬掩膜结构中形成开口;
c)在硬掩膜结构中开口的侧壁上形成垫片;
d)通过刻蚀衬底的裸露区域,形成栅极沟槽,其中垫片确定栅极沟槽的侧壁;
e)在栅极沟槽的侧壁上,制备栅极绝缘物;
f)用第一导电材料填充栅极沟槽,回刻第一导电材料,以形成第一导电区,其中导电材料区的顶面凹陷在衬底的顶面下方;
g)在a)-f)之前、之中或之后,制备一个或多个源极区以及一个或多个本体区,其中本体区形成在衬底顶部的所选区域,源极区形成在本体区的顶部;并且
h)在第一导电材料区上方,制备一个厚绝缘层,所述的厚绝缘层向上展伸至硬掩膜结构;并且
i)将所述的厚绝缘层作为刻蚀掩膜,除去硬掩膜结构,使硬掩膜结构下方的半导体衬底裸露出来。
7.根据权利要求6所述的方法,其特征在于,还包括:将厚绝缘层作为刻蚀掩膜,通过刻蚀到半导体衬底中,制备源极/本体接触沟槽。
8.根据权利要求7所述的方法,其特征在于,其中在所述的除去硬掩膜结构之后,无需制备额外的垫片,就可以制备源极/本体接触沟槽。
9.根据权利要求6所述的方法,其特征在于,在f)之前还包括:在栅极沟槽中制备第二导电区,使第一导电区稍后形成在栅极沟槽中的第二导电区上方,并且在第一和第二导电区中间形成一个中间电极电介质层。
10.根据权利要求6所述的方法,其特征在于,还包括在所述的制备厚绝缘层之前,除去垫片。
11.根据权利要求10所述的方法,其特征在于,其中g)是在除去垫片之后进行。
12.根据权利要求6所述的方法,其特征在于,其中垫片是由氧化物或氮化物构成。
13.根据权利要求6所述的方法,其特征在于,其中硬掩膜结构是由一个三明治结构组成,并且含有一个形成在衬底上的薄氧化层,以及形成在薄氧化层上的两个或多个额外层。
14.根据权利要求13所述的方法,其特征在于,其中硬掩膜结构含有一个在薄氧化层上方的多晶硅层以及一个在多晶硅层上方的氮化层。
15.根据权利要求13所述的方法,其特征在于,其中硬掩膜结构含有一个氧化物-氮化物-氧化物(ONO)结构。
16.根据权利要求6所述的方法,其特征在于,在c)之前还包括穿过硬掩膜结构中所述的开口,刻蚀到半导体衬底中。
17.根据权利要求6所述的方法,其特征在于,其中在c)之前,没有穿过硬掩膜结构中所述的开口,刻蚀到半导体衬底中的步骤。
18.根据权利要求6所述的方法,其特征在于,还包括:i)除去硬掩膜结构后,制备源极金属和栅极金属,其中集成二极管形成在金属和衬底之间的结处。
19.根据权利要求18所述的方法,其特征在于,其中步骤j)还包括:除去硬掩膜结构后,在衬底上方制备一个金属扩散势垒。
20.根据权利要求18所述的方法,其特征在于,其中配置金属、本体区以及衬底,使集成二极管成为一个肖特基二极管。
21.根据权利要求18所述的方法,其特征在于,其中配置金属、本体区以及衬底,使集成二极管成为一个低注入效率的P-N结二极管。
22.根据权利要求6所述的方法,其特征在于,还包括在衬底的一侧,与形成栅极沟槽的一侧相对的地方,制备一个集电极区,其中集电极区的特点是,掺杂的极性与掺杂衬底相反,从而使半导体器件成为一个绝缘栅双极晶体管(IGBT)。
23.一种用于制备半导体器件的方法,其特征在于,包括:
在半导体衬底上制备一个具有缝隙的牺牲结构;
在牺牲结构所述的缝隙处,在侧壁上制备一个或多个垫片;
在垫片之间的半导体衬底中制备沟槽;
在沟槽中制备栅极电极,通过栅极绝缘物,与半导体衬底绝缘,其中栅极电极的顶部从半导体衬底的表面凹陷;
用厚绝缘物填充剩余的部分沟槽,至少填充到牺牲结构的顶部;
除去牺牲结构,保留栅极电极上方的厚绝缘物;并且
在之前被牺牲结构覆盖的区域中,形成到衬底的接头,使接头通过覆盖着栅极电极顶部的厚绝缘物,自对准到栅极沟槽。
24.根据权利要求23所述的方法,其特征在于,还包括在半导体衬底中,刻蚀接触沟槽,在接触沟槽中形成接头。
25.根据权利要求23所述的方法,其特征在于,还包括在接头下方制备肖特基二极管。
26.根据权利要求23所述的方法,其特征在于,还包括在接头下方制备低注入效率的P-N结二极管。
27.根据权利要求23所述的方法,其特征在于,还包括在所述的制备垫片之前,在牺牲结构所述的缝隙处,刻蚀到半导体衬底中。
28.根据权利要求23所述的方法,其特征在于,其中在所述的制备垫片之前,没有刻蚀到半导体衬底中的步骤。
CN201110321517.7A 2010-12-14 2011-10-12 带有集成二极管的自对准沟槽mosfet Active CN102544100B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/968,179 2010-12-14
US12/968,179 US8580667B2 (en) 2010-12-14 2010-12-14 Self aligned trench MOSFET with integrated diode

