CN104112803B - 半极性面氮化镓基发光二极管及其制备方法 - Google Patents

半极性面氮化镓基发光二极管及其制备方法 Download PDF

Info

Publication number
CN104112803B
CN104112803B CN201410147977.6A CN201410147977A CN104112803B CN 104112803 B CN104112803 B CN 104112803B CN 201410147977 A CN201410147977 A CN 201410147977A CN 104112803 B CN104112803 B CN 104112803B
Authority
CN
China
Prior art keywords
layer
semi
gallium nitride
polarity
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410147977.6A
Other languages
English (en)
Other versions
CN104112803A (zh
Inventor
项若飞
汪连山
赵桂娟
金东东
王建霞
李辉杰
张恒
冯玉霞
焦春美
魏鸿源
杨少延
王占国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201410147977.6A priority Critical patent/CN104112803B/zh
Publication of CN104112803A publication Critical patent/CN104112803A/zh
Application granted granted Critical
Publication of CN104112803B publication Critical patent/CN104112803B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明提供一种半极性面氮化镓基发光二极管及其制备方法,其中发光二极管包括:一衬底,其表面具有周期排列的凸起图形;一氮化铝缓冲层沉积在凸起图形之间的间隔区内;一未掺杂半极性面氮化镓层,其制作在氮化铝缓冲层的上面,该未掺杂半极性面氮化镓层与衬底表面的凸起图形之间具有空隙区,可阻隔位错缺陷向上延伸;一半极性面氮化镓N型层,其制作在未掺杂半极性面氮化镓层上;一半极性面N型铟镓氮插入层,其制作在半极性面氮化镓N型层上;一半极性面铟镓氮/氮化镓多量子阱活性发光层,其制作在半极性面N型铟镓氮插入层上;一半极性面P型铝镓氮电子阻挡层,其制作在半极性面铟镓氮/氮化镓多量子阱活性发光层上;一半极性面P型氮化镓层,其制作在半极性面P型铝镓氮电子阻挡层上。

