CN102007186B - 中孔炭黑及其制造方法 - Google Patents

中孔炭黑及其制造方法 Download PDF

Info

Publication number
CN102007186B
CN102007186B CN200980113757.9A CN200980113757A CN102007186B CN 102007186 B CN102007186 B CN 102007186B CN 200980113757 A CN200980113757 A CN 200980113757A CN 102007186 B CN102007186 B CN 102007186B
Authority
CN
China
Prior art keywords
carbon black
area
bet nitrogen
nitrogen surface
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980113757.9A
Other languages
English (en)
Other versions
CN102007186A (zh
Inventor
马丁·C·格林
罗斯科·W·泰勒
杰弗里·D·莫泽
阿加莎格洛斯·基尔利迪斯
雷蒙德·M·索卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cabot Corp
Original Assignee
Cabot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Corp filed Critical Cabot Corp
Publication of CN102007186A publication Critical patent/CN102007186A/zh
Application granted granted Critical
Publication of CN102007186B publication Critical patent/CN102007186B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • C09C1/565Treatment of carbon black ; Purification comprising an oxidative treatment with oxygen, ozone or oxygenated compounds, e.g. when such treatment occurs in a region of the furnace next to the carbon black generating reaction zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/324Inkjet printing inks characterised by colouring agents containing carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Abstract

本发明涉及用于提高炭黑起始材料表面积以及用于形成中孔炭黑的方法。所述方法包括以下步骤:使具有第一BET氮气表面积的炭黑起始材料与氧化剂在流化床中在有效地形成具有大于所述第一BET氮气表面积的第二BET氮气表面积的炭黑产物的条件下接触。本发明还涉及由该方法形成的炭黑产物。

