CN101325218A - 场效应晶体管、包括场效应晶体管的逻辑电路及制造方法 - Google Patents

场效应晶体管、包括场效应晶体管的逻辑电路及制造方法 Download PDF

Info

Publication number
CN101325218A
CN101325218A CNA200810110124XA CN200810110124A CN101325218A CN 101325218 A CN101325218 A CN 101325218A CN A200810110124X A CNA200810110124X A CN A200810110124XA CN 200810110124 A CN200810110124 A CN 200810110124A CN 101325218 A CN101325218 A CN 101325218A
Authority
CN
China
Prior art keywords
effect transistor
field
region
gate electrode
channel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200810110124XA
Other languages
English (en)
Other versions
CN101325218B (zh
Inventor
郑现钟
郑兰珠
徐顺爱
金东彻
李章元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN101325218A publication Critical patent/CN101325218A/zh
Application granted granted Critical
Publication of CN101325218B publication Critical patent/CN101325218B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/18Selenium or tellurium only, apart from doping materials or other impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • H01L29/2203Cd X compounds being one element of the 6th group of the Periodic Table 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7606Transistor-like structures, e.g. hot electron transistor [HET]; metal base transistor [MBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78681Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供一种场效应晶体管、包括场效应晶体管的逻辑电路及制造方法。所述场效应晶体管可包括:双极性层,包括源区、漏区以及源区和漏区之间的沟道区,其中,源区、漏区以及沟道区以单片结构形成;栅电极,位于沟道区上;绝缘层,隔离栅电极与双极性层,其中,在与第一方向相交的第二方向上,源区和漏区的宽度大于沟道区的宽度,源区和漏区在第一方向上彼此连接。

