CN101845670A - 用于生长平坦半极性氮化镓的技术 - Google Patents
用于生长平坦半极性氮化镓的技术 Download PDFInfo
- Publication number
- CN101845670A CN101845670A CN201010111379A CN201010111379A CN101845670A CN 101845670 A CN101845670 A CN 101845670A CN 201010111379 A CN201010111379 A CN 201010111379A CN 201010111379 A CN201010111379 A CN 201010111379A CN 101845670 A CN101845670 A CN 101845670A
- Authority
- CN
- China
- Prior art keywords
- semi
- polarity
- nitride
- film
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910002601 GaN Inorganic materials 0.000 title description 14
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title description 14
- 238000005516 engineering process Methods 0.000 title description 10
- 150000004767 nitrides Chemical class 0.000 claims abstract description 55
- 239000000758 substrate Substances 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 41
- 229910052596 spinel Inorganic materials 0.000 claims abstract description 24
- 239000011029 spinel Substances 0.000 claims abstract description 24
- 238000005520 cutting process Methods 0.000 claims abstract description 16
- 230000010287 polarization Effects 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052594 sapphire Inorganic materials 0.000 abstract description 7
- 239000010980 sapphire Substances 0.000 abstract description 7
- 239000010408 film Substances 0.000 description 41
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 15
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 229910052738 indium Inorganic materials 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000002269 spontaneous effect Effects 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 229910002704 AlGaN Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 238000001451 molecular beam epitaxy Methods 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 3
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000000399 optical microscopy Methods 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001534 heteroepitaxy Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000005701 quantum confined stark effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VLCQZHSMCYCDJL-UHFFFAOYSA-N tribenuron methyl Chemical compound COC(=O)C1=CC=CC=C1S(=O)(=O)NC(=O)N(C)C1=NC(C)=NC(OC)=N1 VLCQZHSMCYCDJL-UHFFFAOYSA-N 0.000 description 2
- 206010020880 Hypertrophy Diseases 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005915 ammonolysis reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
- H01L33/007—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/938—Lattice strain control or utilization
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Led Devices (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
本发明提供一种用于在斜切尖晶石衬底上生长平坦半极性氮化物薄膜的方法,其中大面积的所述平坦半极性氮化物薄膜与所述衬底的表面平行。所述平坦薄膜和衬底为:(1)生长于沿特定方向斜切的{100}尖晶石衬底上的{101 1}氮化镓(GaN),(2)生长于{110}尖晶石衬底上的{1013}氮化镓(GaN),(3)生长于{1100}蓝宝石衬底上的{1122}氮化镓(GaN),和(4)生长于{1100}蓝宝石衬底上的{1013}氮化镓(GaN)。
Description
分案申请
本发明专利申请是申请号为PCT/US2006/008595,申请日为2006年3月10日,优先权日为2005年3月10日,发明名称为“用于生长平坦半极性氮化镓的技术”的PCT申请进入中国国家阶段,申请号为200680007694.5的发明专利申请的分案申请。
相关申请案的交叉参考
本申请案依据35U.S.C.119(e)部分主张以下共同待决和共同受让的美国专利申请案的权益:
Troy J.Baker,Benjamin A.Haskell,Paul T.Fini,Steven P.DenBaars,James S.Speck和Shuji Nakamura于2005年3月10日申请的标题为“TECHNIQUE FOR THE GROWTH OFPLANAR SEMI-POLAR GALLIUM NITRIDE”的美国临时专利申请案第60/660,283号,代理人案号第30794.128-US-P1号;
所述申请案是以引用的方式并入本文中。
本申请案涉及以下共同待决和共同受让的申请案:
Robert M.Farrell,Troy J.Baker,Arpan Chakraborty,Benjamin A.Haskell,P.MorganPattison,Rajat Sharma,Umesh K.Mishra,Steven P.DenBaars,James S.Speck和ShujiNakamura于2005年6月1日申请的标题为“TECHNIQUE FOR THE GROWTH ANDFABRICATION OF SEMIPOLAR(Ga,Al,In,B)N THIN FILMS,HETEROSTRUCTURES,AND DEVICES”的美国临时专利申请案第60/686,244号,代理人案号第30794.140-US-P1(2005-668)号;
Troy J.Baker,Benjamin A.Haskell,James S.Speck和Shuji Nakamura于2005年7月13日申请的标题为“LATERAL GROWTH METHOD FOR DEFECT REDUCTION OFSEMIPOLAR NITRIDE FILMS”的美国临时专利申请案第60/698,749号,代理人案号第30794.141-US-P1(2005-672)号;
Michael Iza,Troy J.Baker,Benjamin A.Haskell,Steven P.DenBaars和Shuji Nakamura于2005年9月9日申请的标题为“METHOD FOR ENHANCING GROWTH OFSEMIPOLAR(Al,In,Ga,B)N VIA METALORGANIC CHEMICAL VAPOR DEPOSITION”的美国临时专利申请案第60/715,491号,代理人案号第30794.144-US-P1(2005-722)号;
John F.Kaeding,Michael Iza,Troy J.Baker,Hitoshi Sato,Benjamin A.Haskell,James S.Speck,Steven P.DenBaars和Shuji Nakamura于2006年1月20日申请的标题为“METHODFOR IMPROVED GROWTH OF SEMIPOLAR(Al,In,Ga,B)N”的美国临时专利申请案第60/760,739号,代理人案号第30794.150-US-P1(2006-126)号;
Hitoshi Sato,John F.Keading,Michael Iza,Troy J.Baker,Benjamin A.Haskell,StevenP.DenBaars和Shuji Nakamura于2006年1月20日申请的标题为“METHOD FORENHANCING GROWTH OF SEMIPOLAR(Al,In,Ga,B)N VIA METALORGANICCHEMICAL VAPOR DEPOSITION”的美国临时专利申请案第60/760,628号,代理人案号第30794.159-US-P1(2006-178)号;
John F.Kaeding,Hitoshi Sato,Michael Iza,Hirokuni Asamizu,Hong Zhong,Steven P.DenBaars和Shuji Nakamura于2006年2月10日申请的标题为“METHOD FORCONDUCTIVITY CONTROL OF SEMIPOLAR(Al,In,Ga,B)N”的美国临时专利申请案第60/772,184号,代理人案号第30794.166-US-P1(2006-285)号;
Hong Zhong,John F.Kaeding,Rajat Sharma,James S.Speck,Steven P.DenBaars和Shuji Nakamura于2006年2月17日申请的标题为“METHOD FOR GROWTH OFSEMIPOLAR(Al,In,Ga,B)N OPTOELECTRONICS DEVICES”的美国临时专利申请案第60/774,467号,代理人案号第30794.173-US-P1(2006-422)号;
Benjamin A.Haskell,Michael D.Craven,Paul T.Fini,Steven P.DenBaars,James S.Speck和Shuji Nakamura于2005年6月6日申请的标题为“GROWTH OF REDUCEDDISLOCATION DENSITY NON-POLAR GALLIUM NITRIDE BY HYDRIDE VAPORPHASE EPITAXY”的美国发明专利申请案第10/537,644号,代理人案号第30794.93-US-WO(2003-224-2)号,所述申请案依据35U.S.C.365(c)部分主张Benjamin A.Haskell,Michael D.Craven,Paul T.Fini,Steven P.DenBaars,James S.Speck和ShujiNakamura于2003年7月15日申请的标题为“GROWTH OF REDUCED DISLOCATIONDENSITY NON-POLAR GALLIUM NITRIDE BY HYDRIDE VAPOR PHASE EPITAXY”的国际专利申请案第PCT/US03/21918号(代理人案号第30794.93-WO-U1(2003-224-2)号)的权益,所述申请案依据35U.S.C.119(e)部分主张Benjamin A.Haskell,Michael D.Craven,Paul T.Fini,Steven P.DenBaars,James S.Speck和Shuji Nakamura于2002年12月16日申请的标题为“GROWTH OF REDUCED DISLOCATION DENSITY NON-POLARGALLIUM NITRIDE BY HYDRIDE VAPOR PHASE EPITAXY”的美国临时专利申请案第60/433,843号(代理人案号第30794.93-US-P1(2003-224-1)号)的权益;