Publications (2)

Publication Number Publication Date
CN102544100A true CN102544100A (zh) 2012-07-04
CN102544100B CN102544100B (zh) 2015-04-08

Family

ID=46198461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110321517.7A Active CN102544100B (zh) 2010-12-14 2011-10-12 带有集成二极管的自对准沟槽mosfet

Country Status (3)

Country Link
US (3) US8580667B2 (zh)
CN (1) CN102544100B (zh)
TW (2) TWI455323B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594377A (zh) * 2013-11-14 2014-02-19 哈尔滨工程大学 一种集成肖特基分裂栅型功率mos器件的制造方法
CN103855034A (zh) * 2014-03-03 2014-06-11 宁波达新半导体有限公司 Mos栅极器件的制造方法
CN103887174A (zh) * 2012-12-21 2014-06-25 万国半导体股份有限公司 用于负载开关和直流-直流器件的高密度mosfet的器件结构及其制备方法
CN104051546A (zh) * 2014-06-03 2014-09-17 无锡昕智隆电子科技有限公司 一种功率二极管及其制备方法
CN104701174A (zh) * 2013-12-09 2015-06-10 上海华虹宏力半导体制造有限公司 用于优化中压沟槽栅mos加工工艺的方法
CN104966730A (zh) * 2015-05-14 2015-10-07 湖南大学 肖特基势垒高电流密度igbt器件
CN105226002A (zh) * 2014-07-04 2016-01-06 北大方正集团有限公司 自对准沟槽型功率器件及其制造方法
CN105374820A (zh) * 2014-08-26 2016-03-02 华邦电子股份有限公司 半导体结构
CN105551965A (zh) * 2016-01-15 2016-05-04 上海华虹宏力半导体制造有限公司 沟槽栅功率mosfet及其制造方法
CN105633168A (zh) * 2015-12-31 2016-06-01 国网智能电网研究院 一种集成肖特基二极管的SiC沟槽型MOSFET器件及其制造方法
CN105826386A (zh) * 2015-01-23 2016-08-03 万国半导体股份有限公司 带有高纵横比沟槽接头以及沟槽间亚微米间距的功率器件
CN108807539A (zh) * 2017-04-26 2018-11-13 万国半导体(开曼)股份有限公司 紧凑源极镇流器mosfet及其制备方法
CN110379850A (zh) * 2018-04-13 2019-10-25 璟茂科技股份有限公司 沟槽式功率晶体管制法
CN112687743A (zh) * 2020-12-29 2021-04-20 电子科技大学 沟槽型碳化硅逆阻mosfet器件及其制备方法
CN113921614A (zh) * 2021-12-13 2022-01-11 捷捷微电(上海)科技有限公司 一种半导体功率器件结构及其制造方法
CN114038743A (zh) * 2022-01-07 2022-02-11 绍兴中芯集成电路制造股份有限公司 沟槽栅器件的制造方法
CN116646391A (zh) * 2023-07-26 2023-08-25 深圳市锐骏半导体股份有限公司 一种沟槽功率器件及其制造方法