Description

中孔炭黑及其制造方法
技术领域
本发明涉及碳质材料。具体地说,本发明涉及中孔炭黑以及中孔炭黑的制造方法。
背景技术
中孔炭黑为这样的炭黑,其具有大于2nm但是小于该炭黑平均初级颗粒尺寸(Dp)的平均孔尺寸。与微孔炭黑(即具有小于2nm的平均孔尺寸的炭黑)相比,中孔炭黑通常具有更高的表面积。
炭黑的孔隙率可通过若干方法实现。提高炉法炭黑孔隙率的一种常见方法在于提高在炭黑反应器中的停留时间,从而使尾气有更多的时间来攻击和侵蚀炭表面。另一方法在于向炭黑进料中添加碱土金属离子,这是因为,已经知晓这些离子催化了经由尾气对炭黑的侵蚀。这两种技术均涉及:在生产期间,“原位”(即在炉反应器内)侵蚀炭黑以产生具有内孔隙率的炭黑。对于延长在炭黑反应器中的停留时间来说,主要限制为:温度和反应器的物理长度;炭黑反应器的长度通常不足以获得极高的孔隙率水平。此外,在较低的反应器温度(该温度可用于制造较大的初级颗粒)下,侵蚀速率未足够快。对于添加碱土金属离子来说,限制在于:该添加将在炭黑上遗留杂质,这在一些应用中可为不期望的。这两种原位侵蚀技术的另一主要限制在于:到目前为止,它们有利于形成微孔炭黑而不是中孔炭黑。到目前为止,还未知晓使用常规炭黑炉反应器来产生高度中孔性炭黑的方法。
在一些经由气化法制造的竞争性炭黑中存在一定程度的中孔隙率,在所述气化法中,炭黑为反应副产物(例如,Ketjen EC600、Ketjen EC300、或PrintexXE-2)。这些产物具有显著的中孔隙率,但是,由于与气化法有关的其它因素,使得可通过所述气化法制得的基本形态(即初级颗粒直径和聚集体直径)显得相当受限。这些产物通常具有低于30nm的初级颗粒尺寸Dp。此外,在气化法中形成的炭黑颗粒的结构通常高,这意味着:具有不规则碎片形(fractal)的炭黑聚集体含有大量初级颗粒。
因此,需要也提供对形态(即初级颗粒尺寸和聚集体尺寸两者)进行精细控制的能力的中孔炭黑制造方法。此外,需要具有与由常规气化法形成的炭黑不同的孔和形态特性的中孔炭黑。
发明内容
在一个实施方式中,本发明涉及提高炭黑表面积的方法,该方法包括:使具有第一BET氮气表面积的炭黑起始材料与氧化剂在流化床中在有效地形成具有大于第一BET氮气表面积的第二BET氮气表面积的炭黑产物的条件下接触,其中,所述第二BET氮气表面积例如为第一BET氮气表面积的至少约1.5倍高(如约1.5~约8.0倍高)。优选地,该方法进一步包括在流化床中用含氧化剂的流化剂流化炭黑起始材料。所述流化剂任选地在流化床中具有约0.03~约0.15m/s的表观速度。
任选地,氧化剂包含蒸汽。所述条件任选地包括约0.5~约15小时的反应时间。
除了氧化剂以外,流化剂还任选地包含氮气。在各种其它任选实施方案中,流化剂包含蒸汽、基本上由蒸汽组成、或者由蒸汽组成。
优选地,炭黑起始材料包括提供所需流化特性的粒状炭黑。
在该方法中,在反应时间结束时的总的氧化剂与炭黑起始材料的质量比任选地为约0.5~约2.5。
所述条件任选地包括采用约700℃~约1300℃(如约900℃~约1100℃)的流化床温度。
流化床中的蒸汽流量与炭黑起始材料之比任选地为约0.05~约0.50kg蒸汽/kg炭黑起始材料/小时。
在另一实施方式中,本发明涉及通过包括以下步骤的方法形成的炭黑产物:使具有第一BET氮气表面积的炭黑起始材料与氧化剂在流化床中在有效地形成具有大于第一BET氮气表面积的第二BET氮气表面积的炭黑产物的条件下接触。优选地,炭黑起始材料在流化床中用含氧化剂的流化剂流化。
在另一实施方式中,本发明涉及含炭黑产物和塑料的导电塑料,其中,所述炭黑产物通过包括以下步骤的方法形成:使具有第一BET氮气表面积的炭黑起始材料与氧化剂在流化床中在有效地形成具有大于第一BET氮气表面积的第二BET氮气表面积的炭黑产物的条件下接触。优选地,炭黑起始材料在流化床中用含氧化剂的流化剂流化。
在另一实施方式中,本发明涉及包含分散在液体载剂中的炭黑产物的喷墨油墨,其中,所述炭黑产物通过包括以下步骤的方法形成:使具有第一BET氮气表面积的炭黑起始材料与氧化剂在流化床中在有效地形成具有大于第一BET氮气表面积的第二BET氮气表面积的炭黑产物的条件下接触。优选地,炭黑起始材料在流化床中用含氧化剂的流化剂流化。
在另一实施方式中,本发明涉及包含炭黑产物和位于其上的活性相的燃料电池催化剂,其中,所述炭黑产物通过包括以下步骤的方法形成:使具有第一BET氮气表面积的炭黑起始材料与氧化剂在流化床中在有效地形成具有大于第一BET氮气表面积的第二BET氮气表面积的炭黑产物的条件下接触。优选地,炭黑起始材料在流化床中用含氧化剂的流化剂流化。
在另一实施方式中,本发明涉及包含炭黑产物的超电容器,其中,所述炭黑产物通过包括以下步骤的方法形成:使具有第一BET氮气表面积的炭黑起始材料与氧化剂在流化床中在有效地形成具有大于第一BET氮气表面积的第二BET氮气表面积的炭黑产物的条件下接触。优选地,炭黑起始材料在流化床中用含氧化剂的流化剂流化。
在另一实施方式中,本发明涉及具有以下性质的多孔炭黑(如中孔炭黑):(i)约600~约1200m2/g或约1500~约1800m2/g(例如,约600~约900m2/g、约900~约1200m2/g、或约1500~约1800m2/g)的BET氮气表面积,以及(ii)约0.95~约1.1的BET氮气表面积与STSA(统计厚度表面积)之比。
在另一实施方式中,本发明涉及具有以下性质的多孔炭黑(如中孔炭黑):约35~约80nm的平均初级颗粒尺寸;约600~约1800m2/g的BET氮气表面积;和约0.95~约1.1的BET氮气表面积与STSA之比。
在另一实施方式中,本发明涉及具有以下性质的多孔炭黑(如中孔炭黑):约600~约1800m2/g的BET氮气表面积;和约1~约7(如约1~约5、或约1~约3)的Dagg/Dp之比。Dp任选地为约35~约80nm、或约5~约15nm。所述多孔炭黑任选地具有约900~约1400m2/g的BET氮气表面积和约1~约5(如约1~约3)的Dagg/Dp之比。所述多孔炭黑任选地具有约0.95~约1.1的BET氮气表面积与STSA之比。
在另一实施方式中,本发明涉及这样的多孔炭黑,其具有通过氮气解吸附测得的约1.2~约2.0cm3/g的尺寸为2~5nm的孔的总体积。
在另一实施方式中,本发明涉及这样的多孔炭黑,其具有通过氮气解吸附测得的约3.0~约5.0cm3/g的尺寸为2~100nm的孔的总体积。
附图说明
参照下列非限制性附图将更好地理解本发明,其中:
图1说明了如何经由蒸汽侵蚀通过除去晶格缺陷而提高炭表面积;
图2示出了根据本发明一个方面的其中流化剂包含蒸汽和/或氮气的流化床反应系统的流程图;
图3A~3C示出了随侵蚀时间的变化,经蒸汽侵蚀的炭黑的XRD曲线;
图4说明了随着蒸汽侵蚀的进行而发生的炭微观结构的非限制性的可能变化;
图5A和5B示出了炭黑(Vulcan XC72)在蒸汽侵蚀之前的孔尺寸分布(图5A)以及按照实施例4在950℃下蒸汽侵蚀360分钟之后的孔尺寸分布(图5B);
图6为说明按照实施例2~6侵蚀的炭黑的BET氮气表面积随总的蒸汽与炭之比(kg/kg)而变化的图;
图7是说明实施例C1和实施例1~5的微分(differential)孔体积随孔尺寸变化的图;和
图8为针对实施例1、4和6的说明了BET氮气表面积与STSA表面积之比随BET氮气表面积变化的图。
具体实施方式
简要介绍
在一个方面中,本发明涉及通过如下提高炭黑表面积的方法:在流化床反应器中用氧化剂氧化炭黑起始材料以提高其表面积,且优选形成中孔炭黑产物。例如,在一个实施方式中,本发明涉及包含以下步骤的方法:使具有第一BET氮气表面积的炭黑起始材料与氧化剂(如蒸汽)在流化床中在有效地形成具有大于第一BET氮气表面积的第二BET氮气表面积的炭黑产物的条件下接触。在优选实施方式中,该方法进一步包括在流化床中用含氧化剂和任选的稀释剂(如氮气)的流化剂对炭黑起始材料进行流化的步骤。本发明还涉及通过该方法制得的各种炭黑产物。本文所用的术语“BET氮气表面积”是指通过ASTM D6556-04测定的表面积,该标准的全部内容在此引入作为参考。
炭黑起始材料
如前所述,在一个方面中,本发明涉及提高炭黑起始材料的表面积。炭黑起始材料的物理性能可宽范围地改变,但优选地,所述炭黑为使其适于在流化床反应器中流化的形式。炭黑起始材料的形态、尺寸、物理形式以及质量将取决于例如所用的具体流化条件(如流化剂的表观速度)、流化板的设计等。
在优选实施方式中,炭黑起始材料包括粒状炭黑。已经发现,粒状炭黑表现出本发明方法所需的流化特性。可使用各种常规炭黑造粒技术中的任意技术以对非粒状炭黑材料进行造粒并形成粒状炭黑起始材料。例如,可通过湿法造粒形成粒料,在所述湿法造粒中,将细的炭黑粉末和水一起进料到销式混合机中,然后在高剪切下进行混合。还可向所述水中加入聚合物型粘结剂或小分子粘结剂以改善粒料的硬度或耐久性。另一造粒方法为干法造粒,在所述干法造粒中,将细的炭黑粉末进料到大转鼓中(所述细的炭黑粉末在该大转鼓中与再循环的粒料(或种子粒料)混合),且该鼓的旋转动作使得所述细粉末与粒料混合并结合。
在一些示例性实施方式中,炭黑起始材料(如粒状炭黑起始材料)具有大于约25μm(例如,大于约50μm、大于约100μm、大于约200μm、大于约500μm、或大于约1mm)的平均粒料尺寸。就范围而言,炭黑起始材料(如粒状炭黑起始材料)任选地具有约10μm~约5mm(例如,约100μm~约5mm、或约200μm~约2mm)的平均粒料尺寸。炭黑起始材料任选地具有这样的粒料尺寸分布:大于2mm的为0重量%~3重量%;1~2mm的为15重量%~80重量%;500μm~1mm的为15重量%~80重量%;250μm~500μm的为1重量%~15重量%;125μm~250μm的为0重量%~10重量%;以及低于125μm的为0重量%~5重量%。关于这一点,所述粒料尺寸分布和平均粒料尺寸如下测得:按照ASTM D 1511-00,使炭黑粒料通过具有逐渐减小的筛孔尺寸的振动的层叠筛组,然后,对在每个筛上所收集的物质进行测量,该标准的全部内容在此引入作为参考。
优选地,炭黑起始材料基本上不含炭黑细粒,在本文中,所述炭黑细粒定义为通过120号网筛的炭黑颗粒部分,该炭黑细粒例如具有低于约125μm的粒料尺寸,往往表现出差的流化特性。在各种任选实施方式中,炭黑起始材料包含低于约15重量%的炭黑细粒,例如,低于约10重量%、低于约5重量%或低于约2重量%的炭黑细粒。
类似地,炭黑起始材料的第一BET氮气表面积(也称为N2SA)可宽范围地改变。在各种任选实施方式中,所述第一BET氮气表面积低于约1000m2/g,例如,低于约500m2/g、低于约300m2/g、或低于约100m2/g。
通过ASTM D3849-04测得的炭黑起始材料的平均初级颗粒尺寸(Dp)(也称为ASTM颗粒尺寸)任选地低于约100nm(例如,低于约75nm、低于约50nm、低于约30nm、低于约20nm、或低于约10nm),该标准的全部内容在此引入作为参考。就范围而言,炭黑起始材料的平均初级颗粒尺寸燃任选地为约5nm~约100nm,例如,约10~约50nm、约10nm~约40nm、约10nm~约30nm、或约10nm~约20nm。
炭黑聚集体定义为在接触点处熔合(fuse)且无法容易地通过剪切分开的初级炭黑颗粒的结构体。炭黑起始材料的平均聚集体尺寸(Dagg)可使用ASTMD3849-04中所述的成像技术由TEM图像分析得到,该标准的全部内容在此引入作为参考,且具体地说,炭黑起始材料的平均聚集体尺寸(Dagg)可基于以下方程式得到:
Dagg=(DmaxDmin)0.5
其中,Dmax为得自TEM分析的颗粒的算术值平均最大直径,且Dmin为得自TEM分析的颗粒的算术值平均最小直径。在一些示例性实施方式中,炭黑起始材料具有低于约500nm(例如,低于约400nm、低于约300nm、低于约200nm、或低于约100nm)的平均聚集体尺寸。就范围而言,炭黑起始材料的平均聚集体颗粒尺寸任选地为约30nm~约500nm,例如,约50~约300nm、或约100nm~约300nm。