Benjamin A.Haskell,Paul T.Fini,Shigemasa Matsuda,Michael D.Craven,Steven P.DenBaars,James S.Speck和Shuji Nakamura于2005年6月3日申请的标题为“GROWTHOF PLANAR,NON-POLAR A-PLANE GALLIUM NITRIDE BY HYDRIDE VAPORPHASE EPITAXY”的美国发明专利申请案第10/537,385号,代理人案号第30794.94-US-WO(2003-225-2)号,所述申请案依据35U.S.C.365(c)部分主张Benjamin A.Haskell,Paul T.Fini,Shigemasa Matsuda,Michael D.Craven,Steven P.DenBaars,James S.Speck和Shuji Nakamura于2003年7月15日申请的标题为“GROWTH OF PLANAR,NON-POLAR A-PLANE GALLIUM NITRIDE BY HYDRIDE VAPOR PHASE EPITAXY”的国际专利申请案第PCT/US03/21916号(代理人案号第30794.94-WO-U1(2003-225-2)号)的权益,所述申请案依据35U.S.C.119(e)部分主张Benjamin A.Haskell,Paul T.Fini,Shigemasa Matsuda,Michael D.Craven,Steven P.DenBaars,James S.Speck和ShujiNakamura于2002年12月16日申请的标题为“TECHNIQUE FOR THE GROWTH OFPLANAR,NON-POLAR A-PLANE GALLIUM NITRIDE BY HYDRIDE VAPOR PHASEEPITAXY”的美国临时专利申请案第60/433,844号(代理人案号第30794.94-US-P1(2003-225-1)号)的权益;
Michael D.Craven和James S.Speck于2003年4月15日申请的标题为“NON-POLARA-PLANE GALLIUM NITRIDE THIN FILMS GROWN BY METALORGANIC CHEMICALVAPOR DEPOSITION”的美国发明专利申请案第10/413,691号,代理人案号第30794.100-US-U1(2002-294-2)号,所述申请案依据35U.S.C.119(e)部分主张Michael D.Craven,Stacia Keller,Steven P.DenBaars,Tal Margalith,James S.Speck,Shuji Nakamura和Umesh K.Mishra于2002年4月15日申请的标题为“NON-POLAR GALLIUM NITRIDEBASED THIN FILMS AND HETEROSTRUCTURE MATERIALS”的美国临时专利申请案第60/372,909号(代理人案号第30794.95-US-P1(2002-294/301/303)号)的权益;
Michael D.Craven,Stacia Keller,Steven P.DenBaars,Tal Margalith,James S.Speck,Shuji Nakamura和Umesh K.Mishra于2003年4月15日申请的标题为“NON-POLAR(Al,B,In,Ga)N QUANTUM WELL AND HETEROSTRUCTURE MATERIALS ANDDEVICES”的美国发明专利申请案第10/413,690号,代理人案号第30794.101-US-U1(2002-301-2)号,所述申请案依据35U.S.C.119(e)部分主张Michael D.Craven,StaciaKeller,Steven P.DenBaars,Tal Margalith,James S.Speck,Shuji Nakamura和Umesh K.Mishra于2002年4月15日申请的标题为“NON-POLAR GALLIUM NITRIDE BASEDTHIN FILMS AND HETEROSTRUCTURE MATERIALS”的美国临时专利申请案第60/372,909号(代理人案号第30794.95-US-P1(2002-294/301/303)号)的权益;
Michael D.Craven,Stacia Keller,Steven P.DenBaars,Tal Margalith,James S.Speck,Shuji Nakamura和Umesh K.Mishra于2003年4月15日申请的标题为“DISLOCATIONREDUCTION IN NON-POLAR GALLIUM NITRIDE THIN FILMS”的美国发明专利申请案第10/413,913号,代理人案号第30794.102-US-U1(2002-303-2)号,所述申请案依据35U.S.C.119(e)部分主张Michael D.Craven,Stacia Keller,Steven P.DenBaars,Tal Margalith,James S.Speck,Shuji Nakamura和Umesh K.Mishra于2002年4月15日申请的标题为“NON-POLAR GALLIUM NITRIDE BASED THIN FILMS AND HETEROSTRUCTUREMATERIALS”的美国临时专利申请案第60/372,909号(代理人案号第30794.95-US-P1号)的权益;
Michael D.Craven和Steven P.DenBaars于2003年12月11日申请的标题为“NONPOLAR(Al,B,In,Ga)N QUANTUM WELLS”的国际专利申请案第PCT/US03/39355号,代理人案号第30794.104-WO-01(2003-529-1)号,所述申请案为上文所述的专利申请案第PCT/US03/21918(30794.93-WO-U1)号、第PCT/US03/21916(30794.94-WO-U1)号、第10/413,691(30794.100-US-U1)号、第10/413,690(30794.101-US-U1)号、第10/413,913(30794.102-US-U1)号的部分接续申请案;
所有所述申请案都是以引用的方式并入本文中。
技术领域
本发明涉及一种用于生长平坦半极性氮化镓的技术。
背景技术
已充分确定氮化镓(GaN)和其并入铝和铟的三元与四元化合物(AlGaN、InGaN、AlInGaN)用于制造可见光和紫外线光电子装置和高功率电子装置的有用性。这些装置通常是使用包括分子束外延(MBE)、金属有机化学气相沉积(MOCVD)和氢化物气相外延(HVPE)在内的生长技术而得以外延式生长。
GaN和其合金处于六边形纤锌型晶体结构(hexagonal würtzite crystal structure)时最为稳定,其中所述结构是通过彼此(a轴)旋转120°的两个(或三个)等效基面轴加以说明,所有轴都垂直于独特的c轴。III族和氮原子占据沿晶体c轴的交替c平面。纤锌型结构中所包括的对称元素表明III族氮化物拥有沿此c轴的整体自发极化(bulkspontaneous polarization),并且纤锌型结构呈现出压电极化。
用于电子装置和光电子装置的当前氮化物技术使用沿极性c方向生长的氮化物薄膜。然而,以III族氮化物为基础的光电子装置和电子装置中的常规c平面量子阱结构因存在强压电及自发极化而遭受不合需要的量子局限史塔克效应(quantum-confined Starkeffect,QCSE)。沿c方向的强内建电场引起电子与电洞的空间分离,所述电子和电洞的空间分离又引起受限的载流子重组效率、减小的振子强度和红移发射(red-shiftedemission)。
消除GaN光电子装置中的自发极化和压电极化效应的一种方法是在晶体的非极性平面上生长装置。所述平面含有等数量的Ga和N原子并且呈电中性。此外,随后的非极性层彼此相当,从而使块晶(bulk crystal)不会沿生长方向极化。GaN中的两个此类对称等效非极性平面族为统称为a平面的{1120}族,和统称为m平面的{1100}族。遗憾的是,尽管加利福尼亚大学的研究员已取得进展(例如,如以上交叉参考的申请案中所述),但是非极性GaN的生长仍存在问题并且尚未广泛被III族氮化物行业所采用。
减小或可能消除GaN光电子装置中的极化效应的另一种方法是在晶体的半极性平面上生长装置。术语“半极性平面”可用以指各种平面,其拥有两个非零h、i或k米勒指数(Miller indices)和一个非零1米勒指数。c平面GaN异质外延中半极性平面的某些常见实例包括{1122}、{1011}和{1013}平面,其可见于陷阱的刻面中。这些平面还可能为与发明者以平坦薄膜形式生长的平面相同的平面。纤锌型晶体结构中的半极性平面的其它实例包括(但不限于){1012}、{2021}和{1014}平面。氮化物晶体的极化矢量不位于此类平面内或垂直于此类平面,而是与平面表面的法线倾斜成某个角度。举例来说,{1011}和{1013}平面分别与c平面成62.98°和32.06°角。
引起极化的另一原因为压电极化。这出现在材料经历压缩应变或拉伸应变时,如同当在氮化物异质结构中生长具有不同组成(且因此具有不同的晶格常数)的(Al,In,Ga,B)N层时可以出现一样。举例来说,GaN模板上的薄AlGaN层将具有平面内拉伸应变,并且GaN模板上的薄InGaN层将具有平面内压缩应变,二者都是由与GaN匹配的晶格引起。因此,对于GaN上的InGaN量子阱而言,压电极化将指向与InGaN和GaN的自发极化方向相对的方向。对于晶格与GaN匹配的AlGaN层而言,压电极化将指向与AlGaN和GaN的自发极化方向相同的方向。
使用半极性平面优于c平面氮化物的优点在于总极化将会减少。对于特定平面上的特定合金组成而言甚至可能存在零极化。此类方案将在将来的科技论文中进行详细论述。要点在于与c平面氮化物结构的极化相比,所述极化将会减少。
GaN的块晶无法使用,因此不可能简单地切割晶体来呈现供随后装置再生长的表面。通常,GaN薄膜最初是以异质外延方式生长,即在提供与GaN的合理晶格匹配的外来衬底上生长。
已证实半极性GaN平面在图案化c平面定向条纹的侧壁上。Nishizuka等人已通过这项技术生长{1122}InGaN量子阱。(参看Nishizuka,K.,Applied Physics Letters,第85卷,第15号,2004年10月11日。)他们还证实半极性平面{1122}的内部量子效率高于c平面的内部量子效率,这是由极化减少引起。
然而,这种产生半极性平面的方法完全不同于本发明的方法;其为由横向外延过度生长(ELO)得到的结果。ELO可用于减少GaN和其它半导体中的缺陷。其涉及到光罩材料(对于GaN来说通常为SiO2)的图案化条纹。GaN是从光罩之间的开放窗口生长且接着在光罩上生长。为形成连续薄膜,接着通过横向生长来接合GaN。可通过生长参数来控制这些条纹的刻面。如果生长在条纹接合之前停止,那么可以暴露半极性平面的少量区域。表面区域的宽度最佳可为10μm。此外,半极性平面将不与衬底表面平行。另外,表面区域太小而无法加工成半极性LED。而且,在倾斜刻面上形成装置结构比在垂直平面上形成这些结构要困难许多。
本发明描述用于生长半极性氮化物平坦薄膜的技术,其中大面积的(Al、In、Ga)N与衬底表面平行。举例来说,与先前经证实用于生长半极性氮化物的数微米宽的区域相比,通常在10mm×10mm或2英寸直径的衬底上生长样本。
发明内容
本发明描述一种用于使半极性氮化物生长为平坦薄膜(诸如,{1011}、{1013}和{1122}GaN平坦薄膜)的方法。半极性氮化物半导体的生长将提供一种减少纤锌型结构III族氮化物装置结构中的极化效应的方式。
附图说明
现参考图式,在所述图式中类似的参考数字表示相应部分:
图1A、1B和1C为具有图1A(无斜切)、图1B(沿<010>方向斜切)和图1C(沿<011>方向斜切)的衬底斜切的(100)尖晶石上的GaN的光学显微图。
图2为说明本发明的优选实施例的加工步骤的流程图。
图3为在通过HVPE生长的{1011}GaN模板上通过MOCVD生长的LED的照片。
具体实施方式
在下文对优选实施例的描述中,将参考形成本发明的一部分的附图,并且其中经由说明对可实施本发明的特定实施例予以展示。应了解,可利用其它实施例并且可在不偏离本发明的范围的情况下对结构作出改变。
综述
半极性氮化物半导体的生长(例如,{1011}、{1013}和{1122}GaN平面)可提供一种减少纤锌型结构III族氮化物装置结构中的极化效应的方式。半导体术语氮化物是指(Ga,Al,In,B)N和这些半导体的任何合金组成。目前的氮化物装置是在极性[0001]c方向上生长,这将导致电荷在垂直装置中沿主要传导方向分离。所获得的极化场对于当前工艺水平下光电子装置的性能是有害的。这些装置沿半极性方向生长可通过减少沿传导方向的内建电场而显著改进装置性能。
直到现在,尚不存在用于生长适于在装置生长中用作装置层、模板或衬底的大面积、高品质半极性氮化物薄膜的方式。本发明的新颖特征在于,确立可以生长为平坦薄膜的半极性氮化物。作为证据,发明者已生长{1011}、{1013}和{1122}GaN平坦薄膜。然而,这种想法的范围并不仅限于这些实例。这种想法涉及所有半极性氮化物平坦薄膜。
技术说明
本发明包含一种用于生长平坦氮化物薄膜的方法,其中大面积的半极性氮化物与衬底表面平行。其实例为{1011}和{1013}GaN薄膜。在此特定实施例中,将MgAl2O4尖晶石衬底用于生长过程中。在适当方向上斜切尖晶石以生长{1011}GaN显得至关重要。同轴并且朝<001>方向斜切的{100}尖晶石上生长的{1011}GaN将具有彼此成90°的两个区域。这在分别绘示于图1A(无斜切)和图1B(沿<010>方向斜切)中的(100)尖晶石上的GaN的光学显微图中将显而易见。
然而,如图1C(沿<011>方向斜切)中的(100)尖晶石上的GaN的光学显微图所示,{1011}单晶GaN生长于沿<011>方向斜切的{100}尖晶石上。使用X射线衍射(XRD)验证在具有朝<011>方向斜切的(100)尖晶石上生长的薄膜为单晶,并且同轴生长或朝<010>方向斜切的(100)尖晶石上生长的薄膜具有两个区域。
{1013}单晶GaN是生长于标称同轴(缺少有意进行的斜切){110}尖晶石上。使用XRD验证{1013}GaN为单晶。
此外,已在m平面蓝宝石(即{1100}Al2O3)上生长{1122}GaN和{1013}GaN平坦薄膜。在半导体生长中一般不使用一个衬底生长两个具有相同外延材料的不同平面。然而,可以在GaN生长之前通过在不同温度下使氨流动来可重复地选择平面。再次使用XRD证实薄膜的单晶特性。
因此,已采用实验方法证明四个平坦半极性氮化物薄膜的实例:
1)以特定方向(<001>、<010>和<011>)斜切的{100}尖晶石上的{1011}GaN,