Description

场效应晶体管、包括场效应晶体管的逻辑电路及制造方法
技术领域
示例实施例涉及一种场效应晶体管、一种包括该场效应晶体管的逻辑电路及其制造方法。其他示例实施例涉及一种可根据具有双极性特性的层上的栅的位置作为p型或n型晶体管操作的场效应晶体管、一种包括该场效应晶体管的逻辑电路及其制造方法。
背景技术
形成在传统硅基底上的场效应晶体管和互补金属氧化物半导体(CMOS)逻辑电路由于硅的降低的载流子迁移率会具有相对低的操作速度。已经研究了具有提高的载流子迁移率的硅的替代材料,例如,在传统的杂质掺杂中,使用导电材料形成电极区和沟道区的技术。
可使用光刻技术将例如石墨烯(graphene)的材料图案化为具有源区、漏区和沟道区的单片(monolithic)材料层。然而,单片材料层具有双极性特性,因此单片材料层在场效应晶体管和逻辑电路中使用时可能存在困难。
发明内容
示例实施例提供一种将具有双极性特性的材料用于场效应晶体管和逻辑电路的技术以及该场效应晶体管和逻辑电路的制造方法。根据示例实施例,所述场效应晶体管可包括:双极性层,包括源区、漏区以及源区和漏区之间的沟道区,其中,源区、漏区以及沟道区以单片结构形成;栅电极,位于沟道区上;绝缘层,隔离栅电极与双极性层,其中,在与第一方向相交的第二方向上,源区和漏区的宽度大于沟道区的宽度,源区和漏区在第一方向上彼此连接。
根据示例实施例,所述制造场效应晶体管的方法可包括:在单片结构中形成包括源区、漏区以及源区和漏区之间的沟道区的双极性层;在沟道区上形成栅电极;形成隔离栅电极与双极性层的绝缘层,其中,在与第一方向相交的第二方向上,源区和漏区的宽度大于沟道区的宽度,源区和漏区在第一方向上彼此连接。
栅电极可靠近源区形成,使得所述场效应晶体管为n型操作。栅电极可靠近漏区形成,使得所述场效应晶体管为p型操作。沟道区可具有大约5nm至大约100nm的宽度。
双极性层可以为单层,并且可由从氮化硼、碲化镉、硒化铌构成的组中选择的材料形成。双极性层可以是由铋锶钙铜氧化物形成的半层。双极性层可包括大约1个至大约9个石墨烯层。
栅电极可包括在沟道区上分别靠近源区和漏区形成的第一栅电极和第二栅电极,其中,当电压被选择性地施加到第一栅电极或第二栅电极时,所述场效应晶体管为n型或p型。所述场效应晶体管还可包括基底,其中,绝缘层形成在基底上,并且双极性层形成在绝缘层上。所述场效应晶体管还可包括基底,其中,栅电极形成在基底和绝缘层之间。
根据示例实施例,逻辑电路可包括至少一个p型晶体管和至少一个n型晶体管的逻辑电路,其中,所述至少一个p型晶体管和所述至少一个n型晶体管的每个是根据示例实施例的场效应晶体管。根据示例实施例,制造逻辑电路的方法可包括:根据示例实施例的制造场效应晶体管的方法制作至少一个p型晶体管和至少一个n型晶体管。
附图说明
通过下面结合附图进行的详细描述,将会更加清楚地理解示例实施例。图1至图10B表示这里描述的非限制示例实施例。
图1和图2分别是根据示例实施例的包括双极性材料的场效应晶体管的截面图和平面图;
图3A至图3D是示出根据示例实施例的图1和图2的双极性场效应晶体管的操作的示意性带隙图;
图4和图5分别是根据示例实施例的包括双极性材料的场效应晶体管的截面图和平面图;
图6和图7分别是根据示例实施例的包括双极性材料的场效应晶体管的截面图和平面图;
图8A是根据示例性实施例的NOT逻辑门的平面图;
图8B是图8A的NOT逻辑门的等效电路;
图9A是根据示例实施例的NAND逻辑门的平面图;
图9B是图9A的NAND逻辑门的等效电路;
图10A是根据示例实施例的NOR逻辑门的平面图;
图10B是图10A的NOR逻辑门的等效电路。
应该注意,这些附图是为了示出在特定示例实施例中使用的方法、结构和/或材料的一般特性,并补充下面提供的书面描述。然而,这些附图不是按比例的,并且可能不能精确地反映任意给定的实施例的精确的结构或性能特性,并且不应被解释为定义或限定示例实施例包括的值或属性的范围。例如,为了清楚可能减小或夸大分子、层、区域和/或结构元件的相对厚度和位置。相似或相同的标号的使用意在表示存在相似或相同的元件或特征。
具体实施方式
现在将参照附图更充分地描述根据示例实施例的场效应晶体管和逻辑电路,示例性实施例在附图中示出。然而,可以以许多不同的形式实施示例性实施例,并且不应被解释为局限于在此阐述的示例性实施例。相反,提供这些实施例从而本公开将会彻底和完整,并将完全地将示例实施例的范围传达给本领域的技术人员。在附图中,为了清楚可能夸大了层和区域的厚度。相同的标号代表相同的部件。
应该理解,当元件或层被称作在另一元件或层“之上”、“连接”或“结合”到另一元件或层时,该元件或层可能直接在所述另一元件或层之上、连接或结合到所述另一元件或层,或者可能存在中间元件或层。相反,当元件被称作“直接”在另一元件或层“之上”、“直接连接”或“直接结合”到另一元件或层时,不存在中间元件或层。相同的标号始终代表相同的元件。在这里使用的术语“和/或”包括一个或多个相关列出的项的任何和全部组合。
应该理解,尽管在这里可使用术语第一、第二、第三等来描述不同的元件、组件、区域、层和/或部分,但是这些元件、组件、区域、层和/或部分不应被这些术语所限制。这些术语仅用于区分一个元件、组件、区域、层或部分与另一元件、组件、区域、层或部分。因此,在不脱离示例实施例的教导的情况下,下面讨论的第一元件、组件、区域、层或部分可以被称为第二元件、组件、区域、层或部分。
在这里使用空间相对术语(例如“在...之下”、“在...下方”、“下面的”、“在...之上”、“上面的”等)来容易地描述在附图中示出的一个元件或特征与另一元件或特征的关系。应该理解,空间相对术语是为了包括除了附图中描述的方位之外的在使用或运行中的装置的不同方位。例如,如果附图中的装置被翻转,则被描述为在其他部件或特征“之下”或“下方”的部件将随后被定位为在所述其他部件或特征“之上”。因此,示例性术语“在...下方”可包括上面和下面两种方位。可将装置朝向另外的方位(旋转90度或在其他方位),并相应地解释在这里使用的关于空间相对的描述符。