炭黑起始材料的结构可由平均聚集体尺寸与平均初级颗粒尺寸之比(Dagg/Dp)表征。炭黑起始材料的Dagg/Dp之比任选地为约1~约12,例如,约2~约10、或约4~约10,数值越高表示结构越大。对于范围下限,炭黑起始材料的Dagg/Dp之比任选地大于约4,例如,大于约7或大于约11。
炭黑起始材料的堆密度可对炭黑起始材料的流化特性具有显著影响。在一些示例性实施方式中,炭黑起始材料(如粒状炭黑起始材料)的堆密度任选地为约150~约500kg/m3,例如,约200~约450kg/m3、或约250~约450kg/m3
被高度侵蚀的炭黑的中孔隙率相对于微孔隙率的程度可由BET氮气表面积与统计厚度表面积(STSA)之比表征。BET氮气表面积通常反映炭黑的总表面积(即,包括外表面积以及可归因于中孔和微孔的表面积),而STSA表面积通常仅反映炭黑的外表面积和可归因于中孔的表面积(即,排除可归因于微孔的表面积)。本文所用的术语“STSA表面积”是指按照ASTM D6556-04测定的表面积,该标准的全部内容在此引入作为参考。通常,BET氮气表面积和STSA表面积越相似(即,随着这两者之比接近1),炭黑的微孔性越低。在一些示例性实施方式中,炭黑起始材料具有大于0.9(例如,大于约1.1、大于约1.3、或大于约1.5)的BET氮气表面积/STSA之比。在本发明的氧化过程期间,微孔隙率(以及由此的BET氮气表面积/STSA之比)可最初升高,但最后将降低,这是因为,微孔结构被氧化且炭黑颗粒被“挖空”,在下文中将参照图1和图8对此进行描述。在微孔结构的氧化期间,BET氮气表面积/STSA之比理想地接近1。
可通过选择具有适当形态的炭黑起始材料来控制由本发明方法形成的炭黑产物的初级颗粒尺寸和聚集体尺寸。可利用各种初级颗粒尺寸和聚集体尺寸的炉法炭黑。任选地,这些炭黑起始材料可未经侵蚀,或者可已经原位(即在炭黑反应器内)侵蚀至一定程度。其它炭黑(例如,热解炭黑、乙炔黑、灯黑、槽法炭黑、或气炉法炭黑)可用作炭黑起始材料。
在一些具体的非限制性实例中,炭黑起始材料包含一种或多种选自下列的炭黑:Vulcan XC72(具有或不具有粘结剂)、Black Pearls 700、Black Pearls800、Vulcan XC605、Regal 350、Regal 250、Black Pearls 570、和Vulcan XC68。
流化剂
所述方法优选包括在流化床中用包含氧化剂和任选的稀释剂(如氮气)的流化剂对炭黑起始材料进行流化的步骤。
根据例如所用炭黑起始材料的组成以及所需的反应条件,氧化剂的组成可宽范围地变化。在一些非限制性实施方式中,氧化剂包含下列中的一种或多种:O2、O3、含氧酸、水(如蒸汽)、NOx、SO3或CO2。在一些特别优选的实施方式中,氧化剂包含蒸汽、由蒸汽组成、或者基本上由蒸汽组成。优选地,流化剂包含至少50重量%的蒸汽、至少75重量%的蒸汽、至少90重量%的蒸汽、或100%的蒸汽。如果流化剂基本上由氧化剂组成而不具有单独的非氧化性流化组分,则额外的好处在于:在氧化步骤之后,不必对炭黑产物进行纯化或从炭黑产物中分离流化组分。
任选地,流化剂进一步包含稀释剂(即,主要出于不同于使炭黑起始材料氧化的原因而包含在流化剂中的材料)。例如,稀释剂可包括惰性气体(例如,氮气或氩气)。因而,流化剂任选地进一步包含惰性气体(例如,氮气或氩气)。在开始期间,流化剂可包含稀释剂以及很少的氧化剂或不含氧化剂。通过使用含有稀释剂但是含有很少氧化剂或不含氧化剂的流化剂,可用稀释剂对炭黑起始材料进行流化并同时调节流化床反应器的温度分布(即,此时所述床被加热),以使所述反应在热力学上是有利的。一旦获得期望的温度分布,可提高流化剂的氧化剂含量以提供所需的氧化剂∶稀释剂之比和反应继续进行。对于反应器停机,可采用类似的程序。
期望地,本发明方法的氧化速率(如侵蚀速率)可通过如下而精细控制:在使炭黑起始材料与氧化剂在流化床中在有效地形成炭黑产物的条件下接触的步骤期间,控制流化剂中的氧化剂(如蒸汽)与稀释剂(如氮气)之比。结果,通过控制流化剂中的氧化剂(如蒸汽)与稀释剂(如氮气)之比,可以精细控制根据本发明方法形成的炭黑产物的第二BET氮气表面积。
氧化条件
现在已经发现:在流化床反应器中,可对炭黑进行有效地氧化以提高其表面积。与其它反应器类型相比,流化床反应器提供了改善氧化剂与炭黑起始材料的接触的好处,这导致了在炭黑产物的形成中炭黑起始材料的更快的反应时间以及更均匀的侵蚀。在优选实施方式中,所述氧化包括蒸汽侵蚀过程。本文所用的术语“蒸汽侵蚀”是指用蒸汽氧化炭黑起始材料。
流化床反应器典型地包括流化剂引入区或气室(plenum)、以及位于流化剂引入区上方的反应区(侵蚀区)或床。在操作期间,炭黑起始材料在侵蚀区中进行流化以形成流化床。这两个区优选地由包括多个开口以使流化剂从流化剂引入区流向侵蚀区(流化床)并同时基本上排除炭黑起始材料从侵蚀区向流化剂引入区的流动的基底格栅(base grate)、筛、板、或类似的分隔结构分隔。
不受理论的限制,据信,本发明方法通过从炭黑起始材料除去例如活性中心(如缺陷)、无定形碳、单层平面等来提高表面积。该过程示于图1中,图1示出了除去缺陷以形成高度氧化的高表面积炭黑产物。在图1中,将初级颗粒(炭黑起始材料)描绘为具有同心微晶模式,其由包含较大且较完美的微晶的“壳”表示,所述微晶具有通常平行于颗粒表面取向的层状平面。该颗粒的中心区域或“核”主要包含小且不完美的微晶、单层平面、以及未结合到层状平面内的可能无规的碳。此外,在炭表面上存在一些活性中心(具有更高能量),例如缺陷、官能团等。在本发明方法期间,氧化剂分子(如水分子)首先进攻炭表面上的活性中心,并从该表面上除去碳原子且形成气相CO或CO2以及氢气(参见以下方程式1~2),导致暴露出更多的碳原子。由于所述颗粒的核中的碳原子往往具有比表面上的碳原子高的能量,因而,在颗粒的核中的氧化(如侵蚀)速率往往比在表面上的速率快。
更具体地说,对于蒸汽侵蚀,也不受理论的限制,以类似于蒸汽重整的反应机理,使炭黑起始材料转变为炭黑产物。蒸汽侵蚀的产物包含CO和氢气、和/或CO2和氢气。CO和CO2的相对含量取决于蒸汽与炭的比例以及温度。例如,较高的蒸汽与炭之比有利于CO2和氢气的产生。相关的蒸汽侵蚀反应如下:
(1)    C+H2O→CO+H2
(2)    CO+H2O→CO2+H2
如果采用蒸汽侵蚀作为氧化步骤,则该蒸汽侵蚀优选包括在流化床反应器中用包含蒸汽的流化剂对炭黑起始材料进行流化。如上所述,流化剂可包含一种或多种另外的组分,例如,惰性气体(如氮气或氩气)。通过控制供给到流化床反应器中的蒸汽与稀释剂的比例,可以合乎需要地对炭黑起始材料的蒸汽侵蚀程度进行精细控制。还可通过蒸汽流量与炭的比例来控制炭黑的蒸汽侵蚀程度,较高的蒸汽流量与炭的比例有利于较高的侵蚀。
流化床反应器中所用的有效地形成具有比第一BET氮气表面积大的第二BET氮气表面积的炭黑产物的条件将根据各种因素(例如炭黑起始材料的物理性能,且特别是炭黑起始材料的流化性能)而改变。影响流化床反应器的所需条件的另外的因素包括流化板的设计以及所用流化床反应器的设计。
对于控制流化床反应器中的氧化速率和氧化程度而言的另一重要参数是流化床的温度。通常,床温越高,氧化速率越快。蒸汽侵蚀过程优选在大于约700℃的温度下进行,这是因为,该反应具有高的吸热性(ΔH300K=31.4kcal/mol)。在一些非限制性实施方式中,床温大于约700℃,例如,大于约900℃或大于约1000℃。就范围而言,床温任选地为约700℃~约1400℃,例如,约700℃~约1300℃,如约900℃~约1100℃或约1000℃~约1100℃。本文所用的术语“床温”是指在使炭黑起始材料与氧化剂(如蒸汽)在流化床中在有效形成炭黑产物的条件下接触的步骤期间的床的平均温度。
对于控制氧化剂与炭黑起始材料之间的接触程度而言,流化剂引入流化床中的表观速度是另一个重要的因素。理想的是,表观速度足够高以使流化床中所含的炭黑表现为流化行为,但表观速度不能太高以至夹带炭黑粒料或炭黑颗粒并从而将它们带出流化床反应器。在一些非限制性实施方式中,流化剂在流化床中具有约0.03~约0.15m/s(例如,约0.05~约0.13m/s或约0.05~约0.10m/s)的表观速度。
期望用以形成炭黑产物的炭黑起始材料的氧化程度通常与在反应时间结束时的总的氧化剂与炭黑起始材料的质量比成比例。在一些示例性的非限制性实施方式中,在反应时间结束时的总的氧化剂与炭黑起始材料的质量比为约0.5~约3,例如,约0.5~约2.5、约0.5~约2、或约1~约2。类似的参数是流化床中的蒸汽流量与炭黑起始材料之比,该比值优选为约0.05~约0.50kg蒸汽/kg炭黑起始材料/小时,例如,约0.1~约0.4kg蒸汽/kg炭黑起始材料/小时、或约0.2~约0.3kg蒸汽/kg炭黑起始材料/小时。
在由炭黑起始材料形成炭黑产物中所用的反应时间根据例如下列而变化:炭黑起始材料与炭黑产物之间在表面积和孔隙率方面的所需差值;流化床反应器的温度;流化剂的表观气体速度;流化剂的氧化剂含量;炭黑起始材料的质量负载;以及在流化床反应工艺领域的技术人员的知识中公知的其它参数。在一些非限制性实施方式中,所述条件包括约0.5~约24小时(例如,0.5~约15小时、约2~约12小时、或约3~约9小时)的反应时间。
反应时间以及炭黑起始材料的所需氧化程度尤其取决于炭黑产物的第二BET氮气表面积与炭黑起始材料的第一BET氮气表面积之间的期望的差值。在一些非限制性的示例性实施方式中,控制条件(例如,反应时间、床温、流化剂的氧化剂含量等中的一个或多个)使得第二BET氮气表面积为第一BET氮气表面积的至少约1.2倍高、至少约1.5倍高、至少约2.0倍高、至少约4.0倍高、或至少约8.0倍高。就范围而言,任选地控制条件使得第二BET氮气表面积为第一BET氮气表面积的约1.5~约8.0倍高,例如,约3.0~约8.0倍高、或约5.0~约8.0倍高。任选地,第二BET氮气表面积与第一BET氮气表面积之间的差值大于约100m2/g,例如,大于约200m2/g、大于约300m2/g、大于约400m2/g、大于约500m2/g、大于约800m2/g、大于约1000m2/g、或者甚至大于约1200m2/g。
氧化(如蒸汽侵蚀)过程任选地在升高的压力下进行。在氧化过程中所用氧化剂(如蒸汽)的分压(例如在流化床反应器中的分压)可在宽范围内变化。典型地,该过程中所用分压为约0.1~约1个大气压,例如,约0.2~约0.8个大气压、或约0.3~约0.7个大气压。
任选地,在催化剂的存在下进行本发明方法。如果使用催化剂,则催化剂任选地包含例如金属氧化物(如NiO、CuO、Fe2O3)、金属硝酸盐(如Ni(NO3)2、Cu(NiO3)2)、或金属氢氧化物(如Fe(OH)3、NaOH、KOH和Ca(OH)2)、或碱土金属盐(具有有机阴离子或无机阴离子)(如乙酸钙、甲酸钙、氯化钙、乙酸钡、甲酸钡、或氯化钡)。如果使用催化剂,则催化剂与炭的重量比任选地为约0.0001~约0.5,例如,约0.001~约0.1、或约0.005~约0.05。
在蒸汽侵蚀过程期间,可获得流化床中所含的炭黑的样品并对其进行分析以确定是否已经实现了所需的表面积提高。在优选实施方式中,与流化床流体连通(例如通过导管连通)的分离装置(例如旋风分离器)周期性地对流化床中所含的炭黑进行取样。可通过以与ASTM D2414-06a中所述方式相似的方式但使用人工(即手动)混合方法而不使用机器来手动测量吸油(即DBP或邻苯二甲酸二丁酯吸收)值(单位为cc/100g炭黑)以评估给定样品的侵蚀程度。例如,约400~约750cc/100g的目标手动吸油值可为合乎期望的(该目标值对应于约800~约1500m2/g的Vulcan XC72炭黑的BET表面积)。在已经实现了所需的表面积提高之后,从蒸汽侵蚀装置中移出所得的炭黑产物,典型地,通过如下进行所述移出:停止流化剂的流动,使床在纯氮气或其它惰性气体的流动下冷却,然后,移出该含碳材料(例如,通过流化剂引入区以及通过与流化剂引入区连通的产物出口移出该含碳材料)。
图2提供了根据本发明一个实施方式的示例性蒸汽侵蚀系统200的流程图。蒸汽侵蚀系统200包括流化床反应器208,所述流化床反应器208包括流化剂引入区或气室210以及侵蚀区211,这两个区通过基底筛或格栅225彼此分隔。在正常操作期间,侵蚀区211包括包含炭黑和任选催化剂的流化床212。优选地,通过一个或多个加热器加热侵蚀区211以提供所需的温度分布。