2){110}尖晶石上的{1013}GaN,
3){1100}蓝宝石上的{1122}GaN,和
4){1100}蓝宝石上的{1013}GaN。
使用University of California,Santa Barbara的Shuji Nakamura实验室中的HVPE系统生长这些薄膜。用于{1011}和{1013}的生长参数概要为介于10托(torr)与1000托之间的压力和介于900℃与1200℃之间的温度。所述较大范围的压力表明,这些平面当生长于指定衬底上时将极为稳定。不管反应器为何种类型,外延关系都应有效。然而,用于生长这些平面的反应器条件将依据个别反应器和生长方法(例如,HVPE、MOCVD和MBE)而变化。
加工步骤
图2为说明本发明的优选实施例的加工步骤的流程图。具体来说,这些加工步骤包含生长平坦半极性氮化物薄膜的方法,其中大面积的平坦半极性氮化物薄膜与衬底表面平行。
方块10表示制造衬底的可选步骤。举例来说,所述制造可涉及对衬底进行斜切。为生长{1011}GaN,可使用沿<011>方向(其包括<010>和<011>)斜切的(100)尖晶石衬底。为生长{1013}GaN,可使用同轴(110)尖晶石衬底。(110)尖晶石可具有或可不具有沿任何方向的斜切,但当要在(100)尖晶石上生长{1011}GaN时无需进行斜切。
方块12表示将衬底载入HVPE反应器中的步骤。将反应器抽空到至少9E-2托以移除氧气,接着用氮气回填所述反应器。
方块14表示在促进衬底表面氮化的条件下开启加热炉并逐渐升高反应器温度的步骤。
方块16表示进行气体流动的步骤。所述过程一般是在大气压力下使氮、氢和/或氨在衬底上流动。
方块18表示降低反应器中的压力的步骤。加热炉温度设定值为1000℃,并且当其达到此温度时,将反应器的压力降低到62.5托。
方块20表示进行GaN生长的步骤。在降低压力之后,将氨流量设定为1.0slpm(每分钟标准升),并且起始Ga(镓)上75sccm(每分钟标准立方厘米)的HCl(氯化氢)流动以开始GaN的生长。
方块22表示冷却反应器的步骤。在20到60分钟的GaN生长时间之后,停止HCl流动,并且在氨气流动的同时将反应器冷却以保存GaN薄膜。
这些步骤的最终结果包含平坦半极性氮化物薄膜,其中所述平坦半极性氮化物薄膜的大表面区域(至少10mm×10mm或2英寸直径)与衬底的表面平行。
虽然已结合尖晶石衬底描述加工步骤,但也可使用m平面蓝宝石生长{1122}GaN或{1013}GaN。除一处不同之外,所述过程与上文所述的过程相同。为生长{1122}GaN,在使加热炉逐渐升高到生长温度的同时使氨气流动,因此会在低温下发生氮化。为选择{1013}GaN,可在逐渐升高温度步骤中仅使氢气和氮气流动。接着应使衬底在生长温度下于氨气流动的情况下经历高温氮化。
在已使用HVPE系统生长半极性薄膜之后,方块24表示使用MOCVD或MBE在衬底上生长装置层的步骤。这一步骤通常涉及用n型和p型掺杂物掺杂氮化物层,和在再生长层中生长一个或数个量子阱。可在这一步骤中使用标准LED加工方法在洁净室中制造LED。
图3为在通过HVPE生长的{1011}GaN模板上通过MOCVD生长的绿光LED的照片。具体说来,通过先前描述的HVPE生长过程来生长模板,并且通过MOCVD生长LED结构。这是第一个{1011}GaN LED。
可能的修改和变更
本发明的范围涵盖超出刚刚所引用的特定实例以外的内容。这种想法与任何半极性平面上的所有氮化物相关。举例来说,可在斜切(100)尖晶石衬底上生长{1011}AlN、InN、AlGaN、InGaN或AlInN。另一实例为,如果发现适当的衬底,那么可生长{1012}氮化物。这些实例和其它可能性仍可引起平坦半极性薄膜的所有益处。
在University of California,Santa Barbara的Shuji Nakamura实验室中进行的研究是使用HVPE完成;然而,使用MOCVD和MBE直接生长半极性氮化物平面应该也是可能的。对于大多数生长方法而言,外延关系应该是相同的,但如可从m平面蓝宝石上的GaN的实例中了解,其也可变化。举例来说,使用MOCVD生长的{1011}GaN LED可以直接生长于斜切(100)尖晶石上而无需HVPE模板。这种想法涵盖产生平坦半极性氮化物薄膜的任何生长技术。
反应器条件将随反应器类型和设计而变化。本文所述的生长仅为对已发现的用于生长半极性GaN的有用条件中一组条件的说明。还发现,这些薄膜将在较宽参数范围的压力、温度、气体流量等(其都将产生平坦半极性氮化物薄膜)下生长。
存在可在生长过程中变化的其它步骤。已发现成核层并非反应器条件所必需;然而,其它反应器中使用成核层可能必需或可能不必要,这是GaN薄膜生长中的惯例。还发现,将衬底氮化可改进某些薄膜的表面形态,并且确定针对其它薄膜所生长的实际平面。然而,这对于任何特定生长技术而言可能有必要或可能没必要。
优势和改进
现行惯例为在c平面垂直于表面的状况下生长GaN。这一平面具有对装置性能有害的自发极化和压电极化作用。半极性氮化物薄膜优于c平面氮化物薄膜的优势在于某些装置的极化作用减少和内部量子效率伴随增加。
非极性平面可用于完全消除装置中的极化效应。然而,这些平面极难生长,因此目前非极性氮化物装置未付诸生产。半极性氮化物薄膜优于非极性氮化物薄膜的优势在于易于生长。已发现,半极性平面具有其将在其中生长的较大参数范围。举例来说,非极性平面将不会在大气压力下生长,而据实验证实,半极性平面可在62.5托到760托的压力下生长,而且很可能具有比所述范围更宽的范围。{1100}GaN是在低压下生长,但当压力增加到760托,而所有其它参数都相同时,将产生c平面GaN。这很可能与两个平面的晶胞的轮廓有关。{1120}GaN的另一难题在于InGaN装置中In的并入。结果发现并入In对于{1011}GaN相当有益。
平坦半极性薄膜优于ELO侧壁的优势在于存在可加工成LED或其它装置的较大表面区域。另一优势在于生长表面与衬底表面平行,这与ELO侧壁半极性平面不同。
总的来说,本发明确立可生长平坦半极性氮化物薄膜。这已采用实验方法于四种单独情况中得以证实。先前所论述的优势将涉及所有平坦半极性薄膜。
参考文献
下列参考文献是以引用的方式并入本文中:
[1]Takeuchi,Tetsuya,Japanese Journal of Applied Physics,第39卷,(2000),第413至416页。此论文为有关半极性GaN薄膜的极性的理论研究。
[2]Nishizuka,K.,Applied Physics Letters,第85卷,第15号,2004年10月11日。此论文为关于ELO材料的{1122}GaN侧壁的研究。
[3]T.J.Baker,B.A.Haskell,F.Wu,J.S.Speck和S.Nakamura,″Characterization ofPlanar Semipolar Gallium Nitride Films on Spinel Substrates,″Japanese Journal of AppliedPhysics,第44卷,第29号,(2005),L920。
[4]A.Chakraborty,T.J.Baker,B.A.Haskell,F.Wu,J.S.Speck,S.P.Denbaars,S.Nakamura和U.K.Mishra,″Milliwatt Power Blue InGaN/GaN Light-Emitting Diodes onSemipolar GaN Templates,″Japanese Journal ofApplied Physics,第44卷,第30号(2005),L945。
[5]R.Sharma,P.M.Pattison,H.Masui,R.M.Farrell,T.J.Baker,B.A.Haskell,F.Wu,S.P.Denbaars,J.S.Speck和S.Nakamura,″Demonstration of a Semipolar(10-1-3)InGaN/GaN Green Light Emitting Diode,″Appl.Phys.Lett.87,231110(2005)。
[6]T.J.Baker,B.A.Haskell,F.Wu,J.S.Speck和S.Nakamura,″Characterization ofPlanar Semipolar Gallium Nitride Films on Sapphire Substrates,″Japanese Journal of AppliedPhysics,第45卷,第6号,(2006),L154。
结论
这一部分对本发明的优选实施例的描述作出结论。已出于说明和描述的目的提供对本发明的一个或一个以上实施例的以上描述。其并不打算为详尽的或将本发明限于所揭示的精确形式。根据上述教示可能进行许多修改和变更。预期本发明的范围不受具体实施方式的限制,而是受随附权利要求的限制。
Claims (16)
1.一种氮化物薄膜,其包含:
半极性氮化物薄膜,其生长在衬底的半极性平面上,以使所述半极性氮化物薄膜的表面是平坦的,且与所述衬底的所述半极性平面的表面平行。
2.根据权利要求1所述的薄膜,其中与在c-平面极性氮化物薄膜上生长的装置层相比,所述半极性薄膜减少了在所述半极性薄膜上生长的装置层的极化场,所述极化场从所述装置层获得,且所述薄膜具有不同组成且因此具有不同的晶格常数。
3.根据权利要求1所述的薄膜,其中所述半极性氮化物薄膜为{10-11}氮化物、{10-13}氮化物、{10-14}氮化物、{11-22}氮化物或{20-21}氮化物。
4.根据权利要求1所述的薄膜,其中所述衬底为半极性衬底。
5.根据权利要求1所述的薄膜,其中所述衬底为在沿特定方向斜切的{100}衬底,以产生所述衬底的所述半极性平面的所述表面。
6.根据权利要求5所述的薄膜,其中所述特定方向包含<001>、<010>或<011>。
7.根据权利要求1所述的薄膜,其中所述半极性氮化物薄膜为在沿特定方向斜切的(100)尖晶石衬底上生长的{10-11}氮化物。
8.根据权利要求7所述的薄膜,其中所述特定方向包含<001>、<010>和<011>。
9.一种生长氮化物薄膜的方法,其包含:
在衬底的半极性平面上生长半极性氮化物薄膜,以使所述半极性氮化物薄膜的表面是平坦的,且与所述衬底的所述半极性平面的表面平行。
10.根据权利要求9所述的方法,其中与在c-平面极性氮化物薄膜上生长的装置层相比,所述半极性薄膜减少了在所述半极性薄膜上生长的装置层的极化场,所述极化场从所述装置层获得,且所述薄膜具有不同组成且因此具有不同的晶格常数。
11.根据权利要求9所述的方法,其中所述半极性氮化物薄膜为{10-11}氮化物、{10-13}氮化物、{10-14}氮化物、{11-22}氮化物或{20-21}氮化物。
12.根据权利要求9所述的方法,其中其中所述衬底为半极性衬底。
13.根据权利要求9所述的方法,其中所述衬底为在沿特定方向斜切的{100}衬底,以产生所述衬底的所述半极性平面的所述表面。
14.根据权利要求13所述的方法,其中所述特定方向包含<001>、<010>或<011>。
15.根据权利要求9所述的方法,其中所述半极性氮化物薄膜为在沿特定方向斜切的(100)尖晶石衬底上生长的{10-11}氮化物。
16.根据权利要求15所述的方法,其中所述特定方向包含<001>、<010>和<011>。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66028305P | 2005-03-10 | 2005-03-10 | |
US60/660,283 | 2005-03-10 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006800076945A Division CN101138091B (zh) | 2005-03-10 | 2006-03-10 | 用于生长平坦半极性氮化镓的技术 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101845670A true CN101845670A (zh) | 2010-09-29 |
Family
ID=36992267
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006800076945A Active CN101138091B (zh) | 2005-03-10 | 2006-03-10 | 用于生长平坦半极性氮化镓的技术 |
CN201010111379A Pending CN101845670A (zh) | 2005-03-10 | 2006-03-10 | 用于生长平坦半极性氮化镓的技术 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006800076945A Active CN101138091B (zh) | 2005-03-10 | 2006-03-10 | 用于生长平坦半极性氮化镓的技术 |
Country Status (8)
Country | Link |
---|---|
US (4) | US7220324B2 (zh) |
EP (2) | EP2315253A1 (zh) |
JP (2) | JP5706601B2 (zh) |
KR (2) | KR101145753B1 (zh) |
CN (2) | CN101138091B (zh) |
HK (1) | HK1112109A1 (zh) |
TW (2) | TW201443990A (zh) |
WO (1) | WO2006099138A2 (zh) |
Families Citing this family (161)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7504274B2 (en) | 2004-05-10 | 2009-03-17 | The Regents Of The University Of California | Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition |
US7842527B2 (en) * | 2006-12-11 | 2010-11-30 | The Regents Of The University Of California | Metalorganic chemical vapor deposition (MOCVD) growth of high performance non-polar III-nitride optical devices |
