WO2021128808A1 - 一种高阻隔性RGO-SiO2/PET保护膜及其制备方法 - Google Patents

一种高阻隔性RGO-SiO2/PET保护膜及其制备方法 Download PDF

Info

Publication number
WO2021128808A1
WO2021128808A1 PCT/CN2020/101072 CN2020101072W WO2021128808A1 WO 2021128808 A1 WO2021128808 A1 WO 2021128808A1 CN 2020101072 W CN2020101072 W CN 2020101072W WO 2021128808 A1 WO2021128808 A1 WO 2021128808A1
Authority
WO
WIPO (PCT)
Prior art keywords
pet
rgo
graphene oxide
protective film
ethylene glycol
Prior art date
Application number
PCT/CN2020/101072
Other languages
English (en)
French (fr)
Inventor
郑玉婴
吴夏晴
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Publication of WO2021128808A1 publication Critical patent/WO2021128808A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • C08G63/86Germanium, antimony, or compounds thereof
    • C08G63/866Antimony or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers

Definitions

  • the invention belongs to the technical field of polymer composite material synthesis, and specifically relates to a high barrier RGO-SiO 2 /PET protective film and a preparation method thereof.
  • High barrier properties usually refer to materials that have a high barrier to gas-liquid permeation, that is, to prevent the intrusion of oxygen to prevent the product from oxidizing and deteriorating; to prevent the penetration of water or water vapor to prevent the product from being damp and moldy; to prevent aroma, fragrance and carbon dioxide Outside escape, so as to prevent the product from changing taste and quality.
  • the high-barrier polymer materials are more and more popular because of their light weight, good flexibility, easy bending, transparency and low price. Polymer materials with high barrier properties broaden the range of materials used, and gradually complete the transformation of traditional packaging materials from high consumption and high quality to lightness, corrosion resistance, low cost, easy degradation and environmental protection.
  • PET Polyethylene terephthalate
  • PET Polyethylene terephthalate
  • It is made by synthesizing bishydroxyethyl terephthalate from terephthalic acid and ethylene glycol, and then undergoing polycondensation reaction. It is a crystalline saturated resin with a smooth and shiny surface.
  • PET Due to its symmetrical chemical structure, PET has good molecular chain flatness, dense molecular chains and easy crystal orientation. These characteristics make it have excellent barrier properties. It has excellent physical properties, chemical properties, dimensional stability, transparency, and recyclability. It can be widely used in magnetic recording, photosensitive materials, electronics, electrical insulation, industrial films, packaging decoration, screen protection, and optical grade mirrors. Surface protection and other fields.
  • Graphene is a two-dimensional crystal composed of carbon atoms with a thickness of a single atomic layer. Due to its unique two-dimensional conjugated structure, graphene exhibits many outstanding physical and chemical properties, including huge specific surface area and high aspect ratio. And smaller aperture. Many studies have shown that uniformly dispersing graphene into polymer materials can greatly improve its barrier properties and obtain materials with a wider range of applications. When applied on a large scale, graphene is prone to agglomeration when added to polymer materials and cannot be uniformly dispersed. In addition, graphene cannot be produced on a large scale under current conditions. For this reason, the present invention uses graphene derivative graphene oxide as a modification. Sex agent.
  • the SiOx deposited film material has the advantages of transparency and visibility, and can be applied to microwave heating. It is a vapor deposition barrier material that has been studied and applied. Because the produced SiOx film has a dense and uniform film structure and strong adhesion with the substrate, the entire composite material exhibits better barrier properties. At the same time, adding silica as an inorganic filler to the polymer to modify the polymer is also an effective method to improve the barrier properties of the polymer, because the three-dimensional silica can react with unsaturated organic matter to make the silica soluble The polymer generates organic polymer-nano-silica, thereby improving the barrier properties and toughness of organic polymers, making them have excellent barrier properties and barrier properties to volatile degradable substances.
  • the invention adopts the in-situ growth of silicon dioxide on the surface of graphene oxide to improve the barrier performance of the polymer through a synergistic effect.
  • the use of in-situ growth of silica on the surface of graphene oxide can also avoid the effects of PET synthesis
  • the hydroxyl group of GO reacts with the carboxyl group of terephthalic acid to reduce the molecular weight of the resultant product.
  • silica is deposited on the reduced graphene oxide sheet, which can also avoid the agglomeration caused by the addition of GO.
  • the RGO-SiO 2 /PET additive with high barrier properties obtained by in-situ polymerization has simple operation, simple equipment and technology, few side reactions, and excellent product performance. It reduces costs while avoiding the production process. Introduce harmful substances and impurities.
  • the percentage of RGO-SiO 2 in the mass of PET reaches 1.0%, the performance of pure PET synthesized in situ has been greatly improved, in which the tensile strength is increased by 49.9%, and the oxygen transmission rate is increased by 62.8%.
  • the purpose of the present invention is that the barrier performance of the existing PET packaging film and protective film cannot meet people's pursuit of high-quality life, and for PET and graphene oxide that cannot obtain high barrier properties in the presence of less graphene oxide.
  • the dispersibility of silica in PET is a problem, and a method for synthesizing PET with high barrier properties has been developed.
  • the RGO-SiO 2 /PET composite material prepared by the method of the present invention has higher barrier properties and can become a more excellent substitute in the fields of packaging, food preservation and the like.
  • the present invention adopts the following technical solutions:
  • the raw materials of RGO-SiO 2 /PET protective film in parts by weight include:
  • PET resin 100 parts
  • PET modified masterbatch 30 parts
  • Barrier agent nano-RGO-SiO2 0.5 ⁇ 2 parts (accounting for the weight fraction of PET modified masterbatch).
  • the PET resin is polyethylene terephthalate, and the monomer terephthalic acid used in its synthesis has a molecular weight of 166.13 and a density of 1.55 g/cm 3 ; ethylene glycol has a molecular weight of 62.068 and a density of 1.12 g/cm 3 .
  • the PET resin has an intrinsic viscosity of 0.800 to 0.840 dl/g, a melting point greater than or equal to 240°C, a density of 1.38 g/cm 3 , and a Shore hardness of 105 to 110A.
  • the PET modified masterbatch adopts an in-situ growth method to grow silica on the surface of graphene oxide, and then reduces it with aluminum powder to obtain reduced graphene oxide supported silica, which is then combined with ethylene glycol A RGO-SiO 2 /ethylene glycol complex is formed, and then polymerized with terephthalic acid in situ to obtain a high barrier RGO-SiO 2 /PET modified masterbatch.
  • the invention improves the barrier properties of PET through the synergistic effect of graphene, silicon dioxide surface carboxyl groups, amine groups, hydroxyl groups, and ethylene glycol.
  • aluminum powder is used to chemically reduce the prepared graphene oxide to obtain reduced graphite oxide
  • the surface functional groups of the reduced graphene oxide are selected by concentrated hydrochloric acid, so that the reduced graphene oxide is successfully grafted with a large number of carboxyl groups;
  • the second step is to form a cross-linked network between the carboxyl groups and silanol groups, which is generated in situ on the surface of the reduced graphene oxide Silica;
  • the third step uses the hydroxyl groups on the surface of silica and the carboxyl groups on the surface of the reduced graphene oxide and the amine groups on the surface of the KH550 grafted graphene-silica composite material to cooperate with ethylene glycol to form a complex.
  • the carboxyl group at the edge of the graphene oxide layer—COOH will react with the terminal hydroxyl groups of PET, while a large number of active hydroxyl groups on the surface of graphene oxide and silica can react with the terminal carboxyl groups of PET to obtain a three-dimensional cross-linked network.
  • the PET composite material prepared by chemical cross-linking and end capping continuously retains the high barrier properties of graphene oxide and silica, and the combination of the components is tighter. At the same time, the distribution is more even. Different from the traditional surface coating technology, this method effectively disperses the graphene-silica composite material in the PET matrix through chemical coordination, and greatly improves the barrier properties of PET.
  • the high-barrier RGO-SiO2/PET composite material prepared by the invention can be used for food outer packaging for food preservation. After plant-based food is picked, it is still a living organism and needs to breathe.
  • the high-barrier RGO-SiO2/PET composite material prepared by the present invention can effectively block the entry of oxygen, inhibit the respiration of plant-based food, and prevent food from oxidation Spoiled. It can become a more excellent substitute in the fields of packaging and food preservation.
  • Figure 1 is a scanning electron micrograph of RGO-SiO 2 prepared in Example 1;
  • Example 2 is an infrared spectrum chart of the high barrier RGO-SiO2/PET protective film prepared in Example 1.
  • PET resin 100 parts
  • PET modified masterbatch 30 parts
  • Barrier agent nano-RGO-SiO2 0.5 parts (accounting for the weight fraction of PET modified masterbatch).
  • the PET resin is polyethylene terephthalate, and the monomer terephthalic acid used in its synthesis has a molecular weight of 166.13 and a density of 1.55 g/cm 3 ; ethylene glycol has a molecular weight of 62.068 and a density of 1.12 g/cm 3 .
  • the PET resin has an intrinsic viscosity of 0.800 to 0.840 dl/g, a melting point greater than or equal to 240°C, a density of 1.38 g/cm 3 , and a Shore hardness of 105 to 110A.
  • the preparation method of the RGO-SiO2/PET protective film with high barrier properties the specific steps are as follows: 1) Preparation of graphene oxide: using expanded graphite as raw material, using an improved Hummers method to prepare graphene oxide; 2) reduction and oxidation Preparation of graphene: Dissolve a certain amount of GO in 100ml of deionized water, sonicate for 2h, mix well, prepare a 1mg/ml graphene oxide solution, add 0.5g of nano aluminum powder and 5ml of concentrated hydrochloric acid to the solution at room temperature The resulting solution was allowed to stand for 30 minutes, a certain amount of hydrochloric acid was added to the solution to remove excess aluminum powder, and the resulting product was washed and dried.
  • a method for preparing a high barrier RGO-SiO2/PET protective film includes in parts by weight:
  • PET resin 100 parts
  • PET modified masterbatch 30 parts
  • Barrier agent nano-RGO-SiO2 1.0 part (accounting for the weight fraction of PET modified masterbatch).
  • the PET resin is polyethylene terephthalate, and the monomer terephthalic acid used in its synthesis has a molecular weight of 166.13 and a density of 1.55 g/cm 3 ; ethylene glycol has a molecular weight of 62.068 and a density of 1.12 g/cm 3 .
  • the PET resin has an intrinsic viscosity of 0.800 to 0.840 dl/g, a melting point greater than or equal to 240°C, a density of 1.38 g/cm 3 , and a Shore hardness of 105 to 110A.
  • a method for preparing a high barrier RGO-SiO2/PET protective film includes in parts by weight:
  • PET resin 100 parts
  • PET modified masterbatch 30 parts
  • Barrier agent nano RGO-SiO2 2.0 parts (accounting for the weight fraction of PET modified masterbatch).
  • the PET resin is polyethylene terephthalate, and the monomer terephthalic acid used in its synthesis has a molecular weight of 166.13 and a density of 1.55 g/cm 3 ; ethylene glycol has a molecular weight of 62.068 and a density of 1.12 g/cm 3 .
  • the PET resin has an intrinsic viscosity of 0.800 to 0.840 dl/g, a melting point greater than or equal to 240°C, a density of 1.38 g/cm 3 , and a Shore hardness of 105 to 110A.

Abstract

涉及一种高阻隔性RGO-SiO2/PET保护膜的制备方法,以氧化石墨烯、铝粉、四甲氧基硅烷、对苯二甲酸、乙二醇、三氧化二锑、磷酸铵为原料,采用四甲氧基硅烷原位生长在氧化石墨烯表面,然后用铝粉对其进行还原,与乙二醇结合成氧化石墨烯负载二氧化硅/乙二醇配合物,再与对苯二甲酸原位聚合得到高阻隔性RGO-SiO2/PET改性母粒,再与PET树脂混合制得高阻隔性RGO-SiO2/PET保护膜,上述方法制得的保护膜具有优异的阻隔性能,避免空气中的氧气和水蒸气进入保护膜内侧,避免所需要保护的物品因发生氧化而变质,可以在包装、食品保鲜等领域成为性能更优异的替代品。

Description

一种高阻隔性RGO-SiO2/PET保护膜及其制备方法 技术领域
本发明属于高分子复合材料合成技术领域,具体涉及一种高阻隔性RGO-SiO 2/PET保护膜及其制备方法。
背景技术
高分子材料因其良好的性能已广泛应用于各种领域,在日常生活中,人们为了提高产品的保质期,延长产品的货架寿命,保护产品不受外界环境的影响,常常要使用具有高阻隔性的材料,高阻隔性通常是指对气液渗透物具有高阻隔作用的材料,即防止氧的侵入以免商品氧化变质;防止水或水蒸气的渗透以免商品受潮变霉;防止香气、香味和二氧化碳外逸,以免商品变味和变质等。而高分子类高阻隔性材料由于质量轻、柔性好、易弯折、透明以及价格低廉而越来越受到人们的青睐。具有高阻隔性的高分子材料拓宽了材料的选用范围,使传统包装材料逐渐完成了从高消耗、高质量向轻便、耐腐蚀、低成本、易降解和环保的转变。
聚对苯二甲酸乙二醇酯简称PET,由对苯二甲酸与乙二醇先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得,属于结晶型饱和树脂,表面平滑有光泽。PET由于化学结构对称,分子链平面性较好,分子链堆砌紧密,容易结晶取向,这些特点使其具有优异的阻隔性能。它具有优异的物理性能、化学性能及尺寸稳定性、透明性、可回收性,可广泛的应用于磁记录、感光材料、电子、电气绝缘、工业用膜、包装装饰、屏幕保护、光学级镜面表面保护等领域。
石墨烯是由碳原子构成的具有单原子层厚度的二维晶体,由于其独特的二维共轭结构,石墨烯展现出了许多突出的物理化学性质,包括巨大的比表面积、高长径比和较小的孔径。许多研究已经表明,将石墨烯均匀的分散到高分子材料中可以大大提高其阻隔性,获得更广泛适用范围的材料。当大规模应用时,石墨烯在加入高分子材料中容易发生团聚,无法均匀分散,另外现行条件下石墨烯无法大规模进行生产,为此,本发明采用石墨烯的衍生物氧化石墨烯作为改性剂。氧化石墨烯表面有较多的有机官能团,可以与高分子材料的官能团进行反应而更好的分散在高分子材料中从而提升其阻隔性能。但氧化石墨烯在溶剂中的分散性差容易团聚,将氧化石墨烯在合成过程中作为改性剂添加就必须对氧化石墨烯进行表面改性。在现有研究中,将氧化石墨烯与PET进行熔融共混来提高性能有着上升阈值,而且往往需要大量的氧化石墨烯,这不仅提高了成本而且还限制了大规模的工业应用。
SiOx沉积薄膜材料具有透明可视、能适用于微波加热等优点,是研究、应用较多的一种蒸镀阻隔材料。由于生成的SiOx薄膜具有致密均匀的薄膜结构,且与基体间存在较强的附着力,从而使整个复合材料表现出较好的阻隔性能。同时,将二氧化硅作为无机填料添加至聚合物内改性聚合物,也是一种提高聚合物阻隔性的有效方法,因为三维二氧化硅能与不饱和有机物发生反应,使二氧化硅溶于聚合物,生成有机聚合物-纳米二氧化硅,从而提高有机聚合物的阻隔性能和韧性,使其具有极佳的阻隔性能和对挥发性降解物质的阻隔性能。
技术问题
本发明采用将二氧化硅原位生长在氧化石墨烯表面,通过一种协同作用来提高聚合物的阻隔性能。与常见的通过物理共混来将单一的氧化石墨烯或者二氧化硅加入到PET中来提高阻隔性能不同,采用将二氧化硅原位生长在氧化石墨烯表面还可以避免在PET合成过程中因GO的羟基与对苯二甲酸的羧基发生反应而导致所得产物的分子量降低,同时二氧化硅沉积在还原氧化石墨烯片层上,还可以避免因加入GO而产生的团聚现象。最重要的是,表面活化的二氧化硅能与乙二醇形成一种配合物,氧化石墨烯片层边缘的羧基—COOH会与PET的端羟基进行反应,而氧化石墨烯和二氧化硅表面的大量活性羟基可以与PET的端羧基进行反应,从而得到一种三维交联网络状的PET复合材料,与传统的物理共混不同,通过化学交联封端制备出来的PET复合材料不断保留了氧化石墨烯和二氧化硅的高阻隔性能,而且各组分间结合的更紧,同时也分布的更加均匀。
采用原位聚合方法得到的具有高阻隔性的RGO-SiO 2/PET助剂,操作简便,设备工艺简单,副反应少,制成的产品性能优异,在降低成本的同时避免了在生产过程中引入有害物质和杂质。当RGO-SiO 2占PET质量的百分比达到1.0%时,对比原位合成的纯PET其性能得到了较大的提升,其中拉伸强度提升了49.9%,氧气透过率提高了62.8%。
技术解决方案
本发明的目的在于针对现有的PET的包装膜、保护膜的阻隔性能不能满足人们对高质量生活的追求,对于无法在较少氧化石墨烯存在下获得高阻隔性的PET以及氧化石墨烯和二氧化硅在PET中的分散性问题,开发一种具有高阻隔性的PET的合成方法。经本发明方法制得的RGO-SiO 2/PET复合材料具有较高的阻隔性,能够成为包装、食品保鲜等领域更优异的替代品。
为实现以上目的,本发明采用如下的技术方案:
RGO-SiO 2/PET保护膜的原料按重量份数计包括:
PET树脂:100份;
PET改性母粒:30份;
阻隔剂纳米RGO-SiO2:0.5~2份(占PET改性母粒重量分数)。
所述PET树脂为聚对苯二甲酸乙二醇酯,其合成所用单体对苯二甲酸分子量为166.13,密度为1.55g/cm 3;乙二醇分子量为62.068,密度为1.12 g/cm 3。所述PET树脂的特性粘数0.800~0.840 dl/g,熔点大于或等于240℃,密度1.38 g/cm 3,邵氏硬度105~110A。
所述PET改性母粒是采用原位生长的方法将二氧化硅生长在氧化石墨烯表面,然后用铝粉对其进行还原,得到还原氧化石墨烯负载二氧化硅,然后与乙二醇结合形成RGO-SiO 2/乙二醇配合物,再与对苯二甲酸原位聚合得到高阻隔性RGO-SiO 2/PET改性母粒。
所述的具有高阻隔性RGO-SiO2/PET保护膜的制备方法,具体步骤如下:
1)  氧化石墨烯的制备:以膨胀石墨为原料,采用改进的Hummers方法制备氧化石墨烯;
2)  还原氧化石墨烯的制备:取一定量的GO溶于100ml去离子水中,超声2h,混合均匀,配置成1mg/ml的氧化石墨烯溶液,向溶液中0.5g纳米铝粉和5ml浓盐酸,室温下将所得溶液静置30min,向溶液中加入一定量的盐酸以除去多余的铝粉,将所得产物进行洗涤、干燥。
3)还原氧化石墨烯负载二氧化硅的制备:将十六烷基三甲基溴化铵(CTAB)溶于去离子水中,加入2M NaOH水溶液并充分混合均匀,将氧化石墨烯加入到混合溶液中进行超声处理,将超声过后的混合溶液放入磁力搅拌器中加热至80℃,逐滴加入四甲氧基硅烷(TMOS),磁力搅拌2h,加入Y-氨丙基三乙氧基硅烷(KH-550)进行表面处理。冷却后得到白色固体,用去离子水洗涤产物,80℃烘干即得到氧化石墨烯负载二氧化硅。4)RGO-SiO 2/乙二醇配合物的制备:将步骤2)所得的RGO-SiO 2加入到59.8份乙二醇中,超声至溶液混合均匀,即得到RGO-SiO 2/乙二醇的配合物。
5)将40.0份对苯二甲酸,0.05份三氧化二锑,0.05份磷酸铵加入到三口烧瓶中,最后加入处理过后的RGO-SiO 2/乙二醇配合物,通入氮气提供无氧环境,启动机械搅拌器,使混合溶液在180~220℃下酯化90min,升温至260~280℃进行缩聚,至体系中不再排出水即停止反应,倒入模具中,在160℃真空干燥箱中熟化12h后,将所得到的产物挤出造粒即得到高阻隔性的RGO-SiO 2/PET改性母粒。
6)将合成的改性RGO-SiO 2/PET改性母粒经切粒过后和PET在混合温度为35~60℃,混合时间为5~10min高速混合之后,在120~150℃温度下烘干4~6h,由温度为245~255℃注射机注射成型。
本发明通过一种石墨稀、二氧化硅表面羧基、胺基、羟基与乙二醇协同作用来提高PET的阻隔性,首先用铝粉对制备出来的氧化石墨烯进行化学还原,得到还原氧化石墨烯,再通过浓盐酸对还原氧化石墨烯进行表面官能团选择,使还原氧化石墨烯成功接枝上大量羧基;第二步通过羧基与硅羟基形成交联网络,在还原氧化石墨烯表面原位生成二氧化硅;第三步利用二氧化硅表面羟基和还原氧化石墨烯表面羧基以及KH550接枝石墨烯-二氧化硅复合材料表面的胺基均对乙二醇起到配合作用,形成的配合物。氧化石墨烯片层边缘的羧基—COOH会与PET的端羟基进行反应,而氧化石墨烯和二氧化硅表面的大量活性羟基可以与PET的端羧基进行反应,从而得到一种三维交联网络状的PET复合材料,与传统的物理共混不同,通过化学交联封端制备出来的PET复合材料不断保留了氧化石墨烯和二氧化硅的高阻隔性能,而且各组分间结合的更紧,同时也分布的更加均匀。与传统的表面涂覆技术不同的是,该方法通过化学配合使石墨烯-二氧化硅复合材料有效分散在PET基体中,并对PET阻隔性有更大提升。
有益效果
本发明的有益效果在于:
本发明制得的高阻隔性RGO-SiO2/PET复合材料能够用于食品外包装,进行食品保鲜。植物型食品采摘之后,仍然是生命的有机体,需要进行呼吸,本发明制备的高阻隔性RGO-SiO2/PET复合材料能够有效的阻隔氧气的进入,抑制植物型食品的呼吸作用,防止食品发生氧化变质。可以在包装、食品保鲜等领域成为性能更优异的替代品。
附图说明
图1为实施例1制得的RGO-SiO 2的扫描电镜图;
图2为实施例1制得的高阻隔性RGO-SiO2/PET保护膜的红外光谱图。
本发明的实施方式
为了使本发明所述内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步说明,但是本发明不仅限于此。
对比例:
将100wt%的PET在120~150℃温度下烘干4~6h,由温度为245~255℃注射机注射成型。裁切成标准哑铃型样条和直径为4cm的圆形样条进行检测。
实施例1
一种高阻隔性RGO-SiO2/PET保护膜的制备方法,所述RGO-SiO2/PET的原料按重量份数计包括:
PET树脂:100份;
PET改性母粒:30份;
阻隔剂纳米RGO-SiO2:0.5份(占PET改性母粒重量分数)。
所述PET树脂为聚对苯二甲酸乙二醇酯,其合成所用单体对苯二甲酸分子量为166.13,密度为1.55g/cm 3;乙二醇分子量为62.068,密度为1.12 g/cm 3。所述PET树脂的特性粘数0.800~0.840 dl/g,熔点大于或等于240℃,密度1.38 g/cm 3,邵氏硬度105~110A。
所述的具有高阻隔性RGO-SiO2/PET保护膜的制备方法,具体步骤如下:1)氧化石墨烯的制备:以膨胀石墨为原料,采用改进的Hummers方法制备氧化石墨烯;2)还原氧化石墨烯的制备:取一定量的GO溶于100ml去离子水中,超声2h,混合均匀,配置成1mg/ml的氧化石墨烯溶液,向溶液中0.5g纳米铝粉和5ml浓盐酸,室温下将所得溶液静置30min,向溶液中加入一定量的盐酸以除去多余的铝粉,将所得产物进行洗涤、干燥。
3)还原氧化石墨烯负载二氧化硅的制备:将十六烷基三甲基溴化铵(CTAB)溶于去离子水中,加入2M NaOH水溶液并充分混合均匀,将氧化石墨烯加入到混合溶液中进行超声处理,将超声过后的混合溶液放入磁力搅拌器中加热至80℃,逐滴加入四甲氧基硅烷(TMOS),磁力搅拌2h,加入Y-氨丙基三乙氧基硅烷(KH-550)进行表面处理。冷却后得到白色固体,用去离子水洗涤产物,80℃烘干即得到氧化石墨烯负载二氧化硅(RGO-SiO2。
4)RGO-SiO 2/乙二醇配合物的制备:将步骤2)所得的RGO-SiO 2加入到59.8份乙二醇中,超声至溶液混合均匀,即得到RGO-SiO 2/乙二醇的配合物。
5将40.0份对苯二甲酸,0.05份三氧化二锑,0.05份磷酸铵加入到三口烧瓶中,最后加入处理过后的RGO-SiO 2/乙二醇配合物,通入氮气提供无氧环境,启动机械搅拌器,使混合溶液在200℃下酯化90min,升温至270℃进行缩聚,至体系中不再排出水即停止反应,倒入模具中,在160℃真空干燥箱中熟化12h后,将所得到的产物挤出造粒即得到高阻隔性的RGO-SiO 2/PET改性母粒。
6)将合成的改性RGO-SiO 2/PET改性母粒经切粒过后和PET在混合温度为50℃,混合时间为8min高速混合之后,在140℃温度下烘干5h,由温度为250℃注射机注射成型。
实施例2
一种高阻隔性RGO-SiO2/PET保护膜的制备方法,所述RGO-SiO2/PET保护膜的原料按重量份数计包括:
PET树脂:100份;
PET改性母粒:30份;
阻隔剂纳米RGO-SiO2:1.0份(占PET改性母粒重量分数)。
所述PET树脂为聚对苯二甲酸乙二醇酯,其合成所用单体对苯二甲酸分子量为166.13,密度为1.55g/cm 3;乙二醇分子量为62.068,密度为1.12 g/cm 3。所述PET树脂的特性粘数0.800~0.840 dl/g,熔点大于或等于240℃,密度1.38 g/cm 3,邵氏硬度105~110A。
所述的具有高阻隔性RGO-SiO2/PET保护膜的制备方法,具体步骤如下:
1)氧化石墨烯的制备:以膨胀石墨为原料,采用改进的Hummers方法制备氧化石墨烯;
2)还原氧化石墨烯的制备:取一定量的GO溶于100ml去离子水中,超声2h,混合均匀,配置成1mg/ml的氧化石墨烯溶液,向溶液中0.5g纳米铝粉和5ml浓盐酸,室温下将所得溶液静置30min,向溶液中加入一定量的盐酸以除去多余的铝粉,将所得产物进行洗涤、干燥。
3)还原氧化石墨烯负载二氧化硅的制备:将十六烷基三甲基溴化铵(CTAB)溶于去离子水中,加入2M NaOH水溶液并充分混合均匀,将氧化石墨烯加入到混合溶液中进行超声处理,将超声过后的混合溶液放入磁力搅拌器中加热至80℃,逐滴加入四甲氧基硅烷(TMOS),磁力搅拌2h,加入Y-氨丙基三乙氧基硅烷(KH-550)进行表面处理。冷却后得到白色固体,用去离子水洗涤产物,80℃烘干即得到氧化石墨烯负载二氧化硅。
4)RGO-SiO 2/乙二醇配合物的制备:将步骤2)所得的RGO-SiO 2加入到59.8份乙二醇中,超声至溶液混合均匀,即得到RGO-SiO 2/乙二醇的配合物。
5)将40.0份对苯二甲酸,0.05份三氧化二锑,0.05份磷酸铵加入到三口烧瓶中,最后加入处理过后的RGO-SiO 2/乙二醇配合物,通入氮气提供无氧环境,启动机械搅拌器,使混合溶液在220℃下酯化90min,升温至280℃进行缩聚,至体系中不再排出水即停止反应,倒入模具中,在160℃真空干燥箱中熟化12h后,将所得到的产物挤出造粒即得到高阻隔性的RGO-SiO 2/PET改性母粒。
6))将合成的改性RGO-SiO 2/PET改性母粒经切粒过后和PET在混合温度为60℃,混合时间为10min高速混合之后,在150℃温度下烘干6h,由温度为255℃注射机注射成型。
实施例3
一种高阻隔性RGO-SiO2/PET保护膜的制备方法,所述RGO-SiO2/PET保护膜的原料按重量份数计包括:
PET树脂:100份;
PET改性母粒:30份;
阻隔剂纳米RGO-SiO2:2.0份(占PET改性母粒重量分数)。
所述PET树脂为聚对苯二甲酸乙二醇酯,其合成所用单体对苯二甲酸分子量为166.13,密度为1.55g/cm 3;乙二醇分子量为62.068,密度为1.12 g/cm 3。所述PET树脂的特性粘数0.800~0.840 dl/g,熔点大于或等于240℃,密度1.38 g/cm 3,邵氏硬度105~110A。
所述的具有高阻隔性RGO-SiO2/PET保护膜的制备方法,具体步骤如下:
1)氧化石墨烯的制备:以膨胀石墨为原料,采用改进的Hummers方法制备氧化石墨烯;
2)还原氧化石墨烯的制备:取一定量的GO溶于100ml去离子水中,超声2h,混合均匀,配置成1mg/ml的氧化石墨烯溶液,向溶液中0.5g纳米铝粉和5ml浓盐酸,室温下将所得溶液静置30min,向溶液中加入一定量的盐酸以除去多余的铝粉,将所得产物进行洗涤、干燥。
3)还原氧化石墨烯负载二氧化硅的制备:将十六烷基三甲基溴化铵(CTAB)溶于去离子水中,加入2M NaOH水溶液并充分混合均匀,将氧化石墨烯加入到混合溶液中进行超声处理,将超声过后的混合溶液放入磁力搅拌器中加热至80℃,逐滴加入四甲氧基硅烷(TMOS),磁力搅拌2h,加入Y-氨丙基三乙氧基硅烷(KH-550)进行表面处理。冷却后得到白色固体,用去离子水洗涤产物,80℃烘干即得到氧化石墨烯负载二氧化硅。
4)RGO-SiO 2/乙二醇配合物的制备:将步骤2)所得的RGO-SiO 2加入到59.8份乙二醇中,超声至溶液混合均匀,即得到RGO-SiO 2/乙二醇的配合物。
5)将40.0份对苯二甲酸,0.05份三氧化二锑,0.05份磷酸铵加入到三口烧瓶中,最后加入处理过后的RGO-SiO 2/乙二醇配合物,通入氮气提供无氧环境,启动机械搅拌器,使混合溶液在180℃下酯化90min,升温至260℃进行缩聚,至体系中不再排出水即停止反应,倒入模具中,在160℃真空干燥箱中熟化12h后,将所得到的产物挤出造粒即得到高阻隔性的RGO-SiO 2/PET改性母粒。
6)将合成的改性RGO-SiO 2/PET改性母粒经切粒过后和PET在混合温度为35℃,混合时间为6min高速混合之后,在120温度下烘干4h,由温度为245℃注射机注射成型。
性能测试:
由图1可以看出,与简单的物理共混容易发生团聚不同,二氧化硅是均匀的生长在还原氧化石墨烯片层的表面,且二氧化硅微球尺寸大小比较一致,在还原氧化石墨烯表面生长的比较密集,说明羧基化后的氧化石墨烯表面反应位点比较多,与二氧化硅结合比较紧密。
由图2可以看出,在1750cm -1左右有一个极强的吸收峰,它是硅羟基与还原氧化石墨烯表面的羧基发生缩合所形成的酯键的伸缩振动峰。在1300cm -1左右也有一个极强的吸收峰,它是硅羟基和还原氧化石墨烯表面的羧基发生缩合形成的酯键以及KH-550与二氧化硅表面形成的胺的伸缩振动峰,峰形强烈,说明二氧化硅与还原氧化石墨烯发生了化学结合,KH-550在RGO-SiO 2表面也发生了化学键合。
将实施例1-3中所得的具有高阻隔性RGO-SiO 2/PET保护膜与纯PET保护膜进行性能对比测试,结果见表1。
表1样品性能测试
Figure 258519dest_path_image001
以上所述仅为本发明的最佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

  1. 一种高阻隔性RGO-SiO 2/PET保护膜,其特征在于:其包括以下重量份数的组分:PET树脂:100份,PET改性母粒:30份,所述PET改性母粒是采用原位生长的方法将二氧化硅生长在氧化石墨烯表面,然后用铝粉对其进行还原,得到还原氧化石墨烯负载二氧化硅,然后与乙二醇结合形成RGO-SiO2/乙二醇配合物,再与对苯二甲酸原位聚合得到高阻隔性PET改性母粒。
  2. 根据权利要求1所述的高阻隔性RGO-SiO 2/PET保护膜,其特征在于:所述PET树脂为聚对苯二甲酸乙二醇酯,其合成所用单体对苯二甲酸分子量为166.13,密度为1.55g/cm 3;乙二醇分子量为62.068,密度为1.12 g/cm 3;所述PET树脂的特性粘数0.800~0.840 dl/g,熔点大于或等于240℃,密度1.38 g/cm 3,邵氏硬度105~110A。
  3. 根据权利要求1所述的一种高阻隔性RGO-SiO2/PET保护膜,其特征在于:所述PET改性母粒的制备方法具体包括以下步骤:
    1)    氧化石墨烯的制备:以膨胀石墨为原料,采用改进的Hummers方法制备氧化石墨烯;
    2)    还原氧化石墨烯的制备:取一定量的GO溶于100ml去离子水中,超声2h,混合均匀,配置成1mg/ml的氧化石墨烯溶液,向溶液中0.5g纳米铝粉和5ml浓盐酸,室温下将所得溶液静置30min,向溶液中加入一定量的盐酸以除去多余的铝粉,将所得产物进行洗涤、干燥;
    3)    还原氧化石墨烯负载二氧化硅的制备:将还原氧化石墨烯加入到去离子水中进行超声处理,滴加一定量的稀盐酸,将超声过后的混合溶液放入磁力搅拌器中加热至80℃,逐滴加入四甲氧基硅烷,磁力搅拌2h,加入Y-氨丙基三乙氧基硅烷进行表面处理;冷却后得到白色固体,用去离子水洗涤产物,80℃烘干即得到还原氧化石墨烯负载二氧化硅;
    4)    RGO-SiO 2/乙二醇共混物的制备:将步骤3)所得的RGO-SiO 2加入到59.8份乙二醇中,超声至溶液混合均匀,即得到RGO-SiO 2/乙二醇的配合物;
    5)    将40.0份对苯二甲酸,0.05份三氧化二锑,0.05份磷酸铵加入到三口烧瓶中,最后加入处理过后的RGO-SiO 2/乙二醇配合物,通入氮气提供无氧环境,启动机械搅拌器,使混合溶液在180~220℃下酯化90min,升温至260~280℃进行缩聚,至体系中不再排出水即停止反应,倒入模具中,在160℃真空干燥箱中熟化12h后,将所得到的产物挤出造粒即得到高阻隔性的PET改性母粒。
  4. 一种如权利要求1-3任一项所述的高阻隔性RGO-SiO2/PET保护膜的制备方法,其特征在于:将PET改性母粒和PET树脂按100:30高速混合之后,在120~150℃温度下烘干4~6h,由温度为245~255℃注射机注射成型。
  5. 根据权利要求1所述的一种高阻隔性RGO-SiO2/PET保护膜的制备方法,其特征在于:高速混合温度为35~60℃,混合时间为5~10min。
PCT/CN2020/101072 2019-12-27 2020-07-09 一种高阻隔性RGO-SiO2/PET保护膜及其制备方法 WO2021128808A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911377742.5 2019-12-27
CN201911377742.5A CN110982233B (zh) 2019-12-27 2019-12-27 一种高阻隔性RGO-SiO2/PET保护膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2021128808A1 true WO2021128808A1 (zh) 2021-07-01

Family

ID=70078127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101072 WO2021128808A1 (zh) 2019-12-27 2020-07-09 一种高阻隔性RGO-SiO2/PET保护膜及其制备方法

Country Status (2)

Country Link
CN (1) CN110982233B (zh)
WO (1) WO2021128808A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113675529A (zh) * 2021-08-19 2021-11-19 杭州君杭科技有限公司 一种新能源汽车用锂离子电池隔膜材料及其制备方法
CN114824317A (zh) * 2022-05-17 2022-07-29 浙江中盛新材料股份有限公司 一种多层pet片材及其防变形的制备方法
CN114989580A (zh) * 2022-07-11 2022-09-02 西华大学 一种高气体阻隔pet材料及其制备方法
CN115028883A (zh) * 2022-06-10 2022-09-09 龚伟锋 一种阻燃硅气凝胶的制备方法
CN115216044A (zh) * 2022-08-25 2022-10-21 杭州和顺科技股份有限公司 一种高透光高击穿电压背板及其制备方法
CN116427206A (zh) * 2023-06-13 2023-07-14 山东奥赛新材料有限公司 改性纳米二氧化硅、制备方法及在硅溶胶混合乳液的应用
CN116421892A (zh) * 2023-04-08 2023-07-14 深圳虹望奈喜美电器有限公司 一种用于等离子美容仪的全包覆式雾化罩
CN117050513A (zh) * 2022-06-20 2023-11-14 台州俪盛塑料有限公司 一种可吹塑专用超韧尼龙

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110982233B (zh) * 2019-12-27 2021-11-26 福州大学 一种高阻隔性RGO-SiO2/PET保护膜及其制备方法
CN111393823B (zh) * 2020-04-22 2021-05-18 福州大学 一种具有优良力学性能的Gn-PET/PC合金及其制备方法
CN113036208B (zh) * 2021-02-26 2022-05-10 中山大学 一种先进的多孔高分子纳米片及其制备方法和应用
CN114538421A (zh) * 2021-12-17 2022-05-27 杭州华宏通信设备有限公司 一种石墨烯改性磷酸铁锂正极材料的制备方法
CN114656666B (zh) * 2022-05-25 2022-08-16 河南源宏高分子新材料有限公司 一种能够实现温度阻隔的pet材料制备工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070216067A1 (en) * 2000-01-21 2007-09-20 Cyclics Corporation Macrocyclic polyester oligomers as carriers and/or flow modifier additives for thermoplastics
CN106349462A (zh) * 2016-08-22 2017-01-25 广东纳路纳米科技有限公司 一种包装制品用高阻隔纳米改性pet复合材料的制备
CN106564881A (zh) * 2016-07-28 2017-04-19 首都师范大学 一步法制备还原氧化石墨烯
CN107501877A (zh) * 2017-06-13 2017-12-22 华烯新材料科技无锡有限公司 一种石墨烯复合pet母粒及其制备方法
CN107849292A (zh) * 2015-03-17 2018-03-27 尼亚加拉装瓶有限责任公司 石墨烯增强的聚对苯二甲酸乙二醇酯
CN109337086A (zh) * 2018-09-13 2019-02-15 常州恒利宝纳米新材料科技有限公司 一种功能石墨烯原位聚合聚酯的三元共聚复合材料及其制备方法和专用装置
CN110205023A (zh) * 2019-06-21 2019-09-06 重庆市科学技术研究院 具有疏水、防腐性能的复合纳米涂层材料及其制备方法和应用
CN110982233A (zh) * 2019-12-27 2020-04-10 福州大学 一种高阻隔性RGO-SiO2/PET保护膜及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103317802B (zh) * 2013-06-22 2015-07-01 福州大学 一种高阻燃性聚酯纤维增强pvc复合材料
CN103937016B (zh) * 2014-03-28 2017-02-22 同济大学 一种制备石墨烯/高分子乳液复合薄膜材料的喷涂方法
KR101742955B1 (ko) * 2015-11-27 2017-06-05 주식회사 상보 배리어 필름 제조방법 및 배리어 필름
CN105542228A (zh) * 2016-01-31 2016-05-04 华南理工大学 一种基于石墨烯的功能纳米二氧化硅的制备方法
CN106221179A (zh) * 2016-07-25 2016-12-14 西华大学 石墨烯‑二氧化硅杂化材料及制备聚氨酯基纳米复合材料的方法
CN106905671A (zh) * 2016-12-23 2017-06-30 宁波长阳科技股份有限公司 一种pet水汽阻隔母粒及其制备方法
CN108949291B (zh) * 2018-07-09 2021-05-25 中国科学院兰州化学物理研究所 一种无溶剂氧化石墨烯负载二氧化硅纳米类流体及其应用
CN109401253B (zh) * 2018-11-07 2021-04-27 福州大学 一种生物降解增韧复合材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070216067A1 (en) * 2000-01-21 2007-09-20 Cyclics Corporation Macrocyclic polyester oligomers as carriers and/or flow modifier additives for thermoplastics
CN107849292A (zh) * 2015-03-17 2018-03-27 尼亚加拉装瓶有限责任公司 石墨烯增强的聚对苯二甲酸乙二醇酯
CN106564881A (zh) * 2016-07-28 2017-04-19 首都师范大学 一步法制备还原氧化石墨烯
CN106349462A (zh) * 2016-08-22 2017-01-25 广东纳路纳米科技有限公司 一种包装制品用高阻隔纳米改性pet复合材料的制备
CN107501877A (zh) * 2017-06-13 2017-12-22 华烯新材料科技无锡有限公司 一种石墨烯复合pet母粒及其制备方法
CN109337086A (zh) * 2018-09-13 2019-02-15 常州恒利宝纳米新材料科技有限公司 一种功能石墨烯原位聚合聚酯的三元共聚复合材料及其制备方法和专用装置
CN110205023A (zh) * 2019-06-21 2019-09-06 重庆市科学技术研究院 具有疏水、防腐性能的复合纳米涂层材料及其制备方法和应用
CN110982233A (zh) * 2019-12-27 2020-04-10 福州大学 一种高阻隔性RGO-SiO2/PET保护膜及其制备方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113675529A (zh) * 2021-08-19 2021-11-19 杭州君杭科技有限公司 一种新能源汽车用锂离子电池隔膜材料及其制备方法
CN114824317A (zh) * 2022-05-17 2022-07-29 浙江中盛新材料股份有限公司 一种多层pet片材及其防变形的制备方法
CN114824317B (zh) * 2022-05-17 2023-07-11 浙江中盛新材料股份有限公司 一种多层pet片材及其防变形的制备方法
CN115028883A (zh) * 2022-06-10 2022-09-09 龚伟锋 一种阻燃硅气凝胶的制备方法
CN115028883B (zh) * 2022-06-10 2023-11-10 山东蓝森新材料有限责任公司 一种阻燃硅气凝胶的制备方法
CN117050513A (zh) * 2022-06-20 2023-11-14 台州俪盛塑料有限公司 一种可吹塑专用超韧尼龙
CN114989580B (zh) * 2022-07-11 2023-06-13 成都瑞琦医疗科技有限责任公司 一种高气体阻隔pet材料及其制备方法
CN114989580A (zh) * 2022-07-11 2022-09-02 西华大学 一种高气体阻隔pet材料及其制备方法
CN115216044A (zh) * 2022-08-25 2022-10-21 杭州和顺科技股份有限公司 一种高透光高击穿电压背板及其制备方法
CN116421892A (zh) * 2023-04-08 2023-07-14 深圳虹望奈喜美电器有限公司 一种用于等离子美容仪的全包覆式雾化罩
CN116421892B (zh) * 2023-04-08 2024-03-26 深圳虹望奈喜美电器有限公司 一种用于等离子美容仪的全包覆式雾化罩
CN116427206A (zh) * 2023-06-13 2023-07-14 山东奥赛新材料有限公司 改性纳米二氧化硅、制备方法及在硅溶胶混合乳液的应用
CN116427206B (zh) * 2023-06-13 2023-10-13 山东奥赛新材料有限公司 改性纳米二氧化硅、制备方法及在硅溶胶混合乳液的应用

Also Published As

Publication number Publication date
CN110982233A (zh) 2020-04-10
CN110982233B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2021128808A1 (zh) 一种高阻隔性RGO-SiO2/PET保护膜及其制备方法
CN105820519B (zh) Pet基石墨烯复合材料、其制备方法
CN111205638A (zh) 一种能够注塑成型的类陶瓷材料及其制备方法和在移动通讯装备后盖的应用
Tang et al. Epoxy-based high-k composites with low dielectric loss caused by reactive core-shell-structured carbon nanotube hybrids
Tsou et al. Characterizing attapulgite-reinforced nanocomposites of poly (lactic acid)
CN112980182A (zh) COFs/尼龙6复合材料及其制备方法
Zhang et al. High-transparency polysilsesquioxane/glycidyl-azide-polymer resin and its fiberglass-reinforced composites with excellent fire resistance, mechanical properties, and water resistance
Liu et al. Metal-organic frameworks mediated interface engineering of polymer nanocomposites for enhanced dielectric constant and low dielectric loss
CN113896926A (zh) 一种抗静电聚酰亚胺薄膜及其应用
KR101637632B1 (ko) 나일론 복합체 및 이의 제조방법
CN115058032B (zh) 一种聚乳酸薄膜开口母粒的制备方法
CN114685983B (zh) 一种pa56组合物及其制备方法和应用
JP4523933B2 (ja) モジュラスが向上したポリエチレンテレフタレートナノ複合繊維の製造方法
CN114262478B (zh) 一种充气包装袋用复合膜及其制备方法
JPH0696668B2 (ja) 樹脂組成物
Panda et al. Unsaturated polyester nanocomposites
CN104710731B (zh) 聚对苯二甲酸乙二醇酯复合材料及其制备方法
WO2021057357A1 (zh) 聚丙烯用超低线性膨胀系数母粒及其应用
CN107892743A (zh) 一种层状水滑石改性的plla
CN115725130B (zh) 一种抗菌增韧pe复合材料及其制备方法
CN114957949B (zh) 一种高耐热高刚性聚乳酸复合材料及其制备方法与应用
CN110951185A (zh) 一种聚氯乙烯改性材料的制备方法
CN107778463A (zh) 一种纳米蒙脱土改性的聚乳酸
JPH06287327A (ja) ポリイミドフィルムの製造方法
CN109401290B (zh) 复合成核剂及包含该复合成核剂的尼龙复合材料及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906107

Country of ref document: EP

Kind code of ref document: A1