在这里使用的术语仅用于描述特定实施例,而不是为了限制示例性实施例。这里使用的单数形式也包括复数形式,除非上下文另有清楚的指示。还应该理解,当在本说明中使用术语“包括”时,其表示陈述的特征、整体、步骤、操作、元件和/或组件的存在,但不排除一个或多个其他特征、整体、步骤、操作、元件、组件和/或它们的组的存在或添加。
参照作为理想化的实施例(和中间结构)的示意性示意图的截面图,在这里描述示例性实施例。同样地,预计会出现例如由制造技术和/或公差引起的图示的形状的变化。因此,示例实施例不应被解释为限于这里示出的区域的特定形状,而将包括例如由制造产生的形状的偏差。例如,示出为矩形的注入区域在其边缘通常具有圆形或弯曲特性和/或注入浓度的梯度,而不是从注入区域到非注入区域的二元(binary)改变。同样地,通过注入形成的埋区可能导致在埋区和通过其发生注入的面之间的区域中的一些注入。因此,在附图中示出的区域实际上是示意性的,所述区域的形状不是为了示出装置的区域的实际形状,也不是为了限制示例实施例的范围。
除非另有定义,否则这里使用的所有术语(包括技术和科学术语)具有与示例性实施例所属领域的普通技术人员通常理解的含义相同的含义。还应该理解,除非这里明确定义,否则术语(诸如在常用词典中定义的)应被解释为具有与所述术语在相关领域的上下文中的含义一致的含义,而不应被理想化或过于正式地理解。
图1和图2分别是根据示例实施例的包括双极性材料的场效应晶体管100的截面图和平面图。参照图1和图2,场效应晶体管100可包括形成在基底110上的双极性层120以及形成在双极性层120上的栅电极130。基底110可以是绝缘基底。此外,基底110可以是导电基底,并且还可在基底110上形成有第一绝缘层112。
双极性层120可包括:源区121、漏区122以及形成在源区121和漏区122之间的沟道区123。源区121、漏区122和沟道区123可以以单片结构形成。双极性层120可由具有双极性特性的材料形成,例如,由石墨烯、氮化硼、碲化镉、硒化铌形成的单层或由铋锶钙铜氧化物(bismuth strontiumcalcium copper oxide)形成的半层。当双极性层120由石墨烯形成时,双极性层120可包括单个石墨烯层至大约9个石墨烯层。
源区121和漏区122在与第一方向垂直相交的第二方向上具有大约100nm至大约200nm的宽度W1,其中,第一方向为源区121与漏区122彼此连接的方向,沟道区123在第二方向上具有大约5nm至大约100nm的宽度W2。当双极性层120的宽度越小时,双极性层120可具有越大的带隙。沟道区123在第一方向上的宽度可大于沟道区123在第二方向上的宽度W2。例如,沟道区123在第一方向上的宽度可形成在电荷的迁移具有弹道(ballistic)特性的区域中。
第二绝缘层132可形成在栅电极130之下,第二绝缘层132和栅电极130可由半导体产业中的传统材料形成。栅电极130可形成在沟道区123之上的源区121侧,这使得场效应晶体管100作为n型晶体管操作。
图3A至图3D是示出根据示例实施例的双极性场效应晶体管100的操作的示意性带隙图。双极性层120可由石墨烯形成。相同的标号用于实质上表示图1和图2所示的相同元件,因此将不再重复详细的描述。
参照图3A,地电压可以被施加到源区121、漏区122和栅电极130的每个。相对宽的双极性层120的源区121和漏区122中的带隙相对低,带隙在相对窄的沟道区123中可能较大。带隙的大小可根据相应的区域的宽度和双极性材料而变化。
源区121和沟道区123之间的势垒以及漏区122和沟道区123之间的势垒可分别在大约0.1eV至大约0.5eV的范围内。可靠近源区121设置栅电极130。双极性层120可在沟道区123中表现出弹道特性,例如,在沟道区123中几乎没有电势改变。参照图3B,当预定的或给定的负电压被施加到源区121时,源区121的电势可增大,因此,源区121和沟道区123之间的势垒可降低。
参照图3C,当正电压被施加到栅电极130时,可能在沟道区123中发生能带弯曲(band-bending)并且源区121中的电子会移动到沟道,例如,当场效应晶体管100导通时。参照图3D,当负电压被施加到栅电极130时,在沟道区123中可能发生能带弯曲,因此因为源区121和沟道区123之间的势垒可能更高,所以电子不会从源区121移动到沟道区123。在图3C和图3D中,漏区122和沟道区123之间的势垒的高度可被改变,因此可抑制空穴从漏区122到沟道区123的运动。相应地,图1和图2中的场效应晶体管100可作为n型晶体管操作。
图4和图5分别是根据示例实施例的包括双极性材料的场效应晶体管200的截面图和平面图。参照图4和图5,场效应晶体管200可包括基底210上的栅电极230和形成在栅电极230上的双极性层220。基底210可以是绝缘基底或导电基底。还可以在基底210和栅电极230之间形成有第一绝缘层(未示出)。
双极性层220可包括:源区221、漏区222以及形成在源区221和漏区222之间的沟道区223。源区221、漏区222和沟道区223可以以单片结构形成。双极性层220可以是由具有双极性特性的材料(例如,由石墨烯、氮化硼、碲化镉、硒化铌)形成的单层或由铋锶钙铜氧化物形成的半层。