US9011598B2 (en) * | 2004-06-03 | 2015-04-21 | Soitec | Method for making a composite substrate and composite substrate according to the method |
KR101145753B1 (ko) * | 2005-03-10 | 2012-05-16 | 재팬 사이언스 앤드 테크놀로지 에이젼시 | 평면의 반극성 갈륨 질화물의 성장을 위한 기술 |
EP1900013A4 (en) | 2005-06-01 | 2010-09-01 | Univ California | TECHNOLOGY FOR GROWTH AND MANUFACTURE OF SEMIPOLARS (GA, AL, IN, B) N THIN FILMS, HETEROSTRUCTURES AND COMPONENTS |
US8148713B2 (en) * | 2008-04-04 | 2012-04-03 | The Regents Of The University Of California | Method for fabrication of semipolar (Al, In, Ga, B)N based light emitting diodes |
TWI390633B (zh) * | 2005-07-13 | 2013-03-21 | Japan Science & Tech Agency | 半極性氮化物膜缺陷減少之側向成長方法 |
KR101347848B1 (ko) * | 2005-09-09 | 2014-01-06 | 재팬 사이언스 앤드 테크놀로지 에이젼시 | 유기금속 화학기상증착법을 통한 반극성(Al,In,Ga,B)N의 성장강화방법 |
KR101510461B1 (ko) | 2006-01-20 | 2015-04-08 | 더 리전츠 오브 더 유니버시티 오브 캘리포니아 | 반극성 (Al,In,Ga,B)N의 개선된 성장 방법 |
WO2007084783A2 (en) * | 2006-01-20 | 2007-07-26 | The Regents Of The University Of California | Method for enhancing growth of semipolar (ai,in,ga,b)n via metalorganic chemical vapor deposition |
US20120161287A1 (en) * | 2006-01-20 | 2012-06-28 | Japan Science And Technology Agency | METHOD FOR ENHANCING GROWTH OF SEMI-POLAR (Al,In,Ga,B)N VIA METALORGANIC CHEMICAL VAPOR DEPOSITION |
JP5684455B2 (ja) | 2006-02-10 | 2015-03-11 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 成長中にp型ドーパントがドープされたp型半極性III窒化物半導体を使用して、該III窒化物デバイスまたはIII窒化物半導体を製造する方法、半極性III窒化物半導体、および、p型III窒化物半導体を製造する方法 |
EP1984545A4 (en) * | 2006-02-17 | 2013-05-15 | Univ California | PROCESS FOR THE PRODUCTION OF N-TYPE SEMIPOLAR OPTOELECTRONIC DEVICES (AL, IN, GA, B) |
US8193020B2 (en) | 2006-11-15 | 2012-06-05 | The Regents Of The University Of California | Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AlN and their alloys by metal organic chemical vapor deposition |
EP2087507A4 (en) * | 2006-11-15 | 2010-07-07 | Univ California | METHOD FOR THE HETEROEPITAXIAL GROWTH OF QUALITATIVELY HIGH-QUALITY N-SIDE-GAN, INN AND AIN AND THEIR ALLOYS THROUGH METALLORGANIC CHEMICAL IMMUNE |
US9064706B2 (en) * | 2006-11-17 | 2015-06-23 | Sumitomo Electric Industries, Ltd. | Composite of III-nitride crystal on laterally stacked substrates |
WO2008073384A1 (en) * | 2006-12-11 | 2008-06-19 | The Regents Of University Of California | Non-polar and semi-polar light emitting devices |
EP2111634A4 (en) * | 2007-02-12 | 2014-01-08 | Univ California | NON-POLAR NITRIDE III LIGHT-EMITTING DIODES AND LIGHT-EMITTING DIODES, FREE OF AL (X) GA (1-X) N SHEATH |
WO2008100504A1 (en) * | 2007-02-12 | 2008-08-21 | The Regents Of The University Of California | Cleaved facet (ga,al,in)n edge-emitting laser diodes grown on semipolar {11-2n} bulk gallium nitride substrates |
JP4462289B2 (ja) * | 2007-05-18 | 2010-05-12 | ソニー株式会社 | 半導体層の成長方法および半導体発光素子の製造方法 |
US20080314311A1 (en) * | 2007-06-24 | 2008-12-25 | Burrows Brian H | Hvpe showerhead design |
CN100583475C (zh) * | 2007-07-19 | 2010-01-20 | 富士迈半导体精密工业(上海)有限公司 | 氮化物半导体发光元件及其制作方法 |
EP2176878A4 (en) * | 2007-08-08 | 2010-11-17 | Univ California | PLANAR NON-POLAR PLAN M GROUP III NITRIDE FILMS THAT ARE GROWN ON CUTTING ANGLE SUBSTRATES |
US8080469B2 (en) * | 2007-09-19 | 2011-12-20 | The Regents Of The University Of California | Method for increasing the area of non-polar and semi-polar nitride substrates |
US20090149008A1 (en) * | 2007-10-05 | 2009-06-11 | Applied Materials, Inc. | Method for depositing group iii/v compounds |
KR100972977B1 (ko) * | 2007-12-14 | 2010-07-29 | 삼성엘이디 주식회사 | 반극성 질화물 단결정 박막의 성장 방법 및 이를 이용한질화물 반도체 발광소자의 제조 방법 |
JP2011511462A (ja) | 2008-02-01 | 2011-04-07 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | ウエハの軸外カットによる窒化物発光ダイオードの偏光の向上 |
KR101488452B1 (ko) * | 2008-05-28 | 2015-02-02 | 서울반도체 주식회사 | 편광 광원, 그것을 채택한 백라이트 유닛 및 액정디스플레이 모듈 |
US20090310640A1 (en) * | 2008-04-04 | 2009-12-17 | The Regents Of The University Of California | MOCVD GROWTH TECHNIQUE FOR PLANAR SEMIPOLAR (Al, In, Ga, B)N BASED LIGHT EMITTING DIODES |
TW200950162A (en) | 2008-04-04 | 2009-12-01 | Univ California | Method for fabrication of semipolar (Al, In, Ga, B)N based light emitting diodes |
US8847249B2 (en) | 2008-06-16 | 2014-09-30 | Soraa, Inc. | Solid-state optical device having enhanced indium content in active regions |
US20100006873A1 (en) * | 2008-06-25 | 2010-01-14 | Soraa, Inc. | HIGHLY POLARIZED WHITE LIGHT SOURCE BY COMBINING BLUE LED ON SEMIPOLAR OR NONPOLAR GaN WITH YELLOW LED ON SEMIPOLAR OR NONPOLAR GaN |
US8805134B1 (en) | 2012-02-17 | 2014-08-12 | Soraa Laser Diode, Inc. | Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices |
US8259769B1 (en) | 2008-07-14 | 2012-09-04 | Soraa, Inc. | Integrated total internal reflectors for high-gain laser diodes with high quality cleaved facets on nonpolar/semipolar GaN substrates |
US8673074B2 (en) * | 2008-07-16 | 2014-03-18 | Ostendo Technologies, Inc. | Growth of planar non-polar {1 -1 0 0} M-plane and semi-polar {1 1 -2 2} gallium nitride with hydride vapor phase epitaxy (HVPE) |
JP5252061B2 (ja) * | 2008-10-07 | 2013-07-31 | 住友電気工業株式会社 | 窒化ガリウム系レーザダイオード |
TW201044444A (en) * | 2009-03-02 | 2010-12-16 | Univ California | Method of improving surface morphology of (Ga,Al,In,B)N thin films and devices grown on nonpolar or semipolar (Ga,Al,In,B)N substrates |
US8247886B1 (en) | 2009-03-09 | 2012-08-21 | Soraa, Inc. | Polarization direction of optical devices using selected spatial configurations |
US8252662B1 (en) | 2009-03-28 | 2012-08-28 | Soraa, Inc. | Method and structure for manufacture of light emitting diode devices using bulk GaN |
US8299473B1 (en) | 2009-04-07 | 2012-10-30 | Soraa, Inc. | Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors |
US8183132B2 (en) * | 2009-04-10 | 2012-05-22 | Applied Materials, Inc. | Methods for fabricating group III nitride structures with a cluster tool |
US8491720B2 (en) * | 2009-04-10 | 2013-07-23 | Applied Materials, Inc. | HVPE precursor source hardware |
US8634442B1 (en) | 2009-04-13 | 2014-01-21 | Soraa Laser Diode, Inc. | Optical device structure using GaN substrates for laser applications |
