WO2021082283A1 - 一种吸附放射性元素的吸附材料的制备方法及应用 - Google Patents

一种吸附放射性元素的吸附材料的制备方法及应用 Download PDF

Info

Publication number
WO2021082283A1
WO2021082283A1 PCT/CN2020/071668 CN2020071668W WO2021082283A1 WO 2021082283 A1 WO2021082283 A1 WO 2021082283A1 CN 2020071668 W CN2020071668 W CN 2020071668W WO 2021082283 A1 WO2021082283 A1 WO 2021082283A1
Authority
WO
WIPO (PCT)
Prior art keywords
metatitanic acid
slurry
adsorption
radioactive elements
adsorbent
Prior art date
Application number
PCT/CN2020/071668
Other languages
English (en)
French (fr)
Inventor
张千
张川
张建平
Original Assignee
河北麦森钛白粉有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北麦森钛白粉有限公司 filed Critical 河北麦森钛白粉有限公司
Publication of WO2021082283A1 publication Critical patent/WO2021082283A1/zh
Priority to ZA2021/10572A priority Critical patent/ZA202110572B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Definitions

  • the invention belongs to the technical field of adsorption materials, relates to the treatment technology of radioactive elements in nuclear wastes, in particular to a preparation method of an adsorbent that adsorbs radioactive elements, and particularly relates to a method that can remove nuclear waste water and repair radioactive elements in nuclear contaminated soil.
  • the radioactive pollution in the water body mainly comes from the waste water discharged from nuclear power generation nuclear reactor facilities. It mainly contains radioactive elements such as uranium, strontium, cesium, plutonium, thorium, radium, etc.
  • the adsorption material has a simple process .
  • the advantages of high adsorption efficiency, easy recycling, stable treatment effect, low price, etc. can also be applied to the remediation of soil contaminated by nuclear radioactivity.
  • radioactive pollution sources that cause radioactive pollution to the environment include radioactive fallout from nuclear tests and various radioactive wastes from nuclear power plants.
  • the nuclear power plant industry includes nuclear fuel mining, reactor operation, and post-irradiation fuel recovery, etc. In these processes, radioactive water pollution will be produced.
  • the most serious radioactive water pollution is the reprocessing of nuclear fuel.
  • the global water pollution caused by nuclear power plants is the most serious, especially the various radioactive wastes left over from nuclear power plants, which pass through water, soil, plants, animals, etc. Finally, it enters the human body, thereby endangering health.
  • the methods commonly used to treat nuclear radioactive waste water include flocculation and sedimentation, evaporation, ion exchange, biological treatment, and membrane technology. These treatment methods have low treatment efficiency, high treatment costs, cumbersome follow-up treatments, and secondary pollution. Shortcomings.
  • adsorption As an effective, convenient and stable treatment method, adsorption is widely used in the treatment of waste water containing radioactive elements.
  • the effect of adsorption treatment has a lot to do with the performance of the adsorbent.
  • activated carbon, natural inorganic clay minerals, titanates, graphene, etc. are used as adsorbents to treat waste water containing radioactive elements, but their existence is either low in adsorption efficiency, difficult to recycle, complex preparation processes, and cost-effective. Higher defects make it impossible to achieve industrialized large-scale applications.
  • the effect of removing radioactive elements in the soil is also poor.
  • the present invention provides an industrial metatitanic acid as a basic raw material, after wet sanding, Then carry out surface modification and activation treatment of water-soluble coupling agent, add pore former, dry the pores, and carry out airflow pulverization while carrying out organic surface treatment to prepare a kind of radioactive elements in nuclear waste water and soil with adsorption
  • the metatitanic acid adsorption material with high efficiency, fast adsorption speed, low cost, and floating on the water surface, for nuclear waste water, after adsorbing radioactive elements, it is easy to recycle and reuse.
  • it can also be used for soil contaminated by nuclear radioactive elements.
  • the metatitanic acid adsorption material can float on the water surface to achieve the purpose of removing nuclear radioactive elements in the soil.
  • a preparation method of an adsorbent for adsorbing radioactive elements including the following steps:
  • the substance E is pulverized by airflow, and the organic surface treatment is performed at the same time during the airflow pulverization process to prepare a floating metatitanic acid adsorbent.
  • the metatitanic acid is an intermediate product of titanium dioxide produced by sulfuric acid method, with an average particle size of 3-5 ⁇ m, a mass percentage of metatitanic acid ⁇ 98%, and a bulk density of 0.8-1.0 g/cm 3 .
  • step (1) the pH value of the metatitanic acid slurry is adjusted to 8-9 by using a NaOH aqueous solution with a mass percentage of 15-20%.
  • the dispersant described in step (1) is sodium silicate, and the added amount is 0.5-1% of the mass of metatitanic acid.
  • the pore former in step (4) is ammonium carbonate.
  • the organic surface treatment agent used in the organic surface treatment in step (6) is trimethylolpropane, and the added amount is 1-3% of the mass of metatitanic acid.
  • the stirring speed of the stirring in step (1), step (3) and step (4) are all 800-1000 rpm.
  • the application of the adsorption material prepared by the above-mentioned preparation method in the adsorption of waste water containing radioactive elements includes the following steps:
  • step II Add the floating metatitanic acid adsorption material obtained in step I to waste water containing radioactive elements, and stir at a rotation speed of 2000-2500 rpm to complete the adsorption.
  • the application of the adsorption material prepared by the above-mentioned preparation method to the adsorption of radioactive elements in the soil includes the following steps:
  • step ii Add the floating metatitanic acid adsorption material obtained in step i to the soil for adsorption.
  • the main raw material used in the present invention is industrial metatitanic acid, which is an intermediate product of titanium dioxide produced by the sulfuric acid method, with an average particle size of 3-5 ⁇ m. Although it has certain adsorption properties for radioactive elements in nuclear waste water, it is difficult to dissolve in water. , The adsorption efficiency is poor.
  • the further wet dispersion sand milling of the present invention not only reduces its average particle size, but also reduces its bulk density.
  • the pore-forming technology in the drying process further improves the metatitanic acid
  • the specific surface area also further improves its adsorption performance for radioactive elements; then through the surface activation treatment of water-soluble coupling agent and the use of trimethylolpropane in the process of jet pulverization, the organic surface treatment of metatitanic acid is carried out to treat metatitanic acid.
  • the surface of the composite material is activated by hydroxyl, which not only improves the absorption performance of metatitanic acid materials for radioactive elements, but also makes the materials float on the surface of nuclear waste water, which is conducive to the recovery and reuse of composite materials.
  • the adsorbent material of the present invention performs high-speed stirring at 2000-2500 rpm, which can fully contact metatitanic acid and radioactive elements, and has a good adsorption effect. After adsorption, metatitanic acid can completely float On the water surface, it is easy to recycle; especially when the temperature of waste water is controlled at 55°C and the pH is 9.5, the adsorption efficiency of the adsorbent material is the best.
  • the floating metatitanic acid adsorption material can be reused after eluting with 15-20% by mass hydrochloric acid after adsorbing radioactive elements.
  • the floating metatitanic acid adsorbent prepared by the present invention can not only be used to treat radioactive elements in nuclear wastewater, but also can repair soil contaminated by radioactive elements. After the soil is irrigated, metatitanic acid adsorbs nuclear radioactive elements. It can float on the soil irrigation water surface, so that it is easy to remove the radioactive elements in the soil. After being eluted by hydrochloric acid, it can be reused.
  • the preparation process of the present invention is simple, the raw materials used are low in price, the process for removing nuclear and radioactive elements is simple and convenient, and the materials are easy to recycle and reuse.
  • the adsorption mechanism of the floating metatitanic acid of the present invention for adsorbing radioactive elements is:
  • the adsorption of radioactive metal elements in the present invention mainly has the effects of physical adsorption, chemical bond adsorption, that is, chemical adsorption, and physical and chemical bond co-adsorption.
  • the radioactive metal elements in the nuclear waste solution must pass through the interface film between the solution and the metatitanic acid material. Only after passing through this liquid-solid film layer can the radioactive elements interact with the surface of the metatitanic acid material.
  • the present invention utilizes water-soluble silane coupling agent and trimethylolpropane to activate the surface of metatitanic acid, which can completely float on the water surface. In order to allow metatitanic acid to fully contact wastewater and allow nuclear radioactive elements Effectively and quickly pass through the liquid-solid film layer, thus adopting high-speed stirring;
  • the radioactive elements pass through this liquid film, they reach the surface of the metatitanic acid material, and the radioactive elements begin to diffuse into the metatitanic acid composite material.
  • the molecular formula of metatitanic acid is TiO(OH) 2 , which contains hydroxyl active groups and hydrogen bonds, and has certain chemical adsorption properties for radioactive metal elements.
  • the present invention uses pore-forming technology to increase the microporous structure of the metatitanic acid adsorption material , Thereby improving its physical adsorption effect.
  • the present invention uses water-soluble silane coupling agent and trimethylolpropane to perform hydroxyl activation treatment on the surface of metatitanic acid, which together increase the effect of surface hydroxylation, thereby improving the chemical adsorption performance of metatitanic acid.
  • Figure 1 is a diagram showing the relationship between the adsorption amount of cesium element in water and the adsorption equilibrium time of test sample 1.
  • Figure 2 is a graph showing the relationship between the adsorption amount of cesium element in the water of the test sample 1 and the stirring speed.
  • Fig. 3 is a graph showing the relationship between the adsorption amount of cesium in the water of the test sample 1 and the temperature of the solution.
  • Fig. 4 is a graph showing the relationship between the adsorption amount of cesium in the water of test sample 1 and the pH value of the solution.
  • Figure 5 is a graph showing the relationship between the adsorption amount of cesium in the water of test sample 1 and the number of repeated tests.
  • Fig. 6 is a SEM photograph of metatitanic acid used in the preparation of test sample 1 of the present invention.
  • Fig. 7 is a SEM photograph of test sample 1 prepared by the present invention.
  • Fig. 8 is a TEM photograph of test sample 1 prepared by the present invention.
  • the floating metatitanic acid adsorption material prepared by the present invention has the performance of high-efficiency and rapid adsorption of radioactive elements, and is especially applicable to the adsorption of radioactive elements in nuclear waste water. After adsorption, the material can float on the water surface, which is beneficial for recycling. It can be used, and can be repeatedly used for adsorption; it can also be applied to the remediation of soil contaminated by nuclear and radioactive elements.
  • the present invention will be further described below in conjunction with specific embodiments and drawings.
  • a method for preparing an adsorbent for adsorbing radioactive elements includes the following steps:
  • the substance E is pulverized by airflow, 3% trimethylolpropane of metatitanic acid quality is added at the same time during the airflow pulverization process, and the metatitanic acid is subjected to organic surface treatment to prepare a floating metatitanic acid adsorbent.
  • the metatitanic acid used is an intermediate product of titanium dioxide prepared by the sulfuric acid method, with an average particle size of 3.1 ⁇ m, a mass percentage of metatitanic acid ⁇ 98.3%, and a bulk density of 0.82 g/cm 3 .
  • a method for preparing an adsorbent for adsorbing radioactive elements includes the following steps:
  • the substance E is pulverized by airflow, and 1% trimethylolpropane of metatitanic acid quality is added at the same time during the airflow pulverization process, and the metatitanic acid is subjected to organic surface treatment to prepare a floating metatitanic acid adsorbent.
  • the metatitanic acid used is an intermediate product of titanium dioxide prepared by the sulfuric acid method, with an average particle size of 4.2 ⁇ m, a mass percentage of metatitanic acid ⁇ 98.4%, and a bulk density of 0.93 g/cm 3 .
  • a method for preparing an adsorbent for adsorbing radioactive elements includes the following steps:
  • the substance E is pulverized by airflow, and 1.5% trimethylolpropane of metatitanic acid quality is added at the same time during the airflow pulverization process, and the metatitanic acid is subjected to organic surface treatment to prepare a floating metatitanic acid adsorbent.
  • the metatitanic acid used is an intermediate product of titanium dioxide prepared by the sulfuric acid method, with an average particle size of 4.5 ⁇ m, a mass percentage of metatitanic acid ⁇ 98.5%, and a bulk density of 0.95 g/cm 3 .
  • a method for preparing an adsorbent for adsorbing radioactive elements includes the following steps:
  • the substance E is pulverized by airflow, and 2.5% trimethylolpropane of metatitanic acid quality is added at the same time during the airflow pulverization process, and the metatitanic acid is subjected to organic surface treatment to prepare a floating metatitanic acid adsorbent.
  • the metatitanic acid used is an intermediate product of titanium dioxide prepared by the sulfuric acid method, with an average particle size of 3.5 ⁇ m, a mass percentage of metatitanic acid ⁇ 98.3%, and a bulk density of 0.87 g/cm 3 .
  • a method for preparing an adsorbent for adsorbing radioactive elements includes the following steps:
  • the substance D is pulverized by airflow, 3% trimethylolpropane of metatitanic acid quality is added at the same time during the airflow pulverization process, and the metatitanic acid is subjected to organic surface treatment to prepare a floating metatitanic acid adsorbent.
  • the metatitanic acid used is an intermediate product of titanium dioxide prepared by the sulfuric acid method, with an average particle size of 3.1 ⁇ m, a mass percentage of metatitanic acid ⁇ 98.3%, and a bulk density of 0.82 g/cm 3 .
  • a method for preparing an adsorbent for adsorbing radioactive elements includes the following steps:
  • the substance D is pulverized by airflow, 3% trimethylolpropane of metatitanic acid quality is added at the same time during the airflow pulverization process, and the metatitanic acid is subjected to organic surface treatment to prepare a floating metatitanic acid adsorbent.
  • the metatitanic acid used is an intermediate product of titanium dioxide prepared by the sulfuric acid method, with an average particle size of 3.1 ⁇ m, a mass percentage of metatitanic acid ⁇ 98.3%, and a bulk density of 0.82 g/cm 3 .
  • a method for preparing an adsorbent for adsorbing radioactive elements includes the following steps:
  • the substance D is pulverized by airflow, 3% trimethylolpropane of metatitanic acid quality is added at the same time during the airflow pulverization process, and the metatitanic acid is subjected to organic surface treatment to prepare a floating metatitanic acid adsorbent.
  • the metatitanic acid used is an intermediate product of titanium dioxide prepared by the sulfuric acid method, with an average particle size of 3.1 ⁇ m, a mass percentage of metatitanic acid ⁇ 98.3%, and a bulk density of 0.82 g/cm 3 .
  • a method for preparing an adsorbent for adsorbing radioactive elements includes the following steps:
  • the substance E is pulverized by airflow to prepare a floating metatitanic acid adsorbent.
  • the metatitanic acid used is an intermediate product of titanium dioxide prepared by the sulfuric acid method, with an average particle size of 3.1 ⁇ m, a mass percentage of metatitanic acid ⁇ 98.3%, and a bulk density of 0.82 g/cm 3 .
  • the metatitanic acid used in Example 1 was used as the comparative sample for the comparative test.
  • the metatitanic acid used was an intermediate product of titanium dioxide prepared by the sulfuric acid method.
  • the average particle size was 3.1 ⁇ m
  • the mass percentage of metatitanic acid was ⁇ 98.3%
  • the bulk density was 0.82. g/cm 3 .
  • Example 1 of the present invention The product prepared in Example 1 of the present invention was used as test sample 1, and the test was carried out.
  • aqueous solutions of CsCl and SrCl 2 with a mass concentration of 100 mg/L were prepared as nuclear radioactivity test wastewater containing the radioactive elements cesium and strontium.
  • the test and detection instrument adopts the inductively coupled plasma mass spectrometer (specification model: 7700X) of Agilent, USA, to test the content of cesium and strontium in water.
  • C e the concentration of the radioactive aqueous solution after adsorption equilibrium, the unit is mg/L;
  • test sample 1 Take 200mL of CsCl aqueous solution, add 0.1600g of test sample 1 to the stirring speed of 2200rpm, the temperature of the solution is 25°C, adjust the pH of the solution to 7.0, every 0.5h, test the content of cesium in the solution, calculate the test sample
  • the adsorption capacity, the specific test results are shown in Figure 1.
  • test sample 1 Take 200mL of CsCl aqueous solution, add 0.1600g of test sample 1 to each, adjust the pH of the solution to 7.0 with 10% mass concentration of sodium hydroxide, stir at 2200rpm at a stirring speed of 2200rpm, respectively at different temperatures, stir for 2.0h, test For the content of cesium in the solution, calculate the adsorption capacity of the test sample.
  • the specific test results are shown in Figure 3.
  • test sample 1 reaches the maximum adsorption capacity when the solution temperature is 55°C, and the adsorption capacity is 120.1 mg/g, indicating that the floating metatitanic acid prepared by the present invention has the best performance at this temperature.
  • the adsorption activity is low, and when the temperature is higher than this temperature, the temperature is too high, which causes the chemical bond adsorption of metatitanic acid to be desorbed, which reduces its adsorption capacity.
  • test sample 1 reaches the maximum adsorption capacity when the solution pH value is 9.5, and the adsorption capacity is 110.3mg/g, indicating that the floating metatitanic acid prepared by the present invention has a pH value of The best adsorption performance, when the pH value is lower, the adsorption activity of the hydroxyl chemical bond is lower due to the low hydroxyl content in the solution, and when the pH value is greater than this value, the hydroxyl content is too high, which will destroy the metatitanic acid.
  • the hydrogen bond causes the adsorption of the chemical bond to be desorbed, resulting in a decrease in the amount of adsorption.
  • test samples prepared in Examples 1 to 4 and Comparative Examples 1 to 4 of the present invention and the samples in Comparative Example 1 were adsorbed respectively.
  • cesium and strontium take 200 mL each of CsCl and SrCl 2 aqueous solutions, add 0.1600 g of each test sample, the temperature of the solution is 55 °C, adjust the pH to 9.5, stir at 2200 rpm and stir for 2.0 hours after equilibrium.
  • test sample 1 Take 200mL of CsCl aqueous solution, add 0.1600g of test sample 1, the temperature of the solution is 55°C, adjust the pH to 9.5, stir at 2200rpm for 2.0h, and then test the content of cesium in the solution and calculate the content of the test sample. Adsorption capacity, and then filter the test sample, and then eluted with 15%-20% hydrochloric acid by mass percentage, and then repeat the test 10 times. The test results are shown in Figure 5.
  • test sample 1 the soil contaminated by a nuclear power plant was selected for practical application test.
  • the average total content of nuclear radioactive elements in the contaminated soil was 25.3mg/kg (the depth of the soil sample is 0-10cm), and the implementation is carried out per acre
  • the plowing soil is added with a test sample of 50kg, and the plowing depth is 0-10cm.
  • the soil is irrigated every 1 month. After three times of irrigation, the average total content of nuclear radioactive elements in the tested soil is 4.36mg/kg (take The depth of the soil sample is 0-10cm), and the total removal rate of radioactive elements reaches 82.8%.
  • Rotary tillage/plowing is performed on the soil before irrigation, and then the soil is irrigated (such as flood irrigation).
  • the adsorbent material plowed to the surface of the soil will float out in the flood irrigation water and float to the surface of the flood irrigation water to reach the soil.
  • the separation of the soil, through repeated plowing and flood irrigation successively reduces the retention of the adsorbent material in the soil, and realizes the removal of the adsorbent material in the soil.
  • the adsorbent material When the adsorbent material floats on the surface of the flooding water, it is sucked into the filter equipment, and the floating adsorbed metatitanic acid material is recovered through filtration, and then eluted with 15%-20% hydrochloric acid by mass. After that, the floating metatitanic acid can be reused.

Abstract

一种吸附放射性元素的吸附材料的制备方法及应用,包括以下步骤:(1)将偏钛酸配制成质量浓度为900-1000g/L偏钛酸浆料,调pH值为8-9,加入分散剂,搅拌分散均匀后,制得A浆料;(2)将A浆料湿法砂磨至平均粒径≤0.5μm,制得B浆料;(3)加入水溶性硅烷偶联剂,对偏钛酸表面进行活化处理,制得C浆料;(4)加入造孔剂,搅拌混合均匀制得D浆料;(5)经微波干燥制得E物质;(6)进行气流粉碎,在气流粉碎过程中同时进行有机表面处理,制得漂浮偏钛酸吸附材料。该吸附材料不仅可吸附核废水中的放射性元素,还可以修复核放射性污染土壤,具有吸附效率高、吸附速度快、成本低廉,吸附之后可漂浮于水面,易于回收和再重复利用的优点。

Description

一种吸附放射性元素的吸附材料的制备方法及应用 技术领域
本发明属于吸附材料的技术领域,涉及核废弃物中放射性元素的处理技术,具体涉及一种吸附放射性元素的吸附材料的制备方法,特别涉及一种能去除核废水中和修复核污染土壤中放射性元素的漂浮偏钛酸吸附材料。水体中的放射性污染主要来源于核发电中原子反应堆设施等排放的废水,主要含有铀、锶、铯、钚、钍、镭等放射性元素,与传统的复杂工艺相比,本吸附材料具有工艺简单、吸附效率高、易回收再利用、处理效果稳定、价格低廉等优点,还可以应用于核放射性污染土壤的修复。
背景技术
对环境造成放射性污染的人工污染源除了医用射线源,还有核试验产生的放射性沉降物以及核电站的各种放射性废弃物等,核电站工业包括核燃料的开采、反应堆的运行和辐照后燃料的回收等,在这些过程中都会产生放射性水污染。而在核电站工业中,放射性水污染最严重的是核燃料的再处理,目前核电站造成的全球性水污染最为严重,尤其核电站遗留的各种放射性废弃物,它通过水、土壤、植物、动物等,最后进入人体,从而危害健康。辐射通过人体时,能与细胞发生作用,影响细胞的分裂,使细胞受到严重的损伤,以致出现死亡、细胞减少和功能丧失。还能使细胞产生异常的生殖功能,能使胎儿引起基因突变和染色体畸变,发生结构畸型和功能异常,使一代甚至几代人受害,还会引发各种人体的癌症、白内障、不育症,甚至早死。即使是微量的核废弃物,人体受到照射后,也会出现机体效应,通常表现为头痛、头晕、食欲不振、睡眠障碍等情况。因此如 何安全有效地处置核放射性废水,减轻其对人类的危害,已成为核电站放射性废水处理面临的迫切需求。
目前处理核放射性废水,通常采用的方法有絮凝沉淀、蒸发、离子交换、生物处理和膜技术等方法,这些处理方法存在着处理效率低、处理费用高、后续处理繁琐以及产生二次污染等不同的缺点。
吸附作为一种有效、方便、稳定的处理方法,被广泛应用于含有放射性元素废水的处理。但是吸附处理的效果与吸附剂的性能有很大关系。目前有关报导了活性炭、天然无机粘土矿物、钛酸盐、石墨烯等作为吸附剂来处理含有放射性元素的废水,但是其存在不是吸附效率较低、就是难以回收再利用以及制备工艺复杂、成本造价较高等缺陷,导致无法实现工业化的大规模的应用。另外,目前针对核放射性污染的土壤,去除土壤中的放射性元素效果也是较差。
发明内容
本发明针对现有技术中吸附剂对放射性元素吸附效率低下、不易回收再利用、制备工艺复杂、成本较高等缺点,提供一种以工业偏钛酸为基础原料,在经过湿法砂磨之后,再进行水溶性偶联剂表面改性活化处理,再加入造孔剂,烘干造孔,再进行气流粉碎的同时进行有机表面处理,制备一种针对核废水和土壤中的放射性元素,具有吸附效率高、吸附速度快、成本低廉、可漂浮水面的偏钛酸吸附材料,针对核废水,在吸附放射性元素之后,易于回收、还可以再重复利用,另外还可以对核放射性元素污染的土壤进行修复,通过灌溉,偏钛酸吸附材料可漂浮于水面之上,达到除去土壤中核放射性元素的目的。
本发明为实现技术目的所采用的技术方案为:
一种吸附放射性元素的吸附材料的制备方法,包括以下步骤:
(1)将偏钛酸溶于去离子水中,搅拌,配制成质量浓度为900-1000g/L的偏钛酸浆料,然后调节偏钛酸浆料的pH值为8-9,再加入分散剂,搅拌分散均匀后,制得A浆料;
(2)将A浆料放置于砂磨机中,进行反复循环湿法砂磨,直至偏钛酸的平均粒径≤0.5μm,制得B浆料;
(3)向B浆料中加入水溶性硅烷偶联剂,加入量为偏钛酸质量的3-5%,边加入边搅拌,加入完毕后,继续搅拌1-2h,对偏钛酸表面活化处理,制得C浆料;
(4)向C浆料中加入造孔剂,加入量为偏钛酸质量的5-8%,搅拌混合均匀后,制得D浆料;
(5)将D浆料在80-90℃的温度下,进行微波干燥3-5h,制得E物质;
(6)将E物质进行气流粉碎,在气流粉碎过程中同时进行有机表面处理,制得漂浮偏钛酸吸附材料。
步骤(1)中所述偏钛酸为硫酸法制二氧化钛的中间产物,平均粒径为3-5μm,偏钛酸质量百分含量≥98%,堆积密度为0.8-1.0g/cm 3
步骤(1)中调节偏钛酸浆料的pH值为8-9采用质量百分含量为15-20%的NaOH水溶液进行调节。
步骤(1)中所述的分散剂为硅酸钠,加入量为偏钛酸质量的0.5-1%。
步骤(4)中所述造孔剂为碳酸铵。
步骤(6)中所述有机表面处理所用的有机表面处理剂为三羟甲基丙烷,加入量为偏钛酸质量的1-3%。
步骤(1)、步骤(3)和步骤(4)中所述搅拌的搅拌转速均为800-1000rpm。
如上述所述制备方法制备的吸附材料在吸附含有放射性元素废水中的应用,包括以下步骤:
I、按权利要求1所述的制备方法制备得到漂浮偏钛酸吸附材料;
II、将步骤I得到的漂浮偏钛酸吸附材料加入到含有放射性元素的废水中,以2000-2500rpm的转速进行搅拌,完成吸附。
控制含有放射性元素废水的温度为55℃,pH值为9.5。
如上述所述制备方法制备的吸附材料对土壤中放射性元素吸附的应用,包括以下步骤:
i、按权利要求1所述的制备方法制备得到漂浮偏钛酸吸附材料;
ii、将步骤i得到的漂浮偏钛酸吸附材料加入到土壤中进行吸附。
本发明的有益效果是:
(1)本发明所用主要原料为工业偏钛酸,为硫酸法制二氧化钛的中间产物,平均粒径为3-5μm,虽然对核废水中的放射性元素具有一定的吸附性能,但是其难以溶于水,吸附效率较差,经过本发明的进一步湿法分散砂磨,不仅减小了其平均粒径,还降低了其堆积密度,通过烘干过程中的造孔技术,进一步提高了偏钛酸的比表面积,也进一步提高了其对放射性元素的吸附性能;再通过水溶性偶联剂表面活化处理以及气流粉碎过程中采用三羟甲基丙烷,对偏钛酸进行有机表面处理,对偏钛酸的表面进行了羟基活化作用,不仅提高了偏钛酸材料对放射性元素的吸收性能,还使材料均漂浮于核废水面之上,有利于复合材料的回收,再利用。
(2)本发明吸附材料在针对核废水中的放射性元素吸附时,在2000-2500rpm进行高速搅拌,可使偏钛酸和放射性元素充分接触,吸附效果较好,吸附后偏钛酸可完全漂浮于水面上,易于回收;尤其是控制废水 的温度在55℃,pH为9.5时,吸附材料的吸附效率最佳。
(3)本漂浮偏钛酸吸附材料,在吸附放射性元素之后,经过质量百分含量为15-20%的盐酸洗脱之后,可重复使用。
(4)本发明所制备的漂浮偏钛酸吸附材料,不仅可以应用于处理核废水中放射元素,还可以修复放射性元素污染的土壤,通过对土壤的灌溉,偏钛酸吸附核放射性元素之后,可漂浮于土壤灌溉水面之上,从而方便易于除去土壤中的放射性元素,经过盐酸洗脱之后,还可以重复再利用。
(5)本发明制备工艺简单,所用原料价格低廉,对于核放射性元素去除工艺操作简便,并且材料易于回收再利用。
本发明漂浮偏钛酸吸附放射性元素的吸附机理为:
本发明对放射性金属元素的吸附主要有物理吸附、化学健吸附即化学吸附以及物理化学健共吸附的作用。
(1)首先核废弃物溶液中放射性金属元素要穿过溶液与偏钛酸材料之间的界面膜层,放射性元素只有通过这层液-固膜层之后,才可以与偏钛酸材料表面相结合。本发明由于利用了水溶性硅烷偶联剂和三羟甲基丙烷,对偏钛酸表面进行了活化处理,可完全漂浮于水面之上,为了让偏钛酸与废水充分接触,让核放射性元素有效、快速穿过液-固膜层,从而采用了高速搅拌;
(2)当放射性元素穿过这层液膜之后,到达偏钛酸材料的表面,放射性元素开始向偏钛酸复合材料的内部扩散。偏钛酸的分子式为TiO(OH) 2,含有羟基活性基团和氢键,对放射性金属元素具有一定的化学吸附性能,但是本发明采用造孔技术,使偏钛酸吸附材料微孔结构增加,从而提高了其物理吸附效果。
具体的偏钛酸吸附放射性金属元素如下:
TiO(OH) 2+2A ++2OH -=TiO(OA) 2+H 2O
另外本发明采用水溶性硅烷偶联剂和三羟甲基丙烷,对偏钛酸表面进行了羟基活化处理,共同增加了其表面羟基化的效果,从而提高了偏钛酸的化学吸附性能。
附图说明
图1为试验样品1对水中铯元素的吸附量与吸附平衡时间的关系图。
图2为试验样品1对水中铯元素的吸附量与搅拌转速的关系图。
图3为试验样品1对水中铯元素的吸附量与溶液温度的关系图。
图4为试验样品1对水中铯元素的吸附量与溶液pH值的关系图。
图5为试验样品1对水中铯元素的吸附量与重复试验次数的关系图。
图6为本发明制备试验样品1所用原料偏钛酸的SEM照片图。
图7为本发明所制备的试验样品1的SEM照片图。
图8为本发明所制备的试验样品1的TEM照片图。
具体实施方式
本发明所制备的漂浮偏钛酸吸附材料,具有高效、快速吸附放射性元素的性能,尤其可应用于核废水中放射性元素的吸附,吸附之后材料均可漂浮于水面之上,有利于回收,再利用,并且还可以重复再进行吸附使用;也可以应用于核放射性元素污染土壤的修复。下面结合具体实施例和附图对本发明进行进一步地说明。
一、具体实施例
实施例1
一种吸附放射性元素的吸附材料的制备方法,包括如下步骤:
(1)将偏钛酸溶于去离子水中,以800rpm的转速搅拌,配制成质量浓度为900g/L的偏钛酸浆料,再利用质量百分含量为15%的NaOH水溶液,调节偏钛酸浆料的pH值为8.0,再加入硅酸钠,加入量为偏钛酸质量的0.5%,以850rpm的转速搅拌,分散均匀后,制得A浆料;
(2)将A浆料放置于砂磨机中,进行湿法反复循环砂磨,直至偏钛酸的平均粒径≤0.5μm,制得B浆料;
(3)向上述B浆料中滴加水溶性硅烷偶联剂,加入量为偏钛酸质量的5%,以900rpm的转速,边加入边搅拌,加入完毕后,继续搅拌1.0h,对偏钛酸表面进行活化处理,制得C浆料;
(4)向C浆料中加入造孔剂碳酸铵,加入量为偏钛酸质量的7.5%,以880rpm的转速,搅拌混合均匀后,制得D浆料;
(5)将D浆料在80℃的温度下,进行微波干燥3.0h,制得E物质;
(6)将E物质进行气流粉碎,在气流粉碎过程中同时加入3%偏钛酸质量的三羟甲基丙烷,对偏钛酸进行有机表面处理,制得漂浮偏钛酸吸附材料。
所用偏钛酸为硫酸法制二氧化钛的中间产物,平均粒径为3.1μm,偏钛酸质量百分含量≥98.3%,堆积密度为0.82g/cm 3
实施例2
一种吸附放射性元素的吸附材料的制备方法,包括如下步骤:
(1)将偏钛酸溶于去离子水中,以900rpm的转速搅拌,配制成质量浓度为950g/L的偏钛酸浆料,再利用质量百分含量为17%的NaOH水溶液,调节偏钛酸浆料的pH值为8.5,再加入分散剂硅酸钠,加入量为偏钛酸质量的0.8%,以950rpm的转速,搅拌分散均匀后,制得A浆料;
(2)将A浆料放置于砂磨机中,进行湿法反复循环砂磨,直至偏钛酸的平均粒径≤0.5μm,制得B浆料;
(3)向上述B浆料中滴加水溶性硅烷偶联剂,加入量为偏钛酸质量的3%,以950rpm的转速,边加入边搅拌,加入完毕后,继续搅拌1.5h,对偏钛酸表面进行活化处理,制得C浆料;
(4)向C浆料中加入造孔剂碳酸铵,加入量为偏钛酸质量的6%,以900rpm的转速,搅拌混合均匀后,制得D浆料;
(5)将D浆料在85℃的温度下,进行微波干燥4.0h,制得E物质;
(6)将E物质进行气流粉碎,在气流粉碎过程中同时加入1%偏钛酸质量的三羟甲基丙烷,对偏钛酸进行有机表面处理,制得漂浮偏钛酸吸附材料。
所用偏钛酸为硫酸法制二氧化钛的中间产物,平均粒径为4.2μm,偏钛酸质量百分含量≥98.4%,堆积密度为0.93g/cm 3
实施例3
一种吸附放射性元素的吸附材料的制备方法,包括如下步骤:
(1)将偏钛酸溶于去离子水中,以950rpm的转速搅拌,配制成质量浓度为1000g/L的偏钛酸浆料,再利用质量百分含量为20%的NaOH水溶液,调节偏钛酸浆料的pH值为9.0,再加入分散剂硅酸钠,加入量为偏钛酸质量的1.0%,以980rpm的转速,搅拌分散均匀后,制得A浆料;
(2)将A浆料放置于砂磨机中,进行湿法反复循环砂磨,直至偏钛酸的平均粒径≤0.5μm,制得B浆料;
(3)向上述B浆料中滴加水溶性硅烷偶联剂,加入量为偏钛酸质量的3.5%,以1000rpm的转速,边加入边搅拌,加入完毕后,继续搅拌2.0h, 对偏钛酸表面进行活化处理,制得C浆料;
(4)向C浆料中加入造孔剂碳酸铵,加入量为偏钛酸质量的7%,以980rpm的转速,搅拌混合均匀后,制得D浆料;
(5)将D浆料在90℃的温度下,进行微波干燥4.2h,制得E物质;
(6)将E物质进行气流粉碎,在气流粉碎过程中同时加入1.5%偏钛酸质量的三羟甲基丙烷,对偏钛酸进行有机表面处理,制得漂浮偏钛酸吸附材料。
所用偏钛酸为硫酸法制二氧化钛的中间产物,平均粒径为4.5μm,偏钛酸质量百分含量≥98.5%,堆积密度为0.95g/cm 3
实施例4
一种吸附放射性元素的吸附材料的制备方法,包括如下步骤:
(1)将偏钛酸溶于去离子水中,以1000rpm的转速搅拌,配制成质量浓度为980g/L的偏钛酸浆料,再利用质量百分含量为16%的NaOH水溶液,调节偏钛酸浆料的pH值为8.7,再加入分散剂硅酸钠,加入量为偏钛酸质量的0.7%,以950rpm的转速,搅拌分散均匀后,制得A浆料;
(2)将A浆料放置于砂磨机中,进行湿法反复循环砂磨,直至偏钛酸的平均粒径≤0.5μm,制得B浆料;
(3)向上述B浆料中滴加水溶性硅烷偶联剂,加入量为偏钛酸质量的4%,以870rpm的转速,边加入边搅拌,加入完毕后,继续搅拌1.8h,对偏钛酸表面进行活化处理,制得C浆料;
(4)向C浆料中加入造孔剂碳酸铵,加入量为偏钛酸质量的5.5%,以980rpm的转速,搅拌混合均匀后,制得D浆料;
(5)将D浆料在87℃的温度下,进行微波干燥5.0h,制得E物质;
(6)将E物质进行气流粉碎,在气流粉碎过程中同时加入2.5%偏钛酸质量的三羟甲基丙烷,对偏钛酸进行有机表面处理,制得漂浮偏钛酸吸附材料。
所用偏钛酸为硫酸法制二氧化钛的中间产物,平均粒径为3.5μm,偏钛酸质量百分含量≥98.3%,堆积密度为0.87g/cm 3
比较例1
一种吸附放射性元素的吸附材料的制备方法,包括如下步骤:
(1)将偏钛酸溶于去离子水中,以800rpm的转速,搅拌配制成质量浓度为900g/L的偏钛酸浆料,再利用质量百分含量为15%的NaOH水溶液,调节偏钛酸浆料的pH值为8.0,再加入分散剂硅酸钠,加入量为偏钛酸质量的0.5%,以850rpm的转速,搅拌分散均匀后,制得A浆料;
(2)向上述A浆料中滴加水溶性硅烷偶联剂,加入量为偏钛酸质量的5%,以900rpm的转速,边加入边搅拌,加入完毕后,继续搅拌1.0h,对偏钛酸表面进行活化处理,制得B浆料;
(3)向B浆料中加入造孔剂碳酸铵,加入量为偏钛酸质量的7.5%,以880rpm的转速,搅拌混合均匀后,制得C浆料;
(4)将C浆料在80℃的温度下,进行微波干燥3.0h,制得D物质;
(5)将D物质进行气流粉碎,在气流粉碎过程中同时加入3%偏钛酸质量的三羟甲基丙烷,对偏钛酸进行有机表面处理,制得漂浮偏钛酸吸附材料。
所用偏钛酸为硫酸法制二氧化钛的中间产物,平均粒径为3.1μm,偏钛酸质量百分含量≥98.3%,堆积密度为0.82g/cm 3
比较例2
一种吸附放射性元素的吸附材料的制备方法,包括如下步骤:
(1)将偏钛酸溶于去离子水中,以800rpm的转速搅拌,配制成质量浓度为900g/L的偏钛酸浆料,再利用质量百分含量为15%的NaOH水溶液,调节偏钛酸浆料的pH值为8.0,再加入分散剂硅酸钠,加入量为偏钛酸质量的0.5%,以850rpm的转速,搅拌分散均匀后,制得A浆料;
(2)将A浆料放置于砂磨机中,进行湿法反复循环砂磨,直至偏钛酸的平均粒径≤0.5μm,制得B浆料;
(3)向B浆料中加入造孔剂碳酸铵,加入量为偏钛酸质量的7.5%,以880rpm的转速,搅拌混合均匀后,制得C浆料;
(4)将C浆料在80℃的温度下,进行微波干燥3.0h,制得D物质;
(5)将D物质进行气流粉碎,在气流粉碎过程中同时加入3%偏钛酸质量的三羟甲基丙烷,对偏钛酸进行有机表面处理,制得漂浮偏钛酸吸附材料。
所用偏钛酸为硫酸法制二氧化钛的中间产物,平均粒径为3.1μm,偏钛酸质量百分含量≥98.3%,堆积密度为0.82g/cm 3
比较例3
一种吸附放射性元素的吸附材料的制备方法,包括如下步骤:
(1)将偏钛酸溶于去离子水中,以800rpm的转速,搅拌配制成质量浓度为900g/L的偏钛酸浆料,再利用质量百分含量为15%的NaOH水溶液,调节偏钛酸浆料的pH值为8.0,再加入分散剂硅酸钠,加入量为偏钛酸质量的0.5%,以850rpm的转速,搅拌分散均匀后,制得A浆料;
(2)将A浆料放置于砂磨机中,进行湿法反复循环砂磨,直至偏钛酸的平均粒径≤0.5μm,制得B浆料;
(3)向上述B浆料中进行滴加水溶性硅烷偶联剂,加入量为偏钛酸质量的5%,以900rpm的转速,边加入边搅拌,加入完毕后,继续搅拌1.0h,对偏钛酸表面进行活化处理,制得C浆料;
(4)将C浆料在80℃的温度下,进行微波干燥3.0h,制得D物质;
(5)将D物质进行气流粉碎,在气流粉碎过程中同时加入3%偏钛酸质量的三羟甲基丙烷,对偏钛酸进行有机表面处理,制得漂浮偏钛酸吸附材料。
所用偏钛酸为硫酸法制二氧化钛的中间产物,平均粒径为3.1μm,偏钛酸质量百分含量≥98.3%,堆积密度为0.82g/cm 3
比较例4
一种吸附放射性元素的吸附材料的制备方法,包括如下步骤:
(1)将偏钛酸溶于去离子水中,以800rpm的转速搅拌,配制成质量浓度为900g/L的偏钛酸浆料,再利用质量百分含量为15%的NaOH水溶液,调节偏钛酸浆料的pH值为8.0,再加入分散剂硅酸钠,加入量为偏钛酸质量的0.5%,以850rpm的转速,搅拌分散均匀后,制得A浆料;
(2)将A浆料放置于砂磨机中,进行湿法反复循环砂磨,直至偏钛酸的平均粒径≤0.5μm,制得B浆料;
(3)向上述B浆料中滴加水溶性硅烷偶联剂,加入量为偏钛酸质量的5%,以900rpm的转速,边加入边搅拌,加入完毕后,继续搅拌1.0h,对偏钛酸表面进行活化处理,制得C浆料;
(4)向C浆料中加入造孔剂碳酸铵,加入量为偏钛酸质量的7.5%,以880rpm的转速,搅拌混合均匀后,制得D浆料;
(5)将D浆料在80℃的温度下,进行微波干燥3.0h,制得E物质;
(6)将E物质进行气流粉碎,制得漂浮偏钛酸吸附材料。
所用偏钛酸为硫酸法制二氧化钛的中间产物,平均粒径为3.1μm,偏钛酸质量百分含量≥98.3%,堆积密度为0.82g/cm 3
对比例1
用实施例1所用的偏钛酸作为对比试验的对比样品,所用偏钛酸为硫酸法制二氧化钛的中间产物,平均粒径为3.1μm,偏钛酸质量百分含量≥98.3%,堆积密度为0.82g/cm 3
二、对水中放射性元素的吸附试验
以本发明的实施例1所制备的产品为试验样品1,进行试验,本应用试验分别配制质量浓度为100mg/L的CsCl和SrCl 2水溶液,作为含有放射性元素铯和锶的核放射性试验废水,试验检测仪器采用美国安捷伦的电感耦合等离子体质谱仪(规格型号:7700X),对水中的铯和锶元素含量进行测试。
首先以质量浓度为100mg/L的CsCl水溶液为被吸附放射性铯元素的废水,以试验样品1为吸附剂,添加量为0.8g/L,用20%质量浓度的氢氧化钠或20%质量浓度的盐酸来调节溶液的pH值。首先以固定的转速和溶液的温度以及pH值来确定吸附剂的吸附的平衡时间,然后再分别对不同的搅拌转速、试验溶液的温度和pH值对吸附剂的吸附量的影响进行试验。
吸附剂的平衡吸附量计算式为:q e=(C 0-C e)·V×0.001/m
式中:q e—吸附剂的平衡吸附量,单位为mg/g;
C 0—放射性水溶液的初始浓度,单位为mg/L;
C e—放射性水溶液吸附平衡之后的浓度,单位为mg/L;
V—放射性水溶液的体积,单位为mL;
m—吸附剂的质量,单位为g。
(1)漂浮偏钛酸的吸附平衡时间的试验
取CsCl水溶液200mL,加入试验样品1为0.1600g,以2200rpm的搅拌转速,溶液温度为25℃、调节溶液pH值为7.0,每隔0.5h,测试溶液中的铯元素的含量,计算试验样品的吸附量,具体的试验结果如图1所示。
由图1可知,本试验样品1经过2h吸附,即可达到了吸附平衡,吸附量为102.8mg/g,吸附速度较快。
(2)不同的搅拌转速对吸附剂的吸附量的影响
分别取CsCl水溶液200mL,各自加入试验样品1为0.1600g,溶液温度为25℃、调节溶液的pH值为7.0,分别以不同的搅拌转速,搅拌平衡2.0h,测试溶液中的铯元素的含量,计算试验样品的吸附量,具体的试验结果如图2所示。
由图2可知,本试验样品1在搅拌转速为2000-2500rpm时,吸附量较大,在2200rpm时,吸附量达到最大值,吸附量为102.6mg/g,低于该转速范围时,吸附剂与水中放射性元素由于接触频率不够,导致在2h的吸附时间内达不到吸附平衡,而大于该转速范围时,由于转速太大,物理剪切作用力导致偏钛酸物理吸附进行脱附,反而导致吸附量减少。
(3)不同的溶液温度对吸附剂的吸附量的影响
分别取CsCl水溶液200mL,各自加入试验样品1为0.1600g,用10%质量浓度的氢氧化钠调节溶液pH值为7.0,以2200rpm的搅拌转速,分别在不同的温度下,搅拌平衡2.0h,测试溶液中的铯元素的含量,计算试验样品的吸附量,具体的试验结果如图3所示。
由图3可知,本试验样品1在溶液温度为55℃时,达到最大的吸附量, 吸附量为120.1mg/g,说明本发明所制备的漂浮偏钛酸,在该温度时,具有最佳的吸附性能,低于该温度时,吸附活性较低,而大于该温度时,由于温度太高,导致使偏钛酸的化学键吸附发生脱附,反而降低了其吸附量。
(4)不同的溶液pH值对吸附剂的吸附量的影响
分别取CsCl水溶液200mL,各自加入试验样品1为0.1600g,溶液温度为25℃,以2200rpm的搅拌转速,分别在不同的pH值条件下,搅拌平衡2.0h,测试溶液中的铯元素的含量,计算试验样品的吸附量,具体的试验结果如图4所示。
由图4可知,本试验样品1在溶液pH值为9.5时,达到最大的吸附量,吸附量为110.3mg/g,说明本发明所制备的漂浮偏钛酸,在水溶液为pH值时,具有最佳的吸附性能,小于该pH值时,由于溶液中的羟基含量低,使羟基化学键的吸附活性较低,而pH值大于该值时,由于羟基含量太高,反而破坏了偏钛酸的氢键,致使化学键的吸附发生了脱附,导致吸附量降低了。
(5)对铯和锶元素吸附的对比试验
通过上述的试验结果,得出了本试验样品吸附水中放射性元素最佳的试验条件,分别对本发明的实施例1~4和比较例1~4所制备的试验样品以及对比例1的样品进行吸附铯和锶的试验,分别取CsCl和SrCl 2水溶液各200mL,各自加入试验样品均为0.1600g,溶液温度为55℃,调节pH值为9.5,以2200rpm的搅拌转速,搅拌平衡2.0h后,分别测试溶液中的铯和锶元素的含量,计算试验样品的吸附量,试验结果见表1所示。
表1试验样品对水中铯和锶元素的吸附量和去除率的试验结果
试验样品 铯元素 锶元素
  吸附量mg/g 去除率/% 吸附量mg/g 去除率/%
实施例1 122.3 97.8 112.7 90.2
实施例2 121.4 97.1 111.9 89.5
实施例3 121.7 97.4 112.3 89.8
实施例4 122.1 97.7 112.5 90.0
比较例1 87.2 69.8 72.8 58.2
比较例2 95.6 76.5 80.8 64.6
比较例3 98.3 78.6 81.2 65.0
比较例4 108.3 86.6 89.1 71.3
对比例1 48.3 38.6 35.2 28.2
由表1的试验结果可知,在本发明的最佳试验条件下,采用本发明的制备方法,通过实施例1~4所制备的试验样品,对放射性铯元素的最大去除率达到了97.8%,对放射性锶元素的最大去除率达到了90.2%,明显高于对比例1以及比较例1~4的试验样品。
(6)吸附剂重复吸附试验
取CsCl水溶液200mL,加入试验样品1为0.1600g,溶液温度为55℃,调节pH值为9.5,以2200rpm的搅拌转速,搅拌平衡2.0h后,测试溶液中的铯元素的含量,计算试验样品的吸附量,然后过滤试验样品,再利用质量百分含量为15%~20%的盐酸洗脱之后,再重复进行10次试验。试验结果如图5所示。
由图5可知,本试验样品1经过10次重复吸附放射性铯元素之后,对废水中铯元素的去除率仍然达到了95.0%以上。
三、对放射性元素污染土壤的吸附应用试验
以试验样品1为吸附剂,选择某核发电厂污染的土壤进行实际应用试验,经过测试污染土壤中核放射性元素平均总含量为25.3mg/kg(取土壤样品深度为0~10cm),以每亩实施翻耕土壤加入试验样品为50kg,翻土深度为0~10cm,每隔1个月对土壤进行一次灌溉,经过三次对土壤进行灌溉, 测试土壤中核放射性元素平均总含量为4.36mg/kg(取土壤样品深度为0~10cm),对放射性元素的总去除率达到了82.8%。
在灌溉之前先对土壤进行旋耕/翻耕,然后对土壤进行灌溉(如漫灌),翻耕到土壤表面的吸附材料会在漫灌水中漂浮出来,漂浮到漫灌水的表面,从而达到与土壤的分离,通过多次的翻耕、漫灌,逐次减少土壤中吸附材料的滞留量,实现对土壤中吸附材料的去除。
当吸附材料漂浮于漫灌水的表面上时,将其抽吸到过滤设备中,通过过滤进行回收漂浮的吸附偏钛酸材料,然后再用质量百分含量为15%~20%的盐酸洗脱之后,漂浮偏钛酸可以重复再使用。

Claims (10)

  1. 一种吸附放射性元素的吸附材料的制备方法,以偏钛酸为原料,其特征在于,包括以下步骤:
    (1)将偏钛酸溶于去离子水中,搅拌,配制成质量浓度为900-1000g/L的偏钛酸浆料,然后调节偏钛酸浆料的pH值为8-9,再加入分散剂,搅拌分散均匀后,制得A浆料;
    (2)将A浆料放置于砂磨机中,进行反复循环湿法砂磨,直至偏钛酸的平均粒径≤0.5μm,制得B浆料;
    (3)向B浆料中加入水溶性硅烷偶联剂,加入量为偏钛酸质量的3-5%,边加入边搅拌,加入完毕后,继续搅拌1-2h,制得C浆料;
    (4)向C浆料中加入造孔剂,加入量为偏钛酸质量的5-8%,搅拌混合均匀后,制得D浆料;
    (5)将D浆料在80-90℃的温度下,进行微波干燥3-5h,制得E物质;
    (6)将E物质进行气流粉碎,在气流粉碎过程中同时进行有机表面处理,制得漂浮偏钛酸吸附材料。
  2. 根据权利要求1所述的一种吸附放射性元素的吸附材料的制备方法,其特征在于,步骤(1)中所述偏钛酸为硫酸法制二氧化钛的中间产物,平均粒径为3-5μm,偏钛酸质量百分含量≥98%,堆积密度为0.8-1.0g/cm 3
  3. 根据权利要求1所述的一种吸附放射性元素的吸附材料的制备方法,其特征在于,步骤(1)中调节偏钛酸浆料的pH值为8-9采用质量百分含量为15-20%的NaOH水溶液进行调节。
  4. 根据权利要求1所述的一种吸附放射性元素的吸附材料的制备方法,其特征在于,步骤(1)中所述的分散剂为硅酸钠,加入量为偏钛酸质量的0.5-1%。
  5. 根据权利要求1所述的一种吸附放射性元素的吸附材料的制备方法,其特征在于,步骤(4)中所述造孔剂为碳酸铵。
  6. 根据权利要求1所述的一种吸附放射性元素的吸附材料的制备方法,其特征在于,步骤(6)中所述有机表面处理所用的有机表面处理剂为三羟甲基丙烷,加入量为偏钛酸质量的1-3%。
  7. 根据权利要求1所述的一种吸附放射性元素的吸附材料的制备方法,其特征在于,步骤(1)、步骤(3)和步骤(4)中所述搅拌的搅拌转速均为800-1000rpm。
  8. 如权利要求1所述制备方法制备的吸附材料在吸附含有放射性元素废水中的应用,其特征在于,包括以下步骤:
    I、按权利要求1所述的制备方法制备得到漂浮偏钛酸吸附材料;
    II、将步骤I得到的漂浮偏钛酸吸附材料加入到含有放射性元素的废水中,以2000-2500rpm的转速进行搅拌,完成吸附。
  9. 根据权利要求8所述的应用,其特征在于,控制含有放射性元素废水的温度为55℃,pH值为9.5。
  10. 如权利要求1所述制备方法制备的吸附材料对土壤中放射性元素吸附的应用,其特征在于,包括以下步骤:
    i、按权利要求1所述的制备方法制备得到漂浮偏钛酸吸附材料;
    ii、将步骤i得到的漂浮偏钛酸吸附材料加入到土壤中进行吸附。
PCT/CN2020/071668 2019-10-30 2020-01-13 一种吸附放射性元素的吸附材料的制备方法及应用 WO2021082283A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2021/10572A ZA202110572B (en) 2019-10-30 2021-12-17 Method for preparing adsorption material for adsorbing radioactive elements and application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911040730.3 2019-10-30
CN201911040730.3A CN110743487B (zh) 2019-10-30 2019-10-30 一种吸附放射性元素的吸附材料的制备方法及应用

Publications (1)

Publication Number Publication Date
WO2021082283A1 true WO2021082283A1 (zh) 2021-05-06

Family

ID=69281051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071668 WO2021082283A1 (zh) 2019-10-30 2020-01-13 一种吸附放射性元素的吸附材料的制备方法及应用

Country Status (3)

Country Link
CN (1) CN110743487B (zh)
WO (1) WO2021082283A1 (zh)
ZA (1) ZA202110572B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113628778A (zh) * 2021-06-17 2021-11-09 福建工程学院 一种高寒高海拔地区尾矿放射性元素转移与吸附方法
CN114082399A (zh) * 2021-10-15 2022-02-25 东华理工大学 一种基于n,p-掺杂多孔碳材料的铀吸附剂及其制备方法
CN114991759A (zh) * 2022-05-23 2022-09-02 河南省科学院同位素研究所有限责任公司 一种密度可控同位素载体及其制备方法
CN115724461A (zh) * 2022-11-17 2023-03-03 攀钢集团重庆钒钛科技有限公司 一种偏钛酸的打浆回收方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113509910B (zh) * 2020-11-25 2022-06-10 中国科学院青海盐湖研究所 一种用于液体铷铯资源提取的金属铁氰化物吸附剂颗粒制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406114A (zh) * 2013-07-11 2013-11-27 浙江大学 一种用于高放废水处理的吸附剂的制备方法和应用
CN104801262A (zh) * 2014-01-27 2015-07-29 中国科学院上海高等研究院 一种磁性复合铀吸附剂的制备方法及其应用
CN105023625A (zh) * 2015-06-10 2015-11-04 北京大学 放射性有机废液中微量铀和/或钚的回收方法
CN105032341A (zh) * 2015-08-28 2015-11-11 中国能源建设集团广东省电力设计研究院有限公司 用于处理含铯、锶、钴废水的无机材料及其制备方法
CN106698853A (zh) * 2017-02-08 2017-05-24 合肥智慧龙图腾知识产权股份有限公司 一种处理含有放射性物质的污水的方法
JP2017124380A (ja) * 2016-01-15 2017-07-20 富士チタン工業株式会社 オキソ酸イオン吸着剤
JP2017140576A (ja) * 2016-02-10 2017-08-17 富士チタン工業株式会社 オキソ酸イオンの吸着方法
CN107138134A (zh) * 2017-07-03 2017-09-08 兰州大学 一种改性二氧化硅材料及其制备方法和用途
CN107149943A (zh) * 2016-03-04 2017-09-12 富士施乐株式会社 偏钛酸粒子及其制造方法
CN107744796A (zh) * 2017-11-09 2018-03-02 中国工程物理研究院核物理与化学研究所 一种用于水体中铀提取的吸附剂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226043B (zh) * 2011-04-20 2014-01-01 宁波新福钛白粉有限公司 一种船舶涂料用钛白粉的制备方法
CN104826574B (zh) * 2015-04-20 2017-03-29 陕西科技大学 一种纳米 TiO(OH)2 铬离子吸附剂的制备方法
CN109675540A (zh) * 2018-12-19 2019-04-26 河北麦森钛白粉有限公司 一种非晶态纳米二氧化钛光催化剂的制备方法
CN110215935A (zh) * 2019-05-24 2019-09-10 江苏特丰新材料科技有限公司 一种粉末型高容量钛系锂离子交换剂的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406114A (zh) * 2013-07-11 2013-11-27 浙江大学 一种用于高放废水处理的吸附剂的制备方法和应用
CN104801262A (zh) * 2014-01-27 2015-07-29 中国科学院上海高等研究院 一种磁性复合铀吸附剂的制备方法及其应用
CN105023625A (zh) * 2015-06-10 2015-11-04 北京大学 放射性有机废液中微量铀和/或钚的回收方法
CN105032341A (zh) * 2015-08-28 2015-11-11 中国能源建设集团广东省电力设计研究院有限公司 用于处理含铯、锶、钴废水的无机材料及其制备方法
JP2017124380A (ja) * 2016-01-15 2017-07-20 富士チタン工業株式会社 オキソ酸イオン吸着剤
JP2017140576A (ja) * 2016-02-10 2017-08-17 富士チタン工業株式会社 オキソ酸イオンの吸着方法
CN107149943A (zh) * 2016-03-04 2017-09-12 富士施乐株式会社 偏钛酸粒子及其制造方法
CN106698853A (zh) * 2017-02-08 2017-05-24 合肥智慧龙图腾知识产权股份有限公司 一种处理含有放射性物质的污水的方法
CN107138134A (zh) * 2017-07-03 2017-09-08 兰州大学 一种改性二氧化硅材料及其制备方法和用途
CN107744796A (zh) * 2017-11-09 2018-03-02 中国工程物理研究院核物理与化学研究所 一种用于水体中铀提取的吸附剂及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113628778A (zh) * 2021-06-17 2021-11-09 福建工程学院 一种高寒高海拔地区尾矿放射性元素转移与吸附方法
CN113628778B (zh) * 2021-06-17 2023-12-08 福建工程学院 一种高寒高海拔地区尾矿放射性元素转移与吸附方法
CN114082399A (zh) * 2021-10-15 2022-02-25 东华理工大学 一种基于n,p-掺杂多孔碳材料的铀吸附剂及其制备方法
CN114991759A (zh) * 2022-05-23 2022-09-02 河南省科学院同位素研究所有限责任公司 一种密度可控同位素载体及其制备方法
CN114991759B (zh) * 2022-05-23 2023-09-08 河南省科学院同位素研究所有限责任公司 油田测井用密度可控同位素固体示踪剂载体及其制备方法
CN115724461A (zh) * 2022-11-17 2023-03-03 攀钢集团重庆钒钛科技有限公司 一种偏钛酸的打浆回收方法

Also Published As

Publication number Publication date
ZA202110572B (en) 2022-04-28
CN110743487B (zh) 2020-11-17
CN110743487A (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
WO2021082283A1 (zh) 一种吸附放射性元素的吸附材料的制备方法及应用
CN110203994B (zh) 利用多层级孔生物炭激活过硫酸盐降解有机污染物的方法
CN109364876A (zh) 一种生物质炭-类水滑石复合物的制备方法
CN110156120B (zh) 污水处理装置及处理方法
CN107262037B (zh) 一种海泡石羟基氧化铁活性炭复合吸附剂的制备与应用
CN108927100A (zh) 一种纳米零价铁复合材料的制备方法及应用
CN108262002B (zh) 一种去除锑的Fe-Ti二元氧化物吸附剂的制备方法及应用
CN108862274A (zh) 一种纤维素基层次多孔碳材料的制备方法及其应用
CN103170501B (zh) 一种重金属铬污染土壤原位修复材料的制备方法及应用
Wang et al. Effect of bismuth tungstate with different hierarchical architectures on photocatalytic degradation of norfloxacin under visible light
CN111570494B (zh) 一种重金属污染土壤修复方法
CN110898805A (zh) 一种类石墨烯结构生物炭负载纳米零价铁复合材料的制法及其应用
CN112076727A (zh) 一种重金属污染修复剂及制备方法
CN112473630A (zh) 复合石墨烯壳聚糖气凝胶及其制备方法和应用
CN115093012A (zh) 一种TiO2-黑曲霉菌炭化碳复合物及其制备方法和应用
CN114011868B (zh) 基于红壤-硫酸亚铁复配稳定剂的砷污染土壤修复方法
CN102816933B (zh) 一种铬渣的处理工艺方法
CN114436408A (zh) 一种磁性菌糠生物炭及其制备方法和应用
CN111922070B (zh) 一种漂浮材料及基于漂浮材料的重金属污染土壤的修复方法和应用
CN107281998B (zh) 改性磁性氧化铝吸附剂及其制备方法和应用
CN107824609A (zh) 一种重金属土壤修复剂及制备方法和应用
CN110314637B (zh) 一种改性针铁矿及其制备方法和应用
CN110193355A (zh) Ctab改性梧桐树叶制作去除水中铬污染的多孔材料的方法
CN112755961B (zh) 一种负载有MgO的活性炭及其制备方法和应用
CN111871367B (zh) 一种用于染色废水处理的灯心草磁性粉体及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882904

Country of ref document: EP

Kind code of ref document: A1