Description

半极性面氮化镓基发光二极管及其制备方法
技术领域
本发明属于半导体技术领域,涉及发光二极管,具体涉及一种基于m面蓝宝石图形衬底上半极性(11-22)面氮化镓基发光二极管(LED)结构及其制备方法,该发光二极管采用图形衬底生长技术和铟镓氮插入层技术相结合,可显著改善发光二极管材料的晶体质量和表面形貌,提高半极性面氮化镓基发光二极管的出光效率。
背景技术
作为第三代宽禁带半导体技术的典型应用,商业化的氮化镓(GaN)基LED产品已覆盖了紫外到绿光光谱。作为一种发光器件,GaN基LED可广泛应用在室内外照明、商业照明、农业照明、交通照明、医用照明和显示背光源等诸多方面。对这一光源的关注,使得近年来GaN基LED的制备技术水平获得了大幅提升,而其中的一些技术瓶颈也日益凸显。
目前,商业化的GaN基LED都是沿c轴生长制备的,生长取向沿(0001)面方向,外延材料内部存在着很强的自发极化和压电极化,极化效应导致能带发生强烈弯曲,降低了量子阱内的载流子辐射复合效率,在高密度电流驱动下,内量子效率会急剧衰减,辐射波长会发生蓝移,即量子限制斯塔克(Stark)效应[S.F.Chichibu,et.al.,Nature Materials,Vol.5,pp5143,2006]。为减小极化效应对LED器件性能的不利影响,选择制备非极性和半极性面氮化镓基LED是较为可行的方案。其中,沿半极性(11-22)面氮化镓基材料的工艺调节窗口较宽,铟掺入率较高[A.E.Romanov,et.al.,J.Appl.Phys.,Vol.100,pp023522,2006],研制的半极性面LED所发射出的光具有较高偏振度,可有效透过LCD液晶显示背光板中的偏振膜,较c面LED在液晶显示背光源上更具优势。
然而,缺少高质量、大尺寸、低成本的GaN同质衬底,半极性(1122)面GaN基LED需要在异质衬底上制备。通常采用m面蓝宝石衬底来生长(11-22)面GaN外延层进而制备LED,但由于晶体沿(11-22)面生长取向控制难、缺陷密度高和生长速率各向异性导致材料表面不平整等难题,致使半极性(11-22)面GaN基LED的质量和性能难与c面同结构器件媲美。2009年,Qian Sun等人提出在经高温氮化处理的m面平片蓝宝石衬底上生长高温AlN缓冲层,再采用生长半极性面(11-22)面GaN,引入“粗化-恢复”的变化机制,减少了位错和缺陷,提高了LED制备质量[Appl ied PhysicsLetter,Vol.95,pp231904-1-3,2009]。2011年,Simon Ploch等人提出用980℃氮化处理衬底,并在同温下生长GaN缓冲层,可以制备出单一取向高结晶质量和表面平整的半极性(11-22)面GaN层[Journal ofCrystal Growth,Vol.331,pp25-28,2011]。半极性面GaN外延层中高密度的位错和层错源于薄膜-衬底界面,在外延中通过衬底氮化结合缓冲层优化,调节生长模式的方法固然能在一定程度上改善GaN外延层的晶体质量,但是提升空间有限;同时,采用平片衬底的半极性面LED的光提取效率较低。
发明内容
本发明所要解决的技术问题是:提供一种半极性面氮化镓基发光二极管及其制备方法,该发光二极管制备在m面蓝宝石图形衬底上,能够发射近外、紫光、蓝光、绿光、橙光等不同颜色的偏振光,可用于半导体照明和新型背光源,以满足市场需求。
本发明提供一种半极性面氮化镓基发光二极管,包括:
一衬底,其表面具有周期排列的凸起图形;
一氮化铝缓冲层,其沉积在凸起图形之间的间隔区内,该氮化铝缓冲层的厚度小于衬底表面的凸起图形的高度;
一未掺杂半极性面氮化镓层,其制作在氮化铝缓冲层的上面,该未掺杂半极性面氮化镓层与衬底表面的凸起图形之间具有空隙区,可阻隔位错缺陷向上延伸;