如图2所示,流化剂包含蒸汽和/或基本上惰性的流化剂(例如,N2)。由蒸汽发生器201(其由泵202促进)提供蒸汽,且由基本上惰性的流化剂源203提供所述基本上惰性的流化剂。将所述基本上惰性的流化剂和所述蒸汽(它们由阀门控制以提供所雾的比例)分别引导通过导管204和205,并在引入到气体预热器206中之前对它们进行组合,这优选提高了在引入到流化床反应器208中之前的流化剂的温度以促进蒸汽侵蚀处理。
在气体预热器206中进行预热之后,将流化剂通过导管207引导至流化剂引入区或气室210。正被引入到流化剂引入区或气室210中的流化剂的正压导致流化剂穿过筛或格栅225中的开口并进入侵蚀区211。随着流化剂进入到侵蚀区211中,其使流化床212中的炭黑以及任选的催化剂流化。此外,随着流化剂进入到侵蚀区211中,过量的蒸汽、气态副产物、以及一定量的夹带的细粒通过导管215从蒸汽侵蚀装置208的顶部移出并被引导至分离系统216以使炭黑细粒与气态副产物分离,其中,所述分离系统216可包含一种或多种分离装置(例如,旋风分离器、袋滤室、过滤器等)。
如图2所示,取样装置214通过导管213与流化床212流体连通并周期性地对流化床中所含的炭黑进行取样以确定是否已经实现所需的蒸汽侵蚀程度。在已经实现了所需的表面积提高之后,通过如下从蒸汽侵蚀装置中移出所得的经蒸汽侵蚀的炭黑(即炭黑产物):停止流化剂的流动,使床在纯氮气或其它惰性气体的流动下冷却,然后,通过流化剂引入区210以及通过与流化剂引入区210连通的产物出口224移出炭黑产物。
图3A~3C示出了随侵蚀时间的变化,经蒸汽侵蚀的炭的XRD图案。如图3A~3C所示,不论哪种碳类型,(002)处的XRD峰均通常对蒸汽侵蚀敏感。峰(002)处的峰强度随蒸汽侵蚀的进行的显著降低反映出该敏感性。与此相反,(10)处的峰强度受蒸汽侵蚀处理的影响最小。(002)处的峰反映出碳的三维有序,而(10)处的峰与层状平面更为相关。不受理论的限制,这些结果表明:长程晶格取向的有序性在侵蚀期间被破坏,或者,层状平面随着侵蚀的进行而变得更为解取向,如图4中所示。
图5A和5B示出了炭黑(Vulcan XC 72)在蒸汽侵蚀之前的孔尺寸分布(图5A)以及按照以下实施例4在950℃下蒸汽侵蚀360分钟之后的孔尺寸分布(图5B)。如所示那样,母体(未经蒸汽侵蚀的)炭黑的最大孔尺寸为约10~约100nm。由于初级颗粒为约14nm,因而,这些孔主要为聚集体之间的孔(例如,形成在各聚集体之间的孔)。在蒸汽侵蚀期间,通过从颗粒中除去碳原子而产生微孔和中孔。由蒸汽侵蚀产生的大部分孔具有约3~约5nm的平均孔尺寸,尽管也观察到了一部分超过50nm的孔。该结果已经由Hg孔隙度测定证实。
炭黑产物
在各种另外的实施方式中,本发明涉及优选通过任意上述方法形成的炭黑产物。炭黑产物的各种性能根据例如所期望的应用、氧化条件以及所用炭黑起始材料的物理性能而改变。
炭黑产物的平均粒料尺寸主要取决于炭黑起始材料的粒料尺寸。例如,在各种示例性实施方式中,炭黑产物(如粒状炭黑产物)具有超过约10μm(例如,超过约50μm、超过约100μm、超过约200μm、超过约500μm、或超过约1mm)的平均粒料尺寸。就范围而言,炭黑产物(如粒状炭黑产物)具有约10μm~约5mm(例如,约100μm~约5mm、或约200μm~约2mm)的平均粒料尺寸。
由于炭黑起始材料优选基本上不含炭黑细粒,因而,炭黑产物同样优选基本上不含炭黑细粒。而且,流化床反应器不易于保持炭黑细粒。结果,炭黑产物通常具有比炭黑起始材料低的炭黑细粒分数。在各种任选实施方式中,炭黑产物含有低于约5重量%的炭黑细粒(例如,低于约3重量%、或低于约1重量%的炭黑细粒)。
炭黑产物的第二BET氮气表面积(N2SA)主要基于所用的氧化条件和炭黑产物的所需应用而改变。在各种任选实施方式中,第二BET氮气表面积大于约600m2/g,例如,大于约900m2/g、大于约1000m2/g、大于约1200m2/g、或大于约1500m2/g。就范围而言,第二BET氮气表面积任选地为约600m2/g~约1800m2/g,例如,约600m2/g~约900m2/g、约900m2/g~约1200m2/g、约1200m2/g~约1500m2/g、或约1500m2/g~约1800m2/g。
虽然炭黑产物的平均初级颗粒尺寸(Dp)与炭黑起始材料的平均初级颗粒尺寸通常应当彼此一致,但炭黑产物的平均初级颗粒尺寸可稍大于炭黑起始材料的平均初级颗粒尺寸。在一些示例性实施方式中,炭黑产物的平均初级颗粒尺寸比炭黑起始材料的平均初级颗粒尺寸大至少约0.5nm,例如,大至少约1nm、大至少约2nm、大至少约3nm、或者大至少约4nm。任选地,炭黑产物具有低于约100nm(例如,低于约75nm、低于约50nm、低于约30nm、低于约20nm、或低于约10nm)的平均初级颗粒尺寸。就范围而言,炭黑产物的平均初级颗粒尺寸任选地为约7nm~约100nm,例如,约5~约15nm、约35~约80nm、约10~约50nm、约10nm~约40nm、约10nm~约30nm、或约10nm~约20nm。
类似地,虽然炭黑产物的平均聚集体尺寸(Dagg)与炭黑起始材料的平均聚集体尺寸通常应当彼此一致,但炭黑产物的平均聚集体尺寸可稍大于炭黑起始材料的平均聚集体尺寸。在一些示例性实施方式中,炭黑产物的平均聚集体尺寸比炭黑起始材料的平均聚集体尺寸大至少约10nm,例如,大至少约20nm、大至少约30nm、大至少约40nm、或大至少约50nm。任选地,炭黑产物具有低于约500nm(例如,低于约400nm、低于约300nm、低于约200nm、或低于约100nm)的平均聚集体尺寸。就范围而言,炭黑产物的平均聚集体尺寸任选地为约30nm~约500nm,例如,约50~约300nm、或约100nm~约300nm。
炭黑产物优选具有与炭黑起始材料相似的结构,所述结构由Dagg/Dp之比表征。在一些示例性实施方式中,炭黑产物具有低于约10(例如,低于约7、低于约4、或低于约2)的Dagg/Dp之比。就范围而言,Dagg/Dp之比任选地为约1~约7,例如,约1~约5、约1~约3、或约1~约2。
如前所述,在本发明的氧化过程期间,微孔隙率(以及由此的BET氮气表面积与STSA之比)可最初升高,但最后降低。因此,随着本发明方法的进行,BET氮气表面积与STSA之比最后将降低并接近1。在一些优选实施方案中,炭黑产物具有低于约1.5(例如,低于约1.4、低于约1.3、低于约1.2、低于约1.1、或低于约1.05)的BET氮气表面积与STSA之比。就范围而言,炭黑产物任选地具有约0.95~约1.5(例如,约0.95~约1.4、约0.95~约1.3、约0.95~约1.2、约0.95~约1.1、或约0.95~约1.05)的BET氮气表面积与STSA之比。
虽然微孔隙率优选根据本发明方法而降低,但理想的是,本发明炭黑产物具有相当大的中孔隙率程度。在一些示例性实施方式中,炭黑产物具有由BJH氮气解吸附测得的约0.3~约2cm3/g(例如,约0.5~约1.5cm3/g、约1.2~约2.0cm3/g、或约1~约1.5cm3/g)的尺寸为约2~约5nm的孔的总体积。在另一实施方式中,炭黑产物具有由BJH氮气解吸附测得的约1.0~约5.0cm3/g(例如,约2.0~约4.0cm3/g、约3.0~约5.0、或约2.5~约4.0cm3/g)的尺寸为约2~约100nm的孔的总体积。测量孔尺寸分布和孔体积的BJH氮气解吸附法描述在ASTM 4222-03和ASTM 4641-94中,且该方法用于本文所述的孔尺寸测量,所述标准的全部内容在此引入作为参考。
在一些特别优选的实施方式中,本发明涉及炭黑(优选根据本发明方法形成的炭黑),其含有不能通过常规气化炭黑制造方法获得的物理特性的某些组合。
例如,在一个实施方式中,本发明涉及具有以下性质的多孔炭黑:约600~约900m2/g(例如,约600~约800m2/g、或约700~约800m2/g)的BET氮气表面积;以及约0.95~约1.1(例如,约0.95~约1.05)的BET氮气表面积:STSA之比。
在另一实施方式中,本发明涉及具有以下性质的多孔炭黑:约900~约1200m2/g(例如,约900~约1100m2/g、或约1000~约1100m2/g)的BET氮气表面积;以及约0.95~约1.1(例如,约0.95~约1.05)的BET氮气表面积:STSA之比。
在另一实施方式中,本发明涉及具有以下性质的多孔炭黑:约1500~约1800m2/g(例如,约1500~约1700m2/g、或约1600~约1700m2/g)的BET氮气表面积;以及约0.95~约1.1(例如,约0.95~约1.05)的BET氮气表面积:STSA之比。
在另一实施方式中,本发明涉及具有以下性质的多孔炭黑:约35~约80nm的平均初级颗粒尺寸;约600~约1800m2/g(例如,约800~约1500m2/g、或约800~约1300m2/g)的BET氮气表面积;以及约0.95~约1.1(例如,约0.95~约1.05)的BET氮气表面积:STSA之比。
在另一实施方式中,本发明涉及具有以下性质的多孔炭黑:约600~约1800m2/g(例如,约800~约1500m2/g、或约800~约1300m2/g)的BET氮气表面积;以及约1~约7(例如,约1~约5、约1~约3、或约1~约2)的Dagg/Dp之比。
在另一实施方式中,本发明涉及具有以下性质的多孔炭黑:约900~约1400m2/g(例如,约900~约1200m2/g、或约1000~约1200m2/g)的BET氮气表面积;以及约1~约5(例如,约1~约3、或约1~约2)的Dagg/Dp之比。
炭黑产物的应用
本发明的炭黑产物可用于许多应用。例如,炭黑产物可用于形成导电塑料、喷墨油墨、催化剂载体(例如,用于燃料电池催化剂的催化剂载体)、燃料电池电极,且炭黑产物可用于超电容器。因此,本发明还涉及由所述炭黑产物形成的导电塑料、喷墨油墨、催化剂载体(例如,用于燃料电池催化剂的催化剂载体)和超电容器。当然,这些应用是非限制性实例,且其它应用也是可能的。
在第一个应用中,炭黑产物用于形成导电塑料。炭黑是高度导电的,且因此向塑料(通常为不导电塑料)中加入足够含量的炭黑以获得炭黑的逾渗网络,从而导致塑料部件或膜变得导电。通常,在较低的炭黑质量负载下实现电逾渗可为有利的,原因在于:这可赋予塑料其它优势(例如,粘度、断裂韧性、附着力、密度、或其它性能)。高孔隙率炭已用在其中目标为提高高OAN炭的孔隙率而不特别关注孔的尺寸的导电应用(旨在于低质量负载下实现逾渗)中。例如,EP0175327B1描述了向炉反应器中注入物质以提高导电炭黑的(多孔)表面面积,其全部内容在此引入作为参考。EP1453898B1描述了经高度侵蚀的炭黑(高表面积炭黑)在导电聚烯烃中的应用及其优势,其全部内容在此引入作为参考。美国专利No.5171774描述了在结晶聚合物组合物中使用经高度侵蚀的炭黑以改善电阻的正温度系数,其全部内容在此引入作为参考。
在另一实施方式中,将炭黑产物加入喷墨油墨中。在该方面中,油墨优选包含液体载剂(如分散剂)和炭黑产物,且所述油墨具有使其适于进行喷墨印刷的表面张力和粘度特性。由于本发明炭黑产物具有高表面积和相对低的密度,因而,其特别良好地适于形成具有令人惊讶且出人意料的高稳定程度的喷墨油墨。较低的密度导致较低的沉降力,而所保持的整体形态维持了相似的曳力(drag force)以及相同(或可能改善)的光学密度。因而,根据本发明的经氧化的炭黑产物(如经蒸汽侵蚀的炭黑产物)容许光学密度与分散稳定性之间的改善的折衷。
在另一实施方式中,本发明涉及催化剂颗粒,其包含根据本发明的任意上述方法形成的炭黑产物且进一步包含位于该炭黑产物上的活性相,所述炭黑产物作为活性相的载体相。
已知许多用于形成包含炭黑载体相和位于其上的活性相的催化剂颗粒的方法。在优选实施方式中,在喷雾转化反应器中形成催化剂颗粒。在该实施方式中,形成包含炭载体颗粒(即任意上述中孔炭黑产物)、活性相前体和液体载剂的液体混合物。将该液体混合物在升高的温度下在有效地蒸发液体载剂并将活性相前体转变为位于炭载体颗粒上的活性相的条件下进行喷雾。任选地,活性相包含:铂;钌;铂和钌;或者铂合金。这种方法描述于例如美国专利申请No.11/328,147(2006年1月10日提交)中,其全部内容在此引入作为参考。
