WO2022222640A1 - 车辆停车控制方法及装置 - Google Patents

车辆停车控制方法及装置 Download PDF

Info

Publication number
WO2022222640A1
WO2022222640A1 PCT/CN2022/080170 CN2022080170W WO2022222640A1 WO 2022222640 A1 WO2022222640 A1 WO 2022222640A1 CN 2022080170 W CN2022080170 W CN 2022080170W WO 2022222640 A1 WO2022222640 A1 WO 2022222640A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
control level
vehicle control
current
target
Prior art date
Application number
PCT/CN2022/080170
Other languages
English (en)
French (fr)
Inventor
万强
王璐
谭志成
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to BR112023021540A priority Critical patent/BR112023021540A2/pt
Publication of WO2022222640A1 publication Critical patent/WO2022222640A1/zh
Priority to US18/372,364 priority patent/US20240010248A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L17/00Switching systems for classification yards
    • B61L17/02Details, e.g. indicating degree of track filling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
    • B61C17/12Control gear; Arrangements for controlling locomotives from remote points in the train or when operating in multiple units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0058On-board optimisation of vehicle or vehicle train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0062On-board target speed calculation or supervision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2201/00Control methods

Definitions

  • the embodiments of the present disclosure relate to the technical field of rail transportation, and more particularly, to a vehicle parking control method and a vehicle parking control device.
  • the vehicle can be basically free from shock in the starting and braking phases, but the vehicle still has a strong sense of frustration in the parking phase.
  • An object of the embodiments of the present disclosure is to provide a new technical solution for controlling vehicle parking.
  • a vehicle parking control method including: acquiring a current speed and a current vehicle control level of a vehicle to be parked; acquiring a target speed of the vehicle, and acquiring a target of the vehicle according to the current vehicle control level Control vehicle level; obtain the first control vehicle level according to the current vehicle speed, target vehicle speed, current vehicle control level and target vehicle control level; control the vehicle operation according to the first control vehicle level.
  • obtaining the first vehicle control level according to the current vehicle speed, the target vehicle speed, the current vehicle control level and the target vehicle control level including: comparing the current vehicle speed and the target vehicle speed; when the current vehicle speed is not greater than the target vehicle speed , the first control vehicle level is obtained according to the current vehicle control level and the target vehicle control level, and the first vehicle control level is not greater than the target vehicle control level and the current vehicle control level.
  • obtaining the first vehicle control level according to the current vehicle control level and the target vehicle control level includes: comparing the current vehicle control level and the target vehicle control level; when the current vehicle control level is greater than the target vehicle control level In the case of the current vehicle control level, the vehicle control level not greater than the target vehicle control level is used as the first vehicle control level; if the current vehicle control level is not greater than the target vehicle control level, the current vehicle control level is used as the first control level.
  • the first control car level comparing the current vehicle control level and the target vehicle control level
  • obtaining the first vehicle control level according to the current vehicle speed, the target vehicle speed, the current vehicle control level and the target vehicle control level further comprising: when the current vehicle speed is greater than the target vehicle speed, using the current vehicle control level As the first control car level.
  • the current vehicle control level is positively correlated with the target vehicle control level.
  • the method before acquiring the current speed of the vehicle to be parked and the current vehicle control level, the method further includes: detecting whether the speed of the vehicle is greater than zero; when the speed of the vehicle is greater than zero, detecting whether the driving mode of the vehicle is automatic. Driving mode; when the driving mode of the vehicle is the automatic driving mode, detect whether the vehicle is in the parking phase; when the vehicle is in the parking phase, perform the steps of obtaining the current speed and the current vehicle control level of the vehicle to be parked.
  • the method further includes: detecting whether the current vehicle speed is zero speed; in the case of the current vehicle speed being zero speed, applying a parking brake to configure the braking force of the vehicle to a set target value.
  • a vehicle parking control device comprising a memory and a processor, where the memory is used for storing a computer program; the processor is used for executing the computer program to implement the method according to the first aspect of the present disclosure.
  • a computer-readable storage medium on which a computer program is stored, the computer program implementing the method according to the first aspect of the present disclosure when executed by a processor.
  • the vehicle control level of the vehicle to be parked can be adjusted on demand in real time, specifically, the target speed of the vehicle can be adjusted in real time, and the target vehicle can be adjusted in real time according to the current vehicle control level of the vehicle.
  • the vehicle control level is adjusted according to the real-time change of the vehicle speed and the current value and target value of the vehicle control level, which can make the vehicle feel less frustrated in the parking phase.
  • FIG. 1 is a schematic structural diagram of an electronic device to which a vehicle parking control method according to an embodiment can be applied;
  • FIG. 2 is a schematic flowchart of a vehicle parking control method according to an embodiment
  • FIG. 3 is a schematic flowchart of a vehicle parking control method according to another embodiment
  • FIG. 4 is a schematic diagram of a hardware structure of an electronic device according to an embodiment.
  • An application scenario of the embodiments of the present disclosure is to control the operation of the vehicle during the parking phase of the vehicle.
  • the vehicle may be an urban rail train.
  • an optional implementation is: in the vehicle braking phase, the vehicle increases the actual electric braking force value according to a fixed slope, and according to The electric braking force value supplements the air braking force at a fixed slope to reduce the vehicle braking shock rate.
  • this embodiment of controlling the operation of the vehicle during the vehicle braking phase is not suitable for the vehicle parking phase, which will cause the vehicle to have a strong sense of parking impact and frustration during the parking phase, so that the impact problem during the vehicle parking phase cannot be solved. .
  • the inventor proposes a vehicle parking control method.
  • the method obtains the current vehicle speed and the current vehicle control level of the vehicle to be parked;
  • the first control vehicle level is obtained according to the current vehicle speed, the target vehicle speed, the current control vehicle level and the target vehicle control level;
  • the vehicle operation is controlled according to the first control vehicle level.
  • the method adjusts the vehicle control level based on the real-time changes of the speed of the vehicle to be parked and the current value and the target value of the control level, which can make the vehicle feel less frustrated in the parking stage.
  • FIG. 1 shows a schematic diagram of a hardware configuration of an electronic device 1000 that can implement an embodiment of the present disclosure.
  • the electronic device 1000 can be applied to a vehicle parking control scenario.
  • the vehicle may include the electronic device 1000 .
  • the vehicle may be an urban rail train.
  • the electronic device 1000 may be a smart phone, a portable computer, a desktop computer, a tablet computer, a server, etc., which is not limited herein.
  • the hardware configuration of the electronic device 1000 may include, but is not limited to, a processor 1100, a memory 1200, an interface device 1300, a communication device 1400, a display device 1500, an input device 1600, a speaker 1700, a microphone 1800, and the like.
  • the processor 1100 may be a central processing unit (CPU), a graphics processing unit (GPU), a microprocessor MCU, or the like, and is used to execute a computer program.
  • the computer program may be written using an instruction set of an architecture such as x86, Arm, RISC, MIPS, and SSE. .
  • the memory 1200 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), a nonvolatile memory such as a hard disk, and the like.
  • the interface device 1300 includes, for example, a USB interface, a serial interface, a parallel interface, and the like.
  • the communication device 1400 can, for example, perform wired communication using optical fibers or cables, or perform wireless communication, which may specifically include WiFi communication, Bluetooth communication, 2G/3G/4G/5G communication, and the like.
  • the display device 1500 is, for example, a liquid crystal display, a touch display, or the like.
  • the input device 1600 may include, for example, a touch screen, a keyboard, a somatosensory input, and the like. The user can input/output voice information through the speaker 1700 and the microphone 1800 .
  • the memory 1200 of the electronic device 1000 is used to store instructions, and the instructions are used to control the processor 1100 to operate to support implementing the vehicle parking control method according to any embodiment of the present disclosure.
  • a skilled person can design instructions according to the solutions disclosed in the present disclosure. How the instruction controls the processor to operate is well known in the art, so it will not be described in detail here.
  • the electronic device 1000 may be installed with an intelligent operating system (such as Windows, Linux, Android, IOS, etc.) and application software.
  • the electronic device 1000 in the embodiment of the present disclosure may only involve some of the devices, for example, only the processor 1100 and the memory 1200. This is well known in the art and will not be repeated here.
  • FIG. 2 is a schematic flowchart of a vehicle parking control method according to an embodiment.
  • the implementation subject of this embodiment is, for example, the electronic device 1000 shown in FIG. 1 .
  • the vehicle may include the electronic device 1000 .
  • the vehicle parking control method of this embodiment may include the following steps S210S240:
  • Step S210 acquiring the current speed and current vehicle control level of the vehicle to be parked.
  • the vehicle to which this embodiment is applicable may be an urban rail train, and may be a single-module (or a carriage) or a multi-module vehicle, which has strong versatility.
  • the vehicle speed and control level of each single module included in the vehicle are usually the same, and each single module performs operation control separately to achieve the effect of unified control of the entire vehicle.
  • step S210 is performed to first obtain the current speed and current vehicle control level of the vehicle to be parked.
  • a time interval may be set, and the embodiments of the present disclosure may be periodically executed based on the time interval, so as to realize real-time on-demand adjustment of the vehicle control level of the vehicle operation.
  • the time interval may be the duration of one or more vehicle control cycles, or may be any time value set as required.
  • the maximum vehicle control level may be 100%, and the minimum vehicle control level may be 0%. In the vehicle parking stage, the larger the vehicle control level, the corresponding deceleration bigger.
  • whether the vehicle is a vehicle to be parked may be determined by using vehicle operation data. For example, a vehicle with a vehicle speed greater than zero, running in an automatic driving mode and in a parking phase can be determined as a vehicle to be parked, and the vehicle parking control method of this embodiment can be implemented on the vehicle to be parked, so as to reduce the frustration of the vehicle in the parking phase.
  • step S210 before acquiring the current vehicle speed and the current vehicle control level of the vehicle to be parked, the method further includes the following steps S2001-S2003:
  • Step S2001 detecting whether the speed of the vehicle is greater than zero.
  • the vehicle automatic driving system can determine whether the vehicle speed is greater than 0 by collecting or receiving the vehicle speed signal in real time.
  • the vehicle speed can be considered to be 0 when the vehicle speed is not greater than 1 km/h.
  • Step S2002 when the speed of the vehicle is greater than zero, it is detected whether the driving mode of the vehicle is the automatic driving mode.
  • Step S2003 in the case that the driving mode of the vehicle is the automatic driving mode, detect whether the vehicle is in the parking phase, and in the case of the vehicle in the parking phase, perform step S210 to obtain the current speed of the vehicle to be parked and the current vehicle control level. step.
  • the vehicle automatic driving system determines whether the vehicle needs to be parked, and executes the subsequent parking control process when parking is required, and the vehicle can end the current process and drive normally when parking is not required.
  • the driving mode of the vehicle is not the automatic driving mode, and the vehicle is not in the parking phase
  • the above steps may not be performed or not performed any more.
  • step S220 the target speed of the vehicle is acquired, and the target vehicle control level of the vehicle is acquired according to the current vehicle control level obtained in step S210.
  • the corresponding target vehicle control level may be obtained according to the current vehicle control level of the vehicle.
  • the vehicle control level can be determined according to the current value and target value of the vehicle speed and the vehicle control level, that is, it is determined whether and how the vehicle control level needs to be changed.
  • the vehicle control level of the vehicle operation changes in real time as needed, the corresponding target vehicle speed and target vehicle control level change accordingly in real time, so the subsequent vehicle control level determined based on this can be more in line with
  • the current running situation of the vehicle ensures the accurate determination of the vehicle control level and avoids the frustration when the vehicle runs at an inappropriate vehicle control level.
  • the current vehicle control level is positively correlated with the target vehicle speed.
  • the current vehicle control level is positively correlated with the target vehicle control level.
  • the larger the current vehicle control level of the vehicle is, the larger the target vehicle control level of the vehicle is, and vice versa.
  • the corresponding target vehicle speed may be obtained according to the current vehicle control level of the vehicle.
  • V represents the target vehicle speed, V0 ⁇ 1km/h
  • a is the deceleration depending on the target deceleration of the vehicle and/or the actual deceleration of the vehicle
  • t is the time depending on the target deceleration and the actual deceleration
  • the actual deceleration depends on the current control level.
  • the slope of the road section where the vehicle is running can also affect the parking of the vehicle, in order to improve the accurate control of the vehicle to be parked, in addition to the control level, the current slope value can also be combined to calculate the target vehicle speed.
  • obtaining the target speed of the vehicle includes: obtaining the target speed of the vehicle according to formula 1.
  • the corresponding target vehicle speed can be obtained based on the change of the vehicle control level and the gradient of the road section where the vehicle is located, that is, the target vehicle speed can be calculated according to the current vehicle control level and the current gradient.
  • V (a+g ⁇ sin ⁇ ) ⁇ t.
  • V represents the target vehicle speed
  • a is the deceleration depending on the target deceleration of the vehicle and/or the actual deceleration of the vehicle
  • g is the acceleration of gravity
  • represents the current gradient of the road section where the vehicle is located
  • t is the deceleration depending on the target deceleration
  • the actual deceleration time the actual deceleration depends on the current vehicle control level.
  • the value of the current gradient is usually a positive value
  • the value of the current gradient is usually a negative value
  • the vehicle speed (V0) at the end of the parking phase can also be set to be no greater than 1 km/h.
  • g ⁇ sin ⁇ represents the deceleration caused by the weight of the vehicle.
  • g ⁇ sin ⁇ m ⁇ g ⁇ sin ⁇ /m
  • m represents the weight of the carriage.
  • the value of a can be the target deceleration, the actual deceleration, or the average of the two, or the weighted sum of the two.
  • the weight of the two can be determined by the designer according to It needs to be set, and the sum of the two weights is preferably 1.
  • a (a1+a2)/2.
  • a1 represents the target deceleration used to control the impact rate during the parking phase
  • a2 represents the actual deceleration
  • J represents the target impact rate Jerk in the parking phase.
  • J ⁇ 0.75 or J ⁇ 1 can be obtained.
  • a2 x ⁇ amax.
  • x represents the current control level of the vehicle
  • t A ⁇ (a2-a1)/k.
  • A represents the adjustment coefficient.
  • this part of the time can be taken into account, and a more accurate value of t can be obtained by combining the value of A.
  • k represents the vehicle braking deceleration control slope.
  • k ⁇ 0.75 or k ⁇ 1 can be obtained.
  • the following formula can be used to calculate the target vehicle speed:
  • V V0+[(a1+a2)/2] ⁇ t+g ⁇ sin ⁇ t
  • V0 is zero speed, usually V0 ⁇ 1km/h.
  • the vehicle automatic driving system can collect or receive the speed signal and the gradient signal in real time, and then calculate the speed point of the control impact during the parking phase of the vehicle in real time through the vehicle speed and the gradient of the position of the vehicle, and then based on the current vehicle speed and the speed point
  • the corresponding adjustment of the vehicle operation control level can be realized by the comparison of the numerical value and the size of the vehicle, so as to achieve the purpose of controlling the impact rate in the parking phase.
  • the corresponding target vehicle control level may be obtained based on the change of the vehicle control level of the vehicle, that is, the target vehicle control level may be calculated according to the current vehicle control level.
  • X represents the target vehicle control level used to control the impact rate during the parking phase.
  • the vehicle deceleration can be obtained without additionally setting other devices in the vehicle, for example, without additionally setting an acceleration sensor to collect the vehicle deceleration, so the corresponding cost investment can be avoided.
  • step S230 can be executed to determine which vehicle control level the vehicle will run at later .
  • step S230 a first vehicle control level is obtained according to the current vehicle speed, the target vehicle speed, the current vehicle control level and the target vehicle control level.
  • the first vehicle control level is obtained according to the respective current and target values of the vehicle speed and the vehicle control level, and the vehicle can be controlled to run at the first vehicle control level.
  • the first vehicle control level is usually the current vehicle control level obtained when the above step S210 is executed next time.
  • step S230 obtain the first control vehicle level according to the current vehicle speed, the target vehicle speed, the current vehicle control level and the target vehicle control level.
  • the vehicle class position may include the following steps S2301-S2302:
  • Step S2301 compare the current vehicle speed with the target vehicle speed.
  • step S2302 the speed value of the current vehicle speed and the speed value of the target vehicle speed are compared, and subsequent steps are performed according to the comparison result.
  • step S2302 when the current vehicle speed is not greater than the target vehicle speed, the following step S2302 is performed.
  • Step S2302 when the current vehicle speed is not greater than the target vehicle speed, obtain the first control vehicle level according to the current control vehicle level and the target vehicle control level, and the first control vehicle level is not greater than the target vehicle control level and the current control level. car class.
  • the current vehicle speed is not greater than the target vehicle speed, it means that the deceleration of the vehicle can support the vehicle to run directly at a lower vehicle control level. Control the vehicle level operation.
  • the first vehicle control level determined in the previous cycle is not less than the first vehicle control level determined in the latter cycle. position, so that the first control level position shows a downward trend as a whole during the vehicle parking phase, thereby helping to avoid parking frustration.
  • step S2302 the first control vehicle level is obtained according to the current vehicle control level and the target control vehicle level, including the following steps S23021-S23023:
  • step S23021 the current vehicle control level and the target vehicle control level are compared, and the following step S23022 or step S23023 is performed.
  • the level values of the current vehicle control level and the target control vehicle level are compared, and subsequent steps are performed according to the comparison result.
  • Step S23022 in the case that the current vehicle control level is greater than the target vehicle control level, a vehicle control level not greater than the target vehicle control level is used as the first vehicle control level.
  • the current vehicle control level is higher than the target vehicle control level, indicating that the current vehicle control level is slightly higher, so the control level can be lowered to obtain the first control vehicle level not greater than the target vehicle control level.
  • Step S23023 in the case that the current vehicle control level is not greater than the target vehicle control level, the current vehicle control level is used as the first vehicle control level.
  • the current vehicle control level is not higher than the target vehicle control level, indicating that the current vehicle control level is ideal, so the current vehicle control level can be maintained.
  • the first vehicle control level when the current vehicle speed is not greater than the target vehicle speed is described, and when the current vehicle speed is greater than the target vehicle speed, the first vehicle control level It can be determined as follows:
  • step S230 obtaining the first vehicle control level according to the current vehicle speed, the target vehicle speed, the current vehicle control level and the target vehicle control level, further includes: step S2303, when the current vehicle speed is greater than the target vehicle speed In the case of , the current vehicle control level is used as the first control vehicle level.
  • the foregoing step S2302 or this step S2303 may be executed.
  • the current vehicle control level when the current vehicle speed is greater than the target vehicle speed, it means that the current vehicle speed is slightly faster, and the current vehicle control level can be maintained in order to support the rapid and stable deceleration of the vehicle.
  • the first vehicle control level is determined in combination with the target vehicle control level.
  • the vehicle parking control method of this embodiment can realize real-time adjustment of the impact rate when the vehicle is parked under all operating conditions of the vehicle through real-time collection and calculation operations, and improve the passenger's ride in the vehicle parking phase. comfort.
  • Step S240 controlling the operation of the vehicle according to the first vehicle control level.
  • a more suitable first vehicle control level can be obtained, and then the vehicle can be controlled to run at the first vehicle control level.
  • step S210 can be performed again, and so on, and the real-time change of the first vehicle control level is determined according to the real-time changes of the current value and the target value of the vehicle speed and the vehicle control level, so that the vehicle is always in the parking phase.
  • the car-level operation in accordance with the current operating conditions ensures that there is basically no impact in the parking phase of the vehicle, and reduces the frustration in the parking phase of the vehicle.
  • the above steps S210 to S240 may be periodically executed during the vehicle parking phase, that is, in each execution cycle, the electronic device 1000 can adjust the target speed of the vehicle to be parked, and adjust the target speed of the vehicle to be parked according to the current control of the vehicle to be parked.
  • the vehicle level corresponds to adjust the target control level of the vehicle, and then adjust the vehicle control level according to the vehicle speed and the real-time changes of the current value and target value of the vehicle control level. Level operation, and so on until the vehicle stops. It can be seen that, in the embodiment of the present disclosure, the vehicle control level of the vehicle to be parked can be adjusted on demand in real time, and accordingly, the frustration of the vehicle in the parking phase can be reduced when the vehicle is controlled to run.
  • the above-mentioned electronic device 1000 may be an internal component of the vehicle, so that the vehicle autopilot signal system automatically calculates relevant values when controlling the vehicle, which is beneficial to adjust the vehicle to the target state more quickly.
  • the speed of the vehicle to be parked will eventually drop to zero speed as time prolongs to realize the vehicle parking.
  • the parking brake can be applied after the vehicle is parked.
  • the method further includes: detecting whether the current vehicle speed is zero; in the case of the current vehicle speed being zero, applying a parking brake to configure the braking force of the vehicle to a set target value.
  • the vehicle can be considered to be parked, so a parking brake signal can be applied to build up the braking force of the vehicle until it stops.
  • the braking target value is used to prevent the vehicle from rolling away.
  • step S240 after the above step S240, it further includes: detecting whether the vehicle parking phase has been completed, and in the case that the vehicle parking phase has been completed, applying the vehicle deceleration to a set target value, and in the vehicle parking phase If it is not completed, execute the above step S210 again.
  • step S240 it may be detected whether the current vehicle speed of the vehicle reaches zero speed, and if it reaches zero speed, it may be considered that the vehicle parking phase has been completed.
  • the parking brake can be applied to build up the braking force to the parking brake target value, so as to avoid the situation of rolling when the vehicle is parked.
  • FIG. 3 is a schematic flowchart of a vehicle parking control method according to an embodiment.
  • the implementation subject of this embodiment is, for example, the electronic device 1000 shown in FIG. 1 .
  • the method of this embodiment may include the following steps S310-S380:
  • step S310 it is detected whether the speed of the vehicle is greater than zero. If the speed of the vehicle is greater than zero, step S320 is executed. When the speed of the vehicle is not greater than zero, the current process is ended.
  • step S320 it is detected whether the driving mode of the vehicle is the automatic driving mode. If the driving mode of the vehicle is the automatic driving mode, step S330 is executed. If the driving mode of the vehicle is not the automatic driving mode, the current process is ended.
  • step S330 it is detected whether the vehicle is in the parking phase. If the vehicle is in the parking phase, step S340 is executed. In the case where the vehicle is not in the parking phase, the current flow is ended.
  • Step S340 acquiring the current speed of the vehicle to be parked, the current vehicle control level and the current gradient of the road section where it is located.
  • step S350 the target vehicle speed of the vehicle is acquired according to the current vehicle control level and the current gradient, and the target vehicle control level of the vehicle is acquired according to the current vehicle control level.
  • Step S360 compare the current vehicle speed with the target vehicle speed, in the case that the current vehicle speed is not greater than the target vehicle speed, execute step S370, in the case that the current vehicle speed is greater than the target vehicle speed, take the current vehicle control level as the first control vehicle level, and Step S380 is executed.
  • Step S370 comparing the current vehicle control level with the target vehicle control level, and in the case that the current vehicle control level is greater than the target vehicle control level, use the vehicle control level not greater than the target vehicle control level as the first control vehicle. level, in the case that the current vehicle control level is not greater than the target vehicle control level, the current vehicle control level is used as the first control vehicle level, and step S380 is executed.
  • step S380 the operation of the vehicle is controlled according to the first vehicle control level, and step S340 is executed.
  • the relevant operation of determining the vehicle control level of the vehicle to be parked may be performed periodically during the vehicle parking phase, that is, in each execution cycle, the electronic device 1000 can adjust the target speed of the vehicle to be parked, and according to the The current control level of the vehicle to be parked corresponds to the target control level of the vehicle, and then the vehicle speed is adjusted according to the real-time changes of the current value and target value of the vehicle control level, and the control level of the vehicle is adjusted.
  • the vehicle runs at the control level, and so on until the vehicle stops. It can be seen that, in the embodiment of the present disclosure, the vehicle control level of the vehicle to be parked can be adjusted on demand in real time, and accordingly, the frustration of the vehicle in the parking phase can be reduced when the vehicle is controlled to run.
  • This embodiment provides relevant algorithms and control strategies for the automatic driving of the vehicle in the vehicle parking phase, which ensures that the impact of the vehicle meets the requirements when the vehicle is parked, and greatly improves the ride comfort of the passengers.
  • FIG. 4 is a schematic diagram of a hardware structure of a vehicle parking control device according to an embodiment.
  • the vehicle parking control device 400 includes a processor 410 and a memory 420, the memory 420 is used for storing an executable computer program, and the processor 410 is used for executing any of the above methods according to the control of the computer program Methods of Examples.
  • the vehicle parking control apparatus 400 may be the electronic device 1000 shown in FIG. 1 , or may include the electronic device 1000 .
  • the above modules of the vehicle parking control device 400 may be implemented by the processor 410 in this embodiment executing the computer program stored in the memory 420, or may be implemented by other circuit structures, which are not limited herein.
  • an embodiment of the present disclosure further provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, implements the method according to any one of the embodiments of the present disclosure.
  • the present disclosure may be a system, method and/or computer program product.
  • the computer program product may include a computer-readable storage medium having computer-readable program instructions loaded thereon for causing a processor to implement various aspects of the present disclosure.
  • a computer-readable storage medium may be a tangible device that can hold and store instructions for use by the instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Non-exhaustive list of computer readable storage media include: portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM) or flash memory), static random access memory (SRAM), portable compact disk read only memory (CD-ROM), digital versatile disk (DVD), memory sticks, floppy disks, mechanically coded devices, such as printers with instructions stored thereon Hole cards or raised structures in grooves, and any suitable combination of the above.
  • RAM random access memory
  • ROM read only memory
  • EPROM erasable programmable read only memory
  • flash memory static random access memory
  • SRAM static random access memory
  • CD-ROM compact disk read only memory
  • DVD digital versatile disk
  • memory sticks floppy disks
  • mechanically coded devices such as printers with instructions stored thereon Hole cards or raised structures in grooves, and any suitable combination of the above.
  • Computer-readable storage media are not to be construed as transient signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (eg, light pulses through fiber optic cables), or through electrical wires transmitted electrical signals.
  • the computer readable program instructions described herein may be downloaded to various computing/processing devices from a computer readable storage medium, or to an external computer or external storage device over a network such as the Internet, a local area network, a wide area network, and/or a wireless network.
  • the network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • a network adapter card or network interface in each computing/processing device receives computer-readable program instructions from a network and forwards the computer-readable program instructions for storage in a computer-readable storage medium in each computing/processing device .
  • Computer program instructions for carrying out operations of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or instructions in one or more programming languages.
  • Source or object code written in any combination, including object-oriented programming languages, such as Smalltalk, C++, etc., and conventional procedural programming languages, such as the "C" language or similar programming languages.
  • the computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server implement.
  • the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider through the Internet connect).
  • LAN local area network
  • WAN wide area network
  • custom electronic circuits such as programmable logic circuits, field programmable gate arrays (FPGAs), or programmable logic arrays (PLAs) can be personalized by utilizing state information of computer readable program instructions.
  • Computer readable program instructions are executed to implement various aspects of the present disclosure.
  • These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer or other programmable data processing apparatus to produce a machine that causes the instructions when executed by the processor of the computer or other programmable data processing apparatus , resulting in means for implementing the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.
  • These computer readable program instructions can also be stored in a computer readable storage medium, these instructions cause a computer, programmable data processing apparatus and/or other equipment to operate in a specific manner, so that the computer readable medium on which the instructions are stored includes An article of manufacture comprising instructions for implementing various aspects of the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.
  • Computer readable program instructions can also be loaded onto a computer, other programmable data processing apparatus, or other equipment to cause a series of operational steps to be performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process , thereby causing instructions executing on a computer, other programmable data processing apparatus, or other device to implement the functions/acts specified in one or more blocks of the flowcharts and/or block diagrams.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more functions for implementing the specified logical function(s) executable instructions.
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented in dedicated hardware-based systems that perform the specified functions or actions , or can be implemented in a combination of dedicated hardware and computer instructions. It is well known to those skilled in the art that implementation in hardware, implementation in software, and implementation in a combination of software and hardware are all equivalent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)

Abstract

一种列车停车控制方法,包括获取待停车列车的当前车速和当前控车级位;获取列车的目标车速,并根据当前控车级位获取列车的目标控车级位;根据当前车速、目标车速、当前控车级位和目标控车级位,得到第一控车级位;根据第一控车级位控制列车运行。一种列车停车控制装置和计算机可读存储介质也被公开。

Description

车辆停车控制方法及装置
相关申请的交叉引用
本公开要求于2021年04月19日提交的申请号为202110420320.2,名称为“车辆停车控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开实施例涉及轨道交通技术领域,更具体地,涉及一种车辆停车控制方法、一种车辆停车控制装置。
背景技术
目前,对国内城轨列车的舒适性要求越来越高。基于某些控制程序,可使得车辆在起步及制动阶段基本无冲击感,但车辆在停车阶段还是存在较强的顿挫感。
因此,有必要提供一种新的车辆停车控制方法。
公开内容
本公开实施例的一个目的是提供一种控制车辆停车的新的技术方案。
根据本公开的第一方面,提供了一种车辆停车控制方法,包括:获取待停车车辆的当前车速和当前控车级位;获取车辆的目标车速,并根据当前控车级位获取车辆的目标控车级位;根据当前车速、目标车速、当前控车级位和目标控车级位,得到第一控车级位;根据第一控车级位控制车辆运行。
可选地,根据当前车速、目标车速、当前控车级位和目标控车级位,得到第一控车级位,包括:对比当前车速和目标车速;在当前车速不大于目标车速的情况下,根据当前控车级位和目标控车级位得到第一控车级位,第一控车级位不大于目标控车级位和当前控车级位。
可选地,根据当前控车级位和目标控车级位得到第一控车级位,包括:对比当前控车级位和目标控车级位;在当前控车级位大于目标控车级位的情况下,以不大于目标控车级位的控车级位作为第一控车级位;在当前控 车级位不大于目标控车级位的情况下,以当前控车级位作为第一控车级位。
可选地,根据当前车速、目标车速、当前控车级位和目标控车级位,得到第一控车级位,还包括:在当前车速大于目标车速的情况下,以当前控车级位作为第一控车级位。
可选地,获取车辆的目标车速,包括:根据公式一获取车辆的目标车速;公式一为:V=(a+g×sinα)×t;其中,V表征目标车速,a为取决于车辆的目标减速度和/或车辆的实际减速度的减速度,g为重力加速度,α表征车辆所在路段的当前坡度,t为取决于目标减速度和实际减速度的时间,实际减速度取决于当前控车级位。
可选地,当前控车级位与目标控车级位呈正相关。
可选地,在获取待停车车辆的当前车速和当前控车级位之前,方法还包括:检测车辆的车速是否大于零;在车辆的车速大于零的情况下,检测车辆的驾驶模式是否为自动驾驶模式;在车辆的驾驶模式为自动驾驶模式的情况下,检测车辆是否处于停车阶段;在车辆处于停车阶段的情况下,执行获取待停车车辆的当前车速和当前控车级位的步骤。
可选地,方法还包括:检测当前车速是否为零速;在当前车速为零速的情况下,施加停车制动以将车辆的制动力配置为设定的目标值。
根据本公开的第二方面,还提供了一种车辆停车控制装置,包括存储器和处理器,存储器用于存储计算机程序;处理器用于执行计算机程序,以实现根据本公开第一方面的方法。
根据本公开的第三方面,还提供了一种计算机可读存储介质,计算机可读存储介质上存储计算机程序,计算机程序在被处理器执行时实现根据本公开的第一方面的方法。
本公开实施例的一个有益效果在于,对待停车车辆的控车级位可作实时按需调整,具体为可以实时调整车辆的目标车速,以及根据车辆的当前控车级位对应实时调整车辆的目标控车级位,进而根据车辆的车速及控车级位的当前值和目标值的实时变化来调整车辆运行的控车级位,如此可使得车辆在停车阶段的顿挫感较弱。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开实施例的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本公开的实施例,并且连同其说明一起用于解释本公开实施例的原理。
图1是能够应用根据一个实施例的车辆停车控制方法的电子设备的组成结构示意图;
图2是根据一个实施例的车辆停车控制方法的流程示意图;
图3是根据另一个实施例的车辆停车控制方法的流程示意图;
图4是根据一个实施例的电子设备的硬件结构示意图。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本公开实施例的一个应用场景为在车辆停车阶段对车辆运行进行控制。该车辆可以为城轨列车。
为了实现在车辆制动阶段对车辆运行进行控制以降低车辆制动冲击感的目的,一种可选的实施方式为:在车辆制动阶段,车辆按固定斜率上升实际电制动力值,以及根据电制动力值按固定斜率补充空气制动力,以降低车辆制动冲击率。但这一在车辆制动阶段对车辆运行进行控制的实施方 式并不适用于车辆停车阶段,会使得车辆在停车阶段有较强的停车冲击感、顿挫感,从而无法解决车辆停车阶段的冲击问题。
针对以上实施方式存在的技术问题,发明人提出了一种车辆停车控制方法,该方法获取待停车车辆的当前车速和当前控车级位;获取车辆的目标车速,并根据当前控车级位获取车辆的目标控车级位;根据当前车速、目标车速、当前控车级位和目标控车级位,得到第一控车级位;根据第一控车级位控制车辆运行。该方法基于待停车车辆的车速及控车级位的当前值和目标值的实时变化,来调整车辆运行的控车级位,可使得车辆在停车阶段的顿挫感较弱。
<硬件配置>
图1示出可以实现本公开的实施例的电子设备1000的硬件配置的示意图。该电子设备1000可以应用于车辆停车控制场景。该车辆可以包括该电子设备1000。该车辆可以为城轨列车。
该电子设备1000可以是智能手机、便携式电脑、台式计算机、平板电脑、服务器等,在此不做限定。
该电子设备1000的硬件配置可以包括但不限于处理器1100、存储器1200、接口装置1300、通信装置1400、显示装置1500、输入装置1600、扬声器1700、麦克风1800等等。其中,处理器1100可以是中央处理器CPU、图形处理器GPU、微处理器MCU等,用于执行计算机程序,该计算机程序可以采用比如x86、Arm、RISC、MIPS、SSE等架构的指令集编写。存储器1200例如包括ROM(只读存储器)、RAM(随机存取存储器)、诸如硬盘的非易失性存储器等。接口装置1300例如包括USB接口、串行接口、并行接口等。通信装置1400例如能够利用光纤或电缆进行有线通信,或者进行无线通信,具体地可以包括WiFi通信、蓝牙通信、2G/3G/4G/5G通信等。显示装置1500例如是液晶显示屏、触摸显示屏等。输入装置1600例如可以包括触摸屏、键盘、体感输入等。用户可以通过扬声器1700和麦克风1800输入/输出语音信息。
应用于本公开实施例中,电子设备1000的存储器1200用于存储指令,所述指令用于控制所述处理器1100进行操作以支持实现根据本公开任意实 施例的车辆停车控制方法。技术人员可以根据本公开所公开方案设计指令。指令如何控制处理器进行操作,这是本领域公知,故在此不再详细描述。该电子设备1000可以安装有智能操作系统(例如Windows、Linux、安卓、IOS等系统)和应用软件。
本领域技术人员应当理解,尽管在图1中示出了电子设备1000的多个装置,但是,本公开实施例的电子设备1000可以仅涉及其中的部分装置,例如,只涉及处理器1100和存储器1200。这是本领域公知,此处不再赘述。
下面,参照附图描述根据本公开的各个实施例和例子。
<方法实施例>
图2是根据一个实施例的车辆停车控制方法的流程示意图。本实施例的实施主体例如为图1所示的电子设备1000。该车辆可以包括该电子设备1000。
如图2所示,本实施例的车辆停车控制方法可以包括如下步骤S210S240:
步骤S210,获取待停车车辆的当前车速和当前控车级位。
本实施例适用的车辆可以为城轨列车,且可以为单模组(或称车厢)或多模组的车辆,具有很强的通用性。待停车车辆为多模组车辆时,该车辆包括的各个单模组的车速和控车级位通常一致,各单模组分别进行运行控制以实现整车统一控制的效果。
本实施例中,为能够实时按需调整车辆运行的控车级位,执行步骤S210,以首先获取待停车车辆的当前车速和当前控车级位。
详细地,可以设定时间间隔,并基于该时间间隔周期性执行本公开实施例,以实现车辆运行的控车级位实时按需调整。比如,该时间间隔可以为一个或多个控车周期时长,还可以为按需设置的任一时间值。
在本公开一个实施例中,对于控车级位,最大控车级位可以为100%,最小控车级位可以为0%,在车辆停车阶段,控车级位越大,对应的减速度越大。
在本公开一个实施例中,可以通过车辆运行数据来判定车辆是否为处于待停车车辆。比如,可以将车速大于零、以自动驾驶模式运行且处于停 车阶段的车辆确定为待停车车辆,并对待停车车辆执行本实施例的车辆停车控制方法,以降低车辆在停车阶段的顿挫感。
基于此,在本公开一个实施例中,在步骤S210,获取待停车车辆的当前车速和当前控车级位之前,方法还包括以下步骤S2001~S2003:
步骤S2001,检测车辆的车速是否大于零。
详细地,车辆自动驾驶系统可以通过实时采集或接收车速信号,判断车辆车速是否大于0。在可行实现方式中,车辆车速不大于1km/h时即可认为车辆车速为0。
步骤S2002,在车辆的车速大于零的情况下,检测车辆的驾驶模式是否为自动驾驶模式。
步骤S2003,在车辆的驾驶模式为自动驾驶模式的情况下,检测车辆是否处于停车阶段,在车辆处于停车阶段的情况下,执行步骤S210,获取待停车车辆的当前车速和当前控车级位的步骤。
详细地,车辆自动驾驶系统判断车辆是否需要停车,当需要停车时执行后续停车控制流程,不需要停车时车辆可结束当前流程并正常行驶。
在本公开一个实施例中,在检测到车速为零、车辆的驾驶模式不为自动驾驶模式、车辆不处于停车阶段中的任意一个或多个的情况下,可以不执行或不再执行上述步骤S210。
步骤S220,获取车辆的目标车速,并根据步骤S210中得到的当前控车级位获取车辆的目标控车级位。
本实施例中,可以根据车辆当前的控车级位得到相应的目标控车级位。
基于此,后续可根据车辆的车速和控车级位各自的当前值和目标值来确定车辆运行的控车级位,即确定车辆运行的控车级位当前是否需要改变以及如何改变。
在车辆停车阶段,由于车辆运行的控车级位在实时按需改变,则与之对应的目标车速和目标控车级位相应实时变化,故而后续据此确定出的控车级位可以更符合车辆当前运行情况,保证控车级位的准确确定,避免车辆以不合适的控车级位运行时存在顿挫感。
在本公开一个实施例中,当前控车级位与目标车速呈正相关。本实施例中,在任一控车周期内,车辆的当前控车级位越大,车辆的目标车速相 对较大,反之相对较小。
在本公开一个实施例中,当前控车级位与目标控车级位呈正相关。本实施例中,在任一控车周期内,车辆的当前控车级位越大,车辆的目标控车级位相对较大,反之相对较小。
在本公开一个实施例中,可以根据车辆当前的控车级位得到相应的目标车速。比如可以根据公式V=V0+a×t来计算目标车速。
该公式中,V表征目标车速,V0≤1km/h,a为取决于车辆的目标减速度和/或车辆的实际减速度的减速度,t为取决于目标减速度和实际减速度的时间,实际减速度取决于当前控车级位。V0为零速时,该公式还可调整为V=a×t。
基于上述内容,考虑到车辆运行过程中所在路段的坡度也可以对车辆停车造成影响,故而为提高对待停车车辆的准确控制,除了控车级位,还可结合当前的坡度值来计算目标车速。
基于此,在本公开一个实施例中,获取车辆的目标车速,包括:根据公式一获取车辆的目标车速。
本实施例中,可以基于车辆的控车级位和所在路段坡度的变化,以获得相应的目标车速,即可以根据当前控车级位和当前坡度计算目标车速。
其中,公式一为:V=(a+g×sinα)×t。其中,V表征目标车速,a为取决于车辆的目标减速度和/或车辆的实际减速度的减速度,g为重力加速度,α表征车辆所在路段的当前坡度,t为取决于目标减速度和实际减速度的时间,实际减速度取决于当前控车级位。
本实施例中,对于车辆行驶方向来说,若车辆所在路段为上坡路段,则该当前坡度的值通常为正值,若车辆所在路段为下坡路段,则该当前坡度的值通常为负值。
需要说明的是,在公式一中,可以认为车辆在停车阶段结束时的车速(V0)为零速。
基于上述内容,还可设定车辆在停车阶段结束时的车速(V0)不大于1km/h,如此,上述公式一还可对应调整为V=V0+(a+g×sinα)×t。
本实施例中,g×sinα表征车辆自重所带来的减速度。其中,g×sinα=m×g×sinα/m,m表征车厢重量。
在可行的实现方式下,a的值可以为目标减速度,也可以为实际减速度,或者为两者的平均值,还可以为两者的加权求和,两者的权重大小可由设计人员按需设定,两者权重的加和优选为1。
基于此,在本公开一个实施例中,a=(a1+a2)/2。
其中,a1表征停车阶段用于控制冲击率的目标减速度,a2表征实际减速度。
在可行的实现方式下,a1=J×△t。
其中,J表征停车阶段目标冲击率Jerk。其中,根据车辆实际要求取值,并结合行业相关标准要求,可以得到J≤0.75或J≤1。
其中,△t表征停车时减速度瞬间变为0的时间,其中,△t≤0.5s。比如,△t=0.2s。
在可行的实现方式下,a2=x×amax。
其中,x表征车辆的当前控车级位,amax表征车辆100%级位对应制动系统减速度。比如amax=1.0。
在可行的实现方式下,t=A×(a2-a1)/k。
其中,A表征调整系数。本实施例中,考虑到网络信号与制动执行均需要时间,故而可以将此部分时间考虑进去,通过结合A的取值以期得到更为准确的t的取值。其中,A的具体数值可以根据车辆网络延时时间产品实际状态选取,比如A的取值优选为A=1.1。
其中,k表征车辆制动减速度控制斜率。其中,根据车辆实际要求取值,并结合行业相关标准要求,可以得到k≤0.75或k≤1)。
基于上述内容,在本公开一个实施例中,可以利用下述公式计算目标车速:
V=V0+[(a1+a2)/2]×t+g×sinα×t
=V0+[(J×△t+x×amax)/2]×[A×(x×amax-J×△t)/k]+g×sinα×[A×(x×amax-J×△t)/k]
其中,V0为零速,通常可以为V0≤1km/h。
本实施例中,车辆自动驾驶系统可以实时采集或接收速度信号与坡度信号,进而通过车辆速度与车辆所处位置的坡度,实时计算车辆停车阶段控制冲击的速度点,进而基于当前车速与速度点的数值大小对比来实现对 车辆运行控车级位的相应调整,从而可达到控制停车阶段冲击率的目的。
本实施例中,可以基于车辆的控车级位的变化,以获得相应的目标控车级位,即可以根据当前控车级位计算目标控车级位。
基于上述内容,在本公开一个实施例中,可以利用下述公式计算目标控车级位:X=a1/a2=(J×△t)/(x×amax)。
其中,X表征停车阶段用于控制冲击率的目标控车级位。
可以看出,本实施例中无需在车辆中额外设置其他设备即可获得车辆减速度,比如无需额外设置加速度传感器来采集车辆减速度,故而可避免相应成本投入。
基于上述内容,在任一控车周期内,获取到车辆的车速和控车级位各自的当前值和目标值后,即可执行下述步骤S230,以确定车辆之后以哪一控车级位运行。
步骤S230,根据当前车速、目标车速、当前控车级位和目标控车级位,得到第一控车级位。
本实施例中,根据车辆的车速和控车级位各自的当前值和目标值得到第一控车级位,进而可控制车辆以第一控车级位运行。如此,该第一控车级位通常即为下一次执行上述步骤S210时所获取到的当前控车级位。
在本公开一个实施例中,为了说明一种获取第一控车级位的可能实现方式,步骤S230,根据当前车速、目标车速、当前控车级位和目标控车级位,得到第一控车级位,可以包括如下步骤S2301~S2302:
步骤S2301,对比当前车速和目标车速。
该步骤中,对比当前车速的速度值和目标车速的速度值,并根据对比结果执行后续步骤。其中,在当前车速不大于目标车速的情况下,执行下述步骤S2302。
步骤S2302,在当前车速不大于目标车速的情况下,根据当前控车级位和目标控车级位得到第一控车级位,第一控车级位不大于目标控车级位和当前控车级位。
该步骤中,当前车速不大于目标车速,说明车辆降速情况可支持车辆直接以较低控车级位运行,具体可以以不大于目标控车级位且不大于当前控车级位的任一控车级位运行。
优选地,在相应两个控车周期中,均判定为当前车速不大于目标车速时,在前周期下确定出的第一控车级位不小于在后周期下确定出的第一控车级位,以使第一控车级位在车辆停车阶段整体呈下降趋势,从而有利于避免停车顿挫感。
基于上述内容,在本公开一个实施例中,步骤S2302中,根据当前控车级位和目标控车级位得到第一控车级位,包括如下步骤S23021~S23023:
步骤S23021,对比当前控车级位和目标控车级位,并执行如下步骤S23022或步骤S23023。
该步骤中,对比当前控车级位和目标控车级位的级位值,并根据对比结果执行后续步骤。
步骤S23022,在当前控车级位大于目标控车级位的情况下,以不大于目标控车级位的控车级位作为第一控车级位。
该情况下,当前控车级位高于目标控车级位,说明当前控车级位略高,故而可降低控制级位,得到不大于目标控车级位的第一控车级位。
步骤S23023,在当前控车级位不大于目标控车级位的情况下,以当前控车级位作为第一控车级位。
该情况下,当前控车级位不高于目标控车级位,说明当前控车级位较为理想,故而可维持当前的控车级位。
基于上述内容可知,本实施例对当前车速不大于目标车速情况下的确定第一控车级位的实现方式进行了说明,而对于当前车速大于目标车速的情况下,第一控车级位的确定方式可以如下:
在本公开一个实施例中,步骤S230,根据当前车速、目标车速、当前控车级位和目标控车级位,得到第一控车级位,还包括:步骤S2303,在当前车速大于目标车速的情况下,以当前控车级位作为第一控车级位。
本实施例中,在完成执行上述步骤S2301之后,可以执行上述步骤S2302或该步骤S2303。
本实施例中,当前车速大于目标车速时,说明车辆车速当前略快,为支持车辆快速平稳的降速,可以维持当前的控车级位。待车辆车速降低不高于相应的目标车速时,再结合目标控车级位来确定第一控车级位。
基于上述内容可知,本实施例的车辆停车控制方法通过实时的采集与 计算操作,可以实现在车辆所有运行工况下,对车辆停车时冲击率的实时调节,提升乘客在车辆停车阶段的乘车舒适性。
步骤S240,根据第一控车级位控制车辆运行。
基于上述内容,在任一情况下均可得到较为适宜的第一控车级位,进而可控制车辆以该第一控车级位运行。
之后,可再次执行上述步骤S210,如此反复,根据车辆车速和控车级位各自的当前值和目标值的实时变化,来确定第一控车级位的实时变化,使得车辆在停车阶段始终以符合当前运行情况的控车级位运行,保证车辆停车阶段基本无冲击,降低车辆停车阶段的顿挫感。
本实施例中,上述步骤S210~S240可以在车辆停车阶段内被周期性执行,即在每一个执行周期内,电子设备1000均可调整待停车车辆的目标车速,以及根据待停车车辆的当前控车级位对应调整车辆的目标控车级位,进而根据车辆的车速及控车级位的当前值和目标值的实时变化来调整车辆运行的控车级位,并控车车辆以该控车级位运行,如此反复直至车辆停车。可见,本公开实施例可对待停车车辆的控车级位作实时按需调整,据此控制车辆运行时可降低车辆在停车阶段的顿挫感。
本实施例中,上述电子设备1000可以为车辆的内部部件,使得车辆自动驾驶信号系统控车时通过自主计算相关数值,故而有利于更快速的将车辆调整到目标状态。
基于上述内容,待停车车辆在车辆停车阶段,其车速随时间延长最终会降至零速以实现车辆停车。在车辆停车后为避免该车辆出现溜车等情况,可以在车辆停车后施加停车制动。
基于此,在公开一个实施例中,方法还包括:检测当前车速是否为零速;在当前车速为零速的情况下,施加停车制动以将车辆的制动力配置为设定的目标值。
本实施例中,若待停车车辆的当前车速为零速,比如为不大于1km/h的速度,即可认为该车辆已停车,故而可以施加停车制动信号,以将车辆制动力建立到停车制动目标值,起到避免车辆溜车的目的。
在本公开一个实施例中,在上述步骤S240之后进一步包括:检测车辆停车阶段是否已完成,在车辆停车阶段已完成的情况下,将车辆减速度施 加至设定的目标值,在车辆停车阶段未完成的情况下,再次执行上述步骤S210。
详细地,可以在上述步骤S240之后,检测车辆当前车速是否达到零速,若达到零速则可认为车辆停车阶段已完成。车辆停车后可施加停车制动将制动力建立到停车制动目标值,以避免车辆停车状态下出现溜车的情况。
图3给出了根据一实施例的车辆停车控制方法的流程示意图。本实施例的实施主体例如为图1所示的电子设备1000。
如图3所示,该实施例的方法可以包括如下步骤S310~S380:
步骤S310,检测车辆的车速是否大于零,在车辆的车速大于零的情况下,执行步骤S320,在车辆的车速不大于零的情况下,结束当前流程。
步骤S320,检测车辆的驾驶模式是否为自动驾驶模式,在车辆的驾驶模式为自动驾驶模式的情况下,执行步骤S330,在车辆的驾驶模式不为自动驾驶模式的情况下,结束当前流程。
步骤S330,检测车辆是否处于停车阶段,在车辆处于停车阶段的情况下,执行步骤S340,在车辆不处于停车阶段的情况下,结束当前流程。
步骤S340,获取待停车车辆的当前车速、当前控车级位和所在路段的当前坡度。
步骤S350,根据当前控车级位和当前坡度,获取车辆的目标车速,以及根据当前控车级位,获取车辆的目标控车级位。
详细地,目标车速和目标控车级位的计算过程可参考上述相关内容,本实施例在此不做赘述。
步骤S360,对比当前车速和目标车速,在当前车速不大于目标车速的情况下,执行步骤S370,在当前车速大于目标车速的情况下,以当前控车级位作为第一控车级位,并执行步骤S380。
步骤S370,对比当前控车级位和目标控车级位,在当前控车级位大于目标控车级位的情况下,以不大于目标控车级位的控车级位作为第一控车级位,在当前控车级位不大于目标控车级位的情况下,以当前控车级位作为第一控车级位,并执行步骤S380。
步骤S380,根据第一控车级位控制车辆运行,并执行步骤S340。
本实施例中,确定待停车车辆控车级位的相关操作可以在车辆停车阶 段内被周期性执行,即在每一个执行周期内,电子设备1000均可调整待停车车辆的目标车速,以及根据待停车车辆的当前控车级位对应调整车辆的目标控车级位,进而根据车辆的车速及控车级位的当前值和目标值的实时变化来调整车辆运行的控车级位,并控车车辆以该控车级位运行,如此反复直至车辆停车。可见,本公开实施例可对待停车车辆的控车级位作实时按需调整,据此控制车辆运行时可降低车辆在停车阶段的顿挫感。
本实施例为车辆停车阶段的车辆自动驾驶提供了相关算法及控制策略,保证了车辆停车时冲击满足要求,极大提高了乘客乘车舒适性。
<设备实施例>
图4是根据一个实施例的车辆停车控制装置的硬件结构示意图。
如图4所示,该车辆停车控制装置400包括处理器410和存储器420,该存储器420用于存储可执行的计算机程序,该处理器410用于根据该计算机程序的控制,执行如以上任意方法实施例的方法。
该车辆停车控制装置400可以是图1所示的电子设备1000,或者可以包括该电子设备1000。
以上车辆停车控制装置400的各模块可以由本实施例中的处理器410执行存储器420存储的计算机程序实现,也可以通过其他电路结构实现,在此不做限定。
此外,本公开一个实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储计算机程序,计算机程序在被处理器执行时实现根据本公开实施例中任意一项的方法。
本公开可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储 器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图 的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。对于本领域技术人员来说公知的是,通过硬件方式实现、通过软件方式实现以及通过软件和硬件结合的方式实现都是等价的。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更 都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。本公开的范围由所附权利要求来限定。

Claims (10)

  1. 一种车辆停车控制方法,包括:
    获取待停车车辆的当前车速和当前控车级位;
    获取所述车辆的目标车速,并根据所述当前控车级位获取所述车辆的目标控车级位;
    根据所述当前车速、所述目标车速、所述当前控车级位和所述目标控车级位,得到第一控车级位;
    根据所述第一控车级位控制所述车辆运行。
  2. 根据权利要求1所述的方法,其中,所述根据所述当前车速、所述目标车速、所述当前控车级位和所述目标控车级位,得到第一控车级位,包括:
    对比所述当前车速和所述目标车速;
    在所述当前车速不大于所述目标车速的情况下,根据所述当前控车级位和所述目标控车级位得到第一控车级位,所述第一控车级位不大于所述目标控车级位和所述当前控车级位。
  3. 根据权利要求2所述的方法,其中,所述根据所述当前控车级位和所述目标控车级位得到第一控车级位,包括:
    对比所述当前控车级位和所述目标控车级位;
    在所述当前控车级位大于所述目标控车级位的情况下,以不大于所述目标控车级位的控车级位作为第一控车级位;
    在所述当前控车级位不大于所述目标控车级位的情况下,以所述当前控车级位作为第一控车级位。
  4. 根据权利要求2所述的方法,其中,所述根据所述当前车速、所述目标车速、所述当前控车级位和所述目标控车级位,得到第一控车级位,还包括:
    在所述当前车速大于所述目标车速的情况下,以所述当前控车级位作 为第一控车级位。
  5. 根据权利要求1所述的方法,其中,所述获取所述车辆的目标车速,包括:根据公式一获取所述车辆的目标车速;
    所述公式一为:V=(a+g×sinα)×t;
    其中,V表征所述目标车速,a为取决于所述车辆的目标减速度和/或所述车辆的实际减速度的减速度,g为重力加速度,α表征所述车辆所在路段的当前坡度,t为取决于所述目标减速度和所述实际减速度的时间,所述实际减速度取决于所述当前控车级位。
  6. 根据权利要求1所述的方法,其中,所述当前控车级位与所述目标控车级位呈正相关。
  7. 根据权利要求1所述的方法,其中,在所述获取待停车车辆的当前车速和当前控车级位之前,所述方法还包括:
    检测所述车辆的车速是否大于零;
    在所述车辆的车速大于零的情况下,检测所述车辆的驾驶模式是否为自动驾驶模式;
    在所述车辆的驾驶模式为自动驾驶模式的情况下,检测所述车辆是否处于停车阶段;
    在所述车辆处于停车阶段的情况下,执行所述获取待停车车辆的当前车速和当前控车级位的步骤。
  8. 根据权利要求1所述的方法,其中,所述方法还包括:检测所述当前车速是否为零速;
    在所述当前车速为零速的情况下,施加停车制动以将所述车辆的制动力配置为设定的目标值。
  9. 一种车辆停车控制装置,包括存储器和处理器,所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现根据权利要求 1-8中任意一项所述的方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序在被处理器执行时实现根据权利要求1-8中任意一项所述的方法。
PCT/CN2022/080170 2021-04-19 2022-03-10 车辆停车控制方法及装置 WO2022222640A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112023021540A BR112023021540A2 (pt) 2021-04-19 2022-03-10 Método e aparelho de controle de estacionamento de veículo, e, mídia de armazenamento legível por computador
US18/372,364 US20240010248A1 (en) 2021-04-19 2023-09-25 Vehicle parking control method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110420320.2A CN115214726A (zh) 2021-04-19 2021-04-19 车辆停车控制方法及装置
CN202110420320.2 2021-04-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/372,364 Continuation US20240010248A1 (en) 2021-04-19 2023-09-25 Vehicle parking control method and apparatus

Publications (1)

Publication Number Publication Date
WO2022222640A1 true WO2022222640A1 (zh) 2022-10-27

Family

ID=83604897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080170 WO2022222640A1 (zh) 2021-04-19 2022-03-10 车辆停车控制方法及装置

Country Status (4)

Country Link
US (1) US20240010248A1 (zh)
CN (1) CN115214726A (zh)
BR (1) BR112023021540A2 (zh)
WO (1) WO2022222640A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107878448A (zh) * 2016-12-30 2018-04-06 比亚迪股份有限公司 车辆控制方法和装置
CN107891887A (zh) * 2016-12-09 2018-04-10 比亚迪股份有限公司 列车控制方法、tcms、vobc及列车
CN109305195A (zh) * 2017-07-28 2019-02-05 比亚迪股份有限公司 列车控制方法及装置
CN110901639A (zh) * 2018-09-14 2020-03-24 比亚迪股份有限公司 车辆的减速度控制方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107891887A (zh) * 2016-12-09 2018-04-10 比亚迪股份有限公司 列车控制方法、tcms、vobc及列车
CN107878448A (zh) * 2016-12-30 2018-04-06 比亚迪股份有限公司 车辆控制方法和装置
CN109305195A (zh) * 2017-07-28 2019-02-05 比亚迪股份有限公司 列车控制方法及装置
CN110901639A (zh) * 2018-09-14 2020-03-24 比亚迪股份有限公司 车辆的减速度控制方法和装置

Also Published As

Publication number Publication date
CN115214726A (zh) 2022-10-21
US20240010248A1 (en) 2024-01-11
BR112023021540A2 (pt) 2023-12-19

Similar Documents

Publication Publication Date Title
JP6748259B2 (ja) 自動運転車に対して障害物の予測軌跡を生成するための方法
JP6861238B2 (ja) 自動運転車の車線変更軌跡を確定するための方法
US11250694B2 (en) Vehicle control method, computer device and storage medium
EP3323690A1 (en) Evaluation framework for decision making of autonomous driving vehicle
WO2022022549A1 (zh) 用于控制车辆的方法、装置、电子设备和存储介质
JP5627531B2 (ja) 運転支援装置
JP6650596B2 (ja) 車両状況判定装置、車両状況判定方法、および車両状況判定プログラム
JP2009294930A (ja) 障害物検出装置および障害物検出システム
US11878685B2 (en) Vehicle control method and apparatus, electronic device and self-driving vehicle
CN107415704A (zh) 复合制动方法、装置和自适应巡航控制器
CN101734242A (zh) 一种在交通工具中自动刹车的控制装置及方法
CN107107820B (zh) 用于车辆的智能语音助理系统、装置和方法
KR20200038201A (ko) 자율 주행 차량을 위한 제어 지배적 삼중 포인트 회전 계획
CN111369785A (zh) 交通数据处理方法、装置、设备和存储介质
WO2022222640A1 (zh) 车辆停车控制方法及装置
WO2022127647A1 (zh) 输出行驶提示信息的方法、系统及车辆
US8897905B2 (en) Media volume control system
CN112849144B (zh) 车辆控制方法、装置及存储介质
CN105835701A (zh) 车辆行驶控制方法及装置
CN107839690A (zh) 一种行车安全距离提示方法及设备
US11215473B2 (en) Driving support device, driving support Method, and non-transitory recording medium in which program is stored
WO2015108689A1 (en) Automatic rear-view mirror adjustments
CN116039637A (zh) 自动驾驶车辆的能量回收方法、装置及系统
CN115372020A (zh) 自动驾驶车辆测试方法、装置、电子设备和介质
CN104724117A (zh) 一种带有后方车辆预警功能的自适应在线调整车速系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790749

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023021540

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023021540

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231017

122 Ep: pct application non-entry in european phase

Ref document number: 22790749

Country of ref document: EP

Kind code of ref document: A1