一半极性面氮化镓N型层,其制作在未掺杂半极性面氮化镓层上;
一半极性面N型铟镓氮插入层,其制作在半极性面氮化镓N型层上;
一半极性面铟镓氮/氮化镓多量子阱活性发光层,其制作在半极性面N型铟镓氮插入层上;
一半极性面P型铝镓氮电子阻挡层,其制作在半极性面铟镓氮/氮化镓多量子阱活性发光层上;
一半极性面P型氮化镓层,其制作在半极性面P型铝镓氮电子阻挡层上。
本发明还提供一种半极性面氮化镓基发光二极管的制备方法,包括以下步骤:
步骤1:在一衬底上制备出周期性排列的凸起图形;
步骤2:将具有周期性凸起图形的衬底清洗后放入反应室中进行氮化处理;
步骤3:在氮化处理后的衬底上沉积一层氮化铝缓冲层,厚度为0.03-0.30μm;
步骤4:在氮化铝缓冲层上沉积未掺杂半极性面氮化镓层,总厚度为3-6μm,沉积未掺杂半极性面氮化镓层时,在衬底各凸起图形的顶部和未掺杂半极性面氮化镓层之间出现空隙区,可阻挡在界面处形成的位错缺陷向上延伸;
步骤5:在未掺杂半极性面氮化镓层上沉积氮化镓N型层,厚度为2-4μm;
步骤6:在氮化镓N型层上沉积N型铟镓氮插入层;
步骤7:在N型铟镓氮插入层上沉积3-10个周期的氮化镓/铟镓氮多量子阱结构活性发光层,其中氮化镓是势垒层,起限制电子的作用,铟镓氮是势阱层,该势阱层为二极管的发光区,根据LED波长要求,调节铟组分含量可发出不同波长或颜色的光;
步骤8:在多量子阱发光层上沉积P型铝镓氮电子阻挡层,厚度为2-50nm,电子阻挡层中铝组分含量为z=0.08-0.3;
步骤9:在电子阻挡层上沉积氮化镓P型层,厚度为0.1-0.5μm,完成制备。
本发明与传统发光二极管或者c面取向的氮化镓基发光二极管相比具有以下主要优点:
一、特殊晶面取向:商业化III族氮化物LED都是制备在c取向面的,无法解决极化内电场带来的量子限制斯塔克效应问题,而制备非极性(10-10)或(11-20)面的氮化物LED面临着在氮化镓/铟镓氮(GaN/InGaN)多量子阱中掺铟率低的问题,无法拓展发光波长至深绿光或更长波长区,在m面蓝宝石上制备半极性(11-22)面氮化镓基LED一方面显著减少了量子限制斯塔克效应对器件的内量子效率的影响,另一方面,此晶面取向的氮化镓基LED的发光波长可以延伸到深绿光,甚至橙光区,能缓解当今化合物半导体发光器件中的“绿隙”(green gap)问题。
二、取光效率高:由于衬底表面具有凸凹图案,减少了GaN基LED材料与外界接触界面内的反射,有利于GaN基LED内的发射的光子进入外界,不需增设布拉格反射镜,就可以极大提高LED取光效率,还可以有效抑制源于衬底-外延层界面位错生成,提高了衬底上半极性(11-22)面氮化镓外延层的晶体质量。
三、颜色多样:基于半极性面氮化镓基的发光二极管,由于多量子阱活性层掺铟率高,通过改变铟组分掺入率就可以调节器件发光波长,制备出近紫外光、紫光、蓝光、绿光、橙光等不同色光的发光二极管。
四、偏振度高:商业化的LED发出的光都不具有偏振,即使c面氮化镓基LED也不具有偏振。然而,由于半极性(11-22)面取向的氮化物各项异性较大,其所制备的LED沿[1-100]方向具有最强的偏振特性,其偏振度沿不同方位而有所不同。
五、实用性强:基于高发光效率和颜色多的特点,此种LED在照明、显示等领域具有广阔的应用前景。而作为高度偏振光源,在背光源显示优势明显,可增加移动消费电子产品(手机、笔记本电脑、IPad、MP3)中的电池续行能力。
六、新型制备技术:衬底氮化处理和氮化铝缓冲层高温生长相结合的技术,利于生成单一取向的半极性(11-22)面氮化镓,N型铟镓氮插入层可弛豫随后制备的多量子阱内的失配应力,同时可改善电流扩展,提高LED的发光效率。
