CN100461457C - 高压场效应晶体管和制造高压场效应晶体管的方法 - Google Patents

高压场效应晶体管和制造高压场效应晶体管的方法 Download PDF

Info

Publication number
CN100461457C
CN100461457C CNB2006101291527A CN200610129152A CN100461457C CN 100461457 C CN100461457 C CN 100461457C CN B2006101291527 A CNB2006101291527 A CN B2006101291527A CN 200610129152 A CN200610129152 A CN 200610129152A CN 100461457 C CN100461457 C CN 100461457C
Authority
CN
China
Prior art keywords
potential barrier
contact
semiconductor
effect transistor
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006101291527A
Other languages
English (en)
Other versions
CN1929150A (zh
Inventor
沃尔克·杜德克
迈克尔·格拉夫
斯蒂芬·施沃恩特斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atmel Germany GmbH
Original Assignee
Atmel Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atmel Germany GmbH filed Critical Atmel Germany GmbH
Publication of CN1929150A publication Critical patent/CN1929150A/zh
Application granted granted Critical
Publication of CN100461457C publication Critical patent/CN100461457C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7824Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

高压场效应晶体管,其带有漏极接点、源极接点、体接点和栅极接点,带有栅极氧化物和一个以栅极氧化物交界的栅极电极,它与栅极接点连接,带有第一导电类型的漏极半导体区,它与漏极接点连接,带有第一导电类型的源极半导体区,它与源极接点连接,带有第二导电类型的体接点半导体区,它与体接点连接,带有第二导电类型的体半导体区,它部分地以栅极氧化物为界以形成沟道,和以体接点半导体区为界,带有第一导电类型漂移半导体区域,它以漏极半导体区和体半导体区为界,带有场氧化物,其中一个与体半导体区隔开区域中的漂移半导体区域内形成势垒,以及其中这个带有势垒的区域以场氧化物为界。

Description

高压场效应晶体管和制造高压场效应晶体管的方法
技术领域
本发明涉及高压场效应晶体管和制造高压场效应晶体管的方法。
背景技术
从美国专利US 5,698,869已知一种半导体结构和该半导体结构的制造,其中对于带有绝缘栅极的晶体管,诸如MOSFET,减少漏电流并提高击穿电压。在SOI器件源极区或漏极区的内部区域中形成一个带有能带宽度比硅减少的半导体区域,诸如SixGe1-x,SixSn1-x或者PbS。为了极为有效地抑制SOI器件内的无电势体效应,必须在足够接近源极区和沟道区之间的pn结处形成SiGe-区。为了减少锗原子对结晶干扰的影响,建议该直至沟道区构造能带宽度减少的区域。
在日本专利JP 06013561A(英文摘要)中,在MOSFET的源极区和漏极区中注入锗,使源极区和漏极区中的能带宽度减少,以便降低寄生双极性晶体管的电流放大倍数。美国专利US 6,765,247B2作了类似的表示。在日本专利JP 07335887A中,为此在普通的LDD过程中通过两个步骤的锗注入达到锗的水平浓度分布。
美国专利US 6,828,632 B2涉及一种SOI-结构。这时,通过一个氧化物层形成盆形区域。该盆形区域是分多层外延生成而获得的,其中这些层呈现为硅-锗-层。该硅-锗-层在源极区/漏极区中呈现若干个复合中心。
从美国专利US 6,787,883 B1已知,在沟道区中形成Si1-xGex-层,它对衬底形成Si1-xGex-Si异质结。为了减少热载流子,在美国专利US5,134,447中在pn结附近在MOS-晶体管的体中形成异质结。
从美国专利US 6,531,748 B2已知一种带有MOS-结构的功率器件。这时,为了降低寄生双极性晶体管的电流放大倍数,源极区由能带宽度小于沟道区的材料的形成。
发明内容
本发明的任务是进一步开发一种具有漂移半导体区域的高压场效应晶体管。
照此设置高压场效应晶体管。高压场效应晶体管的特征是漂移半导体区域。通过这个漂移半导体区域,亦称漂移区,可以在施加漏极-源极电压时形成一个电场。为了形成反向电压高的高压场效应晶体管,沿着漂移半导体区域的电场不得超过一个最大值。
此外该高压场效应晶体管有漏极接点、源极接点、体接点和栅极接点。栅极氧化物和一个与栅极氧化物交界的与栅极接点连接的栅极电极,使成高压场效应晶体管的控制为可能。
第一导电类型的漏极半导体区与漏极接点连接。第一导电类型的源极半导体区与源极接点连接。与第一导电类型相反的第二导电类型的体接点半导体区与体接点连接。第二导电类型的体半导体区,部分地以形成沟道用的栅极氧化物为界,对此与该体接点半导体区交界。
第一导电类型的漂移半导体区域与漏极半导体区和体半导体区交界。在高压场效应晶体管的情况下,漂移半导体区域的有效长度是沟道区长度的两倍或几倍。
在漂移半导体区域内在一个空间上与体半导体区隔开的区域内形成势垒。这时,当施加漏极-源极电压的情况下pn结和该势垒之间的相互作用可以忽略时,在漂移半导体区域内这个区域和体半导体区之间大的距离足够大。
在本发明一个优选的配置中,为了形成该势垒,漂移半导体区域的这个区域对另一个区域的能隙缩小。该能隙,又称能带宽度,例如,对于硅等于1.12eV。例如若为了形成该势垒在这个区域加入锗,则该能隙可以缩小至0.67eV(Ge)至硅-锗-混晶(SiGe)的1.1eV之间的一个值。对于N-DMOS-场效应晶体管,该势垒最好在价带上突然变化。
这时,价带上的突然改变形成得使在体半导体区的方向上流动的空穴绝大部分停止。与此相反,对于P-DMOS-场效应晶体管,该势垒在导带上呈现突变。这时,导带上的突变形成得使在体半导体区方向上流动的电子绝大部分停止。原理上按照本发明还可以使用其他半导体,诸如砷化镓(GaAs)或者碳化硅(SiC)。
按照本发明一个优选的改进方案,该漂移半导体区域呈现为单晶硅。在这个带有势垒的区域中,锗原子被带进漂移半导体区域的单晶硅。这时,这个区域中锗原子的浓度朝漏极半导体区的方向降低。该下降的锗浓度导致,在N-DMOS-场效应晶体管的情况下势垒不阻止电子,使得高压场效应晶体管的导通电阻仍旧小。
在本发明一个优选的改进方案中,高压场效应晶体管有一个场氧化物,它比栅极氧化物厚得多。该带有势垒的区域在漂移半导体区域内最好以该场氧化物为界。
按照本发明另一个有利的改进方案,该高压场效应晶体管有一个掩埋的绝缘层。这个绝缘层例如由二氧化硅形成。为了掩埋这种绝缘层,可以例如用一个由二氧化硅形成的覆盖层使第一晶片和第二晶片彼此粘结。该带有势垒的区域最好以该掩埋绝缘层为界。除了绝缘层以外,它使高压场效应晶体管对衬底绝缘,该场效应晶体管用一个以绝缘材料填充的槽在侧向与该芯片上相邻的元件绝缘。
除了形成该势垒以外,在本发明的配置中在源极半导体区和/或漏极半导体区内形成另一个势垒。这另一个势垒可以产生另一个物理作用,增大该击穿电压或者降低导通电阻。
此外按照本发明的任务还用一种制造高压场效应晶体管的方法解决。这时,漂移半导体区域和体半导体区由第一半导体材料形成。在该漂移半导体区域中形成势垒用的第二半导体材料是这样地带进的,使得第二半导体材料在该第一半导体材料中的浓度在漏极半导体区的方向上降低。
为了实现降低第二半导体材料,例如锗的浓度,本发明的一个配置中规定使用注入掩模。用这种最好开槽的注入掩模进行注入,使相对于要处理的晶片表面在漂移半导体区域中侧向形成第二半导体材料浓度的逐渐降低成为可能。
按照本发明另一个实施方案,规定浓度梯度的垂直形成。为了对于要处理的晶片表面形成第二半导体材料浓度逐渐减小的垂直浓度梯度,当外延沉积时改变第二半导体材料的注入。
在本发明的一个改进方案中规定,最好在紧接在该势垒之后形成一个与该势垒交界的场氧化物。这时,这个场氧化物可以通过第一半导体材料,例如,硅的氧化,或者通过氧化物沉积产生。
附图说明
下面参照附图1至3在一个实施例中对本发明作了较详细的说明。附图中
图1是穿过高压场效应晶体管的示意剖面图;
图2是带有在图1中形成的势垒的示意能带模型;
图3是硅半导体材料中锗的浓度侧向梯度的示意图;而
图4是为了在硅半导体材料中产生锗浓度的侧向梯度用的掩模的示意图。
具体实施方式
图1示意地表示穿过高压场效应晶体管的剖面图。该高压场效应晶体管有接点漏极D、栅极G、源极S和体B,它们各自有一个金属结构,以便通过线迹进行连接。这时,源极接点S和体接点B可以通过金属线迹短接。金属结构20例如通过图1中没有示出的高压场效应晶体管的带有半导体区域11、12、25和31的硅化物层连接。这时,栅极接点G的金属结构20以栅极电极25为界,该栅极电极由高搀杂多晶硅形成。
在图1中作为范例表示一个N-DMOS-场效应晶体管。漏极接点D的金属结构20,例如通过硅化物与漏极半导体区11连接。这时,漏极半导体区11是n-搀杂的。该源极半导体区12同样是n-搀杂的,它与源极接点S的金属结构20连接。
体接点B的金属结构与高搀杂的体接点半导体区31连接。这时,该体接点半导体区31是p-搀杂的。此外该体半导体区30是p-搀杂的,它以该体接点半导体区31为界。此外体半导体区30一直伸到在栅极电极25下面形成的薄的栅极氧化物89下面。在图1中体半导体区30亦称P阱。体半导体区30为此形成一个pn结,用作源极半导体区12。
另一个pn结是在体半导体区30和漂移半导体区域10之间形成。漂移半导体区域10亦称漂移区,并在图1中亦称N阱。若在栅极接点G和源极接点S之间接一个低于高压场效应晶体管阈值电压的栅极电压,则通过体半导体区30和漂移半导体区域10之间的pn结在阻塞方向上反向电压下降。
当在漏极接点D和与体接点B连接的源极接点S之间施加的电压烧掉寄生双极性晶体管时,N-DMOS晶体管在物理上损坏。在图1中该寄生双极性晶体管是通过该漂移半导体区域10作为寄生集电极区,通过体半导体区30作为寄生基极区和通过源极半导体区12作为寄生发射极区形成的。
由于这时施加的高的漏极-源极电压,可能使漏极电流急剧上升,使之不再能够受栅极电压控制。该不受控制的电流流动导致该元件的热损坏。这时,该寄生双极性晶体管受空穴电流控制。例如,晶体缺陷产生的载流子被空间电荷区中的电场加速,它沿着漏极半导体区11和pn结(体半导体区30/漂移半导体区域10)之间的漂移半导体区域10形成。
碰撞电离也会产生电子-空穴-对。这时,电子向漏极半导体区11移动,空穴与此相反通过该体半导体区30并进一步通过体接点半导体区31流走。当空穴电流在体接点半导体区31方向引起的源极半导体区12的电压降足以在源极半导体区-至体半导体区PN结切换流动方向时,寄生双极性晶体管将被烧掉。
因此,在漏极接点D和短接源极和体接点B之间出现的电压必须总是保持低于关键值,使得所产生的载流子引起的电压降不足以在流动方向上极化源极半导体区12和体半导体区30之间的pn结。
在漂移半导体区域10内形成一个带有势垒pb的区域50。从漂移半导体区域10到体半导体区30的空穴电流将被该势垒pb抑制。在区域50内带进硅内的锗原子造成的能隙局部缩小。与此相反,在范围50之外导带和价带之间硅的能隙不缩小。
在漏极半导体区11之外,体半导体区30之外和源极半导体区12之外,形成区域50和从而形成该势垒pb。为此带有所带进的锗原子的该区域50与体半导体区30隔开。此外该区域50与栅极氧化物89隔开。该距离最好在约200nm的范围内,这时,图1中的实施例并不是按正确的比例表示的。
图1表示比栅极氧化物89厚的场氧化物88,其中区域50和该势垒pb以场氧化物88为界。漂移半导体区域10和体半导体区30限制掩埋氧化物层80(SOI)。区域50最好同样以掩埋氧化物层80为界,该势垒pb最好也以掩埋氧化物层80为界。
不用图1中所表示的N-DMOS,用P-DMOS也是类似的。在这种情况下图1中所表示的导电类型n和p可以彼此交换的。
在图2中示意地表示一个简化的能带模型,带有导带EL、价带EV和费米能级EF,在漏极接点D上没有施加电压。在图2中左侧表示该p-搀杂的体半导体区P阱30。垂直画出的线条把pn结放在体半导体区P阱30和交界的漂移半导体区域N阱10之间。在PN结区域导带EL和价带EV的距离相对于费米能级EF发生改变。在这个PN结区域处于范围50之外,因而在硅晶体Si内形成。
此外,在图2中画出势垒pb。在图2中势垒pb的右边,也在漏极半导体区11的方向上,在范围50内带进硅Si中的锗Ge,使硅-锗-混晶SiGe形成。这个硅-锗-混晶有比硅晶体Si小的能隙,如图2所示。以该硅晶体Si为界的硅-锗-混晶SiGe的这个较小的能隙导致该势垒pb。硅晶体Si中领域较大能隙至硅-锗-混晶SiGe中较小能隙的领域的过渡是突然。
这时,出现的势垒pb只在价带EV起作用对抗空穴(+)向体半导体区30和体接点半导体区31的流走。这时,导带EL的跳跃不对电子流(-)起负的作用。在漏极半导体区11的方向上从能隙较小的区域到能隙较大的区域的过渡防止电子势垒。在区域50内的一个最小距离内,这是通过在漏极半导体区11方向上连续下降的锗Ge搀杂曲线达到的。
在图3中表示降低的接近线性的搀杂曲线的一个范例。为了获得这种接近线性的搀杂曲线,锗原子Ge通过开槽的掩模90,如图4所示,注入该漂移半导体区域10。在一个较晚的高温步骤仍旧可以改变锗Ge的分布,特别是线性化。
附图标记表
10,N阱   漂移半导体区域
11        漏极半导体区
12        源极半导体区
20        金属化,金属带,线迹
25        多晶硅栅极电极
30,P阱   体半导体区
31        体接点半导体区
50        漂移半导体区域中带有Ge的区域
80        掩埋氧化物层(SOI)
85        钝化,氧化物层
88        场氧化物
89        栅极氧化物
90           掩模
100          衬底
pb           势垒
Si           硅
Ge           锗
SiGe         硅-锗-混晶
B            体接点(衬底)
G            栅极接点(栅极)
D            漏极接点(漏极)
S            源极接点(源极)
(-)          电子
(+)          空穴
EL           导带
EV           价带
EF           费米能级

Claims (9)

1.高压场效应晶体管,
-带有漏极接点(D)、源极接点(S)、体接点(B)和栅极接点(G),
-带有栅极氧化物(89)和以栅极氧化物(89)为界的与栅极接点(G)连接的栅极电极(25),
-带有第一导电类型的漏极半导体区(11),其与漏极接点(D)连接,
-带有第一导电类型的源极半导体区(12),其与源极接点(S)连接,
-带有第二导电类型的体接点半导体区(31),其与体接点(B)连接,
-带有第二导电类型的体半导体区(30),其部分地以栅极氧化物(89)为界,以形成沟道并以体接点半导体区(31)为界,
-带有第一导电类型漂移半导体区域(10),其以漏极半导体区(11)和体半导体区(30)为界,
-带有场氧化物(88),
其中在与体半导体区(30)隔开的区域(50)中的漂移半导体区域(10)内形成势垒(pb),以及
-其中这个带有势垒(pb)的区域(50)以场氧化物(88)为界。
2.按照权利要求1的高压场效应晶体管,其特征在于,其中为了形成势垒(pb),在这个带有势垒(pb)的区域(50)中与漂移半导体区域(10)的另一些区域相比能隙缩小。
3.按照权利要求2的高压场效应晶体管,其特征在于,其中漂移半导体区域(10)具有单晶硅Si,和其中在这个带有势垒(pb)的区域(50)中把锗原子Ge带进漂移半导体区域(10)的单晶硅Si,其中这个带有势垒(pb)的区域(50)中锗原子Ge的浓度在漏极半导体区(11)方向上降低。
4.按照上列权项中之一项的高压场效应晶体管,其特征在于,其中漂移半导体区域(10)关于芯片前侧只接近表面的地方形成势垒(pb)。
5.按照权利要求4的高压场效应晶体管,其特征在于,
-带有掩埋绝缘层(80),由二氧化硅生成的,
-其中这个带有势垒(pb)的区域(50)以该掩埋绝缘层(80)为界。
6.按照权利要求5的高压场效应晶体管,其特征在于,其中在源极半导体区(12)和/或漏极半导体区(11)还形成一个势垒。
7.制造高压场效应晶体管的方法,其中
-漂移半导体区域(10)和体半导体区(30)由第一半导体材料Si形成,
-在漂移半导体区域(10)内,为了形成势垒(pb),这样地带进第二半导体材料Ge,使得第二半导体材料Ge在第一半导体材料Si中的浓度在漏极半导体区(11)的方向上降低,
-在该势垒(pb)之后形成一个以势垒(pb)交界的场氧化物(88)。
8.按照权利要求7的方法,其特征在于,其中为了侧向形成第二半导体材料Ge下降的浓度,使用注入掩模(90)。
9.按照权利要求7的方法,其特征在于,其中当外延沉积时改变第二半导体材料Ge的注入,以便垂直形成其下降的浓度。
CNB2006101291527A 2005-09-09 2006-08-28 高压场效应晶体管和制造高压场效应晶体管的方法 Expired - Fee Related CN100461457C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005042827.4 2005-09-09
DE102005042827A DE102005042827A1 (de) 2005-09-09 2005-09-09 Hochvolt-Feldeffekttransistor und Verfahren zur Herstellung eines Hochvolt-Feldeffekttransistors

Publications (2)

Publication Number Publication Date
CN1929150A CN1929150A (zh) 2007-03-14
CN100461457C true CN100461457C (zh) 2009-02-11

Family

ID=37421204

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101291527A Expired - Fee Related CN100461457C (zh) 2005-09-09 2006-08-28 高压场效应晶体管和制造高压场效应晶体管的方法

Country Status (4)

Country Link
US (1) US7504692B2 (zh)
EP (1) EP1772906A1 (zh)
CN (1) CN100461457C (zh)
DE (1) DE102005042827A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060049464A1 (en) 2004-09-03 2006-03-09 Rao G R Mohan Semiconductor devices with graded dopant regions
ITTO20060785A1 (it) * 2006-11-02 2008-05-03 St Microelectronics Srl Dispositivo mos resistente alla radiazione ionizzante
CN100592532C (zh) * 2007-08-28 2010-02-24 电子科技大学 具有“u”字形漂移区的半导体器件
US20190013402A1 (en) * 2017-07-06 2019-01-10 Globalfoundries Inc. Field effect semiconductor device with silicon alloy region in silicon well and method for making
US10236367B2 (en) * 2017-07-06 2019-03-19 Globalfoundries Inc. Bipolar semiconductor device with silicon alloy region in silicon well and method for making
US12032014B2 (en) 2019-09-09 2024-07-09 Analog Devices International Unlimited Company Semiconductor device configured for gate dielectric monitoring
US11552190B2 (en) 2019-12-12 2023-01-10 Analog Devices International Unlimited Company High voltage double-diffused metal oxide semiconductor transistor with isolated parasitic bipolar junction transistor region

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150680A (en) * 1998-03-05 2000-11-21 Welch Allyn, Inc. Field effect semiconductor device having dipole barrier
US6239463B1 (en) * 1997-08-28 2001-05-29 Siliconix Incorporated Low resistance power MOSFET or other device containing silicon-germanium layer
US20030071291A1 (en) * 2001-10-12 2003-04-17 Intersil Corporation Integrated circuit with a MOS structure having reduced parasitic bipolar transistor action
WO2004015780A1 (en) * 2002-08-07 2004-02-19 Koninklijke Philips Electronics N.V. Field effect transistor
CN1586009A (zh) * 2001-11-16 2005-02-23 皇家飞利浦电子股份有限公司 场效应晶体管半导体器件

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134447A (en) * 1989-09-22 1992-07-28 At&T Bell Laboratories Neutral impurities to increase lifetime of operation of semiconductor devices
DE69209678T2 (de) * 1991-02-01 1996-10-10 Philips Electronics Nv Halbleiteranordnung für Hochspannungsverwendung und Verfahren zur Herstellung
JPH0613561A (ja) * 1992-06-25 1994-01-21 Seiko Epson Corp 半導体装置及び半導体装置の製造方法
JP3348517B2 (ja) * 1994-06-07 2002-11-20 ソニー株式会社 薄膜電界効果トランジスタの製造方法
JP3361922B2 (ja) * 1994-09-13 2003-01-07 株式会社東芝 半導体装置
US5879996A (en) * 1996-09-18 1999-03-09 Micron Technology, Inc. Silicon-germanium devices for CMOS formed by ion implantation and solid phase epitaxial regrowth
DE10023115A1 (de) * 2000-05-11 2001-11-29 Infineon Technologies Ag Halbleiter-Leistungsbauelement mit reduziertem parasitärem Bipolartransistor
US6828632B2 (en) * 2002-07-18 2004-12-07 Micron Technology, Inc. Stable PD-SOI devices and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239463B1 (en) * 1997-08-28 2001-05-29 Siliconix Incorporated Low resistance power MOSFET or other device containing silicon-germanium layer
US6150680A (en) * 1998-03-05 2000-11-21 Welch Allyn, Inc. Field effect semiconductor device having dipole barrier
US20030071291A1 (en) * 2001-10-12 2003-04-17 Intersil Corporation Integrated circuit with a MOS structure having reduced parasitic bipolar transistor action
CN1586009A (zh) * 2001-11-16 2005-02-23 皇家飞利浦电子股份有限公司 场效应晶体管半导体器件
WO2004015780A1 (en) * 2002-08-07 2004-02-19 Koninklijke Philips Electronics N.V. Field effect transistor

Also Published As

Publication number Publication date
US7504692B2 (en) 2009-03-17
CN1929150A (zh) 2007-03-14
EP1772906A1 (de) 2007-04-11
DE102005042827A1 (de) 2007-03-22
US20070262376A1 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
US11069805B2 (en) Embedded JFETs for high voltage applications
CN207664048U (zh) 半导体器件
KR100423249B1 (ko) 횡형 반도체장치
CN104299997B (zh) 电荷补偿半导体器件
CN102301484B (zh) 非对称结型场效应晶体管及其制造方法
CN100461457C (zh) 高压场效应晶体管和制造高压场效应晶体管的方法
CN102714224B (zh) 具有选择性掺杂的jfet区的功率半导体器件及形成这样的器件的相关方法
CN101325218B (zh) 场效应晶体管、包括场效应晶体管的逻辑电路及制造方法
US8378390B2 (en) Silicon carbide bipolar junction transistor (BJT) having a surface electrode disposed on top of a dielectric layer formed at a region between emitter contact and base contact
US8431990B2 (en) Semiconductor device
KR20060078487A (ko) 반도체 소자 제조 방법
JP3802935B2 (ja) 高耐圧型半導体装置
CN101740628A (zh) 集成电路晶体管
CN107833918A (zh) 半导体装置
US20100270614A1 (en) Process for manufacturing devices for power applications in integrated circuits
WO2012075905A1 (en) Insulated gate bipolar transistor (igbt) and method for manufacturing the same
CN102446966B (zh) 一种集成反并联二极管的igbt结构及其制造方法
JPH10294461A (ja) 絶縁ゲート形半導体素子
CN106098764A (zh) 一种双通道rc‑ligbt器件及其制备方法
TWI730732B (zh) 絕緣閘極場效雙極性電晶體及其製造方法
US6531748B2 (en) Semiconductor power component with a reduced parasitic bipolar transistor
CN106098763A (zh) 一种rc‑ligbt器件及其制备方法
CN108063166A (zh) 一种沟槽结构肖特基半导体装置及其制备方法
CN106206291A (zh) 一种rc‑ligbt器件及其制备方法
JP3191285B2 (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090211

Termination date: 20100828