US8242522B1 (en) | 2009-05-12 | 2012-08-14 | Soraa, Inc. | Optical device structure using non-polar GaN substrates and growth structures for laser applications in 481 nm |
US8837545B2 (en) | 2009-04-13 | 2014-09-16 | Soraa Laser Diode, Inc. | Optical device structure using GaN substrates and growth structures for laser applications |
US9531164B2 (en) * | 2009-04-13 | 2016-12-27 | Soraa Laser Diode, Inc. | Optical device structure using GaN substrates for laser applications |
US8294179B1 (en) | 2009-04-17 | 2012-10-23 | Soraa, Inc. | Optical device structure using GaN substrates and growth structures for laser applications |
US8254425B1 (en) | 2009-04-17 | 2012-08-28 | Soraa, Inc. | Optical device structure using GaN substrates and growth structures for laser applications |
US8416825B1 (en) | 2009-04-17 | 2013-04-09 | Soraa, Inc. | Optical device structure using GaN substrates and growth structure for laser applications |
CN102449743A (zh) * | 2009-04-24 | 2012-05-09 | 应用材料公司 | 用于后续高温第三族沉积的基材预处理 |
US20100273291A1 (en) * | 2009-04-28 | 2010-10-28 | Applied Materials, Inc. | Decontamination of mocvd chamber using nh3 purge after in-situ cleaning |
CN102414797A (zh) * | 2009-04-29 | 2012-04-11 | 应用材料公司 | 在HVPE中形成原位预GaN沉积层的方法 |
US8247887B1 (en) | 2009-05-29 | 2012-08-21 | Soraa, Inc. | Method and surface morphology of non-polar gallium nitride containing substrates |
US10108079B2 (en) | 2009-05-29 | 2018-10-23 | Soraa Laser Diode, Inc. | Laser light source for a vehicle |
US9250044B1 (en) | 2009-05-29 | 2016-02-02 | Soraa Laser Diode, Inc. | Gallium and nitrogen containing laser diode dazzling devices and methods of use |
US9800017B1 (en) | 2009-05-29 | 2017-10-24 | Soraa Laser Diode, Inc. | Laser device and method for a vehicle |
DE112010002177B4 (de) * | 2009-05-29 | 2023-12-28 | Kyocera Sld Laser, Inc. | Projektionssystem |
US9829780B2 (en) | 2009-05-29 | 2017-11-28 | Soraa Laser Diode, Inc. | Laser light source for a vehicle |
US8427590B2 (en) | 2009-05-29 | 2013-04-23 | Soraa, Inc. | Laser based display method and system |
US8509275B1 (en) | 2009-05-29 | 2013-08-13 | Soraa, Inc. | Gallium nitride based laser dazzling device and method |
WO2010141943A1 (en) * | 2009-06-05 | 2010-12-09 | The Regents Of The University Of California | LONG WAVELENGTH NONPOLAR AND SEMIPOLAR (Al,Ga,In)N BASED LASER DIODES |
JP5446622B2 (ja) * | 2009-06-29 | 2014-03-19 | 住友電気工業株式会社 | Iii族窒化物結晶およびその製造方法 |
JP4905514B2 (ja) | 2009-07-15 | 2012-03-28 | 住友電気工業株式会社 | 窒化物系半導体発光素子 |
JP4978667B2 (ja) * | 2009-07-15 | 2012-07-18 | 住友電気工業株式会社 | 窒化ガリウム系半導体レーザダイオード |
US8153475B1 (en) | 2009-08-18 | 2012-04-10 | Sorra, Inc. | Back-end processes for substrates re-use |
WO2011022730A1 (en) | 2009-08-21 | 2011-02-24 | The Regents Of The University Of California | Anisotropic strain control in semipolar nitride quantum wells by partially or fully relaxed aluminum indium gallium nitride layers with misfit dislocations |
US20110056429A1 (en) * | 2009-08-21 | 2011-03-10 | Soraa, Inc. | Rapid Growth Method and Structures for Gallium and Nitrogen Containing Ultra-Thin Epitaxial Structures for Devices |
TW201138149A (en) * | 2009-08-21 | 2011-11-01 | Univ California | Anisotropic strain control in semipolar nitride quantum wells by partially or fully relaxed aluminum indium gallium nitride layers with misfit dislocations |
US9000466B1 (en) | 2010-08-23 | 2015-04-07 | Soraa, Inc. | Methods and devices for light extraction from a group III-nitride volumetric LED using surface and sidewall roughening |
KR101173072B1 (ko) * | 2009-08-27 | 2012-08-13 | 한국산업기술대학교산학협력단 | 경사진 기판 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법 |
US8575471B2 (en) * | 2009-08-31 | 2013-11-05 | Alliance For Sustainable Energy, Llc | Lattice matched semiconductor growth on crystalline metallic substrates |
US8961687B2 (en) * | 2009-08-31 | 2015-02-24 | Alliance For Sustainable Energy, Llc | Lattice matched crystalline substrates for cubic nitride semiconductor growth |
US8207554B2 (en) | 2009-09-11 | 2012-06-26 | Soraa, Inc. | System and method for LED packaging |
US8314429B1 (en) | 2009-09-14 | 2012-11-20 | Soraa, Inc. | Multi color active regions for white light emitting diode |
US8750342B1 (en) | 2011-09-09 | 2014-06-10 | Soraa Laser Diode, Inc. | Laser diodes with scribe structures |
US8355418B2 (en) | 2009-09-17 | 2013-01-15 | Soraa, Inc. | Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates |
US9583678B2 (en) | 2009-09-18 | 2017-02-28 | Soraa, Inc. | High-performance LED fabrication |
US8933644B2 (en) | 2009-09-18 | 2015-01-13 | Soraa, Inc. | LED lamps with improved quality of light |
US9293644B2 (en) | 2009-09-18 | 2016-03-22 | Soraa, Inc. | Power light emitting diode and method with uniform current density operation |
US9293667B2 (en) | 2010-08-19 | 2016-03-22 | Soraa, Inc. | System and method for selected pump LEDs with multiple phosphors |
US20130313516A1 (en) | 2012-05-04 | 2013-11-28 | Soraa, Inc. | Led lamps with improved quality of light |
WO2011035265A1 (en) | 2009-09-18 | 2011-03-24 | Soraa, Inc. | Power light emitting diode and method with current density operation |
US20110186887A1 (en) * | 2009-09-21 | 2011-08-04 | Soraa, Inc. | Reflection Mode Wavelength Conversion Material for Optical Devices Using Non-Polar or Semipolar Gallium Containing Materials |
US8575642B1 (en) | 2009-10-30 | 2013-11-05 | Soraa, Inc. | Optical devices having reflection mode wavelength material |
US8269245B1 (en) | 2009-10-30 | 2012-09-18 | Soraa, Inc. | Optical device with wavelength selective reflector |
US8629065B2 (en) * | 2009-11-06 | 2014-01-14 | Ostendo Technologies, Inc. | Growth of planar non-polar {10-10} M-plane gallium nitride with hydride vapor phase epitaxy (HVPE) |
WO2011058697A1 (ja) * | 2009-11-12 | 2011-05-19 | パナソニック株式会社 | 窒化物半導体素子の製造方法 |
US8507365B2 (en) * | 2009-12-21 | 2013-08-13 | Alliance For Sustainable Energy, Llc | Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates |
US10147850B1 (en) | 2010-02-03 | 2018-12-04 | Soraa, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US8905588B2 (en) | 2010-02-03 | 2014-12-09 | Sorra, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US20110215348A1 (en) | 2010-02-03 | 2011-09-08 | Soraa, Inc. | Reflection Mode Package for Optical Devices Using Gallium and Nitrogen Containing Materials |