附图说明
为进一步说明本发明的具体技术内容,以下结合实施例及附图详细说明如后,其中:
图1是本发明的半极性面氮化镓基发光二极管结构示意图;
图2是本发明的制备流程图;
图3是X射线沿晶向[11-2-3]入射的(11-22)面摇摆曲线图;
图4是X射线沿晶向[1-100]入射的(11-22)面摇摆曲线图;
图5是半极性(11-22)面氮化镓外延层的原子力显微镜测得的表面形貌图。
具体实施方式
本发明制备特殊取向的半极性(11-22)面氮化镓基发光二极管,一方面有效抑制了传统器件内因量子限制斯塔克效应引起的内量子效率衰减,一方面提高了量子阱铟组分掺入率,能使氮化镓基发光二极管的发光波长延展到深绿甚至橙光区。
请参阅图1所示,本发明提供一种半极性面氮化镓基发光二极管,包括:
一衬底10,其表面具有周期排列的凸起图形11.所述衬底10为取向(10-10)m面的蓝宝石衬底,其表面凸起图形11的周期是3-7μm,底部直径为2-4μm,高度为1-2μm,各凸起图形11之间的间隔为1-3μm一氮化铝缓冲层20,其沉积在凸起图形11之间的间隔区内,该氮化铝缓冲层20的厚度小于衬底10表面的凸起图形11的高度;
一未掺杂半极性面氮化镓层30,其制作在氮化铝缓冲层20的上面,该未掺杂半极性面氮化镓层30与衬底10表面的凸起图形11之间具有空隙区31,可阻隔位错缺陷向上扩展延伸,所述未掺杂半极性面氮化镓层30的总厚度3-6μm,由氮气氛围或氢气氛围或氢氮混合氛围制备的氮化镓构成;
一半极性面氮化镓N型层40,其制作在未掺杂半极性面氮化镓层30上:
一半极性面N型铟镓氮插入层50,其制作在半极性面氮化镓N型层40上:
一半极性面铟镓氮/氮化镓多量子阱活性发光层60,其制作在半极性面N型铟镓氮插入层50上;
一半极性面P型铝镓氮电子阻挡层70,其制作在半极性面铟镓氮/氮化镓多量子阱活性发光层60上;
一半极性面P型氮化镓层80,其制作在半极性面P型铝镓氮电子阻挡层70上。
其中未掺杂半极性面氮化镓层30、半极性面氮化镓N型层40、半极性面N型铟镓氮插入层50、半极性面铟镓氮/氮化镓多量子阱活性发光层60、半极性面P型铝镓氮电子阻挡层70和半极性面P型氮化镓层80的外延表面取向均为(11-22)面。
请参阅图2,并结合参阅图1,本发明提供一种半极性面氮化镓基发光二极管的制备方法,包括以下步骤:
步骤1:在一衬底10上制备出周期排列的凸起图形11,所述衬底10采用取向为(10-10)m面的蓝宝石衬底,衬底10表面的凸起图形11为半球或圆台形,是由在衬底10上涂覆光刻胶、光刻(曝光和显影)、等离子体干法刻蚀和清洗等一系列步骤制成的。
步骤2:将具有凸起图形11的衬底10清洗后放入外延设备炉(如金属有机物化学气相沉积系统,MOCVD)的反应室中进行氮化处理。在600-800℃的氢气氛围下通入氨气,衬底10氮化处理时间30-600秒,反应室内的压力为50-760Torr。
步骤3:在氮化处理后的衬底10上沉积一层氮化铝缓冲层20,厚度为0.03-0.30μm,该缓冲层的生长在衬底凸起图形11的间隙中进行,生长温度为1000-1200℃,生长压力为50-760Torr,生长速率为0.1-2μm/h。衬底10的氮化处理结合缓冲层20的高温生长技术,利于生长单一取向的半极性(11-22)面氮化镓30,提高外延层晶体质量;
步骤4:在氮化铝缓冲层20上沉积未掺杂半极性面氮化镓层30,总厚度为3-6μm,沉积未掺杂半极性面氮化镓层30时,在衬底10各凸起图形11的顶部和未掺杂半极性面氮化镓层30之间出现空隙区31,可阻挡在界面处形成的位错缺陷向上延伸,所述未掺杂半极性面氮化镓层30采用“两步法”生长,先在氮气氛围下生长0.02-1μm厚度,再调整到氢气氛围下生长3-5μm厚度,生长温度均为900-1200℃,生长压力均为50-760Torr,以控制未掺杂半极性面氮化镓层30的生长取向为半极性(11-22)面方向;