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8431457B2 (en) * 2010-03-11 2013-04-30 Alpha And Omega Semiconductor Incorporated Method for fabricating a shielded gate trench MOS with improved source pickup layout
US8580667B2 (en) 2010-12-14 2013-11-12 Alpha And Omega Semiconductor Incorporated Self aligned trench MOSFET with integrated diode
JP6031681B2 (ja) 2011-04-20 2016-11-24 パナソニックIpマネジメント株式会社 縦型ゲート半導体装置およびその製造方法
US8502302B2 (en) 2011-05-02 2013-08-06 Alpha And Omega Semiconductor Incorporated Integrating Schottky diode into power MOSFET
US9793153B2 (en) 2011-09-20 2017-10-17 Alpha And Omega Semiconductor Incorporated Low cost and mask reduction method for high voltage devices
US9312335B2 (en) 2011-09-23 2016-04-12 Alpha And Omega Semiconductor Incorporated Lateral PNP bipolar transistor with narrow trench emitter
US8648438B2 (en) * 2011-10-03 2014-02-11 International Business Machines Corporation Structure and method to form passive devices in ETSOI process flow
JP6061181B2 (ja) * 2012-08-20 2017-01-18 ローム株式会社 半導体装置
TW201423869A (zh) * 2012-12-13 2014-06-16 Anpec Electronics Corp 溝渠式電晶體的製作方法
US8951867B2 (en) * 2012-12-21 2015-02-10 Alpha And Omega Semiconductor Incorporated High density trench-based power MOSFETs with self-aligned active contacts and method for making such devices
US8753935B1 (en) 2012-12-21 2014-06-17 Alpha And Omega Semiconductor Incorporated High frequency switching MOSFETs with low output capacitance using a depletable P-shield
US9105494B2 (en) 2013-02-25 2015-08-11 Alpha and Omega Semiconductors, Incorporated Termination trench for power MOSFET applications
US9196701B2 (en) * 2013-03-11 2015-11-24 Alpha And Omega Semiconductor Incorporated High density MOSFET array with self-aligned contacts enhancement plug and method
US9230957B2 (en) 2013-03-11 2016-01-05 Alpha And Omega Semiconductor Incorporated Integrated snubber in a single poly MOSFET
US10249721B2 (en) 2013-04-04 2019-04-02 Infineon Technologies Austria Ag Semiconductor device including a gate trench and a source trench
DE102013209254A1 (de) * 2013-05-17 2014-11-20 Robert Bosch Gmbh Substrat und Verfahren zur Herstellung eines Substrats, Metall-Oxid-Halbleiter-Feldeffekttransistor und Verfahren zur Herstellung eines Metall-Oxid-Halbleiter-Feldeffekttransistors, mikroelektromechanisches System und Kraftfahrzeug
US9029220B2 (en) * 2013-06-18 2015-05-12 Infineon Technologies Austria Ag Method of manufacturing a semiconductor device with self-aligned contact plugs and semiconductor device
US9666663B2 (en) * 2013-08-09 2017-05-30 Infineon Technologies Ag Semiconductor device with cell trench structures and contacts and method of manufacturing a semiconductor device
KR102046663B1 (ko) * 2013-11-04 2019-11-20 매그나칩 반도체 유한회사 반도체 소자 및 그 제조방법
EP2942805B1 (en) * 2014-05-08 2017-11-01 Nexperia B.V. Semiconductor device and manufacturing method
US9704948B2 (en) * 2014-08-09 2017-07-11 Alpha & Omega Semiconductor (Cayman), Ltd. Power trench MOSFET with improved unclamped inductive switching (UIS) performance and preparation method thereof
JP6036765B2 (ja) * 2014-08-22 2016-11-30 トヨタ自動車株式会社 半導体装置及び半導体装置の製造方法
CN106062960B (zh) * 2014-09-30 2019-12-10 富士电机株式会社 半导体装置及半导体装置的制造方法
DE102014114184B4 (de) * 2014-09-30 2018-07-05 Infineon Technologies Ag Verfahren zum Herstellen einer Halbleitervorrichtung und Halbleitervorrichtung
US9281368B1 (en) 2014-12-12 2016-03-08 Alpha And Omega Semiconductor Incorporated Split-gate trench power MOSFET with protected shield oxide
US9391204B1 (en) 2015-03-12 2016-07-12 International Business Machines Corporation Asymmetric FET
JP6335829B2 (ja) 2015-04-06 2018-05-30 三菱電機株式会社 半導体装置
US9691863B2 (en) 2015-04-08 2017-06-27 Alpha And Omega Semiconductor Incorporated Self-aligned contact for trench power MOSFET
