WO2023241127A1 - 复合离子交换膜及其制备方法 - Google Patents

复合离子交换膜及其制备方法 Download PDF

Info

Publication number
WO2023241127A1
WO2023241127A1 PCT/CN2023/080769 CN2023080769W WO2023241127A1 WO 2023241127 A1 WO2023241127 A1 WO 2023241127A1 CN 2023080769 W CN2023080769 W CN 2023080769W WO 2023241127 A1 WO2023241127 A1 WO 2023241127A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange membrane
ion exchange
layer
graft polymer
composite
Prior art date
Application number
PCT/CN2023/080769
Other languages
English (en)
French (fr)
Inventor
庄志
柯茜
吴惠康
敖蓓
韩文
崔如玉
程跃
Original Assignee
上海恩捷新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海恩捷新材料科技有限公司 filed Critical 上海恩捷新材料科技有限公司
Publication of WO2023241127A1 publication Critical patent/WO2023241127A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the field of ion exchange membranes, and in particular relates to a composite ion exchange membrane and a preparation method thereof.
  • the ion exchange membrane is a functional membrane that allows ions to selectively pass through. It is used in fuel cells, SPE water electrolysis hydrogen production technology and liquid flow batteries. Because the ion exchange membrane has the dual function of transmitting ions and dispersing cathode and anode gases. function, so its performance will directly affect the stability and durability of fuel cells, water electrolysis and hydrogen production and other equipment.
  • the structure of a sulfonic acid-type proton exchange membrane can be expressed as R-SO 3 H + .
  • sulfonic acid is hydrophilic, it can swell when absorbing water and form many fine bends in the structure. channel, and the sulfonic acid group has the function of repelling anions such as OH - , allowing H + to selectively pass through.
  • -SO 3 H dissociates to H + and participates in combining into water, H + After leaving, -S0 3 - fills the vacancy with nearby H + due to electrostatic attraction. Driven by the potential difference, H + moves from the anode to the cathode.
  • the H + on -SO 3 H can form H 3 O with the H 2 O in the film. + , thereby weakening the attraction between -SO 3 and H + , and favoring the movement of H + , allowing protons to be quickly transferred along the hydrogen bond chain to maintain the battery circuit.
  • perfluorosulfonic acid resin is divided into the preparation of perfluoro(4-methyl-3,6-dioxocyclo-7-octene-1-ylsulfonyl fluoride) (PSVE) monomer and
  • PSVE perfluoro(4-methyl-3,6-dioxocyclo-7-octene-1-ylsulfonyl fluoride)
  • TFE tetrafluoroethylene
  • PSVE tetrafluoroethylene
  • the anion exchange membrane has the function of conducting OH - and blocking the positive and negative poles, so it needs to have high
  • the proton conductivity, that is, the ion exchange membrane needs to have a considerable number of functional groups. For this reason, it will inevitably affect the stability of the film. Therefore, existing products have problems such as high cost, complicated processes, or high difficulty in mass production.
  • the object of the present invention is to provide a composite ion exchange membrane, which uses a porous base membrane layer and a graft polymer resin layer to form a composite ion exchange membrane, and uses polyvinylidene fluoride and polymer monomer as the materials of the graft polymer resin layer. , its raw materials are easy to obtain, and the synthesis conditions are relatively mild, which greatly reduces production costs.
  • Another object of the present invention is to provide a method for preparing a composite ion exchange membrane, which uses polymer monomer and polymer
  • the graft polymer dispersion formed by the graft polymerization reaction of vinylidene fluoride is sprayed on the porous base membrane layer to form a graft polymerization resin layer on the porous base membrane layer.
  • the compounding process is simple and easy to operate, and can prepare high-quality Composite ion exchange membrane with ionic conductivity and high stability.
  • the present invention provides a composite ion exchange membrane, including:
  • a graft polymerized resin layer is provided on at least one side of the porous base membrane layer.
  • the graft polymerized resin layer includes a polyvinylidene fluoride and a polymer monomer. The graft polymerization reaction of polymer monomers forms the graft polymerized resin layer.
  • the material of the hydrophilic layer includes a perfluorosulfonic acid resin and a graft polymer, and , the mass ratio of the perfluorosulfonic acid resin and the graft polymer is 0.01-100.
  • the thickness ratio of the porous base membrane layer to the hydrophilic layer is 2.5-100.
  • the porous base membrane layer is at least one of polytetrafluoroethylene, polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, and polyethylene.
  • the porosity of the porous base membrane layer is 60%-90%.
  • the thickness of the porous base membrane layer is 5 ⁇ m-35 ⁇ m.
  • the porosity of the porous base membrane layer is 80%-85%
  • the polyvinylidene fluoride is a polyvinylidene fluoride film, and the molecular weight is 50,000-600,000.
  • the polyvinylidene fluoride is a polyvinylidene fluoride film, and the molecular weight is 350,000-400,000.
  • the polymer monomer is at least one of glycidyl methacrylate, epoxybutylene, allyl glycidyl ether, and 1,2-epoxy-9-decane.
  • the mass ratio of the polyvinylidene fluoride to the polymer monomer is 0.5-10.
  • the thickness of the composite ion exchange membrane is 15 ⁇ m-100 ⁇ m.
  • the present invention provides a preparation method of a composite ion exchange membrane, including the steps:
  • a polyvinylidene fluoride and a polymer monomer are processed through a graft polymerization reaction to form a graft polymer;
  • the graft polymer and a first solvent are heated and mixed to produce a graft polymer dispersion
  • the composite film is protonated with an acid solution or an alkali solution to obtain a composite ion exchange membrane.
  • the first solvent is N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, N-methyl At least one of pyrrolidone, water, ethanol, n-propanol, isopropanol, and cyclohexane.
  • the mass ratio of the polyvinylidene fluoride to the polymer monomer is 0.5-10.
  • the polymer monomer and a second solvent are heated and mixed to produce a first A mixed solution, and the polyvinylidene fluoride is irradiated with a high-energy electron beam to generate a free radical reaction to activate the polyvinylidene fluoride, and the polyvinylidene fluoride is placed in the third into a mixed solution to form the graft polymer.
  • the second solvent is at least one of ethanol, n-propanol, isopropanol and cyclohexanol.
  • the volume ratio of the polymer monomer to the second solvent is 10%-90%.
  • the volume ratio of the polymer monomer to the second solvent is 40%-60%.
  • a complete The fluorosulfonic acid resin and the graft polymer are mixed with the first solvent to generate a second mixed solution, and the second mixed solution is sprayed on the porous base membrane layer to coat the porous base membrane layer.
  • the graft polymer dispersion is sprayed on the hydrophilic layer to form the graft polymer resin layer on the hydrophilic layer to produce the composite film .
  • the second mixed solution is sprayed onto the porous base membrane layer with a first pressure value, wherein the first pressure value is 0.01MPa-1MPa.
  • the graft polymer dispersion is sprayed onto the hydrophilic layer with a second pressure value, wherein the difference between the first pressure value and the second pressure value is The ratio is 1:10.
  • the first pressure value and the second pressure value are 2-5.
  • the mass ratio of the perfluorosulfonic acid resin and the graft polymer is 0.01-100.
  • the composite film is placed in a treatment liquid for reaction, wherein the treatment
  • the liquid is at least one of 2-sulfobenzoic anhydride solution or trimethylamine solution.
  • the treatment liquid is a 2-sulfobenzoic anhydride solution
  • the composite film is protonated with the acid solution
  • the composite ion exchange membrane is obtained as a proton exchange membrane
  • the treatment liquid is a trimethylamine solution
  • the composite film is protonated with the alkali solution to obtain the composite ion exchange membrane as an anion exchange membrane.
  • the beneficial effect of the present invention is that the material of the grafted polymer resin layer is compounded to the porous base membrane layer by spraying.
  • the process is very simple, and the materials are easy to obtain, so the production cost is greatly reduced.
  • this method and materials The composite ion exchange membrane produced has high ionic conductivity and high stability, which can improve the deficiencies of conventional knowledge.
  • Figure 1A is a schematic structural diagram of a composite ion exchange membrane according to an embodiment of the present invention.
  • Figure 1B is a schematic structural diagram of a composite ion exchange membrane according to an embodiment of the present invention.
  • Figure 2A is a schematic structural diagram of a composite ion exchange membrane according to another embodiment of the present invention.
  • Figure 2B is a schematic structural diagram of a composite ion exchange membrane according to another embodiment of the present invention.
  • Figure 3 is a flow chart of a method for preparing a composite ion exchange membrane according to an embodiment of the present invention.
  • FIGS. 1A-1B are schematic structural diagrams of a composite ion exchange membrane according to an embodiment of the present invention.
  • the composite ion exchange membrane 1 of the present invention includes a porous base membrane layer 11 and a graft polymer resin layer 12, wherein the thickness of the composite ion exchange membrane 1 is 15 ⁇ m-100 ⁇ m, but is not limited to this, and the graft
  • the polymeric resin layer 12 is disposed on at least one side of the porous base membrane layer 11, and is described in detail as follows:
  • the material of the porous base membrane layer 11 is at least one of polytetrafluoroethylene, polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, and polyethylene, and the porous base membrane layer can be a biaxially stretched polymer film,
  • the porosity is 60%-90%, preferably 80%-85%, and the thickness is 5 ⁇ m-35 ⁇ m, but not limited to this.
  • the graft polymerized resin layer 12 includes polyvinylidene fluoride and a polymer monomer.
  • the polymer monomer is a polymer monomer containing functional groups, but this is not limited thereto.
  • the graft polymerized resin layer 12 is formed by polyvinylidene fluoride. It is formed by the graft polymerization reaction of vinylidene fluoride and polymer monomer, and the mass ratio of polyvinylidene fluoride to polymer monomer is 0.5-10.
  • the polyvinylidene fluoride can be a polyvinylidene fluoride film, and the molecular weight is 50,000-600,000, preferably 350,000-400,000, and the polymer monomer can be glycidyl methacrylate or epoxy butylene. , allyl glycidyl ether, and at least one of, but not limited to, 1,2-epoxy-9-decane.
  • FIGS. 2A-2B are schematic structural diagrams of a composite ion exchange membrane according to another embodiment of the present invention.
  • the composite ion exchange membrane 1 of the present invention further includes a hydrophilic layer 13, which is disposed between the porous base membrane layer 11 and the graft polymer resin layer 12, and is described in detail as follows:
  • the material of the hydrophilic layer 13 includes perfluorosulfonic acid resin and graft polymer, and the mass ratio of perfluorosulfonic acid resin and graft polymer resin is 0.01-100.
  • the porous base membrane layer 11 and The thickness ratio of the hydrophilic layer 13 is 2.5-100, but is not limited to this.
  • FIG. 3 is a flow chart of a preparation method of a composite ion exchange membrane according to one embodiment of the present invention. as the picture shows, The preparation method of the composite ion exchange membrane of the present invention includes the following steps:
  • Step S1 A polyvinylidene fluoride and a polymer monomer are processed through a graft polymerization reaction to form a graft polymer;
  • Step S2 The graft polymer and a first solvent are heated and mixed to produce a graft polymer dispersion
  • Step S3 Spray the graft polymer dispersion onto a porous base membrane layer to form a graft polymer resin layer on the porous base membrane layer to produce a composite film;
  • Step S4 The composite film is protonated with an acid solution or an alkali solution to obtain a composite ion exchange membrane.
  • step S1 first, the polymer monomer and the second solvent are put into the reactor to generate a first mixed solution.
  • the polymer monomer can be glycidyl methacrylate, epoxy butylene, or allyl glycidyl.
  • At least one of glyceryl ether, 1,2-epoxy-9-decane, and the second solvent can be at least one of ethanol, n-propanol, isopropanol, and cyclohexanol, and the polymer unit
  • the volume ratio of the solvent to the second solvent is 10%-90%, preferably 40%-60%, and an inert gas can be further introduced to remove oxygen to continuously maintain an inert atmosphere.
  • the first mixed solution is heated to a specific temperature.
  • the polyvinylidene fluoride is placed into the first mixed solution, and the graft polymer can be obtained through a graft polymerization reaction.
  • the polyvinylidene fluoride film before the polyvinylidene fluoride film is placed in the first mixed solution, the polyvinylidene fluoride film can be horizontally fixed on an aluminum metal frame and irradiated with a high-energy electron beam to generate free After the base reaction, roll it between two layers of polyethylene separators and store it at low temperature until use.
  • the graft polymer produced in the previous step is repeatedly rinsed and dried with the second solvent, and the graft polymer and the first solvent are heated and mixed to produce a graft polymer dispersion.
  • the first solvent can be N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, water, ethanol, n-propanol, isopropyl Alcohol, cyclohexane, and further ultrasonic treatment to uniformly graft the polymer dispersion.
  • the graft polymer dispersion is then sprayed on the porous base membrane layer 11, and after drying and heat treatment, a graft polymer resin layer 12 is formed on the porous base membrane layer 11.
  • a graft polymer resin layer 12 is formed on the porous base membrane layer 11.
  • a hydrophilic layer 13 can be further provided between the porous base membrane layer 11 and the graft polymer resin layer 12, wherein the hydrophilic layer 13 is obtained by perfluorosulfonic acid resin and the aforementioned steps.
  • the grafted polymer is prepared into a second mixed solution with the first solvent in a certain mass ratio.
  • the mass ratio of the perfluorosulfonic acid resin and the grafted polymer is 0.01-100. This mass ratio can be based on the composite ion exchange to be prepared.
  • the type of membrane 1 is adjusted.
  • the mass ratio of perfluorosulfonic acid resin and graft polymer can be adjusted to 5-10, or when the composite ion exchange membrane 1 is an anion
  • the mass ratio of the exchange membrane, perfluorosulfonic acid resin and graft polymer can be adjusted to 0.1-1, but is not limited to this.
  • perfluorosulfonic acid resin Since perfluorosulfonic acid resin has strong proton conductivity, its use as the hydrophilic layer 13 is very conducive to the preparation of proton exchange membranes. However, when preparing anion exchange membranes, excessive use may be detrimental to the conduction of anions. For this reason, the mass ratio of perfluorosulfonic acid resin and graft polymer is very critical, especially when anion exchange membranes are used in all-vanadium redox flow batteries. When used, a small amount of perfluorosulfonic acid resin can effectively block the migration of vanadium ions.
  • the porous base membrane layer 11 is first sprayed with the second mixed solution obtained above, and the hydrophilic layer 13 can be formed on the porous base membrane layer 11.
  • the hydrophilic layer 13 can be sprayed on the porous base membrane layer 11.
  • At least one side can be sprayed on both sides of the porous base membrane layer 11, and the second mixed solution is sprayed on the porous base membrane layer 11 at a first pressure value, where the first pressure value is 0.01MPa- 1Mpa, preferably 0.05MPa-0.2MPa, but not limited to this, and then spray the graft polymer dispersion onto the hydrophilic layer 13 with a second pressure value, where the ratio of the first pressure value to the second pressure value is 1 : 10, preferably 2-5. Furthermore, the graft polymer dispersion sprayed on the graft polymer resin layer 12 is dried and heat-treated to obtain a composite film, but it is not limited to this.
  • the composite film obtained above is protonated with an acid solution or an alkali solution to obtain a composite ion exchange membrane 1.
  • the composite film is protonated with an acid solution or an alkali solution.
  • the composite film can be placed in a treatment liquid for high-temperature reaction, wherein the treatment liquid is at least one of 2-sulfobenzoic anhydride solution or trimethylamine solution, and the treatment liquid can be based on the composite ion exchange to be prepared.
  • the type of membrane 1 is selected.
  • the treatment liquid can be a 2-sulfobenzoic anhydride solution, and the composite membrane is treated with an acid solution.
  • the treatment solution can be trimethylamine solution, and the composite film can be protonated with an alkali solution, but this is not limited to this.
  • the porous base membrane layer 11 uses polytetrafluoroethylene as the base membrane, has a thickness of 8 ⁇ m, and is biaxially stretched.
  • the polymer monomer of the graft polymerized resin layer 12 is glycidyl methacrylate; and the polyvinylidene fluoride is a polyvinylidene fluoride film.
  • the first solvent is N,N-dimethylformamide; and the second solvent is ethanol.
  • the treatment liquid is 2-sulfobenzoic anhydride/dioxane solution.
  • the polyvinylidene fluoride film is horizontally fixed on an aluminum metal frame, irradiated with 100kGy high-energy electron beam to generate free radicals, and then rolled between two layers of polyethylene (PE) separators and stored at low temperature until use.
  • PE polyethylene
  • the composite film was placed in a 1M 2-sulfobenzoic anhydride/dioxane solution at 80°C for 5 hours, rinsed repeatedly with deionized water, and then protonated with a 1M sulfuric acid solution for 2 hours to obtain proton exchange. membrane.
  • the porous base membrane layer 11 uses polytetrafluoroethylene as the base membrane, has a thickness of 8 ⁇ m, and is biaxially stretched.
  • the polymer monomer of the graft polymerized resin layer 12 is glycidyl methacrylate; and the polyvinylidene fluoride is a polyvinylidene fluoride film.
  • the first solvent is N,N-dimethylformamide; and the second solvent is ethanol.
  • the treatment liquid is 2-sulfobenzoic anhydride/dioxane solution.
  • the polyvinylidene fluoride film is horizontally fixed on an aluminum metal frame, irradiated with 100kGy high-energy electron beam to generate free radicals, and then rolled between two layers of polyethylene (PE) separators and stored at low temperature until use.
  • PE polyethylene
  • the composite film was placed in a 1M 2-sulfobenzoic anhydride/dioxane solution at 80°C for 4 hours. After repeated washing with deionized water, it was protonated with a 1M sulfuric acid solution for 2 hours to obtain proton exchange. membrane.
  • the porous base membrane layer 11 uses polytetrafluoroethylene as the base membrane, has a thickness of 8 ⁇ m, and is biaxially stretched.
  • the polymer monomer of the graft polymerized resin layer 12 is glycidyl methacrylate; and the polyvinylidene fluoride is a polyvinylidene fluoride film.
  • the first solvent is N,N-dimethylformamide; and the second solvent is ethanol.
  • the treatment liquid is 2-sulfobenzoic anhydride/dioxane solution.
  • the polyvinylidene fluoride film is horizontally fixed on an aluminum metal frame, irradiated with 100kGy high-energy electron beam to generate free radicals, and then rolled between two layers of polyethylene (PE) separators and stored at low temperature until use.
  • PE polyethylene
  • a second mixed solution of 5 wt% was prepared with a mass ratio of 5:5 perfluorosulfonic acid resin, graft polymer and N,N-dimethylformamide as a reagent for hydrophilic treatment, and 0.1 Mpa
  • the porous base membrane layer 11 is sprayed with a pressure of 0.05Mpa to form a hydrophilic layer 13, and then the graft polymer dispersion is sprayed on both sides of the hydrophilic layer 13 with a pressure of 0.05Mpa, dried at 80°C, and heat treated at 120°C 2 hours to form the grafted polymer resin layer 12 on the hydrophilic layer 13, and obtain a composite film.
  • the composite film was placed in a 1M 2-sulfobenzoic anhydride/dioxane solution at 80°C for 4 hours. After repeated washing with deionized water, it was protonated with a 1M sulfuric acid solution for 2 hours to obtain proton exchange. membrane.
  • the porous base membrane layer 11 uses polytetrafluoroethylene as the base membrane, has a thickness of 8 ⁇ m, and is biaxially stretched.
  • the polymer monomer of the graft polymerized resin layer 12 is glycidyl methacrylate; and the polyvinylidene fluoride is a polyvinylidene fluoride film.
  • the first solvent is N,N-dimethylformamide; and the second solvent is ethanol.
  • the treatment liquid is 2-sulfobenzoic anhydride/dioxane solution.
  • the polyvinylidene fluoride film is horizontally fixed on an aluminum metal frame, irradiated with 100kGy high-energy electron beam to generate free radicals, and then rolled between two layers of polyethylene (PE) separators and stored at low temperature until use.
  • PE polyethylene
  • the composite film was placed in a 1M 2-sulfobenzoic anhydride/dioxane solution at 80°C for 4 hours. After repeated washing with deionized water, it was protonated with a 1M sulfuric acid solution for 2 hours to obtain proton exchange. membrane.
  • the porous base membrane layer 11 uses polytetrafluoroethylene as the base membrane, has a thickness of 8 ⁇ m, and is biaxially stretched.
  • the polymer monomer of the graft polymerized resin layer 12 is glycidyl methacrylate; and the polyvinylidene fluoride is a polyvinylidene fluoride film.
  • the first solvent is N,N-dimethylformamide; and the second solvent is ethanol.
  • the treatment solution is trimethylamine solution.
  • the polyvinylidene fluoride film is horizontally fixed on an aluminum metal frame and irradiated with 100kGy high-energy electron beam to produce self-produced After the base is formed, it is rolled between two layers of polyethylene (PE) separators and stored at low temperature until use.
  • PE polyethylene
  • the composite film was placed in a 1M trimethylamine solution at 80°C for 5 hours, rinsed repeatedly with deionized water, and then protonated with a 1M alkaline solution for 2 hours to obtain an anion exchange membrane.
  • the porous base membrane layer 11 uses polytetrafluoroethylene as the base membrane, has a thickness of 8 ⁇ m, and is biaxially stretched.
  • the polymer monomer of the graft polymerized resin layer 12 is glycidyl methacrylate; and the polyvinylidene fluoride is a polyvinylidene fluoride film.
  • the first solvent is N,N-dimethylformamide; and the second solvent is ethanol.
  • the treatment solution is trimethylamine solution.
  • the polyvinylidene fluoride film is horizontally fixed on an aluminum metal frame, irradiated with 100kGy high-energy electron beam to generate free radicals, and then rolled between two layers of polyethylene (PE) separators and stored at low temperature until use.
  • PE polyethylene
  • the composite film was placed in a 1M trimethylamine solution at 80°C for 5 hours, rinsed repeatedly with deionized water, and then protonated with a 1M alkaline solution for 2 hours to obtain an anion exchange membrane.
  • the porous base membrane layer 11 uses polytetrafluoroethylene as the base membrane, has a thickness of 8 ⁇ m, and is biaxially stretched.
  • the polymer monomer of the graft polymerized resin layer 12 is glycidyl methacrylate; and the polyvinylidene fluoride is a polyvinylidene fluoride film.
  • the first solvent is N,N-dimethylformamide; and the second solvent is ethanol.
  • the treatment solution is trimethylamine solution.
  • the polyvinylidene fluoride film is horizontally fixed on an aluminum metal frame, irradiated with 100kGy high-energy electron beam to generate free radicals, and then rolled between two layers of polyethylene (PE) separators and stored at low temperature until use.
  • PE polyethylene
  • the composite film was placed in a 1M trimethylamine solution at 80°C for 5 hours, rinsed repeatedly with deionized water, and then protonated with a 1M alkaline solution for 2 hours to obtain an anion exchange membrane.
  • the porous base membrane layer 11 uses polytetrafluoroethylene as the base membrane, has a thickness of 8 ⁇ m, and is biaxially stretched.
  • the polymer monomer of the graft polymerized resin layer 12 is glycidyl methacrylate; and the polyvinylidene fluoride is a polyvinylidene fluoride film.
  • the first solvent is N,N-dimethylformamide; and the second solvent is ethanol.
  • the treatment solution is trimethylamine solution.
  • the polyvinylidene fluoride film is horizontally fixed on an aluminum metal frame, irradiated with 100kGy high-energy electron beam to generate free radicals, and then rolled between two layers of polyethylene (PE) separators and stored at low temperature until use.
  • PE polyethylene
  • the composite film was placed in a 1M trimethylamine solution at 80°C for 5 hours, rinsed repeatedly with deionized water, and then protonated with a 1M alkaline solution for 2 hours to obtain an anion exchange membrane.
  • the porous base membrane layer 11 uses polytetrafluoroethylene as the base membrane, has a thickness of 8 ⁇ m, and is biaxially stretched.
  • the polymer monomer of the graft polymerized resin layer 12 is glycidyl methacrylate; and the polyvinylidene fluoride is a polyvinylidene fluoride film.
  • the first solvent is N,N-dimethylformamide; and the second solvent is ethanol.
  • the treatment liquid is 2-sulfobenzoic anhydride/dioxane solution.
  • the polyvinylidene fluoride film is horizontally fixed on an aluminum metal frame, irradiated with 100kGy high-energy electron beam to generate free radicals, and then rolled between two layers of polyethylene (PE) separators and stored at low temperature until use.
  • PE polyethylene
  • N,N-dimethylformamide as a solvent to prepare a mixed solution containing 5wt% graft polymer resin as a reagent for hydrophilic treatment, and spray the porous base membrane layer 11 at a pressure of 0.1Mpa to form a hydrophilic Layer 13, then spray the graft polymer dispersion on both sides of the hydrophilic layer 13 with a pressure of 0.05Mpa, dry it at 80°C, and heat treat it at 120°C for 2 hours to form graft polymerization on the hydrophilic layer 13 Resin layer 12, and a composite film can be obtained.
  • the composite film was placed in a 1M 2-sulfobenzoic anhydride/dioxane solution at 80°C for 4 hours. After repeated washing with deionized water, it was protonated with a 1M sulfuric acid solution for 2 hours to obtain proton exchange. membrane.
  • the porous base membrane layer 11 uses polytetrafluoroethylene as the base membrane, has a thickness of 8 ⁇ m, and is biaxially stretched.
  • the polymer monomer of the graft polymerized resin layer 12 is glycidyl methacrylate; and the polyvinylidene fluoride is a polyvinylidene fluoride film.
  • the first solvent is N,N-dimethylformamide; and the second solvent is ethanol.
  • the treatment solution is trimethylamine solution.
  • the polyvinylidene fluoride film is horizontally fixed on an aluminum metal frame, irradiated with 100kGy high-energy electron beam to generate free radicals, and then rolled between two layers of polyethylene (PE) separators and stored at low temperature until use.
  • PE polyethylene
  • N,N-dimethylformamide as a solvent to prepare a mixed solution containing 5wt% perfluorosulfonic acid resin as a reagent for hydrophilic treatment, and spray the porous base membrane layer 11 at a pressure of 0.1Mpa to form a hydrophilic treatment solution.
  • Water layer 13 then spray the graft polymer dispersion on both sides of the hydrophilic layer 13 with a pressure of 0.05Mpa, dry it at 80°C, and heat treat it at 120°C for 2 hours to form a graft on the hydrophilic layer 13
  • the resin layer 12 is polymerized to obtain a composite film.
  • the composite film was placed in a 1M trimethylamine solution at 80°C for 5 hours, rinsed repeatedly with deionized water, and then protonated with a 1M alkaline solution for 2 hours to obtain an anion exchange membrane.
  • the polymer monomer is glycidyl methacrylate; and the polyvinylidene fluoride is a polyvinylidene fluoride film.
  • the first solvent is N,N-dimethylformamide; and the second solvent is ethanol.
  • the treatment liquid is 2-sulfobenzoic anhydride/dioxane solution.
  • the polyvinylidene fluoride film is horizontally fixed on an aluminum metal frame, irradiated with 100kGy high-energy electron beam to generate free radicals, and then rolled between two layers of polyethylene (PE) separators and stored at low temperature until use.
  • PE polyethylene
  • the polymer monomer is glycidyl methacrylate; and the polyvinylidene fluoride is a polyvinylidene fluoride film.
  • the first solvent is N,N-dimethylformamide; and the second solvent is ethanol.
  • the treatment solution is trimethylamine solution.
  • the polyvinylidene fluoride film is horizontally fixed on an aluminum metal frame, irradiated with 100kGy high-energy electron beam to generate free radicals, and then rolled between two layers of polyethylene (PE) separators and stored at low temperature until use.
  • PE polyethylene
  • the graft polymer dispersion After defoaming the graft polymer dispersion, use a flat coater to scrape-coat the steel plate to form a thin film. Put the thin film into a 1M trimethylamine solution at 80°C for 5 hours, and rinse repeatedly with deionized water. Afterwards, the membrane was protonated with a 1M alkaline solution for 2 hours to obtain an anion exchange membrane.
  • test methods for the ion conductivity, mechanical properties and swelling rate of the ion exchange membrane prepared in the aforementioned embodiments and comparative examples are as follows:
  • the ion conductivity is tested with an electrochemical impedance meter under 10mV voltage disturbance in accordance with GB/T20042.3-2009.
  • the test cell conditions are 80°C and 100% RH.
  • the mechanical properties were tested by a universal tensile machine in accordance with GB/T1040.3-2006.
  • the sample size was 1cm ⁇ 5cm.
  • the ion exchange membrane was prepared according to the MD/TD aspects of biaxial stretching, and was The sample was stretched to break at a speed of 50 mm ⁇ min-1 under constant temperature conditions of 25°C, and the tensile strength and elongation at break were read.
  • the swelling rate is tested according to GB/T20042.3-2009. Take a square sample with a flat surface and use a caliper to calibrate its length and width; put the ion exchange membrane into a 100°C constant temperature water bath for 30 minutes, then take it out and measure the size again to calculate the swelling rate.
  • the ion exchange membrane of Comparative Example 1 only uses graft polymer as its hydrophilic layer
  • the ion exchange membrane of Comparative Example 2 only uses perfluorosulfonic acid resin as its hydrophilic layer.
  • the ion exchange membranes of Comparative Examples 3-4 did not use a porous base membrane layer, but were directly prepared from a graft polymer dispersion, and did not have a hydrophilic layer. Overall, their efficacy was significantly better than that of the Examples 1-8 are poor. Among them, although Comparative Examples 1, 3, and 4 have higher ionic conductivity, their tensile strength, elongation at break, and swelling rate are all poor.
  • the prepared composite ion exchange membrane can effectively improve the mechanical stability and swelling rate, and utilize the ultra-high elicitor ability of the graft polymer to prepare a composite ion exchange membrane with excellent comprehensive performance.
  • the invention also provides a hydrophilic layer between the porous base membrane layer and the graft polymerization resin layer, which can effectively enhance the stability of the composite ion exchange membrane and at the same time , in vanadium battery applications, a small amount of cations can effectively block the migration of vanadium ions and maintain the long-term stability of the system.
  • Example 8 shows that the ion conductivity is significantly lower compared to Examples 5-7.
  • Example 8 also illustrates the importance of a small amount of perfluorosulfonic acid resin to the anion exchange membrane in the hydrophilic layer.
  • By controlling the mass ratio of perfluorosulfonic acid resin and graft polymer resin its ion conductivity can be effectively improved. , and the purpose of the present invention can be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Composite Materials (AREA)
  • Toxicology (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Fuel Cell (AREA)

Abstract

一种复合离子交换膜包括多孔基膜层(11)和接枝聚合树脂层(12),复合离子交换膜的制备方法包括:将聚合物单体与聚偏氟乙烯进行接枝聚合反应形成接枝聚合物,将接枝聚合物制成分散液喷涂于多孔基膜层得到复合薄膜,将复合薄膜用酸溶液或碱溶液进行质子化处理得到复合离子交换膜,通过该方法可制备出高离子导电率及高稳定性的复合离子交换膜。

Description

复合离子交换膜及其制备方法 技术领域
本发明属于离子交换膜领域,特别是涉及一种复合离子交换膜及其制备方法。
背景技术
离子交换膜是一种可让离子选择性通过的功能薄膜,其应用于燃料电池、SPE电解水制氢技术及液流电池等领域中,由于离子交换膜具有传递离子与分散阴阳极气体的双重功能,因此其性能将会直接影响燃料电池、电解水制氢等设备的稳定性与耐久性。
现有的技术中,例如磺酸型质子交换膜,其结构可表示为R-SO3H+,由于磺酸具有亲水性,因此可于吸水时发生溶胀并于结构中形成多微细弯取的通道,而磺酸基团则具有排斥OH-等阴离子的功能,使得H+可选择性通过,同时,燃料电池阴极反应时,-SO3H解离出H+参与结合成水,H+离开后,-S03 -因静电吸引附近的H+填补空位,于电势差的推动下,H+由阳极向阴极移动,-SO3H上的H+可与膜中的H2O形成H3O+,从而削弱-SO3与H+之间的引力,而有利于H+的移动,使得质子能够沿着氢键链迅速转移,以维持电池回路。
然而,由于阴离子交换膜的产品结构并不统一,一般以-N+R3作为官能团,其原理类似于质子交换膜的传导,以OH-与H2O形成水合离子,于阳离子官能团的作用下形成网络结构,当OH-传递时与附近的水合离子经氢键作用结合,使得网络结构中等量的其他OH-脱离,其过程不断重复即可形成OH-转移传输的主要方式。
综上而论,全氟磺酸树脂的合成步骤分为全氟(4-甲基-3,6-二氧环-7-辛烯-1-酰磺氟)(PSVE)单体的制备及四氟乙烯(TFE)与PSVE的共聚,其合程过程复杂,导致商用全氟磺酸质子膜价格昂贵的问题,而阴离子交换膜具有传导OH-、阻隔正负两极的作用,因此需要具有高的质子电导率,即离子交换膜需具有相当数量的官能团,为此,势必影响薄膜的稳定性,故现有产品皆存在着成本高、工艺复杂或量产难度较高等问题。
发明内容
本发明的目的在于提供一种复合离子交换膜,其以多孔基膜层及接枝聚合树脂层形成复合离子交换膜,并以聚偏氟乙烯与聚合物单体作为接枝聚合树脂层的材料,其原材料易于取得,且,合成条件相对温和,大幅降低生产成本。
本发明的另一目的在于提供一种复合离子交换膜的制备方法,其以通过聚合物单体与聚 偏氟乙烯的接枝聚合反应,形成的接枝聚合物分散液喷涂于多孔基膜层,以于多孔基膜层上形成接枝聚合树脂层,其复合过程简单易于操作,并且可制备出高离子导电率及高稳定性的复合离子交换膜。
为达成上述的目的,本发明提供一种复合离子交换膜,包括:
一多孔基膜层;及
一接枝聚合树脂层,设置于所述多孔基膜层的至少一侧,所述接枝聚合树脂层包含一聚偏氟乙烯与一聚合物单体,通过所述聚偏氟乙烯与所述聚合物单体的接枝聚合反应形成所述接枝聚合树脂层。
优选的,包含一亲水层,设置于所述多孔基膜层与所述接枝聚合树脂层之间,所述亲水层的材料包含一全氟磺酸树脂及一接枝聚合物,且,所述全氟磺酸树脂及所述接枝聚合物的质量比例为0.01-100。
优选的,所述多孔基膜层与所述亲水层的厚度比为2.5-100。
优选的,所述多孔基膜层为聚四氟乙烯、聚偏氟乙烯、乙烯-四氟乙烯共聚物、聚乙烯中的至少一种。
优选的,所述多孔基膜层的孔隙率为60%-90%。
优选的,所述多孔基膜层的厚度为5μm-35μm。
优选的,所述多孔基膜层的孔隙率为80%-85%
优选的,所述聚偏氟乙烯为聚偏氟乙烯薄膜,且,分子量为5万-60万。
优选的,所述聚偏氟乙烯为聚偏氟乙烯薄膜,且,分子量为35万-40万。
优选的,所述聚合物单体为甲基丙烯酸缩水甘油酯、环氧丁烯、烯丙基缩水甘油醚、1,2-环氧-9-癸烷中的至少一种。
优选的,所述聚偏氟乙烯与所述聚合物单体的质量比为0.5-10。
优选的,所述复合离子交换膜的厚度为15μm-100μm。
为达成上述的另一目的,本发明提供一种复合离子交换膜的制备方法,包括步骤:
一聚偏氟乙烯与一聚合物单体通过接枝聚合反应处理,形成一接枝聚合物;
所述接枝聚合物与一第一溶剂加热混合,产生一接枝聚合物分散液;
将所述接枝聚合物分散液喷涂于一多孔基膜层,以于所述多孔基膜层上形成一接枝聚合树脂层,产生一复合薄膜;及
将所述复合薄膜以一酸溶液或一碱溶液进行质子化处理,取得一复合离子交换膜。
优选的,所述第一溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、N-甲 基吡咯烷酮、水、乙醇、正丙醇、异丙醇、环已烷中的至少一种。
优选的,所述聚偏氟乙烯与所述聚合物单体的质量比为0.5-10。
优选的,于一聚偏氟乙烯与一聚合物单体通过接枝聚合反应处理,形成一接枝聚合物的步骤中,所述聚合物单体与一第二溶剂进行加热混合,产生一第一混合溶液,且,将所述聚偏氟乙烯以一高能电子束进行辐照处理,产生自由基反应以活化所述聚偏氟乙烯后,并将所述聚偏氟乙烯置入所述第一混合溶液内,以形成所述接枝聚合物。
优选的,所述第二溶剂为乙醇、正丙醇、异丙醇、环己醇中的至少一种。
优选的,所述聚合物单体与所述第二溶剂的体积比为10%-90%。
优选的,所述聚合物单体与所述第二溶剂的体积比为40%-60%。
优选的,于将所述接枝聚合物分散液喷涂于一多孔基膜层,以于所述多孔基膜层上形成一接枝聚合树脂层,产生一复合薄膜的步骤中,以一全氟磺酸树脂及所述接枝聚合物与所述第一溶剂进行混合,产生一第二混合溶液,将所述第二混合溶液喷涂于所述多孔基膜层,以于所述多孔基膜层上形成一亲水层后,再以所述接枝聚合物分散液喷涂于所述亲水层上,以于所述亲水层上形成所述接枝聚合树脂层,产生所述复合薄膜。
优选的,所述第二混合溶液以一第一压力值将所述第二混合溶液喷涂于所述多孔基膜层,其中,所述第一压力值为0.01MPa-1MPa。
优选的,所述接枝聚合物分散液以一第二压力值将所述接枝聚合物分散液喷涂于所述亲水层,其中,所述第一压力值与所述第二压力值的比值为1:10。
优选的,所述第一压力值与所述第二压力值2-5。
优选的,所述全氟磺酸树脂及所述接枝聚合物的质量比例为0.01-100。
优选的,于将所述复合薄膜以一酸溶液或一碱溶液进行质子化处理,取得一复合离子交换膜的步骤中,将所述复合薄膜置入一处理液进行反应,其中,所述处理液为2-磺基苯甲酸酐溶液或三甲胺溶液中的至少一种。
优选的,当所述处理液为2-磺基苯甲酸酐溶液,且,将所述复合薄膜以所述酸溶液进行质子化处理,取得所述复合离子交换膜为质子交换膜,或当所述处理液为三甲胺溶液,且,将所述复合薄膜以所述碱溶液进行质子化处理,取得所述复合离子交换膜为阴离子交换膜。
本发明的有益效果在于以,以喷涂方式将接枝聚合树脂层的材料复合至多孔基膜层,过程十分简单,且,其材料易于取得,因此大幅降低生产成本,同时,以此方法及材料所制成的复合离子交换膜,其具有高离子导电率及高稳定性的,而可改善习知缺失。
附图说明
图1A为本发明一实施例的复合离子交换膜的结构示意图;
图1B为本发明一实施例的复合离子交换膜的结构示意图;
图2A为本发明另一实施例的复合离子交换膜的结构示意图;
图2B为本发明另一实施例的复合离子交换膜的结构示意图;及
图3为本发明一实施例的复合离子交换膜的制备方法流程图。
具体实施方式
为让本发明上述及/或其他目的、功效、特征更明显易懂,下文特举较佳实施方式,作详细说明于下:
请参阅图1A-1B,其为本发明之一实施例的复合离子交换膜的结构示意图。如图所示,本发明的复合离子交换膜1包括多孔基膜层11与接枝聚合树脂层12,其中,复合离子交换膜1的厚度为15μm-100μm,但不在此限,且,接枝聚合树脂层12设置于多孔基膜层11的至少一侧,并详细说明如下:
多孔基膜层11的材料为聚四氟乙烯、聚偏氟乙烯、乙烯-四氟乙烯共聚物、聚乙烯中的至少一种,且,多孔基膜层可为双向拉伸的聚合物薄膜,其孔隙率为60%-90%,优选为80%-85%,厚度为5μm-35μm,但不在此限。
接枝聚合树脂层12包含聚偏氟乙烯与聚合物单体,于一实施例中,聚合物单体是含有官能团的聚合物单体,但不在此限,接枝聚合树脂层12是通过聚偏氟乙烯与聚合物单体的接枝聚合反应而形成,且,聚偏氟乙烯与聚合物单体的质量比为0.5-10。
其中,聚偏氟乙烯可为聚偏氟乙烯薄膜,且,分子量为5万-60万,优选为35万-40万,以及聚合物单体可为甲基丙烯酸缩水甘油酯、环氧丁烯、烯丙基缩水甘油醚、1,2-环氧-9-癸烷中的至少一种,但不在此限。
请参阅图2A-2B,其为本发明之另一实施例的复合离子交换膜的结构示意图。如图所示,本发明的复合离子交换膜1,更进一步的包含亲水层13,其设置于多孔基膜层11与接枝聚合树脂层12之间,并详细说明如下:
亲水层13的材料包含全氟磺酸树脂与接枝聚合物,且,全氟磺酸树脂及接枝聚合树脂的质量比例为0.01-100,于一实施例中,多孔基膜层11与亲水层13的厚度比为2.5-100,但不在此限。
请参阅图3,其为本发明之一实施例的复合离子交换膜的制备方法流程图。如图所示, 本发明复合离子交换膜的制备方法,包括步骤如下:
步骤S1:一聚偏氟乙烯与一聚合物单体通过接枝聚合反应处理,形成一接枝聚合物;
步骤S2:所述接枝聚合物与一第一溶剂加热混合,产生一接枝聚合物分散液;
步骤S3:将所述接枝聚合物分散液喷涂于一多孔基膜层,以于所述多孔基膜层上形成一接枝聚合树脂层,产生一复合薄膜;及
步骤S4:将所述复合薄膜以一酸溶液或一碱溶液进行质子化处理,取得一复合离子交换膜。
如步骤S1所示,首先,聚合物单体先与第二溶剂放入反应器,产生第一混合溶液,聚合物单体可为甲基丙烯酸缩水甘油酯、环氧丁烯、烯丙基缩水甘油醚、1,2-环氧-9-癸烷中的至少一种,以及第二溶剂可为乙醇、正丙醇、异丙醇、环己醇中的至少一种,且,聚合物单体与第二溶剂的体积比为10%-90%,优选为40%-60%,并可进一步通入惰性气体除氧,以持续保持惰性氛围,同时,将第一混合溶液加热至特定温度后,此时,再将聚偏氟乙烯置入第一混合溶液内,而可通过接枝聚合反应取得接枝聚合物。
于一实施例中,在聚偏氟乙烯薄膜置入第一混合溶液前,可将聚偏氟乙烯薄膜水平固定于铝制的金属架上,并以高能电子束进行辐照处理,以产生自由基反应后,卷入两层聚乙烯隔膜之间低温保存待使用。
如步骤S2所示,将前一步骤所产生的接枝聚合物,经第二溶剂反复冲洗、烘干,并将接枝聚合物与第一溶剂加热混合,而可产生接枝聚合物分散液,其中,第一溶剂可为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、N-甲基吡咯烷酮、水、乙醇、正丙醇、异丙醇、环己烷,并可进一步以超声处理均匀接枝聚合物分散液。
如步骤S3所示,接续再将接枝聚合物分散液喷涂于多孔基膜层11,并经烘干并热处理后,于多孔基膜层11形成接枝聚合树脂层12,于一实施例中,可喷涂于多孔基膜层11的至少一侧,优选的,可喷涂于多孔基膜层11的两侧,但不在此限。
于另一实施例中,其更可于多孔基膜层11与接枝聚合树脂层12之间设置亲水层13,其中,亲水层13则是以全氟磺酸树脂与前述步骤所取得的接枝聚合物按一定质量比例与第一溶剂配制成第二混合溶液,全氟磺酸树脂及接枝聚合物的质量比例为0.01-100,此一质量比例可依据欲制备的复合离子交换膜1的种类进行调整,例如:当复合离子交换膜1为质子交换膜时,全氟磺酸树脂及接枝聚合物的质量比例可调整为5-10,或当复合离子交换膜1为阴离子交换膜,全氟磺酸树脂及接枝聚合物的质量比例则可调整为0.1-1,但不在此限。
由于全氟磺酸树脂导质子能力强,作为亲水层13的使用十分利于质子交换膜的制备, 但是在制备阴离子交换膜时,过多的使用可能不利于阴离子的传导,为此,全氟磺酸树脂及接枝聚合物的质量比相当关键,特别在全钒液流电池中运用阴离子交换膜时,少量的全氟磺酸树脂可以有效阻挡钒离子的迁移。
同时,以前述所取得的第二混合溶液先对多孔基膜层11进行喷涂,而可于多孔基膜层11上形成亲水层13,于一实施例中,可喷涂于多孔基膜层11的至少一侧,优选的,可喷涂于多孔基膜层11的两侧,并以第一压力值将第二混合溶液喷涂于多孔基膜层11上,其中,第一压力值为0.01MPa-1Mpa,优选为0.05MPa-0.2MPa,但不在此限,再以第二压力值将接枝聚合物分散液喷涂于亲水层13,其中,第一压力值与第二压力值的比值为1:10,优选为2-5,进一步的,将喷涂于接枝聚合树脂层12的接枝聚合物分散液烘干并热处理后得到复合薄膜,但不在此限。
如步骤S4所示,将前述所取得的复合薄膜以酸溶液或碱溶液进行质子化处理,取得复合离子交换膜1,于一实施例中,将复合薄膜以酸溶液或碱溶液进行质子化处理之前,可先将复合薄膜置入处理液进行高温反应,其中,处理液为2-磺基苯甲酸酐溶液或三甲胺溶液中的至少一种,且,处理液可依据欲制备的复合离子交换膜1的种类进行选择,于一实施例中,当欲制备的复合离子交换膜1为质子交换膜时,处理液可选择2-磺基苯甲酸酐溶液,且,将复合薄膜以酸溶液进行质子化处理,或当欲制备的复合离子交换膜为阴离子交换膜时,处理液可选择三甲胺溶液,且,将复合薄膜以碱溶液进行质子化处理,但不在此限。
为进一步了解本发明,下面结合具体实施方式对本发明的优选方案进行描述,以利于本领域技术人员理解本发明。
实施例1
材料选择如下:
多孔基膜层11选用聚四氟乙烯作为基膜,厚度8μm,且,为双向拉伸。
接枝聚合树脂层12的聚合物单体选用甲基丙烯酸缩水甘油酯;及聚偏氟乙烯为聚偏氟乙烯薄膜。
第一溶剂选用N,N-二甲基甲酰胺;及第二溶剂选用乙醇。
处理液选用2-磺基苯甲酸酐/二恶烷溶液。
接枝聚合物分散液的制备
将聚偏氟乙烯薄膜水平固定于铝制的金属框架上,以100kGy的高能电子束辐照产生自由基后,卷入两层聚乙烯(polyethylene,PE)隔膜之间低温保存待使用。
将50mL甲基丙烯酸缩水甘油酯和50mL乙醇放入反应器产生第一混合溶液,并通入惰 性气体除氧并保持惰性氛围,将第一混合溶液加热至65℃,放入5×5cm的活化后的聚偏氟乙烯薄膜,反应时间为3小时,取出后用乙醇反复冲洗、烘干而取得接枝聚合物。
以N,N-二甲基甲酰胺加热至90℃,放入前述取得的接枝聚合物,以搅拌溶解,产生接枝聚合物分散液,其固含量20wt%,并以超声处理待使用。
质子交换膜的制备
以质量比例为10:1的全氟磺酸树脂与接枝聚合物以及N,N-二甲基甲酰胺配制为5wt%的第二混合溶液,作为亲水处理用的试剂,并以0.1Mpa的压力对多孔基膜层11进行喷涂,形成亲水层13,随后用0.05Mpa的压力将接枝聚合物分散液双面喷涂于亲水层13,以80℃烘干,且经120℃热处理2小时,以于亲水层13上形成接枝聚合树脂层12,而可取得复合薄膜。
后续将复合薄膜放入80℃下1M的2-磺基苯甲酸酐/二恶烷溶液中处理5小时,并以去离子水反复冲洗后,以1M硫酸溶液质子化处理2小时,取得质子交换膜。
实施例2
材料选择如下:
多孔基膜层11选用聚四氟乙烯作为基膜,厚度8μm,且,为双向拉伸。
接枝聚合树脂层12的聚合物单体选用甲基丙烯酸缩水甘油酯;及聚偏氟乙烯为聚偏氟乙烯薄膜。
第一溶剂选用N,N-二甲基甲酰胺;及第二溶剂选用乙醇。
处理液选用2-磺基苯甲酸酐/二恶烷溶液。
接枝聚合物分散液的制备
将聚偏氟乙烯薄膜水平固定于铝制的金属框架上,以100kGy的高能电子束辐照产生自由基后,卷入两层聚乙烯(polyethylene,PE)隔膜之间低温保存待使用。
将50mL甲基丙烯酸缩水甘油酯和50mL乙醇放入反应器产生第一混合溶液,并通入惰性气体除氧并保持惰性氛围,将第一混合溶液加热至65℃,放入5×5cm的活化后的聚偏氟乙烯薄膜,反应时间为3小时,取出后用乙醇反复冲洗、烘干而取得接枝聚合物。
以N,N-二甲基甲酰胺加热至90℃,放入前述取得的接枝聚合物,以搅拌溶解,产生接枝聚合物分散液,其固含量20wt%,并以超声处理待使用。
质子交换膜的制备
以质量比例为8:2的全氟磺酸树脂与接枝聚合物以及N,N-二甲基甲酰胺配制为5wt%的第二混合溶液,作为亲水处理用的试剂,并以0.1Mpa的压力对多孔基膜层11进行喷涂, 形成亲水层13,随后用0.05Mpa的压力将接枝聚合物分散液双面喷涂于亲水层13,以80℃烘干,且经120℃热处理2小时,以于亲水层13上形成接枝聚合树脂层12,而可取得复合薄膜。
后续将复合薄膜放入80℃下1M的2-磺基苯甲酸酐/二恶烷溶液中处理4小时,并以去离子水反复冲洗后,以1M硫酸溶液质子化处理2小时,取得质子交换膜。
实施例3
材料选择如下:
多孔基膜层11选用聚四氟乙烯作为基膜,厚度8μm,且,为双向拉伸。
接枝聚合树脂层12的聚合物单体选用甲基丙烯酸缩水甘油酯;及聚偏氟乙烯为聚偏氟乙烯薄膜。
第一溶剂选用N,N-二甲基甲酰胺;及第二溶剂选用乙醇。
处理液选用2-磺基苯甲酸酐/二恶烷溶液。
接枝聚合物分散液的制备
将聚偏氟乙烯薄膜水平固定于铝制的金属框架上,以100kGy的高能电子束辐照产生自由基后,卷入两层聚乙烯(polyethylene,PE)隔膜之间低温保存待使用。
将50mL甲基丙烯酸缩水甘油酯和50mL乙醇放入反应器产生第一混合溶液,并通入惰性气体除氧并保持惰性氛围,将第一混合溶液加热至65℃,放入5×5cm的活化后的聚偏氟乙烯薄膜,反应时间为3小时,取出后用乙醇反复冲洗、烘干而取得接枝聚合物。
以N,N-二甲基甲酰胺加热至90℃,放入前述取得的接枝聚合物,以搅拌溶解,产生接枝聚合物分散液,其固含量20wt%,并以超声处理待使用。
质子交换膜的制备
以质量比例为5:5的全氟磺酸树脂与接枝聚合物以及N,N-二甲基甲酰胺配制为5wt%的第二混合溶液,作为亲水处理用的试剂,并以0.1Mpa的压力对多孔基膜层11进行喷涂,形成亲水层13,随后用0.05Mpa的压力将接枝聚合物分散液双面喷涂于亲水层13,以80℃烘干,且经120℃热处理2小时,以于亲水层13上形成接枝聚合树脂层12,而可取得复合薄膜。
后续将复合薄膜放入80℃下1M的2-磺基苯甲酸酐/二恶烷溶液中处理4小时,并以去离子水反复冲洗后,以1M硫酸溶液质子化处理2小时,取得质子交换膜。
实施例4
材料选择如下:
多孔基膜层11选用聚四氟乙烯作为基膜,厚度8μm,且,为双向拉伸。
接枝聚合树脂层12的聚合物单体选用甲基丙烯酸缩水甘油酯;及聚偏氟乙烯为聚偏氟乙烯薄膜。
第一溶剂选用N,N-二甲基甲酰胺;及第二溶剂选用乙醇。
处理液选用2-磺基苯甲酸酐/二恶烷溶液。
接枝聚合物分散液的制备
将聚偏氟乙烯薄膜水平固定于铝制的金属框架上,以100kGy的高能电子束辐照产生自由基后,卷入两层聚乙烯(polyethylene,PE)隔膜之间低温保存待使用。
将50mL甲基丙烯酸缩水甘油酯和50mL乙醇放入反应器产生第一混合溶液,并通入惰性气体除氧并保持惰性氛围,将第一混合溶液加热至65℃,放入5×5cm的活化后的聚偏氟乙烯薄膜,反应时间为3小时,取出后用乙醇反复冲洗、烘干而取得接枝聚合物。
以N,N-二甲基甲酰胺加热至90℃,放入前述取得的接枝聚合物,以搅拌溶解,产生接枝聚合物分散液,其固含量20wt%,并以超声处理待使用。
质子交换膜的制备
以质量比例为1:9的全氟磺酸树脂与接枝聚合物以及N,N-二甲基甲酰胺配制为5wt%的第二混合溶液,作为亲水处理用的试剂,并以0.1Mpa的压力对多孔基膜层11进行喷涂,形成亲水层13,随后用0.05Mpa的压力将接枝聚合物分散液双面喷涂于亲水层13,以80℃烘干,且经120℃热处理2小时,以于亲水层13上形成接枝聚合树脂层12,而可取得复合薄膜。
后续将复合薄膜放入80℃下1M的2-磺基苯甲酸酐/二恶烷溶液中处理4小时,并以去离子水反复冲洗后,以1M硫酸溶液质子化处理2小时,取得质子交换膜。
实施例5
材料选择如下:
多孔基膜层11选用聚四氟乙烯作为基膜,厚度8μm,且,为双向拉伸。
接枝聚合树脂层12的聚合物单体选用甲基丙烯酸缩水甘油酯;及聚偏氟乙烯为聚偏氟乙烯薄膜。
第一溶剂选用N,N-二甲基甲酰胺;及第二溶剂选用乙醇。
处理液选用三甲胺溶液。
接枝聚合物分散液的制备
将聚偏氟乙烯薄膜水平固定于铝制的金属框架上,以100kGy的高能电子束辐照产生自 由基后,卷入两层聚乙烯(polyethylene,PE)隔膜之间低温保存待使用。
将50mL甲基丙烯酸缩水甘油酯和50mL乙醇放入反应器产生第一混合溶液,并通入惰性气体除氧并保持惰性氛围,将第一混合溶液加热至65℃,放入5×5cm的活化后的聚偏氟乙烯薄膜,反应时间为3小时,取出后用乙醇反复冲洗、烘干而取得接枝聚合物。
以N,N-二甲基甲酰胺加热至90℃,放入前述取得的接枝聚合物,以搅拌溶解,产生接枝聚合物分散液,其固含量20wt%,并以超声处理待使用。
阴离子交换膜的制备
以质量比例为1:10的全氟磺酸树脂与接枝聚合物以及N,N-二甲基甲酰胺配制为5wt%的第二混合溶液,作为亲水处理用的试剂,并以0.1Mpa的压力对多孔基膜层11进行喷涂,形成亲水层13,随后用0.05Mpa的压力将接枝聚合物分散液双面喷涂于亲水层13,以80℃烘干,且经120℃热处理2小时,以于亲水层13上形成接枝聚合树脂层12,而可取得复合薄膜。
后续将复合薄膜放入80℃下1M的三甲胺溶液中处理5小时,并以去离子水反复冲洗后,以1M碱溶液质子化处理2小时,取得阴离子交换膜。
实施例6
材料选择如下:
多孔基膜层11选用聚四氟乙烯作为基膜,厚度8μm,且,为双向拉伸。
接枝聚合树脂层12的聚合物单体选用甲基丙烯酸缩水甘油酯;及聚偏氟乙烯为聚偏氟乙烯薄膜。
第一溶剂选用N,N-二甲基甲酰胺;及第二溶剂选用乙醇。
处理液选用三甲胺溶液。
接枝聚合物分散液的制备
将聚偏氟乙烯薄膜水平固定于铝制的金属框架上,以100kGy的高能电子束辐照产生自由基后,卷入两层聚乙烯(polyethylene,PE)隔膜之间低温保存待使用。
将50mL甲基丙烯酸缩水甘油酯和50mL乙醇放入反应器产生第一混合溶液,并通入惰性气体除氧并保持惰性氛围,将第一混合溶液加热至65℃,放入5×5cm的活化后的聚偏氟乙烯薄膜,反应时间为3小时,取出后用乙醇反复冲洗、烘干而取得接枝聚合物。
以N,N-二甲基甲酰胺加热至90℃,放入前述取得的接枝聚合物,以搅拌溶解,产生接枝聚合物分散液,其固含量20wt%,并以超声处理待使用。
阴离子交换膜的制备
以质量比例为1:2的全氟磺酸树脂与接枝聚合物以及N,N-二甲基甲酰胺配制为5wt%的第二混合溶液,作为亲水处理用的试剂,并以0.1Mpa的压力对多孔基膜层11进行喷涂,形成亲水层13,随后用0.05Mpa的压力将接枝聚合物分散液双面喷涂于亲水层13,以80℃烘干,且经120℃热处理2小时,以于亲水层13上形成接枝聚合树脂层12,而可取得复合薄膜。
后续将复合薄膜放入80℃下1M的三甲胺溶液中处理5小时,并以去离子水反复冲洗后,以1M碱溶液质子化处理2小时,取得阴离子交换膜。
实施例7
材料选择如下:
多孔基膜层11选用聚四氟乙烯作为基膜,厚度8μm,且,为双向拉伸。
接枝聚合树脂层12的聚合物单体选用甲基丙烯酸缩水甘油酯;及聚偏氟乙烯为聚偏氟乙烯薄膜。
第一溶剂选用N,N-二甲基甲酰胺;及第二溶剂选用乙醇。
处理液选用三甲胺溶液。
接枝聚合物分散液的制备
将聚偏氟乙烯薄膜水平固定于铝制的金属框架上,以100kGy的高能电子束辐照产生自由基后,卷入两层聚乙烯(polyethylene,PE)隔膜之间低温保存待使用。
将50mL甲基丙烯酸缩水甘油酯和50mL乙醇放入反应器产生第一混合溶液,并通入惰性气体除氧并保持惰性氛围,将第一混合溶液加热至65℃,放入5×5cm的活化后的聚偏氟乙烯薄膜,反应时间为3小时,取出后用乙醇反复冲洗、烘干而取得接枝聚合物。
以N,N-二甲基甲酰胺加热至90℃,放入前述取得的接枝聚合物,以搅拌溶解,产生接枝聚合物分散液,其固含量20wt%,并以超声处理待使用。
阴离子交换膜的制备
以质量比例为1:1的全氟磺酸树脂与接枝聚合物以及N,N-二甲基甲酰胺配制为5wt%的第二混合溶液,作为亲水处理用的试剂,并以0.1Mpa的压力对多孔基膜层11进行喷涂,形成亲水层13,随后用0.05Mpa的压力将接枝聚合物分散液双面喷涂于亲水层13,以80℃烘干,且经120℃热处理2小时,以于亲水层13上形成接枝聚合树脂层12,而可取得复合薄膜。
后续将复合薄膜放入80℃下1M的三甲胺溶液中处理5小时,并以去离子水反复冲洗后,以1M碱溶液质子化处理2小时,取得阴离子交换膜。
实施例8
材料选择如下:
多孔基膜层11选用聚四氟乙烯作为基膜,厚度8μm,且,为双向拉伸。
接枝聚合树脂层12的聚合物单体选用甲基丙烯酸缩水甘油酯;及聚偏氟乙烯为聚偏氟乙烯薄膜。
第一溶剂选用N,N-二甲基甲酰胺;及第二溶剂选用乙醇。
处理液选用三甲胺溶液。
接枝聚合物分散液的制备
将聚偏氟乙烯薄膜水平固定于铝制的金属框架上,以100kGy的高能电子束辐照产生自由基后,卷入两层聚乙烯(polyethylene,PE)隔膜之间低温保存待使用。
将50mL甲基丙烯酸缩水甘油酯和50mL乙醇放入反应器产生第一混合溶液,并通入惰性气体除氧并保持惰性氛围,将第一混合溶液加热至65℃,放入5×5cm的活化后的聚偏氟乙烯薄膜,反应时间为3小时,取出后用乙醇反复冲洗、烘干而取得接枝聚合物。
以N,N-二甲基甲酰胺加热至90℃,放入前述取得的接枝聚合物,以搅拌溶解,产生接枝聚合物分散液,其固含量20wt%,并以超声处理待使用。
阴离子交换膜的制备
以质量比例为5:1的全氟磺酸树脂与接枝聚合物以及N,N-二甲基甲酰胺配制为5wt%的第二混合溶液,作为亲水处理用的试剂,并以0.1Mpa的压力对多孔基膜层11进行喷涂,形成亲水层13,随后用0.05Mpa的压力将接枝聚合物分散液双面喷涂于亲水层13,以80℃烘干,且经120℃热处理2小时,以于亲水层13上形成接枝聚合树脂层12,而可取得复合薄膜。
后续将复合薄膜放入80℃下1M的三甲胺溶液中处理5小时,并以去离子水反复冲洗后,以1M碱溶液质子化处理2小时,取得阴离子交换膜。
对比例1
材料选择如下:
多孔基膜层11选用聚四氟乙烯作为基膜,厚度8μm,且,为双向拉伸。
接枝聚合树脂层12的聚合物单体选用甲基丙烯酸缩水甘油酯;及聚偏氟乙烯为聚偏氟乙烯薄膜。
第一溶剂选用N,N-二甲基甲酰胺;及第二溶剂选用乙醇。
处理液选用2-磺基苯甲酸酐/二恶烷溶液。
接枝聚合物分散液的制备
将聚偏氟乙烯薄膜水平固定于铝制的金属框架上,以100kGy的高能电子束辐照产生自由基后,卷入两层聚乙烯(polyethylene,PE)隔膜之间低温保存待使用。
将50mL甲基丙烯酸缩水甘油酯和50mL乙醇放入反应器产生第一混合溶液,并通入惰性气体除氧并保持惰性氛围,将第一混合溶液加热至65℃,放入5×5cm的活化后的聚偏氟乙烯薄膜,反应时间为3小时,取出后用乙醇反复冲洗、烘干而取得接枝聚合物。
以N,N-二甲基甲酰胺加热至90℃,放入前述取得的接枝聚合物,以搅拌溶解,产生接枝聚合物分散液,其固含量20wt%,并以超声处理待使用。
质子交换膜的制备
以N,N-二甲基甲酰胺作为溶剂配制含5wt%接枝聚合树脂的混合溶液,作为亲水处理用的试剂,并以0.1Mpa的压力对多孔基膜层11进行喷涂,形成亲水层13,随后用0.05Mpa的压力将接枝聚合物分散液双面喷涂于亲水层13,以80℃烘干,且经120℃热处理2小时,以于亲水层13上形成接枝聚合树脂层12,而可取得复合薄膜。
后续将复合薄膜放入80℃下1M的2-磺基苯甲酸酐/二恶烷溶液中处理4小时,并以去离子水反复冲洗后,以1M硫酸溶液质子化处理2小时,取得质子交换膜。
对比例2
材料选择如下:
多孔基膜层11选用聚四氟乙烯作为基膜,厚度8μm,且,为双向拉伸。
接枝聚合树脂层12的聚合物单体选用甲基丙烯酸缩水甘油酯;及聚偏氟乙烯为聚偏氟乙烯薄膜。
第一溶剂选用N,N-二甲基甲酰胺;及第二溶剂选用乙醇。
处理液选用三甲胺溶液。
接枝聚合物分散液的制备
将聚偏氟乙烯薄膜水平固定于铝制的金属框架上,以100kGy的高能电子束辐照产生自由基后,卷入两层聚乙烯(polyethylene,PE)隔膜之间低温保存待使用。
将50mL甲基丙烯酸缩水甘油酯和50mL乙醇放入反应器产生第一混合溶液,并通入惰性气体除氧并保持惰性氛围,将第一混合溶液加热至65℃,放入5×5cm的活化后的聚偏氟乙烯薄膜,反应时间为3小时,取出后用乙醇反复冲洗、烘干而取得接枝聚合物。
以N,N-二甲基甲酰胺加热至90℃,放入前述取得的接枝聚合物,以搅拌溶解,产生接枝聚合物分散液,其固含量20wt%,并以超声处理待使用。
阴离子交换膜的制备
以N,N-二甲基甲酰胺作为溶剂配制含5wt%全氟磺酸树脂的混合溶液,作为亲水处理用的试剂,并以0.1Mpa的压力对多孔基膜层11进行喷涂,形成亲水层13,随后用0.05Mpa的压力将接枝聚合物分散液双面喷涂于亲水层13,以80℃烘干,且经120℃热处理2小时,以于亲水层13上形成接枝聚合树脂层12,而可取得复合薄膜。
后续将复合薄膜放入80℃下1M的三甲胺溶液中处理5小时,并以去离子水反复冲洗后,以1M碱溶液质子化处理2小时,取得阴离子交换膜。
对比例3
材料选择如下:
聚合物单体选用甲基丙烯酸缩水甘油酯;及聚偏氟乙烯为聚偏氟乙烯薄膜。
第一溶剂选用N,N-二甲基甲酰胺;及第二溶剂选用乙醇。
处理液选用2-磺基苯甲酸酐/二恶烷溶液。
接枝聚合物分散液的制备
将聚偏氟乙烯薄膜水平固定于铝制的金属框架上,以100kGy的高能电子束辐照产生自由基后,卷入两层聚乙烯(polyethylene,PE)隔膜之间低温保存待使用。
将50mL甲基丙烯酸缩水甘油酯和50mL乙醇放入反应器产生第一混合溶液,并通入惰性气体除氧并保持惰性氛围,将第一混合溶液加热至65℃,放入5×5cm的活化后的聚偏氟乙烯薄膜,反应时间为3小时,取出后用乙醇反复冲洗、烘干而取得接枝聚合物。
以N,N-二甲基甲酰胺加热至90℃,放入前述取得的接枝聚合物,以搅拌溶解,产生接枝聚合物分散液。
质子交换膜的制备
将接枝聚合物分散液脱泡处理后,用平板涂布机于钢板上刮涂形成薄膜,并将薄膜放入80℃下1M的2-磺基苯甲酸酐/二恶烷溶液中处理4小时,并以去离子水反复冲洗后,以1M硫酸溶液质子化处理2小时,取得质子交换膜。
对比例4
材料选择如下:
聚合物单体选用甲基丙烯酸缩水甘油酯;及聚偏氟乙烯为聚偏氟乙烯薄膜。
第一溶剂选用N,N-二甲基甲酰胺;及第二溶剂选用乙醇。
处理液选用三甲胺溶液。
接枝聚合物分散液的制备
将聚偏氟乙烯薄膜水平固定于铝制的金属框架上,以100kGy的高能电子束辐照产生自由基后,卷入两层聚乙烯(polyethylene,PE)隔膜之间低温保存待使用。
将50mL甲基丙烯酸缩水甘油酯和50mL乙醇放入反应器产生第一混合溶液,并通入惰性气体除氧并保持惰性氛围,将第一混合溶液加热至65℃,放入5×5cm的活化后的聚偏氟乙烯薄膜,反应时间为3小时,取出后用乙醇反复冲洗、烘干而取得接枝聚合物。
以N,N-二甲基甲酰胺加热至90℃,放入前述取得的接枝聚合物,以搅拌溶解,产生接枝聚合物分散液。
阴离子交换膜的制备
将接枝聚合物分散液脱泡处理后,用平板涂布机于钢板上刮涂形成薄膜,并将薄膜放入80℃下1M的三甲胺溶液中处理5小时,并以去离子水反复冲洗后,以1M碱溶液质子化处理2小时,取得阴离子交换膜。
前述的各实施例及对比例所制备的离子交换膜,其离子传导率、机械性能和溶胀率的测试方法如下:
1.离子传导率参照GB/T20042.3-2009以电化学阻抗仪在10mV电压扰动下完成测试,其中,测试池条件为80℃,100%RH。
2.机械性能由万能拉伸机根据参照GB/T1040.3-2006完成测试,样条规格为1cm×5cm,离子交换膜则按照双向拉伸的MD/TD方面分别进行了制样,并于25℃恒温条件下以50mm·min-1的速度对样品拉伸至断裂,并读取拉伸强度和断裂伸长率。
3.溶胀率参照GB/T20042.3-2009完成测试,取表面平整的方形样品,用卡尺标定其长宽;将离子交换膜放入100℃恒温水浴30min后取出重新测量尺寸,计算溶胀率。
表一、各实施例的详细数据

综上所述,由表一可知,对比例1的离子交换膜仅采用接枝聚合物作为其亲水层,对比例2的离子交换膜仅采用全氟磺酸树脂作为其亲水层,而对比例3-4的离子交换膜则未采用多孔基膜层,而是直接以接枝聚合物分散液制备而成的薄膜,亦无设置亲水层,其功效整体而言明显相较于实施例1-8差,其中,对比例1、3、4虽有较高的离子传导率,但于拉伸强度、断裂伸长率及溶胀率表现皆较差。
于实施例1-8中,所制备的复合离子交换膜可有效提高机械稳定性和溶胀率,并利用接枝聚合物超高的导致子能力,制备出综合性能优异的复合离子交换膜,本发明除了采用聚偏氟乙烯与聚合物单体作为接枝聚合树脂层,更于多孔基膜层与接枝聚合树脂层之间设置亲水层,可有效增强复合离子交换膜的稳定性,同时,于钒电池应用中,少量存在的阳离子可有效阻挡钒离子的迁移,保持系统的长期稳定性,因此由实施例8可看出,相较于实施例5-7的离子传导率明显较低,亦说明了于亲水层中,少量的全氟磺酸树脂对于阴离子交换膜的重要性,透过全氟磺酸树脂与接枝聚合树脂的质量比例调控,可有效的提升其离子传导率,而可达到本发明的目的。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明构思的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明范围。

Claims (18)

  1. 一种复合离子交换膜,其特征在于,包括:
    一多孔基膜层;及
    一接枝聚合树脂层,设置于所述多孔基膜层的至少一侧,所述接枝聚合树脂层包含一聚偏氟乙烯与一聚合物单体,通过所述聚偏氟乙烯与所述聚合物单体的接枝聚合反应形成所述接枝聚合树脂层。
  2. 如权利要求1所述复合离子交换膜,其特征在于,包含一亲水层,设置于所述多孔基膜层与所述接枝聚合树脂层之间,所述亲水层的材料包含一全氟磺酸树脂及一接枝聚合物,且,所述全氟磺酸树脂及所述接枝聚合物的质量比例为0.01-100。
  3. 如权利要求2所述复合离子交换膜,其特征在于,其中,所述多孔基膜层与所述亲水层的厚度比为2.5-100。
  4. 如权利要求1所述复合离子交换膜,其特征在于,其中,所述多孔基膜层为聚四氟乙烯、聚偏氟乙烯、乙烯-四氟乙烯共聚物、聚乙烯中的至少一种,且,所述多孔基膜层的孔隙率为60%-90%,及所述多孔基膜层的厚度为5μm-35μm。
  5. 如权利要求1所述复合离子交换膜,其特征在于,其中,所述聚偏氟乙烯为聚偏氟乙烯薄膜,且,分子量为5万-60万,以及所述聚合物单体为甲基丙烯酸缩水甘油酯、环氧丁烯、烯丙基缩水甘油醚、1,2-环氧-9-癸烷中的至少一种,且,所述聚偏氟乙烯与所述聚合物单体的质量比为0.5-10。
  6. 如权利要求1所述复合离子交换膜,其特征在于,所述复合离子交换膜的厚度为15μm-100μm。
  7. 一种复合离子交换膜的制备方法,其特征在于,包括步骤:
    一聚偏氟乙烯与一聚合物单体通过接枝聚合反应处理,形成一接枝聚合物;
    所述接枝聚合物与一第一溶剂加热混合,产生一接枝聚合物分散液;
    将所述接枝聚合物分散液喷涂于一多孔基膜层,以于所述多孔基膜层上形成一接枝聚合树脂层,产生一复合薄膜;及
    将所述复合薄膜以一酸溶液或一碱溶液进行质子化处理,取得一复合离子交换膜。
  8. 如权利要求7所述复合离子交换膜的制备方法,其特征在于,其中,所述第一溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、N-甲基吡咯烷酮、水、乙醇、正丙醇、异丙醇、环已烷中的至少一种。
  9. 如权利要求7所述复合离子交换膜的制备方法,其特征在于,其中,所述聚偏氟乙烯与所述聚合物单体的质量比为0.5-10。
  10. 如权利要求7所述复合离子交换膜的制备方法,其特征在于,于一聚偏氟乙烯与一聚合物单体通过接枝聚合反应处理,形成一接枝聚合物的步骤中,所述聚合物单体与一第二溶剂进行加热混合,产生一第一混合溶液,且,将所述聚偏氟乙烯以一高能电子束进行辐照处理,产生自由基反应以活化所述聚偏氟乙烯后,并将所述聚偏氟乙烯置入所述第一混合溶液内,以形成所述接枝聚合物。
  11. 如权利要求10所述复合离子交换膜的制备方法,其特征在于,其中,所述第二溶剂为乙醇、正丙醇、异丙醇、环己醇中的至少一种。
  12. 如权利要求10所述复合离子交换膜的制备方法,其特征在于,其中,所述聚合物单体与所述第二溶剂的体积比为10%-90%。
  13. 如权利要求7所述复合离子交换膜的制备方法,其特征在于,于将所述接枝聚合物分散液喷涂于一多孔基膜层,以于所述多孔基膜层上形成一接枝聚合树脂层,产生一复合薄膜的步骤中,以一全氟磺酸树脂及所述接枝聚合物与所述第一溶剂进行混合,产生一第二混合溶液,将所述第二混合溶液喷涂于所述多孔基膜层,以于所述多孔基膜层上形成一亲水层后,再以所述接枝聚合物分散液喷涂于所述亲水层上,以于所述亲水层上形成所述接枝聚合树脂层,产生所述复合薄膜。
  14. 如权利要求13所述复合离子交换膜的制备方法,其特征在于,其中,所述第二混合溶液以一第一压力值喷涂于所述多孔基膜层,其中,所述第一压力值为0.01MPa-1MPa。
  15. 如权利要求13所述复合离子交换膜的制备方法,其特征在于,其中,所述接枝聚合物分散液以一第二压力值喷涂于所述亲水层,其中,所述第一压力值与所述第二压力值的比值为1:10。
  16. 如权利要求13所述复合离子交换膜的制备方法,其特征在于,其中,所述全氟磺酸树脂及所述接枝聚合物的质量比例为0.01-100。
  17. 如权利要求7所述复合离子交换膜的制备方法,其特征在于,于将所述复合薄膜以一酸溶液或一碱溶液进行质子化处理,取得一复合离子交换膜的步骤中,将所述复合薄膜置入一处理液进行反应,其中,所述处理液为2-磺基苯甲酸酐溶液或三甲胺溶液中的至少一种。
  18. 如权利要求17所述复合离子交换膜的制备方法,其特征在于,其中,当所述处理液为2-磺基苯甲酸酐溶液,且,将所述复合薄膜以所述酸溶液进行质子化处理,取得所述复合离子交换膜为质子交换膜,或当所述处理液为三甲胺溶液,且,将所述复合薄膜以所述碱溶液进行质子化处理,取得所述复合离子交换膜为阴离子交换膜。
PCT/CN2023/080769 2022-06-17 2023-03-10 复合离子交换膜及其制备方法 WO2023241127A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210690844.8 2022-06-17
CN202210690844.8A CN114976165B (zh) 2022-06-17 2022-06-17 复合离子交换膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2023241127A1 true WO2023241127A1 (zh) 2023-12-21

Family

ID=82963934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080769 WO2023241127A1 (zh) 2022-06-17 2023-03-10 复合离子交换膜及其制备方法

Country Status (2)

Country Link
CN (1) CN114976165B (zh)
WO (1) WO2023241127A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117482751A (zh) * 2024-01-02 2024-02-02 湖南叶之能科技有限公司 一种复合膜及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976165B (zh) * 2022-06-17 2024-02-02 上海恩捷新材料科技有限公司 复合离子交换膜及其制备方法
CN116314983A (zh) * 2023-01-09 2023-06-23 上海恩捷新材料科技有限公司 质子交换膜及其制备方法、以及燃料电池
CN115939477B (zh) * 2023-03-13 2023-05-23 杭州德海艾科能源科技有限公司 一种钒电池用高质子传输交换膜及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158270A (ja) * 2002-11-06 2004-06-03 Nitto Denko Corp 燃料電池用電解質膜
CN101728549A (zh) * 2009-12-10 2010-06-09 山东东岳神舟新材料有限公司 高温质子交换复合膜
CN102569702A (zh) * 2012-01-19 2012-07-11 常州大学 非固态电极使用的离子选择性膜及其制备方法
CN104592705A (zh) * 2014-11-21 2015-05-06 沈阳工业大学 一种pvdf阴离子交换膜的溶液接枝制备法
JP2016192294A (ja) * 2015-03-31 2016-11-10 東洋紡株式会社 バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池
CN107512036A (zh) * 2016-06-17 2017-12-26 通用电气公司 膜和制备膜的方法
CN114976165A (zh) * 2022-06-17 2022-08-30 上海恩捷新材料科技有限公司 复合离子交换膜及其制备方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828386B2 (en) * 2002-09-20 2004-12-07 Ballard Power Systems Inc. Process for preparing graft copolymers and membranes formed therefrom
US20060173142A1 (en) * 2005-02-01 2006-08-03 Hildeberto Nava Functionalized thermosetting resin systems
CN100386367C (zh) * 2006-06-16 2008-05-07 武汉理工大学 基于亲水性多孔聚四氟乙烯基体的复合质子交换膜的制备方法
JP5319073B2 (ja) * 2007-03-20 2013-10-16 帝人デュポンフィルム株式会社 固体高分子電解質膜補強用二軸配向ポリエステルフィルム
CN101692487B (zh) * 2009-09-28 2012-10-03 新源动力股份有限公司 一种燃料电池用低透气型质子交换膜的制备方法
CN102181069B (zh) * 2011-04-12 2012-11-21 北京大学 两性离子交换膜的制备方法
CN103012826B (zh) * 2012-12-18 2014-06-11 中国科学院金属研究所 可用于钒电池的聚偏氟乙烯复合膜的制备工艺
CN103087342B (zh) * 2013-01-22 2015-02-18 同济大学 一种氧化石墨烯/pvdf共混阳离子交换膜及其制备方法
CN105226222B (zh) * 2014-07-03 2018-01-16 中国科学院大连化学物理研究所 亲水化改性的多孔隔膜在液流电池中的应用
CN104282923B (zh) * 2014-10-09 2016-08-17 中国科学院金属研究所 全钒液流电池用阳/增强/阴两性复合膜及其制备方法
CN107994244B (zh) * 2016-10-21 2020-12-01 中国科学院大连化学物理研究所 一种多层复合型质子交换膜的制备及膜和应用
CN106519282B (zh) * 2016-12-05 2019-03-29 天津工业大学 一种聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物磺酸质子交换膜的制备方法
CN107057105A (zh) * 2017-01-22 2017-08-18 中北大学 一种辐照接枝制备季膦型阴离子交换膜的方法
CN107240708B (zh) * 2017-04-10 2019-10-11 浙江大学 一种用于燃料电池的两性离子交换膜及其制备方法
WO2018207325A1 (ja) * 2017-05-11 2018-11-15 旭化成株式会社 高分子電解質膜、膜電極接合体、及び固体高分子型燃料電池
CN112514150B (zh) * 2018-07-27 2023-05-02 W.L.戈尔及同仁股份有限公司 具有连续离聚物相的整体复合膜
RU2691134C1 (ru) * 2018-07-30 2019-06-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ангарский государственный технический университет" Протонообменная гибридная композиционная мембрана для твердополимерных топливных элементов
CN109306151B (zh) * 2018-08-31 2020-08-14 大连理工大学 一种不含醚氧键型聚合物阴离子交换膜及其制备方法
JP7103912B2 (ja) * 2018-10-24 2022-07-20 トヨタ自動車株式会社 橋架け構造を有するプロトン伝導膜及び燃料電池
CN111146482A (zh) * 2019-12-10 2020-05-12 一汽解放汽车有限公司 一种自增湿质子交换膜及其制备方法和应用
CN112993352A (zh) * 2019-12-14 2021-06-18 中国科学院大连化学物理研究所 一种高保水树脂复合膜及其制备方法
CN111234244B (zh) * 2020-01-14 2020-09-29 四川东为氢源科技有限公司 超支化聚合物粘合剂、质子交换膜及其制备方法
CN112757731B (zh) * 2020-12-25 2022-04-05 南京大学 一种高耐久性增强型质子交换膜及其制备方法和应用
CN113437341B (zh) * 2021-06-28 2022-04-12 泰山学院 一种液流电池用两性离子传导膜及其制备方法
CN113471496A (zh) * 2021-06-29 2021-10-01 上海化工研究院有限公司 高质子传导率高强全氟磺酸复合质子交换膜及其制备方法
CN113690474A (zh) * 2021-08-30 2021-11-23 中北大学 一种超薄、低渗氢质子交换膜及其制备方法
CN113773542B (zh) * 2021-09-24 2024-01-16 中汽创智科技有限公司 一种全氟质子交换膜及其制备方法和应用
CN114373969B (zh) * 2022-01-10 2023-10-31 中国石油大学(北京) 复合纳米纤维改性质子交换膜及其制备方法和应用
CN114464855B (zh) * 2022-01-14 2024-05-24 深圳圣安技术有限公司 聚四氟乙烯-全氟磺酸树脂复合膜及其制备方法
CN114456523B (zh) * 2022-01-27 2023-08-01 国家电投集团氢能科技发展有限公司 共混改性全氟磺酸树脂复合物、复合离子交换膜及二者的制备方法
CN114573934B (zh) * 2022-03-04 2023-12-12 国家电投集团氢能科技发展有限公司 磺化聚合物/改性聚苯乙烯复合物及离子交换膜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158270A (ja) * 2002-11-06 2004-06-03 Nitto Denko Corp 燃料電池用電解質膜
CN101728549A (zh) * 2009-12-10 2010-06-09 山东东岳神舟新材料有限公司 高温质子交换复合膜
CN102569702A (zh) * 2012-01-19 2012-07-11 常州大学 非固态电极使用的离子选择性膜及其制备方法
CN104592705A (zh) * 2014-11-21 2015-05-06 沈阳工业大学 一种pvdf阴离子交换膜的溶液接枝制备法
JP2016192294A (ja) * 2015-03-31 2016-11-10 東洋紡株式会社 バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池
CN107512036A (zh) * 2016-06-17 2017-12-26 通用电气公司 膜和制备膜的方法
CN114976165A (zh) * 2022-06-17 2022-08-30 上海恩捷新材料科技有限公司 复合离子交换膜及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117482751A (zh) * 2024-01-02 2024-02-02 湖南叶之能科技有限公司 一种复合膜及其制备方法
CN117482751B (zh) * 2024-01-02 2024-04-05 湖南叶之能科技有限公司 一种复合膜及其制备方法

Also Published As

Publication number Publication date
CN114976165A (zh) 2022-08-30
CN114976165B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2023241127A1 (zh) 复合离子交换膜及其制备方法
CA2783850C (en) Perfluorinated ion exchange resin, preparation method and use thereof
CN101475699B (zh) 一种质子传导膜的制备方法
JP5862372B2 (ja) ポリマーの製造方法、固体高分子形燃料電池用電解質膜の製造方法および膜電極接合体の製造方法
KR100833056B1 (ko) 연료전지용 강화-복합 전해질막
CN111111478A (zh) 一种pvdf基阳离子交换膜的制备方法
JPH0768377B2 (ja) 電解質薄膜
KR20070072530A (ko) 전해질 재료, 전해질 막 및 고체 고분자형 연료 전지용막전극 접합체
WO2024056017A1 (zh) 一种离子液体/聚合物复合膜及其制备方法和应用
US10374246B2 (en) Ion exchange membrane and manufacturing method therefor
JP5755346B2 (ja) 燃料電池用電極触媒層、膜電極接合体及び固体高分子型燃料電池。
CN114736411B (zh) 一种导电聚苯胺/氧化石墨烯修饰的Nafion复合质子交换膜及其应用
CN115991819A (zh) 一种膦酸磺酸复合质子交换膜及其制备方法
CN114108006B (zh) 一种电解水制氢质子交换膜及其制备方法
JP2007157428A (ja) 高分子電解質膜及びその製造方法
JP2014084350A (ja) イオン交換樹脂含有液およびイオン交換膜ならびにそれらの製造方法
CN101350415B (zh) 一种微孔膜增强的含氟交联掺杂离子交换膜及其制备方法
Sun et al. A quaternized poly (vinyl alcohol)/chitosan composite alkaline polymer electrolyte: preparation and characterization of the membrane
CN112909277B (zh) 一种离子交换膜及其制备方法和应用
CN115181420B (zh) 一种含亲水辅助基团的离子溶剂膜及其制备方法和应用
WO2015076641A1 (ko) 이온 교환막 및 그 제조방법
CN106519282A (zh) 一种聚偏氟乙烯接枝聚(α‑甲基苯乙烯)共聚物磺酸质子交换膜的制备方法
JP2009123437A (ja) 固体高分子型燃料電池用の電解質膜およびその製造方法
Yu et al. Proton Blockage Pvdf-Co-Hfp-Based Anion Exchange Membrane for Sulfuric Acid Enrichment
CN115548396A (zh) 多孔化的共价键合修饰含氟树脂阴离子交换膜及制备与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822699

Country of ref document: EP

Kind code of ref document: A1