步骤5:在未掺杂半极性面氮化镓层30上沉积氮化镓N型层40,厚度为2-4μm;该氮化镓N型层40的生长温度900-1200℃,生长压力为50-760Torr,电子浓度为1E18-3E19cm-3,生长速率为3μm/h。
步骤6:在氮化镓N型层40上沉积N型铟镓氮插入层50,所述N型铟镓氮(InxGa1-xN)插入层50的铟组分含量为x=0.01-0.1,厚度为5-200nm,生长温度为700-850℃,生长压力为50-760Torr,电子浓度为1E17-8E18cm-3
步骤7:在N型铟镓氮插入层50上沉积3-10个周期的氮化镓/铟镓氮多量子阱结构活性发光层60,其中氮化镓是势垒层,起限制电子的作用,铟镓氮是势阱层,该势阱层为二极管的发光区,根据LED波长要求,调节铟组分含量可发出不同波长或颜色的光,所述氮化镓/铟镓氮多量子阱活性发光层60由氮化镓势垒层和铟镓氮(InyGa1-yN)势阱层构成,周期数为3-10,势垒层厚度为2-50nm,生长温度为800-1000℃,势阱层厚度为2-5nm,铟组分含量为y=0.05-0.6,生长温度为650-850℃,生长压力为50-760Torr,调节势阱层中铟组分含量可发出不同波长或颜色的光;
步骤8:在多量子阱发光层60上沉积P型铝镓氮电子阻挡层70,厚度为2-50nm;该P型铝镓氮(AlzGa1-zN)电子阻挡层70中铝组分含量为z=0.08-0.3空穴浓度控制为5E17-5E18cm-3,生长温度为850-1200℃,生长压力为50-760Torr。
步骤9:在电子阻挡层70上沉积氮化镓P型层80,厚度为0.1-0.5μm,空穴浓度控制为1E17-1E19cm-3,生长温度为900-1100℃,生长压力为50-760Torr,完成制备。
请参阅图1,并结合参阅图3和图4,本发明发光二极管的衬底采用表面具有独特凸起图形11的m面蓝宝石衬底10.该凸凹结构能显著增加辐射光子的逸出率,降低反射损耗,提高器件的光提取效率;通过控制生长条件,该凸凹图形更能有效抑制源于衬底外延层界面的位错生成,提高外延层的晶体质量,进而提高器件的发光性能。
本发明针对在m面蓝宝石图形衬底上制备半极性面发光二极管,采用了特色的衬底低温氮化处理结合氮化铝缓冲层高温生长的技术,能有效抑制衬底10表面氮化过度,保证沿(11-22)面单一取向生长,改善外延层晶体质量。
请参阅图5,并结合参阅图1,图3和图4,本发明发光二极管引入“两步法”生长的未掺杂半极性氮化镓层30结构,为后续生长高结晶质量、界面陡峭的氮化镓/铟镓氮多量子阱活性发光层60提供了表面形貌平整和高质量的生长模板;采用新型的N型低铟组分铟镓氮插入层50,则能在很大程度上消除多量子阱60内的失配应力,削弱压电极化效应,同时也能大为改善电流扩展,提高器件发光效率。
本发明制备方法所采用的设备包括但不局限于金属有机物化学气相沉积系统、分子束外延系统和气相外延系统,优先采用金属有机物化学气相沉积系统。本发明所提供半极性(11-22)面氮化镓基发光二极管具有取光效率高、发光颜色多样、偏振度高、实用性强等优点,在照明和显示领域具有广阔的应用前景。本发明所提供制备方法可显著提高半极性(11-22)面氮化镓基发光二极管的制备质量和工艺稳定性,进而提升该发光二极管的发光性能和生产良率。以上所述仅用来阐明说明本发明,非据此以对本发明的实施方法做出任何形式的限制,故凡是以本发明所述形状,结构,特征及基本思想为基础,而对本发明做出任何形式的修饰或修改,都应归属本发明意图保护的知识产权范畴。