US8740413B1 (en) | 2010-02-03 | 2014-06-03 | Soraa, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US20110186874A1 (en) | 2010-02-03 | 2011-08-04 | Soraa, Inc. | White Light Apparatus and Method |
US8445890B2 (en) * | 2010-03-09 | 2013-05-21 | Micron Technology, Inc. | Solid state lighting devices grown on semi-polar facets and associated methods of manufacturing |
DE102010011895B4 (de) | 2010-03-18 | 2013-07-25 | Freiberger Compound Materials Gmbh | Verfahren zur Herstellung eines semipolaren Gruppe III-Nitrid-Kristalls, Substrat, freistehendes semipolares Substrat und Verwendung der Substrate |
US9927611B2 (en) | 2010-03-29 | 2018-03-27 | Soraa Laser Diode, Inc. | Wearable laser based display method and system |
US20110256692A1 (en) | 2010-04-14 | 2011-10-20 | Applied Materials, Inc. | Multiple precursor concentric delivery showerhead |
US8451876B1 (en) | 2010-05-17 | 2013-05-28 | Soraa, Inc. | Method and system for providing bidirectional light sources with broad spectrum |
US8293551B2 (en) | 2010-06-18 | 2012-10-23 | Soraa, Inc. | Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices |
US9450143B2 (en) | 2010-06-18 | 2016-09-20 | Soraa, Inc. | Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices |
US8803452B2 (en) | 2010-10-08 | 2014-08-12 | Soraa, Inc. | High intensity light source |
US8816319B1 (en) | 2010-11-05 | 2014-08-26 | Soraa Laser Diode, Inc. | Method of strain engineering and related optical device using a gallium and nitrogen containing active region |
KR101105868B1 (ko) * | 2010-11-08 | 2012-01-16 | 한국광기술원 | 화학적 리프트 오프 방법을 이용한 ⅰⅰⅰ족 질화물 기판의 제조방법 |
US8975615B2 (en) | 2010-11-09 | 2015-03-10 | Soraa Laser Diode, Inc. | Method of fabricating optical devices using laser treatment of contact regions of gallium and nitrogen containing material |
US9048170B2 (en) | 2010-11-09 | 2015-06-02 | Soraa Laser Diode, Inc. | Method of fabricating optical devices using laser treatment |
US8541951B1 (en) | 2010-11-17 | 2013-09-24 | Soraa, Inc. | High temperature LED system using an AC power source |
US8896235B1 (en) | 2010-11-17 | 2014-11-25 | Soraa, Inc. | High temperature LED system using an AC power source |
US9041027B2 (en) | 2010-12-01 | 2015-05-26 | Alliance For Sustainable Energy, Llc | Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates |
WO2012074524A1 (en) | 2010-12-01 | 2012-06-07 | Alliance For Sustainable Energy, Llc | Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers |
US9318875B1 (en) | 2011-01-24 | 2016-04-19 | Soraa Laser Diode, Inc. | Color converting element for laser diode |
US9595813B2 (en) | 2011-01-24 | 2017-03-14 | Soraa Laser Diode, Inc. | Laser package having multiple emitters configured on a substrate member |
US8786053B2 (en) | 2011-01-24 | 2014-07-22 | Soraa, Inc. | Gallium-nitride-on-handle substrate materials and devices and method of manufacture |
US9025635B2 (en) | 2011-01-24 | 2015-05-05 | Soraa Laser Diode, Inc. | Laser package having multiple emitters configured on a support member |
US9093820B1 (en) | 2011-01-25 | 2015-07-28 | Soraa Laser Diode, Inc. | Method and structure for laser devices using optical blocking regions |
US8643257B2 (en) | 2011-02-11 | 2014-02-04 | Soraa, Inc. | Illumination source with reduced inner core size |
US8324835B2 (en) * | 2011-02-11 | 2012-12-04 | Soraa, Inc. | Modular LED lamp and manufacturing methods |
US8525396B2 (en) * | 2011-02-11 | 2013-09-03 | Soraa, Inc. | Illumination source with direct die placement |
US10036544B1 (en) | 2011-02-11 | 2018-07-31 | Soraa, Inc. | Illumination source with reduced weight |
US8618742B2 (en) * | 2011-02-11 | 2013-12-31 | Soraa, Inc. | Illumination source and manufacturing methods |
TWI534291B (zh) | 2011-03-18 | 2016-05-21 | 應用材料股份有限公司 | 噴淋頭組件 |
US8686431B2 (en) | 2011-08-22 | 2014-04-01 | Soraa, Inc. | Gallium and nitrogen containing trilateral configuration for optical devices |
US8884517B1 (en) | 2011-10-17 | 2014-11-11 | Soraa, Inc. | Illumination sources with thermally-isolated electronics |
US8912025B2 (en) | 2011-11-23 | 2014-12-16 | Soraa, Inc. | Method for manufacture of bright GaN LEDs using a selective removal process |
JP2012109624A (ja) * | 2012-03-06 | 2012-06-07 | Sumitomo Electric Ind Ltd | Iii族窒化物発光素子、及びiii族窒化物系半導体発光素子を作製する方法 |
US8992684B1 (en) | 2012-06-15 | 2015-03-31 | Ostendo Technologies, Inc. | Epitaxy reactor internal component geometries for the growth of superior quality group III-nitride materials |
US9577143B1 (en) | 2012-06-15 | 2017-02-21 | Ostendo Technologies, Inc. | Backflow reactor liner for protection of growth surfaces and for balancing flow in the growth liner |
US9023673B1 (en) | 2012-06-15 | 2015-05-05 | Ostendo Technologies, Inc. | Free HCL used during pretreatment and AlGaN growth to control growth layer orientation and inclusions |
TWI476953B (zh) | 2012-08-10 | 2015-03-11 | Univ Nat Taiwan | 半導體發光元件及其製作方法 |
US20140183579A1 (en) * | 2013-01-02 | 2014-07-03 | Japan Science And Technology Agency | Miscut semipolar optoelectronic device |
TWI620340B (zh) | 2013-03-15 | 2018-04-01 | 傲思丹度科技公司 | 增強效能主動式像素陣列及用於達成其之磊晶成長方法 |
US9166372B1 (en) | 2013-06-28 | 2015-10-20 | Soraa Laser Diode, Inc. | Gallium nitride containing laser device configured on a patterned substrate |
US9368939B2 (en) | 2013-10-18 | 2016-06-14 | Soraa Laser Diode, Inc. | Manufacturable laser diode formed on C-plane gallium and nitrogen material |
US9362715B2 (en) | 2014-02-10 | 2016-06-07 | Soraa Laser Diode, Inc | Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material |
US9379525B2 (en) | 2014-02-10 | 2016-06-28 | Soraa Laser Diode, Inc. | Manufacturable laser diode |
US9520695B2 (en) | 2013-10-18 | 2016-12-13 | Soraa Laser Diode, Inc. | Gallium and nitrogen containing laser device having confinement region |
EP3220429A1 (en) | 2014-02-05 | 2017-09-20 | Soraa Inc. | High-performance led fabrication |
US9209596B1 (en) | 2014-02-07 | 2015-12-08 | Soraa Laser Diode, Inc. | Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates |
US9520697B2 (en) | 2014-02-10 | 2016-12-13 | Soraa Laser Diode, Inc. | Manufacturable multi-emitter laser diode |
US9871350B2 (en) | 2014-02-10 | 2018-01-16 | Soraa Laser Diode, Inc. | Manufacturable RGB laser diode source |