US9484431B1 (en) * 2015-07-29 2016-11-01 International Business Machines Corporation Pure boron for silicide contact
US10211338B2 (en) * 2015-09-03 2019-02-19 Globalfoundries Singapore Pte. Ltd. Integrated circuits having tunnel transistors and methods for fabricating the same
US9508597B1 (en) * 2015-09-18 2016-11-29 Globalfoundries Inc. 3D fin tunneling field effect transistor
US9666474B2 (en) 2015-10-30 2017-05-30 International Business Machines Corporation Uniform dielectric recess depth during fin reveal
KR101786668B1 (ko) * 2015-12-14 2017-10-18 현대자동차 주식회사 반도체 소자 및 그 제조 방법
US10388781B2 (en) 2016-05-20 2019-08-20 Alpha And Omega Semiconductor Incorporated Device structure having inter-digitated back to back MOSFETs
US10403712B2 (en) * 2016-06-02 2019-09-03 Infineon Technologies Americas Corp. Combined gate trench and contact etch process and related structure
US10032728B2 (en) * 2016-06-30 2018-07-24 Alpha And Omega Semiconductor Incorporated Trench MOSFET device and the preparation method thereof
US10446545B2 (en) 2016-06-30 2019-10-15 Alpha And Omega Semiconductor Incorporated Bidirectional switch having back to back field effect transistors
US10056461B2 (en) 2016-09-30 2018-08-21 Alpha And Omega Semiconductor Incorporated Composite masking self-aligned trench MOSFET
US10103140B2 (en) 2016-10-14 2018-10-16 Alpha And Omega Semiconductor Incorporated Switch circuit with controllable phase node ringing
US10199492B2 (en) 2016-11-30 2019-02-05 Alpha And Omega Semiconductor Incorporated Folded channel trench MOSFET
CN108615732B (zh) * 2016-12-09 2019-06-28 联华电子股份有限公司 半导体元件及其制作方法
US10211333B2 (en) 2017-04-26 2019-02-19 Alpha And Omega Semiconductor (Cayman) Ltd. Scalable SGT structure with improved FOM
CN107195693A (zh) * 2017-05-12 2017-09-22 广微集成技术(深圳)有限公司 半导体器件及制造方法
JP6950290B2 (ja) * 2017-06-09 2021-10-13 富士電機株式会社 半導体装置および半導体装置の製造方法
CN107527944B (zh) * 2017-07-28 2020-04-14 上海华虹宏力半导体制造有限公司 沟槽栅功率mosfet及其制造方法
US10727326B2 (en) * 2017-08-21 2020-07-28 Semiconductor Components Industries, Llc Trench-gate insulated-gate bipolar transistors (IGBTs)
JP6572333B2 (ja) * 2018-02-05 2019-09-04 株式会社東芝 半導体装置
US10714580B2 (en) * 2018-02-07 2020-07-14 Alpha And Omega Semiconductor (Cayman) Ltd. Source ballasting for p-channel trench MOSFET
TWI646606B (zh) * 2018-04-11 2019-01-01 璟茂科技股份有限公司 Grooved power transistor manufacturing method
US10741454B2 (en) 2018-08-09 2020-08-11 International Business Machines Corporation Boundary protection for CMOS multi-threshold voltage devices
CN109119477B (zh) * 2018-08-28 2021-11-05 上海华虹宏力半导体制造有限公司 沟槽栅mosfet及其制造方法
US10892188B2 (en) * 2019-06-13 2021-01-12 Semiconductor Components Industries, Llc Self-aligned trench MOSFET contacts having widths less than minimum lithography limits
US11049956B2 (en) 2019-06-17 2021-06-29 Semiconductor Components Industries, Llc Method of forming a semiconductor device
US11227926B2 (en) * 2020-06-01 2022-01-18 Nanya Technology Corporation Semiconductor device and method for fabricating the same
TWI739653B (zh) * 2020-11-06 2021-09-11 國立陽明交通大學 增加溝槽式閘極功率金氧半場效電晶體之溝槽轉角氧化層厚度的製造方法
CN112382614B (zh) * 2020-11-13 2022-09-16 绍兴中芯集成电路制造股份有限公司 功率半导体器件及其制造方法
TWI773029B (zh) * 2020-12-17 2022-08-01 國立清華大學 具有溝槽式接面蕭基位障二極體的半導體結構
CN112635568B (zh) * 2020-12-29 2024-03-19 苏州迈志微半导体有限公司 功率mosfet及其制造方法和电子设备
CN114050109B (zh) * 2022-01-12 2022-04-15 广州粤芯半导体技术有限公司 屏蔽栅沟槽功率器件的制造方法
CN115172470B (zh) * 2022-06-20 2023-09-26 江苏新顺微电子股份有限公司 带反向放大作用的吸收二极管器件结构及制造方法
EP4297100A1 (en) 2022-06-22 2023-12-27 Hitachi Energy Ltd Method for producing a semiconductor device and semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050208724A1 (en) * 2004-02-09 2005-09-22 International Rectifier Corp. Trench power MOSFET fabrication using inside/outside spacers
CN101180737A (zh) * 2003-12-30 2008-05-14 飞兆半导体公司 功率半导体器件及制造方法
CN101887913A (zh) * 2010-06-04 2010-11-17 无锡新洁能功率半导体有限公司 一种具有改善型集电极结构的igbt

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283201A (en) * 1988-05-17 1994-02-01 Advanced Power Technology, Inc. High density power device fabrication process
US5897343A (en) * 1998-03-30 1999-04-27 Motorola, Inc. Method of making a power switching trench MOSFET having aligned source regions
US6916745B2 (en) * 2003-05-20 2005-07-12 Fairchild Semiconductor Corporation Structure and method for forming a trench MOSFET having self-aligned features
JP3906076B2 (ja) * 2001-01-31 2007-04-18 株式会社東芝 半導体装置
EP1271654B1 (en) * 2001-02-01 2017-09-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US6977203B2 (en) * 2001-11-20 2005-12-20 General Semiconductor, Inc. Method of forming narrow trenches in semiconductor substrates
US6656843B2 (en) * 2002-04-25 2003-12-02 International Rectifier Corporation Single mask trench fred with enlarged Schottky area
JP4028333B2 (ja) * 2002-09-02 2007-12-26 株式会社東芝 半導体装置
US7169634B2 (en) * 2003-01-15 2007-01-30 Advanced Power Technology, Inc. Design and fabrication of rugged FRED
US7638841B2 (en) * 2003-05-20 2009-12-29 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7417266B1 (en) * 2004-06-10 2008-08-26 Qspeed Semiconductor Inc. MOSFET having a JFET embedded as a body diode
US7384826B2 (en) * 2004-06-29 2008-06-10 International Rectifier Corporation Method of forming ohmic contact to a semiconductor body
KR100618861B1 (ko) * 2004-09-09 2006-08-31 삼성전자주식회사 로컬 리세스 채널 트랜지스터를 구비하는 반도체 소자 및그 제조 방법
US8093651B2 (en) * 2005-02-11 2012-01-10 Alpha & Omega Semiconductor Limited MOS device with integrated schottky diode in active region contact trench
US7952139B2 (en) * 2005-02-11 2011-05-31 Alpha & Omega Semiconductor Ltd. Enhancing Schottky breakdown voltage (BV) without affecting an integrated MOSFET-Schottky device layout
US7285822B2 (en) * 2005-02-11 2007-10-23 Alpha & Omega Semiconductor, Inc. Power MOS device
TWI400757B (zh) * 2005-06-29 2013-07-01 Fairchild Semiconductor 形成遮蔽閘極場效應電晶體之方法
US7060567B1 (en) * 2005-07-26 2006-06-13 Episil Technologies Inc. Method for fabricating trench power MOSFET
US7385248B2 (en) * 2005-08-09 2008-06-10 Fairchild Semiconductor Corporation Shielded gate field effect transistor with improved inter-poly dielectric
US20070075362A1 (en) * 2005-09-30 2007-04-05 Ching-Yuan Wu Self-aligned schottky-barrier clamped trench DMOS transistor structure and its manufacturing methods
US7696598B2 (en) * 2005-12-27 2010-04-13 Qspeed Semiconductor Inc. Ultrafast recovery diode
US7492005B2 (en) * 2005-12-28 2009-02-17 Alpha & Omega Semiconductor, Ltd. Excessive round-hole shielded gate trench (SGT) MOSFET devices and manufacturing processes
US7449354B2 (en) * 2006-01-05 2008-11-11 Fairchild Semiconductor Corporation Trench-gated FET for power device with active gate trenches and gate runner trench utilizing one-mask etch
US8193580B2 (en) * 2009-08-14 2012-06-05 Alpha And Omega Semiconductor, Inc. Shielded gate trench MOSFET device and fabrication
US8236651B2 (en) * 2009-08-14 2012-08-07 Alpha And Omega Semiconductor Incorporated Shielded gate trench MOSFET device and fabrication
JP5096739B2 (ja) * 2006-12-28 2012-12-12 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
DE102007003812B4 (de) * 2007-01-25 2011-11-17 Infineon Technologies Ag Halbleiterbauelement mit Trench-Gate und Verfahren zur Herstellung
DE102007020039B4 (de) * 2007-04-27 2011-07-14 Infineon Technologies Austria Ag Verfahren zur Herstellung einer vertikal inhomogenen Platin- oder Goldverteilung in einem Halbleitersubstrat und in einem Halbleiterbauelement, derart hergestelltes Halbleitersubstrat und Halbleiterbauelement