Claims (9)

1.一种半极性面氮化镓基发光二极管,包括:
一衬底,其表面具有周期排列的凸起图形;
一氮化铝缓冲层,其沉积在凸起图形之间的间隔区内,该氮化铝缓冲层的厚度小于衬底表面的凸起图形的高度;
一未掺杂半极性面氮化镓层,其制作在氮化铝缓冲层的上面,该未掺杂半极性面氮化镓层与衬底表面的凸起图形之间具有空隙区,可阻隔位错缺陷向上延伸;
一半极性面氮化镓N型层,其制作在未掺杂半极性面氮化镓层上;
一半极性面N型铟镓氮插入层,其制作在半极性面氮化镓N型层上;
一半极性面铟镓氮/氮化镓多量子阱活性发光层,其制作在半极性面N型铟镓氮插入层上;
一半极性面P型铝镓氮电子阻挡层,其制作在半极性面铟镓氮/氮化镓多量子阱活性发光层上;
一半极性面P型氮化镓层,其制作在半极性面P型铝镓氮电子阻挡层上。
2.根据权利要求1所述的半极性面氮化镓基发光二极管,其中衬底是取向(10-10)面的m面蓝宝石衬底,其表面周期性排列的凸起图形的底部直径为2-4μm,高度为1-2μm,各凸起图形之间的间隔均为1-3μm。
3.根据权利要求1所述的半极性面氮化镓基发光二极管,其中未掺杂半极性面氮化镓层、半极性面氮化镓N型层、半极性面N型铟镓氮插入层、半极性面铟镓氮/氮化镓多量子阱活性发光层、半极性面P型铝镓氮电子阻挡层和半极性面P型氮化镓层的外延表面取向均为(11-22)面。
4.根据权利要求1所述的半极性面氮化镓基发光二极管,其中未掺杂半极性面氮化镓层的总厚度为3-6μm,由氮气氛围或氢气氛围或氢氮混合氛围制备的氮化镓构成。
5.一种半极性面氮化镓基发光二极管的制备方法,包括以下步骤:
步骤1:在一衬底上制备出周期性排列的凸起图形;
步骤2:将具有周期性凸起图形的衬底清洗后放入反应室中进行氮化处理;
步骤3:在氮化处理后的衬底上沉积一层氮化铝缓冲层,厚度为0.03-0.30μm;
步骤4:在氮化铝缓冲层上沉积未掺杂半极性面氮化镓层,总厚度为3-6μm,沉积未掺杂半极性面氮化镓层时,在衬底各凸起图形的顶部和未掺杂半极性面氮化镓层之间出现空隙区,可阻挡在界面处形成的位错缺陷向上延伸,所述未掺杂半极性面氮化镓层采用“两步法”生长,先在氮气氛围下生长0.02-1μm厚度,再调整到氢气氛围下生长3-5μm厚度,生长温度均为900-1200℃,生长压力均为50-760Torr,以控制未掺杂半极性面氮化镓层的生长取向为半极性(11-22)面方向;
步骤5:在未掺杂半极性面氮化镓层上沉积氮化镓N型层,厚度为2-4μm;
步骤6:在氮化镓N型层上沉积N型铟镓氮插入层;
步骤7:在N型铟镓氮插入层上沉积3-10个周期的氮化镓/铟镓氮多量子阱结构活性发光层,其中氮化镓是势垒层,起限制电子的作用,铟镓氮是势阱层,该势阱层为二极管的发光区,根据LED波长要求,调节铟组分含量可发出不同波长或颜色的光;
步骤8:在多量子阱发光层上沉积P型铝镓氮电子阻挡层,厚度为2-50nm,电子阻挡层中铝组分含量为z=0.08-0.3;
步骤9:在电子阻挡层上沉积氮化镓P型层,厚度为0.1-0.5μm,完成制备。
6.根据权利要求5所述的半极性面氮化镓基发光二极管的制备方法,其中衬底采用取向为(10-10)m面蓝宝石衬底。
7.根据权利要求5所述的半极性面氮化镓基发光二极管的制备方法,其中所述衬底的氮化处理在H2和NH3氛围下进行,氮化处理温度为500-800℃,氮化时间为30-300秒。
8.根据权利要求5所述的半极性面氮化镓基发光二极管的制备方法,其中N型铟镓氮插入层的铟组分含量为x=0.01-0.1,厚度为5-200nm,生长温度为700-850℃,生长压力为50-760Torr,电子浓度为1E17-8E18cm-3
9.根据权利要求5所述的半极性面氮化镓基发光二极管的制备方法,其中氮化镓/铟镓氮多量子阱活性发光层由氮化镓势垒层和铟镓氮势阱层构成,周期数为3-10,势垒层厚度为2-50nm,生长温度为800-1000℃,势阱层厚度为2-5nm,铟组分含量为y=0.05-0.6,生长温度为650-850℃,生长压力为50-760Torr,调节势阱层中铟组分含量可发出不同波长或颜色的光。
CN201410147977.6A 2014-04-14 2014-04-14 半极性面氮化镓基发光二极管及其制备方法 Expired - Fee Related CN104112803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410147977.6A CN104112803B (zh) 2014-04-14 2014-04-14 半极性面氮化镓基发光二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410147977.6A CN104112803B (zh) 2014-04-14 2014-04-14 半极性面氮化镓基发光二极管及其制备方法