源区221和漏区222在与第一方向垂直相交的第二方向上具有大约100nm至大约200nm的宽度W1,其中,源区221与漏区222在第一方向上彼此连接,沟道区223在第二方向上可以具有大约5nm值至大约20nm的宽度W2。当双极性层220的宽度越小时,双极性层220可具有越大的带隙。沟道区223在第一方向上的宽度可为大约1μm,并可大于沟道区223在第二方向上的宽度W2。例如,沟道区223在第一方向上的宽度可形成在电荷的迁移具有弹道特性的范围中。
第二绝缘层232可形成在栅电极230之上,第二绝缘层232和栅电极230可由半导体产业中的传统材料形成。栅电极230可形成在沟道区223之下的漏区222侧。在场效应晶体管200中,当负电压被施加到栅电极230时,因为漏区222和沟道区223之间的势垒可降低,因此作为载流子的空穴可从漏区222移动到沟道区223,当正电压被施加到栅电极230时,因为漏区222和沟道区223之间的势垒可增大,因此电荷的迁移可被停止。相应地,场效应晶体管200可作为p型晶体管操作。
图6和图7分别是根据示例实施例的包括双极性材料的场效应晶体管300的截面图和平面图。与前面的实施例中相似的标号被用于指示实质上相同的元件,因此将不再重复详细的描述。参照图6和图7,场效应晶体管300可包括在基底310上形成的双极性层320和形成在双极性层320上的第一栅电极331和第二栅电极332。基底310可以是绝缘基底或导电基底。还可以在基底310上形成第一绝缘层312。
双极性层320可包括:源区321、漏区322以及形成在源区321和漏区322之间的沟道区323。源区321、漏区322和沟道区323可以以单片结构形成。双极性层320可由具有双极性特性的材料形成。
源区321和漏区322在与第一方向垂直相交的第二方向上具有大约100nm至大约200nm的宽度w1,其中,源区321与漏区322在第一方向上彼此连接,沟道区323在第二方向上具有大约5nm至大约20nm的宽度W2。第二绝缘层333可形成在第一栅电极331之下,第三绝缘层334可形成在第二栅电极332之下,第二绝缘层333和第三绝缘层334以及第一栅电极331和第二栅电极332可由半导体产业中的传统材料形成。
可在沟道区323之上靠近源区321设置第一栅电极331,可在沟道区323之上靠近漏区322设置第二栅电极332。当电压被施加到第一栅电极331时,类似于图1和图2的场效应晶体管100,场效应晶体管300可作为n型晶体管操作;当电压被施加到第二栅电极332时,类似于图4和图5的场效应晶体管200,场效应晶体管300可作为p型晶体管操作。在根据本发明示例性实施例的场效应晶体管中,可通过将基底上的双极性材料图案化后将栅电极图案化来容易地形成逻辑门。
图8A是根据示例性实施例的NOT(非)逻辑门400的平面图,图8B是图8A的NOT逻辑门的等效电路。为了方便解释,在图8A中没有示出绝缘层。参照图8A,源区421、公共区422、漏区423、源区421和公共区422之间的第一沟道区424、公共区422和漏区423之间的第二沟道区425可以以单片结构形成在绝缘基底410中。第一栅电极431和第二栅电极432可靠近公共区422分别形成在第一沟道区424和第二沟道区425中。因此,形成在第一沟道区424中的第一晶体管可以是p型晶体管(图8B中的p-Tr),形成在第二沟道区425中的第二晶体管可以是n型晶体管(图B8中的n-Tr)。图8A的门结构与图8B中的NOT逻辑门相同。
图9A是根据示例实施例的NAND(与非)逻辑门500的平面图,图9B是图9A的NAND逻辑门的等效电路。为了方便解释,在图9A中未包括绝缘层。参照图9A,共源区521、第一公共区522、第二公共区523、漏区524以及第一沟道区525至第四沟道区528可形成在绝缘基底510上。第一栅电极531和第二栅电极532可靠近第一公共区522分别形成在第一沟道区525和第二沟道区526中。第三栅电极533可靠近第一公共区522形成在第三沟道区527中,第四栅电极534可靠近第二公共区523形成在第四沟道区528中。因此,形成在第一沟道区525和第二沟道区526中的第一晶体管和第二晶体管可以是p型晶体管(图9B中的p1-Tr和p2-Tr),形成在第三沟道区527和第四沟道区528中的第三晶体管和第四晶体管可以是n型晶体管(图9B中的n1-Tr和n2-Tr)。图9A的门结构与图9B中的NAND逻辑门相同。
图10A是根据示例实施例的NOR(或非)逻辑门600的平面图,图10B是图10A的NOR逻辑门的等效电路。参照图10A,源区621、第一公共区622、第二公共区623、共漏区624以及第一沟道区625至第四沟道区628可形成在绝缘基底610上。第一栅电极631可靠近第一公共区622形成在第一沟道区625中,第二栅电极632可靠近第二公共区623形成在第二沟道区626中。第三栅电极633和第四栅电极634可靠近第二公共区623分别形成在第三沟道区627和第四沟道区628中。因此,形成在第一沟道区625和第二沟道区626中的第一晶体管和第二晶体管可以分别是p型晶体管(图10B中的p1-Tr和p2-Tr)。形成在第三沟道区627和第四沟道区628中的第三晶体管和第四晶体管可分别在共漏区624的相对侧靠近第二公共区623被形成,并且可以是n型晶体管(图10B中的n1-Tr和n2-Tr)。图10A的门结构与图10B中的NOR逻辑门相同。
根据示例实施例,可通过在靠近源区或漏区的具有双极性特性的沟道区上形成栅电极来实现具有n型或p型单极性特性的场效应晶体管。在示例实施例的场效应晶体管中,可通过将基底上的具有双极性特性的单个材料层图案化来容易地形成源区、漏区和沟道区。此外,可通过使用图案化处理来形成具有至少一个p型晶体管和n型晶体管的逻辑电路。
尽管已经参照其示例实施例具体显示和描述了示例实施例,但是本领域的普通技术人员应该理解,在不脱离权利要求的精神和范围的情况下,可以进行形式和细节上的各种改变。