US20080296673A1 (en) * 2007-05-29 2008-12-04 Alpha & Omega Semiconductor, Ltd Double gate manufactured with locos techniques
US7687352B2 (en) * 2007-10-02 2010-03-30 Inpower Semiconductor Co., Ltd. Trench MOSFET and method of manufacture utilizing four masks
US7994005B2 (en) * 2007-11-01 2011-08-09 Alpha & Omega Semiconductor, Ltd High-mobility trench MOSFETs
US20090242973A1 (en) * 2008-03-31 2009-10-01 Alpha & Omega Semiconductor, Ltd. Source and body contact structure for trench-dmos devices using polysilicon
WO2009122486A1 (ja) * 2008-03-31 2009-10-08 三菱電機株式会社 半導体装置
US7969776B2 (en) * 2008-04-03 2011-06-28 Micron Technology, Inc. Data cells with drivers and methods of making and operating the same
US20090315104A1 (en) * 2008-06-20 2009-12-24 Force Mos Technology Co. Ltd. Trench MOSFET with shallow trench structures
KR100875180B1 (ko) * 2008-07-10 2008-12-22 주식회사 동부하이텍 반도체 소자의 제조 방법
US8022470B2 (en) * 2008-09-04 2011-09-20 Infineon Technologies Austria Ag Semiconductor device with a trench gate structure and method for the production thereof
US8203181B2 (en) * 2008-09-30 2012-06-19 Infineon Technologies Austria Ag Trench MOSFET semiconductor device and manufacturing method therefor
US7800176B2 (en) * 2008-10-27 2010-09-21 Infineon Technologies Austria Ag Electronic circuit for controlling a power field effect transistor
KR20100059297A (ko) * 2008-11-26 2010-06-04 주식회사 동부하이텍 반도체 소자의 제조 방법
US8174067B2 (en) * 2008-12-08 2012-05-08 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US7767526B1 (en) * 2009-01-29 2010-08-03 Alpha & Omega Semiconductor Incorporated High density trench MOSFET with single mask pre-defined gate and contact trenches
US8461015B2 (en) * 2009-07-08 2013-06-11 Taiwan Semiconductor Manufacturing Company, Ltd. STI structure and method of forming bottom void in same
US20110121387A1 (en) * 2009-11-23 2011-05-26 Francois Hebert Integrated guarded schottky diode compatible with trench-gate dmos, structure and method
US8247296B2 (en) * 2009-12-09 2012-08-21 Semiconductor Components Industries, Llc Method of forming an insulated gate field effect transistor device having a shield electrode structure
US8431457B2 (en) * 2010-03-11 2013-04-30 Alpha And Omega Semiconductor Incorporated Method for fabricating a shielded gate trench MOS with improved source pickup layout
US8614478B2 (en) * 2010-07-26 2013-12-24 Infineon Technologies Austria Ag Method for protecting a semiconductor device against degradation, a semiconductor device protected against hot charge carriers and a manufacturing method therefor
US20120129327A1 (en) * 2010-11-22 2012-05-24 Lee Jong-Ho Method of fabricating semiconductor device using a hard mask and diffusion
US8580667B2 (en) 2010-12-14 2013-11-12 Alpha And Omega Semiconductor Incorporated Self aligned trench MOSFET with integrated diode
US8476676B2 (en) * 2011-01-20 2013-07-02 Alpha And Omega Semiconductor Incorporated Trench poly ESD formation for trench MOS and SGT
US8502302B2 (en) * 2011-05-02 2013-08-06 Alpha And Omega Semiconductor Incorporated Integrating Schottky diode into power MOSFET
CN103035691B (zh) * 2012-03-12 2015-08-19 上海华虹宏力半导体制造有限公司 逆导型igbt半导体器件及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101180737A (zh) * 2003-12-30 2008-05-14 飞兆半导体公司 功率半导体器件及制造方法
US20050208724A1 (en) * 2004-02-09 2005-09-22 International Rectifier Corp. Trench power MOSFET fabrication using inside/outside spacers
CN101887913A (zh) * 2010-06-04 2010-11-17 无锡新洁能功率半导体有限公司 一种具有改善型集电极结构的igbt

