CN100505273C - 平坦的混合取向衬底结构及其形成方法 - Google Patents

平坦的混合取向衬底结构及其形成方法 Download PDF

Info

Publication number
CN100505273C
CN100505273C CNB2004100923713A CN200410092371A CN100505273C CN 100505273 C CN100505273 C CN 100505273C CN B2004100923713 A CNB2004100923713 A CN B2004100923713A CN 200410092371 A CN200410092371 A CN 200410092371A CN 100505273 C CN100505273 C CN 100505273C
Authority
CN
China
Prior art keywords
orientation
crystal semiconductor
crystal
substrat structure
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100923713A
Other languages
English (en)
Other versions
CN1630087A (zh
Inventor
乔尔·P.·德索扎
约翰·A.·奥托
亚历山大·雷泽尼斯克
凯瑟琳·L.·斯恩格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1630087A publication Critical patent/CN1630087A/zh
Application granted granted Critical
Publication of CN100505273C publication Critical patent/CN100505273C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76275Vertical isolation by bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Element Separation (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

提供了一种利用模板叠层的局部非晶化和再结晶来形成具有不同晶向的半导体层的平坦衬底的方法。还提供了用本发明方法形成的混合取向半导体衬底结构以及与包含排列在不同表面取向上的至少二个半导体器件用来提高器件性能的各种CMOS电路集成的这种结构。

Description

平坦的混合取向衬底结构及其形成方法
技术领域
本发明涉及到高性能互补金属氧化物半导体(CMOS)电路,其中,利用p型场效应晶体管(FET)和n型FET不同的半导体表面取向,载流子迁移率得到了提高。更确切地说,本发明涉及到用来制造具有不同表面晶向的平坦衬底的方法,并涉及到用此方法制造的混合取向的衬底结构。
背景技术
当前半导体技术的CMOS电路包含其工作利用电子载流子的n型FET以及其工作利用空穴载流子的p型FET。CMOS电路通常被制造在具有单个晶向的半导体晶片上。确切地说,大多数当今半导体器件被制作在具有(100)表面取向的硅上。
已知电子在(100)表面取向的硅中具有高的迁移率,而空穴在(110)表面取向的硅中具有高的迁移率。实际上,110取向的硅晶片上的空穴迁移率能够高于标准100取向硅晶片上的空穴迁移率大约2-4倍。因此,希望制作一种包含100取向的硅(其中可以制作nFET)以及110取向的硅(其中可以制作pFET)的混合取向的衬底。
具有不同表面取向的平坦混合衬底结构,先前已经有所描述(见例如2003年10月29日提交的共同受让的美国申请No.10/696634以及2003年6月17日提交的共同受让的美国申请No.10/250241)。
图1A-1E剖面图示出了平坦混合取向半导体衬底结构的一些现有技术例子,它包含体半导体衬底10、介质沟槽隔离区20、具有第一表面取向(例如j’k’l’)的半导体区30、以及具有第二表面取向(例如jkl)的半导体区40。在图1A的结构中,半导体区30和40都直接位于体衬底10上,半导体区40与体衬底10具有相同的取向。图1B的结构与图1A的结构的不同之处仅仅在于半导体区30位于埋置的氧化物(BOX)层50上而不是直接位于体衬底10上。图1C-1E的结构与图1A-1B的结构的不同之处是BOX层50和50’的厚度以及沟槽隔离结构20和20’的深度。
图2A-2B剖面图示出了包含至少一个(110)硅晶面上的pFET和至少一个(100)硅晶面上的nFET的集成CMOS电路如何可以被有利地排列在图1B的混合取向衬底结构上的一些以前的例子。在图2A中,100取向的体硅衬底120具有BOX层140上的110取向硅区域130以及体衬底120上的再生长的100取向硅区域150。pFET器件170被排列在110取向的区域130上,而nFET器件180被排列在100取向的区域150上。在图2B中,110取向的体硅衬底180具有BOX层140上的100取向硅区域190以及体衬底180上的再生长的110取向硅区域200。pFET器件210被排列在110取向的区域180上,而nFET器件220被排列在100取向的区域190上。
图3A-3I剖面图示出了用来形成图1B的结构的现有技术方法的各个步骤。具体地说,图3A示出了起始硅衬底250,而图3B示出了形成BOX层260和绝缘体上硅(SiOI)器件层270之后的衬底250。硅衬底250可以是110(或100)取向,且SiOI器件层270可以是100(或110)取向。可以用键合方法或其它方法来形成SiOI层270。在淀积保护介质(最好是SiNx)层280以形成图3C的结构之后,如图3D所示,清除选定区域中的SiOI器件层270和BOX层260,以便形成延伸到硅衬底250的窗290。如图3E所示,用介质(最好是SiNx)对窗290进行衬垫,然后对衬垫进行腐蚀,以便形成侧壁间隔300。接着,在窗290中选择性地生长外延硅310,以便产生图3F的结构,此结构被整平,以便形成图3G的结构。然后用诸如抛光之类的工艺清除保护介质280,以便形成具有共平面的取向不同的硅器件层310(体硅衬底250上)和320(BOX层260上)的图3H的结构。图3I示出了在图3H结构中已经形成了浅沟槽隔离区330之后所完成的衬底结构。
但对于许多应用来说,可能希望在一个BOX上具有二种不同取向的硅区。利用图3A-3I方法的变种,有可能制作这种结构,但不容易。例如,借助于用包含衬底410、BOX层420、以及硅层430的SiOI衬底代替图3A中的硅衬底250来产生不同取向的第一取向单晶区320和与半导体层430一致的第二取向单晶区440,可以形成图4的结构。但使用二个BOX层,对工艺增加了额外的复杂性,并产生了混合取向中的一个明显地比另一个更厚的结构(当二个层需要薄时,这是一个缺点)。此外,选择性外延硅生长可能是错综复杂的;缺陷容易成核在侧壁间隔300的侧壁上(图3E-3F所示),特别当窗口290小(例如直径小于500nm)时,更是如此。
考虑到上述情况,希望具有一些更简单和更好的方法(亦即不要求外延再生长的方法)来形成平坦的混合取向半导体衬底结构,特别是其中不同取向的半导体被排列在一个公共BOX层上的平坦的混合取向绝缘体上半导体(SOI)衬底结构。
此外,希望具有这种平坦的混合取向SOI衬底上的集成电路,其中的电路包含(110)晶面上的pFET以及(100)晶面上的nFET。
发明内容
因此,本发明的目的是提供一种具有一个表面的平坦的混合取向SOI衬底结构,它包含至少二个具有不同表面取向的清楚地确定的单晶半导体区,其中,各个不同取向的半导体区被排列在一个公共的BOX层上。术语“清楚地确定的”在此处被用来表示给定表面取向的各个表面区是宏观的而不仅仅是多晶硅的单个晶粒。
本发明的一个相关目的是提供一些用来制造这种平坦的混合取向半导体衬底结构的方法。
本发明的另一目的是提供一些在各种支持层上制造相似的混合取向半导体衬底结构的方法。
本发明的又一目的是在本发明的混合取向衬底上提供集成电路(IC),其中的IC包含(110)晶面上的pFET以及(100)晶面上的nFET。
本发明提供了一种平坦的混合取向SOI衬底结构,它包含:至少一个清楚地确定的第一单晶半导体区,具有第一表面取向;至少一个清楚地确定的第二单晶半导体区,具有第二表面取向,该第二表面取向不同于所述第一表面取向,该第二单晶半导体区是通过将具有第一表面取向的半导体材料非晶化,然后将非晶化的半导体材料再结晶得到的;其中,所述第一单晶半导体区和所述第二单晶半导体区侧向相邻,并且所述第一单晶半导体区和所述第二单晶半导体区直接设置在公共的埋置绝缘层上,所述公共的埋置绝缘层设置在衬底上。其中,所述至少二个清楚地确定的单晶半导体区的至少一个包含设置在下残留半导体上的上半导体,所述上半导体和下残留半导体具有不同的表面取向,所述下残留半导体与所述公共的埋置绝缘层直接接触。
根据上述和其它的目的,提供了一些新方法来形成各种平坦的混合取向半导体衬底结构。所有方法的共同点在于3个基本步骤,利用这些步骤,选定的半导体区的取向可以从原来的取向被改变成所希望的取向:
形成双层模板叠层,它包含具有第一取向的第一下单晶半导体层(即衬底)以及具有不同于第一取向的第二取向的第二上(通常为键合的)单晶半导体层;
在选定的区域内,(例如用通过掩模的离子注入方法)对双层模板叠层的一个层进行非晶化;以及
用叠层的未被非晶化的层作为模板,对局部非晶化的区域进行再结晶,从而将局部非晶化的区域的取向从原来的取向改变成所希望的取向。
为了尽量减少横向模板的可能性,选定要非晶化的且模板再结晶的各个区域的侧面通常可以例如被沟槽隔离于相邻的结晶区。可以在非晶化之前或在非晶化与再结晶之间来形成和填充这些沟槽,或在非晶化之后形成这些沟槽并在再结晶之后填充这些沟槽。
在本发明的一个实施方案中,上述的各个基本步骤被组合到用来形成平坦的混合取向SiOI衬底结构的方法中。100取向的硅衬底被用于双层模板叠层的第一下层,而110取向的硅层被用于双层模板叠层的第二上层。模板叠层的最上部分在选定的区域内被非晶化到终止于下方100取向硅衬底的深度。然后,用下方100取向的硅作为模板,各个非晶化的硅区被再结晶成100取向的硅。这些图形化非晶化和再结晶步骤在被处理的区域内留下了100取向硅的表面区,并在未被处理的区域内留下了110取向硅的表面区,在这些步骤之后,用氧注入和退火的方法(例如“氧注入分离”或SIMOX工艺),来形成埋置的氧化物(BOX)层。
在本发明的另一个实施方案中,上述的各个基本步骤被组合到用来形成平坦的混合取向SiOI衬底结构的另一方法中。在此方法中,BOX层上110取向的SiOI层被用于双层模板叠层的第一下层,而100取向的硅层被用于双层模板叠层的第二上层。然后,模板叠层的最下部分在选定的区域内被从BOX层一直非晶化到终止于上模板层的深度。然后,用100取向的上层硅作为模板,各个非晶化的硅区被再结晶成100取向的硅。然后,用诸如抛光之类的工艺清除双层模板的最上部分,从而留下110取向的硅(在未被处理的区域内)和100取向的硅(在被处理的区域内)的共平面表面区。
本发明的基本步骤能够容易地被整个或部分地用来在不同的衬底(例如体衬底、薄的或厚的BOX衬底、绝缘的或高阻的衬底)上形成平坦的混合取向半导体结构,或用来形成具有3个或更多个表面取向的平坦的混合取向半导体衬底结构。
本发明的另一情况提供了本发明平坦的混合取向半导体衬底上的集成电路,其中的集成电路包含(110)晶面上的pFET以及(100)晶面上的nFET。
附图说明
从本发明的下列详细描述中,这些和其它的特点、情况、以及优点将更加明显和被理解,其中:
图1A-1E剖面图示出了现有技术平坦的混合取向半导体衬底结构的一些例子,其中,二种半导体取向的第一种被直接排列在体半导体衬底上,而二种半导体取向的第二种被排列在衬底上(图1A和1C)、被薄的BOX层部分地隔离于衬底(图1E)、或被薄的BOX层完全地隔离于衬底(图1B和1D);
图2A-2B剖面图示出了图1B的混合取向衬底结构如何可以构成包含至少一个110取向的单晶硅区上的pFET和至少一个100取向的单晶硅区上的nFET的集成电路的基础;
图3A-3I剖面图示出了用来形成图1B情况所述图1A-1E结构的基本的现有技术方法的各步骤;
图4剖面图示出了平坦的混合取向半导体衬底结构的现有技术例子,其中,二种不同取向的单晶硅区都被排列在埋置的绝缘层上;
图5A-5B剖面图示出了本发明的混合取向衬底的二个优选的SOI实施方案;
图6剖面图示出了本发明的混合取向衬底结构如何能够被用来构成包含至少一个(110)硅晶面上的pFET和至少一个(100)硅晶面上的nFET的集成电路的基础;
图7A-7G剖面图示出了上层非晶化和下层模板的情况所述的本发明方法的各个基本步骤;
图8A-8G剖面图示出了用来产生本发明的图5A的结构的第一优选方法;
图9A-9F剖面图示出了用来产生本发明的图5B的结构的第二优选方法;而
图10A-10I剖面图示出了可以用本发明的方法产生的混合取向衬底的不同的实施方案。
具体实施方式
下面参照本发明的附图来更详细地描述本发明,本发明提供了平坦的混合取向SOI衬底结构及其制造方法。
图5A-5B剖面图示出了可以用本发明的方法制造的混合取向衬底的二个优选实施方案。图5A的混合取向衬底450和图5B的混合取向衬底460都包含具有第一取向的第一单晶半导体区470和具有不同于第一取向的第二取向的第二单晶半导体区480。半导体区470和480具有大致相同的厚度,并被排列在同一个BOX层490上。术语“BOX”表示埋置的氧化物区。虽然此处具体地使用了这一称谓,但本发明不仅仅局限于埋置的氧化物。而是能够采用各种绝缘层;以下更详细地来描述各种绝缘层。
各个半导体区470和480被示为具有相同的深度并止于BOX层490的介质沟槽隔离区500分隔开。但在本发明的某些实施方案中,沟槽隔离区500可以按需要较浅(以便不达及BOX层490),较深(以便延伸通过BOX层490),或深度不相等。图5A和5B的结构彼此的不同处仅仅在于衬底510和520的特色。图5A中的衬底510是对单晶半导体区480具有外延关系的半导体,而图5B中的衬底520除了与随后要经受的任何一种加工兼容之外,没有特殊的限制。
图5A-5B的混合取向衬底结构可以被组合成包含至少一个(110)晶面上的pFET和至少一个(100)晶面上的nFET的集成电路的衬底。图6剖面图示出了图5B的混合取向衬底结构的硅上的一种示例性集成电路。衬底520具有被BOX层490上的隔离区500分隔开的单晶110取向的硅区530和单晶100取向的硅区540。pFET器件170被排列在110取向的区域530上,而nFET器件180被排列在100取向的区域540上。为清楚起见,未示出掺杂情况。
用本技术领域熟练人员众所周知的技术,图6所示的FET可以被制作在图5A所示的结构上。在某些实施方案中,层540和530的110和100晶向被反转。在这种实施方案中,pFET器件170可以仍然被制作在110取向的区域顶部,而nFET器件180可以被制作在100取向的表面顶部。
本发明还提供了用来形成平坦的混合取向衬底结构的一些新方法。所有方法的共同点是3个基本步骤,利用这些步骤,选定的半导体区的取向可以从原来的取向被改变成所希望的取向:
形成双层模板叠层,它包含具有第一取向的第一下单晶半导体层(即衬底)以及具有不同于第一取向的第二取向的第二上(通常为键合的)单晶半导体层;
在选定的区域内,(例如用通过掩模的离子注入方法)对双层模板叠层的一个层进行非晶化;以及
用叠层的未被非晶化的层作为模板,对局部非晶化的区域进行再结晶,从而将局部非晶化的区域的取向从原来的取向改变成所希望的取向。
上层非晶化和底层模板的情况的这些步骤被示于图7A-7D中。虽然示出了此实施方案,但本发明还尝试了底层被非晶化且再结晶从顶层被模板的方法。
图7A示出了起始的SOI衬底580,它包含基底衬底520、BOX层490、以及具有第一取向的单晶SOI层590。可以用键合或用本技术熟知的任何其它方法来形成SOI层590。图7B示出了双层模板叠层600,它包含作为具有第一取向的下模板层的SOI层590以及作为具有不同于第一取向的第二取向的上模板层的单晶半导体层610。通常可以用键合方法来形成层610。图7C示出了选定区域中离子轰击620产生局部非晶化区域630之后的图7B结构。局部非晶化的区域630从上模板层610的顶部表面一直延伸到位于下模板层590中的界面640。通常可以用结合图形化掩模的满铺离子轰击来进行选定区域的离子轰击620。图7D示出了局部非晶化区域630已经被再结晶(开始于界面640,用下层590作为模板)以便形成单晶半导体区650之后的图7C结构。未被非晶化的上模板层区域610’(具有第二晶向)和再结晶的区域650(具有第一晶向)现在包含平坦的混合取向衬底650,其表面A-B包含至少二个具有不同表面取向的清楚地确定的单晶半导体区。
为了尽量减少横向模板的可能性,选定要非晶化的以及模板再结晶的各个区域的侧面通常可以例如被沟槽至少部分地隔离于相邻的结晶区。可以在非晶化之前或在非晶化与再结晶之间来形成和填充这些沟槽,或在非晶化之后形成这些沟槽并在再结晶之后填充这些沟槽。典型地可以用诸如通过掩模的反应离子刻蚀(RIE)来形成沟槽。
图7E-7G示出了隔离沟槽的3种几何形状。在图7E中,隔离沟槽660延伸通过上模板层,但不延伸超过非晶化深度。在此情况下,可能出现来自侧界面670的模板。在图7F中,隔离沟槽680延伸超过非晶化深度,但不是一直到BOX层490,而在图7G中,隔离沟槽690一直延伸到BOX层490。但若所希望的晶向的再结晶速率比从竞争的不希望晶向引晶的再结晶快得多,则可以不需要隔离沟槽。例如,已经报道,100取向硅的硅注入晶化的单晶硅样品的再结晶速率比110取向硅的快3倍(见例如论文L.Csepregi et al.,J.Appl.Phys.,493096(1978))。
当设计模板叠层和工艺流程时,还应该考虑不同半导体取向的再结晶速率可以不同的事实。具有较慢生长取向的双层模板叠层的一个最好是被晶化的层,而具有较快生长取向的层最好是再结晶从中模板的层。
在图8A-8G所示的本发明的一个实施方案中,图7A-7D的基本步骤被组合到用来形成与图5A的结构450相似的平坦的混合取向SiOI衬底结构的方法中。为简单起见,未示出隔离沟槽。图8A示出了包含模板叠层第一下层的100取向的硅衬底700;图8B示出了加入包含模板叠层第二上层的110取向的硅层710之后的衬底700。层710通常用键合方法来形成。
图8C示出了图8B的结构在选定区域中经受离子轰击720,以便产生具有从模板层710的顶部表面延伸到终止于衬底700的深度的局部非晶化区730的图8D的结构。图8E示出了局部非晶化区730已经被再结晶(利用100取向的硅衬底700作为模板)以便形成单晶100取向的硅区740之后的图8D的结构。未被非晶化的110取向的硅区710’和再结晶的100取向的硅区740现在包含平坦的混合取向体衬底750,其表面A-B包含至少二个具有不同表面取向的清楚地确定的单晶半导体区。
然后,如图8F-8G所示,SIMOX工艺被用来产生BOX层。图8F示出了图8E的结构被暴露于用来产生埋置的富氧层770的满铺氧离子注入760。富氧层770最好包含层700与710之间的原先界面,并被适当的退火步骤转变成图8G的BOX层780。
在图9A-9F所示的本发明的另一个实施方案中,图7A-7D的基本步骤被组合到用来形成与图5B的结构460相似的平坦的混合取向SiOI衬底结构的另一方法中。具体地说,图9A示出了起始的SiOI衬底800,它包含基底衬底520、BOX层490、以及110取向的单晶硅层810。可以用键合方法或用本技术熟知的任何其它方法来形成硅层810。图9B示出了双层模板叠层820,它包含作为下模板层的110取向的硅层810以及作为上模板层的单晶100取向的硅层830。通常可以用键合方法来形成层830。图9C示出了选定区域中经受离子轰击840以产生具有埋置的局部非晶化区域850的图9B结构。局部非晶化的区域850从BOX层490通过下模板层810延伸,且部分地延伸到上模板层830中。如上所述,选择来非晶化和模板再结晶的区域典型地可以被沟槽(未示出)隔离于相邻的结晶区,以便尽量减少横向模板的可能性。图9E示出了局部非晶化区850已经用上模板层810作为模板被再结晶以便形成100取向的单晶硅区860之后的图9D结构。然后用诸如抛光之类的工艺(或氧化随之以湿法回腐蚀)清除上模板层810,以便留下排列在公共BOX层490上的共平面110取向的单晶硅区810’和100取向的单晶硅区860。
应该指出的是,图8A-8G的方法同样可以被用于衬底700和上模板层710的取向被反转,亦即衬底700包含110取向的硅晶片而不是100取向的硅晶片,而上引晶层710包含100取向的硅单晶层而不是110取向的硅单晶层。同样,图9A-9F的方法可以被用于下模板层810和上模板层830的取向被反转,亦即用于是为100取向的硅而不是110取向的硅的下模板层810以及是为110取向的硅而不是100取向的硅的上模板层830。更一般地说,如下列更详细地描述的那样,本发明的结构和方法可以被用于硅之外的半导体。
图10A-10I剖面图示出了可以用本发明的方法制作的混合取向衬底的不同实施方案。图10A示出了“体”平坦混合取向半导体衬底结构900,它包含具有第一取向的第一单晶半导体区910和具有不同于第一取向但与衬底930的取向相同的第二取向的第二单晶半导体区920。图10B的平坦混合取向半导体衬底结构940相似于图10A的结构900,但具有分隔单晶半导体区910与920的沟槽隔离区950。
图10C的平坦混合取向半导体衬底结构960相似于图10A的结构900。但已经用衬底980代替了衬底930,它可以与半导体区920外延相关,或不与半导体区920外延相关。结构960还包含半导体区910和920下方的BOX层970以及保留在第一半导体区910下方的具有第二取向的第二半导体材料的残留部分990。除了半导体区920与半导体衬底930外延相关,且BOX层970位于第一单晶半导体区910与衬底930之间的界面1010上方之外,图10D的平坦混合取向半导体衬底结构1000相似于图10C的结构960。
除了半导体衬底930已经被绝缘衬底1040代替之外,图10E-10F的平坦混合取向半导体衬底结构1020和1030完全相同于图10A-10B的结构1000和940。
图10G-10H的平坦混合取向半导体衬底结构1050和1060相似于图10C的结构960,但具有沟槽隔离区950。在图10G的结构1050中,沟槽隔离区950延伸在第一单晶半导体区910与残留部分990之间的界面1070下方,但不达及BOX层970。在图10H的结构1060中,沟槽隔离区950延伸到BOX层970。
图10I的平坦混合取向半导体衬底结构1080包含被延伸到BOX层970的沟槽隔离区950分隔开的3个不同取向的单晶半导体区910、920、以及1090。利用本发明的局部晶化和再结晶方法,用多层模板叠层代替双层模板叠层,可以形成具有3个或更多个表面取向的平坦混合取向半导体衬底结构。
可以用本发明各个基本步骤的具有或不具有额外步骤的各种排列,来形成图5A-5B以及图10A-10I那样的结构。例如,利用对第二半导体材料920的残留部分990进行非晶化,并用单晶区910作为模板对非晶化区进行再结晶的额外步骤,可以从图10H的结构形成图5B的平坦混合取向结构仿制460。
本发明的半导体衬底和单晶半导体区可以选自各种半导体材料。例如,衬底510、520、700、930和980,以及不同取向的第一和第二半导体区470、610’、910、480、650、920,可以选自Si、SiC、SiGe、SiGeC、Ge合金、Ge、C、GaAs、InAs、InP、以及其它III-V或II-VI化合物半导体。此处还尝试了具有或不具有一些掺杂剂的上述各种半导体材料的层状组合或合金(例如SiGe上的硅层)。第一和第二半导体区可以是应变的和非应变的,或可以采用应变层与非应变层的组合。晶向通常可以选自(110)、(111)、(100)。
第一和第二单晶半导体区470、610’、910、480、650、920的厚度典型约为1-500nm,约为10-100nm的厚度更典型。衬底510、520、700、930、980的厚度典型为5-1000微米,约为600微米最典型。
BOX层和绝缘衬底1040可以选自各种介质材料,包括但不局限于二氧化硅、结晶二氧化硅、包含氮或其它元素的二氧化硅、氮化硅、金属氧化物(例如Al2O3)、绝缘金属氮化物(例如AlN)、诸如结晶金刚石之类的高导热的材料。BOX的厚度可以约为2-500nm,优选厚度约为50-150nm。
用来形成模板叠层的键合方法可以包括本技术领域熟练人员所知的任何方法(见例如Q.Y.Tong等人的著作“in SemiconductorWafer Bonding:Science and Technology(John Wiley,1998)”以及2003年10月29日提交的共同申请中和共同受让的美国申请No.10/696634和2003年6月17日提交的共同申请中和共同受让的美国申请No.10/250241)。上述共同受让的美国申请在此处被列为参考。
由于晶化区中的杂质通常会阻碍再结晶的进行,故对于最清洁的界面,待要键合的各个不同取向的半导体表面最好是疏水性的(而不是亲水性的)。但键合界面处非常薄的氧化物若能够借助于退火使其成为不连续的小岛形貌,则是可以容忍的(见例如论文P.McCann et al.,“An investigation into interfacial oxide in direct silicon bonding”,6thInt.Symp.on Semeconductor Wafer Bonding,San Francisco,Sept2-7,2001)。借助于将晶片研磨或腐蚀掉(最好利用腐蚀停止层),或借助于利用加工过程早期步骤中产生的机械强度弱的界面层,可以实现键合之后的晶片分离/清除。机械强度弱的界面层的例子包括多孔硅(见例如K.Sakaguchi等人在Solid State Technology,June 2000中描述的Epitaxial Layer Transfer(ELTRAN)以及离子注入的含氢气泡(见例如1994年12月20日发布的M.Bruel的美国专利No.5374564和1999年3月16日发布的K.V.Srikrishnan的美国专利No.5882987所述的智能切割工艺)。
典型地可以用离子注入方法来进行非晶化。最佳的离子注入条件依赖于模板层的材料、模板层的厚度、以及被非晶化的叠层的位置(上部或下部)。可以采用本技术领域熟练人员所知的任何离子种类,包括但不局限于Si、Ge、Ar、C、O、N、H、He、Kr、Xe、P、B、As等。用于非晶化的离子最好是Si或Ge。诸如H和He之类的较轻的离子通常对非晶化的效果较低。可以在从低温到正常室温以上几百℃的温度范围内执行离子注入。“正常室温”意味着大约20-40℃的温度。通常可以用图形化的掩模(例如,对于室温注入工艺,是图形化的光抗蚀剂)来保护不被非晶化的区域免遭离子注入。可以用或不用“屏蔽氧化物”层来执行注入,且若用单个注入无法容易地得到足够均匀非晶化的区域,就可以在不同能量下来执行多个注入。要求的注入剂量依赖于注入的离子种类、被注入的半导体、以及需要非晶化的层的厚度。发现在低温下于50、100、150、以及200keV以每平方厘米6×1015的总剂量注入的硅,足以使100取向和110取向的硅的顶部400nm非晶化(见例如Csepregi等人的论文)。但当注入的离子是Ge且待要非晶化的表面区薄于50-100nm时,低得多的剂量(例如40keV下每平方厘米5×1014)就能够使硅非晶化。
通常,利用在大约200-1300℃,优选在大约400-900℃,更优选在大约400-600℃的温度下的足以引起所希望的再结晶的时间的退火,来进行局部非晶区630、730、850的再结晶。这一时间长度依赖于模板层的取向、待要再结晶的非晶区的厚度、注入的杂质和其它杂质在非晶层中的存在,以及可能依赖于注入区和非注入区之间界面的陡峭性。可以在炉子中或用快速热退火来执行退火。在其它实施方案中,可以用激光退火或脉冲退火来执行退火。退火气氛典型地可以选自各种气体,包括N2、Ar、He、H2、以及这些气体的混合物。
当再结晶步骤之后在结构中产生埋置的绝缘层时,可以采用能够用来形成埋置的绝缘层的任何常规离子注入步骤和退火步骤。例如,任何常规SIMOX工艺都能够被用来在图8F-8G所示的结构中产生埋置的氧化物层。
此处已经与其修正一起详细地描述了本发明的一些实施方案,并在附图中进行了说明,显然,可以进行各种进一步的修正而不偏离本发明的范围。特别应该强调的是,虽然对于具有二种不同取向的少数单晶区的情况已经描述了本发明的大多数衬底结构、电路、以及方法,但本发明同样适用于用来提供包含大量这种单晶区的结构的方法。而且,若这种衬底特征对后续制造的器件是所希望的,则本发明的混合取向衬底可以组合额外的上方层(例如外延生长的半导体或额外的键合层)、清除或回腐蚀某些表面特征(例如使一个或多个单晶半导体区凹陷或沟槽隔离)、和/或特殊的掺杂分布。在上述说明书中,没有打算将本发明限制到比所附权利要求更窄的范围内。给出的例子仅仅是说明性的而不是排他性的。

Claims (52)

1.一种平坦的混合取向SOI衬底结构,它包含:
至少一个清楚地确定的第一单晶半导体区,具有第一表面取向;
至少一个清楚地确定的第二单晶半导体区,具有第二表面取向,该第二表面取向不同于所述第一表面取向,该第二单晶半导体区是通过将具有第一表面取向的半导体材料非晶化,然后将非晶化的半导体材料再结晶得到的;
其中,所述第一单晶半导体区和所述第二单晶半导体区侧向相邻,并且所述第一单晶半导体区和所述第二单晶半导体区直接设置在公共的埋置绝缘层上,所述公共的埋置绝缘层设置在衬底上;
其中,所述至少一个清楚地确定的第一单晶半导体区和所述至少一个清楚地确定的第二单晶半导体区中的至少一个包含设置在下残留半导体上的上半导体,所述上半导体和下残留半导体具有不同的表面取向,所述下残留半导体与所述公共的埋置绝缘层直接接触。
2.权利要求1的平坦的混合取向SOI衬底结构,还包含至少一个隔离区,此隔离区将所述至少一个清楚地确定的第一单晶半导体区和所述至少一个清楚地确定的第二单晶半导体区彼此分隔开。
3.权利要求2的平坦的混合取向SOI衬底结构,其中,所述至少一个隔离区是沟槽隔离区。
4.权利要求2的平坦的混合取向SOI衬底结构,其中,所述至少一个隔离区至少向下延伸到公共埋置绝缘层的上表面。
5.权利要求2的平坦的混合取向SOI衬底结构,其中,所述至少一个隔离区不向下延伸到所述公共埋置绝缘层。
6.权利要求1的平坦的混合取向SOI衬底结构,其中,所述至少一个清楚地确定的第一单晶半导体区和所述至少一个清楚地确定的第二单晶半导体区包含相同的或不同的半导体材料。
7.权利要求6的平坦的混合取向SOI衬底结构,其中,所述半导体材料选自Si、SiC、SiGe、SiGeC、Ge、C、GaAs、InAs、InP、它们的层状组合或合金、以及其它III-V或II-VI化合物半导体。
8.权利要求1的平坦的混合取向SOI衬底结构,其中,所述具有不同表面取向的所述至少一个清楚地确定的第一单晶半导体区和所述至少一个清楚地确定的第二单晶半导体区都包括含硅的半导体材料。
9.权利要求1的平坦的混合取向SOI衬底结构,其中,所述至少一个清楚地确定的第一单晶半导体区和所述至少一个清楚地确定的第二单晶半导体区,各由应变半导体材料、非应变半导体材料、或应变半导体材料与非应变半导体材料的组合组成。
10.权利要求1的平坦的混合取向SOI衬底结构,其中,所述不同的表面取向选自(110)、(111)和(100)。
11.权利要求8的平坦的混合取向SOI衬底结构,其中,所述不同的表面取向选自(110)、(111)和(100)。
12.权利要求11的平坦的混合取向SOI衬底结构,其中,包括含硅半导体材料的所述第一单晶半导体区所述具有(100)晶向,而包括含硅半导体材料的所述第二单晶半导体区具有(110)晶向。
13.权利要求12的平坦的混合取向SOI衬底结构,还包含至少一个nFET器件和至少一个pFET器件,其中,所述至少一个nFET器件位于所述(100)晶向上,而所述至少一个pFET器件位于所述(110)晶向上。
14.权利要求1的平坦的混合取向SOI衬底结构,还包含至少一个(100)晶面上的nFET器件和至少一个(110)晶面上的pFET器件。
15.权利要求1的平坦的混合取向SOI衬底结构,其中,所述埋置绝缘层是选自二氧化硅、包含氮的二氧化硅、氮化硅、金属氧化物、金属氮化物的介质材料。
16.权利要求15的平坦的混合取向SOI衬底结构,其中,所述二氧化硅是结晶二氧化硅。
17.权利要求1的平坦的混合取向SOI衬底结构,其中,所述衬底是选自Si、SiC、SiGe、SiGeC、Ge、C、GaAs、InAs、InP、它们的层状组合或合金、以及其它III-V或II-VI化合物半导体的半导体材料。
18.权利要求1的平坦的混合取向SOI衬底结构,其中,所述衬底对所述第一单晶半导体区和所述第二单晶半导体区中的至少一个具有外延关系。
19.权利要求1的平坦的混合取向SOI衬底结构,还包含至少一个(100)晶面上的nFET器件和至少一个(110)晶面上的pFET器件。
20.权利要求1的平坦的混合取向SOI衬底结构,还包含将所述至少一个清楚地确定的第一单晶半导体区和所述至少一个清楚地确定的第二单晶半导体区彼此分隔开的至少一个隔离区,其中,所述至少一个隔离区至少向下延伸到所述公共的埋置绝缘层。
21.权利要求1的平坦的混合取向SOI衬底结构,还包含将所述至少一个清楚地确定的第一单晶半导体区和所述至少一个清楚地确定的第二单晶半导体区彼此分隔开的至少一个隔离区,其中,所述至少一个隔离区不向下延伸到所述公共的埋置绝缘层。
22.权利要求1的平坦的混合取向SOI衬底结构,其中,所述衬底是绝缘体。
23.权利要求8的平坦的混合取向SOI衬底结构,其中,所述埋置绝缘层为埋置氧化物层。
24.权利要求23的平坦的混合取向SOI衬底结构,其中,所述不同的表面取向选自(110)、(111)和(100)。
25.权利要求24的平坦的混合取向SOI衬底结构,其中,包括含硅半导体材料的所述第一单晶半导体区具有(100)晶向,而包括含硅半导体材料的所述第二单晶半导体区具有(110)晶向。
26.权利要求25的平坦的混合取向SOI衬底结构,还包含至少一个nFET器件和至少一个pFET器件,其中,所述至少一个nFET器件位于所述(100)晶向上,而所述至少一个pFET器件位于所述(110)晶向上。
27.权利要求23的平坦的混合取向SOI衬底结构,还包含至少一个(100)晶面上的nFET器件和至少一个(110)晶面上的pFET器件。
28.权利要求23的平坦的混合取向SOI衬底结构,还包含将所述至少二个清楚地确定的单晶含硅半导体区彼此分隔开的至少一个隔离区。
29.权利要求28的平坦的混合取向SOI衬底结构,其中,所述至少一个隔离区是沟槽隔离区。
30.权利要求28的平坦的混合取向SOI衬底结构,其中,所述至少一个隔离区至少向下延伸到至少公共埋置绝缘层的上表面。
31.权利要求28的平坦的混合取向SOI衬底结构,其中,所述至少一个隔离区不延伸到所述公共埋置氧化物层。
32.一种形成平坦的混合取向衬底的方法,它包含下列步骤:
形成双层模板叠层,它包含具有第一取向的第一下单晶半导体层以及具有与第一取向不同的第二取向的第二上单晶半导体层;
在选定的区域中对双层模板叠层的一个半导体层进行非晶化,以便形成局部非晶化区域;以及
用叠层的未被非晶化的半导体层作为模板,使局部非晶化的区域再结晶,从而将局部非晶化区域的取向从原来的取向改变成所希望的取向。
33.权利要求32的方法,其中,所述第一下单晶半导体层位于SOI衬底的绝缘层上。
34.权利要求32的方法,其中,所述第一下单晶半导体层包含单晶半导体衬底。
35.权利要求32的方法,其中,通过键合方法,所述第二上单晶半导体层被形成在第一下单晶半导体层的顶部。
36.权利要求32的方法,其中,所述局部非晶化的区域被形成在第二上单晶半导体层中。
37.权利要求32的方法,其中,所述局部非晶化的区域被形成在第一下单晶半导体层中。
38.权利要求33的方法,其中,所述局部非晶化的区域被形成在第一下单晶半导体层中,且还包括采用化学机械抛光的工艺,在再结晶之后清除顶部层的步骤。
39.权利要求32的方法,还包含形成至少一个沟槽隔离区以便将选定要非晶化的所述区域从未被选定要非晶化的区域分隔开的步骤,所述至少一个沟槽隔离区在非晶化之前、非晶化与再结晶之间、或部分在非晶化之后和部分在再结晶之后被形成。
40.权利要求32的方法,其中,所述第一下单晶半导体层和所述第二上单晶半导体层由选自Si、SiC、SiGe、SiGeC、Ge、C、GaAs、InAs、InP、它们的层状组合或合金、以及其它III-V或II-VI化合物半导体的相同的或不同的半导体材料组成。
41.权利要求32的方法,其中,所述第一下单晶半导体层和所述第二上单晶半导体层都由含硅的半导体材料组成。
42.权利要求32的方法,其中,所述第一下单晶半导体层和所述第二上单晶半导体层由应变半导体材料、非应变半导体材料、或应变半导体材料与非应变半导体材料的组合组成。
43.权利要求32的方法,其中,所述第一下单晶半导体层和所述第二上单晶半导体层具有选自(110)、(111)和(100)的不同的表面取向。
44.权利要求32的方法,还包含制作至少一个(100)晶面上的nFET器件和至少一个(110)晶面上的pFET器件。
45.权利要求34的方法,还包含在所述再结晶步骤之后形成埋置的绝缘层。
46.权利要求45的方法,其中,所述埋置的绝缘层用氧离子注入分离方法来形成。
47.权利要求32的方法,其中,所述非晶化用离子注入方法来完成。
48.权利要求47的方法,其中,所述离子注入包含选自Si、Ge、Ar、C、O、N、H、He、Kr、Xe、P、B、As的离子。
49.权利要求47的方法,其中,所述离子注入包含选自Si和Ge的离子。
50.权利要求47的方法,其中,所述离子注入用图形化的掩模来执行。
51.权利要求32的方法,其中,所述再结晶在200-1300℃的温度下执行。
52.权利要求32的方法,其中,所述再结晶在选自N2、Ar、He、H2、以及它们的混合物的气体中执行。
CNB2004100923713A 2003-12-02 2004-11-09 平坦的混合取向衬底结构及其形成方法 Expired - Fee Related CN100505273C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/725,850 2003-12-02
US10/725,850 US20050116290A1 (en) 2003-12-02 2003-12-02 Planar substrate with selected semiconductor crystal orientations formed by localized amorphization and recrystallization of stacked template layers

Publications (2)

Publication Number Publication Date
CN1630087A CN1630087A (zh) 2005-06-22
CN100505273C true CN100505273C (zh) 2009-06-24

Family

ID=34620372

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100923713A Expired - Fee Related CN100505273C (zh) 2003-12-02 2004-11-09 平坦的混合取向衬底结构及其形成方法

Country Status (7)

Country Link
US (2) US20050116290A1 (zh)
EP (1) EP1702350A2 (zh)
JP (1) JP5063114B2 (zh)
KR (1) KR100961800B1 (zh)
CN (1) CN100505273C (zh)
TW (1) TWI328286B (zh)
WO (1) WO2005057631A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012155830A1 (zh) * 2011-05-16 2012-11-22 中国科学院上海微系统与信息技术研究所 锗和iii-v混合共平面的绝缘体上硅(s0i)半导体结构及其制备方法

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119943A (ja) * 2002-09-30 2004-04-15 Renesas Technology Corp 半導体ウェハおよびその製造方法
US20050116290A1 (en) 2003-12-02 2005-06-02 De Souza Joel P. Planar substrate with selected semiconductor crystal orientations formed by localized amorphization and recrystallization of stacked template layers
US7291886B2 (en) * 2004-06-21 2007-11-06 International Business Machines Corporation Hybrid substrate technology for high-mobility planar and multiple-gate MOSFETs
US7253034B2 (en) * 2004-07-29 2007-08-07 International Business Machines Corporation Dual SIMOX hybrid orientation technology (HOT) substrates
US7354806B2 (en) * 2004-09-17 2008-04-08 International Business Machines Corporation Semiconductor device structure with active regions having different surface directions and methods
US7235433B2 (en) 2004-11-01 2007-06-26 Advanced Micro Devices, Inc. Silicon-on-insulator semiconductor device with silicon layers having different crystal orientations and method of forming the silicon-on-insulator semiconductor device
DE102004057764B4 (de) * 2004-11-30 2013-05-16 Advanced Micro Devices, Inc. Verfahren zur Herstellung eines Substrats mit kristallinen Halbleitergebieten mit unterschiedlichen Eigenschaften, die über einem kristallinen Vollsubstrat angeordnet sind und damit hergestelltes Halbleiterbauelement
US7393733B2 (en) * 2004-12-01 2008-07-01 Amberwave Systems Corporation Methods of forming hybrid fin field-effect transistor structures
US7422956B2 (en) * 2004-12-08 2008-09-09 Advanced Micro Devices, Inc. Semiconductor device and method of making semiconductor device comprising multiple stacked hybrid orientation layers
US7285473B2 (en) * 2005-01-07 2007-10-23 International Business Machines Corporation Method for fabricating low-defect-density changed orientation Si
US8138061B2 (en) * 2005-01-07 2012-03-20 International Business Machines Corporation Quasi-hydrophobic Si-Si wafer bonding using hydrophilic Si surfaces and dissolution of interfacial bonding oxide
US20060175659A1 (en) * 2005-02-07 2006-08-10 International Business Machines Corporation A cmos structure for body ties in ultra-thin soi (utsoi) substrates
US7547917B2 (en) * 2005-04-06 2009-06-16 International Business Machines Corporation Inverted multilayer semiconductor device assembly
US7250351B2 (en) * 2005-04-14 2007-07-31 International Business Machines Corporation Enhanced silicon-on-insulator (SOI) transistors and methods of making enhanced SOI transistors
US7291539B2 (en) * 2005-06-01 2007-11-06 International Business Machines Corporation Amorphization/templated recrystallization method for hybrid orientation substrates
US7358164B2 (en) * 2005-06-16 2008-04-15 International Business Machines Corporation Crystal imprinting methods for fabricating substrates with thin active silicon layers
US7473985B2 (en) * 2005-06-16 2009-01-06 International Business Machines Corporation Hybrid oriented substrates and crystal imprinting methods for forming such hybrid oriented substrates
US7439108B2 (en) * 2005-06-16 2008-10-21 International Business Machines Corporation Coplanar silicon-on-insulator (SOI) regions of different crystal orientations and methods of making the same
US7344962B2 (en) * 2005-06-21 2008-03-18 International Business Machines Corporation Method of manufacturing dual orientation wafers
US7217629B2 (en) * 2005-07-15 2007-05-15 International Business Machines Corporation Epitaxial imprinting
US20070040235A1 (en) * 2005-08-19 2007-02-22 International Business Machines Corporation Dual trench isolation for CMOS with hybrid orientations
DE102005052055B3 (de) * 2005-10-31 2007-04-26 Advanced Micro Devices, Inc., Sunnyvale Eingebettete Verformungsschicht in dünnen SOI-Transistoren und Verfahren zur Herstellung desselben
WO2007053382A1 (en) * 2005-10-31 2007-05-10 Advanced Micro Devices, Inc. An embedded strain layer in thin soi transistors and a method of forming the same
US7535089B2 (en) * 2005-11-01 2009-05-19 Massachusetts Institute Of Technology Monolithically integrated light emitting devices
US7986029B2 (en) * 2005-11-08 2011-07-26 Taiwan Semiconductor Manufacturing Company, Ltd. Dual SOI structure
US7288458B2 (en) * 2005-12-14 2007-10-30 Freescale Semiconductor, Inc. SOI active layer with different surface orientation
US7569466B2 (en) * 2005-12-16 2009-08-04 International Business Machines Corporation Dual metal gate self-aligned integration
US7436034B2 (en) * 2005-12-19 2008-10-14 International Business Machines Corporation Metal oxynitride as a pFET material
US8319285B2 (en) * 2005-12-22 2012-11-27 Infineon Technologies Ag Silicon-on-insulator chip having multiple crystal orientations
US8530355B2 (en) * 2005-12-23 2013-09-10 Infineon Technologies Ag Mixed orientation semiconductor device and method
US7432567B2 (en) * 2005-12-28 2008-10-07 International Business Machines Corporation Metal gate CMOS with at least a single gate metal and dual gate dielectrics
US7833849B2 (en) 2005-12-30 2010-11-16 International Business Machines Corporation Method of fabricating a semiconductor structure including one device region having a metal gate electrode located atop a thinned polygate electrode
US7425497B2 (en) 2006-01-20 2008-09-16 International Business Machines Corporation Introduction of metal impurity to change workfunction of conductive electrodes
US7285452B2 (en) * 2006-02-10 2007-10-23 Sadaka Mariam G Method to selectively form regions having differing properties and structure
US7531392B2 (en) * 2006-02-27 2009-05-12 International Business Machines Corporation Multi-orientation semiconductor-on-insulator (SOI) substrate, and method of fabricating same
US20070215984A1 (en) * 2006-03-15 2007-09-20 Shaheen Mohamad A Formation of a multiple crystal orientation substrate
US7396407B2 (en) * 2006-04-18 2008-07-08 International Business Machines Corporation Trench-edge-defect-free recrystallization by edge-angle-optimized solid phase epitaxy: method and applications to hybrid orientation substrates
US7521307B2 (en) * 2006-04-28 2009-04-21 International Business Machines Corporation CMOS structures and methods using self-aligned dual stressed layers
US7452784B2 (en) 2006-05-25 2008-11-18 International Business Machines Corporation Formation of improved SOI substrates using bulk semiconductor wafers
US7435639B2 (en) * 2006-05-31 2008-10-14 Freescale Semiconductor, Inc. Dual surface SOI by lateral epitaxial overgrowth
US20080048269A1 (en) * 2006-08-25 2008-02-28 International Business Machines Corporation Method of fabricating structure for integrated circuit incorporating hybrid orientation technology and trench isolation regions
US7595232B2 (en) 2006-09-07 2009-09-29 International Business Machines Corporation CMOS devices incorporating hybrid orientation technology (HOT) with embedded connectors
US7820501B2 (en) * 2006-10-11 2010-10-26 International Business Machines Corporation Decoder for a stationary switch machine
US20080128821A1 (en) * 2006-12-04 2008-06-05 Texas Instruments Incorporated Semiconductor Device Manufactured Using Passivation of Crystal Domain Interfaces in Hybrid Orientation Technology
US20080164572A1 (en) * 2006-12-21 2008-07-10 Covalent Materials Corporation Semiconductor substrate and manufacturing method thereof
JP2008177529A (ja) * 2006-12-21 2008-07-31 Covalent Materials Corp 半導体基板およびその製造方法
US20080169535A1 (en) * 2007-01-12 2008-07-17 International Business Machines Corporation Sub-lithographic faceting for mosfet performance enhancement
US8016941B2 (en) * 2007-02-05 2011-09-13 Infineon Technologies Ag Method and apparatus for manufacturing a semiconductor
US7611979B2 (en) * 2007-02-12 2009-11-03 International Business Machines Corporation Metal gates with low charge trapping and enhanced dielectric reliability characteristics for high-k gate dielectric stacks
US7608522B2 (en) * 2007-03-11 2009-10-27 United Microelectronics Corp. Method for fabricating a hybrid orientation substrate
US9034102B2 (en) * 2007-03-29 2015-05-19 United Microelectronics Corp. Method of fabricating hybrid orientation substrate and structure of the same
US20080248626A1 (en) * 2007-04-05 2008-10-09 International Business Machines Corporation Shallow trench isolation self-aligned to templated recrystallization boundary
US7651902B2 (en) * 2007-04-20 2010-01-26 International Business Machines Corporation Hybrid substrates and methods for forming such hybrid substrates
FR2915318B1 (fr) * 2007-04-20 2009-07-17 St Microelectronics Crolles 2 Procede de realisation d'un circuit electronique integre a deux portions de couches actives ayant des orientations cristallines differentes
US7750406B2 (en) * 2007-04-20 2010-07-06 International Business Machines Corporation Design structure incorporating a hybrid substrate
US7575968B2 (en) * 2007-04-30 2009-08-18 Freescale Semiconductor, Inc. Inverse slope isolation and dual surface orientation integration
US7547641B2 (en) * 2007-06-05 2009-06-16 International Business Machines Corporation Super hybrid SOI CMOS devices
FR2917235B1 (fr) * 2007-06-06 2010-09-03 Soitec Silicon On Insulator Procede de realisation de composants hybrides.
FR2913815A1 (fr) * 2007-06-06 2008-09-19 Soitec Silicon On Insulator PROCEDE DE CO-INTEGRATION DE SEMI-CONDUCTEURS, EN PARTICULIER SOI ET GeOI OU GaAsOI
US7989306B2 (en) * 2007-06-29 2011-08-02 International Business Machines Corporation Method of forming alternating regions of Si and SiGe or SiGeC on a buried oxide layer on a substrate
US20090008725A1 (en) * 2007-07-03 2009-01-08 International Business Machines Corporation Method for deposition of an ultra-thin electropositive metal-containing cap layer
FR2918793B1 (fr) * 2007-07-11 2009-10-09 Commissariat Energie Atomique Procede de fabrication d'un substrat semiconducteur-sur- isolant pour la microelectronique et l'optoelectronique.
US8803195B2 (en) * 2007-08-02 2014-08-12 Wisconsin Alumni Research Foundation Nanomembrane structures having mixed crystalline orientations and compositions
US7808020B2 (en) * 2007-10-09 2010-10-05 International Business Machines Corporation Self-assembled sidewall spacer
US8105960B2 (en) * 2007-10-09 2012-01-31 International Business Machines Corporation Self-assembled sidewall spacer
US7863712B2 (en) * 2007-10-30 2011-01-04 International Business Machines Corporation Hybrid orientation semiconductor structure with reduced boundary defects and method of forming same
US7696573B2 (en) * 2007-10-31 2010-04-13 International Business Machines Corporation Multiple crystallographic orientation semiconductor structures
US8043947B2 (en) * 2007-11-16 2011-10-25 Texas Instruments Incorporated Method to eliminate re-crystallization border defects generated during solid phase epitaxy of a DSB substrate
US8288756B2 (en) * 2007-11-30 2012-10-16 Advanced Micro Devices, Inc. Hetero-structured, inverted-T field effect transistor
WO2009095813A1 (en) * 2008-01-28 2009-08-06 Nxp B.V. A method for fabricating a dual-orientation group-iv semiconductor substrate
WO2009128776A1 (en) * 2008-04-15 2009-10-22 Vallin Oerjan Hybrid wafers with hybrid-oriented layer
US8241970B2 (en) 2008-08-25 2012-08-14 International Business Machines Corporation CMOS with channel P-FinFET and channel N-FinFET having different crystalline orientations and parallel fins
JP2010072209A (ja) * 2008-09-17 2010-04-02 Fuji Xerox Co Ltd 静電荷像現像用トナー、静電荷像現像用トナーの製造方法、静電荷像現像用現像剤および画像形成装置
FR2938117B1 (fr) * 2008-10-31 2011-04-15 Commissariat Energie Atomique Procede d'elaboration d'un substrat hybride ayant une couche continue electriquement isolante enterree
FR2942674B1 (fr) * 2009-02-27 2011-12-16 Commissariat Energie Atomique Procede d'elaboration d'un substrat hybride par recristallisation partielle d'une couche mixte
US8227307B2 (en) * 2009-06-24 2012-07-24 International Business Machines Corporation Method for removing threshold voltage adjusting layer with external acid diffusion process
US8105892B2 (en) * 2009-08-18 2012-01-31 International Business Machines Corporation Thermal dual gate oxide device integration
US8022488B2 (en) 2009-09-24 2011-09-20 International Business Machines Corporation High-performance FETs with embedded stressors
US7943458B2 (en) * 2009-10-06 2011-05-17 International Business Machines Corporation Methods for obtaining gate stacks with tunable threshold voltage and scaling
US8288222B2 (en) 2009-10-20 2012-10-16 International Business Machines Corporation Application of cluster beam implantation for fabricating threshold voltage adjusted FETs
US8035141B2 (en) 2009-10-28 2011-10-11 International Business Machines Corporation Bi-layer nFET embedded stressor element and integration to enhance drive current
FR2954584B1 (fr) * 2009-12-22 2013-07-19 Commissariat Energie Atomique Substrat hybride a isolation amelioree et procede de realisation simplifie d'un substrat hybride
US8445974B2 (en) 2010-01-07 2013-05-21 International Business Machines Corporation Asymmetric FET including sloped threshold voltage adjusting material layer and method of fabricating same
US8299530B2 (en) 2010-03-04 2012-10-30 International Business Machines Corporation Structure and method to fabricate pFETS with superior GIDL by localizing workfunction
US8450807B2 (en) 2010-03-09 2013-05-28 International Business Machines Corporation MOSFETs with reduced contact resistance
KR101642834B1 (ko) 2010-04-09 2016-08-11 삼성전자주식회사 Leg 공정을 이용하여 벌크 실리콘 웨이퍼의 필요한 영역내에 soⅰ층을 형성하는 반도체 소자의 제조방법
US8236660B2 (en) 2010-04-21 2012-08-07 International Business Machines Corporation Monolayer dopant embedded stressor for advanced CMOS
US8299535B2 (en) 2010-06-25 2012-10-30 International Business Machines Corporation Delta monolayer dopants epitaxy for embedded source/drain silicide
US8361889B2 (en) 2010-07-06 2013-01-29 International Business Machines Corporation Strained semiconductor-on-insulator by addition and removal of atoms in a semiconductor-on-insulator
US8962417B2 (en) 2010-10-15 2015-02-24 International Business Machines Corporation Method and structure for pFET junction profile with SiGe channel
US8659054B2 (en) 2010-10-15 2014-02-25 International Business Machines Corporation Method and structure for pFET junction profile with SiGe channel
US8466473B2 (en) 2010-12-06 2013-06-18 International Business Machines Corporation Structure and method for Vt tuning and short channel control with high k/metal gate MOSFETs
US8564063B2 (en) 2010-12-07 2013-10-22 United Microelectronics Corp. Semiconductor device having metal gate and manufacturing method thereof
US8536656B2 (en) 2011-01-10 2013-09-17 International Business Machines Corporation Self-aligned contacts for high k/metal gate process flow
US8643115B2 (en) 2011-01-14 2014-02-04 International Business Machines Corporation Structure and method of Tinv scaling for high κ metal gate technology
US8432002B2 (en) * 2011-06-28 2013-04-30 International Business Machines Corporation Method and structure for low resistive source and drain regions in a replacement metal gate process flow
US9064808B2 (en) * 2011-07-25 2015-06-23 Synopsys, Inc. Integrated circuit devices having features with reduced edge curvature and methods for manufacturing the same
US8609550B2 (en) 2011-09-08 2013-12-17 Synopsys, Inc. Methods for manufacturing integrated circuit devices having features with reduced edge curvature
FR2983342B1 (fr) * 2011-11-30 2016-05-20 Soitec Silicon On Insulator Procede de fabrication d'une heterostructure limitant la formation de defauts et heterostructure ainsi obtenue
CN102768982A (zh) * 2012-07-06 2012-11-07 上海新傲科技股份有限公司 带有绝缘埋层的混合晶向衬底的制备方法
CN102768983A (zh) * 2012-07-12 2012-11-07 上海新傲科技股份有限公司 带有绝缘埋层的混合晶向衬底的制备方法
JP2014093319A (ja) * 2012-10-31 2014-05-19 Toshiba Corp 半導体装置およびその製造方法
CN103871813A (zh) * 2012-12-14 2014-06-18 中国科学院微电子研究所 一种半导体离子注入均匀性的改善方法
FR3003685B1 (fr) 2013-03-21 2015-04-17 St Microelectronics Crolles 2 Procede de modification localisee des contraintes dans un substrat du type soi, en particulier fd soi, et dispositif correspondant
US9059095B2 (en) 2013-04-22 2015-06-16 International Business Machines Corporation Self-aligned borderless contacts using a photo-patternable dielectric material as a replacement contact
US8999791B2 (en) 2013-05-03 2015-04-07 International Business Machines Corporation Formation of semiconductor structures with variable gate lengths
US9214567B2 (en) 2013-09-06 2015-12-15 Globalfoundries Inc. Nanowire compatible E-fuse
US8951868B1 (en) 2013-11-05 2015-02-10 International Business Machines Corporation Formation of functional gate structures with different critical dimensions using a replacement gate process
CN103745952B (zh) * 2013-12-25 2016-04-06 上海新傲科技股份有限公司 带有绝缘埋层的混晶衬底的制备方法
US9595525B2 (en) 2014-02-10 2017-03-14 International Business Machines Corporation Semiconductor device including nanowire transistors with hybrid channels
US9093425B1 (en) 2014-02-11 2015-07-28 International Business Machines Corporation Self-aligned liner formed on metal semiconductor alloy contacts
US9184290B2 (en) 2014-04-02 2015-11-10 International Business Machines Corporation Method of forming well-controlled extension profile in MOSFET by silicon germanium based sacrificial layer
US9293375B2 (en) 2014-04-24 2016-03-22 International Business Machines Corporation Selectively grown self-aligned fins for deep isolation integration
US9490161B2 (en) 2014-04-29 2016-11-08 International Business Machines Corporation Channel SiGe devices with multiple threshold voltages on hybrid oriented substrates, and methods of manufacturing same
US9331076B2 (en) 2014-05-02 2016-05-03 International Business Machines Corporation Group III nitride integration with CMOS technology
US10056293B2 (en) * 2014-07-18 2018-08-21 International Business Machines Corporation Techniques for creating a local interconnect using a SOI wafer
US9412840B1 (en) 2015-05-06 2016-08-09 International Business Machines Corporation Sacrificial layer for replacement metal semiconductor alloy contact formation
US9666493B2 (en) 2015-06-24 2017-05-30 International Business Machines Corporation Semiconductor device structure with 110-PFET and 111-NFET curent flow direction
FR3076292B1 (fr) * 2017-12-28 2020-01-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de transfert d'une couche utile sur un substrat support
US11139402B2 (en) 2018-05-14 2021-10-05 Synopsys, Inc. Crystal orientation engineering to achieve consistent nanowire shapes
US11011411B2 (en) * 2019-03-22 2021-05-18 International Business Machines Corporation Semiconductor wafer having integrated circuits with bottom local interconnects
US11264458B2 (en) 2019-05-20 2022-03-01 Synopsys, Inc. Crystal orientation engineering to achieve consistent nanowire shapes
US11854816B2 (en) * 2021-08-27 2023-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods of manufacturing thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933298A (en) * 1987-12-18 1990-06-12 Fujitsu Limited Method of making high speed semiconductor device having a silicon-on-insulator structure
EP1191479A1 (en) * 2000-09-21 2002-03-27 Texas Instruments Inc. Programmable neuron mosfet

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4385937A (en) * 1980-05-20 1983-05-31 Tokyo Shibaura Denki Kabushiki Kaisha Regrowing selectively formed ion amorphosized regions by thermal gradient
JPS60154548A (ja) * 1984-01-24 1985-08-14 Fujitsu Ltd 半導体装置の製造方法
US4768076A (en) * 1984-09-14 1988-08-30 Hitachi, Ltd. Recrystallized CMOS with different crystal planes
US4659392A (en) * 1985-03-21 1987-04-21 Hughes Aircraft Company Selective area double epitaxial process for fabricating silicon-on-insulator structures for use with MOS devices and integrated circuits
DE3688318T2 (de) * 1985-12-19 1993-07-29 Sumitomo Electric Industries Feldeffekttransistor.
US4775641A (en) * 1986-09-25 1988-10-04 General Electric Company Method of making silicon-on-sapphire semiconductor devices
US4816893A (en) * 1987-02-24 1989-03-28 Hughes Aircraft Company Low leakage CMOS/insulator substrate devices and method of forming the same
US4863877A (en) * 1987-11-13 1989-09-05 Kopin Corporation Ion implantation and annealing of compound semiconductor layers
JPH01162362A (ja) * 1987-12-18 1989-06-26 Fujitsu Ltd 半導体装置の製造方法
JPH03285351A (ja) * 1990-04-02 1991-12-16 Oki Electric Ind Co Ltd Cmis型半導体装置およびその製造方法
JPH04372166A (ja) * 1991-06-21 1992-12-25 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
FR2681472B1 (fr) 1991-09-18 1993-10-29 Commissariat Energie Atomique Procede de fabrication de films minces de materiau semiconducteur.
JP3017860B2 (ja) * 1991-10-01 2000-03-13 株式会社東芝 半導体基体およびその製造方法とその半導体基体を用いた半導体装置
JP3156878B2 (ja) * 1992-04-30 2001-04-16 株式会社東芝 半導体装置およびその製造方法
US5554562A (en) * 1995-04-06 1996-09-10 Advanced Micro Devices, Inc. Advanced isolation scheme for deep submicron technology
US5888872A (en) * 1997-06-20 1999-03-30 Advanced Micro Devices, Inc. Method for forming source drain junction areas self-aligned between a sidewall spacer and an etched lateral sidewall
US5882987A (en) 1997-08-26 1999-03-16 International Business Machines Corporation Smart-cut process for the production of thin semiconductor material films
JP4521542B2 (ja) * 1999-03-30 2010-08-11 ルネサスエレクトロニクス株式会社 半導体装置および半導体基板
EP1073112A1 (en) * 1999-07-26 2001-01-31 STMicroelectronics S.r.l. Process for the manufacturing of a SOI wafer by oxidation of buried cavities
US6229187B1 (en) * 1999-10-20 2001-05-08 Advanced Micro Devices, Inc. Field effect transistor with non-floating body and method for forming same on a bulk silicon wafer
US6782759B2 (en) * 2001-07-09 2004-08-31 Nartron Corporation Anti-entrapment system
JP3782021B2 (ja) * 2002-02-22 2006-06-07 株式会社東芝 半導体装置、半導体装置の製造方法、半導体基板の製造方法
US6902962B2 (en) * 2003-04-04 2005-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. Silicon-on-insulator chip with multiple crystal orientations
US7329923B2 (en) 2003-06-17 2008-02-12 International Business Machines Corporation High-performance CMOS devices on hybrid crystal oriented substrates
US6815278B1 (en) * 2003-08-25 2004-11-09 International Business Machines Corporation Ultra-thin silicon-on-insulator and strained-silicon-direct-on-insulator with hybrid crystal orientations
US7023055B2 (en) 2003-10-29 2006-04-04 International Business Machines Corporation CMOS on hybrid substrate with different crystal orientations using silicon-to-silicon direct wafer bonding
US20050116290A1 (en) 2003-12-02 2005-06-02 De Souza Joel P. Planar substrate with selected semiconductor crystal orientations formed by localized amorphization and recrystallization of stacked template layers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933298A (en) * 1987-12-18 1990-06-12 Fujitsu Limited Method of making high speed semiconductor device having a silicon-on-insulator structure
EP1191479A1 (en) * 2000-09-21 2002-03-27 Texas Instruments Inc. Programmable neuron mosfet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012155830A1 (zh) * 2011-05-16 2012-11-22 中国科学院上海微系统与信息技术研究所 锗和iii-v混合共平面的绝缘体上硅(s0i)半导体结构及其制备方法

Also Published As

Publication number Publication date
US7785939B2 (en) 2010-08-31
US20080108184A1 (en) 2008-05-08
KR100961800B1 (ko) 2010-06-08
WO2005057631A2 (en) 2005-06-23
TWI328286B (en) 2010-08-01
KR20060130572A (ko) 2006-12-19
WO2005057631A3 (en) 2007-05-10
JP5063114B2 (ja) 2012-10-31
CN1630087A (zh) 2005-06-22
US20050116290A1 (en) 2005-06-02
EP1702350A2 (en) 2006-09-20
TW200529423A (en) 2005-09-01
JP2007535802A (ja) 2007-12-06

Similar Documents

Publication Publication Date Title
CN100505273C (zh) 平坦的混合取向衬底结构及其形成方法
CN100378917C (zh) 制造应变含硅混合衬底的方法以及含硅混合衬底
US7812340B2 (en) Strained-silicon-on-insulator single-and double-gate MOSFET and method for forming the same
US7060585B1 (en) Hybrid orientation substrates by in-place bonding and amorphization/templated recrystallization
US7023057B2 (en) CMOS on hybrid substrate with different crystal orientations using silicon-to-silicon direct wafer bonding
US8344453B2 (en) Method of manufacturing localized semiconductor-on-insulator (SOI) structures in a bulk semiconductor wafer
US7153753B2 (en) Strained Si/SiGe/SOI islands and processes of making same
CN100370601C (zh) 一种形成集成半导体结构的方法
CN100411180C (zh) 半导体结构及制造半导体结构的方法
US7449767B2 (en) Mixed orientation and mixed material semiconductor-on-insulator wafer
US6046477A (en) Dense SOI programmable logic array structure
US7749817B2 (en) Single-crystal layer on a dielectric layer
WO2006058076A2 (en) Method and structure for implanting bonded substrates for electrical conductivity
US20050217566A1 (en) Method for producing one or more monocrystalline layers, each with a different lattice structure, on one plane of a series of layers
US6642536B1 (en) Hybrid silicon on insulator/bulk strained silicon technology
CN100361302C (zh) 混合衬底、集成半导体结构以及它们的制备方法
JP2004128254A (ja) 半導体装置
US6559035B2 (en) Method for manufacturing an SOI wafer
KR100529633B1 (ko) 에피택셜 실리콘을 이용한 반도체 소자 및 그 제조 방법
EP0929095B1 (en) Method for producing an SOI wafer
JPH05506749A (ja) 絶縁された単結晶シリコンアイランドの製法
TWI290368B (en) Dynamic threshold metal-oxide semiconductor equipped with bulk isolation
JP2003303826A (ja) 半導体装置およびその製造方法
JPH0637099A (ja) 半導体基体及びその製造方法
JPH08340044A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090624

Termination date: 20101109