Claims (25)

1、一种场效应晶体管,包括:
双极性层,包括源区、漏区以及源区和漏区之间的沟道区,其中,源区、漏区以及沟道区以单片结构形成;
栅电极,位于沟道区上;
绝缘层,隔离栅电极与双极性层,
其中,在与第一方向相交的第二方向上,源区和漏区的宽度大于沟道区的宽度,源区和漏区在第一方向上彼此连接。
2、如权利要求1所述的场效应晶体管,其中,栅电极靠近源区形成,使得所述场效应晶体管为n型。
3、如权利要求1所述的场效应晶体管,其中,栅电极靠近漏区形成,使得所述场效应晶体管为p型。
4、如权利要求1所述的场效应晶体管,其中,沟道区具有5nm至100nm的宽度。
5、如权利要求1所述的场效应晶体管,其中,双极性层为单层。
6、如权利要求1所述的场效应晶体管,其中,双极性层由从氮化硼、碲化镉、硒化铌构成的组中选择的材料形成。
7、如权利要求1所述的场效应晶体管,其中,双极性层是由铋锶钙铜氧化物形成的半层。
8、如权利要求1所述的场效应晶体管,其中,双极性层包括1至9个石墨烯层。
9、如权利要求1所述的场效应晶体管,其中,栅电极包括在沟道区上分别靠近源区和漏区形成的第一栅电极和第二栅电极,其中,当电压被选择性地施加到第一栅电极或第二栅电极时,所述场效应晶体管为n型或p型。
10、如权利要求1所述的场效应晶体管,还包括:
基底,其中,绝缘层形成在基底上,并且双极性层形成在绝缘层上。
11、如权利要求1所述的场效应晶体管,还包括:
基底,其中,栅电极形成在基底和绝缘层之间。
12、如权利要求1所述的场效应晶体管,其中,第二方向与第一方向垂直相交。
13、一种逻辑电路,包括至少一个p型晶体管和至少一个n型晶体管,其中,所述至少一个p型晶体管和所述至少一个n型晶体管中的每个是如权利要求1所述的场效应晶体管。
14、一种制造场效应晶体管的方法,包括:
以单片结构形成包括源区、漏区以及源区和漏区之间的沟道区的双极性层;
在沟道区上形成栅电极;
形成隔离栅电极与双极性层的绝缘层,
其中,在与第一方向相交的第二方向上,源区和漏区的宽度大于沟道区的宽度,源区和漏区在第一方向上彼此连接。
15、如权利要求14所述的方法,其中,靠近源区形成栅电极,使得所述场效应晶体管为n型。
16、如权利要求14所述的方法,其中,靠近漏区形成栅电极,使得所述场效应晶体管为p型。
17、如权利要求14所述的方法,其中,沟道区具有5nm至100nm的宽度。
18、如权利要求14所述的方法,其中,双极性层为单层。
19、如权利要求14所述的方法,其中,双极性层由从氮化硼、碲化镉、硒化铌构成的组中选择的材料形成。
20、如权利要求14所述的方法,其中,双极性层是由铋锶钙铜氧化物形成的半层。
21、如权利要求14所述的方法,其中,双极性层包括1至9个石墨烯层。
22、如权利要求14所述的方法,其中,栅电极包括在沟道区上分别靠近源区和漏区形成的第一栅电极和第二栅电极,其中,当电压被选择性地施加到第一栅电极或第二栅电极时,所述场效应晶体管为n型或p型。
23、如权利要求14所述的方法,还包括:
设置基底,其中,绝缘层形成在基底上,并且双极性层形成在绝缘层上。
24、如权利要求14所述的方法,还包括:
设置基底,其中,栅电极形成在基底和绝缘层之间。
25、一种制造逻辑电路的方法,包括:根据如权利要求14所述的制造场效应晶体管的方法制作至少一个p型晶体管和至少一个n型晶体管。
CN200810110124XA 2007-06-13 2008-06-10 场效应晶体管、包括场效应晶体管的逻辑电路及制造方法 Active CN101325218B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020070058009 2007-06-13
KR1020070058009A KR101443215B1 (ko) 2007-06-13 2007-06-13 앰비폴라 물질을 이용한 전계효과 트랜지스터 및 논리회로
KR10-2007-0058009 2007-06-13