在特别优选的实施方式中,本发明涉及催化剂颗粒的形成方法,该方法包括下列步骤:(a)提供包含第一金属前体、液体载剂和基底前体的前体介质,其中,所述基底前体包含任意上述炭黑产物(例如,中孔炭黑);(b)喷雾转化(例如喷雾干燥)所述前体介质以蒸发至少一部分液体载剂并形成中间体颗粒;以及任选地(c)将中间体颗粒加热至有效形成包含位于所述炭黑产物上的活性相(优选包含活性相纳米颗粒,例如,具有低于约25nm,例如低于约10nm、低于约8nm、低于约5nm或低于约3nm的平均颗粒尺寸的颗粒)的催化剂颗粒的温度(例如,约250~约750℃)。对于一些金属前体(例如,一些铂前体),活性相可在所述喷雾转化步骤中充分形成,且无需随后的加热步骤(上述步骤(c))。如果例如期望在多孔炭(如中孔炭)上形成合金活性相,则前体介质可包含一种或多种另外的金属前体。当然,在其它实施方式中,公知的湿沉降法可用于在炭黑产物上形成催化剂颗粒。参见,例如,美国专利No.5,068,161,其全部内容在此引入作为参考。
活性相可宽范围地改变。在优选实施方式中,活性相包含铂或任何其它贵金属,因为这些材料最活泼且最能够经受燃料电池的腐蚀性环境。在另一实施方式中,活性相包含一种或多种合金(例如贵金属合金)。一些示例性的催化合金公开在例如美国专利No.4,186,110(Pt-Ti、Pt-Al、Pt-Al-Si、Pt-Sr-Ti、Pt-Ce)、美国专利No.4,316,944(Pt-Cr)和美国专利No.4,202,934(Pt-V)中,它们的全部内容在此引入作为参考。
此外,在一些实施方式中,本发明涉及包含上述催化剂颗粒的电极(特别是用于燃料电池(例如直接甲醇燃料电池(DMFC)或氢燃料电池)的电极),而且本发明涉及这种电极的形成方法。对于燃料电池应用来说,中孔炭黑颗粒是高度合乎期望的,这是因为,中孔炭黑颗粒允许在颗粒的整个表面积进行物质传输,从而既能够沉积铂或铂合金催化剂颗粒又能够传输离子和物质以进行有效的燃料电池操作。(参见,例如,2007年6月1日提交的美国专利申请No.11/756,997,其全部内容在此引入作为参考,该美国专利申请公开了位于炭基底颗粒上的Pt/Ru合金催化剂颗粒。)在优选实施方式中,将前述催化剂颗粒配制为油墨,将该油墨沉积在碳布或炭纸上或直接沉积在膜(例如聚合物电解质膜(PEM)(如Nafion膜))上以形成电极。可通过喷雾沉积实现沉积步骤。或者,本发明催化剂颗粒的沉积可例如通过下列实施:笔/注射器(pen/syringe)、连续或逐滴按需喷墨、液滴沉积、喷雾、胶版印刷、平版印刷、照相凹版印刷、其它凹版印刷等。参见,例如,美国专利公布No.2004/0038808(2003年4月16日提交),其全部内容在此引入作为参考,该专利公布公开了使用直写印刷法(例如喷墨印刷)在PEM类上印刷含催化剂的油墨的方法。
在共同待审美国专利申请No.11/534,561(2006年9月22日提交)(代理人申请案编号No.2006A019)和11/679,758(2007年2月27日提交)(代理人申请案编号No.2007A001)中充分公开了以喷雾沉积法由含催化剂颗粒的油墨形成电极和膜电极组件的方法,所述专利申请的全部内容在此引入作为参考。
在另一实施方式中,炭黑产物用于形成双电层电容器(也称超电容器)用电极。超电容器采用具有特定孔尺寸的高表面积炭(例如,Black Pearls(BP)2000)。在本发明的该方面中,炭黑产物具有高表面积及非典型形态(例如,低的起始OAN或Dagg/Dp,如Regal 250、Regal 350等),且这提高了超电容器的性能。由于与常规炭黑相比,电极中炭黑的最终体积堆积密度更高,因而,该新型材料提供了较高的体积电容,由此,该形态差异提高了超电容器的性能。目前,除了炭黑以外,工业上还使用气凝胶或活性炭,或者将它们用作炭黑的替代物,这主要是因为:当填充这些材料时,可获得较高的每单位体积的表面积。例如,美国专利No.7,160,615描述了用于形成结合有活性炭和作为导电性增强剂的炭黑的双电层电容器用电极的制造方法,其全部内容在此引入作为参考。美国专利No.5,260,855描述了炭泡沫体或气凝胶在形成具有较高比电容的双电层电容器的电极中的用途,其全部内容在此引入作为参考。本发明使得能够仅使用炭黑以获得具可比性的或更好的性能。
这些新型碳质材料的表面改性可提供另外的提高电容的方法。这可例如使用重氮化(diazonium)、氧化、热处理或其它使官能团连接在多孔炭黑颗粒上的技术而实现。表面改性方法包括在美国专利No.5,554,739、5,707,432、5,837,045、5,851,280、5,885,335、5,895,522、5,900,029、5,922,118和6,042,643、以及PCT公布WO 99/23174中所述的方法,这些专利文献的全部内容在此引入作为参考。与使用例如聚合物和/或表面活性剂的分散剂型方法相比,前述表面改性方法提供了基团在颜料或碳质材料上的更稳定的连接。对于氧化,还可用氧化剂对碳质材料进行氧化以在表面上引入离子基团和/或能离子化的基团。已经发现,以该方式制备的碳质材料在表面上具有较高的含氧基团含量。氧化剂包括,但不限于,氧气、臭氧、NO2(包括NO2与空气的混合物)、过氧化物(如过氧化氢)、过硫酸盐(包括过硫酸钠、过硫酸钾或过硫酸铵)、次卤酸盐(如次氯酸钠)、岩盐(halite)、卤酸盐(halate)或高卤酸盐(perhalate)(例如,亚氯酸钠、氯酸钠或高氯酸钠)、氧化性酸(例如硝酸)以及含有过渡金属的氧化剂(例如高锰酸盐、四氧化锇、氧化铬或硝酸高铈铵)。还可使用氧化剂的混合物,特别是气态氧化剂(例如,氧气和臭氧)的混合物。另外,还可使用通过将离子基团或可离子化的基团引入到碳质材料表面上的其它表面改性方法例如氯化和磺酰化制备的碳质材料。
虽然不希望受任何理论限制,但如果经由所述表面改性方法之一连接亲水官能团,则可提高固体颗粒和孔中的液体电解质之间的双层界面上的电荷分离,从而提高储能容量。此外,亲水基团的连接可改善孔的润湿,有助于电解质充分润湿多孔结构并形成贯穿多孔炭黑的导电路径。热处理可用于除去可导致电容随时间推移而劣化的特定官能团。
实施例
参照下列非限制性实施例,将更好地理解本发明。
在基本上与前面根据图2讨论的流化床反应系统相似的中试规模流化床反应系统中,对六种炭黑起始材料(它们选自四种不同的市售炭黑)进行蒸汽侵蚀。在实验室规模流化设备中,在室温下使用空气估算每种炭黑起始材料的理想的流化速度。将每种炭黑起始材料的初始进料装入到流化床中,以使其位于底板之上。然后,使该床密闭,并使氮气流如下通过所述炭黑:通过底部气室进入,通过底板,然后通过炭黑,然后最后通过流化床反应器的顶部离开。启动电加热器以使床温提高到下表1中所示的运行温度。然后,停止氮气流,开启表观速度大致等于理想流化速度的氧化剂物流(在所有六个实施例中均为纯蒸汽),并开始运行。使用浸渍管,定期从所述床中取出样品,并测量所述样品以跟踪炭黑侵蚀的进展。在表1中所示的运行时间结束时,关闭氧化剂流以及电加热器,并且在该床冷却至室温的同时再次将氮气输送到流化床。然后,从该流化床反应器的底部收集最终床产物。在所有运行中,均有一些炭黑损失进入到细粒收集系统中;这些炭黑是被离开反应器顶部的流化气体夹带的物质。
表1流化床操作参数
Figure BPA00001245501100201
Figure BPA00001245501100211
*使用提供差的流化从而导致较慢反应速率的底板来进行实施例6。
使用表1中所述的操作参数生产具有表2中所示材料性质的经蒸汽侵蚀的炭黑产物。可以看出,在侵蚀过程期间,平均初级颗粒直径和平均聚集体直径(通过TEM测得)保持大致相同或稍有提高。
表2炭黑产物的性能
Figure BPA00001245501100212
表3示出了通过不同于在流化床中的气体氧化侵蚀的方法制造的对比炭黑。
表3对比中孔炭黑
Figure BPA00001245501100221
如以上表1中所示,可调节蒸汽:炭之比(其单位为kg蒸汽/(kg炭/小时))以控制侵蚀速率。假设流化速度或多或少地受炭黑的材料性质的影响,则实际上可通过改变氧化剂气体中的蒸汽与惰性气体(通常为氮气)之比或者通过改变向所述床的初始炭黑进料来调节蒸汽与炭之比。大致近似的是,已经发现,对于不同炭黑而言,在恒定的蒸汽与炭之比下,侵蚀反应以大致相似的速率进行,该反应由表面积的相对提高度量。图6中的曲线图对此进行了说明。实际上,流化床反应器通过如下进行控制:选择床温以及蒸汽与炭之比以获得所需的侵蚀反应速率,然后,使反应器运行固定时间以获得所需的侵蚀程度(其由表面积或其它测试测得)。观察到,如实施例6所示,如果所述床中的流化差(例如,通过低于临界流化速度运行或通过使用未使气体良好分布的差的流化板),则侵蚀速率显著降低(参见图6)。这进一步证明了在流化床反应器中以有效的气体-固体接触来进行氧化侵蚀的重要性。
这些实施例进一步说明:在流化床反应器中以蒸汽以及蒸汽/氮气混合物对炭黑起始材料进行侵蚀可以形成具有显著程度的中孔隙率的炭黑产物。图7示出了通过该方法制得的炭黑产物(实施例1~5)的孔尺寸分布,所述孔尺寸分布通过氮气解吸附等温线测得。图7中所示的所有炭黑产物均具有800-1700m2/g的氮气表面积。按照上述各实施例改变侵蚀时间和流化床条件。对于所有经蒸汽侵蚀的实施例,所显现的是,在直径3~5nm处存在孔尺寸分布的特征峰,这与图7中作为实施例C1示出的通过气化法制得的材料(如Ketjen EC600)类似。经蒸汽侵蚀的炭黑BP700和BP800(实施例2和3)显示出分别在约10和30nm处的明显的第二峰,所述第二峰可能是由于聚集体之间的多孔性而引起的。这些实施例示出了用于形成迄今为止还未知晓的炭黑的新型方法,其中,所述炭黑具有高度中孔性以及较小的聚集体尺寸和较低的由Dagg/Dp表征的结构。而且,与Ketjen EC600(实施例C1)相比,若干实施例(如实施例2、3和4)所获得的中孔隙率程度(由2~5nm的孔的体积表征)较高。
不同于图7中所包括的经蒸汽侵蚀的炭黑,在炉反应器中进行原位侵蚀的经高度侵蚀的炭黑(如Black Pearls 2000(实施例C3))未显示出在2~5nm范围内的大峰,这是因为,孔隙主要为微孔(具有1.5~2.5的BET氮气表面积与STSA之比)。与此相反,根据本发明制造的高中孔性的炭黑产物具有在2~5nm范围内的峰且通常具有约1的BET氮气表面积与STSA之比。通过跟踪在流化床中在蒸汽侵蚀期间出现的BET氮气表面积与STSA之比的变化,可以控制反应时间以确保形成中孔炭黑产物。这示于图8中,图8说明了Vulcan XC72的孔结构在本发明的氧化过程期间如何改变。最初,VulcanXC72包含微孔,因为BET氮气表面积与STSA之比为约1.5且BET氮气表面积为约225m2/g。随着该材料在流化床反应器中进行侵蚀,BET氮气表面积不断提高。但是,BET氮气表面积与STSA之比最初由于额外微孔隙率的产生而提高,但随后随着孔变得更大且微孔结构被破坏而开始降低并接近于1。这由以下事实证实:图8中的样品A和B不具有在孔尺寸3~5nm范围内的峰,而图8中的实施例1、4和6则显示出3~5nm的孔尺寸分布峰,该3~5nm的孔尺寸分布峰与颗粒内的中孔隙率有关。因此,可通过控制床中的温度、蒸汽:炭之比以及时间来控制适当的总表面积、孔体积以及孔尺寸。
应当注意到,前述实施例的提供仅用于解释目的且绝不应认为是对本发明的限制。虽然已经参照各种示例性实施方式描述了本发明,但应当理解,所用的这些语句是描述性和说明性的语句,而非限制性语句。在所附权利要求书(在此所述的权利要求书以及修改的权利要求书)的范围内,可进行各种变化而不脱离权利要求书所定义的本发明的范围和精神。虽然在此已经参照具体装置、材料和实施方式描述了本发明,但本发明不限于在此所公开的具体内容。实际上,本发明可扩展至所有功能上具有等价性的结构、方法和应用,这些内容均在所附权利要求书的范围内。
本申请的权利要求如所附权利要求书所述。

Claims (35)

1.提高炭黑表面积的方法,该方法包括:使具有第一BET氮气表面积的炭黑起始材料与氧化剂在流化床中在有效地形成具有大于所述第一BET氮气表面积的第二BET氮气表面积的炭黑产物的条件下接触,所述炭黑产物具有(i)600~1200m2/g或1500~1800m2/g的BET氮气表面积,和(ii)0.95~1.1的BET氮气表面积∶STSA之比,其中所述STSA为统计厚度表面积。
2.权利要求1的方法,该方法进一步包括在所述流化床中用含所述氧化剂的流化剂流化所述炭黑起始材料。
3.权利要求2的方法,其中,所述氧化剂包括蒸汽。
4.权利要求2的方法,其中,所述氧化剂包括二氧化碳。
5.权利要求3的方法,其中,所述流化剂进一步包含氮气或惰性气体。
6.权利要求5的方法,其中,所述惰性气体包括氩气。
7.权利要求2的方法,其中,所述流化剂基本上由蒸汽组成。
8.权利要求2的方法,其中,所述炭黑起始材料包括粒状炭黑。
9.权利要求2的方法,其中,所述条件包括0.5~15小时的反应时间。
10.权利要求9的方法,其中,在所述反应时间结束时的总的氧化剂与炭黑起始材料的质量比为0.5~2.5。
11.权利要求2的方法,其中,所述条件包括700℃~1300℃的流化床温度。
12.权利要求2的方法,其中,所述条件包括900℃~1100℃的流化床温度。
13.权利要求2的方法,其中,在所述流化床中的蒸汽流量与炭黑起始材料之比为0.05~0.50kg蒸汽/kg炭黑起始材料/小时。
14.权利要求2的方法,其中,所述流化剂在所述流化床中具有0.03~0.15m/s的表观速度。
15.权利要求2的方法,其中,所述第二BET氮气表面积是所述第一BET氮气表面积的至少1.5倍高。
16.权利要求2的方法,其中,所述第二BET氮气表面积是所述第一BET氮气表面积的1.5~8.0倍高。
17.炭黑产物,其通过包括以下步骤的方法形成:使具有第一BET氮气表面积的炭黑起始材料与氧化剂在流化床中在有效地形成具有大于所述第一BET氮气表面积的第二BET氮气表面积的炭黑产物的条件下接触,其中所述炭黑起始材料在所述流化床中用含所述氧化剂的流化剂流化,所述炭黑产物具有(i)600~1200m2/g或1500~1800m2/g的BET氮气表面积,和(ii)0.95~1.1的BET氮气表面积∶STSA之比,其中所述STSA为统计厚度表面积。
18.含炭黑产物和塑料的导电塑料,其中,所述炭黑产物通过包括以下步骤的方法形成:使具有第一BET氮气表面积的炭黑起始材料与氧化剂在流化床中在有效地形成具有大于所述第一BET氮气表面积的第二BET氮气表面积的炭黑产物的条件下接触,其中所述炭黑起始材料在所述流化床中用含所述氧化剂的流化剂流化,所述炭黑产物具有(i)600~1200m2/g或1500~1800m2/g的BET氮气表面积,和(ii)0.95~1.1的BET氮气表面积∶STSA之比,其中所述STSA为统计厚度表面积。
19.包含分散在液体载剂中的炭黑产物的喷墨油墨,其中,所述炭黑产物通过包括以下步骤的方法形成:使具有第一BET氮气表面积的炭黑起始材料与氧化剂在流化床中在有效地形成具有大于所述第一BET氮气表面积的第二BET氮气表面积的炭黑产物的条件下接触,其中所述炭黑起始材料在所述流化床中用含所述氧化剂的流化剂流化,所述炭黑产物具有(i)600~1200m2/g或1500~1800m2/g的BET氮气表面积,和(ii)0.95~1.1的BET氮气表面积∶STSA之比,其中所述STSA为统计厚度表面积。
20.包含炭黑产物和位于其上的活性相的燃料电池催化剂,其中,所述炭黑产物通过包括以下步骤的方法形成:使具有第一BET氮气表面积的炭黑起始材料与氧化剂在流化床中在有效地形成具有大于所述第一BET氮气表面积的第二BET氮气表面积的炭黑产物的条件下接触,其中所述炭黑起始材料在所述流化床中用含所述氧化剂的流化剂流化,所述炭黑产物具有(i)600~1200m2/g或1500~1800m2/g的BET氮气表面积,和(ii)0.95~1.1的BET氮气表面积∶STSA之比,其中所述STSA为统计厚度表面积。
21.包含炭黑产物的超电容器,其中,所述炭黑产物通过包括以下步骤的方法形成:使具有第一BET氮气表面积的炭黑起始材料与氧化剂在流化床中在有效地形成具有大于所述第一BET氮气表面积的第二BET氮气表面积的炭黑产物的条件下接触,其中所述炭黑起始材料在所述流化床中用含所述氧化剂的流化剂流化,所述炭黑产物具有(i)600~1200m2/g或1500~1800m2/g的BET氮气表面积,和(ii)0.95~1.1的BET氮气表面积∶STSA之比,其中所述STSA为统计厚度表面积。
22.多孔炭黑,其具有(i)600~1200m2/g或1500~1800m2/g的BET氮气表面积,和(ii)0.95~1.1的BET氮气表面积∶STSA之比,其中所述STSA为统计厚度表面积。
23.权利要求22的多孔炭黑,其中,所述BET氮气表面积为600~900m2/g。
24.权利要求22的多孔炭黑,其中,所述BET氮气表面积为900~1200m2/g。
25.权利要求22的多孔炭黑,其中,所述BET氮气表面积为1500~1800m2/g。
26.多孔炭黑,其具有35~80nm的平均初级颗粒尺寸,600~1200m2/g或1500~1800m2/g的BET氮气表面积,以及0.95~1.1的BET氮气表面积∶STSA之比,其中所述STSA为统计厚度表面积。
27.多孔炭黑,其具有600~1200m2/g或1500~1800m2/g的BET氮气表面积,0.95~1.1的BET氮气表面积∶STSA之比以及1~7的Dagg/Dp之比,其中所述STSA为统计厚度表面积,所述Dagg为平均聚集体尺寸,和所述Dp为平均初级颗粒尺寸。
28.权利要求27的多孔炭黑,其中,所述Dagg/Dp之比为1~5。
29.权利要求28的多孔炭黑,其中,Dp为35~80nm。
30.权利要求28的多孔炭黑,其中,Dp为5~15nm。
31.权利要求27的多孔炭黑,其中,所述Dagg/Dp之比为1~3。
32.权利要求31的多孔炭黑,其中,Dp为35~80nm。
33.权利要求31的多孔炭黑,其中,Dp为5~15nm。
34.多孔炭黑,其具有(i)600~1200m2/g或1500~1800m2/g的BET氮气表面积,和(ii)0.95~1.1的BET氮气表面积∶STSA之比,和通过氮气解吸附测得的1.2~2.0cm3/g的尺寸为2~5nm的孔的总体积,其中所述STSA为统计厚度表面积。
35.多孔炭黑,其具有(i)600~1200m2/g或1500~1800m2/g的BET氮气表面积,和(ii)0.95~1.1的BET氮气表面积∶STSA之比,和通过氮气解吸附测得的3.0~5.0cm3/g的尺寸为2~100nm的孔的总体积,其中所述STSA为统计厚度表面积。
CN200980113757.9A 2008-02-19 2009-02-12 中孔炭黑及其制造方法 Active CN102007186B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US2987308P 2008-02-19 2008-02-19
US61/029,873 2008-02-19
PCT/US2009/000902 WO2009105172A2 (en) 2008-02-19 2009-02-12 Mesoporous carbon black and processes for making same

Publications (2)

Publication Number Publication Date
CN102007186A CN102007186A (zh) 2011-04-06
CN102007186B true CN102007186B (zh) 2014-01-22

Family

ID=40933748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980113757.9A Active CN102007186B (zh) 2008-02-19 2009-02-12 中孔炭黑及其制造方法

Country Status (8)

Country Link
US (1) US10087330B2 (zh)
EP (2) EP2257602B1 (zh)
JP (3) JP2011515507A (zh)
KR (3) KR102027915B1 (zh)
CN (1) CN102007186B (zh)
CA (1) CA2715309A1 (zh)
TW (1) TWI444442B (zh)
WO (1) WO2009105172A2 (zh)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102687316B (zh) * 2009-11-02 2015-08-26 卡博特公司 用于储能应用的高表面积低结构炭黑
ES2751109T3 (es) 2009-11-02 2020-03-30 Cabot Corp Baterías de plomo-ácido y pastas para las mismas
US9045674B2 (en) * 2011-01-25 2015-06-02 International Business Machines Corporation High thermal conductance thermal interface materials based on nanostructured metallic network-polymer composites
CN102241897B (zh) * 2011-04-27 2015-07-15 杨皓 一种炭黑生产改进工艺
GB201110585D0 (en) * 2011-06-22 2011-08-03 Acal Energy Ltd Cathode electrode modification
GB201116713D0 (en) * 2011-09-28 2011-11-09 Johnson Matthey Plc Catalyst
KR20130056668A (ko) * 2011-11-22 2013-05-30 삼성전자주식회사 복합 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
US8778829B2 (en) 2012-01-03 2014-07-15 King Fahd University Of Petroleum And Minerals Methanol electro-oxidation catalyst and method of making the same
JP5862496B2 (ja) * 2012-07-13 2016-02-16 三菱化学株式会社 トナーの製造装置
JP6178968B2 (ja) * 2013-04-17 2017-08-16 大日本印刷株式会社 金属含有炭素材料及びそれを用いた酸素還元電極
US9914835B2 (en) 2013-07-24 2018-03-13 Tokai Carbon Co., Ltd. Carbon black, method for producing carbon black, and rubber composition
KR101439154B1 (ko) * 2013-11-21 2014-11-04 한국에너지기술연구원 나노잉크 및 제조방법, 이를 포함하는 박막형 초고용량 커패시터용 전극 및 제조방법
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
US10100200B2 (en) 2014-01-30 2018-10-16 Monolith Materials, Inc. Use of feedstock in carbon black plasma process
US10370539B2 (en) 2014-01-30 2019-08-06 Monolith Materials, Inc. System for high temperature chemical processing
US10138378B2 (en) 2014-01-30 2018-11-27 Monolith Materials, Inc. Plasma gas throat assembly and method
RU2016135213A (ru) 2014-01-31 2018-03-05 Монолит Матириалз, Инк. Конструкция плазменной горелки
DE102014205033A1 (de) * 2014-03-18 2015-09-24 Volkswagen Ag Katalysatorschicht für eine Brennstoffzelle und Verfahren zur Herstellung einer solchen
BR112016023368B1 (pt) 2014-04-29 2022-05-03 Archer-Daniels-Midland Company Método de preparação de uma composição de catalisador
US11253839B2 (en) 2014-04-29 2022-02-22 Archer-Daniels-Midland Company Shaped porous carbon products
WO2016002831A1 (ja) * 2014-07-01 2016-01-07 三菱エンジニアリングプラスチックス株式会社 ポリエステル樹脂組成物、射出成形品、光反射体基体及び光反射体
EP3177651B1 (en) * 2014-07-15 2021-09-01 Imertech Sas Hydrophilic surface-modified carbonaceous particulate material
CN113122026B (zh) * 2014-08-29 2023-01-17 欧励隆工程炭公司 控制炭黑孔隙率的方法
WO2016126598A1 (en) * 2015-02-03 2016-08-11 Monolith Materials, Inc. Carbon black combustable gas separation
US20180022925A1 (en) * 2015-02-03 2018-01-25 Monolith Materials, Inc. Carbon black generating system
EP3253904B1 (en) 2015-02-03 2020-07-01 Monolith Materials, Inc. Regenerative cooling method and apparatus
CN107210449B (zh) * 2015-03-26 2020-08-14 日铁化学材料株式会社 固体高分子型燃料电池用载体碳材料以及催化剂
JP7053270B2 (ja) 2015-07-09 2022-04-12 イメリス グラファイト アンド カーボン スイッツァランド リミティド 低粘度の高導電性カーボンブラック
KR102079301B1 (ko) 2015-07-17 2020-02-19 캐보트 코포레이션 납산 배터리를 위한 산화된 카본 블랙 및 적용
CA3032246C (en) 2015-07-29 2023-12-12 Monolith Materials, Inc. Dc plasma torch electrical power design method and apparatus
US10808097B2 (en) 2015-09-14 2020-10-20 Monolith Materials, Inc. Carbon black from natural gas
US10722867B2 (en) 2015-10-28 2020-07-28 Archer-Daniels-Midland Company Porous shaped carbon products
US10464048B2 (en) 2015-10-28 2019-11-05 Archer-Daniels-Midland Company Porous shaped metal-carbon products
JP6460975B2 (ja) 2015-12-24 2019-01-30 トヨタ自動車株式会社 燃料電池用電極触媒
JP6347259B2 (ja) 2016-01-15 2018-06-27 トヨタ自動車株式会社 燃料電池用触媒層の製造方法
CA3013027C (en) 2016-02-01 2020-03-24 Cabot Corporation Thermally conductive polymer compositions containing carbon black
PL240918B1 (pl) 2016-02-01 2022-06-27 Cabot Corp Mieszanka kauczukowa o ulepszonej wymianie ciepła
US11149148B2 (en) 2016-04-29 2021-10-19 Monolith Materials, Inc. Secondary heat addition to particle production process and apparatus
MX2018013161A (es) 2016-04-29 2019-06-24 Monolith Mat Inc Metodo y aparato para inyector de antorcha.
JP6927870B2 (ja) * 2016-12-09 2021-09-01 トヨタ自動車株式会社 燃料電池用電極触媒
EP3592810A4 (en) 2017-03-08 2021-01-27 Monolith Materials, Inc. SYSTEMS AND METHODS FOR THE PRODUCTION OF CARBON PARTICLES WITH HEAT TRANSFER GAS
JP6658633B2 (ja) 2017-03-16 2020-03-04 トヨタ自動車株式会社 触媒インクの製造方法、及び、触媒複合体
CA3060576A1 (en) 2017-04-20 2018-10-25 Monolith Materials, Inc. Carbon particles with low sulfur, ash and grit impurities
WO2019084200A1 (en) 2017-10-24 2019-05-02 Monolith Materials, Inc. PARTICULAR SYSTEMS AND METHODS
KR102205395B1 (ko) * 2018-11-27 2021-01-20 한양대학교 산학협력단 그래핀 기반 물질의 프랙탈 차원을 조절하는 방법
KR102372490B1 (ko) * 2020-01-21 2022-03-10 금오공과대학교 산학협력단 마이크로 다공극 할로우 퍼니스 카본블랙 어셈블리 및 이의 제조방법
KR102589238B1 (ko) * 2020-04-22 2023-10-13 금오공과대학교 산학협력단 리튬이온전지용 음극재 및 이의 제조방법
CN113122027B (zh) * 2021-03-24 2022-04-19 茂名环星新材料股份有限公司 一种炭黑及其制备方法和应用
CN115367728B (zh) * 2021-05-20 2024-01-05 中国石油化工股份有限公司 非多孔性成型炭材料及其制备方法
CN113402905A (zh) * 2021-06-28 2021-09-17 青岛黑猫新材料研究院有限公司 一种高孔隙度炭黑、其制备方法及其制备装置
CN113546584A (zh) * 2021-07-14 2021-10-26 中天超容科技有限公司 介孔炭加压流化生产系统及生产方法
WO2023183754A1 (en) 2022-03-21 2023-09-28 Cabot Corporation Solvent-free process for preparing lithium-ion batteries
CN115430366B (zh) * 2022-08-30 2023-10-27 广州海印新材料研究发展有限公司 用于生产导电炭黑的重整反应器、导电炭黑生产装置及方法
CN115537044A (zh) * 2022-09-19 2022-12-30 青岛黑猫新材料研究院有限公司 一种改性裂解炭黑及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB800975A (en) * 1955-01-07 1958-09-03 Degussa Production of modified carbon black
GB1083482A (en) * 1963-08-22 1967-09-13 Phillips Petroleum Co Improvements relating to the oxidation of carbon black pellets
EP1347018A1 (de) * 2002-03-14 2003-09-24 Degussa AG Verfahren zur Herstellung von nachbehandeltem Russ

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615209A (en) 1969-06-30 1971-10-26 Great Lakes Carbon Corp Method of graphitization
US3684763A (en) 1971-01-22 1972-08-15 Phillips Petroleum Co Activated carbon black product
JPS55331B2 (zh) 1972-09-14 1980-01-07
US3951856A (en) 1972-10-02 1976-04-20 Westvaco Corporation Process for making activated carbon from agglomerative coal
US3959008A (en) * 1974-06-24 1976-05-25 Cities Service Company Carbon black
US4136059A (en) * 1977-12-12 1979-01-23 United Technologies Corporation Method for producing highly dispersed catalytic platinum
JPS54112952A (en) 1978-02-22 1979-09-04 Mitsubishi Chem Ind Ltd Synthetic resin and carbon black composition
JPS54113640A (en) * 1978-02-24 1979-09-05 Mitsubishi Chem Ind Ltd Preparation of electrically-conductive synthetic resin composition
US4202934A (en) 1978-07-03 1980-05-13 United Technologies Corporation Noble metal/vanadium alloy catalyst and method for making
US4186110A (en) 1978-07-03 1980-01-29 United Technologies Corporation Noble metal-refractory metal alloys as catalysts and method for making
DE2846405A1 (de) 1978-10-25 1980-05-08 Degussa Pigmentruss fuer schwarzlacke
DE2946688A1 (de) 1978-11-21 1980-06-12 Shandon Southern Prod Verfahren zur herstellung von poroesem kohlenstoff sowie poroeser kohlenstoff
US4316944A (en) 1980-06-18 1982-02-23 United Technologies Corporation Noble metal-chromium alloy catalysts and electrochemical cell
JPS6166759A (ja) * 1984-09-11 1986-04-05 Denki Kagaku Kogyo Kk 高導電性カ−ボンブラツク及びその製造方法
JPS6173773A (ja) * 1984-09-18 1986-04-15 Mitsubishi Chem Ind Ltd カ−ボンブラツクの製造方法
EP0175327B1 (en) * 1984-09-21 1990-11-22 Mitsubishi Kasei Corporation Process for producing carbon black
JPH0657806B2 (ja) 1985-09-03 1994-08-03 三菱化成株式会社 カ−ボンブラツクの製造方法
JPS6176554A (ja) * 1984-09-21 1986-04-19 Mitsubishi Chem Ind Ltd カ−ボンブラツクの製造方法
JPS61215665A (ja) * 1985-03-22 1986-09-25 Denki Kagaku Kogyo Kk 高導電性カ−ボンブラツクの製法
JP2733076B2 (ja) 1988-11-28 1998-03-30 大東通信機株式会社 Ptc組成物
JP2858329B2 (ja) 1989-09-13 1999-02-17 松下電器産業株式会社 燃料電池用触媒及びそれを用いた電極
JP2832734B2 (ja) * 1989-10-16 1998-12-09 三菱化学株式会社 カーボンブラックの製造方法
JP2949632B2 (ja) * 1990-01-29 1999-09-20 三菱化学株式会社 静電容量方式情報記録媒体用カーボンブラック及び同方式情報記録媒体
US5068161A (en) 1990-03-30 1991-11-26 Johnson Matthey Public Limited Company Catalyst material
US5260855A (en) 1992-01-17 1993-11-09 Kaschmitter James L Supercapacitors based on carbon foams
JPH06196174A (ja) 1992-12-25 1994-07-15 Fuji Electric Co Ltd 燐酸形燃料電池触媒のカーボン担体の製造方法
US5449452A (en) * 1993-09-20 1995-09-12 Sudhakar; Chakka Hydrodearomatization of hydrocarbons
JP2853727B2 (ja) 1994-02-22 1999-02-03 日本ビクター株式会社 再生プロテクト方法及びプロテクト再生装置
IL154538A (en) 1994-12-15 2009-12-24 Cabot Corp The reaction of carbon black with diazonium salts, the resulting carbon black products
US5554739A (en) 1994-12-15 1996-09-10 Cabot Corporation Process for preparing carbon materials with diazonium salts and resultant carbon products
EP0904327B1 (en) 1996-06-14 2001-08-22 Cabot Corporation Modified colored pigments and ink jet inks containing them
US5707432A (en) 1996-06-14 1998-01-13 Cabot Corporation Modified carbon products and inks and coatings containing modified carbon products
US5837045A (en) 1996-06-17 1998-11-17 Cabot Corporation Colored pigment and aqueous compositions containing same
TW399029B (en) 1996-12-25 2000-07-21 Sony Corp Graphite powder suitable for negative electrode material of lithium ion secondary batteries
US5895522A (en) 1997-08-12 1999-04-20 Cabot Corporation Modified carbon products with leaving groups and inks and coatings containing modified carbon products
EP1027388B1 (en) 1997-10-31 2005-12-07 Cabot Corporation Particles having an attached stable free radical, polymerized modified particles, and methods of making the same
US7098163B2 (en) 1998-08-27 2006-08-29 Cabot Corporation Method of producing membrane electrode assemblies for use in proton exchange membrane and direct methanol fuel cells
CA2339503A1 (en) 1998-09-04 2000-03-16 E.I. Du Pont De Nemours And Company Two-stage process for the production of 1,3-propanediol by catalytic hydrogenation of 3-hydroxypropanal
JP2000273351A (ja) 1999-03-23 2000-10-03 Osaka Gas Co Ltd 黒鉛化カーボンブラックの製造方法
DE60022020T2 (de) * 1999-04-15 2006-06-14 Cabot Corp Tintenstrahldrucktinte und tintenzusammensetzungen, enthaltend kohlenstoffprodukte mit hoher specifizer oberfläche
JP2001332263A (ja) 2000-03-16 2001-11-30 Sony Corp 二次電池および炭素系負極材料の製造方法
EP1164651A1 (en) 2000-06-12 2001-12-19 Asahi Glass Co., Ltd. Electrode catalyst for polymer electrolyte fuel cell and method for its production
JP2002308613A (ja) 2001-04-10 2002-10-23 健郎 ▲とう▼ 活性炭の製造方法
US6645287B2 (en) * 2001-04-27 2003-11-11 Cabot Corporation Coating compositions comprising high t-area carbon products
DE10161406A1 (de) 2001-12-13 2003-06-18 Basell Polyolefine Gmbh Verbesserung der elektrischen Eigenschaften leitfähiger Polyolefine
JP4179583B2 (ja) 2002-02-08 2008-11-12 ケッチェン・ブラック・インターナショナル株式会社 電極組成としてカーボンブラックを用いた電池または電気二重層型キャパシター
US7160615B2 (en) 2002-11-29 2007-01-09 Honda Motor Co., Ltd. Granules for formation of an electrode of an electric double layer capacitor, manufacturing method thereof, electrode sheet, polarized electrode, and electric double layer capacitor using a polarized electrode
JP4590937B2 (ja) 2003-07-02 2010-12-01 日産自動車株式会社 電極触媒およびその製造方法
JP2005120223A (ja) * 2003-10-16 2005-05-12 Mitsubishi Chemicals Corp カーボンブラック
WO2005071021A1 (en) * 2004-01-16 2005-08-04 Deft, Inc. Direct to substrate coatings
JP2006008879A (ja) * 2004-06-28 2006-01-12 Tokai Carbon Co Ltd カーボンブラック黒色顔料とその水分散体
US20060000071A1 (en) 2004-06-30 2006-01-05 Council Of Scientific And Industrial Research Process for fabrication of ultracapacitor electrodes using activated lamp black carbon
US7722713B2 (en) * 2005-05-17 2010-05-25 Cabot Corporation Carbon blacks and polymers containing the same
US20070003822A1 (en) 2005-06-30 2007-01-04 Shyam Kocha Voltage cycling durable catalysts
AU2006308951A1 (en) 2005-10-31 2007-05-10 Cabot Corporation Modified colorants and inkjet ink compositions comprising modified colorants
US20070160899A1 (en) 2006-01-10 2007-07-12 Cabot Corporation Alloy catalyst compositions and processes for making and using same
US20080075842A1 (en) 2006-09-22 2008-03-27 Cabot Corporation Processes, Framed Membranes and Masks for Forming Catalyst Coated Membranes and Membrane Electrode Assemblies
US20080206616A1 (en) 2007-02-27 2008-08-28 Cabot Corporation Catalyst coated membranes and sprayable inks and processes for forming same
US20080299431A1 (en) 2007-06-01 2008-12-04 Cabot Corporation Membrane electrode assembly for fuel cell
US9017837B2 (en) 2008-02-19 2015-04-28 Cabot Corporation High surface area graphitized carbon and processes for making same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB800975A (en) * 1955-01-07 1958-09-03 Degussa Production of modified carbon black
GB1083482A (en) * 1963-08-22 1967-09-13 Phillips Petroleum Co Improvements relating to the oxidation of carbon black pellets
EP1347018A1 (de) * 2002-03-14 2003-09-24 Degussa AG Verfahren zur Herstellung von nachbehandeltem Russ

Also Published As

Publication number Publication date
JP2017052967A (ja) 2017-03-16
CN102007186A (zh) 2011-04-06
KR102027915B1 (ko) 2019-10-02
EP3287496B1 (en) 2018-12-19
JP2011515507A (ja) 2011-05-19
EP2257602A2 (en) 2010-12-08
US10087330B2 (en) 2018-10-02
WO2009105172A3 (en) 2009-12-30
TWI444442B (zh) 2014-07-11
JP6230524B2 (ja) 2017-11-15
KR20150117706A (ko) 2015-10-20
WO2009105172A2 (en) 2009-08-27
US20090208751A1 (en) 2009-08-20
EP3287496A1 (en) 2018-02-28
TW200946603A (en) 2009-11-16
CA2715309A1 (en) 2009-08-27
JP2015071784A (ja) 2015-04-16
KR20100116623A (ko) 2010-11-01
KR20180000343A (ko) 2018-01-02
EP2257602B1 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
CN102007186B (zh) 中孔炭黑及其制造方法
CN102007629B (zh) 高表面积石墨化碳及其制造方法
CN1865132B (zh) 间孔碳及其制备方法
US20150352522A1 (en) Carbon material for catalyst support use
KR101331389B1 (ko) 고체 고분자형 연료 전지 촉매, 고체 고분자형 연료 전지용 전극 및 연료 전지
CA2472557A1 (en) Electrode catalyst for use in fuel cells, and fuel cell and eletrode utilizing same
TW574324B (en) Furnace carbon black, process for its production and its use
JP2010123572A (ja) 燃料電池
CN101517791B (zh) 用于燃料电池的催化剂结构体,其制备方法,膜电极组件和燃料电池
CN112867564A (zh) 固体高分子型燃料电池的催化剂载体用碳材料以及其制造方法
CN101939868B (zh) 具备具有表面纳米结构的氧电极的燃料电池
Saqib et al. An impedance-based coke sensor for methane reforming systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant