TW201029182A - Charged balanced devices with shielded gate trench - Google Patents

Charged balanced devices with shielded gate trench Download PDF

Info

Publication number
TW201029182A
TW201029182A TW99101558A TW99101558A TW201029182A TW 201029182 A TW201029182 A TW 201029182A TW 99101558 A TW99101558 A TW 99101558A TW 99101558 A TW99101558 A TW 99101558A TW 201029182 A TW201029182 A TW 201029182A
Authority
TW
Taiwan
Prior art keywords
gate
trench
epitaxial layer
channel
semiconductor
Prior art date
Application number
TW99101558A
Other languages
Chinese (zh)
Other versions
TWI442567B (en
Inventor
Francois Hebert
Original Assignee
Alpha & Omega Semiconductor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/321,435 external-priority patent/US7893488B2/en
Application filed by Alpha & Omega Semiconductor filed Critical Alpha & Omega Semiconductor
Publication of TW201029182A publication Critical patent/TW201029182A/en
Application granted granted Critical
Publication of TWI442567B publication Critical patent/TWI442567B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

This invention discloses a semiconductor power device disposed on a semiconductor substrate includes a plurality of deep trenches with an epitaxial layer filling said deep trenches and a simultaneously grown top epitaxial layer covering areas above a top surface of said deep trenches over the semiconductor substrate. A plurality of trench MOSFET cells disposed in said top epitaxial layer with the top epitaxial layer functioning as the body region and the semiconductor substrate acting as the drain region whereby a super-junction effect is achieved through charge balance between the epitaxial layer in the deep trenches and regions in the semiconductor substrate laterally adjacent to the deep trenches. Each of the trench MOSFET cells further includes a trench gate and a gate-shielding dopant region disposed below and substantially aligned with each of the trench gates for each of the trench MOSFET cells for shielding the trench gate during a voltage breakdown.

Description

201029182 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及-種垂直半導體功率裝置,特別涉及 有單-薄外延層,依靠先進製造來實現的,可用於製備 各種尺寸㈣有超級結結構㈣罩了滅溝道的電 衡的垂直功率裝置,通過簡單、靈活的製作丄藝” 於不同的擊穿電壓。 e k用 【先前技術】 剛#統的製造技術和裝置結構,雖然、在減小的㈣電 , 同時,能進-步提高擊穿錢,但仍然面臨許多技贿 0201029182 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a vertical semiconductor power device, and more particularly to a single-thin epitaxial layer, which is realized by advanced manufacturing and can be used for preparing various sizes (four) having super The junction structure (4) covers the vertical power device of the channel's electrical balance, and the different breakdown voltages are made by simple and flexible fabrication. ek uses [prior art] The manufacturing technology and device structure of the system, although In the reduction of (four) electricity, at the same time, can further increase the breakdown of money, but still face many technical bribes 0

題。由於傳統高功率裝置的結構與點,通常需要多 時、複雜和昂貴的製作過程.,因此高塵半導效功率裳置 時際應用和實雜都是將要對論的 那樣’高廢功率裝置的製作工藝都很複雜,而且產:和 收益都很低。另外,半導體功率赛置通常並不是用原始 半導體晶片製作’而是用气声外延屠的儀理晶片製作 而成。這無疑增加了半導和雜Ϊ‘製作成本。而且 其功能和性能特徵也取決於,^成外延層時所用的工藝 Q 參數。因此,對於依賴於原始預處理晶片的功率裝置, 這種預處理的晶片的使用’進一步局限了這些功率裝置 的可製造性以及生產的靈活性。 相對於傳統工藝而言,超級結技術具有在不増加漏—源 電阻Rdson的同時,獲得更高的擊穿電壓等優點。對於標 準的功率電晶體單元,擊穿電壓很大程度上依賴於低摻^ 雜的漂>;0·層。因此,漂流層越厚,所能承受的額定電壓 099101558 越高,但漏一 表單编號Α0101 源電阻Rdson卻大幅增加。在傳統功率裝置 第 4 貢/共 59 頁 0993094181-0 201029182 中’漏一源電阻Rdson與擊穿電壓BV近似複合以下函數關 係:question. Due to the structure and point of the traditional high-power device, it usually takes a long time, complicated and expensive production process. Therefore, the high-dust semi-conducting power will be used in the application of time and the real miscellaneous is the high-power device. The production process is very complicated, and the production: and the income are very low. In addition, semiconductor power racing is usually not made with the original semiconductor wafer, but is made with an acoustic wafer. This undoubtedly increases the cost of semi-conductivity and miscellaneous ‘production. Moreover, its functional and performance characteristics also depend on the process Q parameters used in the epitaxial layer. Thus, the use of such pre-processed wafers for power devices that rely on the original pre-processed wafers further limits the manufacturability and flexibility of production of these power devices. Compared with the conventional process, the super junction technology has the advantages of obtaining a higher breakdown voltage while increasing the drain-source resistance Rdson. For a standard power transistor unit, the breakdown voltage is highly dependent on the low-doped drift > Therefore, the thicker the drift layer, the higher the rated voltage that can withstand 099101558, but the leakage of the form number Α0101 source resistance Rdson has increased significantly. In the conventional power device, the drain-source resistance Rdson and the breakdown voltage BV are approximately combined with the following functional relationship:

Rdson 〇ζΒΥ2. 5 相比之下,帶有超級結結構的裝置漂流區中達到了電荷 平衡。漏一源電阻Rdson與擊穿電壓BV複合一個更加便於 應用的函數關係式,即:Rdson 〇ζΒΥ 2. 5 In contrast, the charge balance is achieved in the drift zone of the device with a super junction structure. The drain-source resistance Rdson is combined with the breakdown voltage BV to be a more convenient functional relationship, namely:

, Rdson 〇cBV 因此在高壓裝置應用中,需要通過設計和生產帶有超級 ® 結結構的半導體功率裝置,以便降低漏一源電阻Rdson, 同時獲得高擊穿電壓,提升裝置性能。漂流區中溝道附 近的區域,帶有相反的導電類型。只爹溝道附近的區域 同樣掺雜相反的導電類型,漂流區的相對摻雜濃度就會 比較高。在關閉狀態時,這兩個區域中的電荷相互抵消 ,漂流區呈耗盡狀態,可以承受高電壓,這被稱為超級 結效應。在開啟狀態時’ i於漂滅區的摻雜濃度較高, 所以其漏-源電阻副 ^ ^ “, : . ^operry ϋ 然而在製造功率裝置方面赛/結技術仍然會遇 到許多技術上的難題與局限性。更確切地說,一些傳統 結構中都要求帶有多外延層和/或掩埋層。根據以前的製 作工藝’許多裝置結構都需要多次進行背部刻蝕和化學 機械拋光(CMP)工藝。此外,這些製作工藝處理裝置的 過程,有時並不符合標準的鑄造工藝。例如,有些標準 的高產量半導體鑄造廠都具有氧化物化學機械拋光(CMP )’但有些超級結技術中需要用到的矽化學機械拋光( CMP)卻沒有。因此,這些裝置的結構特點和製作工藝決 099101558 表單編號A0101 第5頁/共59頁 0993094181-0 201029182 定了’它們並不適用於從低壓到高壓的裝置應用。換言 之’某些卫藝成本過高’並且/或者卫藝太過冗長複雜, 並不適用於高額定電壓_置仙。下文還將繼續討論 ’這些具有不同結構特點'通過各種卫藝製造的傳統裝 置’都帶有阻礙這些裝置在市場需求中實際應用的困難 和局限。 由於標準的VDM0S並不具傷電荷平衡的功能特點,因此適 用於高壓的半導體功率裝置卿_型包括帶有如川 圖所不的標準結構的裝置。根據Ι-ν (電流_電壓)性⑮ φ 測試,以及對這種類型裝置的模擬分析進一步證實:正 是出於這個顧,擊?電|权有料—雉品f因數, 即詹森極释。為了滿足高擊寄電壓的要求,帶有這種結 構的裝置通常漏極漂流區的摻.雜-濃•度,較低、,' 致使其導通 電阻相對較尚。為了降低導通電阻,這種裝置的晶片尺 寸通常都很大。鐾於以上所述的缺點:晶片成本過高( 每個晶圓上的晶片數量太少):以^農不適甩於標準封裝中 的較大的晶片,因此儘管這種米姜的叙作工藝簡單,而 ◎ 且生產成本不高,然而對於襟中高電流、低阻抗 的應用要求,它們卻並不滿足。 半導體功率裝置的第二種類型是帶有二維電荷平衡的結 構,這種裝置對於給定的阻抗,可獲得高於詹森極限的 擊穿電壓’或對於給定的擊穿電壓,可獲得低於詹森極 限的電阻率(導通電阻Rdsonx裝置面積)。這種類型的 裝置結構通常稱為超級結技術裝置。在超級結結構中, 基於在氧化物旁路的裝置中的PN結和靜電場起電板技術 ,在一個垂直裝置的漂流漏極區中,平行於電流方向上 099101558 表單編號A0101 第6頁/共59頁 0993094181-0 201029182, Rdson 〇cBV Therefore, in high-voltage device applications, it is necessary to design and produce a semiconductor power device with a super ® junction structure in order to reduce the drain-source resistance Rdson while achieving high breakdown voltage and improving device performance. The area near the channel in the drift zone has the opposite conductivity type. Only the region near the channel is doped with the opposite conductivity type, and the relative doping concentration of the drift region is higher. In the off state, the charges in these two regions cancel each other out, and the drift region is depleted and can withstand high voltages. This is called the super junction effect. In the on state, the doping concentration of 'i in the drift zone is higher, so its drain-source resistance pair ^ ^ ", : . ^operry ϋ However, in the manufacture of power devices, the race/junction technology still encounters many technical problems. The problems and limitations. More precisely, some conventional structures require multiple epitaxial layers and/or buried layers. According to previous manufacturing processes, many device structures require multiple back etching and chemical mechanical polishing ( CMP) processes. In addition, these processes for fabricating process devices sometimes do not conform to standard casting processes. For example, some standard high-volume semiconductor foundries have oxide chemical mechanical polishing (CMP)' but some super-junction technologies The chemical mechanical polishing (CMP) that is used in the process is not. Therefore, the structural characteristics and manufacturing process of these devices are 099101558. Form No. A0101 Page 5 / Total 59 Page 0993094181-0 201029182 Defined 'They are not applicable to Low-voltage to high-voltage device applications. In other words, 'some of the cost of the art is too high' and / or the art is too long and complicated, not suitable for high rated voltage _ set The following will continue to discuss 'these traditional devices made with various structural features' through various kinds of artisans' have difficulties and limitations that hinder the practical application of these devices in the market demand. Because the standard VDM0S does not have a charge-balance function. Features, therefore suitable for high-voltage semiconductor power devices, including devices with standard structures as shown in the diagram. According to the Ι-ν (current_voltage) 15 φ test, and the simulation analysis of this type of device further Confirmation: It is precisely because of this, the power, the right, the right, the f factor, that is, Jensen's extreme release. In order to meet the requirements of high voltage, the device with this structure is usually mixed with the drain drift zone. The hetero-concentration, lower, 'cause its on-resistance is relatively high. In order to reduce the on-resistance, the wafer size of such a device is usually large. The disadvantages described above are: the cost of the wafer is too high (per The number of wafers on a wafer is too small): It is not suitable for larger wafers in the standard package, so although the rice ginger is simple to process, it is produced. This is not high, but they are not satisfactory for high current and low impedance applications in the middle. The second type of semiconductor power device is a structure with two-dimensional charge balance, which can be used for a given impedance. Obtaining a breakdown voltage above the Jensen limit' or for a given breakdown voltage, a resistivity lower than the Jensen limit (on-resistance Rdsonx device area) can be obtained. This type of device structure is commonly referred to as super junction technology. In the superjunction structure, based on the PN junction and electrostatic field electrification plate technology in the oxide bypass device, in the drift drain region of a vertical device, parallel to the current direction 099101558 Form No. A0101 No. 6 Page / Total 59 Pages 0993094181-0 201029182