Publications (2)

Publication Number Publication Date
CN104112803A CN104112803A (zh) 2014-10-22
CN104112803B true CN104112803B (zh) 2016-08-17

Family

ID=51709523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410147977.6A Expired - Fee Related CN104112803B (zh) 2014-04-14 2014-04-14 半极性面氮化镓基发光二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN104112803B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015109761B4 (de) 2015-06-18 2022-01-27 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Nitrid-Halbleiterbauelements und Nitrid-Halbleiterbauelement
CN105552188B (zh) * 2015-12-16 2018-11-30 清华大学 半导体结构及其制造方法
WO2017124879A1 (zh) * 2016-01-18 2017-07-27 厦门市三安光电科技有限公司 一种半极性led结构及其制备方法
JP6889243B2 (ja) * 2017-02-28 2021-06-18 京セラ株式会社 屋外用画像照射装置およびこれを備える移動体
CN106920872A (zh) * 2017-03-15 2017-07-04 海迪科(南通)光电科技有限公司 一种新型偏振发光二极管
CN107546302B (zh) * 2017-08-21 2019-03-15 厦门乾照光电股份有限公司 一种led外延结构及其制作方法
CN107833944B (zh) * 2017-11-13 2019-06-14 湘能华磊光电股份有限公司 一种led外延层结构及其生长方法
WO2019113814A1 (zh) * 2017-12-13 2019-06-20 深圳前海小有技术有限公司 衬底及衬底结构以及制作工艺
CN109346580B (zh) * 2018-08-28 2020-03-27 华灿光电(浙江)有限公司 一种发光二极管外延片的制造方法
CN110211865B (zh) * 2019-05-15 2020-12-15 中国电子科技集团公司第五十五研究所 一种降低氮化镓高电子迁移率场效应管界面热阻的外延生长方法
CN110504301A (zh) * 2019-09-09 2019-11-26 南方科技大学 一种iii族氮化物晶体管外延结构和晶体管器件
CN111180564A (zh) * 2020-02-14 2020-05-19 福建兆元光电有限公司 高光效绿光led外延片及制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009339A (zh) * 2006-01-24 2007-08-01 新世纪光电股份有限公司 氮化镓系半导体的成长方法
CN101138091A (zh) * 2005-03-10 2008-03-05 加利福尼亚大学董事会 用于生长平坦半极性氮化镓的技术
CN101217175A (zh) * 2008-01-03 2008-07-09 南京大学 具有宽谱光发射功能的半导体发光器件的结构及制备方法
CN101281940A (zh) * 2007-04-04 2008-10-08 华南师范大学 一种GaN基量子阱LED外延片及制备方法
CN102842660A (zh) * 2012-08-17 2012-12-26 马鞍山圆融光电科技有限公司 一种氮化镓基发光二极管外延片结构及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101138091A (zh) * 2005-03-10 2008-03-05 加利福尼亚大学董事会 用于生长平坦半极性氮化镓的技术
CN101009339A (zh) * 2006-01-24 2007-08-01 新世纪光电股份有限公司 氮化镓系半导体的成长方法
CN101281940A (zh) * 2007-04-04 2008-10-08 华南师范大学 一种GaN基量子阱LED外延片及制备方法
CN101217175A (zh) * 2008-01-03 2008-07-09 南京大学 具有宽谱光发射功能的半导体发光器件的结构及制备方法
CN102842660A (zh) * 2012-08-17 2012-12-26 马鞍山圆融光电科技有限公司 一种氮化镓基发光二极管外延片结构及其制备方法

Also Published As

Publication number Publication date
CN104112803A (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
CN104112803B (zh) 半极性面氮化镓基发光二极管及其制备方法
CN101488550B (zh) 高In组分多InGaN/GaN量子阱结构的LED的制造方法
CN100532638C (zh) 生长非极性面GaN薄膜材料的方法及其用途
CN115458650B (zh) 发光二极管外延片及其制备方法、发光二极管
CN103730552B (zh) 一种提高led发光效率的外延生长方法
US9978908B2 (en) Non-polar blue light LED epitaxial wafer based on LAO substrate and preparation method thereof
WO2018040124A1 (zh) 生长在r面蓝宝石衬底上的非极性LED外延片的制备方法及应用
CN107170862B (zh) 一种非极性面量子点发光二极管及其制备方法
TWI766403B (zh) 一種微發光二極體外延結構及其製備方法
US11621371B2 (en) Epitaxial structure, preparation method thereof, and LED
CN109378373B (zh) 基于h-BN电子阻挡层的高效深紫外发光二极管及制备方法
CN104051586A (zh) 一种GaN基发光二极管外延结构及其制备方法
CN103811601A (zh) 一种以蓝宝石衬底为基板的GaN基LED多阶缓冲层生长方法
Wang et al. Metal–organic–vapor phase epitaxy of InGaN quantum dots and their applications in light-emitting diodes
CN115832131A (zh) 深紫外发光二极管外延片及其制备方法、深紫外发光二极管
CN103227251A (zh) 一种GaN基发光二极管外延结构的生长方法
CN107180899A (zh) 一种深紫外led
CN103824917A (zh) 一种led制备方法、led和芯片
CN105590839A (zh) 氮化物底层、发光二极管及底层制备方法
CN103441197B (zh) 一种GaN基发光二极管外延片及其制作方法
CN117410402B (zh) 一种发光二极管外延片及其制备方法、Micro-LED芯片
CN103824916A (zh) 一种提高氮化镓晶体质量的复合成核层的生长方法
CN204167348U (zh) 一种具有高质量InGaN/GaN有源层的LED外延结构
CN107564999B (zh) 一种提升发光效率的led外延生长方法
CN105098008A (zh) 一种含三元超晶格的GaN基LED外延结构及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20170414