CN101238581B - 在屏蔽的栅极场效应晶体管中形成多晶硅层间电介质的结构和方法 - Google Patents
在屏蔽的栅极场效应晶体管中形成多晶硅层间电介质的结构和方法 Download PDFInfo
- Publication number
- CN101238581B CN101238581B CN2006800287698A CN200680028769A CN101238581B CN 101238581 B CN101238581 B CN 101238581B CN 2006800287698 A CN2006800287698 A CN 2006800287698A CN 200680028769 A CN200680028769 A CN 200680028769A CN 101238581 B CN101238581 B CN 101238581B
- Authority
- CN
- China
- Prior art keywords
- dielectric
- effect transistor
- groove
- along
- field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 30
- 230000005669 field effect Effects 0.000 title claims description 25
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 31
- 239000010703 silicon Substances 0.000 claims abstract description 31
- 239000010410 layer Substances 0.000 claims description 76
- 239000011229 interlayer Substances 0.000 claims description 20
- 230000015572 biosynthetic process Effects 0.000 claims description 17
- 238000009413 insulation Methods 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 12
- 230000003647 oxidation Effects 0.000 claims description 11
- 238000007254 oxidation reaction Methods 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 5
- 239000003989 dielectric material Substances 0.000 claims description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 10
- 229920005591 polysilicon Polymers 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 7
- 238000000151 deposition Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000000280 densification Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000005380 borophosphosilicate glass Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009279 wet oxidation reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7813—Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/402—Field plates
- H01L29/407—Recessed field plates, e.g. trench field plates, buried field plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
- H01L29/4236—Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66674—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/66712—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/66727—Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66674—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/66712—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/66734—Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
如下所述形成一种屏蔽的栅极沟槽FET。在第一导电类型的硅区域(204)中形成沟槽(202),该沟槽(202)包括通过屏蔽电介质(206)与硅区域(204)绝缘的屏蔽电极(208)。沿屏蔽电极(208)的上表面形成包括热氧化物层(210)和共形电介质层(212)的多晶硅层间电介质(IPD)(214)。至少顺着上部沟槽(202)侧壁形成栅极电介质(216)。在沟槽中形成栅电极(218),使得栅电极通过IPD与屏蔽电极绝缘。
Description
背景技术
本发明总体上涉及半导体功率场效应晶体管(FET),并且更具体地涉及在屏蔽的栅极FET中形成改进的多晶硅层间电介质(IPD)的结构和方法。
由于屏蔽电极降低栅-漏电容(Cgd),并且提高晶体管的击穿电压,因此,屏蔽的栅极沟槽FET具有优势。图1是传统的屏蔽的栅极沟槽MOSFET的简化横截面图。沟槽110包括位于栅电极122正下方的屏蔽电极114。屏蔽电极114通过通常比栅极电介质120厚的屏蔽电介质112与相邻的硅区域绝缘。栅电极和屏蔽电极通过一般被称为多晶硅层间电介质或IPD的电介质层116彼此绝缘。该IPD层必须具有足够的品质和厚度以承受(support)栅电极与屏蔽电极之间所需的电压。
图1的传统的屏蔽的栅极FET具有许多缺陷。首先,栅电极122具有尖底角,其和屏蔽电极114的平坦顶面一起在这些区域中产生强电场。其次,用于形成IPD的传统方法典型地在沟槽之间的台面(mesa)上引入氧化层,但是在形成栅电极之后的某时刻其又必须被去除。在去除该氧化物期间,不可避免地会发生将某些栅极氧化物蚀刻到沟槽侧壁上,其可能导致栅极短路和栅极泄漏。其它已知技术使IPD的形成依赖于栅极电介质的形成,因此IPD厚度被限于栅极电介质厚度的一组倍数。这不允许栅极电介质和IPD的单独优化。获得的IPD与栅极电介质之间的最大厚度差已经是大约3比1(即,对于给定的目标栅极电介质厚度,已经获得的最大IPD厚度大约为已经获得的目标栅极电介质厚度的三倍)。
因此,存在对形成具有改进的IPD和栅极电介质的屏蔽的栅极沟槽FET的结构和方法的需求。
发明内容
根据本发明的实施例,形成FET的方法如下。在第一导电类型的硅区域中形成沟槽。沟槽包括通过屏蔽电介质与硅区域绝缘的屏蔽电极。沿屏蔽电极的上表面形成包括热氧化物层和共形电介质(conformal dielectric)层的多晶硅层间电介质(IPD)。至少顺着上部沟槽侧壁形成栅极电介质。在沟槽中形成栅电极。栅电极通过IPD与屏蔽电极绝缘。
在一实施例中,IPD具有凹的上表面。
在另一实施例中,IPD的厚度与栅极电介质的厚度比大于3比1。
在又一实施例中,在形成IPD之后形成栅极电介质。
在另一实施例中,如下形成IPD。沿沟槽侧壁的上部以及沿屏蔽电极的上表面形成热氧化物层。用共形电介质层填充沟槽。部分地去除共形电介质层和热氧化物层,从而形成包括热电介质层剩余部分以及共形电介质层剩余部分的IPD。
根据本发明的另一实施例,FET包括延伸至第一导电类型的硅区域中的沟槽。通过屏蔽电介质与硅区域绝缘的屏蔽电极在沟槽的下部中延伸。栅电极位于沟槽中,在屏蔽电极之上,但通过多晶硅层间电介质(IPD)与屏蔽电极绝缘。IPD包括共形电介质层和热氧化物层。
在一实施例中,栅电极通过沿上部沟槽侧壁延伸的栅极电介质与硅区域绝缘,并且IPD的厚度与栅极电介质的厚度比大于3比1。
在另一实施例中,IPD沿其上表面具有凹的轮廓。
在又一实施例中,栅极沿其下表面具有凹的轮廓。
在另一实施例中,共形电介质层被热电介质沿电介质共形层的下表面和侧壁所围绕。
在另一实施例中,共形电介质层具有凸的下表面和凹的上表面。
在另一实施例中,屏蔽电极具有圆形顶面。
在另一实施例中,硅区域包括在第一导电类型的衬底之上延伸的第一导电类型的外延层、外延层中的第二导电类型的阱区、以及阱区中的第一导电类型的源区。源区位于沟槽的侧面。
在一实施例中,沟槽延伸至并终止于外延层内。
在另一实施例中,沟槽延伸穿过外延层并终止于衬底内。
下面的详细描述以及附图提供了对本发明的本质和优点的更好的理解。
附图说明
图1是传统的屏蔽的栅极沟槽MOSFET的简化横截面图;以及
图2A至图2L是根据本发明的实施例,在形成具有改进的多晶硅层间电介质和栅极电介质的屏蔽的栅极沟槽FET的示例性工艺顺序的各个阶段的简化横截面图。
具体实施方式
根据本发明,通过执行热氧化接下来进行共形电介质层的沉积来形成屏蔽的栅极FET的IPD层。然后形成栅极电介质,接下来形成栅电极。该方法将形成IPD层的工艺与形成栅极电介质的工艺分离开,从而使这些电介质层中的每一个都能够被独立地优化。因此,在不损害栅极电介质品质或厚度的情况下,可以形成高品质、厚的IPD以承受栅电极与屏蔽电极之间所需的电压。再者,共形电介质层有助于沿IPD的顶面获得平滑的凹的轮廓(即,像碗的内部),从而其为栅电极产生平滑的底部轮廓。这与图1中的栅电极具有尖下角的传统FET结构相比,有助于减小电场。
图2A至图2L是根据本发明的实施例,在形成具有改进的IPD和栅极电介质的屏蔽的栅极沟槽FET的示例性工艺顺序的各个阶段的简化横截面图。在图2A中,利用传统的掩模和硅蚀刻技术在硅区域204中形成沟槽202。在一实施例中,硅区域204包括在高导电n型衬底之上延伸的相对轻掺杂的n型外延层。在此实施例中,取决于设计目的,沟槽可以被蚀刻以终止于外延层内或更深地延伸以终止于衬底内。在图2B中,利用已知技术,顺着沟槽侧壁和底部以及临近沟槽的台面区域的表面形成屏蔽电介质层206(例如,包含氧化物)。在一实施例中,使用高温(例如,1150℃)干氧化来形成屏蔽氧化物。高温有助于使沟槽底角变圆,并形成足以承受器件击穿的大约的屏蔽氧化物。
在图2C中,利用传统的多晶硅沉积技术来沉积多晶硅层以填充沟槽。然后,所沉积的多晶硅被凹进到沟槽中从而形成屏蔽电极208。然后,屏蔽电介质层的暴露部分被变薄至,例如在屏蔽电极包括氧化物的实施例中,使用湿缓冲(wet buffered)氧化物蚀刻来将屏蔽氧化物变薄。屏蔽电介质的剩余暴露部分206a有助于防止在随后的热氧化步骤中沿沟槽侧壁和台面表面的氧化物的过度生长,并有助于控制沟槽腔的轮廓。热氧化物的过度生长可导致在随后沉积的共形电介质中空腔的形成。在一实施例中,完全去除屏蔽电介质206的暴露部分,或者可选地原封不动地保留整个屏蔽电介质206。
在图2D中,执行热氧化步骤以沿着沟槽侧壁、在临近沟槽的台面区的表面之上、以及屏蔽电极208之上形成热氧化层210。热氧化有利地氧化屏蔽电极208的上部,从而产生圆形顶部轮廓。该圆形顶部有助于最小化屏蔽电极208与稍后形成的栅电极之间的区域中的电场。在一实施例中,通过执行低温、湿氧化,之后是高温、干氧化,来形成热氧化物层210。在另一实施例中,热氧化产生具有至范围内的厚度的热氧化物层210。在又一实施例中,进行低温热氧化(例如,大约850℃)以便沿屏蔽电极的顶面形成比沿沟槽侧壁和台面表面之上更厚的热氧化物层。在这样的实施例中,1.5∶1至2∶1范围内的厚度比将是理想的。在一具体实施例中,热氧化沿屏蔽电极的顶面产生具有厚度约为的热氧化物层以及沿沟槽侧壁和台面表面产生具有厚度约为的热氧化物层。
在图2E中,沉积共形电介质层212(例如,包含氧化物)以填充沟槽。在一实施例中,利用次大气压化学气相沉积(SACVD)正硅酸乙脂(TEOS)/臭氧工艺在温度约为510℃和压强约为480托的环境下沉积共形电介质层212。所沉积的氧化物完全填充沟槽而不留空隙。
在图2F中,共形电介质层212和热氧化物层210被向下蚀刻至沟槽中直至期望的深度。台面表面之上和沿沟槽侧壁的上部的全部电介质被完全去除,并且具有凹的顶面的多晶硅层间电介质(IPD)层214保留在屏蔽电极208之上。因此,IPD层214包括热电介质层和共形电介质层的叠层。在一实施例中,在将电介质叠层凹进沟槽期间,进行电介质叠层的均匀回蚀(etch back)。可以执行干式各向异性等离子体蚀刻或湿蚀刻以获得所期望的IPD厚度,并且确保沿沟槽侧壁和台面之上的氧化物被完全去除。也可以进行传统的致密(densification)步骤以密化SACVD氧化物。在一实施例中,进行干蚀刻和随后的致密,接下来为湿蚀刻。
在图2G中,利用传统技术来形成沿沟槽侧壁、在IPD层之上、并且在临近沟槽的台面区域之上延伸的栅极电介质层216(例如,来自氧化物)。由于IPD的形成被完全与栅极电介质的形成分离,因此,可以单独优化栅极电介质以具有所期望的特性。在图2H中,利用传统技术,多晶硅层被沉积以填充沟槽,接下来被回蚀以在沟槽202中形成凹进的栅电极218。
在图2I中,在台面之上延伸的栅极电介质216的部分被回蚀至适合于体(body)注入和源注入的厚度。执行传统的毯式体注入(blanket body implant)和推进(drive in)工艺以沿硅区域204的上部形成p型体区220。然后利用传统的源注入以及掩模层(未示出)在沟槽202侧面形成源区222。在图2J中,利用传统技术在该结构之上形成金属前(pre-metal)电介质层224(例如,包括BPSG)。在图2K中,利用掩模层(未示出),部分去除电介质层224以暴露由掩模层所限定的体区220和源区222的表面。然后进行传统的硅蚀刻(例如,干蚀刻)使暴露的表面区域凹进。从而,所凹进的硅区域形成接触窗口(contact opening)226。
在图2L中,进行毯式重体注入以在体区220中形成自对准p型重体区228。接下来进行电介质224的回流以获得接触窗口的更佳纵横比(aspect ratio)和在随后步骤中被形成以电接触重体区228和源区222的金属层226的更佳阶梯覆盖(step coverage)。水平延伸的虚线被包含在图2L中以示出其中外延层203在衬底201之上延伸、并且沟槽202延伸穿过外延层203并终止于衬底201中的实施例。可选地,沟槽202可以被终止于外延层203内。同样,通过图2A至2L中的横截面图所描述的工艺顺序仅仅是示例性的,并且各个步骤可以被修改或按照与所示顺序不同的顺序来进行。尤其是,为获得具有所期望特征和特性的屏蔽的栅极结构,可以执行多个已知工艺步骤中的任意一个而不是由图2I至2L所描述的步骤。
根据本发明的结构和方法,获得了包括热生长的电介质和共形沉积的电介质的膜叠层的改进的IPD层。热生长的电介质提供了高品质电介质,并用于使屏蔽电极的顶角变圆。共形沉积的电介质(1)填充屏蔽电极上面的间隙,(2)在蚀刻沿沟槽侧壁的电介质时,用作硬掩模以保护屏蔽电极之上的热电介质,以及(3)产生平滑的凹的轮廓,在该凹的轮廓上形成栅电极。沿屏蔽电极的顶面和栅电极的底部的圆形轮廓在这些局部区域中产生较小的电场。
此外,根据本发明形成IPD的方法用于将IPD的形成与栅极氧化物的形成相分离,使得IPD和栅极电介质能够被独立地优化以,例如,获得厚的、高品质IPD和薄的、高品质栅极电介质。在一实施例中,通过利用大于约5比1的IPD厚度与栅极电介质厚度之比来得到最佳晶体管特性。例如,发现大于约的IPD厚度和小于约的栅极电介质厚度能够提供最佳晶体管特性。形成薄栅极电介质的能力能够被有利地用于获得更低的导通电阻。
为达到甚至更低的导通电阻、更强的阻断能力和更高的效率,以及其他优点和特征,本发明的多种结构和方法可以与大量电荷扩展技术中的一种或更多种以及于2004年12月29日提交的第11/026,276号普通转让申请中所公开的并且其全部内容结合于此作为参考的其它屏蔽栅极结构和制造工艺相结合。
尽管上面示出并描述了多个具体实施例,但是本发明的实施例并不限于此。例如,应当理解在不背离本发明的情况下,可以反转示出的和描述的结构的掺杂极性和/或可以改变各个成分的掺杂浓度。由图2A至2L所描述的工艺顺序是用于形成n沟道FET的,然而鉴于该公开,对于本领域技术人员来说修改该工艺顺序以形成p沟道FET将是显而易见的。同样,尽管上述各个实施例是在传统硅中实现的,但也可以在碳化硅、砷化镓、氮化镓、金刚石或其它半导体材料中实现这些实施例和它们的明显变体。此外,不同实施例的横截面图可能是未按比例的,并且同样也不意味着在相应结构的布图设计中限制可能的变化。同样,可以以带状或包括六边形或方形晶体管单元的蜂窝结构形成所示的FET及其明显的变体。而且,在不背离本发明的范围的情况下,可以将本发明的一个或更多个实施例的特征与本发明的其它实施例的一个或更多个特征相结合。因此,本发明的范围不应被限于所描述的实施例,而是由所附的权利要求所限定。
Claims (33)
1.一种形成场效应晶体管的方法,包括:
在第一导电类型的硅区域中形成沟槽,所述沟槽具有通过屏蔽电介质与所述硅区域绝缘的屏蔽电极;
沿所述屏蔽电极的上表面形成包括热氧化物层和共形电介质层的层间电介质;
至少顺着上部沟槽侧壁形成栅极电介质;以及
在所述沟槽中形成栅电极,所述栅电极通过所述层间电介质与所述屏蔽电极绝缘。
2.根据权利要求1所述的方法,其中,所述层间电介质具有凹的上表面。
3.根据权利要求1所述的方法,其中,所述层间电介质的厚度与所述栅极电介质的厚度之比大于3比1。
4.根据权利要求1所述的方法,其中,在形成所述层间电介质之后形成所述栅极电介质。
5.根据权利要求1所述的方法,其中,所述形成层间电介质的步骤包括:
沿所述沟槽的上部侧壁以及沿所述屏蔽电极的上表面形成热氧化物层;
用共形电介质层填充所述沟槽;以及
部分去除所述共形电介质层以及所述热氧化物层,从而形成包括所述热电介质层剩余部分和所述共形电介质层剩余部分的所述层间电介质。
6.根据权利要求5所述的方法,其中,所述形成热氧化物层的步骤包括热氧化硅,从而沿所述屏蔽电极的所述上表面形成比沿所述沟槽侧壁更厚的热氧化物层。
7.根据权利要求5所述的方法,其中,所述部分去除步骤沿临近所述沟槽的硅表面以及沿上部沟槽侧壁完全去除所有电介质。
8.根据权利要求5所述的方法,其中,所述填充步骤包括沉积共形氧化物层以填充所述沟槽。
9.根据权利要求5所述的方法,其中,所述部分去除步骤包括将所述共形电介质层和所述热氧化物层均匀地回蚀至所述沟槽中的期望深度,使得所述剩余的共形电介质层被所述剩余的热氧化物层沿所述剩余的共形电介质层的下表面和侧壁所环绕。
10.根据权利要求1所述的方法,其中,所述形成沟槽的步骤包括:顺着所述沟槽侧壁和底部形成屏蔽电介质;
形成凹进在所述沟槽中的屏蔽电极;以及
部分去除所述屏蔽电介质的暴露部分,使得所述屏蔽电介质的薄层至少沿上部沟槽侧壁保留。
11.根据权利要求1所述的方法,进一步包括:
在所述硅区域中形成第二导电类型的阱区;以及
在所述阱区中形成源区,使所述源区位于所述沟槽侧面。
12.根据权利要求11所述的方法,进一步包括:
形成在所述栅电极、所述源区和所述阱区之上延伸的金属前电介质层;
去除所述金属前电介质层的预定部分以暴露所述阱区的相应表面;
沿所述暴露的表面使所述阱区凹进,使得源区的侧壁被暴露;以及
形成金属层以电接触所述阱区和所述源区的暴露的侧壁。
13.一种场效应晶体管,包括:
沟槽,延伸至第一导电类型的硅区域中;
屏蔽电极,位于所述沟槽的下部中,所述屏蔽电极通过屏蔽电介质与所述硅区域绝缘;以及
栅电极,位于所述沟槽中,在所述屏蔽电极之上,但通过层间电介质与所述屏蔽电极绝缘,所述层间电介质包括共形电介质层和热氧化物层。
14.根据权利要求13所述的场效应晶体管,其中,所述栅电极通过沿上部沟槽侧壁延伸的栅极电介质与所述硅区域绝缘,并且所述层间电介质的厚度与所述栅极电介质的厚度之比大于3比1。
15.根据权利要求13所述的场效应晶体管,其中,所述层间电介质沿其上表面具有凹的轮廓。
16.根据权利要求13所述的场效应晶体管,其中,所述栅电极沿其下表面具有凹的轮廓。
17.根据权利要求13所述的场效应晶体管,其中,所述共形电介质层沿其下表面和侧壁被所述热电介质所环绕。
18.根据权利要求13所述的场效应晶体管,其中,所述共形电介质层具有凸的下表面和凹的上表面。
19.根据权利要求13所述的场效应晶体管,其中,所述屏蔽电极具有圆形顶面。
20.根据权利要求13所述的场效应晶体管,其中,所述硅区域包括:
所述第一导电类型的外延层,在所述第一导电类型的衬底之上延伸;
第二导电类型的阱区,位于所述外延层中;以及
所述第一导电类型的源区,位于所述阱区中,所述源区位于所述沟槽侧面。
21.根据权利要求20所述的场效应晶体管,其中,所述沟槽延伸至并且终止于所述外延层中。
22.根据权利要求20所述的场效应晶体管,其中,所述沟槽延伸穿过所述外延层并且终止于所述衬底中。
23.一种场效应晶体管,包括:
沟槽,延伸至第一导电类型的硅区域中;
屏蔽电极,位于所述沟槽下部中,所述屏蔽电极通过屏蔽电介质与所述硅区域绝缘;以及
栅电极,位于所述沟槽中,在所述屏蔽电极之上,但通过沿其上表面具有凹的轮廓的层间电介质与所述屏蔽电极绝缘。
24.根据权利要求23所述的场效应晶体管,其中,所述屏蔽电极具有圆形顶面。
25.根据权利要求23所述的场效应晶体管,其中,所述硅区域包括:
所述第一导电类型的外延层,在所述第一导电类型的衬底之上延伸;
第二导电类型的阱区,位于所述外延层中;以及
所述第一导电类型的源区,位于所述阱区中,所述源区位于所述沟槽侧面。
26.根据权利要求25所述的场效应晶体管,其中,所述沟槽延伸至并且终止于所述外延层中。
27.根据权利要求25所述的场效应晶体管,其中,所述沟槽延伸穿过所述外延层并且终止于所述衬底中。
28.一种场效应晶体管,包括:
沟槽,延伸至第一导电类型的硅区域中;
屏蔽电极,位于所述沟槽下部中,所述屏蔽电极通过屏蔽电介质与所述硅区域绝缘;以及
栅电极,位于所述沟槽中,在所述屏蔽电极之上,但通过层间电介质与所述屏蔽电极绝缘,所述层间电介质包括共形电介质层,所述共形电介质层具有沿其下表面的凸的轮廓和沿其上表面的凹的轮廓。
29.根据权利要求28所述的场效应晶体管,其中,所述栅电极沿其下表面具有凹的轮廓。
30.根据权利要求28所述的场效应晶体管,其中,所述层间电介质进一步包括沿所述共形电介质层下表面和侧壁环绕所述共形电介质层的热电介质。
31.根据权利要求28所述的场效应晶体管,其中,所述硅区域包括:
所述第一导电类型的外延层,在所述第一导电类型的衬底之上延伸;
第二导电类型的阱区,位于所述外延层中;以及
所述第一导电类型的源区,位于所述阱区中,所述源区位于所述沟槽侧面。
32.根据权利要求31所述的场效应晶体管,其中,所述沟槽延伸至并且终止于所述外延层中。
33.根据权利要求31所述的场效应晶体管,其中,所述沟槽延伸穿过所述外延层并且终止于所述衬底中。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/201,400 | 2005-08-09 | ||
US11/201,400 US7385248B2 (en) | 2005-08-09 | 2005-08-09 | Shielded gate field effect transistor with improved inter-poly dielectric |
PCT/US2006/030944 WO2007021701A2 (en) | 2005-08-09 | 2006-08-04 | Structure and method for forming inter-poly dielectric in a shielded gate field effect transistor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101186508A Division CN101800245B (zh) | 2005-08-09 | 2006-08-04 | 在屏蔽的栅极场效应晶体管中形成多晶硅层间电介质的结构和方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101238581A CN101238581A (zh) | 2008-08-06 |
CN101238581B true CN101238581B (zh) | 2010-04-14 |
Family
ID=37743042
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101186508A Expired - Fee Related CN101800245B (zh) | 2005-08-09 | 2006-08-04 | 在屏蔽的栅极场效应晶体管中形成多晶硅层间电介质的结构和方法 |
CN2006800287698A Expired - Fee Related CN101238581B (zh) | 2005-08-09 | 2006-08-04 | 在屏蔽的栅极场效应晶体管中形成多晶硅层间电介质的结构和方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101186508A Expired - Fee Related CN101800245B (zh) | 2005-08-09 | 2006-08-04 | 在屏蔽的栅极场效应晶体管中形成多晶硅层间电介质的结构和方法 |
Country Status (9)
Country | Link |
---|---|
US (2) | US7385248B2 (zh) |
JP (1) | JP5075823B2 (zh) |
KR (1) | KR101221242B1 (zh) |
CN (2) | CN101800245B (zh) |
AT (1) | AT504736A2 (zh) |
DE (1) | DE112006002077B4 (zh) |
MY (1) | MY141412A (zh) |
TW (1) | TWI417963B (zh) |
WO (1) | WO2007021701A2 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101800245B (zh) * | 2005-08-09 | 2013-03-27 | 飞兆半导体公司 | 在屏蔽的栅极场效应晶体管中形成多晶硅层间电介质的结构和方法 |
Families Citing this family (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6838722B2 (en) | 2002-03-22 | 2005-01-04 | Siliconix Incorporated | Structures of and methods of fabricating trench-gated MIS devices |
JP5259920B2 (ja) * | 2004-08-04 | 2013-08-07 | ローム株式会社 | 半導体装置およびその製造方法 |
KR100550351B1 (ko) * | 2004-09-07 | 2006-02-08 | 삼성전자주식회사 | 반도체 장치의 막 형성방법 및 이를 수행하기 위한 반도체장치의 막 형성 장치 |
JP4955222B2 (ja) | 2005-05-20 | 2012-06-20 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
DE102005041256B4 (de) * | 2005-08-31 | 2007-12-20 | Infineon Technologies Ag | Trenchtransistor |
US7319256B1 (en) * | 2006-06-19 | 2008-01-15 | Fairchild Semiconductor Corporation | Shielded gate trench FET with the shield and gate electrodes being connected together |
US20080272429A1 (en) * | 2007-05-04 | 2008-11-06 | Icemos Technology Corporation | Superjunction devices having narrow surface layout of terminal structures and methods of manufacturing the devices |
US8159021B2 (en) * | 2008-02-20 | 2012-04-17 | Force-Mos Technology Corporation | Trench MOSFET with double epitaxial structure |
US20090242973A1 (en) | 2008-03-31 | 2009-10-01 | Alpha & Omega Semiconductor, Ltd. | Source and body contact structure for trench-dmos devices using polysilicon |
US8174071B2 (en) * | 2008-05-02 | 2012-05-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | High voltage LDMOS transistor |
US20100308400A1 (en) * | 2008-06-20 | 2010-12-09 | Maxpower Semiconductor Inc. | Semiconductor Power Switches Having Trench Gates |
US7936009B2 (en) | 2008-07-09 | 2011-05-03 | Fairchild Semiconductor Corporation | Shielded gate trench FET with an inter-electrode dielectric having a low-k dielectric therein |
EP2308095A1 (en) * | 2008-07-25 | 2011-04-13 | Nxp B.V. | A trench-gate semiconductor device |
US7893488B2 (en) * | 2008-08-20 | 2011-02-22 | Alpha & Omega Semiconductor, Inc. | Charged balanced devices with shielded gate trench |
US8278702B2 (en) * | 2008-09-16 | 2012-10-02 | Fairchild Semiconductor Corporation | High density trench field effect transistor |
US8044459B2 (en) * | 2008-11-10 | 2011-10-25 | Infineon Technologies Austria Ag | Semiconductor device with trench field plate including first and second semiconductor materials |
US8304829B2 (en) | 2008-12-08 | 2012-11-06 | Fairchild Semiconductor Corporation | Trench-based power semiconductor devices with increased breakdown voltage characteristics |
US8174067B2 (en) | 2008-12-08 | 2012-05-08 | Fairchild Semiconductor Corporation | Trench-based power semiconductor devices with increased breakdown voltage characteristics |
US20100187602A1 (en) * | 2009-01-29 | 2010-07-29 | Woolsey Debra S | Methods for making semiconductor devices using nitride consumption locos oxidation |
US8227855B2 (en) * | 2009-02-09 | 2012-07-24 | Fairchild Semiconductor Corporation | Semiconductor devices with stable and controlled avalanche characteristics and methods of fabricating the same |
US8148749B2 (en) * | 2009-02-19 | 2012-04-03 | Fairchild Semiconductor Corporation | Trench-shielded semiconductor device |
US8143125B2 (en) * | 2009-03-27 | 2012-03-27 | Fairchild Semiconductor Corporation | Structure and method for forming a salicide on the gate electrode of a trench-gate FET |
US8072027B2 (en) * | 2009-06-08 | 2011-12-06 | Fairchild Semiconductor Corporation | 3D channel architecture for semiconductor devices |
US8049276B2 (en) | 2009-06-12 | 2011-11-01 | Fairchild Semiconductor Corporation | Reduced process sensitivity of electrode-semiconductor rectifiers |
US8252647B2 (en) * | 2009-08-31 | 2012-08-28 | Alpha & Omega Semiconductor Incorporated | Fabrication of trench DMOS device having thick bottom shielding oxide |
US9425305B2 (en) | 2009-10-20 | 2016-08-23 | Vishay-Siliconix | Structures of and methods of fabricating split gate MIS devices |
US9419129B2 (en) | 2009-10-21 | 2016-08-16 | Vishay-Siliconix | Split gate semiconductor device with curved gate oxide profile |
US8072028B2 (en) * | 2009-10-26 | 2011-12-06 | Infineon Technologies Austria Ag | Method and device including transistor component having a field electrode |
US9306056B2 (en) | 2009-10-30 | 2016-04-05 | Vishay-Siliconix | Semiconductor device with trench-like feed-throughs |
US8021947B2 (en) * | 2009-12-09 | 2011-09-20 | Semiconductor Components Industries, Llc | Method of forming an insulated gate field effect transistor device having a shield electrode structure |
US8247296B2 (en) | 2009-12-09 | 2012-08-21 | Semiconductor Components Industries, Llc | Method of forming an insulated gate field effect transistor device having a shield electrode structure |
CN102859699B (zh) | 2010-03-02 | 2016-01-06 | 维西埃-硅化物公司 | 制造双栅极装置的结构和方法 |
US8580667B2 (en) | 2010-12-14 | 2013-11-12 | Alpha And Omega Semiconductor Incorporated | Self aligned trench MOSFET with integrated diode |
CN102623501B (zh) * | 2011-01-28 | 2015-06-03 | 万国半导体股份有限公司 | 带有增强型源极-金属接头的屏蔽栅极沟槽金属氧化物半导体场效应管 |
US8610205B2 (en) * | 2011-03-16 | 2013-12-17 | Fairchild Semiconductor Corporation | Inter-poly dielectric in a shielded gate MOSFET device |
DE112012002136T5 (de) | 2011-05-18 | 2014-03-13 | Vishay-Siliconix | Halbleitervorrichtung |
US8680607B2 (en) * | 2011-06-20 | 2014-03-25 | Maxpower Semiconductor, Inc. | Trench gated power device with multiple trench width and its fabrication process |
US20130001678A1 (en) * | 2011-06-29 | 2013-01-03 | Stmicroelectronics S.R.L. | High breakdown voltage semiconductor device with an insulated gate formed in a trench, and manufacturing process thereof |
US8872278B2 (en) | 2011-10-25 | 2014-10-28 | Fairchild Semiconductor Corporation | Integrated gate runner and field implant termination for trench devices |
US8816431B2 (en) * | 2012-03-09 | 2014-08-26 | Fairchild Semiconductor Corporation | Shielded gate MOSFET device with a funnel-shaped trench |
CN103367144A (zh) * | 2012-03-26 | 2013-10-23 | 马克斯半导体股份有限公司 | 沟槽式井区电场屏蔽功率mosfet结构及制作方法 |
KR101893615B1 (ko) * | 2012-06-15 | 2018-08-31 | 매그나칩 반도체 유한회사 | 반도체 소자 및 그 소자의 제조 방법 |
TWI512841B (zh) | 2012-07-13 | 2015-12-11 | Ubiq Semiconductor Corp | 溝槽式閘極金氧半場效電晶體的製造方法 |
TWI470790B (zh) | 2012-07-13 | 2015-01-21 | Ubiq Semiconductor Corp | 溝渠式閘極金氧半場效電晶體 |
CN103632950B (zh) * | 2012-08-20 | 2016-02-10 | 上海华虹宏力半导体制造有限公司 | 沟槽型双层栅mos中的多晶硅之间的氮化膜形成方法 |
CN103632949B (zh) * | 2012-08-28 | 2016-06-08 | 上海华虹宏力半导体制造有限公司 | 沟槽型双层栅mos的多晶硅间的热氧介质层的形成方法 |
JP2014056913A (ja) * | 2012-09-12 | 2014-03-27 | Sumitomo Electric Ind Ltd | 炭化珪素半導体装置 |
JP5811973B2 (ja) | 2012-09-12 | 2015-11-11 | 住友電気工業株式会社 | 炭化珪素半導体装置の製造方法 |
JP6056292B2 (ja) | 2012-09-12 | 2017-01-11 | 住友電気工業株式会社 | 炭化珪素半導体装置の製造方法 |
US9000497B2 (en) * | 2012-09-14 | 2015-04-07 | Renesas Electronics Corporation | Trench MOSFET having an independent coupled element in a trench |
CN103855017B (zh) * | 2012-12-03 | 2016-08-17 | 上海华虹宏力半导体制造有限公司 | 形成沟槽型双层栅mos结构两层多晶硅横向隔离的方法 |
WO2014197802A1 (en) * | 2013-06-06 | 2014-12-11 | United Silicon Carbide, Inc. | Trench shield connected jfet |
TWI528424B (zh) * | 2013-08-05 | 2016-04-01 | 台灣茂矽電子股份有限公司 | 於金氧半場效電晶體形成遮蔽閘之方法 |
KR20150030799A (ko) | 2013-09-12 | 2015-03-23 | 매그나칩 반도체 유한회사 | 반도체 소자 및 그 제조 방법 |
KR102156130B1 (ko) | 2014-04-10 | 2020-09-15 | 삼성전자주식회사 | 반도체 소자 형성 방법 |
US9257622B2 (en) * | 2014-04-14 | 2016-02-09 | Jin-Ywan Lin | Light-emitting structure |
WO2016028943A1 (en) | 2014-08-19 | 2016-02-25 | Vishay-Siliconix | Electronic circuit |
CN105789043B (zh) * | 2014-12-25 | 2019-03-12 | 华润微电子(重庆)有限公司 | 沟槽型半导体器件及其制作方法 |
US10396215B2 (en) | 2015-03-10 | 2019-08-27 | United Silicon Carbide, Inc. | Trench vertical JFET with improved threshold voltage control |
JP6115678B1 (ja) * | 2016-02-01 | 2017-04-19 | 富士電機株式会社 | 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 |
CN108701715B (zh) * | 2016-03-31 | 2021-04-27 | 新电元工业株式会社 | 半导体装置的制造方法以及半导体装置 |
CN105895516B (zh) * | 2016-04-29 | 2018-08-31 | 深圳尚阳通科技有限公司 | 具有屏蔽栅的沟槽栅mosfet的制造方法 |
TWI577010B (zh) * | 2016-05-18 | 2017-04-01 | 杰力科技股份有限公司 | 功率金氧半導體場效電晶體 |
TWI643253B (zh) * | 2016-05-18 | 2018-12-01 | 杰力科技股份有限公司 | 功率金氧半導體場效電晶體的製造方法 |
TWI615889B (zh) | 2016-05-18 | 2018-02-21 | 杰力科技股份有限公司 | 功率金氧半導體場效電晶體的製造方法 |
US10056457B2 (en) | 2016-05-23 | 2018-08-21 | General Electric Company | Electric field shielding in silicon carbide metal-oxide-semiconductor (MOS) device cells using channel region extensions |
JP6649216B2 (ja) * | 2016-09-16 | 2020-02-19 | 株式会社東芝 | 半導体装置およびその製造方法 |
TWI663725B (zh) | 2017-04-26 | 2019-06-21 | 國立清華大學 | 溝槽式閘極功率金氧半場效電晶體之結構 |
CN109216449B (zh) * | 2017-06-30 | 2021-07-30 | 帅群微电子股份有限公司 | 沟槽式功率半导体元件及其制造方法 |
US10153357B1 (en) | 2017-08-28 | 2018-12-11 | Nxp Usa, Inc. | Superjunction power semiconductor device and method for forming |
CN107871787B (zh) * | 2017-10-11 | 2021-10-12 | 矽力杰半导体技术(杭州)有限公司 | 一种制造沟槽mosfet的方法 |
TW201926470A (zh) * | 2017-12-06 | 2019-07-01 | 力祥半導體股份有限公司 | 溝槽式閘極金氧半場效電晶體 |
CN108389800A (zh) * | 2018-01-31 | 2018-08-10 | 华润微电子(重庆)有限公司 | 屏蔽栅沟槽场效应晶体管的制造方法 |
US10714574B2 (en) * | 2018-05-08 | 2020-07-14 | Ipower Semiconductor | Shielded trench devices |
JP6970068B2 (ja) | 2018-09-14 | 2021-11-24 | 株式会社東芝 | 半導体装置 |
JP7061954B2 (ja) * | 2018-11-07 | 2022-05-02 | 三菱電機株式会社 | 半導体装置 |
CN111613674B (zh) * | 2019-02-25 | 2024-10-25 | 恒泰柯半导体(上海)有限公司 | 深沟道mosfet |
CN111863617A (zh) * | 2019-04-24 | 2020-10-30 | 帅群微电子股份有限公司 | 沟槽式功率半导体组件及其制造方法 |
US11217541B2 (en) | 2019-05-08 | 2022-01-04 | Vishay-Siliconix, LLC | Transistors with electrically active chip seal ring and methods of manufacture |
US10811502B1 (en) * | 2019-05-30 | 2020-10-20 | Nxp Usa, Inc. | Method of manufacture of super-junction power semiconductor device |
CN110335895A (zh) * | 2019-07-31 | 2019-10-15 | 上海昱率科技有限公司 | 功率器件及其制造方法 |
US11218144B2 (en) | 2019-09-12 | 2022-01-04 | Vishay-Siliconix, LLC | Semiconductor device with multiple independent gates |
CN110896026A (zh) * | 2019-11-22 | 2020-03-20 | 矽力杰半导体技术(杭州)有限公司 | 沟槽型mosfet结构及其制造方法 |
CN112864018B (zh) * | 2019-11-28 | 2022-07-19 | 华润微电子(重庆)有限公司 | 沟槽型场效应晶体管结构及其制备方法 |
CN111276394B (zh) * | 2020-02-18 | 2022-09-23 | 捷捷微电(上海)科技有限公司 | 一种分离栅mosfet的制作方法 |
DE102020205706A1 (de) | 2020-05-06 | 2021-11-11 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung eines defektarmen Übergangs |
CN113327858B (zh) * | 2020-07-15 | 2024-02-06 | 上海积塔半导体有限公司 | 屏蔽栅场效应晶体管及其制造方法 |
CN111681963B (zh) * | 2020-08-11 | 2020-11-20 | 中芯集成电路制造(绍兴)有限公司 | 一种屏蔽栅场效应晶体管及其形成方法 |
US11848378B2 (en) * | 2020-08-13 | 2023-12-19 | Stmicroelectronics Pte Ltd | Split-gate trench power MOSFET with self-aligned poly-to-poly isolation |
JP7512920B2 (ja) * | 2021-02-05 | 2024-07-09 | 三菱電機株式会社 | 半導体装置およびその製造方法 |
EP4057359A1 (en) | 2021-03-08 | 2022-09-14 | Nexperia B.V. | Semiconductor device comprising mutually separated trench structures |
KR102500888B1 (ko) | 2021-05-31 | 2023-02-17 | 주식회사 키파운드리 | 분할 게이트 전력 모스펫 및 제조 방법 |
CN114678275B (zh) * | 2021-12-29 | 2024-07-30 | 杭州芯迈半导体技术有限公司 | 分离栅mosfet及其制造方法 |
CN114242578B (zh) * | 2022-02-21 | 2022-06-17 | 威海银创微电子技术有限公司 | SGT Mosfet中IPO厚度的可控方法、装置及介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6331466B1 (en) * | 1994-02-21 | 2001-12-18 | Mitsubishi Denki Kabushiki Kaisha | Insulated gate semiconductor device and manufacturing method thereof |
US6608350B2 (en) * | 2000-12-07 | 2003-08-19 | International Rectifier Corporation | High voltage vertical conduction superjunction semiconductor device |
US6734066B2 (en) * | 2002-05-24 | 2004-05-11 | Nanya Technology Corporation | Method for fabricating split gate flash memory cell |
Family Cites Families (172)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3404295A (en) | 1964-11-30 | 1968-10-01 | Motorola Inc | High frequency and voltage transistor with added region for punch-through protection |
US3412297A (en) | 1965-12-16 | 1968-11-19 | United Aircraft Corp | Mos field-effect transistor with a onemicron vertical channel |
US3497777A (en) | 1967-06-13 | 1970-02-24 | Stanislas Teszner | Multichannel field-effect semi-conductor device |
US3564356A (en) | 1968-10-24 | 1971-02-16 | Tektronix Inc | High voltage integrated circuit transistor |
US3660697A (en) | 1970-02-16 | 1972-05-02 | Bell Telephone Labor Inc | Monolithic semiconductor apparatus adapted for sequential charge transfer |
US4003072A (en) | 1972-04-20 | 1977-01-11 | Sony Corporation | Semiconductor device with high voltage breakdown resistance |
US4011105A (en) | 1975-09-15 | 1977-03-08 | Mos Technology, Inc. | Field inversion control for n-channel device integrated circuits |
US4337474A (en) | 1978-08-31 | 1982-06-29 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device |
US4698653A (en) | 1979-10-09 | 1987-10-06 | Cardwell Jr Walter T | Semiconductor devices controlled by depletion regions |
US4638344A (en) | 1979-10-09 | 1987-01-20 | Cardwell Jr Walter T | Junction field-effect transistor controlled by merged depletion regions |
US4345265A (en) | 1980-04-14 | 1982-08-17 | Supertex, Inc. | MOS Power transistor with improved high-voltage capability |
US4868624A (en) | 1980-05-09 | 1989-09-19 | Regents Of The University Of Minnesota | Channel collector transistor |
US4300150A (en) | 1980-06-16 | 1981-11-10 | North American Philips Corporation | Lateral double-diffused MOS transistor device |
US4326332A (en) | 1980-07-28 | 1982-04-27 | International Business Machines Corp. | Method of making a high density V-MOS memory array |
EP0051693B1 (de) | 1980-11-12 | 1985-06-19 | Ibm Deutschland Gmbh | Elektrisch umschaltbarer Festwertspeicher |
US4324038A (en) | 1980-11-24 | 1982-04-13 | Bell Telephone Laboratories, Incorporated | Method of fabricating MOS field effect transistors |
US4969028A (en) | 1980-12-02 | 1990-11-06 | General Electric Company | Gate enhanced rectifier |
GB2089119A (en) | 1980-12-10 | 1982-06-16 | Philips Electronic Associated | High voltage semiconductor devices |
US4974059A (en) | 1982-12-21 | 1990-11-27 | International Rectifier Corporation | Semiconductor high-power mosfet device |
JPS6016420A (ja) | 1983-07-08 | 1985-01-28 | Mitsubishi Electric Corp | 選択的エピタキシヤル成長方法 |
US4639761A (en) | 1983-12-16 | 1987-01-27 | North American Philips Corporation | Combined bipolar-field effect transistor resurf devices |
US4568958A (en) | 1984-01-03 | 1986-02-04 | General Electric Company | Inversion-mode insulated-gate gallium arsenide field-effect transistors |
FR2566179B1 (fr) | 1984-06-14 | 1986-08-22 | Commissariat Energie Atomique | Procede d'autopositionnement d'un oxyde de champ localise par rapport a une tranchee d'isolement |
US5208657A (en) | 1984-08-31 | 1993-05-04 | Texas Instruments Incorporated | DRAM Cell with trench capacitor and vertical channel in substrate |
US4824793A (en) | 1984-09-27 | 1989-04-25 | Texas Instruments Incorporated | Method of making DRAM cell with trench capacitor |
US4673962A (en) | 1985-03-21 | 1987-06-16 | Texas Instruments Incorporated | Vertical DRAM cell and method |
US4774556A (en) | 1985-07-25 | 1988-09-27 | Nippondenso Co., Ltd. | Non-volatile semiconductor memory device |
US5262336A (en) | 1986-03-21 | 1993-11-16 | Advanced Power Technology, Inc. | IGBT process to produce platinum lifetime control |
US4767722A (en) | 1986-03-24 | 1988-08-30 | Siliconix Incorporated | Method for making planar vertical channel DMOS structures |
US5034785A (en) | 1986-03-24 | 1991-07-23 | Siliconix Incorporated | Planar vertical channel DMOS structure |
US4716126A (en) | 1986-06-05 | 1987-12-29 | Siliconix Incorporated | Fabrication of double diffused metal oxide semiconductor transistor |
US4746630A (en) | 1986-09-17 | 1988-05-24 | Hewlett-Packard Company | Method for producing recessed field oxide with improved sidewall characteristics |
US4941026A (en) | 1986-12-05 | 1990-07-10 | General Electric Company | Semiconductor devices exhibiting minimum on-resistance |
JP2577330B2 (ja) | 1986-12-11 | 1997-01-29 | 新技術事業団 | 両面ゲ−ト静電誘導サイリスタの製造方法 |
US5105243A (en) | 1987-02-26 | 1992-04-14 | Kabushiki Kaisha Toshiba | Conductivity-modulation metal oxide field effect transistor with single gate structure |
US4821095A (en) | 1987-03-12 | 1989-04-11 | General Electric Company | Insulated gate semiconductor device with extra short grid and method of fabrication |
AU601537B2 (en) | 1987-03-25 | 1990-09-13 | Kabushiki Kaisha Komatsu Seisakusho | Hydraulic clutch pressure control apparatus |
US4745079A (en) | 1987-03-30 | 1988-05-17 | Motorola, Inc. | Method for fabricating MOS transistors having gates with different work functions |
US4823176A (en) | 1987-04-03 | 1989-04-18 | General Electric Company | Vertical double diffused metal oxide semiconductor (VDMOS) device including high voltage junction exhibiting increased safe operating area |
US4801986A (en) | 1987-04-03 | 1989-01-31 | General Electric Company | Vertical double diffused metal oxide semiconductor VDMOS device with increased safe operating area and method |
US5164325A (en) | 1987-10-08 | 1992-11-17 | Siliconix Incorporated | Method of making a vertical current flow field effect transistor |
US4893160A (en) | 1987-11-13 | 1990-01-09 | Siliconix Incorporated | Method for increasing the performance of trenched devices and the resulting structure |
US4914058A (en) | 1987-12-29 | 1990-04-03 | Siliconix Incorporated | Grooved DMOS process with varying gate dielectric thickness |
EP0332822A1 (de) | 1988-02-22 | 1989-09-20 | Asea Brown Boveri Ag | Feldeffektgesteuertes, bipolares Leistungshalbleiter-Bauelement sowie Verfahren zu seiner Herstellung |
US4967245A (en) | 1988-03-14 | 1990-10-30 | Siliconix Incorporated | Trench power MOSFET device |
US5283201A (en) | 1988-05-17 | 1994-02-01 | Advanced Power Technology, Inc. | High density power device fabrication process |
KR0173111B1 (ko) | 1988-06-02 | 1999-02-01 | 야마무라 가쯔미 | 트렌치 게이트 mos fet |
US4961100A (en) | 1988-06-20 | 1990-10-02 | General Electric Company | Bidirectional field effect semiconductor device and circuit |
JPH0216763A (ja) | 1988-07-05 | 1990-01-19 | Toshiba Corp | 半導体装置の製造方法 |
US4853345A (en) | 1988-08-22 | 1989-08-01 | Delco Electronics Corporation | Process for manufacture of a vertical DMOS transistor |
US5268311A (en) | 1988-09-01 | 1993-12-07 | International Business Machines Corporation | Method for forming a thin dielectric layer on a substrate |
US5156989A (en) | 1988-11-08 | 1992-10-20 | Siliconix, Incorporated | Complementary, isolated DMOS IC technology |
US5346834A (en) | 1988-11-21 | 1994-09-13 | Hitachi, Ltd. | Method for manufacturing a semiconductor device and a semiconductor memory device |
US5072266A (en) | 1988-12-27 | 1991-12-10 | Siliconix Incorporated | Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry |
US5111253A (en) | 1989-05-09 | 1992-05-05 | General Electric Company | Multicellular FET having a Schottky diode merged therewith |
US4992390A (en) | 1989-07-06 | 1991-02-12 | General Electric Company | Trench gate structure with thick bottom oxide |
EP0450082B1 (en) | 1989-08-31 | 2004-04-28 | Denso Corporation | Insulated gate bipolar transistor |
US5248894A (en) | 1989-10-03 | 1993-09-28 | Harris Corporation | Self-aligned channel stop for trench-isolated island |
US5134448A (en) | 1990-01-29 | 1992-07-28 | Motorola, Inc. | MOSFET with substrate source contact |
US5242845A (en) | 1990-06-13 | 1993-09-07 | Kabushiki Kaisha Toshiba | Method of production of vertical MOS transistor |
US5071782A (en) | 1990-06-28 | 1991-12-10 | Texas Instruments Incorporated | Vertical memory cell array and method of fabrication |
US5079608A (en) | 1990-11-06 | 1992-01-07 | Harris Corporation | Power MOSFET transistor circuit with active clamp |
EP0487022B1 (en) | 1990-11-23 | 1997-04-23 | Texas Instruments Incorporated | A method of simultaneously fabricating an insulated gate-field-effect transistor and a bipolar transistor |
US5065273A (en) | 1990-12-04 | 1991-11-12 | International Business Machines Corporation | High capacity DRAM trench capacitor and methods of fabricating same |
US5168331A (en) | 1991-01-31 | 1992-12-01 | Siliconix Incorporated | Power metal-oxide-semiconductor field effect transistor |
JP2825004B2 (ja) | 1991-02-08 | 1998-11-18 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 側壁電荷結合撮像素子及びその製造方法 |
CN1019720B (zh) | 1991-03-19 | 1992-12-30 | 电子科技大学 | 半导体功率器件 |
US5164802A (en) | 1991-03-20 | 1992-11-17 | Harris Corporation | Power vdmosfet with schottky on lightly doped drain of lateral driver fet |
US5250450A (en) | 1991-04-08 | 1993-10-05 | Micron Technology, Inc. | Insulated-gate vertical field-effect transistor with high current drive and minimum overlap capacitance |
JP2603886B2 (ja) | 1991-05-09 | 1997-04-23 | 日本電信電話株式会社 | 薄層soi型絶縁ゲート型電界効果トランジスタの製造方法 |
US5219793A (en) | 1991-06-03 | 1993-06-15 | Motorola Inc. | Method for forming pitch independent contacts and a semiconductor device having the same |
KR940006702B1 (ko) | 1991-06-14 | 1994-07-25 | 금성일렉트론 주식회사 | 모스패트의 제조방법 |
US5298761A (en) | 1991-06-17 | 1994-03-29 | Nikon Corporation | Method and apparatus for exposure process |
JP2570022B2 (ja) | 1991-09-20 | 1997-01-08 | 株式会社日立製作所 | 定電圧ダイオード及びそれを用いた電力変換装置並びに定電圧ダイオードの製造方法 |
JPH0613627A (ja) | 1991-10-08 | 1994-01-21 | Semiconductor Energy Lab Co Ltd | 半導体装置およびその作製方法 |
US5300452A (en) | 1991-12-18 | 1994-04-05 | U.S. Philips Corporation | Method of manufacturing an optoelectronic semiconductor device |
US5366914A (en) | 1992-01-29 | 1994-11-22 | Nec Corporation | Vertical power MOSFET structure having reduced cell area |
JPH06196723A (ja) | 1992-04-28 | 1994-07-15 | Mitsubishi Electric Corp | 半導体装置及びその製造方法 |
US5233215A (en) | 1992-06-08 | 1993-08-03 | North Carolina State University At Raleigh | Silicon carbide power MOSFET with floating field ring and floating field plate |
US5430324A (en) * | 1992-07-23 | 1995-07-04 | Siliconix, Incorporated | High voltage transistor having edge termination utilizing trench technology |
US5910669A (en) | 1992-07-24 | 1999-06-08 | Siliconix Incorporated | Field effect Trench transistor having lightly doped epitaxial region on the surface portion thereof |
US5281548A (en) | 1992-07-28 | 1994-01-25 | Micron Technology, Inc. | Plug-based floating gate memory |
US5294824A (en) | 1992-07-31 | 1994-03-15 | Motorola, Inc. | High voltage transistor having reduced on-resistance |
US5300447A (en) | 1992-09-29 | 1994-04-05 | Texas Instruments Incorporated | Method of manufacturing a minimum scaled transistor |
US5275965A (en) | 1992-11-25 | 1994-01-04 | Micron Semiconductor, Inc. | Trench isolation using gated sidewalls |
US5326711A (en) | 1993-01-04 | 1994-07-05 | Texas Instruments Incorporated | High performance high voltage vertical transistor and method of fabrication |
US5418376A (en) | 1993-03-02 | 1995-05-23 | Toyo Denki Seizo Kabushiki Kaisha | Static induction semiconductor device with a distributed main electrode structure and static induction semiconductor device with a static induction main electrode shorted structure |
US5341011A (en) | 1993-03-15 | 1994-08-23 | Siliconix Incorporated | Short channel trenched DMOS transistor |
DE4309764C2 (de) | 1993-03-25 | 1997-01-30 | Siemens Ag | Leistungs-MOSFET |
KR960012585B1 (en) * | 1993-06-25 | 1996-09-23 | Samsung Electronics Co Ltd | Transistor structure and the method for manufacturing the same |
US5371396A (en) | 1993-07-02 | 1994-12-06 | Thunderbird Technologies, Inc. | Field effect transistor having polycrystalline silicon gate junction |
US5365102A (en) | 1993-07-06 | 1994-11-15 | North Carolina State University | Schottky barrier rectifier with MOS trench |
BE1007283A3 (nl) | 1993-07-12 | 1995-05-09 | Philips Electronics Nv | Halfgeleiderinrichting met een most voorzien van een extended draingebied voor hoge spanningen. |
JPH07122749A (ja) | 1993-09-01 | 1995-05-12 | Toshiba Corp | 半導体装置及びその製造方法 |
JP3400846B2 (ja) | 1994-01-20 | 2003-04-28 | 三菱電機株式会社 | トレンチ構造を有する半導体装置およびその製造方法 |
US5429977A (en) | 1994-03-11 | 1995-07-04 | Industrial Technology Research Institute | Method for forming a vertical transistor with a stacked capacitor DRAM cell |
US5434435A (en) | 1994-05-04 | 1995-07-18 | North Carolina State University | Trench gate lateral MOSFET |
DE4417150C2 (de) * | 1994-05-17 | 1996-03-14 | Siemens Ag | Verfahren zur Herstellung einer Anordnung mit selbstverstärkenden dynamischen MOS-Transistorspeicherzellen |
US5405794A (en) | 1994-06-14 | 1995-04-11 | Philips Electronics North America Corporation | Method of producing VDMOS device of increased power density |
US5424231A (en) | 1994-08-09 | 1995-06-13 | United Microelectronics Corp. | Method for manufacturing a VDMOS transistor |
US5583368A (en) * | 1994-08-11 | 1996-12-10 | International Business Machines Corporation | Stacked devices |
US5674766A (en) * | 1994-12-30 | 1997-10-07 | Siliconix Incorporated | Method of making a trench MOSFET with multi-resistivity drain to provide low on-resistance by varying dopant concentration in epitaxial layer |
US5597765A (en) * | 1995-01-10 | 1997-01-28 | Siliconix Incorporated | Method for making termination structure for power MOSFET |
JP3325736B2 (ja) * | 1995-02-09 | 2002-09-17 | 三菱電機株式会社 | 絶縁ゲート型半導体装置 |
JP3291957B2 (ja) * | 1995-02-17 | 2002-06-17 | 富士電機株式会社 | 縦型トレンチmisfetおよびその製造方法 |
US5595927A (en) * | 1995-03-17 | 1997-01-21 | Taiwan Semiconductor Manufacturing Company Ltd. | Method for making self-aligned source/drain mask ROM memory cell using trench etched channel |
US5592005A (en) * | 1995-03-31 | 1997-01-07 | Siliconix Incorporated | Punch-through field effect transistor |
US5554552A (en) * | 1995-04-03 | 1996-09-10 | Taiwan Semiconductor Manufacturing Company | PN junction floating gate EEPROM, flash EPROM device and method of manufacture thereof |
US5744372A (en) * | 1995-04-12 | 1998-04-28 | National Semiconductor Corporation | Fabrication of complementary field-effect transistors each having multi-part channel |
JPH08306914A (ja) * | 1995-04-27 | 1996-11-22 | Nippondenso Co Ltd | 半導体装置およびその製造方法 |
US5705409A (en) * | 1995-09-28 | 1998-01-06 | Motorola Inc. | Method for forming trench transistor structure |
US5879971A (en) * | 1995-09-28 | 1999-03-09 | Motorola Inc. | Trench random access memory cell and method of formation |
US5616945A (en) * | 1995-10-13 | 1997-04-01 | Siliconix Incorporated | Multiple gated MOSFET for use in DC-DC converter |
US6037632A (en) * | 1995-11-06 | 2000-03-14 | Kabushiki Kaisha Toshiba | Semiconductor device |
EP1408554B1 (de) * | 1996-02-05 | 2015-03-25 | Infineon Technologies AG | Durch Feldeffekt steuerbares Halbleiterbauelement |
US5895951A (en) * | 1996-04-05 | 1999-04-20 | Megamos Corporation | MOSFET structure and fabrication process implemented by forming deep and narrow doping regions through doping trenches |
US5719409A (en) * | 1996-06-06 | 1998-02-17 | Cree Research, Inc. | Silicon carbide metal-insulator semiconductor field effect transistor |
JP2891205B2 (ja) * | 1996-10-21 | 1999-05-17 | 日本電気株式会社 | 半導体集積回路の製造方法 |
US6207994B1 (en) * | 1996-11-05 | 2001-03-27 | Power Integrations, Inc. | High-voltage transistor with multi-layer conduction region |
US6168983B1 (en) * | 1996-11-05 | 2001-01-02 | Power Integrations, Inc. | Method of making a high-voltage transistor with multiple lateral conduction layers |
US6011298A (en) * | 1996-12-31 | 2000-01-04 | Stmicroelectronics, Inc. | High voltage termination with buried field-shaping region |
JP3938964B2 (ja) * | 1997-02-10 | 2007-06-27 | 三菱電機株式会社 | 高耐圧半導体装置およびその製造方法 |
US5877528A (en) * | 1997-03-03 | 1999-03-02 | Megamos Corporation | Structure to provide effective channel-stop in termination areas for trenched power transistors |
KR100225409B1 (ko) * | 1997-03-27 | 1999-10-15 | 김덕중 | 트렌치 디-모오스 및 그의 제조 방법 |
US5879994A (en) * | 1997-04-15 | 1999-03-09 | National Semiconductor Corporation | Self-aligned method of fabricating terrace gate DMOS transistor |
US6037628A (en) * | 1997-06-30 | 2000-03-14 | Intersil Corporation | Semiconductor structures with trench contacts |
JP3502531B2 (ja) * | 1997-08-28 | 2004-03-02 | 株式会社ルネサステクノロジ | 半導体装置の製造方法 |
DE19740195C2 (de) * | 1997-09-12 | 1999-12-02 | Siemens Ag | Halbleiterbauelement mit Metall-Halbleiterübergang mit niedrigem Sperrstrom |
US6337499B1 (en) * | 1997-11-03 | 2002-01-08 | Infineon Technologies Ag | Semiconductor component |
US5949104A (en) * | 1998-02-07 | 1999-09-07 | Xemod, Inc. | Source connection structure for lateral RF MOS devices |
US5897343A (en) * | 1998-03-30 | 1999-04-27 | Motorola, Inc. | Method of making a power switching trench MOSFET having aligned source regions |
US5945724A (en) * | 1998-04-09 | 1999-08-31 | Micron Technology, Inc. | Trench isolation region for semiconductor device |
US6048772A (en) * | 1998-05-04 | 2000-04-11 | Xemod, Inc. | Method for fabricating a lateral RF MOS device with an non-diffusion source-backside connection |
DE19820223C1 (de) * | 1998-05-06 | 1999-11-04 | Siemens Ag | Verfahren zum Herstellen einer Epitaxieschicht mit lateral veränderlicher Dotierung |
US6015727A (en) * | 1998-06-08 | 2000-01-18 | Wanlass; Frank M. | Damascene formation of borderless contact MOS transistors |
DE19848828C2 (de) * | 1998-10-22 | 2001-09-13 | Infineon Technologies Ag | Halbleiterbauelement mit kleiner Durchlaßspannung und hoher Sperrfähigkeit |
US6194741B1 (en) * | 1998-11-03 | 2001-02-27 | International Rectifier Corp. | MOSgated trench type power semiconductor with silicon carbide substrate and increased gate breakdown voltage and reduced on-resistance |
DE19854915C2 (de) * | 1998-11-27 | 2002-09-05 | Infineon Technologies Ag | MOS-Feldeffekttransistor mit Hilfselektrode |
US6351018B1 (en) * | 1999-02-26 | 2002-02-26 | Fairchild Semiconductor Corporation | Monolithically integrated trench MOSFET and Schottky diode |
US6204097B1 (en) * | 1999-03-01 | 2001-03-20 | Semiconductor Components Industries, Llc | Semiconductor device and method of manufacture |
US6188105B1 (en) * | 1999-04-01 | 2001-02-13 | Intersil Corporation | High density MOS-gated power device and process for forming same |
TW425701B (en) * | 1999-04-27 | 2001-03-11 | Taiwan Semiconductor Mfg | Manufacturing method of stack-type capacitor |
US6198127B1 (en) * | 1999-05-19 | 2001-03-06 | Intersil Corporation | MOS-gated power device having extended trench and doping zone and process for forming same |
US6191447B1 (en) * | 1999-05-28 | 2001-02-20 | Micro-Ohm Corporation | Power semiconductor devices that utilize tapered trench-based insulating regions to improve electric field profiles in highly doped drift region mesas and methods of forming same |
JP3851744B2 (ja) * | 1999-06-28 | 2006-11-29 | 株式会社東芝 | 半導体装置の製造方法 |
GB9917099D0 (en) * | 1999-07-22 | 1999-09-22 | Koninkl Philips Electronics Nv | Cellular trench-gate field-effect transistors |
JP3971062B2 (ja) * | 1999-07-29 | 2007-09-05 | 株式会社東芝 | 高耐圧半導体装置 |
JP2001085685A (ja) * | 1999-09-13 | 2001-03-30 | Shindengen Electric Mfg Co Ltd | トランジスタ |
US20030060013A1 (en) * | 1999-09-24 | 2003-03-27 | Bruce D. Marchant | Method of manufacturing trench field effect transistors with trenched heavy body |
US6461918B1 (en) * | 1999-12-20 | 2002-10-08 | Fairchild Semiconductor Corporation | Power MOS device with improved gate charge performance |
US6285060B1 (en) * | 1999-12-30 | 2001-09-04 | Siliconix Incorporated | Barrier accumulation-mode MOSFET |
US6346469B1 (en) * | 2000-01-03 | 2002-02-12 | Motorola, Inc. | Semiconductor device and a process for forming the semiconductor device |
US6627949B2 (en) * | 2000-06-02 | 2003-09-30 | General Semiconductor, Inc. | High voltage power MOSFET having low on-resistance |
US6479352B2 (en) * | 2000-06-02 | 2002-11-12 | General Semiconductor, Inc. | Method of fabricating high voltage power MOSFET having low on-resistance |
EP1170803A3 (en) * | 2000-06-08 | 2002-10-09 | Siliconix Incorporated | Trench gate MOSFET and method of making the same |
JP2002016152A (ja) | 2000-06-29 | 2002-01-18 | Toshiba Corp | 半導体装置の製造方法 |
JP4528460B2 (ja) | 2000-06-30 | 2010-08-18 | 株式会社東芝 | 半導体素子 |
US6921939B2 (en) * | 2000-07-20 | 2005-07-26 | Fairchild Semiconductor Corporation | Power MOSFET and method for forming same using a self-aligned body implant |
US6362112B1 (en) * | 2000-11-08 | 2002-03-26 | Fabtech, Inc. | Single step etched moat |
US7345342B2 (en) * | 2001-01-30 | 2008-03-18 | Fairchild Semiconductor Corporation | Power semiconductor devices and methods of manufacture |
US6677641B2 (en) * | 2001-10-17 | 2004-01-13 | Fairchild Semiconductor Corporation | Semiconductor structure with improved smaller forward voltage loss and higher blocking capability |
US6870220B2 (en) | 2002-08-23 | 2005-03-22 | Fairchild Semiconductor Corporation | Method and apparatus for improved MOS gating to reduce miller capacitance and switching losses |
US6683346B2 (en) | 2001-03-09 | 2004-01-27 | Fairchild Semiconductor Corporation | Ultra dense trench-gated power-device with the reduced drain-source feedback capacitance and Miller charge |
TWI248136B (en) * | 2002-03-19 | 2006-01-21 | Infineon Technologies Ag | Method for fabricating a transistor arrangement having trench transistor cells having a field electrode |
DE10324754B4 (de) * | 2003-05-30 | 2018-11-08 | Infineon Technologies Ag | Halbleiterbauelement |
TWI227540B (en) * | 2003-06-10 | 2005-02-01 | Mosel Vitelic Inc | Method for forming rounding corner in the trench |
DE10350684B4 (de) | 2003-10-30 | 2008-08-28 | Infineon Technologies Ag | Verfahren zur Herstellung einer Leistungstransistoranordnung und mit diesem Verfahren hergestellte Leistungstransistoranordnung |
DE10353387B4 (de) | 2003-11-14 | 2008-07-24 | Infineon Technologies Ag | Verfahren zur Herstellung einer Leistungstransistoranordnung und Leistungstransistoranordnung |
JP5034151B2 (ja) | 2003-12-17 | 2012-09-26 | 富士電機株式会社 | 半導体装置およびその製造方法 |
TWI400757B (zh) * | 2005-06-29 | 2013-07-01 | Fairchild Semiconductor | 形成遮蔽閘極場效應電晶體之方法 |
US7238586B2 (en) * | 2005-07-21 | 2007-07-03 | United Microelectronics Corp. | Seamless trench fill method utilizing sub-atmospheric pressure chemical vapor deposition technique |
US7385248B2 (en) * | 2005-08-09 | 2008-06-10 | Fairchild Semiconductor Corporation | Shielded gate field effect transistor with improved inter-poly dielectric |
-
2005
- 2005-08-09 US US11/201,400 patent/US7385248B2/en active Active
-
2006
- 2006-08-04 WO PCT/US2006/030944 patent/WO2007021701A2/en active Application Filing
- 2006-08-04 CN CN2010101186508A patent/CN101800245B/zh not_active Expired - Fee Related
- 2006-08-04 DE DE112006002077.3T patent/DE112006002077B4/de active Active
- 2006-08-04 JP JP2008526148A patent/JP5075823B2/ja active Active
- 2006-08-04 AT AT0934506A patent/AT504736A2/de not_active Application Discontinuation
- 2006-08-04 CN CN2006800287698A patent/CN101238581B/zh not_active Expired - Fee Related
- 2006-08-04 KR KR1020087005785A patent/KR101221242B1/ko active IP Right Grant
- 2006-08-08 TW TW095129026A patent/TWI417963B/zh active
- 2006-08-08 MY MYPI20063822A patent/MY141412A/en unknown
-
2007
- 2007-12-07 US US11/952,481 patent/US7598144B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6331466B1 (en) * | 1994-02-21 | 2001-12-18 | Mitsubishi Denki Kabushiki Kaisha | Insulated gate semiconductor device and manufacturing method thereof |
US6608350B2 (en) * | 2000-12-07 | 2003-08-19 | International Rectifier Corporation | High voltage vertical conduction superjunction semiconductor device |
US6734066B2 (en) * | 2002-05-24 | 2004-05-11 | Nanya Technology Corporation | Method for fabricating split gate flash memory cell |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101800245B (zh) * | 2005-08-09 | 2013-03-27 | 飞兆半导体公司 | 在屏蔽的栅极场效应晶体管中形成多晶硅层间电介质的结构和方法 |
Also Published As
Publication number | Publication date |
---|---|
MY141412A (en) | 2010-04-30 |
CN101800245A (zh) | 2010-08-11 |
US20080090339A1 (en) | 2008-04-17 |
WO2007021701A3 (en) | 2007-09-13 |
TW200715416A (en) | 2007-04-16 |
JP2009505403A (ja) | 2009-02-05 |
KR20080035686A (ko) | 2008-04-23 |
WO2007021701A2 (en) | 2007-02-22 |
KR101221242B1 (ko) | 2013-01-11 |
US7598144B2 (en) | 2009-10-06 |
DE112006002077T5 (de) | 2008-07-03 |
JP5075823B2 (ja) | 2012-11-21 |
US7385248B2 (en) | 2008-06-10 |
US20070037327A1 (en) | 2007-02-15 |
CN101238581A (zh) | 2008-08-06 |
DE112006002077B4 (de) | 2020-01-02 |
TWI417963B (zh) | 2013-12-01 |
AT504736A2 (de) | 2008-07-15 |
CN101800245B (zh) | 2013-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101238581B (zh) | 在屏蔽的栅极场效应晶体管中形成多晶硅层间电介质的结构和方法 | |
US9865694B2 (en) | Split-gate trench power mosfet with protected shield oxide | |
US8610205B2 (en) | Inter-poly dielectric in a shielded gate MOSFET device | |
US7855115B2 (en) | Method for forming laterally extending dielectric layer in a trench-gate FET | |
CN101615632B (zh) | 用于形成具有包括氮化层的极间电介质的屏蔽栅沟槽fet的结构和方法 | |
US7553740B2 (en) | Structure and method for forming a minimum pitch trench-gate FET with heavy body region | |
US8524558B2 (en) | Split gate with different gate materials and work functions to reduce gate resistance of ultra high density MOSFET | |
JP5519902B2 (ja) | リセスチャネルを有するトランジスタ及びその製造方法 | |
US20150221734A1 (en) | Thicker bottom oxide for reduced miller capacitance in trench metal oxide semiconductor field effect transistor (mosfet) | |
US20100187602A1 (en) | Methods for making semiconductor devices using nitride consumption locos oxidation | |
US11069794B2 (en) | Trench power transistor and method of producing the same | |
CN101138093A (zh) | 沟槽型mosfet及其制造方法 | |
KR20090132533A (ko) | 트렌치형 게이트 소자를 위한 두꺼운 저부 유전체의 구조 및 그 제조 방법 | |
US7494876B1 (en) | Trench-gated MIS device having thick polysilicon insulation layer at trench bottom and method of fabricating the same | |
US12113103B2 (en) | Charge-balance power device, and process for manufacturing the charge-balance power device | |
KR100656239B1 (ko) | 선택적 에피택셜 성장에 의해 형성된 트렌치 벽을 갖는 트렌치-게이트 파워 디바이스 | |
CN115810546A (zh) | 一种具有高k介质的屏蔽栅沟槽MOSFET的制造方法 | |
US20240304717A1 (en) | Semiconductor device having split gate structure and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100414 Termination date: 20210804 |
|
CF01 | Termination of patent right due to non-payment of annual fee |