的電荷平衡,可以使裝置獲得更高的擊穿電壓β 第1Β圖為一個帶有超級結裝置的橫戴面視圖,通過增大 漂流區中的漏極摻雜濃度,在保持擊穿電壓不變的情況 下,降低裝置的電阻率(Rsp==阻抗χ有源區)。通過在 漏極中形成Ρ—型(對於η —溝道裝置)垂直立柱,導致 尚壓下漏極在水準方向完全耗盡,在Ν +襯底處從漏極高 壓中夾斷並遮罩溝道,從而達到電荷平衡。歐洲專利 0053854(1982)和美國專利4, 754, 31〇中都已經提到了 這種技術,具體在該專利的第13圖以及美國專利 5, 216, 275中。之前的這些公開說明書中,垂直超級結 都是作為Ν和Ρ肇摻雜物的垂直-立柱β在垂直训⑽裝置中 ,如附圖所示,通過摻雜一個帶有倒壁的結耩,形成其 中一個摻雜立柱,獲得垂直電荷平衡。皆了摻雜立枉, 美國專利4134123和美國專利6037632還提出使用摻雜浮 島來增加擊穿電壓或降低電阻。超級結的這種裝置結構 仍然通過耗盡P—噚,遮罩極影響。但 由於電荷存儲和轉換等問4卜,¾痒構仍然受到很 多技術難題的局限·》 對於上述的超級結型裝置,由於其製作方法工序繁多、 有些工序進度緩慢而且產量很低,因此要製備這種裝置 通常相當複雜、昂責,而且需要很長的加工時間。確士 ,這些工序包含多個外延層和掩埋層。部分結構= 至要求溝道深度要穿過整個漂流區,並且大多 取工藝都 需要進行背部刻蝕或化學機械拋光。總之,這妆傳統妗 構和製作方法製作緩慢而且成本昂貴,並不經濟實' ° 不適於廣泛應用。 ’ 地說 099101558 表單編號A0101 099309418} 一 0 201029182 本專利申请為由本專利的發明人申請的美國專利 12/0 05, 878的部份接續申請案,其中提出了—種在深溝 道中生長的帶有電荷平衡外延立柱的超級結裝置。溝道 金屬礼化物半導體場效應管(MGSFET)形成在深溝道以 及冰溝道周圍區域上方的頂部外延層中。但是這種裝置 的溝道栅極所處的電場較高,容易因電壓擊穿而受損。 因此,除了要改進這種超級結裝置的結構和製作工藝, 還需要在擊穿時遮罩有源單元的敏感柵極。第w — i圖至 第1 c~~3圖表示美國專利6, 635, 9〇6所述的在外延層的大 部分層中,帶有P一浮爲j的裝置β但是這些浮島不能自 對準到栅極或溝道上,而且在'電壓擊穿時.,,並不能有效 地保護敏感溝道栅極。Takay’a等人在2005年舉行的第17 屆功率半導體裝置&amp;稂體電:路國際論壇上發表的《浮島與 厚底部氧化物溝道栅極金屬氧化物半導體場效應管( FITM0S)》一文中提出了一種結構,如第1D圖所示,這 種結構表示,為了使漏極和表溝道;栅桎底郝的p一區達到 電荷平衡而植入的浮動P —發,:,可以於將栅極從P —區中 分離出來。但是由於這些位於'海道;柵極下方的P一植入區 ’與帶有厚底部氧化物的柵極溝道接觸,因此可能會減 少開路時通過的電流量。 因此,在功率半導體裝置設計和製造工藝令,為了解決 上述困難與局限,有必要找到一種新的功率裝置結構和 製造方法。 【發明内容】 [0003]本發明一方面是為了提出一種新改良過的裝置結構和製 099101558 作方法,通過簡單、便捷的製作工序,在漂流區中形成 表單編號A0101 第8頁/共59頁 0993094181-0 201029182 摻雜立柱’實現電荷平衡。無需料刻贼化學機械拖 光’精簡了加工步驟,只需形成一個單一的薄外延層, 外延層同時生長在深溝道中和深溝道上方,以及深溝道 周圍區域的頂面上’形成超級結結構。在溝道中的外延 層β刀形成外延立柱。在深溝道上方以及深溝道周圍區 域表面上方科延層部分,形㈣的頂料延層,溝道 金屬氧化物半導體場效應管單元就形成在這個頂部外延 層中。這兩部分外延層可以作為單—外延層同時生長。 電曰β體單元的溝道柵極進一步被遮罩,_旦發生電壓擊 穿,摻雜的遮罩區通過溝道柵極植入到栅極下方的漂流 區,形成了自校準摻雜遮罩逼,從而遮罩敏感柵極,解 決了上述租難和局限〇摻雜苺遮辜區降低了,溝道柵極處 的峰值電場;還減慢了碰撞電離速度,增’加了擊穿電壓 。最終的結構提升了電參數的可靠性和穗定性。摻雜的 遮罩區形成在溝道栅择下方的聚積區下方,並不接觸溝The charge balance allows the device to achieve a higher breakdown voltage. Figure 1 is a cross-sectional view with a superjunction device. By increasing the drain doping concentration in the drift region, the breakdown voltage is maintained. In the case of a change, the resistivity of the device is lowered (Rsp == impedance χ active region). By forming a Ρ-type (for the η-channel device) vertical column in the drain, the drain is completely depleted in the horizontal direction under the pressure, and the trench is pinched off and covered at the Ν + substrate from the drain high voltage. Road, thus achieving charge balance. This technique is already mentioned in the European Patent No. 0, 053, 854 (1982) and U.S. Patent No. 4, 754, the entire disclosure of which is incorporated herein by reference. In the foregoing publications, the vertical superjunctions are vertical-columns β as the bismuth and antimony dopants in the vertical training (10) device, as shown in the drawing, by doping a crucible with inverted walls, One of the doped columns is formed to obtain a vertical charge balance. It is also proposed to use doped floating islands to increase the breakdown voltage or to reduce the resistance, as disclosed in U.S. Patent No. 4,134,123 and U.S. Patent No. 6,037,632. The structure of this super-junction is still affected by the depletion of P-噚, the mask. However, due to the charge storage and conversion, etc., the 3⁄4 iteration is still limited by many technical problems. For the above-mentioned super-junction device, due to the complicated manufacturing process, slow progress of some processes and low yield, it is necessary to prepare Such devices are often quite complex, cumbersome, and require long processing times. It is true that these processes include multiple epitaxial layers and buried layers. Part of the structure = to the required depth of the channel to pass through the entire drift zone, and most of the process requires back etching or chemical mechanical polishing. In short, this traditional makeup and manufacturing method is slow and costly, and is not economical. ° Not suitable for a wide range of applications. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; Super junction device for charge balance epitaxy column. A channel metal etched semiconductor field effect transistor (MGSFET) is formed in the deep epitaxial layer and the top epitaxial layer over the area around the ice channel. However, the electric field of the channel gate of such a device is high and is easily damaged by voltage breakdown. Therefore, in addition to improving the structure and fabrication process of such a superjunction device, it is also necessary to mask the sensitive gate of the active cell during breakdown. Figures w - i to 1 c ~ ~ 3 show U.S. Patent No. 6,635,9,6, in most layers of the epitaxial layer, with P-floating device β, but these floating islands cannot Aligned to the gate or channel, and at the time of 'voltage breakdown, does not effectively protect the sensitive channel gate. Takay'a et al., "The Floating Island and Thick Bottom Oxide Channel Gate Metal Oxide Semiconductor Field Effect Transistor (FITM0S)", presented at the 17th Power Semiconductor Device &amp; In this paper, a structure is proposed, as shown in Fig. 1D, which shows that the floating P-emitter is implanted in order to make the drain and the surface of the gate; The gate can be separated from the P-region. However, since these are located in the 'sea channel; the P-implant region below the gate is in contact with the gate channel with the thick bottom oxide, the amount of current passing through the open circuit may be reduced. Therefore, in order to solve the above difficulties and limitations in power semiconductor device design and manufacturing process, it is necessary to find a new power device structure and manufacturing method. SUMMARY OF THE INVENTION [0003] One aspect of the present invention is to propose a new and improved device structure and method for manufacturing 099101558, forming a form number A0101 in a drifting area by a simple and convenient manufacturing process. Page 8 of 59 pages 0993094181 -0 201029182 Doped column 'to achieve charge balance. There is no need to slap thief chemical mechanical dragging' to streamline the processing steps, only need to form a single thin epitaxial layer, the epitaxial layer grows simultaneously in the deep channel and above the deep channel, and the top surface of the area around the deep channel 'forms a super junction structure . The epitaxial layer β knife in the channel forms an epitaxial column. Above the deep trench and above the surface of the deep trench region, the epitaxial layer of the shape (4), the trench MOSFET is formed in the top epitaxial layer. The two epitaxial layers can be grown simultaneously as a single-epitaxial layer. The channel gate of the 曰β body unit is further masked, and a voltage breakdown occurs. The doped mask region is implanted into the drift region under the gate through the trench gate to form a self-calibrated doping mask. The cover is forced to cover the sensitive gate, which solves the above-mentioned difficulties and limitations. The doped raspberry concealer area reduces the peak electric field at the channel gate; it also slows down the impact ionization speed and increases the breakdown. Voltage. The final structure improves the reliability and sharpness of the electrical parameters. The doped mask region is formed below the accumulation region below the trench gate and does not contact the trench

« ί _ I 道栅極。在栅極溝道下方有的層,其導電 7 sa哿 m 類型和聚積區的導電類型;資:&gt;丨灰為鱗if可以確保換雜 的遮罩區沒有接觸到柵極溝&quot;权4使裝置開啟時通過 的電流更多。 本發明的另一方面在於,本發明所述的超級結結構和形 狀可用來靈活調整所需的擊穿電壓的範圍。其製作工藝 簡便,可使用標準的處理模組和設備通過標準工藝’方 便地製備。由於此結構的電晶體部分’例如溝道柵極雙 擴散金屬氧化物半導體(DM0S) ’是自校準的’因此還 可進一步簡化製作工藝。上述技術難題與局限就會迎刃 而解。 099101558 表單編號Α0101 第9頁/共59頁 0993094181 201029182 綠切地說,本發明的-個方面在於提出了-種新改良過 的裝置結構和製作方法,以便在深溝道中形成—個外延 層’並且此外延層帶有—層薄的頂部外延層部分覆蓋 在裝置頂面上。此外延層的—部分也作為金屬氧化物半 導體場效應管(在n—溝道金屬氧化物半導體場效應管的 情況下為P-型)的本體區4外,在這個頂部薄外延層 中形成的金屬氡化物半導體場效應管單元,為溝道金屬 氧化物半導體場效應管。溝道栅料過帶有㈣的溝道 側壁和溝道底部摻雜植入區的― 除可能受溝道柵極的深度以及卩薄外延層打開’以消 溝道性能的敏嫿性。在用栅麵雜濃度影響的 前,通過栅極溝道,將多俯择雜#層填充柵極溝道之 的漂流區中。摻雜遮罩區的導'遮I區植極下方 體場效應管的本體區的導電類類4與金屬氡化物半導 ^ ^ I相同’並且摻雜遮罩區 還擔負拇極遮罩推雜區的作肖5 ’與栅極溝道自校準。摻 雜遮罩區可以是浮島:或者是*#、 ^ 败魂接(偏'置)到深溝道 中的外延層,從而也就被連接 /呀判了本體區。特別的是浮 島的情況並不太理想,原因是、、* i 牟動捕獲電荷,並使裝置 漂流;被捕㈣«f Μ 艰双古,24就減慢了 電轉換。電晶體單元的性能可D 1 ^通過簡單、便捷的製作 工藝來控制和調整。本發明所祕 1逆的超級結結構可以通過 進一步的改進,應用到更廣泛的領域 本發明的另一方面在於,提出τ J ~種新改良過的裝置結 構和製作方法’以便在一個薄沾相格 的項層上形成電晶體單元 ,其中薄頂層作為外延層覆蓋在深溝道上方以及深溝 道周圍和深溝道上方的頂面上。办 099101558 表單編號_ 第_共”穿過深溝道侧壁的離子 0993094181-0 〇 ◎ 201029182 / 主入(用和填充深溝道外延層 可以調節深溝道周圍漂流區的摻相反的離子) 電荷平衡、漏—源電阻Rds〇n以及擊和控 裝置性能參數。因此,離子注入提&quot;4穿電塵在内的 方法,可以進-步調敕 ,、種電荷控制的 和觸半導體功率 以便用於不同_的應$。 的性能, 本發明的另一方面在 構和製作η 了―種新改良過的裝置社 |作方法’以便在薄的頂辦 結 淺溝道柵極的功率電晶趙單元,其的上’形成帶有 位於垂直溝道上方的頂面周思區域上,覆蓋:卜外延層 上方。通卿道底部摻及側料=垂直溝道 以靈活地調魏置溝道祕就可 底部接雜植人,用於補償P_外延,並伴及溝道 及溝坫如 並保護適當的積聚以 通2晶石夕拇極層填充栅極溝道之前,要 極溝道的底面進行離子注入。使用垂直主入形 罩敏感的溝 道栅極。 Property 本發明的另—方面在於,新改良過的裝置結 構和製作方法’以便在-個薄的⑦層巾形成帶有較深 的溝道栅極的功率電晶趙單元,其中薄頂層作為一個外 延層,位於外延立柱上方的頂面周圍區域上覆蓋在外 延立柱上方。溝道柵極穿過頂部薄外延層並延伸至概 底區來,就不再需要用於連接聚積區的溝道底 部摻雜植人了。穿過栅姆道底心人的柵極遮罩換雜 區形成校準的雜區,健可以料溝道減用於在 電壓擊穿時遮罩敏㈣溝道柵極1道底部摻雜注入仍 099101558 09930941; 表單編號A0101 第11頁/共59頁 201029182 099101558 本發7於確保她遮罩雜^接觸柵極溝道。 置,個較佳實施例簡要說明了—種半導體功率裝 延層二有多個深溝道的半導體襯底。用-個外 外㈣ 此外延層還包括-個同時生長的頂部 ’覆蓋在深溝道頂面上方和半導體襯底上方的區 。。外延層的導電類型與半導體襯底相反。在頂部外 延層中’形❹個溝道金屬氧化物半導體場效應管單元 ’頂部外延層作為本趙區,半導體襯底作為漏極區,通 過深溝道巾的外延層與半導倾底巾㈣域之間的電荷 平衡1得超級結效應。每個溝道金屬氧化物半導趙場 效應管單元還包括設置在下· 一個溝道柵極和一個柵 極遮罩摻_’與每一個溝遒柵極.自稱,並且每一個 /籌道金屬驗物半導㈣㈣,U都會在電麼擊穿時 ,遮罩溝道柵極。在-個典型實_中,溝道金屬氧化 物半導艘場效應管單兔的每個溝道柵極,都通過頂部外 延層開口,並用-種柵極介^極導電材料 填充。在另一個典型實施例中',:溝:道鉴囑氧化物半導體 場效應管單元的每個溝道_極,丨4^|過頂部外延層,進 入半導體襯底的頂部,半導體襯底中具有一個栅極溝道 ’其深度大於或等於頂部外延層的厚度,並且用一種桃 極介質材料和一種栅極導電材料填充。在另一個典型實 施例中,溝道柵極還包括位於溝道栅極側壁周圍的拇極 侧壁摻雜區,以及柵極溝道下方的柵極-底部摻雜區,其 中栅極側壁摻雜區和柵極-底部摻雜區的導電類型與半導 艘襯底中的導電類型一致。在另一個典型實施例中,半 導艎襯底還包括深溝道周園的區域,其摻雜漢度梯度橫 〇 Θ 表單编號Α0101 第12頁/共59頁 0993094181-0 201029182 向分佈,從周圍區域開始摻雜濃度逐漸降低,在深溝道 的側壁附近’濃度迅速降低。在另—個典型實施:二 每個金屬氧化物半導體場效應管電晶體, 八* ’在溝道桃 e 極的侧壁以及溝道柵極下方的栅極-底部摻__,還 帶有栅極侧壁摻雜區’其中柵極側壁摻雜區和柵極_底部 摻雜區的導電類型都與半導體襯底中的導電類型相曰 在另-個典型實施例中,深溝道在半導體襯底的二附 近,漏極接觸摻雜區圍繞在深溝道的底部附近,用於連 接漏極電極。在另-個典型實施例中,半導體功率裝置 還包括-個底部金屬廣,構成-個漏極電極,接觸漏極 接頭換雜區。在另-個典型實施·例中,溝道金屬氧化物 場效應管單元的溝道栅極和深溝道,都用外延層填充,« ί _ I gate. There is a layer under the gate channel, which has a conductivity type of 7 sa哿m and a conductivity type of the accumulation region; :: &gt; ash is scaled if it can ensure that the mask area of the replacement does not touch the gate trench 4 The current that passes through the device is increased. Another aspect of the present invention is that the super junction structure and shape of the present invention can be used to flexibly adjust the range of breakdown voltages required. It is easy to manufacture and can be easily prepared by standard procedures using standard processing modules and equipment. Since the transistor portion of this structure, such as the channel gate double-diffused metal oxide semiconductor (DMOS), is self-aligned, the fabrication process can be further simplified. The above technical problems and limitations will be solved. 099101558 Form No. 1010101 Page 9/59 Page 0993094181 201029182 Green cuts, one aspect of the present invention is to propose a new and improved device structure and fabrication method for forming an epitaxial layer in a deep channel and In addition, the extended layer has a thin top epitaxial layer partially covering the top surface of the device. In addition, the portion of the extension layer is also formed as a metal oxide semiconductor field effect transistor (P-type in the case of an n-channel metal oxide semiconductor field effect transistor) in the bulk epitaxial layer. The metal halide semiconductor field effect transistor unit is a channel metal oxide semiconductor field effect transistor. The trench gate passes through the (4) trench sidewalls and the trench bottom doped implant region - except for the depth of the trench gate and the thin epitaxial layer opening to de-channel performance. The polydip structure layer is filled into the drift region of the gate trench through the gate trench before the gate impurity concentration is affected. The conductive type 4 of the body region of the doped mask region of the doped mask region is the same as the metal telluride semiconducting ^ ^ I and the doped mask region also bears the thumb mask The miscellaneous area is 5' self-aligned with the gate channel. The doped mask area may be a floating island: or an epitaxial layer in which the *#, ^ singer is connected (to the ''set') to the deep trench, and thus the body region is connected. In particular, the situation of floating islands is not ideal, because, * i 牟 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获 捕获The performance of the transistor unit can be controlled and adjusted by a simple and convenient manufacturing process. The super-junction structure of the present invention can be further improved and applied to a wider field. Another aspect of the present invention is to propose a new improved device structure and manufacturing method for a thin dip. A transistor unit is formed on the phased item layer, wherein the thin top layer covers the top surface of the deep trench and the top surface of the deep trench and the deep trench as an epitaxial layer. Office 099101558 Form Number_第_共"Ion through the deep channel sidewalls 0993094181-0 〇◎ 201029182 / Master (using and filling the deep channel epitaxial layer can adjust the opposite ions of the drift zone around the deep channel) Charge balance, Leakage-source resistance Rds〇n and performance parameters of the hitting and controlling device. Therefore, the method of ion implantation and "4" electric dust can be step-by-step, charge control and semiconductor power for different purposes. The performance of _ is $. The other aspect of the present invention is to construct and fabricate a new improved device. The upper portion is formed on the top surface of the upper surface of the vertical channel, covering: above the epitaxial layer. The bottom of the Tongqing Road is doped with the side material = vertical channel to flexibly adjust the channel secret It can be connected to the bottom of the implant to compensate for the P_ epitaxy, and with the channel and the gully, and to protect the proper accumulation to fill the gate channel through the 2 crystal spar. Perform ion implantation. Use vertical master Shield-sensitive trench gate. Another aspect of the invention resides in a new and improved device structure and method of fabrication to form a power cell with a deep trench gate in a thin 7-layer towel. Zhao unit, wherein the thin top layer is used as an epitaxial layer, and the area around the top surface above the epitaxial column is over the epitaxial column. The channel gate passes through the top thin epitaxial layer and extends to the bottom region, so that it is no longer needed. The bottom of the channel connected to the accumulation region is doped. The gate mask passing through the gate of the gate is shaped to form a calibrated impurity region, and the material channel is reduced for shielding during voltage breakdown. The cover sensitive (four) channel gate 1 channel doping injection is still 099101558 09930941; Form No. A0101 Page 11 / Total 59 pages 201029182 099101558 This is to ensure that her mask is touching the gate channel. The embodiment briefly describes a semiconductor power extension layer having a plurality of deep trench semiconductor substrates. The outer layer (four) further includes a simultaneously grown top portion overlying the deep trench top surface and the semiconductor. Area above the substrate The conductivity type of the epitaxial layer is opposite to that of the semiconductor substrate. In the top epitaxial layer, the top epitaxial layer of the 'shaped channel metal oxide semiconductor field effect transistor cell' serves as the local region, and the semiconductor substrate serves as the drain region. The charge balance between the epitaxial layer of the deep trench towel and the semi-conductive undercut (four) domain has a super junction effect. Each channel metal oxide semi-conducting FET unit also includes a drain gate layer and A gate mask is doped with _' and each gully gate. Self-proclaimed, and each/planning metal inspection semi-conducting (four) (four), U will mask the channel gate during electrical breakdown. In a typical implementation, each channel gate of a channel metal oxide semi-conducting field effect transistor is passed through a top epitaxial layer and filled with a gate dielectric material. In another exemplary embodiment, each trench of the oxide semiconductor field effect transistor cell has a top epitaxial layer that enters the top of the semiconductor substrate and is in the semiconductor substrate. There is a gate trench whose depth is greater than or equal to the thickness of the top epitaxial layer and is filled with a peach dielectric material and a gate conductive material. In another exemplary embodiment, the trench gate further includes a thumb-side doped region around the sidewall of the trench gate, and a gate-bottom doped region under the gate trench, wherein the gate sidewall is doped The conductivity type of the impurity region and the gate-bottom doping region is identical to the conductivity type in the semiconductor substrate. In another exemplary embodiment, the semiconducting germanium substrate further includes a region of the deep trench perimeter, and the doping threshold is 表单0101, page 12/59, 0993094181-0, 201029182, distributed from The doping concentration gradually decreases in the surrounding area, and the concentration decreases rapidly near the side wall of the deep channel. In another typical implementation: two MOSFETs, eight*'s on the sidewall of the channel's e-pole and the gate-bottom __ under the trench gate, with The gate sidewall doped region 'where the conductivity types of the gate sidewall doped region and the gate-bottom doped region are both opposite to the conductivity type in the semiconductor substrate. In another exemplary embodiment, the deep trench is in the semiconductor Near the second side of the substrate, a drain contact doped region surrounds the bottom of the deep trench for connecting the drain electrode. In another exemplary embodiment, the semiconductor power device further includes a bottom metal that forms a drain electrode that contacts the drain junction swap region. In another exemplary embodiment, the channel gate and the deep trench of the trench metal oxide field effect transistor cell are filled with an epitaxial layer.

並且進-步將外延層加玉成帶有柵極遮罩摻雜區的條紋 ,作為浮動摻雜區設置在溝道柵極的條故下方。在另一 個典型實施例中,溝道金屬氧化物場效應管單元的溝道 柵極還加工成帶有錯位凸出_的|4:^ κ肩_甩外延層填 充的深溝道,交替延伸至隹綱^上,以便在延 伸的溝道栅極下面’通過道中的外延層,將 柵極遮罩摻雜區電連接至電晶體單元的本體區。 本發明還提ίϋ 了_種在半導趙襯底上製備半導體功率裝 置的方法。該方法包括町步驟:a)製備半導體概底; b)在半導體襯底上開通多個轉道,並生長—個外延層 填充深溝道,用頂部外延層覆蓋半導_底的頂面,其 中外延深溝道中的外延層部分和頂部外延層是同時生長 的單廣,其中外延層的導電類型與半導_底的導電類 变相同;C)在頂部外延層中形成多個溝道金屬氧化物半 099101558 表單编琥A0101 第13頁/共59頁 0993094181 201029182 導體%效應管單;?t ’通過開通多個溝道栅極,在溝道撕 下方植入多個柵極遮罩摻雜區,以便在電壓擊穿半導 體功率褒置時料電晶體單元的溝道滅,頂部外延層 區的作用’半導體概底起漏極區的作用,通過深 ,道中的外延層部分和半導體襯底巾側向深溝道的概底 P刀之間的電荷平衡,獲得超級結效應。在-個典型實 =例中,本方法還包括通過帶有第一導電類型摻雜物的 冰溝道側壁植入,在深溝道之間的半導體襯底區中,形 成水準濃度梯度,並通過調整深溝道側壁植入,改變半 導體功率裝置的性能H個典型實施射,本方法 ❿ 還包括將一聲導電類型與半導體襯底湘餺的摻雜物,植 入到柵極溝道的侧壁和底部。在另一银典型·實施例中, 製備半導體襯底的工序包括製備單層半奪體襯底,其中 開通多個深溝道的工序包括在單層半導鱧襯底中開通多 個深溝道。在另一個典型實施例中,製備半導體襯底的 工序包括製備底部襯底,媒巍處生長頂部襯 底層,頂部襯底層的導電類型與者:部栅底的導電類型相 q 同。在另一徊典型實施例中,本方法還包括在深溝道的 底部進行重摻雜’以便在生長外延層之前,形成漏極接 觸區;研磨襯底背部’露出漏極接觸區。在另一個典蜇 實施例中,本方法還包括在形成多個溝道金屬氧化物半 導體場效應管單元之前,對外延層的頂面進行部分化學 機械拋光,以使其平滑。 【實施方式】 [0004] 099101558 參見第2圖所示金屬氧化物半導體場效應管裝置1〇〇的橫 截面視囷,提出了本發明在結構和生產製造方面的新’^99309418Η» 表單编號Α0101 第14頁/共59頁 201029182 路。金屬氧化物半導體場效應管裝置1〇〇的詳細說明將在 下文第3圖仲介紹。金屬氧化物半導體場效應管裝置刚 位於襯底105上,襯底1〇5中含有一個以摻雜底部區域 120 ’起漏極接縣的作用,通過用外延層填充的深溝道 130 (如第3圖所示’經背部研磨)摻雜。襯底1G5中還含 有-個頂部部分125 ’深溝道m就形成在頂部部分125 中。例如對於-個n—溝道金屬氧化物半導體場效應管, 襯底105為n-型,在深溝道中的外延層為?_型。金屬氧 化物半導體場效應管電晶體單元位於單一薄外延層上, 填充外延立柱溝道130 ’並覆蓋在ρ_外延立柱周圍的頂 面上,將Ρ—外延填充物填_立柱溝道中。頂面上方的 薄的Ρ-外延層部分也作為本想區,面繞在_極多晶石夕 填充的溝道柵極145周圍^ Ρ—本體屉15〇還圍繞著位於溝 道柵極145周圍的源極區155。溝道柵極145用柵極氧化 物層140襯墊,用多晶矽填充,並被帶有接觸開口的絕 緣層160覆蓋,以便通過源溝道柵極丨“ . f% 之間的源極一本體區域。#柵極—遮罩摻雜 區144遮罩,柵極一遮罩在用栅極多晶梦填 充溝道之則’通過拇極溝道植入的。因此,栅極一遮罩 摻雜區144與溝道栅極145自校準❶栅極一遮罩區144的 導電類型與填充在外延立柱溝道130中的外延層的導電類 型相同。 如第2圖所示的裝置帶有單一薄外延層,以便形成溝道栅 極,其中溝道栅極的溝道中用柵極多晶矽填充,並通過 它形成開口。這種新結構實現了.超級結的性能要求,例 如不超過“詹森極限”,擊穿電壓不隨生長在起始襯底 099101558 表單蝙號A0101 苐15頁/共59頁 0993094181-0 201029182 上的外延層的厚度變化而變化等。絕對擊穿電壓的因素 疋’溝道在半導體襯底中的深度,以及襯底區之間的外 延立柱溝道中的電荷平衡。外延矽生長的厚度僅僅是在 石夕襯底中刻蝕的深溝道寬度的函數。傳統裝置必須將外 延層生長為漂流區,此漂流區的厚度與所需的擊穿電壓 成比例’因此傳統裝置並不具備上述柔性。 圖中所示的結構尺寸靈活可變,並且通過簡便的製造方 法就可以生產出這種裝置。例如,要製作一個在詹森極 限以下、低電阻率、擊穿電壓寬範圍可變(比如200V至 900V)的襞置,可以通過生長幾微米的單一外延矽層, 刻蝕深度與所需擊穿電壓成比例的單一溝道刻蝕(〉2〇〇v 大約10 —15微米,&gt;600V大約40 —50徽米,&gt;900V大約 7〇〜90微米)。此外,裝置位於外延層飞3〇頂部上的電晶 體部分的結構,是根據溝道栅極雙擴散金屬氧化物半導 體裝置而來的,其中裝置結構自校準,製作方法方便、 簡單°本裝置的敏感溝道栅極V45部分惠g溝道13〇上方 的接縫較遠,這也提高了裝置的可:靠性,並且省去了不 必要的化學機械·抛光過程 參見第3圖,金屬氧化物半導體場效應管裝置1〇〇的橫截 面視圖,依靠新穎設計的思路以及第2圖所示的基本結構 ,根據第13A圖至第13N圖所述的工藝製作而成。金屬氧 化物半導體場效應管裝置100位於N型襯底上,包括一個N +摻雜底部區120作為漏極接觸區,在底部漏極電極&quot;ο 上方’與其直接接觸。通過含有外延層13〇的深溝道換雜 漏極接觸區120。用一個P —外延層填充每個深溝道,並 覆蓋在溝道周圍和溝道上方的頂面上《金屬氡化物半導 0993094181-0 099101558 表單編號A0101 第16頁/共59頁 201029182 體場效應管電晶體單元位於單一薄P—外延層上,單一薄 P—外延層填充在外延立柱溝道130中,並覆蓋在P-外延 立柱周圍的頂面上。頂面上方的薄P —外延層由溝道柵極 145周圍的P—本體區150構成,帶有栅極多晶矽的溝道柵 ❹ ❹ 極145填充在溝道中,溝道通過頂部外延層13〇開口。p — 本體區還包圍著溝道柵極145周圍的源極區155。用柵極 氧化物層160填充溝道柵極丨45,並用帶有接頭開口的絕 緣層160覆蓋溝道栅極145,以使金屬阻擋層165上方的 源極接觸金屬17〇接觸溝道栅極145之間的源極一本韹區 ° P—型柵極遮罩摻雜區144進一步遮罩溝道柵極145,並 在柵極多晶矽麟充栅極溝道之.前、,穿過概極溝道植入到N 一襯底區12 5中。在金屬氧化物半導截場效學管裝置發生 電壓擊穿時’柵極遮罩摻雜區144保護敏減的柵極145。P -外延立柱130周圍的N襯底區125可以用N—摻雜物通過 深溝道130的側壁植入,以便獲得水準摻雜濃度梯度,並 控制n—立柱電:荷ijui 通過使填充在溝道中P-外遠水準方向上平衡 ,來獲得超級結政A或電沿垂直於垂直金屬 氧化物半導體場效應管結構的n-型漂流區丨25中的漏極電 流流向,獲得電荷平衡,當金屬氧化物半導體場效應管 處於截止狀態時,漏極電流耗盡。換言之,填充在溝道 中的Ρ-外延層的電量,與Ν襯底附近的Ν-漂流區的電量基 本相等,在製作公差範圍内。Ν-漂流區中電量的控制和 調節可以通過摻雜Ν-襯底,或摻雜Ν-襯底與植入在深溝 道側壁中的任何其他Ν-摻雜離子。對於理想狀況,目標 099101558 電量是每平方釐米Ρ = Ν = 1Ε12個原子。在製作過程中 表單編號Α0101 第17頁/共59頁 通 0993094181-0 201029182 過植入濃度、植入退火、襯底摻雜濃度、外延摻雜濃度 、溝道深度、寬度和形狀、及其它處理工序的參數等對 電量控制地越靈活’裝置結構越優化,便於調諧獲得給 定擊穿電壓下的較低電阻率。 金屬氧化物半導體場效應管電晶體單元還包括沿柵極侧 壁的N型摻雜植入區135-S,以及柵極溝道底部下面的n型 摻雜植入區135-B。圍繞在栅極145周圍的側壁和底部摻 雜植入區,可以用於消除金屬氧化物半導體場效應管裝 置溝道,對於溝道深度和P-外延摻雜濃度的敏感性。這 種新型結構的實施例是考慮到,要在p_外延層裏形成高 性能的金屬氧化物半導體場效應管結搆的基礎上提出來 的。外延層同最小的或沒有:背部刻杜的p_外延層一同生 長。一個金屬氧化物半導體場效應管-要工作,必須使源 極的導電類型與漏極一致,與本體相反,並有一個聚積 區將溝道連接到漏極_L。實現了溝道插極垂直金屬氧化 物半導體場效應管結構後,.源極也於頂部,溝道沿柵極 溝道的侧壁,形成在源極下方本體4中.。聚積區必須形 ........ . 成在本體區和漏極乏間。對於本畚明所述的新型的高壓 裝置,當生長在N襯底的頂部水準表面上的P-外延报厚時 ,很難形成高性能的垂直溝道柵極金屬氧化物半導體場 效應管。如果P-外延層很厚,栅極溝道為了穿過漂流 漏極區,就必須很深。深溝道與厚的p本體區相結合,會 使溝道變長、溝道電阻增高,最終導致垂直雙擴散金屬 氧化物半導想結構的性能降低因此’在本發明的實施 例中’遇到P—外延層的情況時,要在栅極溝道側壁和底 部植入額外的摻雜物’使栅極溝道的厚度比一般0. 8至 099101558 表單編號A0101 第18頁/共59頁 0993 201029182 1.5微米範圍内的典型的栅極溝道厚度,厚丨至3微米。這 二額外的摻雜植入物是為了補償栅極溝道附近的聚積區 和漏極區中的P—外延區,以便獲得高性能的、短溝道的 垂直溝道雙擴散金屬氧化物半導體裝置。因此,在加工 金屬氧化物半導體場效應管裝置之前,在栅極溝道中植 入額外的傾斜和非傾斜植入物,會使高性能的溝道栅極 金屬氧化物半導體場效應管裝置,不再依賴於這些區域 中的P —外延層厚度和摻雜濃度。在栅極溝道底部的n_ ❹And further stepping the epitaxial layer into a stripe with a gate mask doped region, as a floating doped region is disposed under the strip of the trench gate. In another exemplary embodiment, the trench gate of the trench metal oxide field effect transistor cell is also processed into a deep trench filled with a |4 κ κ 甩 甩 epitaxial layer with misalignment _, alternating to The gate is over to electrically connect the gate mask doping region to the body region of the transistor unit below the extended trench gate by the epitaxial layer in the via. The present invention also provides a method of fabricating a semiconductor power device on a semiconductor substrate. The method comprises the steps of: a) preparing a semiconductor substrate; b) opening a plurality of turns on the semiconductor substrate, and growing an epitaxial layer to fill the deep trench, and covering the top surface of the semiconductor with a top epitaxial layer, wherein The epitaxial layer portion and the top epitaxial layer in the epitaxial deep trench are a single growth at the same time, wherein the conductivity type of the epitaxial layer is the same as that of the semiconducting_bottom; C) forming a plurality of channel metal oxides in the top epitaxial layer Half 099101558 Form suffix A0101 Page 13 / Total 59 Page 0993094181 201029182 Conductor % effect tube list; t 'opening a plurality of trench gates, implanting a plurality of gate mask doping regions under the trench tearing, so that the channel of the transistor cell is extinguished when the voltage breakdowns the semiconductor power device, the top epitaxial layer The role of the region 'semiconductor's bottom is the role of the drain region, and the superjunction effect is obtained by the charge balance between the epitaxial layer portion in the deep, the semiconductor substrate, and the deep-channel P-knife of the semiconductor substrate. In a typical example, the method further includes implanting an ice channel sidewall with a first conductivity type dopant, forming a level concentration gradient in the semiconductor substrate region between the deep trenches, and passing Adjusting the deep trench sidewall implant to change the performance of the semiconductor power device H typical implementation, the method ❿ also includes implanting a dopant of a conductive type and a semiconductor substrate into the sidewall of the gate trench And the bottom. In another silver exemplary embodiment, the process of fabricating a semiconductor substrate includes preparing a single-layer semi-capture substrate, wherein the step of opening a plurality of deep trenches includes opening a plurality of deep trenches in the single-layer semi-conductive germanium substrate. In another exemplary embodiment, the process of preparing a semiconductor substrate includes preparing a bottom substrate, and growing a top underlayer at the chamber, the top substrate layer having a conductivity type that is the same as that of the portion. In another exemplary embodiment, the method further includes heavily doping at the bottom of the deep trench to form a drain contact region prior to growing the epitaxial layer; polishing the back of the substrate to expose the drain contact region. In another exemplary embodiment, the method further includes partially chemically polishing the top surface of the epitaxial layer to smooth it prior to forming the plurality of channel metal oxide semiconductor field effect transistor cells. [Embodiment] [0004] 099101558 Referring to the cross-sectional view of the metal oxide semiconductor field effect transistor device 1A shown in Fig. 2, a new '^99309418Η» form number of the present invention in terms of structure and manufacturing is proposed. Α0101 Page 14 of 59 Road 201029182 Road. A detailed description of the metal oxide semiconductor field effect transistor device will be described in Figure 3 below. The metal oxide semiconductor field effect transistor device is just located on the substrate 105, and the substrate 1〇5 has a function of draining the county with the doped bottom region 120', and the deep trench 130 filled with the epitaxial layer (such as 3 is shown as 'back grinding' doping. The substrate 1G5 further includes a top portion 125' deep trench m formed in the top portion 125. For example, for an n-channel MOSFET, the substrate 105 is n-type, and the epitaxial layer in the deep trench is? _type. The metal oxide semiconductor field effect transistor transistor unit is located on a single thin epitaxial layer, fills the epitaxial pillar channel 130' and covers the top surface around the ρ_ epitaxial pillar, and fills the Ρ-epitaxial filler into the pillar channel. The thin tantalum-epitaxial layer portion above the top surface also serves as the original region, and the surface is wound around the trench gate 145 filled with the _ pole polysilicon. The body drawer 15 is also surrounded by the trench gate 145. The surrounding source area 155. The trench gate 145 is padded with a gate oxide layer 140, filled with a polysilicon, and covered by an insulating layer 160 with a contact opening so as to pass through the source trench gate ". Region. #栅—Mask doped region 144 is masked, and a gate-mask is implanted through the thumb-polar channel when filling the channel with a gate polycrystal dream. Therefore, the gate is mask-doped. The miscellaneous region 144 and the trench gate 145 are self-aligned. The conductivity type of the gate-mask region 144 is the same as the conductivity type of the epitaxial layer filled in the epitaxial pillar channel 130. The device shown in Figure 2 has a single a thin epitaxial layer to form a trench gate, wherein the channel of the trench gate is filled with a gate polysilicon and an opening is formed therethrough. This new structure achieves performance requirements of the super junction, such as no more than "Jensen" Limit", the breakdown voltage does not vary with the thickness of the epitaxial layer grown on the starting substrate 099101558 Form s ar A0101 苐 15 pages / 59 pages 0993094181-0 201029182. Absolute breakdown voltage factor 疋 'ditch The depth of the track in the semiconductor substrate, and between the substrate regions The charge balance in the channel of the epitaxial column. The thickness of the epitaxial germanium growth is only a function of the deep channel width etched in the stone substrate. The conventional device must grow the epitaxial layer into a drift region, the thickness of the drift region and the required The breakdown voltage is proportional' so the conventional device does not have the above flexibility. The structure shown in the figure is flexible and can be produced by a simple manufacturing method. For example, to make a Jensen limit A device with a low resistivity and a wide range of breakdown voltages (eg, 200V to 900V) can be grown by a single epitaxial layer of a few micrometers with a single channel etch that is proportional to the desired breakdown voltage. (>2〇〇v is about 10-15 microns, &gt;600V is about 40-50 cm, &gt;900V is about 7〇~90 microns). In addition, the structure of the device is located on the top of the epitaxial layer. According to the channel gate double-diffused metal oxide semiconductor device, the device structure is self-calibrated, and the fabrication method is convenient and simple. The sensitive channel gate V45 of the device is partially g-channel 13 The seam above is farther, which also improves the reliability of the device, and saves unnecessary chemical mechanical polishing process. See Figure 3, cross-sectional view of the MOSFET device 1〇〇 According to the idea of the novel design and the basic structure shown in Fig. 2, the process is performed according to the processes described in Fig. 13A to Fig. 13N. The metal oxide semiconductor field effect transistor device 100 is located on the N type substrate, including a The N + doped bottom region 120 acts as a drain contact region and is in direct contact with the bottom drain electrode &apos; ο over. The deep trench replacement drain contact region 120 is provided through the epitaxial layer 13 。. A P-epitaxial layer is used. Fill each deep trench and cover the top surface around the trench and above the trench. Metallic germanide semi-conducting 0993094181-0 099101558 Form No. A0101 Page 16 of 59201029182 Body-effect transistor transistor unit is located in a single On the thin P- epitaxial layer, a single thin P- epitaxial layer is filled in the epitaxial pillar channel 130 and covered on the top surface around the P-extension pillar. The thin P-epitaxial layer above the top surface is formed by a P-body region 150 around the trench gate 145, and a trench gate 145 with a gate polysilicon is filled in the trench, and the trench passes through the top epitaxial layer 13 Opening. p — The body region also surrounds the source region 155 around the trench gate 145. The trench gate 45 is filled with a gate oxide layer 160, and the trench gate 145 is covered with an insulating layer 160 having a tab opening such that the source contact metal 17 above the metal barrier layer 165 contacts the trench gate Between 145, a source region, a P-type gate mask doping region 144 further shields the trench gate 145, and before the gate polycrystalline unicorn is filled with the gate trench, The polar channel is implanted into the N-substrate region 125. The gate mask doped region 144 protects the gate 145 that is sensitive to degradation when a voltage breakdown occurs in the metal oxide semiconductor material barrier device. The N substrate region 125 around the P-extension pillar 130 may be implanted through the sidewall of the deep trench 130 with N-dopant to obtain a level doping concentration gradient, and control the n-column electricity: the ijui is filled in the trench Balance in the P-outside level in the track to obtain the super-junction A or the drain current flow in the n-type drift region 丨25 perpendicular to the vertical MOSFET structure to obtain charge balance. When the MOSFET is in the off state, the drain current is depleted. In other words, the amount of charge of the germanium-epitaxial layer filled in the channel is substantially equal to the amount of electricity in the germanium-drift region near the germanium substrate, within the manufacturing tolerances. The control and adjustment of the charge in the helium-drift zone can be by doping the germanium-substrate, or doping the germanium-substrate with any other germanium-doped ions implanted in the sidewalls of the deep trench. For ideal conditions, the target 099101558 is 每 = Ν = 1Ε12 atoms per square centimeter. Form number Α0101 Page 17/59 page through 0993094181-0 201029182 during fabrication The over implant concentration, implant annealing, substrate doping concentration, epitaxial doping concentration, channel depth, width and shape, and other processing The more flexible the parameters of the process, etc., the more flexible the power control is, the more optimized the device structure is, and it is easy to tune to obtain a lower resistivity at a given breakdown voltage. The metal oxide semiconductor field effect transistor transistor unit further includes an N-type doped implant region 135-S along the gate side wall and an n-type doped implant region 135-B under the gate channel bottom. The doped implant regions surrounding the sidewalls and bottom around the gate 145 can be used to eliminate the MOSFET channel channel sensitivity to channel depth and P- epitaxial doping concentration. An embodiment of this novel structure is considered to be based on the formation of a high performance metal oxide semiconductor field effect transistor structure in the p_ epitaxial layer. The epitaxial layer is the same as the smallest or no: the p_ epitaxial layer of the back engraved together grows together. A metal-oxide-semiconductor field effect transistor - to operate, must have the source's conductivity type consistent with the drain, opposite the body, and have an accumulation region that connects the channel to the drain _L. After the channel is inserted into the vertical metal oxide semiconductor field effect transistor structure, the source is also at the top, and the channel is formed along the sidewall of the gate channel in the body 4 below the source. The accumulation zone must be shaped ........ into the body area and the drain. For the novel high voltage device described in the present invention, it is difficult to form a high performance vertical channel gate metal oxide semiconductor field effect transistor when the P- epitaxial growth on the top level surface of the N substrate is thick. If the P- epitaxial layer is thick, the gate trench must be deep in order to pass through the drift drain region. The combination of a deep channel and a thick p-body region will lengthen the channel and increase the channel resistance, ultimately resulting in a decrease in the performance of the vertical double-diffused metal oxide semiconductor structure. Thus, 'in the embodiment of the present invention' In the case of the P-epitaxial layer, additional dopants are implanted in the sidewalls and bottom of the gate trenches to make the thickness of the gate trenches generally 0. 8 to 099101558 Form No. A0101 Page 18 of 59 Page 0993 201029182 Typical gate channel thickness in the 1.5 micron range, thick to 3 microns. The two additional doping implants are used to compensate for the P-epitaxial regions in the accumulation and drain regions near the gate channel in order to obtain a high performance, short channel vertical channel double diffused metal oxide semiconductor. Device. Therefore, prior to processing the MOSFET device, implanting additional tilted and non-tilted implants in the gate trench will result in a high performance trench gate MOSFET device, It is again dependent on the P-epitaxial layer thickness and doping concentration in these regions. N_ ❹ at the bottom of the gate channel

099101558 型摻雜植入物135 —B也可以用來保護栅極遮罩區144不與 栅極溝道145接觸β 應注意的是,第3圖中的實施例表示一個穿,過ρ _外延層 的栅極溝道’以及額外的Ν —,型植入物135 —s、135-Β ~τ以用於優化金屬乳化物半導體場效應《,管的性能,而 無需完全補償Ρ —摻雜區,即在柵極溝道側壁上的ρ 一外 延層。植入物最好是麟和钟或錄。能量應在5〇KeV至 200KeV範圍肉。與底部植人‘ΐ潤霉傾翁丨角應為零度, 與側壁植入|之間的傾身你度。植入劑量應 在1E11至1E13範圍内。額本體植入物可用于 形成本體區150 ’並使溝道區保持在沿溝道柵極145側壁 的方向上。 ’第4圖是一個橫截面視圖,表示一種類似於第3圖所示的 金屬氧化物半導體場效應管裝置的一個可選實施例,不 同之處在於N-襯底區125’的側壁沒有植入N摻雜物,以 便通過製作過程實現電荷控制功能。由於假設初始N —概 底的換雜濃度足夠大’以便與深溝道中生長的ρ型外延層 達到電荷平衡’因此本實施例並不需要將額外的N —摻雜 0993094181-0 表單編號A0101 第19頁/共59頁 201029182 區,引入到深溝道的側壁中。當摻雜濃度的實際值可以 達到所需的電荷平衡,即達到N電荷的絕對值=p電荷= 1e12個粒子/cm2時,初始N一襯底的摻雜濃度就足夠了 。當在所需的公差限制範圍内,襯底濃度可以實現電荷 平衡時(例如,當出現N_襯底的摻雜濃度充足的情況的 重複性大於+/-10%時),就不一定必須靠摻雜植入物來 實現電荷控制。 第5圖疋一個橫截面視圖,表示一種類似於第3圖所示的 金屬氧化物半導體場效應管裝置的一個可選實施例,不 同之處在於金屬氧化物半導馥場效應管裝置並不包含側 壁,以及第3圖所示的溝道,底部择'雜增ί入區4_35 — B和135 —S。當溝道柵極145的深度較大.,並在外延,層13〇下方延 伸進概底區125時,就不再需&quot;要^用*溝遭猶壁和溝道底部 摻雜植入區,來消除溝道對溝道柵極深度的敏感性。 099101558 第6圏是一個橫截面視圖,表示一種類似於第3圖所示的 金屬氧化物半導體場敦應蜜g個可選實施例,不 同之處在於金屬氧化物半導^^巍管裴置的溝遒柵極 的深度較淺,承驗雜筵層屬氧化物半導體場 效應管裝置包括一個栅極溝道側壁和柵極溝道底部摻雜 植入區135 — S和135-B,分別用於補償p_外延層13〇, 並確保裝置具有適當的聚積區和溝道區。本實施例是基 於以下結構,金屬氧化物半導體場效應管裝置具有厚P — 外延層或淺柵極溝道,或兼而有之。栅極溝道並沒有到 達N漏極區。為了確保電晶體正常、高效的工作,柵極溝 道中較低的部分必須作為N摻雜區135 — B進行摻雜,以便 將沿栅極溝道的側壁,在本體區中形成的有源溝道,與 表單編號A0101 第20頁/共59頁 09qg 201029182 漏極相連接。 傳統晶片都具有重摻雜的襯底,以及輕摻雜的頂層。然 而由一個普通晶片製成的如第2圖至第6圖所示的裝置, 一開始卻並沒有外延層。這雖然可以節省一大筆晶片成 本,但卻多出了通過深溝道和背部研磨晶片,進行底部 摻雜的額外工序。另外,第7圖至第8圖所示的裝置使用 一個帶有重摻雜N +底部襯底121的傳統晶片,以及生長 在N +底部襯底121上方的次重摻雜N-型頂部襯底層126 。在一個傳統晶片中,這種N-型頂部襯底層126通常被 認為是一個外延層,在本專利中,為了避免產生混淆, 將其稱為頂部襯底層。第7圖是一個橫截面視圖,表示一 種類似於第3圖所示的金屬氧化物半導體場效應管裝置的 一個可選實施例,不同之處在於用外延層填充的深溝道 130現在位於頂部襯底層126中,並延伸到重摻雜的底部 襯底區121。不再需要,通過一個獨立的摻雜植入過程形 成如第3圖所示的獨立漏極接觸區120.〇相反,在本實施 例中,一個重摻雜N +底部襯底區1·21·用作漏極接頭,還 有一個Ν-型頂部襯底層126生長在Ν +底部襯底區121的 頂部。與傳統晶片相比,為了節省成本,頂部襯底區的 厚度一般較小。本實施例並不一定要求進行背部研磨。 金屬漏極電極110可以形成在重摻雜底部襯底區121下方 〇 在深溝道底部的漏極接觸摻雜植入過程可省略,因此非 常顯著地簡化了製作過程。 第8圖是一個橫截面視圖,表示一種類似於第7圖所示的 金屬氧化物半導體場效應管裝置的一個可選實施例,不 099101558 表單編號Α0101 第21頁/共59頁 0993094181-0 201029182 同之處在用P —外延層填充的深溝道130的厚度小MN +底 部襯底121。 第9圖表示本發明半導體功率裝置的條形結構的俯視圖。 隨外延層130—同生長的外延深溝道形成一個條形結構。 外延深溝道130的輪廓用點劃線表示。電晶體單元所包含 的溝道柵極145也形成一個線性條形結構,溝道栅極145 由源極區155周圍的栅極氧化物層14〇填充,並被本體區 150包圍。自校準的柵極遮罩摻雜區(圖中沒有明確指出 )也作為浮動條紋,形成在溝道柵極145下方。 第10圖表示另一種不同的電晶體單元結構的可選實施例 。栅極遮罩P摻雜區144應通過將溝;遂杨極丨4 5作為十字溝 道栅極,延伸至如第1〇圖所·示的電晶;餚單元的某部分中p —立柱130區,連接在本體區150下方的卞'二摻雜外延立柱 130上,而不是在溝道栅極145下方將栅極遮罩摻雜區 144加工成浮動區域。第u圖為一種類似的實施例不同 之處在於延伸的溝道栅極5帶,有錐位各出部丨4 5 — τ B, 以降低漏-v源導通電阻Rd^oii 改善裝置的可製造性(在 填充十字形柵極溝道時,可〜能‘會:出:現空洞問題)^第12 圖表示與第11囷相同的結構,解釋說明柵極遮罩摻雜區 凸出部144 —TB如何在栅極溝道145下方進行自校準,以 及如何通過擴散接觸P一摻雜立柱150 ^在主柵極條紋145 下方,和垂直於主栅極條紋的柵極凸出部145 — 1^下方, 植入概極遮罩摻雜區144。通過插入栅極遮罩摻雜區凸出 部144 —TB和p —外延立柱130之間的接觸區,p —遮罩推 雜區144電接觸到p —本體15〇區❶錯位結構降低了對溝道 寬度的影響。只要電流流經溝道柵極凸出部145 —TB的另 099101558 表單編號A0101 第22頁/共59頁 0993094181-0 201029182 一側’錯位凸出部還可以獲得更好的分佈電流。 參見第13A圖至第13N圖的一系列側面橫截面視圖,用來 s尤明如第3圖所示的電荷平衡的半導體功率裝置的製作步 驟。第13A圖表示初始梦概底包括~個阻抗約為 10ohm/cm N襯底205。襯底205最初並沒有外延層。設 置或熱生長厚度約為0. 1至1· 5微来的一層硬掩膜氧化層 212。然後用臨界尺寸在1至5微米範圍内的溝道掩膜(圖 中沒有表示出),進行氧化物刻蝕,開通多個溝道刻钱 窗’然後除去光致抗钱劑》使用砍刻钱,對於工作電壓 約為650伏的裝置,要開通深度約為4〇至50微米的深溝 道214❶根據刻蚀器的類型和刻蝕化.學反應,光致抗蝕劑 掩膜也可狀甩於形成刻蝕圖禁並開通溝道,而無需使用 如圖所示的硬掩膜氧化層212。溝道開口可以在1至5微来 範圍内,但大多數裝置應用中都採用3微米比較合適(溝 道開口由之前提到的溝道掩膜決定)。然後進行晶片清 '1 | i ί 洗。在第13B圖中,通過氧冼物叙嘍场熱^長工藝,形成 一個正形投影的氧化層21底)部表面上的氧化層 • ; ' f I 4 較厚,那麼就採用可%的会應蝕的各向異性刻蝕 ,從溝道底部表面上清除氧化物。如果沒有採用可選的 反應離子刻蝕工藝,那麼氧化層215的厚度就在0.015至 0. 1微米之間,如果採用了可選的反應離子刻蝕工藝,那 麼氧化層215的厚度就在0.0151至0.4微米之間。為了在 深溝道214下方直接形成漏極接觸區220,要進行漏極接 觸植入,就是在沿相對於溝道側壁零傾斜角的方向植入 Ν+離子,即垂直植入,植入劑量大於1Ε15。用碟或砷等 Ν-型離子,植入漏極接觸區220。氧化層215沿側壁方向 099101558 表單編號Α0101 第23頁/共59頁 0993094181-0 201029182 ’保護側壁不受高劑量的漏極接觸植入物的影響。 在第13C圖中,用磷等Ν-型離子植入溝道侧壁,以便設置 Ν區中的摻雜濃度。根據溝道深度,傾斜著旋轉植入植 入劑量為5Ε11至2Ε13、傾斜角為5至15度,以便在溝道 中形成Ν區225 ^在第13D圖中,在很低的氧氣和/或氮氣 環境下,1050至1200攝氏度高溫退火3〇至6〇分鐘,可以 使Ν +漏極接觸區220擴散’側壁植入Ν-區225水準擴散。 區225形成水準Ν-型濃度梯度,濃度在深溝道側壁附近 最大。為了獲得電荷平衡(超氣結效應),連同(將要 生長的)Ρ-外延層230,可以通過側壁植入,調節襯底 2 〇 5中深溝道旁邊的區域的=Ν ^«型議;度〜:也可選擇對於側壁 植入,最初用所需的Ν-型濃度形成舞雇.205 W以獲得超級 結效應。在第13Ε圖中,财蝕除去氧&quot;化廣2和215,並 生長一個Ρ-外延層230 ’其中Ρ摻雜濃度為^^至^“甚 至更高。Ρ-外延層23(|的厚度足夠填充溝道214 »溝道 214寬約3微米,在Ν-區22W部ytbfcluat層230的厚度 約為1.5至2.0微米· +第冷,度約為0.5至1.5 微米的氧化層作為硬掩膜廣2^8錢:置,利用柵極溝道掩膜 (圖中沒有表示出),刻蝕硬掩膜氧化層228,然後除去 光致抗姓劑。柵極溝道的寬度一般在〇 4至1. 5微米的範 圍内。利用矽刻蝕的方法通過P_外延層23〇,刻蝕溝道柵 極開口 232 ’溝道深度約為1至2. 5微米,可能會穿過p-外延層230,進入設置在溝道212中的外延立柱230之間 的N-摻雜區225 »晶片清洗,隨後還可進行圓孔刻蝕,以 便使柵極溝道結構更加平滑,然後清洗下一個晶片。 在第13G圖中,除去氧化硬掩膜228,然後設置一個薄螢 099101558 表單編號A0101 第24頁/共59頁 〇993 201029182 ❹ 幕層234,覆蓋樹極溝道232的側壁以及底面。深p_型植 入领離子(B11) ’能量在200至600KeV之間,劑量在 1E12至1E13之間,零傾斜角植入,以便在n一摻雜立柱 225中的柵極溝道232下方,形成柵極遮罩p_摻雜區244 。在第13H圖中,可以選擇N-型柵極溝道側壁植入,傾斜 角(植入角)在+ /-5至7度之間,用於補償p_外延層23〇 ,如果栅極溝道232太淺的話,就用零傾斜角的n_型柵極 溝道底部植入,補償P-外延層230,或者確保柵極遮罩p_ 摻雜區244沒有接觸栅極溝道232。植入物進入柵極溝道 側壁和底面,分別形成侧壁和底面摻雜區235-S和235-B ’消除金屬氧化物半導鱧場效應管裝置的溝道對於溝道 栅極深度以及P—外延層2 3 0的·掺雜濃度./厚度的敏感性。The 099101558 type doping implant 135-B can also be used to protect the gate mask region 144 from contact with the gate channel 145. It should be noted that the embodiment in FIG. 3 represents a wear, over ρ _ epitaxy The gate channel of the layer and the additional Ν-, implant 135-s, 135-Β ~τ are used to optimize the metal emulsion semiconductor field effect, the performance of the tube without the need to fully compensate for Ρ-doping A region, i.e., an epitaxial layer on the sidewall of the gate trench. The implant is preferably a lion and a bell or a record. The energy should be in the range of 5 〇 KeV to 200 KeV. With the bottom implanted ΐ ΐ 霉 倾 倾 应 应 应 应 应 应 应 应 应 应 应 应 应 应 应 应 应 应 应The implant dose should be in the range of 1E11 to 1E13. The frontal body implant can be used to form the body region 150' and maintain the channel region in a direction along the sidewall of the channel gate 145. Figure 4 is a cross-sectional view showing an alternative embodiment of a metal oxide semiconductor field effect transistor device similar to that shown in Figure 3, except that the sidewalls of the N-substrate region 125' are not implanted. The N dopant is introduced to achieve a charge control function through the fabrication process. Since it is assumed that the initial N-base has a sufficiently large dopant concentration to achieve charge balance with the p-type epitaxial layer grown in the deep channel, this embodiment does not require additional N-doping 0993094181-0 Form No. A0101 19th Page / Total 59 pages 201029182 area, introduced into the side wall of the deep channel. When the actual value of the doping concentration can reach the desired charge balance, i.e., the absolute value of the N charge = p charge = 1e12 particles/cm2, the doping concentration of the initial N-substrate is sufficient. When the substrate concentration can achieve charge balance within the required tolerance limits (for example, when the repeatability of the N_substrate with sufficient doping concentration is greater than +/- 10%), it is not necessary to Charge control is achieved by doping the implant. Figure 5 is a cross-sectional view showing an alternative embodiment of a metal oxide semiconductor field effect transistor device similar to that shown in Figure 3, except that the metal oxide semiconducting field effect transistor device is not Contains the sidewalls, as well as the channel shown in Figure 3, at the bottom of which is selected as 'mixed' areas 4_35 — B and 135 — S. When the depth of the trench gate 145 is large, and extends below the epitaxial layer 13 into the bottom region 125, it is no longer necessary to use the * trench to be implanted into the wall and the bottom of the trench. Zone to eliminate the sensitivity of the channel to the depth of the trench gate. 099101558 Section 6 is a cross-sectional view showing an alternative embodiment of a metal oxide semiconductor field similar to that shown in Figure 3, except that the metal oxide semiconducting tube is disposed. The depth of the trench gate is shallow, and the oxide semiconductor field effect device of the doped germanium layer includes a gate trench sidewall and a gate trench bottom doping implant region 135 - S and 135-B, respectively It is used to compensate the p_ epitaxial layer 13〇 and to ensure that the device has appropriate accumulation and channel regions. This embodiment is based on the structure in which the metal oxide semiconductor field effect transistor device has a thick P - epitaxial layer or a shallow gate channel, or both. The gate channel does not reach the N drain region. In order to ensure proper and efficient operation of the transistor, the lower portion of the gate trench must be doped as an N-doped region 135-B to form an active trench in the body region along the sidewall of the gate trench. The channel is connected to the drain of Form No. A0101 Page 20 / Total 59 Page 09qg 201029182. Conventional wafers have heavily doped substrates, as well as lightly doped top layers. However, the device shown in Figures 2 through 6 made of a conventional wafer does not have an epitaxial layer at the beginning. Although this can save a large amount of wafer cost, it has an additional process of bottom doping through deep trench and back grinding of the wafer. In addition, the apparatus shown in FIGS. 7 to 8 uses a conventional wafer with a heavily doped N + underlying substrate 121, and a sub-heavy-doped N-type top liner grown over the N + underlying substrate 121. The bottom layer 126. In a conventional wafer, such an N-type top substrate layer 126 is generally considered to be an epitaxial layer, and in this patent, to avoid confusion, it is referred to as a top substrate layer. Figure 7 is a cross-sectional view showing an alternative embodiment of a MOSFET device similar to that shown in Figure 3, except that the deep trench 130 filled with the epitaxial layer is now located at the top lining The bottom layer 126 extends into the heavily doped underlying substrate region 121. It is no longer necessary to form the individual drain contact regions 120 as shown in FIG. 3 by a separate doping implantation process. In contrast, in this embodiment, a heavily doped N + underlying substrate region 1·21 As a drain contact, a Ν-type top substrate layer 126 is also grown on top of the Ν + bottom substrate region 121. In order to save cost, the thickness of the top substrate region is generally small compared to conventional wafers. This embodiment does not necessarily require back grinding. The metal drain electrode 110 can be formed under the heavily doped underlying substrate region 〇 The drain contact doping implantation process at the bottom of the deep trench can be omitted, thus significantly simplifying the fabrication process. Figure 8 is a cross-sectional view showing an alternative embodiment of the MOSFET device similar to that shown in Figure 7, not 099101558 Form No. 1010101 Page 21 / Total 59 Page 0993094181-0 201029182 In the same place, the thickness of the deep trench 130 filled with the P-epitaxial layer is small MN + the underlying substrate 121. Fig. 9 is a plan view showing the strip structure of the semiconductor power device of the present invention. A strip-shaped structure is formed along with the epitaxial layer 130—the epitaxial deep channel grown together. The outline of the epitaxial deep trench 130 is indicated by a chain line. The channel gate 145 included in the transistor unit also forms a linear strip structure, and the trench gate 145 is filled by the gate oxide layer 14 around the source region 155 and surrounded by the body region 150. A self-calibrated gate mask doped region (not explicitly shown) is also formed as a floating strip under the trench gate 145. Figure 10 shows an alternative embodiment of another different transistor cell structure. The gate mask P-doped region 144 should be extended to the electro-crystal as shown in Fig. 1 by using the trench; 遂杨极丨4 5 as a cross-channel gate; p-column in a part of the dish unit The 130 region is connected to the 卞'-doped epitaxial pillar 130 below the body region 150 instead of processing the gate mask doping region 144 into a floating region below the trench gate 145. Figure u is a similar embodiment in which the extended channel gate 5 strip has taper portions 丨4 5 - τ B to reduce the drain-v source on-resistance Rd^oii to improve the device. Manufacturability (when filling the cross-shaped gate channel, it can be: can be: out: the current hole problem) ^ Figure 12 shows the same structure as the 11th, explaining the gate mask doped area protrusion 144 - how the TB is self-aligned under the gate trench 145, and how to diffusely contact the P-doped pillar 150 ^ under the main gate strip 145 and the gate bump 145 perpendicular to the main gate stripe - Below 1^, an exemplary mask doped region 144 is implanted. By inserting the gate mask doping region protrusions 144 - TB and p - the contact regions between the epitaxial pillars 130, p - the mask doping region 144 is electrically contacted to the p - body 15 region, the misalignment structure is reduced The effect of the channel width. As long as current flows through the channel gate projections 145-TB, another 099101558, Form No. A0101, Page 22 of 59, 0993094181-0 201029182 One side 'misplaced projections can also obtain better distributed current. Referring to a series of side cross-sectional views of Figures 13A through 13N, the fabrication steps of the charge balancing semiconductor power device as illustrated in Figure 3 are used. Fig. 13A shows that the initial dream base includes ~ substrate 205 having an impedance of about 10 ohm/cm. Substrate 205 does not initially have an epitaxial layer. A hard mask oxide layer 212 having a thickness of about 0.1 to 1.5 micrometers is set or thermally grown. Then use a trench mask with a critical dimension in the range of 1 to 5 microns (not shown) to perform an oxide etch, open a plurality of channel engraving windows 'and then remove the photo-anti-moist agent'. For a device with a working voltage of about 650 volts, a deep trench 214 with a depth of about 4 〇 to 50 μm is to be opened. Depending on the type of etcher and the etching reaction, the photoresist mask can also be used. The etching is prohibited and the channel is opened without using the hard mask oxide layer 212 as shown. The channel opening can be in the range of 1 to 5 micrometers, but it is appropriate to use 3 micrometers in most device applications (the channel opening is determined by the previously mentioned channel mask). Then the wafer clear '1 | i ί is washed. In Fig. 13B, the oxide layer on the surface of the bottom portion of the oxide layer 21 of the positive projection is formed by the oxygen enthalpy quenching field heat-length process; ; ' f I 4 is thicker, then the % can be used An anisotropic etch of the etch removes oxide from the bottom surface of the trench. If an optional reactive ion etching process is not employed, the thickness of the oxide layer 215 is between 0.015 and 0.1 micrometers. If an alternative reactive ion etching process is employed, the thickness of the oxide layer 215 is 0.0151. Between 0.4 microns. In order to form the drain contact region 220 directly under the deep trench 214, the drain contact implant is performed, that is, the erbium+ ion is implanted in a direction perpendicular to the tilt angle of the trench sidewall, that is, the vertical implant is performed, and the implant dose is greater than 1Ε15. The drain contact region 220 is implanted with a ruthenium-type ion such as a dish or arsenic. Oxide layer 215 along the sidewall direction 099101558 Form No. Α0101 Page 23 of 59 0993094181-0 201029182 'The protective sidewall is not affected by the high dose of the drain contact implant. In Fig. 13C, ruthenium-type ions such as phosphorus are implanted into the channel sidewalls to set the doping concentration in the ruthenium region. Depending on the depth of the channel, the tilt implant is implanted at a dose of 5Ε11 to 2Ε13 and a tilt angle of 5 to 15 degrees to form a crotch region 225 in the channel. In Fig. 13D, at very low oxygen and/or nitrogen. Under the environment, annealing at a high temperature of 1050 to 1200 °C for 3 〇 to 6 〇 minutes allows the Ν + drain contact region 220 to diffuse 'sidewall implant Ν-region 225 level diffusion. Zone 225 forms a level Ν-type concentration gradient with a concentration near the sidewall of the deep trench. In order to obtain charge balance (super gas junction effect), together with the Ρ-epitaxial layer 230 (to be grown), it is possible to adjust the area of the region beside the deep channel in the substrate 2 〇5 by sidewall implantation; ~: Alternatively, for sidewall implantation, the initial Ν-type concentration is used to form a dance 205 W to obtain a super knot effect. In Figure 13, the eclipse removes oxygen &quot; Huaguang 2 and 215, and grows a Ρ-epitaxial layer 230' where the erbium doping concentration is ^^ to ^" even higher. Ρ-epitaxial layer 23 (| The thickness is sufficient to fill the trench 214 » the channel 214 is about 3 microns wide, and the thickness of the ytbfcluat layer 230 in the Ν-region 22W portion is about 1.5 to 2.0 micrometers + the second cold oxide layer having a degree of about 0.5 to 1.5 micrometers as a hard mask. The film is 2^8 money: set, using a gate channel mask (not shown), etching the hard mask oxide layer 228, and then removing the photo-resistance agent. The width of the gate channel is generally 〇 5微米的范围内。 Through the _ etch method through the P_ epitaxial layer 23 〇, etch the trench gate opening 232 'channel depth is about 1 to 2. 5 microns, may pass through p Epitaxial layer 230, entering the N-doped region 225 between the epitaxial pillars 230 disposed in the channel 212, wafer cleaning, and then circular hole etching to smooth the gate channel structure and then cleaning Next wafer. In Figure 13G, remove the oxidized hard mask 228, then set a thin flash 099101558 Form No. A0101 Page 24 / Total 59 Page 〇 993 20 1029182 幕 Curtain layer 234, covering the sidewalls and bottom surface of the tree-pole channel 232. Deep p_-type implant collar ions (B11) 'energy between 200 and 600 KeV, dose between 1E12 and 1E13, zero tilt angle implant So that under the gate trench 232 in the n-doped pillar 225, a gate mask p-doped region 244 is formed. In Figure 13H, an N-type gate trench sidewall implant can be selected, tilted. The angle (implantation angle) is between +/-5 and 7 degrees to compensate for the p_ epitaxial layer 23〇. If the gate channel 232 is too shallow, the n-type gate channel with zero tilt angle is used. The bottom implants, compensates for the P- epitaxial layer 230, or ensures that the gate mask p_ doped region 244 does not contact the gate trench 232. The implant enters the gate trench sidewall and bottom surface, forming sidewall and bottom surface doping, respectively The regions 235-S and 235-B' eliminate the sensitivity of the channel of the metal oxide semiconducting FET device to the channel gate depth and the doping concentration/thickness of the P- epitaxial layer 230.

在第13.1.::圖:中,除去榮幕氧化層234,生喪一個厚度在 0. 01至0. 1微米之間的栅極氧化層240,具體厚度取決於 裝置的額定電壓。在柵極溝道232中設置栅極多晶碎層 245。柵極多晶矽層245最雜的方法;如 果沒有使用原位摻雜,那入或擴散摻雜 頂面開始,對栅極 多晶矽層245進行背部刻蝕。 在第13J圖中,可以使用本體掩膜(圖中沒有表示出), 本體植入劑量在3E12至1E14之間的硼,然後在1〇〇〇至 1500攝氏度下進行本體驅動,在溝道柵極245周圍的外延 層230中,形成P-本體區250。本體植入可以和本體區之 間形成良好的接觸,還可以確保金屬氧化物半導體場效 應管溝道區始終位於栅極側壁植入235-S上方。第13ί[圖 099101558 表示進行源極摻雜植入。源極植入掩膜(圖中沒有表示 表單編號Α0101 第25頁/共59頁 0993094181-0 201029182 出)可以用於保護此位置形成p_本體接觸。用坤離子等 源極摻雜離子在能量約為7〇KeV、劑量約為4E15、零度 傾斜角時進行源極植入,然後在8〇〇至95〇攝氏度下,進 行源極退火操作’以便擴散源極區255。在第13L圖中, 通過低溫氧化物設置(LT0)形成的介質層260和含有硼 酸的石夕玻璃(BPSG)層260形成在頂面上,然後進行含有 硼酸的矽玻璃流水作業。使用接觸掩膜(圖中沒有表示 出)’進行氧化刻蝕’通過含有硼酸的矽玻璃層26〇刻蝕 出接觸開口。P+本體接觸植入是可選的,然後在本體接 觸植入後回流。在第13M蹰中,設置勢壘金屬,覆蓋在帶 有勢壘金屬層265的頂面,然·後設、置厚.金屬形成源極金 屬層270。金屬掩膜(圖中没有表示凼θ用於刻蝕源極金 屬260和栅極金屬(圖中沒有表示出)並.形成圖案。設置 介質層使裝置表面鈍化’鈍化層的圖案用於形成結合區 開口(圖中沒有表示出),整個過程就完成了,並且完 - i . | e 成了最終的合鎮。為了簡便.,這:些捸準的製作過程就不 在此詳述了。在第13N圖中£,埽過背部研磨,從襯底底面 ’除去襯底205的低摻雜部''分形成背部金屬層21〇 ’以便當摻雜濃度較高時,接觸漏極區22〇。可以通過在 晶片背面直接設置TiNiAg層形成背部金屬層210。背部 研磨過程的厚度控制可達幾微米甚至是〗微米,能夠進行 可靠的背部接觸’形成漏極電極層210,以便接觸N +漏極 接觸區220。 儘管本發明已經提出了現有的較佳實施例,但這些公開 内容並不應成為局限。本領域的技術人員,閱讀上述說 明之後,必疋可以掌握其他各種變化和修正。例如,儘 099101558 表單編號A0101 第26頁/共59頁 0993094181-0 201029182 管上述實施例使用的是n-溝道裝置 體 ,但是通過改變 區域的導電類塑’就可以將本發明應用於卜溝道义 。因此,所附的申請專利範圍書涵蓋的全部變化::: 都屬於本發明的保護範圍和真實意圖。 / 置 ❹ [0005] 儘管本發明的内容已經通過±述優選實施例作了詳細介 紹,但應當認劇上述的描料應被認為是對本發明的 限制。在本領域技術人員閲讀了上述内容後,對於本發 明的多種修改和替代都將是顯而易見的。因此,本發明 的保護範圍應由所附的申請專利範圍來限定。 【圖式簡單說明】 第1A圖至第1B圖表示通過傳统方法製作的傳統垂直功率 裝置結構的橫戴面視圖; , 第1C — 1圖..至第1C —3:圖表示在沒有與栅極和柵極溝道校 準的大塊外延層中形成的浮島的橫截面視圖; 第1D圖表示在連接溝it的赁極溝£墀下方的摻雜區的橫載 1riteiter+iiaf U\^s ❷ 面視圖; 第2圖至第8囷為對應本發明帶有超級結 結構的高壓功率敎置的橫截屬我圖1 第9圖至第12圖表示用於排列溝道遮罩摻雜區的各種不同 佈局結構的俯視圖; 第13A圖至第13N圖表系本發明用於製作高壓功率裝置的 加工工序的橫截面視圈,這種高壓功率裝置類似於第3圖 所示,帶有超級結結構以及自校準的溝道遮罩摻雜區。 [0006] 【主要元件符號說明】 100 :金屬氧化物半導ϋ場效應管裝置 099101558 表單編號Α0101 第27育/共59頁 0993094181-0 201029182 1 05 :襯底 110 :金屬漏極電極 120 : N +摻雜底部區域· 121 : N +底部襯底 125 :頂部部分、N襯底區、η-型漂流區 126 : Ν —型頂部襯底層 130 :深溝道、外延層 135-S : Ν型摻雜植入區 135-Β : Ν型摻雜植入區 140 :柵極氧化物層 144 :拇極一遮罩換雜區 145 :溝道柵極 : ' : :: S' § s t i 4:# f)ru:】r 營u 145 —ΤΒ、144 —ΤΒ :凸出部 150 :本體區 15 5 :源極區 160 :絕緣層 165 :金屬阻播層 170:源極接屬金屬 205 :襯底 210 ··背部金屬層、漏極電極層 212 :硬掩膜氧化層 214 :深溝道 215 :氧化層 * 220 :漏極區、N+漏極接觸區 225 : N-摻雜區、N-摻雜立柱 228 :硬掩膜層 099101558 表單編號A0101 第28頁/共59頁 0993094181-0 201029182 :p-外延層 :柵極溝道 :薄螢幕層 -S :側壁 _B :底面推雜區 :柵極氧化層 :P-摻雜區 :柵極多晶矽層 :P-本體區 :源極區 :介質層、矽玻璃層 :源極金屬層 099101558 表單編號A0101 第29頁/共59頁 0993094181-0In the 13.1.::::, the gate oxide layer 234 is removed, and a gate oxide layer 240 having a thickness between 0.01 and 0.1 micrometers is formed, depending on the rated voltage of the device. A gate polycrystalline layer 245 is disposed in the gate trench 232. The most complicated method of gate polysilicon layer 245; if in-situ doping is not used, the gate polysilicon layer 245 is back etched starting or diffusing the doped top surface. In Fig. 13J, a bulk mask (not shown) can be used, the body is implanted with boron at a dose between 3E12 and 1E14, and then bulk driven at 1 to 1500 degrees Celsius, in the trench gate. In the epitaxial layer 230 around the pole 245, a P-body region 250 is formed. The bulk implant can form good contact with the body region and also ensure that the metal oxide semiconductor field effect transistor channel region is always above the gate sidewall implant 235-S. The 13th [Fig. 099101558 represents the source doping implant. The source implant mask (not shown in the figure, Form No. Α0101, page 25/59 pages 0993094181-0 201029182) can be used to protect this position to form a p_body contact. The source is implanted with a source ion such as a Kun ion at a potential of about 7 〇 KeV, a dose of about 4E15, and a zero tilt angle, and then a source annealing operation is performed at 8 〇〇 to 95 〇 Celsius. Diffusion source region 255. In Fig. 13L, a dielectric layer 260 formed by a low temperature oxide arrangement (LT0) and a bovine acid (BPSG) layer 260 containing boric acid are formed on the top surface, and then a bismuth glass flow operation containing boric acid is performed. Contact openings are etched through a bismuth glass layer 26 containing boric acid using a contact mask (not shown). The P+ body contact implant is optional and then reflows after the body contacts are implanted. In the 13th 蹰, a barrier metal is provided covering the top surface of the barrier metal layer 265, and then provided and thickened. The metal forms the source metal layer 270. Metal mask (not shown in the figure for 凼θ is used to etch the source metal 260 and the gate metal (not shown) and form a pattern. The dielectric layer is provided to passivate the surface of the device. The pattern of the passivation layer is used to form a bond. The opening of the area (not shown in the figure), the whole process is completed, and the end - i . | e becomes the final town. For the sake of simplicity, this: some of the production process is not detailed here. In Fig. 13N, after the back grinding, the low doped portion of the substrate 205 is removed from the bottom surface of the substrate to form a back metal layer 21' to form a contact with the drain region 22 when the doping concentration is high. The back metal layer 210 can be formed by directly providing a TiNiAg layer on the back side of the wafer. The thickness of the back grinding process can be controlled to a few micrometers or even micrometers, enabling reliable back contact to form the drain electrode layer 210 to contact the N+ drain. The polar contact area 220. Although the present invention has been proposed in the prior art, these disclosures should not be limited. Those skilled in the art, after reading the above description, must be able to grasp various other kinds. Variations and corrections. For example, at 099101558, Form No. A0101, page 26/59, 0993094181-0, 201029182. The above embodiment uses an n-channel device body, but the invention can be modified by changing the conductivity of the region. All changes encompassed by the scope of the appended claims::: All fall within the scope of the invention and the true intent. / [0005] Although the content of the present invention has been The present invention has been described in detail, but it should be understood that the above description should be construed as limiting the invention. It will be apparent to those skilled in the <RTIgt; The scope of the present invention should be limited by the scope of the appended claims. [FIG. 1A to 1B] FIG. 1A to FIG. 1B show a cross-sectional view of a conventional vertical power device structure manufactured by a conventional method; 1 to: 1C-3: the figure shows a cross-sectional view of a floating island formed in a bulk epitaxial layer not aligned with the gate and gate channels; The cross-sectional view of the doped region of the doped region below the entanglement trench of the trench is shown in Fig. 1 to Fig. 8 to Fig. 2 to Fig. 8 for the high voltage power with the super junction structure of the present invention. The cross-section of the present invention is shown in Fig. 1. Fig. 9 to Fig. 12 show top views of various layout structures for arranging the channel mask doping regions; Figs. 13A to 13N are diagrams for fabricating a high voltage power device. The cross-sectional view of the process, which is similar to that shown in Figure 3, with a superjunction structure and a self-calibrated trench mask doping region. [0006] [Major component notation] 100: Metal oxide semi-conductive field effect transistor device 099101558 Form No. 1010101 27th/Total 59 Page 0993094181-0 201029182 1 05: Substrate 110: Metal drain electrode 120: N + doped bottom region · 121 : N + bottom Substrate 125: top portion, N substrate region, n-type drift region 126: Ν-type top substrate layer 130: deep trench, epitaxial layer 135-S: Ν-type doped implant region 135-Β: Ν-type doping Miscellaneous implant region 140: gate oxide layer 144: thumb-mask mask change region 145: trench gate ' : :: S' § sti 4:# f)ru:]r ying u 145 —ΤΒ, 144 —ΤΒ : Projection 150 : Body region 15 5 : Source region 160 : Insulation layer 165 : Metal barrier layer 170: source metal 205: substrate 210 · back metal layer, drain electrode layer 212: hard mask oxide layer 214: deep channel 215: oxide layer * 220: drain region, N + drain contact region 225 : N-doped region, N-doped pillar 228: hard mask layer 099101558 Form No. A0101 Page 28 / Total 59 Page 0993094181-0 201029182 : p- Epitaxial layer: Gate channel: Thin screen layer -S: Sidewall_B: bottom doping region: gate oxide layer: P-doped region: gate polysilicon layer: P-body region: source region: dielectric layer, germanium glass layer: source metal layer 099101558 Form No. A0101 29 pages / total 59 pages 0993094181-0

Claims (1)

201029182 七、申請專利範圍: 1 ·-種半導體功率裝置,其特徵在於,包括: 一個含有多個深溝道的半導體襯底; 個填充在所述的深溝道中的外延層,此外延層包括一個 同時生長的頂部外延層’覆蓋所述深溝道頂面上的區域, 以及所述的半導體襯底,其中外延層的導電 類型與半導體 襯底相反; 多個溝道金屬氡化物半導體場效應 管單元,設置在所述的 頂部外延層中’頂部外延層作為本體區,半導體襯底作為 漏極區’通過深溝道中的外延層和旁邊的半導體襯底中的 區域之間的電翁平衡,獲得超級ί結效應;以及 每個所述的多個溝道金屬氧化物半導體場效應管單元還包 括一個溝道柵極和一個設置在其下方並與每個溝道金屬氧 化物半導體場效應管單元的溝道栅極基本校準的柵極遮罩 摻雜區’以便在電壓擊穿時,遮罩溝道柵辱,其中柵極遮 罩摻雜區的導電類型輿襯袁相犮/ as ,2 .如申請專利範圍第1項所述的半導體功率裝置,其特徵在 於, f Μ 所述栅極遮罩摻雜區設置在距溝道柵極的底面一定距離的 地方,並不接觸所述的溝道柵極。 3.如申請專利範圍第1項所述的半導體功率裝置,其特徵在 於,還包括: 所述設置在每個溝道栅極下方,用導電類型與襯底相同的 摻雜物植入的栅極底部摻雜區,其位於柵極遮罩摻雜區上 方。 099101558 表單編號Α0101 第30頁/共59頁 201029182 4 ·如申請專利範圍第1項所述的半導體功率裝置,其特徵在 於, 所述溝道栅極位於頂部外延層内,深溝道之間。 5.如申請專利範圍第1項所述的半導體功率裝置,其特徵在 於, 每個所述的溝道金屬氧化物半導體場效應管單元的所述的 溝道柵極’都延伸穿入所述的頂部外延層,柵極溝道的深 度小於或等於所述的頂部外延層的厚度。 6 .如申請專利範圍第1項所述的半導體功率裝置,其特徵在 於, 所述每個溝道栅極都延伸並穿透所述的,頂部外延層,進入 所述的半導體襯底的頂部。 7 .如申請專利範園第1項所述的半導體功率裝,其特徵在 於,201029182 VII. Patent application scope: 1 - A semiconductor power device, comprising: a semiconductor substrate containing a plurality of deep trenches; an epitaxial layer filled in the deep trench, the epitaxial layer including a simultaneously a grown top epitaxial layer 'covers a region on the top surface of the deep trench, and the semiconductor substrate, wherein the epitaxial layer has a conductivity type opposite to the semiconductor substrate; a plurality of channel metal germanide semiconductor field effect transistor cells, Provided in the top epitaxial layer, the top epitaxial layer is used as the body region, and the semiconductor substrate is used as the drain region to obtain the super-equivalent balance between the epitaxial layer in the deep trench and the region in the side of the semiconductor substrate. a junction effect; and each of the plurality of channel metal oxide semiconductor field effect transistor cells further includes a trench gate and a trench disposed therewith and associated with each trench metal oxide semiconductor field effect transistor unit The gate gate is substantially calibrated with a gate mask doped region' so that when voltage breakdown occurs, the mask is immersed in the gate, where the gate is covered The semiconductor power device of the first aspect of the invention is characterized in that: f Μ the gate mask doping region is disposed at a distance from the trench gate. The bottom surface of the pole is at a certain distance and does not contact the trench gate. 3. The semiconductor power device according to claim 1, further comprising: said gate disposed under each channel gate and implanted with a dopant of the same conductivity type as the substrate A pole bottom doped region is located above the gate mask doped region. The semiconductor power device according to claim 1, wherein the trench gate is located in the top epitaxial layer and between the deep trenches. 5. The semiconductor power device of claim 1, wherein the trench gates of each of the trench metal oxide semiconductor field effect transistor cells extend into the The top epitaxial layer has a depth of the gate channel that is less than or equal to the thickness of the top epitaxial layer. 6. The semiconductor power device of claim 1, wherein each of the channel gates extends and penetrates the top epitaxial layer into the top of the semiconductor substrate. . 7. The semiconductor power device according to claim 1, wherein the semiconductor power device is characterized in that 所述的溝道柵極還包括園繞所述的溝道柵極側壁的柵極側 壁摻雜區,以及在所述的—逢SttectiiQ#極底部摻雜區 ,其中柵極侧壁摻雜區和柵響¥的導電類型與半 導體襯底的導電類型相同ι 如申請專利範圍第1項所述的半導體功率襞置,其特徵在 於, 所述的半導體襯底還包括圍繞所述的深溝道的區域,其有 一·水準摻雜濃度梯度,濃度從深溝道側壁緊鄰的區域開始 逐漸減小。 如申請專利範圍第2項所述的半導體功率裝置,其特徵在 於, 每個所述的金屬氧化物半導體場效應電晶體單元還包括圍 099101558 0993094181-0 表單编號A0101 第31頁/兵59頁 201029182 繞所述的溝道柵極侧壁的柵極侧壁摻雜區,以及在所述的 溝道栅極下方的柵極底部摻雜區,其中栅極侧壁摻雜區和 柵極底部掺雜區的導電類型與半導體襯底的導電類型相同 10 .如申請專利範圍第1項所述的半導體功率裝置,其特徵在 於,還包括: 圍繞所述的深溝道的底部位於所述的半導體襯底的底面附 近的一個漏極接觸摻雜區。 11 .如申請專利範圍第1項所述的半導體功率裝置,其特徵在 於, 所述柵極遮罩摻雜區構成了滲島j ·. 12 .如申請專利範園第1項所述的1半導遂功丨率裝雜,其特徵在 於,'…黑; 所述栅極遮罩摻雜區電連接到金屬氧化物半導體場效應管 單元的本體區上。 13 .如申.請專利範圍第1項所述的半、導:體功率裂.置’其特徵在 於, :::::養;:歲 所述的溝道金屬氧化物半導體‘效應管單元的所述的溝道 柵極,以及用所述的外延層填充的所述的深溝道,組成條 紋的形式,所述的栅極遮罩摻雜區設置在所述的溝道柵極 的條紋下方,作為浮動摻雜區。 14.如申請專利範圍第1項所述的半導體功率裝置,其特徵在 於, 所述的溝道金屬氧化物半導艘場效應管單元的所述的溝道 樹極,組成帶有凸出部的條紋的形式’所述的凸出部朝著 用所述的外延層填充的所述的深溝道方向延伸’以便將凸 099101558 表單編號A0101 第32萸/典59頁 0993 201029182 出部溝道柵極下方的所述的栅極遮罩摻雜哆,通過填充在 所述的深溝道令的所述的外延層,電連接列所述的電晶體 15 ❹ 16 17 單元的本體區上。 如申請專利範圍第1項所述的半導體功率裝襄,其特徵在 於, 所述的溝道金屬氧化物半導體場效應營單元的所述的溝道 柵極,還以帶錯位凸出部的條紋的形式,所述的錯位凸出 部在所述的溝道柵極的對邊上,交替朝著用所述的外延層 填充的所述的深溝道延伸,以便將溝道柵極凸出部下方的 所述的柵極遮罩摻雜區,通過填充在所述深?冓道中的所述 外延層,電連接至所述的電晶逋單元的本艘:| 如申請專利範爾第1項所述的半導艘功率裝置,其特徵在 於, 所述半導體襯底還包括一個重摻雜的底部襯底和一個生長 在底部襯底上方擁摻_解^底,其巾深溝道主要形 成在頂部襯底中。申請專利範圍第12項所脊I賴辦裝置,其特徵在 如 於 18 所述深溝道延伸至底部概底° 如申請專利範圍第㈣所述的半導體功率裝置,其特徵在 於 19 099101558 所述深溝道延伸進所述的襯底的頂部’但並沒有觸及所述 撒底的底部° 4半導㈣率0,其特徵在於’包括: 〆個包含深溝道的半導’ 〆個填充深溝道在半導體滅額的單一外延屠; 第33買/共59莨 〇9ί 表單編號Α0101 第J 0993094181-0 201029182 以及多個形成在半導體表面上方的外延層谓部中的溝道金 屬氧化物半導體場效應管單元,其中深溝道旁邊的的一部 分半導體襯底,擔負著溝道金屬氧化物半導體場效應管單 元的漂流層的作用,並且其中所述的溝道金廣氧化物半導 體場效應管單元的溝道栅極,形成在深溝道之間的漂流區 上方的分外延層中’並通過漂流區和深溝道中的外延 層部分之間的電荷平衡’使半導體功率裝置獲得超級結效 應;以及 -個柵極«摻雜區,設置在每料道栅極下方,並與每 個溝道柵極基本校準,用於當每個溝道金屬氧化物半導體 ® 場效應管單元發生電壓擊穿·.時:.,遮革薄道摘極。 20 .如申請專利範園第19項所述的半導體功率裝置,其特徵在 於, “ ^爾纖_ r ..舰%, 所述柵極遮罩摻雜區設置在距溝道柵極的底面有一定距離 的位置上,並沒有接觸所述的溝道栅極。 21 . —種在半導體襯底上形成半!導撤珈率赛篆:!§方法,其特徵 I: .. 在於,包括: .,、 —Y 製備一個半導體襯底; Ο 在半導艎襯底中開通數個深溝道,生長一個頂部外延層, 用它填充所述的深溝道,覆蓋所述半導體襯底的頂面,其 中深溝道中的一部分外延層和所述的頂部外延層,都作為 單層同時生長,其中外延層的導電類型與半導體襯底的導 電類型相反;以及 在所述的頂部外延層中,通過開通多個柵極溝道,並在所 述的柵極溝道下方植入多個柵極遮罩摻雜區,形成多個溝 道金屬氧化物半導艘場效應管單元,以便當所述的半導體 0993094181-0 099101558 表草編號A0101 第34頁/共59頁 201029182 功率裝置發生電壓擊穿時’遮罩所述的電晶體單元的溝道 b 栅極,頂部外延層擔負本雜區的作用’半導體襯底擔負漏 極區的作用,其中通過深潘道中的一部分外延層和深溝道 旁邊的一部分半導體襯底之間達到電荷平衡,獲得超級結 22 . ❹ 23 . 效應。 如申請專利範圍第21項所述的在半導體襯底上形成半導體 功率裝置的方法,其特徵在於,還包括: 通過深溝道的侧壁,植入帶有第一導電類型的摻雜物,以 便在所述的半導體襯底中所述的深溝道之間的區域中形成 水準濃度梯度,並通過調整深溝道側壁植入,調節所述的 半導體功率裝置的所述的裝玄性能n, 如申請專利範圍第21項所述的在半導龍襯底上形成半導體 功率裝置的方法,其特徵在於,/ ❹24. 所述的在所述的拇極溝道下方’植入多個栅極遮罩摻雜區 的步驟,還包括在距所述的柵極溝道底面下方一定距離處 ,植入所述的多個柵極遮革換雄束所述的柵極遮罩 摻雜區並沒有接觸所述的、、、 如申請專利範㈣21項所轉_底上形成 功率裝置的方法,其特徵在於,還包括: 通過柵極溝道的底部, 植入和襯底導電類型相同的摻雜區 099101558 將和概底導電類型相同的換雜物植入 底部。 如申請專利範圍第21項所述的在半導 表單編號A0101 第35頁/共59頁 到柵極溝道的側壁和 體襯底上形成半導體 0993094181-0 26 201029182 功率裝置的方法,其特徵在於,還包括: « 所述的製備一個半導體襯底的步驟包括製備一個單層半導 體襯底,並且其中所述的開通多個深溝道的步驟包括在單 層半導體襯底中開通多個深溝道。 27 .如申請專利範圍第21項所述的在半導體襯底上形成半導體 功率裝置的方法,其特徵在於,還包括: 所述的製備一個半導體襯底的步驟還包括製備一個重摻雜 的底部襯底,並在底部襯底上方生長一個頂部襯底層,其 中頂部襯底層的導電類型與底部襯底相同。 28 .如申請專利範圍第26項所述的在半導體襯底上形成半導體 功率裝置的方法,其特徵在於,還包括: 對深溝道底部進行重摻雜,是為了在生長所述的外延層之 前,形成漏極接觸區;並且 對襯底進行背部研磨,使漏極接觸區裸露出來。 29 .如申請專利範圍第21項所述的在半導體襯底上形成半導體 功率裝置的方法,其特徵在於,還包括: 在形成所述的多個溝道金屬氧化物半導體場效應管單元的 步驟之前,對外延層的頂面進行部分化學機械拋光,以使 頂面平滑。 0993094181-0 099101558 表單編號A0101 第36頁/共59頁The trench gate further includes a gate sidewall doped region surrounding the trench gate sidewall, and a doped region at the bottom of the Sttectii Q# pole, wherein the gate sidewall doped region The conductivity type of the singular singer is the same as the conductivity type of the semiconductor substrate. The semiconductor power device of claim 1, wherein the semiconductor substrate further comprises a deep trench surrounding the semiconductor device. The region has a level of doping concentration gradient, and the concentration gradually decreases from the region immediately adjacent to the sidewall of the deep channel. The semiconductor power device according to claim 2, wherein each of said metal oxide semiconductor field effect transistor units further comprises 099101558 0993094181-0, form number A0101, page 31/Bing 59 pages. 201029182 a gate sidewall doped region surrounding the trench gate sidewall, and a gate bottom doped region under the trench gate, wherein the gate sidewall doped region and the gate bottom The conductivity type of the doped region is the same as the conductivity type of the semiconductor substrate. The semiconductor power device of claim 1, further comprising: the semiconductor surrounding the bottom of the deep trench A drain near the bottom surface of the substrate contacts the doped region. 11. The semiconductor power device according to claim 1, wherein the gate mask doping region constitutes an island J.. 12 as described in claim 1 of the patent application. The semi-conducting power is characterized in that '...black; the gate mask doping region is electrically connected to the body region of the metal oxide semiconductor field effect transistor unit. 13. For example, please refer to the semi-conductor: body power splitting described in item 1 of the patent scope, which is characterized by ::::::; channel metal oxide semiconductor 'effect tube unit The trench gate, and the deep trench filled with the epitaxial layer, in the form of stripes, the gate mask doped region is disposed on the trench of the trench gate Below, as a floating doping area. 14. The semiconductor power device according to claim 1, wherein the channel metal pole of the channel metal oxide semi-conducting field effect transistor unit is formed with a protruding portion. The stripe form 'the projections extend toward the deep channel direction filled with the epitaxial layer' so that the convex 099101558 form number A0101 section 32 / code 59 page 0993 201029182 out of the channel grid The gate mask doped germanium under the pole is electrically connected to the body region of the transistor 15 ❹ 16 17 unit by the epitaxial layer filled in the deep trench. The semiconductor power device of claim 1, wherein the trench gate of the channel metal oxide semiconductor field effect cell unit further has a stripe with a misaligned protrusion. In the form of the dislocation protrusions on opposite sides of the trench gate, alternately extending toward the deep trench filled with the epitaxial layer to place the trench under the trench The gate mask doping region of the square is electrically connected to the vessel of the electro-ceramic unit by the epitaxial layer filled in the deep trench: | as claimed in the patent Vail 1 The semi-guided power device of the present invention, wherein the semiconductor substrate further comprises a heavily doped underlying substrate and a substrate grown on the underlying substrate, the deep channel of the towel is formed. In the top substrate. The device of claim 12, wherein the deep channel extends to the bottom portion as described in claim 18, and the semiconductor power device according to the fourth aspect of the patent application is characterized by the deep trench described in 19 099101558. The trace extends into the top of the substrate 'but does not touch the bottom of the sprinkle. 4 The semiconducting (four) rate is 0, which is characterized by 'comprising: one semi-conducting containing deep trenches' Single extension of semiconductor extinction; 33rd buy / total 59莨〇9ί Form No. Α0101 J J993094181-0 201029182 and a plurality of channel metal oxide semiconductor field effect transistors formed in the epitaxial layer above the semiconductor surface a cell in which a portion of the semiconductor substrate beside the deep trench is responsible for the drift layer of the channel metal oxide semiconductor field effect transistor unit, and wherein the channel of the channel gold oxide semiconductor field effect transistor cell a gate formed in the sub-epitaxial layer above the drift region between the deep trenches and passing between the drift region and the portion of the epitaxial layer in the deep trench Balance 'to make the semiconductor power device get super junction effect; and - a gate « doped region, placed under the gate of each channel, and is basically calibrated with each channel gate for oxidation of each channel metal When the voltage breakdown occurs in the semiconductor FET unit, the film is removed. 20. The semiconductor power device according to claim 19, wherein the gate mask doping region is disposed at a bottom surface of the trench gate. At a certain distance, there is no contact with the channel gate. 21 . - Forming a semi-conducting defect on the semiconductor substrate: § method, its characteristic I: .. Preparing a semiconductor substrate; 开 opening a plurality of deep trenches in the semiconductor substrate, growing a top epitaxial layer, filling the deep trenches with the top surface of the semiconductor substrate Wherein a portion of the epitaxial layer in the deep trench and the top epitaxial layer are both grown simultaneously as a single layer, wherein the conductivity type of the epitaxial layer is opposite to that of the semiconductor substrate; and in the top epitaxial layer, a plurality of gate trenches, and implanting a plurality of gate mask doped regions under the gate trenches to form a plurality of trench metal oxide semi-conducting FET units for Semiconductor 0993094181-0 099101558 table grass No. A0101 Page 34 / Total 59 Page 201029182 When the voltage breakdown of the power device occurs, the channel b gate of the transistor unit is covered, and the top epitaxial layer acts as the impurity region. The semiconductor substrate is responsible for the drain region. The effect of achieving a charge balance between a portion of the epitaxial layer in the deep tunnel and a portion of the semiconductor substrate beside the deep trench, obtaining a superjunction 22. ❹ 23 . Effect in the semiconductor lining as described in claim 21 A method of forming a semiconductor power device on a substrate, further comprising: implanting a dopant having a first conductivity type through a sidewall of the deep trench to form the deep channel in the semiconductor substrate A level concentration gradient is formed in the region between the regions, and the immersive property of the semiconductor power device is adjusted by adjusting the deep trench sidewall implant, as described in claim 21, in the semi-conductor lining A method of forming a semiconductor power device on a bottom, wherein: / ❹ 24. said step of implanting a plurality of gate mask doping regions under said thumb-pole channel Included at a distance below the bottom surface of the gate channel, the gate mask doping region implanted in the plurality of gates is not in contact with the The method for forming a power device on the basis of the patent application (4) 21, further comprising: passing through the bottom of the gate channel, implanting a doping region of the same conductivity type as the substrate 099101558 The same foreign matter is implanted into the bottom. The semiconductor 0993094181-0 26 is formed on the sidewalls of the gate trench and the bulk substrate as described in the twenty-first part of the patent application, in the semi-conductive form number A0101, page 35/59. 201029182 The method of power device, further comprising: « said step of preparing a semiconductor substrate comprises preparing a single-layer semiconductor substrate, and wherein said step of opening a plurality of deep trenches comprises comprising a single-layer semiconductor A plurality of deep trenches are opened in the substrate. The method of forming a semiconductor power device on a semiconductor substrate according to claim 21, further comprising: said step of preparing a semiconductor substrate further comprising preparing a heavily doped bottom portion The substrate is grown with a top substrate layer over the bottom substrate, wherein the top substrate layer has the same conductivity type as the bottom substrate. 28. The method of forming a semiconductor power device on a semiconductor substrate of claim 26, further comprising: heavily doping the bottom of the deep trench prior to growing the epitaxial layer Forming a drain contact region; and back grinding the substrate to expose the drain contact region. The method of forming a semiconductor power device on a semiconductor substrate according to claim 21, further comprising: the step of forming said plurality of channel metal oxide semiconductor field effect transistor units Previously, the top surface of the epitaxial layer was partially chemically mechanically polished to smooth the top surface. 0993094181-0 099101558 Form No. A0101 Page 36 of 59
TW99101558A 2009-01-21 2010-01-20 Charged balanced devices with shielded gate trench TWI442567B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/321,435 US7893488B2 (en) 2008-08-20 2009-01-21 Charged balanced devices with shielded gate trench

Publications (2)

Publication Number Publication Date
TW201029182A true TW201029182A (en) 2010-08-01
TWI442567B TWI442567B (en) 2014-06-21

Family

ID=42523256

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99101558A TWI442567B (en) 2009-01-21 2010-01-20 Charged balanced devices with shielded gate trench

Country Status (2)

Country Link
CN (1) CN101783346B (en)
TW (1) TWI442567B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104241341A (en) * 2012-07-27 2014-12-24 俞国庆 High-frequency low-power dissipation power MOS field-effect tube device
CN103681315B (en) * 2012-09-18 2016-08-10 中芯国际集成电路制造(上海)有限公司 The forming method of buried regions
JP6063280B2 (en) * 2013-02-05 2017-01-18 ルネサスエレクトロニクス株式会社 Semiconductor device
CN104979376B (en) * 2014-04-02 2018-12-21 中芯国际集成电路制造(上海)有限公司 Insulated gate bipolar transistor and forming method thereof
CN105336777A (en) * 2014-07-11 2016-02-17 北大方正集团有限公司 Super-junction MOS device and manufacturing method thereof
CN109509721B (en) * 2017-09-14 2021-05-25 联华电子股份有限公司 Semiconductor element and manufacturing method thereof
CN107731908B (en) * 2017-10-24 2020-09-25 贵州芯长征科技有限公司 Shielding gate MOSFET structure for improving voltage resistance and preparation method thereof
CN113851524B (en) * 2021-09-17 2022-06-14 深圳真茂佳半导体有限公司 Multi-source MOS tube shared grid charge balance chip structure and manufacturing method thereof
CN117476770B (en) * 2023-11-16 2024-07-19 华羿微电子股份有限公司 Low-grid charge shielding grid MOSFET device and manufacturing method thereof

Also Published As

Publication number Publication date
CN101783346B (en) 2012-04-18
CN101783346A (en) 2010-07-21
TWI442567B (en) 2014-06-21

Similar Documents

Publication Publication Date Title
US20220028980A1 (en) Method of Manufacturing Silicon Carbide Semiconductor Devices
US7893488B2 (en) Charged balanced devices with shielded gate trench
TWI524521B (en) Nano mosfet and fabricating method thereof with trench bottom oxide shielded and third dimensional p-body contact
TWI552352B (en) Improved termination design of semiconductor power device by metal strapping guard ring trenches shorted to a body region to shrink termination area
TWI478241B (en) Mosfet active area and edge termination area charge balance
JP5154347B2 (en) Superjunction semiconductor device and method of manufacturing superjunction semiconductor device
US8860130B2 (en) Charged balanced devices with shielded gate trench
US7410891B2 (en) Method of manufacturing a superjunction device
JP4028482B2 (en) Power MOSFET having trench gate electrode and manufacturing method thereof
TW201029182A (en) Charged balanced devices with shielded gate trench
TWI412071B (en) Method of forming a self-aligned charge balanced power dmos
US9356134B2 (en) Charged balanced devices with shielded gate trench
US8697556B2 (en) Transistor structure having a trench drain
KR100731141B1 (en) Semiconductor device and method for fabricating the same
JP2008546216A (en) Charge balanced field effect transistor
US9941383B2 (en) Fast switching IGBT with embedded emitter shorting contacts and method for making same
TWI493718B (en) Top drain ldmos﹑semiconductor power device and method of manufacturing the same
JP2008227441A (en) Semiconductor device and its manufacturing method
KR20140113248A (en) Vertical doping and capacitive balancing for power semiconductor devices
US9450050B2 (en) Lateral super junctions with high substrate breakdown and build in avalanche clamp diode
KR20110095207A (en) Semiconductor devices containing trench mosfet with superjunctions
US9012280B2 (en) Method of manufacturing a super junction semiconductor device with overcompensation zones
JP2022177293A (en) Semiconductor device
WO2017048541A1 (en) Lateral power mosfet with non-horizontal resurf structure
TWI246194B (en) Self-aligned schottky-barrier clamped trench DMOS transistor structure and its manufacturing methods