Publications (2)

Publication Number Publication Date
CN101325218A true CN101325218A (zh) 2008-12-17
CN101325218B CN101325218B (zh) 2013-02-13

Family

ID=40132894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810110124XA Active CN101325218B (zh) 2007-06-13 2008-06-10 场效应晶体管、包括场效应晶体管的逻辑电路及制造方法

Country Status (4)

Country Link
US (1) US8274098B2 (zh)
JP (1) JP5456987B2 (zh)
KR (1) KR101443215B1 (zh)
CN (1) CN101325218B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834206A (zh) * 2010-04-12 2010-09-15 清华大学 半导体器件结构及其形成方法
CN101941696A (zh) * 2010-09-15 2011-01-12 复旦大学 一种适用于石墨烯基场效应管制造的纳米光刻方法
CN102024846A (zh) * 2009-09-10 2011-04-20 索尼公司 3端子电子器件和2端子电子器件
CN102185004A (zh) * 2011-04-02 2011-09-14 复旦大学 具有光电导效应的石墨烯场效应晶体管以及红外探测器
CN102376624A (zh) * 2010-08-11 2012-03-14 中国科学院微电子研究所 一种石墨烯器件及其制造方法
WO2012055196A1 (zh) * 2010-10-29 2012-05-03 中国科学院微电子研究所 一种石墨烯器件及其制造方法
CN103329244A (zh) * 2011-01-07 2013-09-25 国际商业机器公司 具有局部双栅的石墨烯器件
CN104934300A (zh) * 2009-11-13 2015-09-23 富士通株式会社 半导体装置及其制造方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5124373B2 (ja) * 2008-07-11 2013-01-23 株式会社日立製作所 電子デバイス,受光・発光デバイス、それを用いた電子集積回路および光集積回路
US8227794B2 (en) * 2008-07-25 2012-07-24 Taiichi Otsuji Complementary logic gate device
US8193455B2 (en) * 2008-12-30 2012-06-05 Hitachi Global Storage Technologies Netherlands B.V. Graphene electronics fabrication
WO2011046415A2 (ko) 2009-10-16 2011-04-21 성균관대학교산학협력단 그래핀의 롤투롤 전사 방법, 그에 의한 그래핀 롤, 및 그래핀의 롤투롤 전사 장치
KR101694877B1 (ko) * 2009-10-16 2017-01-11 삼성전자주식회사 그라핀 소자 및 그 제조 방법
US8796668B2 (en) * 2009-11-09 2014-08-05 International Business Machines Corporation Metal-free integrated circuits comprising graphene and carbon nanotubes
KR101234180B1 (ko) 2009-12-30 2013-02-18 그래핀스퀘어 주식회사 그래핀 필름의 롤투롤 도핑 방법 및 도핑된 그래핀 필름
WO2011081473A2 (ko) * 2009-12-31 2011-07-07 성균관대학교산학협력단 그래핀 투명 전극 및 이를 포함하는 플렉시블 실리콘 박막 반도체 소자
WO2011087301A2 (ko) 2010-01-15 2011-07-21 성균관대학교산학협력단 기체 및 수분 차단용 그래핀 보호막, 이의 형성 방법 및 그의 용도
WO2011102183A1 (en) 2010-02-19 2011-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5513955B2 (ja) * 2010-03-31 2014-06-04 株式会社東芝 半導体装置およびその製造方法
KR101101387B1 (ko) * 2010-04-02 2012-01-02 서울시립대학교 산학협력단 그래핀과 전도체 선을 이용한 나노 트랜지스터
US8445320B2 (en) 2010-05-20 2013-05-21 International Business Machines Corporation Graphene channel-based devices and methods for fabrication thereof
US8946903B2 (en) 2010-07-09 2015-02-03 Micron Technology, Inc. Electrically conductive laminate structure containing graphene region
JP5772299B2 (ja) * 2011-06-29 2015-09-02 富士通株式会社 半導体デバイス及びその製造方法
JP5936247B2 (ja) 2011-07-22 2016-06-22 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation トンネル電界効果トランジスタ
KR101920712B1 (ko) * 2011-08-26 2018-11-22 삼성전자주식회사 튜너블 배리어를 구비한 그래핀 스위칭 소자
KR101532311B1 (ko) 2012-04-27 2015-06-29 삼성전자주식회사 그래핀을 이용한 광검출기와 그 제조방법
US8772098B2 (en) * 2012-06-15 2014-07-08 International Business Machines Corporation Transport conduits for contacts to graphene
KR101532310B1 (ko) * 2013-02-18 2015-06-29 삼성전자주식회사 2차원 소재 적층 플렉서블 광센서
KR102055361B1 (ko) 2013-06-05 2019-12-12 삼성전자주식회사 반도체 패키지
KR102107537B1 (ko) * 2013-10-01 2020-05-07 삼성전자주식회사 반도체소자 및 그 제조방법
US9147615B2 (en) 2014-02-14 2015-09-29 International Business Machines Corporation Ambipolar synaptic devices
WO2017096626A1 (zh) * 2015-12-11 2017-06-15 华为技术有限公司 一种在石墨烯表面形成栅介质层及制备晶体管的方法
EP3185303A1 (en) * 2015-12-22 2017-06-28 IMEC vzw A two-dimensional material semiconductor device
US10283590B2 (en) 2016-07-06 2019-05-07 Taiwan Semiconductor Manufacturing Co., Ltd. Field-effect transistors having contacts to 2D material active region
US20190348466A1 (en) * 2016-12-30 2019-11-14 Intel Corporation Ambipolar layer based access transistors for memory applications and methods of fabrication
WO2020037241A1 (en) * 2018-08-17 2020-02-20 The Regents Of The University Of California Field-effect bipolar transistor
KR102297337B1 (ko) * 2019-11-11 2021-09-01 성균관대학교산학협력단 부성 트랜스컨덕턴스 소자 및 이를 이용한 다치 인버터 논리 소자