CN104112803B (zh) * | 2014-04-14 | 2016-08-17 | 中国科学院半导体研究所 | 半极性面氮化镓基发光二极管及其制备方法 |
US9564736B1 (en) | 2014-06-26 | 2017-02-07 | Soraa Laser Diode, Inc. | Epitaxial growth of p-type cladding regions using nitrogen gas for a gallium and nitrogen containing laser diode |
US9246311B1 (en) | 2014-11-06 | 2016-01-26 | Soraa Laser Diode, Inc. | Method of manufacture for an ultraviolet laser diode |
US9666677B1 (en) | 2014-12-23 | 2017-05-30 | Soraa Laser Diode, Inc. | Manufacturable thin film gallium and nitrogen containing devices |
US9653642B1 (en) | 2014-12-23 | 2017-05-16 | Soraa Laser Diode, Inc. | Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes |
US10879673B2 (en) | 2015-08-19 | 2020-12-29 | Soraa Laser Diode, Inc. | Integrated white light source using a laser diode and a phosphor in a surface mount device package |
US10938182B2 (en) | 2015-08-19 | 2021-03-02 | Soraa Laser Diode, Inc. | Specialized integrated light source using a laser diode |
US11437774B2 (en) | 2015-08-19 | 2022-09-06 | Kyocera Sld Laser, Inc. | High-luminous flux laser-based white light source |
US11437775B2 (en) | 2015-08-19 | 2022-09-06 | Kyocera Sld Laser, Inc. | Integrated light source using a laser diode |
US9787963B2 (en) | 2015-10-08 | 2017-10-10 | Soraa Laser Diode, Inc. | Laser lighting having selective resolution |
US11287563B2 (en) | 2016-12-01 | 2022-03-29 | Ostendo Technologies, Inc. | Polarized light emission from micro-pixel displays and methods of fabrication thereof |
US10771155B2 (en) | 2017-09-28 | 2020-09-08 | Soraa Laser Diode, Inc. | Intelligent visible light with a gallium and nitrogen containing laser source |
US10222474B1 (en) | 2017-12-13 | 2019-03-05 | Soraa Laser Diode, Inc. | Lidar systems including a gallium and nitrogen containing laser light source |
US10551728B1 (en) | 2018-04-10 | 2020-02-04 | Soraa Laser Diode, Inc. | Structured phosphors for dynamic lighting |
US11421843B2 (en) | 2018-12-21 | 2022-08-23 | Kyocera Sld Laser, Inc. | Fiber-delivered laser-induced dynamic light system |
US11239637B2 (en) | 2018-12-21 | 2022-02-01 | Kyocera Sld Laser, Inc. | Fiber delivered laser induced white light system |
US12000552B2 (en) | 2019-01-18 | 2024-06-04 | Kyocera Sld Laser, Inc. | Laser-based fiber-coupled white light system for a vehicle |
TWI698915B (zh) * | 2019-01-18 | 2020-07-11 | 國立交通大學 | 雲母片上異質磊晶半導體材料之製程方法 |
US11884202B2 (en) | 2019-01-18 | 2024-01-30 | Kyocera Sld Laser, Inc. | Laser-based fiber-coupled white light system |
US11228158B2 (en) | 2019-05-14 | 2022-01-18 | Kyocera Sld Laser, Inc. | Manufacturable laser diodes on a large area gallium and nitrogen containing substrate |
US10903623B2 (en) | 2019-05-14 | 2021-01-26 | Soraa Laser Diode, Inc. | Method and structure for manufacturable large area gallium and nitrogen containing substrate |
TWI725908B (zh) * | 2020-08-18 | 2021-04-21 | 合晶科技股份有限公司 | 半極性氮化鎵的製作方法 |
Family Cites Families (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2704181B2 (ja) * | 1989-02-13 | 1998-01-26 | 日本電信電話株式会社 | 化合物半導体単結晶薄膜の成長方法 |
US6440823B1 (en) * | 1994-01-27 | 2002-08-27 | Advanced Technology Materials, Inc. | Low defect density (Ga, Al, In)N and HVPE process for making same |
JP3548654B2 (ja) * | 1996-09-08 | 2004-07-28 | 豊田合成株式会社 | 半導体発光素子 |
ATE550461T1 (de) * | 1997-04-11 | 2012-04-15 | Nichia Corp | Wachstumsmethode für einen nitrid-halbleiter |
JP3119200B2 (ja) | 1997-06-09 | 2000-12-18 | 日本電気株式会社 | 窒化物系化合物半導体の結晶成長方法および窒化ガリウム系発光素子 |
WO1999066565A1 (en) * | 1998-06-18 | 1999-12-23 | University Of Florida | Method and apparatus for producing group-iii nitrides |
JP2000156544A (ja) * | 1998-09-17 | 2000-06-06 | Matsushita Electric Ind Co Ltd | 窒化物半導体素子の製造方法 |
JP3592553B2 (ja) * | 1998-10-15 | 2004-11-24 | 株式会社東芝 | 窒化ガリウム系半導体装置 |
WO2000033388A1 (en) * | 1998-11-24 | 2000-06-08 | Massachusetts Institute Of Technology | METHOD OF PRODUCING DEVICE QUALITY (Al)InGaP ALLOYS ON LATTICE-MISMATCHED SUBSTRATES |
JP2000216497A (ja) * | 1999-01-22 | 2000-08-04 | Sanyo Electric Co Ltd | 半導体素子およびその製造方法 |
US6403451B1 (en) * | 2000-02-09 | 2002-06-11 | Noerh Carolina State University | Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts |
JP3946427B2 (ja) | 2000-03-29 | 2007-07-18 | 株式会社東芝 | エピタキシャル成長用基板の製造方法及びこのエピタキシャル成長用基板を用いた半導体装置の製造方法 |
US6586819B2 (en) * | 2000-08-14 | 2003-07-01 | Nippon Telegraph And Telephone Corporation | Sapphire substrate, semiconductor device, electronic component, and crystal growing method |
US7053413B2 (en) * | 2000-10-23 | 2006-05-30 | General Electric Company | Homoepitaxial gallium-nitride-based light emitting device and method for producing |
US6635901B2 (en) * | 2000-12-15 | 2003-10-21 | Nobuhiko Sawaki | Semiconductor device including an InGaAIN layer |
US6599362B2 (en) * | 2001-01-03 | 2003-07-29 | Sandia Corporation | Cantilever epitaxial process |
US7501023B2 (en) * | 2001-07-06 | 2009-03-10 | Technologies And Devices, International, Inc. | Method and apparatus for fabricating crack-free Group III nitride semiconductor materials |
US20030015708A1 (en) * | 2001-07-23 | 2003-01-23 | Primit Parikh | Gallium nitride based diodes with low forward voltage and low reverse current operation |
US7105865B2 (en) * | 2001-09-19 | 2006-09-12 | Sumitomo Electric Industries, Ltd. | AlxInyGa1−x−yN mixture crystal substrate |
JP4031628B2 (ja) * | 2001-10-03 | 2008-01-09 | 松下電器産業株式会社 | 半導体多層膜結晶、およびそれを用いた発光素子、ならびに当該半導体多層膜結晶の成長方法 |
TWI231321B (en) * | 2001-10-26 | 2005-04-21 | Ammono Sp Zoo | Substrate for epitaxy |
CN1300901C (zh) * | 2001-10-26 | 2007-02-14 | 波兰商艾蒙诺公司 | 使用氮化物块状单晶层的发光元件结构 |
JP4307113B2 (ja) * | 2002-03-19 | 2009-08-05 | 宣彦 澤木 | 半導体発光素子およびその製造方法 |
WO2003089696A1 (en) * | 2002-04-15 | 2003-10-30 | The Regents Of The University Of California | Dislocation reduction in non-polar gallium nitride thin films |
US20060138431A1 (en) * | 2002-05-17 | 2006-06-29 | Robert Dwilinski | Light emitting device structure having nitride bulk single crystal layer |
JP4201541B2 (ja) | 2002-07-19 | 2008-12-24 | 豊田合成株式会社 | 半導体結晶の製造方法及びiii族窒化物系化合物半導体発光素子の製造方法 |
US7427555B2 (en) * | 2002-12-16 | 2008-09-23 | The Regents Of The University Of California | Growth of planar, non-polar gallium nitride by hydride vapor phase epitaxy |