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887174B (zh) * 2012-12-21 2016-09-14 万国半导体股份有限公司 用于负载开关和直流-直流器件的高密度mosfet的器件结构及其制备方法
CN103887174A (zh) * 2012-12-21 2014-06-25 万国半导体股份有限公司 用于负载开关和直流-直流器件的高密度mosfet的器件结构及其制备方法
CN103594377A (zh) * 2013-11-14 2014-02-19 哈尔滨工程大学 一种集成肖特基分裂栅型功率mos器件的制造方法
CN104701174A (zh) * 2013-12-09 2015-06-10 上海华虹宏力半导体制造有限公司 用于优化中压沟槽栅mos加工工艺的方法
CN104701174B (zh) * 2013-12-09 2017-12-05 上海华虹宏力半导体制造有限公司 用于优化中压沟槽栅mos加工工艺的方法
CN103855034A (zh) * 2014-03-03 2014-06-11 宁波达新半导体有限公司 Mos栅极器件的制造方法
CN104051546A (zh) * 2014-06-03 2014-09-17 无锡昕智隆电子科技有限公司 一种功率二极管及其制备方法
CN104051546B (zh) * 2014-06-03 2017-05-17 无锡昕智隆电子科技有限公司 一种功率二极管的制备方法
CN105226002A (zh) * 2014-07-04 2016-01-06 北大方正集团有限公司 自对准沟槽型功率器件及其制造方法
CN105226002B (zh) * 2014-07-04 2019-05-21 北大方正集团有限公司 自对准沟槽型功率器件及其制造方法
CN105374820A (zh) * 2014-08-26 2016-03-02 华邦电子股份有限公司 半导体结构
CN105374820B (zh) * 2014-08-26 2018-07-17 华邦电子股份有限公司 半导体结构
CN105826386A (zh) * 2015-01-23 2016-08-03 万国半导体股份有限公司 带有高纵横比沟槽接头以及沟槽间亚微米间距的功率器件
CN104966730B (zh) * 2015-05-14 2018-01-12 湖南大学 肖特基势垒高电流密度igbt器件
CN104966730A (zh) * 2015-05-14 2015-10-07 湖南大学 肖特基势垒高电流密度igbt器件
WO2017114113A1 (zh) * 2015-12-31 2017-07-06 全球能源互联网研究院 一种集成肖特基二极管的SiC沟槽型MOSFET器件及其制造方法
CN105633168A (zh) * 2015-12-31 2016-06-01 国网智能电网研究院 一种集成肖特基二极管的SiC沟槽型MOSFET器件及其制造方法
CN105551965B (zh) * 2016-01-15 2018-06-19 上海华虹宏力半导体制造有限公司 沟槽栅功率mosfet及其制造方法
CN105551965A (zh) * 2016-01-15 2016-05-04 上海华虹宏力半导体制造有限公司 沟槽栅功率mosfet及其制造方法
CN108807539A (zh) * 2017-04-26 2018-11-13 万国半导体(开曼)股份有限公司 紧凑源极镇流器mosfet及其制备方法
CN110379850A (zh) * 2018-04-13 2019-10-25 璟茂科技股份有限公司 沟槽式功率晶体管制法
CN112687743A (zh) * 2020-12-29 2021-04-20 电子科技大学 沟槽型碳化硅逆阻mosfet器件及其制备方法
CN112687743B (zh) * 2020-12-29 2022-05-17 电子科技大学 沟槽型碳化硅逆阻mosfet器件及其制备方法
CN113921614A (zh) * 2021-12-13 2022-01-11 捷捷微电(上海)科技有限公司 一种半导体功率器件结构及其制造方法
CN114038743A (zh) * 2022-01-07 2022-02-11 绍兴中芯集成电路制造股份有限公司 沟槽栅器件的制造方法
CN116646391A (zh) * 2023-07-26 2023-08-25 深圳市锐骏半导体股份有限公司 一种沟槽功率器件及其制造方法

Also Published As

Publication number Publication date
US8580667B2 (en) 2013-11-12
TWI455323B (zh) 2014-10-01
TW201421702A (zh) 2014-06-01
US8980716B2 (en) 2015-03-17
CN102544100B (zh) 2015-04-08
TWI538224B (zh) 2016-06-11
US20120146090A1 (en) 2012-06-14
TW201225306A (en) 2012-06-16
US9911840B2 (en) 2018-03-06
US20150171201A1 (en) 2015-06-18
US20140048846A1 (en) 2014-02-20

Similar Documents

Publication Publication Date Title
CN102544100A (zh) 带有集成二极管的自对准沟槽mosfet
US10192982B2 (en) Nano MOSFET with trench bottom oxide shielded and third dimensional P-body contact
US8575695B2 (en) Lateral super junction device with high substrate-drain breakdown and built-in avalanche clamp diode
TWI509809B (zh) 帶有自對準有源接觸的基於高密度溝槽的功率mosfet及其制備方法
US6825105B2 (en) Manufacture of semiconductor devices with Schottky barriers
US8373208B2 (en) Lateral super junction device with high substrate-gate breakdown and built-in avalanche clamp diode
US11552172B2 (en) Silicon carbide device with compensation layer and method of manufacturing
US11038037B2 (en) Sawtooh electric field drift region structure for planar and trench power semiconductor devices
US9564516B2 (en) Method of making integrated MOSFET-schottky diode device with reduced source and body kelvin contact impedance and breakdown voltage
CN102148159B (zh) 自对准电荷平衡的功率双扩散金属氧化物半导体制备方法
US20050167744A1 (en) Semiconductor device containing dielectrically isolated PN junction for enhanced breakdown characteristics
CN107112276A (zh) 具有带锥形氧化物厚度的多晶硅填充渠沟的功率组件
US9450050B2 (en) Lateral super junctions with high substrate breakdown and build in avalanche clamp diode
US20190122926A1 (en) Self-Aligned Shielded Trench MOSFETs and Related Fabrication Methods
EP3651202A1 (en) Semiconductor device with superjunction and oxygen inserted si-layers
TW201029182A (en) Charged balanced devices with shielded gate trench
US20220130998A1 (en) Power semiconductor devices including angled gate trenches
US10186573B2 (en) Lateral power MOSFET with non-horizontal RESURF structure
US20200279912A1 (en) Super junction semiconductor device and method of manufacturing the same
EP2650921A1 (en) Semiconductor structure comprising active region trenches arranged in a dispersed manner
US20200365708A1 (en) Power semiconductor devices having reflowed inter-metal dielectric layers
KR20210065759A (ko) 전력 반도체 소자

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160906

Address after: 400700 Chongqing city Beibei district and high tech Industrial Park the road No. 5 of 407

Patentee after: Chongqing Wanguo Semiconductor Technology Co.,Ltd.

Address before: Bermuda Hamilton Church 2 Cola Lunden House Street

Patentee before: ALPHA & OMEGA SEMICONDUCTOR, Ltd.

Effective date of registration: 20160906

Address after: Bermuda Hamilton Church 2 Cola Lunden House Street

Patentee after: ALPHA & OMEGA SEMICONDUCTOR, Ltd.

Address before: The 94085 California Oak Park Road No. 475 in Sunnyvale, Mead

Patentee before: ALPHA & OMEGA SEMICONDUCTOR, Ltd.

TR01 Transfer of patent right

Effective date of registration: 20180211

Address after: The British West Indies Dakaiman Cayman Island KY1-1107 No. 122 Marie street, and the wind floor 709 mailbox

Patentee after: Alpha and Omega Semiconductor (Cayman) Ltd.

Address before: 400700 Beibei section of Chongqing high-tech industrial park land and water the road No. 5 of 407

Patentee before: Chongqing Wanguo Semiconductor Technology Co.,Ltd.

TR01 Transfer of patent right