CN106519282A - 一种聚偏氟乙烯接枝聚(α‑甲基苯乙烯)共聚物磺酸质子交换膜的制备方法 - Google Patents

一种聚偏氟乙烯接枝聚(α‑甲基苯乙烯)共聚物磺酸质子交换膜的制备方法 Download PDF

Info

Publication number
CN106519282A
CN106519282A CN201611099413.5A CN201611099413A CN106519282A CN 106519282 A CN106519282 A CN 106519282A CN 201611099413 A CN201611099413 A CN 201611099413A CN 106519282 A CN106519282 A CN 106519282A
Authority
CN
China
Prior art keywords
polyvinylidene fluoride
poly
sulfonic acid
proton exchange
swelling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611099413.5A
Other languages
English (en)
Other versions
CN106519282B (zh
Inventor
李树锋
李建明
程博闻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201611099413.5A priority Critical patent/CN106519282B/zh
Publication of CN106519282A publication Critical patent/CN106519282A/zh
Application granted granted Critical
Publication of CN106519282B publication Critical patent/CN106519282B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种聚偏氟乙烯接枝聚(α‑甲基苯乙烯)共聚物磺酸质子交换膜的制备方法,包含以下步骤:1、碱处理;2、酸洗工艺;3、室温溶胀2~3小时;4、将溶胀后的聚偏氟乙烯膜放入均相溶剂中,加入α‑甲基苯乙烯、共聚单体和催化剂,在引发剂的引发下于50~60℃聚合60小时,得到接枝改性的聚偏氟乙烯膜;5、室温溶胀2~3小时;6、接枝膜在浓硫酸中于70℃反应5小时。本发明还公开了上述方法制得的聚偏氟乙烯接枝聚(α‑甲基苯乙烯)共聚物磺酸质子交换膜,具有良好的电导性和耐甲醇透过性。

Description

一种聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物磺酸质子交换 膜的制备方法
技术领域
本发明涉及氢氧燃料电池质子交换膜,具体地指一种聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物磺酸质子交换膜的制备方法。
背景技术
质子交换膜燃料电池(PEMFC)是以聚合物质子交换膜为电解质的燃料电池,由若干单电池串联而成,单电池由表面涂有催化剂的多孔阳极、多孔阴极和置于二者之间的固体聚合物电解质构成。在燃料电池内部,质子交换膜为质子的迁移和输送提供通道,使得质子经过膜从阳极到达阴极,与外电路的电子转移构成回路,向外界提供电流,因此质子交换膜的性能对燃料电池的性能起着非常重要的作用,它的好坏直接影响电池的使用寿命。聚合物质子交换膜要具有良好的离子导电性、电子绝缘性、机械强度、机械气密性和电化学稳定性能。现在广为使用的商品化离子交换膜是Dupont公司的Nafion系列膜,具有质子电导率高和化学稳定性好等优点,但仍存在制作成本高、对温度和含水量要求高、甲醇渗透率较高等缺点,限制了nafion质子交换膜的进一步应用。为此,开发成本低、性能与nafion相近的高分子电解质膜就成为科研人员的研究热点。
聚偏氟乙烯是指偏氟乙烯均聚物或者偏氟乙烯与其它少量含氟乙烯基单体的共聚物,具有良好的耐化学腐蚀性、耐高温性和耐氧化性。要使聚偏氟乙烯具有导电性,必须在其主链上接枝具有离子交换功能的官能团。聚偏氟乙烯的接枝聚合方法主要有辐射接枝法、强碱溶液接枝法等。可用于聚偏氟乙烯接枝聚合的单体主要是可以引入离子交换基团的苯乙烯类单体。苯乙烯可通过磺化反应在苯环上引入磺酸基官能团而使其具有离子交换功能,且离子交换容量可控,但缺点是在有氧或催化条件下易发生聚合物降解。含取代基苯乙烯的化学稳定性要好于苯乙烯,其中α-甲基苯乙烯(AMS)的稳定性最好。但纯α-甲基苯乙烯进行自由基聚合时反应速度很慢,得到的均聚物的分子量较低(通常在1~2万),很难实际应用。在自由基聚合体系中引入新的共聚单体,如苯乙烯、丙烯腈或甲基丙烯腈等,可提高α-甲基苯乙烯的聚合速率。
中国专利200910195300.9、文献Journal ofMembrane Science 407-408(2012)184-192、文献Journal of Membrane Science 339(2009)68-77均报道了利用辐射接枝法来制备磺酸型聚偏氟乙烯接枝改性质子交换膜的研究。但是辐射接枝需要使用放射源产生射线,对实验操作人员及发备要求较高。文献Journal of Membrane Science 339(2009)68-77研究了α-甲基苯乙烯和丙烯腈作为共聚单体接枝聚(四氟乙烯-全氟丙烯共聚物)的辐射接枝聚合工艺,文献Journal of Membrane Science 363(2010)80-86进一步研究了α-甲基苯乙烯、苯乙烯和丙烯腈的聚合工艺及其共聚物对PVC基膜共混改性的影响。文献“高分子材料科学与工程26(2010)93-96”研究了原硅酸钠改性的聚偏氟乙烯接枝聚苯乙烯磺化膜的接枝聚合工艺,聚苯乙烯的接枝率为14~17%。文献“石油化工应用28(2)(2009)14-17”对碱处理聚偏氟乙烯膜接枝聚苯乙烯的接枝工艺进行了研究,聚苯乙烯的接枝率为10~35%。中国专利201510835863.5公开了一种采用碱溶液法制备磺酸型聚偏氟乙烯膜接枝(α-甲基苯乙烯)共聚物质子交换膜的制备方法,其接枝率从3%提高到49%。
发明内容
本发明的目的是提供一种聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物磺酸质子交换膜的制备方法,以解决现有的碱溶液法制备的聚偏氟乙烯接枝改性聚(α-甲基苯乙烯)共聚物接枝率较低及其磺酸质子交换膜电导率较低的问题。
为达到上述目的,本发明所提供的聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物磺酸质子交换膜的制备方法,包含以下步骤:
①将聚偏氟乙烯用碱处理;
②将碱处理后的聚偏氟乙烯膜依次放入质量分数25%的过氧化氢水溶液、0.5mol/L的硫酸水溶液中各煮沸30分钟,用去离子水洗至中性、烘干;
③将烘干后的聚偏氟乙烯膜放入溶剂中室温溶胀;
④将溶胀后的聚偏氟乙烯膜放入溶剂中,加入α-甲基苯乙烯及其共聚单体,加入催化剂,在引发剂的引发下于50~60℃接枝聚合60~70小时,清洗、干燥,得到接枝改性的聚偏氟乙烯膜;
⑤将接枝后的聚偏氟乙烯膜放入溶剂中室温溶胀;
⑥将溶胀后的接枝聚偏氟乙烯膜在浓硫酸中于60~70℃反应5~7小时,清洗、干燥,得到聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物磺酸质子交换膜。
本发明在步骤①中,所用的碱为氢氧化钠或氢氧化钾的一种,对聚偏氟乙烯膜的处理工艺为:将聚偏氟乙烯膜浸入含3mg/ml四丁基溴化胺的1.5mol/l氢氧化物/乙醇溶液中于60℃反应30分钟。氢氧化钠与聚偏氟乙烯的摩尔比为10~1,优选10~5。
本发明在步骤①中,所用的碱为原硅酸钠或原硅酸钾的一种,对聚偏氟乙烯膜的处理工艺为:将原硅酸盐溶于含水质量分数3%的N-甲基吡咯烷酮中,再加入聚偏氟乙烯粉末,于60℃搅拌2h,成膜,烘干。原硅酸盐的用量为聚偏氟乙烯质量的5~40%,优选15~25%。
本发明在步骤③中,所用的溶剂为二氯甲烷、三氯甲烷中的一种,优选三氯甲烷;其目的是使碱处理后的聚偏氟乙烯膜充分溶胀,以利于后续接枝聚合反应的进行。
本发明在步骤③中,所用的溶胀时间为0.5~5小时,优选2~3小时。
本发明在步骤④中,所使用的溶剂为四氢呋喃、丙酮或乙醇中的一种,优选四氢呋喃。
本发明在步骤④中,所使用的四氢呋喃用量为溶液总体积的10~35%,优选18~30%。
本发明在步骤④中,所使用的催化剂为三氯化铝、氯化铁或氯化锌中的一种,优选三氯化铝。
本发明在步骤④中,所使用的三氯化铝催化剂用量为:2~25mg/100ml共聚单体,优选10~20mg/100ml共聚单体。
本发明在步骤④中,所使用的α-甲基苯乙烯的共聚单体为丙烯腈、甲基丙烯腈或苯乙烯的一种或多种,优选丙烯腈、甲基丙烯腈。
本发明在步骤④中,所使用的α-甲基苯乙烯与丙烯腈摩尔比为3∶2,二者体积之和占溶液总体积的23~80%,优选70~80%。
本发明在步骤④中,所使用的引发剂为偶氮二异丁腈、过氧化苯甲酰中的一种,优选过氧化苯甲酰。
本发明在步骤⑤中,所用的溶剂为二氯甲烷、三氯甲烷中的一种,优选三氯甲烷。
本发明在步骤⑤中,所用的溶胀时间为0.5~5小时,优选2~3小时。
本发明进一步涉及上述方法制得的磺酸质子交换膜。
本发明中,上述各优选技术特征可在不违背本领域常识的前提下任意组合,即得本发明的各较佳实例。
除特殊说明外,本发明涉及的原料和试剂均市售可得。
本发明与现有的聚偏氟乙烯碱溶液接枝聚合方法相比,本发明的方法在接枝聚合过程中使用均相溶剂,并加入催化剂三氯化铝,可使接枝组分的接枝率提高到60%。这种接枝率较高的聚偏氟乙烯膜进行磺化反应,可引入较多的磺酸型离子交换基团,使聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物磺酸质子交换膜的电导率进一步提高到0.022S/cm。
具体实施方式
以下结合实施例对本发明的有关技术问题作进一步的解释和说明,而本发明并不局限于以下实施例。
实施例1
①16%原硅酸钠对聚偏氟乙烯膜的处理:将0.32g粉末状的原硅酸钠溶于含水3%的20ml N-甲基吡咯烷酮中,搅拌均匀;再加入2g粉末状聚偏氟乙烯,在60℃搅拌2h,然后将溶液浇铸到洁净的玻璃板上,烘干,得到16%原硅酸钠改性的聚偏氟乙烯膜。
②膜的酸洗:将碱处理后的聚偏氟乙烯膜依次用25%过氧化氢水溶液、0.5mol/L硫酸水溶液各煮沸30分钟,分别用去离子水、无水乙醇清洗三次,烘干。
③接枝前膜的溶胀:将碱处理后的聚偏氟乙烯膜放入三氯甲烷中在室温下溶胀两小时。
④接枝聚合:将溶胀后的聚偏氟乙烯膜放入24ml四氢呋喃中,加入α-甲基苯乙烯71ml、丙烯腈24ml、过氧化苯甲酰0.387g,加入10mg三氯化铝,在60℃接枝聚合60小时。将接枝后的聚偏氟乙烯膜放入丙酮中清洗两次。然后放入三氯甲烷中清洗两次。再用去离子水冲洗,烘干,得到聚偏氟乙烯接枝膜。
⑤磺化前膜的溶胀:将接枝后的聚偏氟乙烯接枝膜放入三氯甲烷中溶胀两小时。
⑥磺化反应:将接枝后的聚偏氟乙烯膜在浓硫酸中于70℃反应5小时。将磺化后的膜用去离子水洗至中性。用丙酮溶液洗两次,烘干,得到磺酸质子交换膜。
实施例2
①16%原硅酸钠对聚偏氟乙烯膜的处理:同实施例1。
②膜的酸洗:同实施例1。
③接枝前膜的溶胀:同实施例1。
④接枝聚合:将溶胀后的聚偏氟乙烯膜放入38ml四氢呋喃中,加入α-甲基苯乙烯71ml、丙烯腈24ml、过氧化苯甲酰0.6128g,加入15mg三氯化铝,在50℃接枝聚合60小时。将接枝后的聚偏氟乙烯膜放入丙酮中浸泡两次,每次30分钟。然后放入三氯甲烷中浸泡两次,每次一小时。再用去离子水冲洗,烘干,得到聚偏氟乙烯接枝膜。
⑤磺化前膜的溶胀:同实施例1。
⑥磺化反应:同实施例1。
对照实施例
对比实验1:
①16%原硅酸钠对聚偏氟乙烯膜的处理:同实施例1。
②膜的酸洗:同实施例1。
③接枝前膜的溶胀:同实施例1。
④接枝聚合:将碱处理后的聚偏氟乙烯膜放入70ml异丙醇/水(体积比=5∶2)的混合溶剂中,加入α-甲基苯乙烯16ml、丙烯腈5ml、过氧化苯甲酰0.3524g,于50℃恒温接枝聚合60小时。将接枝后的聚偏氟乙烯膜放入丙酮中浸泡两次,每次30分钟。然后在三氯甲烷中浸泡两次,每次一小时。再用去离子水冲洗,烘干,得到聚偏氟乙烯接枝膜。
⑤磺化前膜的溶胀:同实施例1。
⑥磺化反应:同实施例1。
应用实施例1
接枝率:将接枝前后的聚偏氟乙烯膜分别称重,计算其增重百分率,如公式(1)所示。
电导率:将磺化后得到的聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物磺酸质子交换膜在水中浸泡48小时后,用SI 1287交流阻抗测试仪测定其离子电导率。测试条件为:温度25℃,相对湿度100%,交流信号振幅:100mV,频率:0.1~1×106Hz。
对甲醇的面积溶胀度:将聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物磺酸质子交换膜于室温分别浸泡在1mol/L甲醇水溶液、纯甲醇溶液中48小时后按公式(2)计算膜的面积溶胀度。
本发明所述的聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物磺酸质子交换膜的性质如表1所示。
表1 聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物磺酸质子交换膜的性质
由表1可知,本发明实施例1、2制备的聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物的接枝率可达50~60%,而按照中国专利201510835863.5进行制备得到的对比实验例1中的接枝率为49.2%。另外,本发明实施例2制备的磺酸质子交换膜的电导率为0.22S/cm,接近于nafion的一半,前者在纯甲醇和1mol/L甲醇水溶液中的面积溶胀度为0,远小于nafion的49.9%和10.27%。

Claims (5)

1.一种聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物磺酸质子交换膜的制备方法,其特征在于包含以下步骤:
①将聚偏氟乙烯用碱处理;
②将碱处理后的聚偏氟乙烯膜依次放入质量分数25%的过氧化氢水溶液、0.5mol/L的硫酸水溶液中各煮沸30分钟,用去离子水洗至中性、烘干;
③将烘干后的聚偏氟乙烯膜放入溶剂中室温溶胀;
④将溶胀后的聚偏氟乙烯膜放入溶剂中,加入α-甲基苯乙烯及其共聚单体,加入催化剂,在引发剂的引发下于50~60℃接枝聚合60~70小时,清洗、干燥,得到接枝改性的聚偏氟乙烯膜;
⑤将接枝后的聚偏氟乙烯膜放入溶剂中室温溶胀;
⑥将溶胀后的接枝聚偏氟乙烯膜在浓硫酸中于60~70℃反应5~7小时,清洗、干燥,得到聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物磺酸质子交换膜。
2.根据权利要求1所述的制备方法,其特征在于步骤④中,所使用的溶剂为四氢呋喃、丙酮、乙醇中的一种,优选四氢呋喃。
3.根据权利要求2所述的制备方法,其特征在于步骤④中,所使用的四氢呋喃用量为溶液总体积的10~35%,优选18~30%。
4.根据权利要求1所述的制备方法,其特征在于步骤④中,所使用的催化剂为三氯化铝、氯化铁、氯化锌中的一种,优选三氯化铝。
5.根据权利要求4所述的制备方法,其特征在于步骤④中,所用的三氯化铝用量为:2~25mg/100ml共聚单体,优选10~20mg/100ml共聚单体。
CN201611099413.5A 2016-12-05 2016-12-05 一种聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物磺酸质子交换膜的制备方法 Expired - Fee Related CN106519282B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611099413.5A CN106519282B (zh) 2016-12-05 2016-12-05 一种聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物磺酸质子交换膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611099413.5A CN106519282B (zh) 2016-12-05 2016-12-05 一种聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物磺酸质子交换膜的制备方法

Publications (2)

Publication Number Publication Date
CN106519282A true CN106519282A (zh) 2017-03-22
CN106519282B CN106519282B (zh) 2019-03-29

Family

ID=58354708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611099413.5A Expired - Fee Related CN106519282B (zh) 2016-12-05 2016-12-05 一种聚偏氟乙烯接枝聚(α-甲基苯乙烯)共聚物磺酸质子交换膜的制备方法

Country Status (1)

Country Link
CN (1) CN106519282B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976165A (zh) * 2022-06-17 2022-08-30 上海恩捷新材料科技有限公司 复合离子交换膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050049320A1 (en) * 2003-08-28 2005-03-03 Japan Atomic Energy Research Institute Processes for producing nano-space controlled polymer ion-exchange membranes
CN101898091A (zh) * 2009-05-27 2010-12-01 中国科学院上海应用物理研究所 一种质子交换膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050049320A1 (en) * 2003-08-28 2005-03-03 Japan Atomic Energy Research Institute Processes for producing nano-space controlled polymer ion-exchange membranes
CN101898091A (zh) * 2009-05-27 2010-12-01 中国科学院上海应用物理研究所 一种质子交换膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
胡金星: "碱处理PVDF制备质子交换膜研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976165A (zh) * 2022-06-17 2022-08-30 上海恩捷新材料科技有限公司 复合离子交换膜及其制备方法
CN114976165B (zh) * 2022-06-17 2024-02-02 上海恩捷新材料科技有限公司 复合离子交换膜及其制备方法

Also Published As

Publication number Publication date
CN106519282B (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
Xing et al. Chemically stable anion exchange membranes based on C2-Protected imidazolium cations for vanadium flow battery
CN101367903B (zh) 一种基于半互穿网络的增强型复合质子交换膜及其制备方法
Liao et al. Fluoro-methyl sulfonated poly (arylene ether ketone-co-benzimidazole) amphoteric ion-exchange membranes for vanadium redox flow battery
Tang et al. Long side-chain quaternary ammonium group functionalized polybenzimidazole based anion exchange membranes and their applications
Che et al. Anion exchange membranes based on long side-chain quaternary ammonium-functionalized poly (arylene piperidinium) s for vanadium redox flow batteries
CN106147197B (zh) 一种燃料电池用多传导位点聚苯醚基阴离子交换膜及其制备方法
Mu et al. Novel ether-free membranes based on poly (p-terphenylene methylimidazole) for vanadium redox flow battery applications
CN105833737A (zh) 一种单片型双极膜及其制备方法
CA2393383A1 (en) Acid functional fluoropolymer membranes and method of manufacture
EP1893323A1 (en) A method of preparing a radiation fuel cell membrane with enhanced chemical stability and a membrane electode assembly
JP2010533222A (ja) 陰イオン交換膜およびポリマーイオノマーを含む電気化学的装置
Zhang et al. Enhanced conductivity and stability via comb-shaped polymer anion exchange membrane incorporated with porous polymeric nanospheres
CN110054792B (zh) 一种基于sbs的阴离子交换膜及其制备方法
CN114276505B (zh) 含有聚乙二醇柔性亲水侧链的聚亚芳基哌啶共聚物及制备方法、阴离子交换膜及应用
WO2018214843A1 (zh) 一种脂基侧链水解的交联型多孔膜及其制备方法
CN108461790A (zh) 一种长侧链sebs基碱性聚合物电解质膜及其制备和应用
Fang et al. Preparation and characterization of quaternized poly (2, 2, 2‐trifluoroethyl methacrylate‐co‐N‐vinylimidazole) membrane for vanadium redox flow battery
US10862151B2 (en) Polyphenylsulfone-based proton conducting polymer electrolyte, proton conducting solid polymer electrolyte membrane, electrode catalyst layer for solid polymer fuel cells, method for producing electrode catalyst layer for slid polymer fuel cells, and fuel cell
CN107383404A (zh) 一种含氟支化磺化聚酰亚胺质子导电膜的制备方法
CN103094596B (zh) 多孔水凝胶基中高温质子交换膜及其制备方法和应用
Kumar et al. A study on the heat behaviour of PEM, prepared by incorporation of crosslinked sulfonated polystyrene in the blend of PVdF-co-HFP/Nafion, for its high temperature application in DMFC
CN114108006B (zh) 一种电解水制氢质子交换膜及其制备方法
JP4625327B2 (ja) 照射によりグラフトしたポリマー電解質膜を内蔵する燃料電池
CN107978779B (zh) 一种燃料电池用自修复阴离子交换膜及其制备方法
Cai et al. Preparation and properties of sulfonated poly (aryl ether sulfone) s proton exchange membranes based on amino graft for vanadium flow battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190329