US7186302B2 (en) | 2002-12-16 | 2007-03-06 | The Regents Of The University Of California | Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition |
US6847057B1 (en) * | 2003-08-01 | 2005-01-25 | Lumileds Lighting U.S., Llc | Semiconductor light emitting devices |
US7009215B2 (en) * | 2003-10-24 | 2006-03-07 | General Electric Company | Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates |
US7504274B2 (en) * | 2004-05-10 | 2009-03-17 | The Regents Of The University Of California | Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition |
US7432142B2 (en) * | 2004-05-20 | 2008-10-07 | Cree, Inc. | Methods of fabricating nitride-based transistors having regrown ohmic contact regions |
US9011598B2 (en) * | 2004-06-03 | 2015-04-21 | Soitec | Method for making a composite substrate and composite substrate according to the method |
KR101145753B1 (ko) * | 2005-03-10 | 2012-05-16 | 재팬 사이언스 앤드 테크놀로지 에이젼시 | 평면의 반극성 갈륨 질화물의 성장을 위한 기술 |
TW200703463A (en) * | 2005-05-31 | 2007-01-16 | Univ California | Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO) |
EP1900013A4 (en) * | 2005-06-01 | 2010-09-01 | Univ California | TECHNOLOGY FOR GROWTH AND MANUFACTURE OF SEMIPOLARS (GA, AL, IN, B) N THIN FILMS, HETEROSTRUCTURES AND COMPONENTS |
US8148713B2 (en) * | 2008-04-04 | 2012-04-03 | The Regents Of The University Of California | Method for fabrication of semipolar (Al, In, Ga, B)N based light emitting diodes |
KR101347848B1 (ko) * | 2005-09-09 | 2014-01-06 | 재팬 사이언스 앤드 테크놀로지 에이젼시 | 유기금속 화학기상증착법을 통한 반극성(Al,In,Ga,B)N의 성장강화방법 |
KR101510461B1 (ko) * | 2006-01-20 | 2015-04-08 | 더 리전츠 오브 더 유니버시티 오브 캘리포니아 | 반극성 (Al,In,Ga,B)N의 개선된 성장 방법 |
JP5684455B2 (ja) * | 2006-02-10 | 2015-03-11 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 成長中にp型ドーパントがドープされたp型半極性III窒化物半導体を使用して、該III窒化物デバイスまたはIII窒化物半導体を製造する方法、半極性III窒化物半導体、および、p型III窒化物半導体を製造する方法 |
EP1984545A4 (en) * | 2006-02-17 | 2013-05-15 | Univ California | PROCESS FOR THE PRODUCTION OF N-TYPE SEMIPOLAR OPTOELECTRONIC DEVICES (AL, IN, GA, B) |
CN101553701B (zh) * | 2006-03-30 | 2011-04-06 | 康奈尔研究基金会股份有限公司 | 在快速冷却小型生物学样品中提高冷却速度的系统和方法 |
US7568863B2 (en) * | 2006-07-13 | 2009-08-04 | Denardo Joseph N | Panel forms |
WO2008073384A1 (en) * | 2006-12-11 | 2008-06-19 | The Regents Of University Of California | Non-polar and semi-polar light emitting devices |
WO2008073414A1 (en) * | 2006-12-12 | 2008-06-19 | The Regents Of The University Of California | Crystal growth of m-plane and semipolar planes of(ai, in, ga, b)n on various substrates |
US20080224268A1 (en) * | 2007-03-13 | 2008-09-18 | Covalent Materials Corporation | Nitride semiconductor single crystal substrate |
JP2008235804A (ja) * | 2007-03-23 | 2008-10-02 | Rohm Co Ltd | 発光素子 |
US7727874B2 (en) * | 2007-09-14 | 2010-06-01 | Kyma Technologies, Inc. | Non-polar and semi-polar GaN substrates, devices, and methods for making them |
US7915802B2 (en) * | 2007-11-12 | 2011-03-29 | Rohm Co., Ltd. | Surface light emitting device and polarization light source |
JP2009130364A (ja) * | 2007-11-23 | 2009-06-11 | Samsung Electro-Mechanics Co Ltd | 窒化物半導体発光素子及びその製造方法 |
US7851825B2 (en) * | 2007-12-10 | 2010-12-14 | Transphorm Inc. | Insulated gate e-mode transistors |
KR100972977B1 (ko) * | 2007-12-14 | 2010-07-29 | 삼성엘이디 주식회사 | 반극성 질화물 단결정 박막의 성장 방법 및 이를 이용한질화물 반도체 발광소자의 제조 방법 |
-
2006
- 2006-03-10 KR KR1020117007416A patent/KR101145753B1/ko active IP Right Grant
- 2006-03-10 CN CN2006800076945A patent/CN101138091B/zh active Active
- 2006-03-10 WO PCT/US2006/008595 patent/WO2006099138A2/en active Application Filing
- 2006-03-10 EP EP10014011A patent/EP2315253A1/en not_active Withdrawn
- 2006-03-10 TW TW103127367A patent/TW201443990A/zh unknown
- 2006-03-10 CN CN201010111379A patent/CN101845670A/zh active Pending
- 2006-03-10 EP EP06737745A patent/EP1869707B1/en active Active
- 2006-03-10 JP JP2008500965A patent/JP5706601B2/ja active Active
- 2006-03-10 KR KR1020077023104A patent/KR101145755B1/ko active IP Right Grant
- 2006-03-10 TW TW095108150A patent/TWI453813B/zh active
- 2006-03-10 US US11/372,914 patent/US7220324B2/en active Active
-
2007
- 2007-01-09 US US11/621,482 patent/US7704331B2/en active Active
-
2008
- 2008-06-11 HK HK08106432.5A patent/HK1112109A1/xx not_active IP Right Cessation
-
2010
- 2010-02-01 US US12/697,961 patent/US8128756B2/en active Active
-
2012
- 2012-01-24 US US13/357,432 patent/US8524012B2/en active Active
-
2014
- 2014-08-11 JP JP2014163558A patent/JP2014222780A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
US20060205199A1 (en) | 2006-09-14 |
EP1869707B1 (en) | 2012-06-13 |
KR101145753B1 (ko) | 2012-05-16 |
US20120119222A1 (en) | 2012-05-17 |
KR20110044332A (ko) | 2011-04-28 |
EP2315253A1 (en) | 2011-04-27 |
US20070111531A1 (en) | 2007-05-17 |
US8128756B2 (en) | 2012-03-06 |
EP1869707A4 (en) | 2009-02-25 |
JP2014222780A (ja) | 2014-11-27 |
KR20070120982A (ko) | 2007-12-26 |
KR101145755B1 (ko) | 2012-05-16 |
JP2008533723A (ja) | 2008-08-21 |
US20100133663A1 (en) | 2010-06-03 |
EP1869707A2 (en) | 2007-12-26 |
TWI453813B (zh) | 2014-09-21 |
WO2006099138A2 (en) | 2006-09-21 |
TW201443990A (zh) | 2014-11-16 |
CN101138091A (zh) | 2008-03-05 |
TW200735203A (en) | 2007-09-16 |
JP5706601B2 (ja) | 2015-04-22 |
US7704331B2 (en) | 2010-04-27 |
US7220324B2 (en) | 2007-05-22 |
CN101138091B (zh) | 2010-05-19 |
HK1112109A1 (en) | 2008-08-22 |
US8524012B2 (en) | 2013-09-03 |
WO2006099138A3 (en) | 2006-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101138091B (zh) | 用于生长平坦半极性氮化镓的技术 | |
KR101251443B1 (ko) | 수소화물 기상 에피택시법에 의한 평면의, 전위 밀도가 감소된 m-면 질화갈륨의 성장 | |
JP5838523B2 (ja) | 半極性(Al,In,Ga,B)NまたはIII族窒化物の結晶 | |
JP5099763B2 (ja) | 基板製造方法およびiii族窒化物半導体結晶 | |
US8405128B2 (en) | Method for enhancing growth of semipolar (Al,In,Ga,B)N via metalorganic chemical vapor deposition | |
JP2009501843A (ja) | 半極性窒化物薄膜の欠陥低減のための横方向成長方法 | |
JP2010004074A (ja) | ハイドライド気相成長法による平坦な無極性窒化ガリウムの成長 | |
CN1303131A (zh) | 用于晶体生长的基底衬底和用其制造衬底的方法 | |
JP2012209586A (ja) | 半極性窒化物を備え、窒化物核生成層又はバッファ層に特徴を有するデバイス構造 | |
Luo et al. | A study of GaN regrowth on the micro-faceted GaN template formed by in situ HCl etching | |
KR101335937B1 (ko) | Llo 방식을 이용한 질화갈륨 웨이퍼 제조 방법 | |
Wu et al. | Free-standing a-plane GaN substrates grown by HVPE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20100929 |