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215675A (ja) 1988-07-01 1990-01-19 Fujitsu Ltd 電界効果トランジスタ及びその製造方法
JP2894391B2 (ja) 1991-09-20 1999-05-24 三菱電機株式会社 薄膜トランジスタおよびその製造方法
US6051456A (en) * 1998-12-21 2000-04-18 Motorola, Inc. Semiconductor component and method of manufacture
US6094072A (en) * 1999-03-16 2000-07-25 International Business Machines Corporation Methods and apparatus for bipolar elimination in silicon-on-insulator (SOI) domino circuits
KR20010005298A (ko) 1999-06-30 2001-01-15 김영환 반도체소자의 트랜지스터
JP4443063B2 (ja) * 2001-02-28 2010-03-31 株式会社日立製作所 電界効果トランジスタ及びそれを使用した画像表示装置
US20030186059A1 (en) * 2002-02-08 2003-10-02 Masukazu Hirata Structure matter of thin film particles having carbon skeleton, processes for the production of the structure matter and the thin-film particles and uses thereof
JP4338948B2 (ja) * 2002-08-01 2009-10-07 株式会社半導体エネルギー研究所 カーボンナノチューブ半導体素子の作製方法
US7115916B2 (en) * 2002-09-26 2006-10-03 International Business Machines Corporation System and method for molecular optical emission
US6762483B1 (en) * 2003-01-23 2004-07-13 Advanced Micro Devices, Inc. Narrow fin FinFET
JP2004256510A (ja) * 2003-02-26 2004-09-16 Toyoshima Seisakusho:Kk Cvd用ビスマス原料溶液及びこれを用いたビスマス含有薄膜の製造方法
CN100448853C (zh) * 2004-05-21 2009-01-07 复旦大学 具有高效、平衡电子空穴传输性能的载流子传输材料
US7091096B2 (en) * 2004-07-29 2006-08-15 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Method of fabricating carbon nanotube field-effect transistors through controlled electrochemical modification
US7981840B2 (en) * 2005-03-02 2011-07-19 National Institute Of Advanced Industrial Science And Technology Method of manufacturing Bi-based oxide superconductor thin films
US7782650B2 (en) * 2005-05-09 2010-08-24 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7619257B2 (en) 2006-02-16 2009-11-17 Alcatel-Lucent Usa Inc. Devices including graphene layers epitaxially grown on single crystal substrates

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102024846A (zh) * 2009-09-10 2011-04-20 索尼公司 3端子电子器件和2端子电子器件
CN102024846B (zh) * 2009-09-10 2013-03-27 索尼公司 3端子电子器件和2端子电子器件
CN104934300A (zh) * 2009-11-13 2015-09-23 富士通株式会社 半导体装置及其制造方法
CN104934300B (zh) * 2009-11-13 2018-08-14 富士通株式会社 半导体装置及其制造方法
CN101834206B (zh) * 2010-04-12 2012-10-10 清华大学 半导体器件结构及其形成方法
CN101834206A (zh) * 2010-04-12 2010-09-15 清华大学 半导体器件结构及其形成方法
CN102376624A (zh) * 2010-08-11 2012-03-14 中国科学院微电子研究所 一种石墨烯器件及其制造方法
CN101941696B (zh) * 2010-09-15 2012-07-04 复旦大学 一种适用于石墨烯基场效应管制造的纳米光刻方法
CN101941696A (zh) * 2010-09-15 2011-01-12 复旦大学 一种适用于石墨烯基场效应管制造的纳米光刻方法
WO2012055196A1 (zh) * 2010-10-29 2012-05-03 中国科学院微电子研究所 一种石墨烯器件及其制造方法
CN103329244A (zh) * 2011-01-07 2013-09-25 国际商业机器公司 具有局部双栅的石墨烯器件
US9076873B2 (en) 2011-01-07 2015-07-07 International Business Machines Corporation Graphene devices with local dual gates
US9082856B2 (en) 2011-01-07 2015-07-14 International Business Machines Corporation Graphene devices with local dual gates
US9306028B2 (en) 2011-01-07 2016-04-05 International Business Machines Corporation Graphene devices with local dual gates
CN103329244B (zh) * 2011-01-07 2016-06-01 国际商业机器公司 具有局部双栅的石墨烯器件
US9466686B2 (en) 2011-01-07 2016-10-11 International Business Machines Corporation Graphene devices with local dual gates
CN102185004A (zh) * 2011-04-02 2011-09-14 复旦大学 具有光电导效应的石墨烯场效应晶体管以及红外探测器

Also Published As

Publication number Publication date
JP2008311643A (ja) 2008-12-25
KR101443215B1 (ko) 2014-09-24
KR20080109549A (ko) 2008-12-17
US8274098B2 (en) 2012-09-25
CN101325218B (zh) 2013-02-13
JP5456987B2 (ja) 2014-04-02
US20080312088A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
CN101325218B (zh) 场效应晶体管、包括场效应晶体管的逻辑电路及制造方法
CN101546768B (zh) 反相器和包括反相器的逻辑电路
US8686498B2 (en) Lateral double diffused MOS device and method for manufacturing the same
US10347760B2 (en) Reconfigurable nanowire field effect transistor, a nanowire array and an integrated circuit thereof
KR101084019B1 (ko) 상보성 스핀 트랜지스터 논리회로
JP5424274B2 (ja) 相補型論理ゲート装置
US8431990B2 (en) Semiconductor device
US10950597B2 (en) Electrostatic protection circuit and a semiconductor structure
JP6610114B2 (ja) 半導体装置および半導体装置の製造方法
CN104659096A (zh) 包括分离的结接触的石墨烯器件及其制造方法
CN110148630B (zh) 一种双栅小带隙半导体晶体管及其制备方法
CN101740628A (zh) 集成电路晶体管
CN104766860A (zh) 具有多个阈值电压的半导体器件及其制造方法
US3639813A (en) Complementary enhancement and depletion mosfets with common gate and channel region, the depletion mosfet also being a jfet
CN109427771B (zh) 一种集成电路芯片及其制作方法、栅驱动电路
CN100461457C (zh) 高压场效应晶体管和制造高压场效应晶体管的方法
US20230047840A1 (en) Integrated circuit devices including a cross-coupled structure
US20200105900A1 (en) Gate-controlled bipolar junction transistor and operation method thereof
US20110089534A1 (en) Semiconductor Integrated Circuit Devices Having Conductive Patterns that are Electrically Connected to Junction Regions
JPS61196567A (ja) 半導体装置
US20220084891A1 (en) Complementary switch element
WO2011145253A1 (ja) 接合型電界効果トランジスタ、その製造方法及びアナログ回路
WO2022085765A1 (ja) 半導体装置
JP5483207B2 (ja) 論理回路
US20150060766A1 (en) Tunneling field effect transistors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant