WO2020148796A1 - 電磁界遮蔽板、その製造方法、電磁界遮蔽構造、および半導体製造環境 - Google Patents

電磁界遮蔽板、その製造方法、電磁界遮蔽構造、および半導体製造環境 Download PDF

Info

Publication number
WO2020148796A1
WO2020148796A1 PCT/JP2019/000819 JP2019000819W WO2020148796A1 WO 2020148796 A1 WO2020148796 A1 WO 2020148796A1 JP 2019000819 W JP2019000819 W JP 2019000819W WO 2020148796 A1 WO2020148796 A1 WO 2020148796A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic field
layer
field shielding
permalloy
plate
Prior art date
Application number
PCT/JP2019/000819
Other languages
English (en)
French (fr)
Inventor
一郎 宮野
修 小室
高橋 正和
真志 藤田
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2019/000819 priority Critical patent/WO2020148796A1/ja
Priority to US17/294,576 priority patent/US11690208B2/en
Priority to KR1020217014439A priority patent/KR102567771B1/ko
Priority to JP2020566353A priority patent/JP7254102B2/ja
Priority to CN201980075606.2A priority patent/CN113615327B/zh
Priority to TW109101345A priority patent/TWI766229B/zh
Publication of WO2020148796A1 publication Critical patent/WO2020148796A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/16Vessels; Containers
    • H01J37/165Means associated with the vessel for preventing the generation of or for shielding unwanted radiation, e.g. X-rays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/026Shields
    • H01J2237/0266Shields electromagnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the present invention relates to an electromagnetic field shielding plate, a manufacturing method thereof, an electromagnetic field shielding structure, and a semiconductor manufacturing environment.
  • a length measurement SEM for observing the shape of an element circuit pattern on a wafer and measuring various dimensions is widely used as a measurement/inspection device for the quality control of semiconductor manufacturing processes. Following higher integration of elements, it is possible to obtain a finer shape (wiring width or diameter of around 10 nm to 20 nm) observation and highly accurate and high resolution measurement results for the actual shape with good reproducibility. I have been asked.
  • the layers of the constituent units in which the semiconductor circuit is formed are electrically connected between layers.
  • a three-dimensional structure has been adopted in which a plurality of layers are laminated via metal electrodes or the like.
  • a CVD film forming apparatus, a plasma etcher, an ion implantation apparatus, a high-frequency induction heating type film quality improving apparatus, a wafer surface cleaning apparatus, and an exposure apparatus and an optical inspection apparatus having a built-in excimer laser light source. are in close contact with each other.
  • an electromagnetic field (AC magnetic field; alternating electromagnetic field) generated by a peripheral device, a frequency exceeding 10 Hz (power frequency 50 Hz (Including up to 60 Hz) around 500 nT to 1 ⁇ T.
  • electromagnetic field shielding is used to suppress the influence of the electromagnetic field outside the device.
  • a board is required.
  • Patent Document 1 discloses an invention in which a plate material to which an amorphous material is applied is configured and a high-performance shielded chamber is configured as compared with permalloy or a silicon steel sheet.
  • Patent Document 2 discloses an invention in which an amorphous plate material is made easy to handle and restrictions on the shape are reduced.
  • Patent Document 3 discloses an invention of a magnetic field shielding material that is configured by laminating and integrating an amorphous magnetic thin plate and a ferromagnetic thin plate material as a composite metal plate and then annealing the composite metal plate in a state of canceling an external electromagnetic field. ing.
  • Patent Documents 4 to 6 describe stacking a silicon steel sheet on an amorphous material.
  • JP 62-22199 A Japanese Patent Laid-Open No. 11-26981 Japanese Patent Laid-Open No. 4-266092 JP, 7-231191, A Japanese Patent No. 2837595 Japanese Patent No. 2606971
  • soft magnetic materials such as PC permalloy and mumetal, as well as silicon steel (electromagnetic steel) are often used as materials for electromagnetic field shielding plates for the purpose of suppressing disturbance due to electromagnetic waves in the semiconductor manufacturing environment.
  • materials having a thickness of about 1 mm In order to obtain a relatively mild shielding performance with respect to an alternating magnetic field in a frequency band of several tens Hz from a static magnetic field using these materials, it is common to use materials having a thickness of about 1 mm. For this reason, assuming a device having an outer dimension of each of width x depth x height of several thousand mm, when PC permalloy material is selected, its specific gravity is about 8.62, so that 6 sides are enclosed.
  • the shielding plate has a weight of 300 kg to 400 kg.
  • the weight of the device itself is 1,500 kg to 2,500 kg
  • the weight corresponding to one quarter to one fifth is increased by the weight of the shielding material.
  • the floor surface of the semiconductor manufacturing environment often has a grating structure with perforated floor plates to exhaust air from the floor surface to the bottom of the floor in order to reduce floating dust. It is an important design item. Since the length measuring SEM device to which the present invention is applicable is used for the process/quality control, it is more important to reduce the weight of the device because there are many situations where a plurality of devices are installed adjacent to each other in one production line. Becomes
  • PC permalloy material has a high initial permeability and a small coercive force (hard to be magnetized/magnetized when the external magnetic field disappears), and is often used as an electromagnetic field shielding material.
  • the PC permalloy material contains 75% to 80% by weight of nickel element. Therefore, there is a tendency that a relatively large price fluctuation occurs due to the influence of the international market price of nickel material, and the material cost is also relatively high.
  • the electromagnetic field shielding material using permalloy material uses the principle of concentrating the magnetic flux in the permalloy material due to its high magnetic permeability, and reducing the magnetic flux density in the space surrounded by the permalloy material. For this reason, even if it is effective in shielding the band from the static magnetic field to frequencies lower than 10 Hz, the shielding performance is deteriorated from the power supply synchronizing frequency of 50 Hz to 60 Hz to the AC magnetic field (alternating magnetic field) in the higher frequency band. There was a tendency. For this reason, in order to shield the electromagnetic field in a higher frequency band, use a highly conductive aluminum material or the like on the outer surface of the permalloy material to use electrostatic shielding due to the conductivity of the aluminum material.
  • the electron beam scanning speed of the length-measuring SEM is to increase the number of processes per unit time and to increase the resolution of the SEM image that realizes highly accurate dimension measurement in a finer pattern on the wafer (increasing the number of pixels. Therefore, the speed is further increased, and it is more likely to be affected by disturbance from an electromagnetic field of 5 to 10 times the power supply frequency and a higher frequency band.
  • the conventional shielding material as described above, a sufficient shielding effect was not obtained.
  • a silicon steel plate is used as a reinforcing material, but the silicon steel plate is limited in shielding performance against weight.
  • the relative magnetic permeability of a silicon steel sheet differs from that of a permalloy material by approximately one digit (about 10 times). Therefore, in order to obtain the same shielding performance, the thickness of the sheet material should be greater than that of the case of using a permalloy material. It is designed to increase the height. Therefore, when the silicon steel sheet is designed with priority on weight reduction, the shielding performance is limited.
  • the present invention has been made in view of the above problems, and can reduce the weight while obtaining a high shielding performance against an electromagnetic field of a relatively high frequency, an electromagnetic field shielding plate, a manufacturing method thereof, and an electromagnetic field.
  • An object is to provide a shield structure and a semiconductor manufacturing environment.
  • the electromagnetic field shielding plate according to the present invention is formed by stacking a permalloy layer made of a permalloy plate or sheet and an amorphous layer made of an Fe-Si-B-Cu-Nb-based amorphous plate or sheet.
  • the electromagnetic field shielding plate, the manufacturing method thereof, the electromagnetic field shielding structure, and the semiconductor manufacturing environment according to the present invention it is possible to reduce the weight while obtaining a high shielding performance against an electromagnetic field of relatively high frequency.
  • the magnetic flux can be concentrated in the material in the frequency band of less than 50 Hz by utilizing the high magnetic permeability of the material.
  • the shielding effect was obtained relatively efficiently according to the thickness of the material.
  • sufficient shielding performance was not obtained with respect to the weight of the shielding material.
  • the attenuation shielding effect in the amorphous layer the shielding effect due to the reflection effect at the laminated interface of the PC permalloy layer and the amorphous layer, and the concentration effect of the magnetic flux in the PC permalloy layer are provided.
  • the weight of the shielding member may be reduced by 30 to 40%.
  • FIG. 3 is an enlarged cross-sectional view of a shield plate including three layers of a corrosion-resistant aluminum plate material layer, an amorphous material layer, and a permalloy material layer 3. It is a figure which shows the example of a structure which does not use a nut.
  • FIG. 13 It is a figure which shows the example of the electromagnetic field shielding structure provided with another opening part. It is a figure which shows the structure of the honeycomb material of FIG. 13 more concretely. It is a figure which shows the example of a structure in case the opening for wafer transfer is provided in the electromagnetic field shielding structure. It is a figure which shows the example of a structure of the ridge part connection member which concerns on Example 2 of this invention. It is a figure which shows the example of a structure of the electromagnetic field shielding plate which concerns on Example 3 of this invention. It is a figure which shows the example of a structure of the electromagnetic field shielding structure which concerns on Example 4 of this invention. It is a figure containing the whole electromagnetic field shielding structure of FIG.
  • FIG. 21 is a flowchart illustrating an example of a method of manufacturing the electromagnetic field shield plate of FIG. 21.
  • the present invention relates to an electromagnetic field shield plate, for example.
  • This electromagnetic field shielding plate is basically composed of a laminated material formed by laminating at least one layer of Fe-Si-B-Cu-Nb based amorphous material and permalloy (PC permalloy, mumetal, etc.).
  • the electromagnetic field shielding plate may be simply referred to as “shielding plate”.
  • FIG. 1 is a flowchart illustrating an example of a method of manufacturing an electromagnetic field shielding plate according to the first embodiment of the present invention.
  • PC permalloy was selected as an example of permalloy.
  • the permalloy material and the amorphous material are molded (step S1).
  • step S1 from a permalloy layer formed of a plate or sheet of permalloy material (a plate material in this embodiment) and an Fe-Si-B-Cu-Nb-based amorphous plate or sheet (a sheet in this embodiment) Is formed.
  • the permalloy layer can be composed of, for example, a PC permalloy or mumetal plate or sheet as described above.
  • the forming process in step S1 includes cutting, outer shape processing, perforation processing, etc., as necessary.
  • the permalloy layer may be magnetically annealed at a temperature suitable for the material after step S1 (step S2). By doing so, it is possible to remove the strain or dislocation of the metallographic structure, which is caused in step S1 (particularly shape processing) and deteriorates the material properties such as magnetic permeability.
  • step S3 you may take measures to prevent dust generation from the edges of the amorphous layer.
  • an amorphous material plate material or the like
  • the metal element forming the amorphous material becomes minute dust and is separated and scattered.
  • FIG. 2 shows an example of such measures.
  • the resin tape material 2 is mounted on the processed or cut end surface (including a fixing hole used for stacking and fixing) of a material (for example, a plate material) forming the amorphous layer 1 and its periphery.
  • a portion B in FIG. 2 is around the edge of the amorphous layer 1
  • a portion C in FIG. 2 is around the fixing hole of the amorphous layer 1.
  • the resin tape material 2 is an example of a coating layer that covers the amorphous layer 1 so that the end portion or the opening portion is not exposed.
  • the covering layer covers, for example, from one surface of the amorphous layer 1 to the other surface through the end or the opening.
  • the coating layer can be configured to cover the entire end of the amorphous layer 1 without exposing the processed end. When there are a plurality of edges or openings, it is preferable to provide a coating layer for all of them, but even if they are not, some effects can be obtained.
  • the resin tape material 2 is, for example, a resin tape material having an adhesive layer on one side. As described above, the structure in which the processed or cut end surface of the amorphous layer 1 is not exposed can suppress the generation of metallic foreign matter from the amorphous layer 1.
  • the resin tape material 2 it seems that the presence or absence of conductivity of the resin tape material 2 to be attached does not affect the shielding performance. However, in order to obtain higher shielding properties in the state where the amorphous layer 1 and the permalloy layer 3 are laminated, the resin should be made so that the contact area of both materials of the amorphous layer 1 and the permalloy layer 3 is as wide as possible. It is preferable to select and design the width and thickness of the tape material 2.
  • steps S2 and S3 are executed, they may be executed at the same time, or may be executed in the reverse order of FIG.
  • step S4 it is judged whether or not the reinforcing material is used. This judgment can be appropriately made by those skilled in the art according to the application of the shielding plate, the required performance, and the like.
  • the reinforcing material is formed using, for example, a molded product of a corrosion resistant aluminum material (step S5). Details of this corrosion resistant aluminum material will be described later with reference to FIG.
  • step S6 the permalloy layer and the amorphous layer are stacked and fixed (further a reinforcing material if necessary) to form a shielding plate (step S6).
  • a reinforcing material for fixing, for example, bolts can be used.
  • another material is not interposed at the interface between both layers, and the surfaces facing each other are in direct contact with each other, and a gap (space) is not formed as much as possible, and the layers are stacked and fixed.
  • the shielding plate has an electromagnetic field shielding region having a predetermined shielding performance, and the permalloy layer and the amorphous layer are in contact with each other in this electromagnetic field shielding region.
  • the electromagnetic field shielding region means a region in which the shielding plate is designed to have a function of shielding the electromagnetic field, and does not require the function of shielding the electromagnetic field at, for example, the periphery of the shielding plate, a fixed portion, an opening, or the like. If a region is present, then such region is not included in the electromagnetic field shielded region.
  • the electromagnetic field shielding region may occupy almost the entire surface of the shielding plate.
  • FIG. 3 and 4 show an example of a structure for stacking and fixing the permalloy layer 3 and the amorphous layer 1.
  • FIG. 3 shows only the amorphous layer 1 including the periphery of the fixing hole and the covering layer of the resin tape material 2 provided around the fixing hole.
  • FIG. 4 is a diagram including a partially enlarged cross-sectional view of a shield plate including three layers of a corrosion-resistant aluminum plate material 4, an amorphous layer 1, and a permalloy layer 3.
  • the permalloy layer 3 and the amorphous layer 1 are perforated in a matrix.
  • the perforation spacing is b in the vertical direction and c in the horizontal direction.
  • the shielding plate includes a fixing member (first fixing member) made of a non-magnetic material, and the fixing member is arranged in the hole H (first through hole) that has been punched.
  • first fixing member made of a non-magnetic material
  • the fixing member is arranged in the hole H (first through hole) that has been punched.
  • the non-magnetic material for example, SUS316 material or SUS304 material can be used (the non-magnetic property of SUS304 material is inferior to SUS316 material).
  • the shielding plate is provided with a corrosion-resistant aluminum plate member 4.
  • the corrosion-resistant aluminum plate member 4 is a molded product of a corrosion-resistant aluminum member arranged in step S5 of FIG.
  • the first fixing member includes, for example, a bolt 5 and a nut 15 made of a non-magnetic material.
  • the bolt 5 and the nut 15 fix the amorphous layer 1 and the permalloy layer 3 to each other in each hole H by screwing and fastening the bolt 5 through the hole H and the nut 15. In this way, the laminated material (amorphous layer 1 and permalloy layer 3) can be held integrally.
  • the reinforcing plate member 6 is arranged around the hole H as a reinforcing layer made of a reinforcing material.
  • the reinforcing plate member 6 is in surface contact with the amorphous layer 1 or the permalloy layer 3.
  • the reinforcing plate member 6 can be used to suppress deformation due to external force, and can suppress deterioration of magnetic characteristics.
  • Figure 5 shows an example of a configuration that does not use nuts.
  • a plate member 19 having a female screw element is arranged instead of the nut.
  • the plate material 19 having the female screw element can be arranged, for example, inside the electromagnetic field shielding space (as a specific example, the side opposite to the amorphous layer 1 with respect to the permalloy layer 3 ).
  • the thickness of the plate material or sheet forming the permalloy layer 3 can be arbitrarily designed, but handling in shape processing such as cutting and bending, deformation due to heat in the magnetic annealing step after shape processing, lamination with the amorphous layer 1 Considering workability of assembly and the like, it is preferable that the thickness is about 0.3 mm or more.
  • a single layer of 0.3 mm thick permalloy material may have insufficient mechanical strength as a surface of a shielding material.
  • the corrosion-resistant aluminum plate member 4 may be used for the purpose of suppressing deformation of the plate member and reinforcing it as a surface member.
  • the corrosion-resistant aluminum plate material 4 is made of, for example, 5000 series material.
  • the thickness of the corrosion-resistant aluminum plate member 4 can be appropriately designed, but depending on the application, a thickness of 1 mm or more may provide sufficient strength, and a thickness of 1.5 mm or less may cause the weight to fall within an allowable range. .. Therefore, the thickness of the corrosion-resistant aluminum plate member 4 can be set within the range of 1 mm to 1.5 mm, for example.
  • the corrosion-resistant aluminum plate material 4 is attached to the outermost surface of the electromagnetic field shielding space (as a specific example, the side opposite to the permalloy layer 3 with respect to the amorphous layer 1) to form a laminated shielding plate. That is, as shown in FIG. 4, the layer structure is a three-layer structure including a corrosion-resistant aluminum plate material 4 (outermost surface)+amorphous layer 1 (intermediate layer)+permalloy layer 3 (inner surface).
  • the amorphous layer 1 is arranged in the intermediate layer, and the amorphous layer 1 is sandwiched and fixed by the corrosion-resistant aluminum plate material 4 serving as a reinforcing material on the outermost surface and the permalloy layer 3 on the inner surface.
  • the corrosion-resistant aluminum plate member 4 is also provided with a hole H (first through hole), and the bolt 5 and the plate member 19 (or the bolt 5 and the nut). 15) fixes the corrosion-resistant aluminum plate material 4, the amorphous layer 1, and the permalloy layer 3 to each other in each hole H.
  • Fig. 6 shows an example of a conventional configuration for comparison.
  • the amorphous layer 1 is not provided, and the corrosion-resistant aluminum plate member 4, the permalloy layer 3 and the reinforcing plate member 6 are fixed by bolts 5 and nuts 15.
  • FIG. 7 shows an example of an electromagnetic field shielding structure including the electromagnetic field shielding plate according to this embodiment.
  • the width ⁇ depth ⁇ height is 831 mm ⁇ 1071 mm ⁇ 1028 mm.
  • the magnetic field was applied in three patterns of X direction (for example, width direction), Y direction (for example, depth direction), and Z direction (for example, height direction).
  • the magnetic flux density of the magnetic field was 1 ⁇ T, and the frequency of the magnetic field was a static magnetic field (frequency 1 Hz) and an alternating magnetic field (frequency 50 Hz to 500 Hz).
  • the field gate coil type magnetic field sensor 7 is placed in the static magnetic field in the internal space of the shield model, and the three-dimensional electromagnetic field sensor is installed in the alternating magnetic field of the frequency band of 5 Hz or more, and the magnetic flux density inside the shield model is measured. ..
  • Figure 8 shows the results of this experiment.
  • the horizontal axis represents the thickness of the permalloy layer 3
  • the vertical axis represents the shielding rate.
  • the shielding rate is a value obtained by dividing the magnetic flux density outside the shielding model by the magnetic flux density inside the shielding model.
  • PC permalloy was used for the permalloy layer.
  • the circles (white circles and black circles) are the measurement results when a shielding plate made of a permalloy single layer (for example, FIG. 6) was used as a comparative example.
  • Square marks (white squares and black squares) are measurement results when the shielding plate according to the example of the present invention is used.
  • the shielding plate including only the PC permalloy layer having a thickness of 1 mm according to the conventional technology obtained a shielding ratio of 6.7. Further, the shielding plate containing only the PC permalloy layer having a thickness of 0.5 mm according to the conventional technique also obtained a shielding ratio of 6.7.
  • the shielding rate becomes 8.6 (note that the thickness of the amorphous layer is Does not affect the result so much, but the thickness is, for example, about 0.4 mm to 0.5 mm (the same applies hereinafter).
  • the shielding rate was 7.2. In other words, it can be said that even if the thickness of the permalloy layer is reduced to about one third, the same or higher shielding performance is obtained.
  • the shielding plate according to the embodiment of the present invention has high shielding performance at least at the power supply frequency. Therefore, it is useful in electromagnetic field shielding for a device that is easily affected by the alternating magnetic field of the power supply frequency. For example, it is considered that it exerts a remarkable effect as an electromagnetic field shielding plate for a scanning electron microscope.
  • the shielding plate according to the embodiment of the present invention is not limited to the scanning electron microscope, and can be applied to the charged particle beam device.
  • the charged particle beam device includes a transmission electron microscope, a focused ion beam device, a semiconductor inspection device to which the electron microscope is applied, and the like.
  • the shielding plate according to the embodiment of the present invention has a remarkable effect in a semiconductor manufacturing environment including the shielding plate and a semiconductor manufacturing related device driven by an AC power supply having a frequency of 50 Hz or higher.
  • the shielding plate according to the related art including only the PC permalloy layer having a thickness of 1 mm obtained a shielding rate of 10.4.
  • the shielding plate according to the related art including only the PC permalloy layer having a thickness of 0.5 mm obtained a shielding ratio of 7.4.
  • the shielding rate was 7.8. Furthermore, as another example of the present invention, when a laminated structure of a PC permalloy layer having a thickness of 0.3 mm and an amorphous layer was used, the shielding rate was 6.1.
  • the size of the shielding plate is 980 mm in width and 940 mm in height.
  • a corrosion-resistant aluminum plate material having a thickness of 1.5 mm was attached to the outermost layer in both cases.
  • the total weight of the permalloy material of 7.47 kg and the corrosion-resistant aluminum plate material of 3.7 kg is about 11.2 kg.
  • the weight of the 0.3 mm thick PC permalloy layer is 2.42 kg and the weight of the laminated amorphous layer is 0.703 kg in the shielding plate of the same size.
  • the weight of the corrosion-resistant aluminum plate material is 3.7 kg as in the comparative example, and the total weight is about 6.8 kg. In this way, a weight reduction of about 40% is achieved with respect to the weight of about 11.2 kg of the comparative example (PC permalloy having a thickness of 1 mm).
  • the thickness of the permalloy layer defines the shielding performance against a relatively gentle alternating magnetic field in the band of static magnetic field to several tens Hz.
  • the thicker the permalloy layer the more the magnetic flux is concentrated in the permalloy material having a high magnetic permeability, so that the magnetic flux leaking into the shielding space is reduced and the shielding performance is improved.
  • the shielding performance of the permalloy layer tends to decrease. Reasons for this include the effect of back electromotive force due to eddy currents excited in the material by the electromagnetic field, the skin effect in the high frequency electromagnetic field, and the physical properties such as electric resistance of permalloy itself.
  • the thickness of the permalloy layer is 0.5 mm. You can select within the front and back range. When the thickness is 0.5 mm or more, sufficient shielding performance can be obtained depending on the application, and when the thickness is 0.635 mm or less, the weight can be sufficiently reduced depending on the application. Thus, in one embodiment, the thickness of the permalloy layer is preferably within the range of 0.500 mm to 0.635 mm.
  • a PC permalloy material with a thickness of 0.5 mm has a moderate rigidity of the plate material in the outer shape processing, the magnetic annealing process, and the laminating and assembling process, and is more workable than the PC permalloy material with a thickness of 0.3 mm. Since it has good properties, it is considered to be effective from the viewpoint of mass production.
  • the shielding rate of the conventional shielding plate is 10.4, while one embodiment of the present invention is performed.
  • the shielding rate of the shielding plate (PC permalloy layer having a thickness of 0.5 mm and amorphous layer) according to the example is reduced to 7.8.
  • the conventional shield plate has a lowering ratio of 6.7, while the shield ratio of the shield plate according to the embodiment of the present invention is 8.6.
  • the shielding performance is reversed, and the shielding rate obtained with the laminated structure is higher than that obtained with the permalloy single layer.
  • the weight of the shielding plate at this time was 3.7 kg of the corrosion-resistant aluminum plate material (reinforcing material) having a thickness of 1.5 mm, the weight of the PC permalloy layer having a thickness of 0.5 mm was 3.74 kg, and the weight of the amorphous layer was 0.
  • the total is about 8.2 kg, which is about 10.3 kg, compared with about 11.2 kg of the conventional shield plate (shield plate composed of 1 mm thick permalloy layer and the outermost aluminum layer for making the conditions the same). Then, a weight reduction of about 30% was achieved.
  • FIG. 9 shows an example of a structure in which an adhesive is used to fix the laminated materials in layers.
  • the double-sided adhesive tape 8 is used as an example of the adhesive, and the double-sided adhesive tape 8 is used between the amorphous layer 1 and the corrosion-resistant aluminum plate member 4 to bond and fix these layers.
  • the shielding performance may deteriorate.
  • a double-sided adhesive tape 8 can be used for stacking and fixing the amorphous layer 1 on the corrosion-resistant aluminum plate material 4 which is the outermost surface. That is, the corrosion-resistant aluminum plate material 4 and the amorphous layer 1 are adhered to each other via a tape material having adhesive layers on both surfaces. However, between the amorphous layer 1 and the permalloy layer 3, in order not to obstruct the movement of the domain wall at the interface between both materials, a tape material is not used, and the opposing surfaces of both materials are as wide as possible and directly The contacting structure can further improve the shielding performance.
  • the double-sided adhesive tape 8 may be used to bond the amorphous layer 1 and the permalloy layer 3 to form an embodiment of the present invention. is there.
  • such an arrangement increases the rigidity and makes it more resistant to sonic vibrations.
  • the improvement of the shielding performance against the alternating magnetic field which is obtained by the shielding plate having the laminated structure of the permalloy layer 3 and the amorphous layer 1, is due to the shielding effect due to the phase change and the reflection loss at the laminated interface of both materials, and the amorphous layer 1. It is presumed that the shielding effect due to the absorption loss of the electromagnetic field in 1) and the concentration of the magnetic flux in the permalloy layer 3 act in combination.
  • FIG. 10 shows, as a comparative example, experimental results when the permalloy layer 3 was not used.
  • the shielding rate was measured with a layer structure in which only the amorphous magnetic material was laminated with the corrosion-resistant aluminum material as the reinforcing material.
  • the shielding rate was measured by actually measuring one amorphous layer (single layer), two amorphous layers, and three amorphous layers. As a result, a slight increase in the shielding rate was observed, but the shielding rate was within the range of 2.1 to 3.5 as shown in the graph of FIG.
  • the shielding ratio of about 8.0 obtained by the laminated material of the permalloy layer and the amorphous layer according to the example of the present invention was not obtained by the static magnetic field or the alternating magnetic field.
  • the shielding rate of the static magnetic field of 1 Hz becomes 10.4 due to the magnetic flux concentration effect due to the magnetic permeability of the PC permalloy material.
  • the thickness of the PC permalloy material is set to 0.5 mm, which is a half, the magnetic flux passing through the material is reduced due to the reduction of the plate thickness, and the shielding rate is reduced to 7.4.
  • the shielding rate of the PC permalloy material having a thickness of 1 mm is 6.7, whereas the shielding rate of the PC permalloy material having a thickness of 0.5 mm is also 6. 7, unlike the case of the static magnetic field, the shielding rate is substantially the same, although the thickness of the permalloy material is reduced by half.
  • the shielding rate of the alternating magnetic field of 50 Hz to 60 Hz is 8.6 and the thickness of 1 mm of the thickness.
  • the shielding rate is improved from 6.7 obtained with the PC permalloy single layer shielding plate.
  • a thickness of 1 mm in the PC permalloy material is judged not to be essential for the shielding performance of the alternating magnetic field at the power frequency (50 or 60 Hz) or higher.
  • the advantage of the shield plate in which the amorphous layer and the layer of the permalloy material typified by PC permalloy material are laminated is that the shield performance is improved in the alternating magnetic field of high frequency at the power supply frequency or more, and the weight of the shield plate. It becomes clear from both viewpoints of reduction.
  • the thickness of the permalloy layer may be 1 mm or more when the weight does not matter and only the improvement of the shielding rate is required.
  • Electromagnetic field shield plate of a laminated structure according to an embodiment of the present invention such as permalloy material and corrosion-resistant aluminum for reinforcement, easy to generate sound wave resonance, not a state in which only a relatively thin metal layer is laminated, Since the resin material contained in the amorphous layer is laminated, the resistance to acoustic resonance in the shield plate due to external acoustic waves is improved.
  • the Fe-Si-B-Cu-Nb type of amorphous material laminated with the permalloy material has a larger saturation magnetic flux density than that of the Co type, so the saturation magnetic flux density Is judged to be appropriate for applications where is important.
  • Co-based amorphous material seems to change with time in terms of shielding performance.
  • the internal structure of the amorphous layer 1 can be appropriately designed by those skilled in the art, but as an example, the layer may be formed by using a thin film tape (article) made of an amorphous material.
  • the thin film tape may be arranged so that the orientation changes for each layer, and about four layers may be laminated and integrated to form a plate material. In such a plate material, the anisotropy of the magnetic characteristics is canceled out and the magnetic permeability becomes substantially omnidirectional, which is effective in applications where the anisotropy should be suppressed.
  • the concrete structure of the spliced portion can be designed as appropriate, but an example is explained below.
  • Fig. 11 shows an example of a spliced structure.
  • the shielding plate includes an amorphous layer 1, a permalloy layer 3, and a resin tape material 2.
  • the ridge connecting member includes a ridge corrosion-resistant aluminum plate 4a, a ridge permalloy layer 3a, and a ridge stainless layer 14.
  • the ridge portion stainless layer 14 is provided with a female screw element 16 that is screwed with a male screw element of the bolt 5.
  • the permalloy layer 3 of the shielding plate and the ridge portion permalloy layer 3a of the ridge portion connecting member are overlapped in a region close to each end face.
  • an opening is used. May be required. The opening is, for example, to secure the air flow inside the shielded plate space for the purpose of loading and collecting semiconductor wafers into the shielded space, radiating heat from the mechanism and control circuit, and preventing dust from staying in the clean room environment. , Etc. are necessary for the purpose.
  • the shielding performance may be reduced as compared with the electromagnetic field shielding region in which the amorphous layer 1 and the permalloy layer 3 are stacked, but depending on the structure of the opening, the shielding performance may be relatively reduced. There is a possibility that it can be suppressed small.
  • the shielding structure includes a plate 9 of a soft magnetic material provided with a large number of holes (for example, circular holes) having a dimension of 8 mm to 10 mm or before and after that.
  • the soft magnetic material plate 9 is made of, for example, permalloy.
  • the plate 9 made of a soft magnetic material is attached to the opening, and is fixed to the shielding plate, for example, at a position covering the opening from the corrosion-resistant aluminum plate 4 side.
  • the shielding rate varies depending on the size of the holes, the number of holes, the frequency of the external electromagnetic field, etc., but the electromagnetic field shielding rate is reduced by about 7% compared to the closed state with no opening. May bring.
  • FIG. 13 shows another example of the opening.
  • the electromagnetic field shielding structure includes an aluminum-based honeycomb material 10 (honeycomb structure member).
  • FIG. 14 shows the structure of the honeycomb material 10 more specifically. 14B is a sectional view taken along the line AA of FIG. 14A, and FIG. 14C is a partial perspective view.
  • the honeycomb material 10 is attached to the opening, and is fixed to the shielding plate, for example, at a position covering the opening from the corrosion-resistant aluminum plate 4 side.
  • the honeycomb material 10 includes a reinforcing portion 10a formed by a sheet metal member on the outer peripheral portion thereof. With such a structure, the reduction of the shielding rate is about 3%, and compared with the structure of FIG. 12, the reduction of the shielding performance due to the influence of the opening can be suppressed.
  • the shielding performance tends to deteriorate. It is considered that the reason for the decrease is that the area of the shielding region and the total volume of the magnetic material decrease due to the presence of the opening.
  • the shielding effect due to the concentration of magnetic flux on the shielding plate is reduced, so that the shielding performance is deteriorated.
  • the effect of the opening is not clearly seen in comparison with the shielding rate in the sealed state. Therefore, the effect of the opening seems to be small in terms of the shielding performance of the alternating electromagnetic field. Is.
  • the shielding performance of the static magnetic field in the band up to several tens Hz is important.
  • the shielding performance is complemented by increasing the thickness of the permalloy layer on this surface. It is also possible.
  • FIG. 15 shows an example of a structure in which an opening for transferring a wafer is provided in the shielding structure.
  • a conductive metal mesh 11 surrounds the opening in a purse-like shape.
  • the metal mesh 11 is a mesh-shaped tubular member formed into a tubular shape that has air permeability due to its mesh structure.
  • the metal mesh 11 covers the opening and is attached so as to be in close contact with the shielding plate (in this example, so as to be in close contact with the outermost corrosion-resistant aluminum plate member 4).
  • the metal mesh 11 connects the opening of the shielding plate and the wafer loading/unloading unit 20.
  • Example 2 relates to an electromagnetic field shielding structure including the electromagnetic field shielding plate according to Example 1.
  • the electromagnetic field shielding structure according to the second embodiment has a ridge and is configured to surround the internal space.
  • FIG. 16 shows an example of the structure of the ridge connecting member arranged on the ridge.
  • the ridge connection member is a member for fixing a plurality of flat shield plates in an arrangement that makes an angle with each other.
  • the ridge connecting member has a ridge forming an angle (first angle). This angle is 90 degrees in the example of FIG. 16, but can be arbitrarily changed as long as it is not 0 degrees.
  • the ridge connecting member is configured by stacking at least the ridge permalloy layer 3 a and the ridge stainless layer 14. Furthermore, the corrugated aluminum plate material 4a may be stacked.
  • the ridge part permalloy layer 3a is made of a permalloy plate or sheet. The thickness of the ridge part permalloy layer 3a can be selected from the same range as the permalloy layer 3 of the shielding plate.
  • the ridge portion stainless layer 14 is made of, for example, an austenitic stainless material having a thickness within a range of 1.8 mm to 2.4 mm.
  • the ridge connecting member is formed by stacking a ridge corrosion-resistant aluminum plate 4a, a ridge permalloy layer 3a, and a ridge stainless layer 14 from the outside to the inside.
  • “outside” means, for example, the convex side of the ridge
  • “inside” means, for example, the concave side of the ridge.
  • the ridge connection member may include layers other than these layers inside or outside.
  • Female thread elements 16 are provided on the ridge connecting member on both sides of the ridge.
  • the female thread element 16 is provided, for example, on the ridge stainless layer 14.
  • Through holes may be provided at positions corresponding to the female screw elements 16 in the ridge permalloy layer 3 a.
  • At least a part of one side of the ridge portion connection member and at least a part of the electromagnetic field shielding plate are fixed so as to overlap with each other, and at least a portion of the other side of the ridge portion connection member of the ridge portion, It is fixed so as to overlap with at least a part of another electromagnetic field shielding plate (second shielding plate).
  • FIG. 11 shows an example of such a configuration.
  • the bolt 5 and the ridge portion stainless steel layer are arranged so that a part of the ridge portion permalloy layer 3a and a part of the shield plate (particularly the amorphous layer 1 and the permalloy layer 3 of the shield plate) overlap each other. It is fixed by 14.
  • the ridge connecting member itself has a function as a shielding plate to some extent due to the shielding effect of the ridge permalloy layer 3a and the like.
  • the ridge connection member can be formed by bending the material of each layer at a predetermined angle (for example, 90 degrees) and stacking the materials in direct contact with each other.
  • the overall shape of such an electromagnetic field shielding structure can be appropriately designed, for example, the permalloy layer 3 and the ridge portion permalloy layer 3a are arranged so as to be overlapped on each side without a gap, and each shielding plate is arranged. It can be fastened and fixed.
  • the ridge connecting member may further include an amorphous layer.
  • the amorphous material is a brittle material, there is a possibility that the material may break when it is bent.
  • the effect of the present invention may be substantially obtained even if the amorphous material is omitted as shown in FIG.
  • the plane portion that occupies most of the outer surface of the shield structure in both area and volume can be made of a laminated material of permalloy material and amorphous material. Therefore, the shielding effect as the present invention can be obtained at least to some extent.
  • a larger shield plate is constructed by connecting a plurality of permalloy layers.
  • FIG. 17 shows an example of the shielding plate according to the third embodiment.
  • the material With soft magnetic materials such as PC permalloy, rolling is performed to form the material, but due to the width of the rolling roll, the material may have a regular width.
  • the width of the shielding plate is configured to be larger than this standard width, a structure in which materials are added is necessary.
  • FIG. 17( a) shows the layer structure of such a shielding material.
  • Each of the amorphous layer 1 and the corrosion-resistant aluminum plate member 4 is one plate or sheet, but the permalloy layer 3 is formed by joining a plurality of plates.
  • FIG. 17B is a diagram showing the permalloy layer 3 of FIG. 17A extracted.
  • the permalloy layer 3 is formed by abutting a first permalloy layer 3x and a second permalloy layer 3y. After the magnetic annealing is completed for the first permalloy layer 3x and the second permalloy layer 3y, these are replenished by using the strip material 18 (strip-shaped plate).
  • the dimensions and arrangement at this time are designed so that each of the first permalloy layer 3x and the second permalloy layer 3y can be overlapped with another layer (for example, the amorphous layer 1).
  • the first permalloy layer 3x, the second permalloy layer 3y, and the strip 18 are all made of the same material (for example, PC permalloy) and can be joined by spot welding or screw fixing, for example.
  • the contact area between the amorphous layer 1 and the permalloy layer 3 should be secured as large as possible, but if there is bending deformation, there is a disadvantage in securing the contact area.
  • the surface on which the strip 18 is mounted has a surface on which the amorphous layer 1 is laminated for the purpose of increasing the contact area between the amorphous layer 1 and the permalloy layer 3. Avoid the surface and use it as the opposite surface (for example, the surface on the inner side of the shielded space).
  • the permalloy layer 3 it is possible to reduce the irregularities on the surface in contact with the amorphous layer 1, and it is possible to obtain a performance almost equivalent to that of a single permalloy layer having no replenishment.
  • the first permalloy layer 3x and the second permalloy layer 3y are formed as permalloy layers.
  • a magnetic annealing step is performed on the first permalloy layer 3x and the second permalloy layer 3y.
  • the end surface of the first permalloy layer 3x and the end surface of the second permalloy layer 3y are arranged in abutment with each other, and one surface adjacent to the abutted end surface (for example, the surface on the side not contacting the amorphous layer 1 as described above).
  • the strip 18 is arranged so as to cover at least a part of the strip.
  • the strips 18 arranged in this manner the first permalloy layer 3x, the second permalloy layer 3y, and the strip 18 are integrated by spot welding. In this way, it is possible to manufacture a shielding plate having a size larger than the standard size of the permalloy material.
  • the formation of the strip 18 can be performed at any time before spot welding. Further, the lamination fixing of the permalloy layer 3 and the amorphous layer 1 may be performed before the spot welding or after the spot welding.
  • each plate material when fixing each plate material in a laminated manner, the surface of each material is in direct contact as described in the first embodiment.
  • a double-sided adhesive tape or the like may be used between the layers when a reduction in the shielding performance can be allowed to some extent.
  • the permalloy layer 3 is structured so that an external force that causes deformation is not applied to the permalloy layer 3, including the work of attaching and detaching from the device at the time of inspection and maintenance.
  • a reinforcing material that suppresses an increase in weight and supplements the electrostatic shielding effect against a high frequency electric field.
  • a corrosion-resistant aluminum material for example, 5000 series aluminum
  • FIG. 10 Such a configuration was also used in the experimental shielding model shown in FIG.
  • the shield plate can be used for the structure of a single-opening door, for example, by providing a pair of upper and lower hinge parts at the end part that constitutes one side of the reinforcing material.
  • the weight may increase relatively.
  • the austenitic stainless steel material of SUS316 or SUS304 with a thickness of about 1 mm is used, It may be arranged on the outer layer of the material. In this way, the reinforcement is further strengthened.
  • Example 4 relates to an electromagnetic field shielding structure including the electromagnetic field shielding plate according to Example 1.
  • the electromagnetic field shielding structure according to the fourth embodiment includes a structure for detachably fixing the shielding plate.
  • FIG. 18 and 19 show examples of the configuration of the electromagnetic field shielding structure according to the fourth embodiment.
  • FIG. 18 is an enlarged view around the fixing structure
  • FIG. 19 is a view including an overall view.
  • This example relates to a cubic electromagnetic field shielding structure using square shielding plates on each surface. The openings may be provided in one or more shield plates.
  • the permalloy layer and the amorphous layer are provided with perforated holes (second through holes).
  • first through hole portion (hole portion H) in the first embodiment may function as the second through hole portion according to the fourth embodiment.
  • female screw elements are provided on the frame members corresponding to the ridges (corners) that form the shield structure, whereby screw holes for fixing are arranged at the end portions of the four sides of each surface.
  • the frame member may be configured using the ridge connecting member of the second embodiment.
  • the shielding structure according to the fourth embodiment includes a fixing member (second fixing member) for fixing the shielding plate to the frame member, and a washer.
  • the fixing member comprises a male screw element.
  • the second fixing member is composed of the bolt 5a
  • the washer is composed of the washer 12.
  • FIG. 18(a) shows a state in which the washer 12 is fixed by the bolt 5a.
  • FIG. 18B shows a process in which the washer 12 is removed after the bolt 5a is loosened and the washer 12 is unfixed.
  • FIG. 18C shows a step in which the corrosion-resistant aluminum plate member 4 is removed after the washer 12 is removed.
  • the inner diameter of the hole of the shield plate is larger than the outer diameter of the head of the bolt 5a, so that precise positioning is not required when disposing the bolt 5a.
  • the washer 12 is provided with a notch having a predetermined inner diameter. The notch extends from the circumference of the washer 12 toward the center toward the inside in the radial direction. The notch has a constant width and is formed so that the axial center of the washer 12 is included in the notch.
  • the washer 12 has an outer diameter larger than the inner diameter of the hole so that it cannot pass through the hole.
  • the inside diameter of the washer 12 (that is, the inside diameter of the cutout) is smaller than the outside diameter of the head of the bolt 5a so that the bolt 5a can be inserted through the cutout of the washer 12.
  • the bolt 5a is configured so that its shaft portion (particularly a position close to the head portion) can be inserted into the notch of the washer 12 from the radially outer side toward the inner side.
  • the bolt 5a and the washer 12 are configured so that the notch of the washer 12 is slid from the outside in the radial direction to the shaft portion of the bolt 5a (particularly near the head).
  • the washer 12 is arranged on the opposite side of the amorphous layer from the permalloy layer in the hole.
  • the corrosion-resistant aluminum plate member 4 is arranged so as to come into contact with it from the outside.
  • the male screw element of the bolt 5a is screwed with the female screw element of the frame member (for example, provided on the ridge portion stainless steel layer 14), and the washer 12 is connected to the amorphous layer 1 (via the corrosion-resistant aluminum plate member 4 in this example). It can be clamped and fixed toward the permalloy layer 3.
  • the bolts 5a can be arranged so that the contact areas of the opposing surfaces of the frame member and the shielding plate are as large as possible.
  • the arrangement interval of the bolts 5a can be selected within a range of about 200 mm to 250 mm, for example.
  • a torque driver or the like is used to fix each part with a constant axial force, so that more stable shielding performance can be obtained before and after the removal of the shielding plate.
  • FIG. 19 In the example of FIG. 19, consider the case where a vertical (height) 900 mm ⁇ horizontal (width) 940 mm shield plate is used. As shown in FIG. 19, a total of 16 bolts 5a can be arranged on each of the upper, lower, left and right sides (four corners are overlapped). In this way, the shield plate is fixed to the frame member. In the experiment using the model of FIG. 7, the shielding performance was measured by controlling the tightening torque to 0.7 N/m for a bolt (M4 bolt) having a nominal diameter of 4 mm. If this tightening torque is used, the axial force will be about one half of the yield stress in the M4 bolt, so there is a sufficient margin in breaking the bolt. Therefore, the shield plates can be repeatedly attached and detached, and the contact between the shield plates can be sufficiently ensured.
  • M4 bolt bolt having a nominal diameter of 4 mm
  • resonance may occur when a slot antenna is formed by a minute gap between shielding plates.
  • a conductive foam material having a thickness of about 0.5 mm to 1 mm may be attached to the peripheral edge of the outermost aluminum plate.
  • the conductive foam material is the conductive foam in the gap area X between the corrosion-resistant aluminum plate material 4 of the shielding plate forming the outermost layer and the ridge-corrosion-resistant aluminum plate material 4a of the ridge connecting member.
  • the material is placed.
  • the thickness and width of the conductive foam material are preferably selected so that the contact between the permalloy layer 3 and the ridge permalloy layer 3a can be sufficiently ensured.
  • the work of releasing the fixing by these bolts 5a and washer 12 occurs.
  • the inner diameter of the hole of the shield plate is smaller than the outer diameter of the head portion of the bolt 5a
  • the work of removing the bolt 5a and refastening the bolt 5a is repeated for each shield plate. It is necessary to completely remove 12 to 16 bolts 5a per shield plate.
  • more than 10 shield plates are arranged in four directions, left/right, front/rear. In such a case, enormous work will be required only by attaching and detaching the shielding plate.
  • the inner diameter of the hole provided in the shielding plate at the bolt fixing position can be configured to be larger than the outer diameter of the head of the bolt 5a. In this way, even if the dimensional variation at the time of sheet metal forming and hole making is taken into consideration, precise positioning is not required when fixing the shield plate, and work efficiency is improved.
  • the washer 12 has a shape that can be slid in and out of the shaft portion of the bolt 5a, so that the workability of attaching and detaching the shield plate can be improved.
  • the shield plate support member 17 (third fixing member) may be arranged on the frame member.
  • the shield plate support member 17 can be configured by, for example, a structure having a male screw element (a bolt or the like) and a structure having a female screw element (a nut or a stainless layer).
  • the shield plate support member 17 can be arranged so as to support the lower side of the shield plate. First, the shield plate is temporarily placed on the shield plate support member 17 at a position to be mounted. Then, in this state, the removable washer 12 is sandwiched between the heads of the bolts 5a to temporarily fix the shield plate. After that, the shielding structure can be assembled by fixing each bolt with a predetermined tightening torque.
  • the axis of the hole and the axis of the bolt 5a are aligned to some extent when the shielding plate support member 17 fixes the shielding plate to the frame member (for example, to the stainless steel layer). It is configured as follows.
  • the shaft center of the hole is configured to pass through the bolt 5a. In this way, the work of removing the shield plate becomes more efficient.
  • FIG. 20 shows the shape and action of the bolt 13.
  • the bolt 13 includes a cam type opening/closing mechanism including a cam lever.
  • the cam lever is formed on the head of the bolt 13.
  • the bolt 13 and the washer 12 are configured so that the axial position range of the washer 12 is regulated in accordance with the rotational movement of the cam lever.
  • the cam lever is in the closed position as shown in FIG. 20(a)
  • the washer 12 is pressed against the shield plate and fixed.
  • the cam lever is in the open position as shown in FIG. 20(b)
  • the washer 12 is not pressed against the shield plate (for example, it can be slightly moved in the axial direction), and is shown in FIG. 20(c).
  • the washer 12 can be easily pulled out.
  • the maximum outer diameter of the bolt 13 is configured to be smaller than the inner diameter of the hole portion of the shield plate, whereby the entire bolt 13 is axially arranged in the hole of the shield plate. You can pass the section. Therefore, after the washer 12 is pulled out, as shown in FIG. 20D, the shield plate can be removed with the bolt 13 still in place. With this structure, even when the shield plate is reattached, the pressure contact is completed by tightening by operating the cam lever, so that the shield plate detachment work can be further simplified.
  • the fifth embodiment is the same as the first to fourth embodiments except that the permalloy layer 3 is replaced with a soft magnetic material layer.
  • the meaning and range of the "soft magnetic material” can be appropriately defined by those skilled in the art, but for example, refers to a material characterized by a relatively small holding force and a relatively large magnetic permeability. Or, for example, it is a synonym of “hard magnetic material” (a hard magnetic material means, for example, a material whose magnetic pole does not easily disappear or reverse, that is, a material having a large coercive force, and a so-called “magnet” is included).
  • the soft magnetic material has a relatively low magnetic permeability and a relatively high coercive force as compared with the permalloy material.
  • FIG. 21 shows an example of the configuration of the electromagnetic field shielding plate according to the fifth embodiment.
  • the electromagnetic field shielding plate according to Example 5 includes an electromagnetic steel layer 3b made of an electromagnetic steel plate material or sheet of soft magnetic material and an amorphous layer 1 made of an Fe-Si-B-Cu-Nb-based amorphous plate material or sheet. , Are constructed by stacking by mechanical means. Mechanical means means, for example, fastening and fixing using bolts, but is not limited to this.
  • electromagnetic steel can be appropriately defined by those skilled in the art, but for example, it refers to a steel material with high conversion efficiency between electromagnetic energy and magnetic energy. Alternatively, for example, it refers to a steel material that transmits magnetism without great resistance and has a small iron loss. Specific examples of electromagnetic steels include pure iron, magnetic stainless steel, silicon steel, and the like. A plate material made of electromagnetic steel is an electromagnetic steel plate.
  • any material may be used as long as the desired performance can be obtained.
  • a full-process non-oriented electrical steel sheet (magnetic stainless steel, silicon steel sheet, or the like) that has been processed up to magnetic annealing after rolling may be adopted.
  • the use of soft magnetic electromagnetic steel sheet material significantly reduces the cost of the material, and magnetic annealing in the plate material manufacturing process can be omitted. Is reduced in cost and simplified.
  • the magnetic annealing here is performed, for example, after cutting and shaping the plate material, and includes, for example, a predetermined temperature rising time and cooling time, and is, for example, at 730° C. to 1100° C. in a non-oxidizing atmosphere. Annealing is carried out.
  • the shielding plate according to Example 5 since the electromagnetic steel sheet material of the soft magnetic material is laminated with the amorphous material 1, the shielding effect due to the lamination of the amorphous layer 1 and the electromagnetic steel layer 3b is obtained, but When a large external magnetic field is generated, it is assumed that the magnetic field may remain on the shield even after the external magnetic field decreases. The reason is that the magnetic steel sheet material has a smaller magnetic permeability than the permalloy material, and the coercive force is larger than that of the permalloy material.
  • the thickness of the electromagnetic steel layer 3b can be arbitrarily designed, but if the thickness is 0.5 mm or more, sufficient shielding performance can be obtained depending on the application, and if the thickness is 0.635 mm or less, the application is Depending on the case, the weight can be reduced sufficiently. Thus, in one embodiment, it is preferable that the thickness of the electromagnetic steel layer 3b is within the range of 0.500 mm to 0.635 mm.
  • the shielding plate according to the fifth embodiment will be compared with the shielding plate according to the related art.
  • Patent Document 4 the radiated electromagnetic field from a reactor (coil-like component) for power factor improvement installed under the floor of a railway is reduced to such an extent that it does not adversely affect pacemakers and other devices in passenger cabins.
  • a shield plate for the purpose is described.
  • the shielding plate of Patent Document 4 uses a Co-based amorphous material, and does not use the Fe-Si-B-Cu-Nb-based amorphous material as in Example 5.
  • Co-based amorphous materials have the drawbacks of high cost and large deterioration of magnetism over time.
  • the shielding plate of Patent Document 4 is used for railway vehicles and is particularly mounted on the outside of the floor surface, it has a drawback that it is too thick for other purposes.
  • An example of the shielding plate described in Patent Document 4 is 25 sheets of silicon steel plate having a thickness of 0.35 mm, five Co type amorphous sheets having a thickness of 0.5 mm, and two cover members having a thickness of 3.2 mm. And a total thickness of 17.65 mm. Further, in this example, the member has a size of 1600 ⁇ 1300 mm, and the weight is 248 kg.
  • Example 5 of the present invention the thickness is much smaller.
  • the corrosion-resistant aluminum plate 4 added for the purpose of reinforcement is included, the corrosion-resistant aluminum plate 4 having a thickness of 1.2 mm, the amorphous layer 1 having a thickness of 0.5 mm, and the electromagnetic steel having a thickness of 0.5 mm are included.
  • the total thickness remains about 2.2 mm.
  • the combined thickness of the amorphous layer 1 and the electromagnetic steel layer 3b is 1.0 mm or less, 1.1 mm or less, 1.2 mm or less, 1.3 mm or less, It can be designed to be 1.4 mm or less, or 1.5 mm or less.
  • the thickness of the electromagnetic steel layer 3b can also be designed to be 1.0 mm or less, 1.1 mm or less, 1.2 mm or less, 1.3 mm or less, 1.4 mm or less, or 1.5 mm or less. Is. Therefore, the weight is also reduced.
  • Such a thin and light shielding plate is effective for shielding the alternating magnetic field (AC magnetic field) and the electric field in the outer peripheral portion of the semiconductor manufacturing/inspection apparatus.
  • Patent Document 6 describes a shield plate used for nuclear magnetic resonance measurement and biomagnetic measurement by application of the SQUID sensor.
  • the shielding plate of Patent Document 6 is intended to suppress disturbance when measuring an extremely weak magnetic field.
  • the shield plate of Patent Document 6 is a stack of an amorphous material and a ferromagnetic material, and does not use a soft magnetic material having a small coercive force and a high magnetic permeability as in the fifth embodiment of the present invention.
  • the shield plate of Patent Document 6 requires a magnetic annealing step.
  • magnetic annealing is performed after stacking the materials by cold rolling.
  • the magnetic annealing is performed in a non-oxidizing atmosphere at 350° C. for 30 minutes in a DC magnetic field of 15 Oersteds. It is troublesome to perform the magnetic annealing while applying the adjusted external magnetic field or in the state where the magnetic field is extremely small.
  • Example 5 of the present invention after each layer is molded, it is possible to manufacture a shielding plate without performing a magnetic annealing process on any of the layers.
  • FIG. 22 is a flowchart illustrating an example of a method of manufacturing the shielding plate according to the fifth embodiment.
  • a step of molding an amorphous material to manufacture the amorphous layer 1 step S11
  • a step of molding an electromagnetic steel material to manufacture the electromagnetic steel layer 3b also step S11
  • the shielding plate can be manufactured by a method including the step of overlapping (step S12). That is, the method for manufacturing the shielding plate does not include the magnetic annealing step for the electromagnetic steel layer 3b after the step for manufacturing the amorphous layer 1 (step S11) and the step for manufacturing the electromagnetic steel layer 3b (also step S11). .. Therefore, the manufacturing process and structure are extremely simple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

比較的高周波の電磁界に対して高い遮蔽性能を得ながら、重量を軽くできる電磁界遮蔽板等を提供する。電磁界遮蔽板は、パーマロイの板材またはシートからなるパーマロイ層3と、Fe-Si-B-Cu-Nb系アモルファスの板材またはシートからなるアモルファス層1とを、重ねて構成される。

Description

電磁界遮蔽板、その製造方法、電磁界遮蔽構造、および半導体製造環境
 この発明は、電磁界遮蔽板、その製造方法、電磁界遮蔽構造、および半導体製造環境に関する。
 半導体製造の工程品質管理には、計測・検査装置として、電子顕微鏡を応用したウエハ上の素子回路パターンの形状観察及び各種の寸法測定を行う測長SEMが広く利用されている。素子のより高い集積化に追従し、より微細な形状(配線の幅または直径が10nm~20nm前後)の観察と、実形状に対する高精度・高分解能の計測結果とを、再現性良く得ることが求められてきた。
 他方、近年の半導体製造では、回路や素子の寸法の微細化に伴う性能限界を回避して、さらなる集積度を達成する為に、半導体回路が形成された構成単位の層を、層間を導通する金属電極等を介して複数層積層する三次元的構造が採用されてきている。この構造の半導体製造ラインでは、CVD製膜装置、プラズマエッチャー、イオン打込み装置、高周波誘導加熱方式の膜質改善装置、ウエハ表面洗浄装置、さらには、エキシマレーザ光源を内蔵した露光装置や光学式検査装置が密接して設置された状況にある。測長SEMは、この様な製造ラインにおいて、形成された半導体回路の品質管理に供用される為に、周囲装置が発生する電磁界(AC磁場;交番電磁界、10Hzを超える周波数(電源周波数50Hz~60Hzを含む)で500nT~1μT前後。DC磁場;静磁界、10Hz未満の周波数で300nT~650nT前後)や、FA設備に使用される構内無線LAN(2.4GHz帯域)からの影響を受ける状態となる。電子線を指定範囲内で高速走査し、被観察物であるウエハ表面の細線及び穴といった回路要素の画像を実物に忠実に取得するには、装置外部の電磁界の影響を抑制する電磁界遮蔽板が必須となる。
 特許文献1では、非晶質材料を応用した板材を構成し、パーマロイやケイ素鋼板と比較して高性能なシールド室を構成する発明が示されている。特許文献2には、非晶質板材を取り扱いやすくし、形状の制約を低減した発明が示されている。特許文献3では、アモルファス磁性薄板と強磁性体薄板材とを複合金属板として、積層一体化した後、外部の電磁界を相殺した状況で焼鈍して構成する、磁場遮蔽材の発明が示されている。
 また、特許文献4~6には、アモルファス材にケイ素鋼板を重ねることが記載されている。
特開昭62-221199号公報 特開平11-26981 特開平4-266092号公報 特開平7-231191号公報 特許第2837595号公報 特許第2606971号公報
 従来の電磁界遮蔽板において、比較的高周波の電磁界に対して高い遮蔽性能を得るためには、要求される材料の重量が大きくなるという問題があった。
 たとえば、半導体製造環境の電磁波による外乱を抑制する目的では、軟磁性体のPCパーマロイやミューメタル、さらには珪素鋼(電磁鋼)が電磁界遮蔽板の材料として多用されている。これらの材料を用いて静磁場から数十Hzの周波数帯域の比較的穏やかな交番磁場に関する遮蔽性能を得るには、厚さ1mm前後の材料を使用することが一般的であった。この為、横幅×奥行き×高さが、それぞれ数千mm規模の外形をもつ装置を想定すると、PCパーマロイ材を選択した場合にはその比重が約8.62である為、6面を囲む為の遮蔽板の重量が300kg~400kgとなる。装置自体の重量が1,500kg~2,500kgである場合、この4分の1から5分の1に相当する重量を、遮蔽材の重量により増加させていた。半導体製造環境の床面は、浮遊塵埃低減の為、穿孔された床板による、床面から床下への排気を伴ったグレーチング構造の場合が多く、耐荷重に制約がある為、装置重量の低減は重要な設計項目となっている。本発明が適用可能な測長SEM装置は、工程・品質管理に供用される為、一つの製造ラインに複数台の装置が隣接して設置される状況が多い為、装置の重量低減がより重要となる。
 PCパーマロイ材は、初透磁率が高く、保磁力が小さく(外部磁場の消失時、着磁・帯磁が発生しづらい)、電磁界遮蔽材として多用される。PCパーマロイ材は、重量比で75%~80%のニッケル元素を含有する。この為、ニッケル材の国際市場相場の影響を受けて、比較的大きな価格変動が発生する傾向があり、材料コストも比較的高い状況にある。
 パーマロイ材を用いた電磁界遮蔽材では、高い透磁率により磁束をパーマロイ材に集中させ、パーマロイ材で周囲を囲まれた空間内への磁束密度を低減させる原理を利用する。この為、静磁界から10Hzより低い周波数までの帯域の遮蔽に有効であっても、50Hz~60Hzの電源同期周波数から、それより高い周波数帯域のAC磁場(交番磁界)に対し遮蔽性能が低下する傾向があった。この為、より高周波数な帯域での電磁界の遮蔽の為に、導電性の高いアルミ材等をパーマロイ材のさらに外表面に装着して、アルミ材の導電性による静電遮蔽を利用することが併用されてきた。最外層に装着されたアルミ材の静電遮蔽効果により、MHz帯域電界の遮蔽が可能であっても、kHz帯域の電磁界に対しては、パーマロイ材の特性として、電磁界の表皮効果と材料中に生じる渦電流との悪影響により、素材重量および材料コストに見合った遮蔽性能が得られなかった。
 測長SEMの電子線走査速度は、単位時間あたりの処理数の増大化と、ウエハ上のより微細なパターンでの高精度な寸法計測を実現するSEM像の高分解能化(画素数の増大化)との為、より高速化しており、電源周波数の5倍から10倍、さらに高い周波数帯域の電磁界からの外乱影響を受け易い状況となっている。しかしながら、従来の遮蔽材では、前述のとおりに、充分な遮蔽効果が得られなかった。
 また、特許文献4および5に記載される技術では、補強材としてケイ素鋼板を用いているが、ケイ素鋼板では重量に対する遮蔽性能が制限される。たとえば、ケイ素鋼板の比透磁率は、パーマロイ材と比較して概ね1桁(約10倍)違うことから、同等の遮蔽性能を得るためには、パーマロイ材で構成した場合に比べて、板材厚さを増大させた設計となる。この為、重量軽減を優先してケイ素鋼板を設計した場合には、遮蔽性能が制限されてしまう。
 本発明は、上記のような課題に鑑みてなされたものであり、比較的高周波の電磁界に対して高い遮蔽性能を得ながら、重量を軽くできる、電磁界遮蔽板、その製造方法、電磁界遮蔽構造、および半導体製造環境を提供することを目的とする。
 この発明に係る電磁界遮蔽板は、パーマロイの板材またはシートからなるパーマロイ層と、Fe-Si-B-Cu-Nb系アモルファスの板材またはシートからなるアモルファス層とを、重ねて構成される。
 本発明に係る電磁界遮蔽板、その製造方法、電磁界遮蔽構造、および半導体製造環境によれば、比較的高周波の電磁界に対して高い遮蔽性能を得ながら、重量を軽くすることができる。
 より具体的な効果の例を以下に説明する。ただし、効果はこれらに限られず、また、以下の効果のいずれも得られない実施例も、本発明の範囲に含まれる場合がある。
 電磁界の遮蔽性能に関して、PCパーマロイ等のパーマロイを用いた電磁界遮蔽板では、50Hz未満の周波数帯域では、材料のもつ高い透磁率を利用して材料中へ磁束を集中させることができて、材料の厚さに応じて比較的効率良く遮蔽効果が得られていた。しかし、電源周波数(50Hz~60Hz)から500Hzまでの帯域や、kHzの帯域に関しては、遮蔽材の重量に対して、充分な遮蔽性能を得られていなかった。
 本発明の特定の実施例に係る積層構造では、アモルファス層での減衰遮蔽効果と、PCパーマロイ層およびアモルファス層の積層界面での反射効果による遮蔽効果と、PCパーマロイ層での磁束の集中効果とを併用出来る。このため、電源周波数(50Hz~60Hz)以上の周波数帯域において、PCパーマロイ材の素材厚さに応じて増加する渦電流や、高周波帯域での電磁界の表皮効果に起因した透磁率の減少を補完するので、より高い周波数の交番電磁界に対し、PCパーマロイ単層で構成した電磁界遮蔽板に比較して、遮蔽性能を向上することができる。
 また、アモルファス材との積層化により、遮蔽性能を確保した状態でPCパーマロイ層の板厚さを減少させることが出来る。PCパーマロイはニッケル含有量が大きい為に質量が大きいので、PCパーマロイ材の使用量を抑制できれば、遮蔽部材の重量を30~40%低減できる場合がある。
 また、パーマロイ材使用量の削減により、ニッケル材相場の価格変動の影響を低減でき、遮蔽材のコスト安定化と低減が可能となる。
本発明の実施例1に係る電磁界遮蔽板を製造する方法の一例を説明するフローチャートである。 アモルファス層の端部からの発塵防止対策の例を示す図である。 縁部周辺と固定穴の周囲に樹脂テープ素材による被覆層を設けたアモルファス層の例を示す図である。 耐蝕アルミ板材層とアモルファス材層とパーマロイ材層3の三層からなる遮蔽板拡大断面図である。 ナットを用いない構成の例を示す図である。 従来の電磁界遮蔽板の構成の例を示す図である。 電磁界遮蔽板を備える電磁界遮蔽構造の例を示す図である。 遮蔽モデルを用いた実験結果を示すグラフである。 積層材料の積層固定に両面接着テープを用いる場合の構成の例を示す図である。 比較例として、パーマロイ層を用いない場合の実験結果を示す図である。 複数の電磁界遮蔽板の継ぎ合わせ構造の例を示す図である。 開口部を備える電磁界遮蔽構造の例を示す図である。 別の開口部を備える電磁界遮蔽構造の例を示す図である。 図13のハニカム材の構造をより具体的に示す図である。 電磁界遮蔽構造にウエハ搬送用の開口部が設けられている場合の構造の例を示す図である。 本発明の実施例2に係る陵部接続部材の構成の例を示す図である。 本発明の実施例3に係る電磁界遮蔽板の構成の例を示す図である。 本発明の実施例4に係る電磁界遮蔽構造の構成の例を示す図である。 図18の電磁界遮蔽構造の全体図を含む図である。 図19のボルトの形状および作用を示す図である。 本発明の実施例5に係る電磁界遮蔽板の構成の例を示す図である。 図21の電磁界遮蔽板を製造する方法の一例を説明するフローチャートである。
 以下、この発明の実施例を添付図面に基づいて説明する。本発明はたとえば電磁界遮蔽板に関する。この電磁界遮蔽板は、Fe-Si-B-Cu-Nb系アモルファス材と、パーマロイ(PCパーマロイ、ミューメタル等)とを、少なくとも1層ずつ積層して構成した積層材を基本構成とする。以下、電磁界遮蔽板を、単に「遮蔽板」と称する場合がある。
[実施例1]
 図1は、本発明の実施例1に係る電磁界遮蔽板を製造する方法の一例を説明するフローチャートである。本実施例では、パーマロイの例としてPCパーマロイを選択した。まず、パーマロイ材およびアモルファス材の成形が行われる(ステップS1)。ステップS1では、パーマロイ材の板材またはシート(本実施例では板材とする)からなるパーマロイ層と、Fe-Si-B-Cu-Nb系アモルファスの板材またはシート(本実施例ではシートとする)からなるアモルファス層とが形成される。パーマロイ層は、上述のようにたとえばPCパーマロイまたはミューメタルの板材またはシートによって構成することが可能である。
 ステップS1の成形処理は、必要に応じて、切り出し、外形形状の加工、穿孔加工、等を含む。パーマロイ層については、ステップS1の後に、材料に適した温度で磁性焼き鈍しを行ってもよい(ステップS2)。このようにすると、ステップS1(とくに形状加工等)で生じた、透磁率等の材料特性を劣化させる金属組織の歪や転移を除くことができる。
 次に、アモルファス層の端部からの発塵防止対策を行ってもよい(ステップS3)。アモルファス材(板材等)を取り扱う際、材料に対して屈曲や変形等を与えると、アモルファスを構成する金属元素が微小な粉塵となって分離飛散することが懸念される。微細電子回路をリソグラフィや物理的加工で形成する半導体製造の環境では、この様な粉塵や金属異物(パーティクル)の発生の抑制を行うことが好ましい場合がある。
 図2はこのような対策の例を示す。アモルファス層1を構成する材料(たとえば板材)の、加工または切断された端面(積層固定時に使用する固定用穴を含む)およびその周辺に、樹脂テープ素材2が装着される。図2のB部はアモルファス層1の縁部周辺であり、図2のC部はアモルファス層1の固定用穴の周辺である。樹脂テープ素材2は、アモルファス層1の端部または開口部が露出しないよう被覆する、被覆層の例である。
 被覆層は、たとえば、アモルファス層1の片面から、他方の面まで、端部または開口部を介して覆う。被覆層は、アモルファス層1の加工された端部を露出させずに、端部の全体を被覆するよう構成することができる。端部または開口部が複数ある場合には、それらすべてについて被覆層を設けると好適であるが、そうでない場合でもある程度の効果を得ることができる。
 樹脂テープ素材2はたとえば片面に接着層をもつ樹脂テープ素材である。このように、アモルファス層1の加工または切断された端面が露出しない構造とすることで、アモルファス層1からの金属異物の発生を抑制出来る。
 装着する樹脂テープ素材2の導電性の有無は、遮蔽性能には影響がない模様である。但し、アモルファス層1とパーマロイ層3とを積層した状態で、より高い遮蔽特性を得るためには、アモルファス層1およびパーマロイ層3の両材料の接触面積が出来るだけ広く確保される様に、樹脂テープ素材2の幅および厚さを選択および設計することが好ましい。
 なお、ステップS2およびS3の双方を実行する場合には、これらを同時に実行してもよく、図1とは逆の順序で実行してもよい。
 次に、補強材を用いるかどうかの判断が行われる(ステップS4)。この判断は、遮蔽板の用途および要求される性能等に応じ、当業者が適宜行うことができる。
 補強材を用いる場合には、たとえば耐蝕アルミ材の成形品を用いて補強材が形成される(ステップS5)。この耐蝕アルミ材の詳細については、図4等を用いて後述する。
 ステップS4またはステップS5の後に、パーマロイ層とアモルファス層とを(必要に応じてさらに補強材を)重ねて固定し、遮蔽板を構成する(ステップS6)。固定にはたとえばボルトを用いることができる。本実施例では、この際に両層の界面には他の材料を介在させず、両層の対向する表面が直接接触する状態として、できるだけ隙間(空間)を作らず、積層および固定する。
 たとえば、遮蔽板が、所定の遮蔽性能を有する電磁界遮蔽領域を有し、パーマロイ層とアモルファス層とは、この電磁界遮蔽領域の全体において接触する。電磁界遮蔽領域とは、遮蔽板が電磁界を遮蔽する機能を有するよう設計される領域を意味し、たとえば遮蔽板の周縁、固定部位、開口部等において電磁界を遮蔽する機能を必要としない領域が存在する場合には、そのような領域は電磁界遮蔽領域には含まれない。電磁界遮蔽領域は、遮蔽板のほぼ全面を占めるものであってもよい。
 図3および図4に、パーマロイ層3とアモルファス層1とを積層および固定するための構成の例を示す。図3は縁部周辺を含み、固定穴の周囲に樹脂テープ素材2による被覆層を設けたアモルファス層1のみを表示している。図4は、耐蝕アルミ板材4、アモルファス層1、パーマロイ層3の三層からなる遮蔽板の一部拡大断面図を含む図である。この例では、パーマロイ層3およびアモルファス層1が、それぞれマトリックス状に穿孔されている。穿孔の間隔は、縦方向ではbであり、横方向ではcである。遮蔽板は、非磁性材料からなる固定部材(第1固定部材)を備え、穿孔された穴部H(第1貫通穴部)にこの固定部材が配置される。非磁性材料としては、たとえばSUS316材またはSUS304材を用いることができる(SUS304材の非磁性特性は、SUS316材よりは劣る)。
 なお図4の例では、遮蔽板は耐蝕アルミ板材4を備える。耐蝕アルミ板材4は、図1のステップS5において配置される耐蝕アルミ材の成形品である。
 第1固定部材は、たとえば非磁性材料のボルト5およびナット15からなる。ボルト5が穴部Hを貫通してナット15と螺合し締結されることにより、ボルト5およびナット15が各穴部Hにおいてアモルファス層1およびパーマロイ層3を互いに固定する。このようにすると、積層材(アモルファス層1およびパーマロイ層3)を一体化して保持出来る。
 両層の積層固定に際し、第1固定部材として、ボルトおよびナットに代えて、またはこれに加えて、他の構成を用いてもよい。図4の例では、穴部Hの周辺に、補強材からなる補強層として補強用板材6が配置されている。補強用板材6は、アモルファス層1またはパーマロイ層3と面で接触する。補強用板材6は、外力による変形を抑制するために用いることができ、磁性特性の劣化を抑制することができる。
 図5に、ナットを用いない構成の例を示す。この例では、ナットの代わりに、雌ネジ要素を形成した板材19が配置されている。雌ネジ要素を形成した板材19を用いる場合は、たとえば電磁界遮蔽空間の内側(具体例として、パーマロイ層3に関してアモルファス層1と反対側)に板材19を配置することができる。このように配置すると、MHz帯域の周囲の電磁界を遮蔽する際に、部品端面長さと外部電磁界の波長の整合により発生する共振による遮蔽性能の低下を抑制できる。
 パーマロイ層3を構成する板材またはシートの厚さは任意に設計可能であるが、切断や曲げといった形状加工での取り扱い、形状加工後の磁性焼鈍工程での熱による変形、アモルファス層1との積層組立の作業性、等を考慮すると、0.3mm程度以上とすることが好ましい。
 厚さ0.3mmのパーマロイ材(たとえばPCパーマロイ材)は、用途によっては単層では遮蔽材の面として機械的強度が不充分な場合がある。たとえば、磁性特性を劣化させる板材の変形や歪が、外力の負荷で容易に発生する状況になる。これに対応する為に、板材の変形抑制と、面部材としての補強とを目的とし、耐蝕アルミ板材4を用いてもよい。
 耐蝕アルミ板材4は、たとえば5000系の材料から構成される。耐蝕アルミ板材4の厚さは適宜設計可能であるが、用途に応じ、1mm以上とすると十分な強度が得られる場合があり、また、1.5mm以下とすると重量が許容範囲に収まる場合がある。このため、耐蝕アルミ板材4の厚さはたとえば1mm~1.5mmの範囲内とすることができる。
 耐蝕アルミ板材4は、電磁界遮蔽空間の最外表面(具体例として、アモルファス層1に関してパーマロイ層3と反対側)に装着され、積層遮蔽板が構成される。すなわち、層構成は図4に示す様に、耐蝕アルミ板材4(最外面)+アモルファス層1(中間層)+パーマロイ層3(内面)からなる3層の構成となる。この例では、中間層にアモルファス層1が配置され、最外面の補強材となる耐蝕アルミ板材4と、内面のパーマロイ層3とにより、アモルファス層1が挟み込まれて固定される。なお、図から明らかなように、この場合には、耐蝕アルミ板材4にも穿孔された穴部H(第1貫通穴部)が設けられており、ボルト5および板材19(またはボルト5およびナット15)は、各穴部Hにおいて、耐蝕アルミ板材4、アモルファス層1およびパーマロイ層3を互いに固定する。
 図6に、対比のための従来の構成の例を示す。この例はアモルファス層1を備えておらず、耐蝕アルミ板材4、パーマロイ層3および補強用板材6が、ボルト5およびナット15により固定されている。
 図7に、本実施例に係る電磁界遮蔽板を備える電磁界遮蔽構造の例を示す。この例では、横幅×奥行き×高さが831mm×1071mm×1028mmの寸法である。以下、図7の電磁界遮蔽構造を用いて遮蔽モデルを構成し、遮蔽効果を確認した実験の結果を記載する。
 ヘルムホルツコイルを応用した磁場発生ケージの内部に遮蔽モデルを設置して、遮蔽モデルの外部から磁場を印加する。磁場の印加方向は、X方向(たとえば横幅方向)、Y方向(たとえば奥行き方向)、およびZ方向(たとえば高さ方向)の3パターンを用いた。磁場の磁束密度は1μTとし、磁場の周波数は、静磁場(周波数1Hz)及び交番磁場(周波数50Hz~500Hz)とした。遮蔽モデルの内部空間に、静磁場ではフィールドゲートコイル型磁界センサ7を配置し、周波数5Hz以上の帯域の交番磁場では、三次元電磁界センサを設置して、遮蔽モデル内部の磁束密度を実測した。
 図8に、この実験の結果を示す。横軸はパーマロイ層3の厚さを表し、縦軸は遮蔽率を表す。遮蔽率は、遮蔽モデルの外部の磁束密度を、遮蔽モデルの内部空間の磁束密度で除した値である。パーマロイ層にはPCパーマロイを用いた。丸印(白丸および黒丸)は、比較例としての、パーマロイ単層からなる遮蔽板(たとえば図6)を用いた場合の測定結果である。四角印(白四角および黒四角)は、本発明の実施例に係る遮蔽板を用いた場合の測定結果である。
 電源周波数(50Hzまたは60Hz)では、従来技術に係る厚さ1mmのPCパーマロイ層のみを含む遮蔽板が、6.7の遮蔽率を得た。また、従来技術に係る厚さ0.5mmのPCパーマロイ層のみを含む遮蔽板も、同じく6.7の遮蔽率を得た。
 これに対し、本発明の一実施例として、厚さ0.5mmのPCパーマロイ層と、アモルファス層との積層構造を用いると、遮蔽率が8.6となった(なお、アモルファス層の厚さは結果にそれほど影響を与えないが、たとえば厚さ0.4mm~0.5mm程度である。以下同じ)。さらに、本発明の別の実施例として、厚さ0.3mmのPCパーマロイ層と、アモルファス層との積層構造を用いると、遮蔽率が7.2となった。すなわち、パーマロイ層の厚さを、約三分の一にまで減少させても、同等以上の遮蔽性能が得られたということができる。
 このように、本発明の一実施例に係る遮蔽板は、少なくとも電源周波数において、高い遮蔽性能を有する。このため、電源周波数の交番磁場から影響を受けやすい装置に対する電磁界遮蔽において有用である。たとえば、走査型電子顕微鏡用の電磁界遮蔽板として顕著な効果を奏すると考えられる。しかしながら、本発明の一実施例に係る遮蔽板は、走査型電子顕微鏡に限られず、荷電粒子ビーム装置にも適用が可能である。荷電粒子ビーム装置は、透過型電子顕微鏡と、集束イオンビーム装置と、電子顕微鏡を応用した半導体検査装置等とを含む。また、本発明の一実施例に係る遮蔽板は、当該遮蔽板と、50Hz以上の周波数の交流電源によって駆動される半導体製造関連装置とを備える、半導体製造環境において、顕著な効果を奏すると考えられる。
 静磁場(1Hz)では、厚さ1mmのPCパーマロイ層のみを含む、従来技術に係る遮蔽板が、10.4の遮蔽率を得た。また、厚さ0.5mmのPCパーマロイ層のみを含む、従来技術に係る遮蔽板は、7.4の遮蔽率を得た。
 これに対し、本発明の一実施例として、厚さ0.5mmのPCパーマロイ層と、アモルファス層との積層構造を用いると、遮蔽率が7.8となった。さらに、本発明の別の実施例として、厚さ0.3mmのPCパーマロイ層と、アモルファス層との積層構造を用いると、遮蔽率が6.1となった。
 この状態での遮蔽板の重量を比較する。遮蔽板のサイズを、横幅980mm×高さ940mmとする。比較例と本発明の実施例との条件同一化の為に、双方のケースにおいて最外層に1.5mmの厚さの耐蝕アルミ板材を装着した。比較例(厚さ1mmのPCパーマロイ材単層)の遮蔽板では、パーマロイ材の重量7.47kgと、耐蝕アルミ板材の重量3.7kgとを合計し、総重量が約11.2kgとなる。
 これに対し、本発明の実施例では、同サイズの遮蔽板において、厚さ0.3mmのPCパーマロイ層の重量が2.42kgであり、積層されるアモルファス層の重量が0.703kgであり、耐蝕アルミ板材の重量が比較例と同じく3.7kgであり、総重量は約6.8kgとなる。このように、比較例(厚さ1mmのPCパーマロイ)の重量約11.2kgに対し、約40%の重量低減が達成される。
 パーマロイ層の厚さは、静磁界~数十Hz程度の帯域の比較的緩やかな交番磁界に対する遮蔽性能を規定する。この帯域では、パーマロイ層が厚い方が、透磁率の高いパーマロイ材中により磁束が集中する為、遮蔽空間内部へ漏洩する磁束が減少した状態となって、遮蔽性能が向上する。しかし、周波数が高くなるに従って、パーマロイ層の遮蔽性能は低下する傾向がある。その理由としては、電磁界で素材中に励起される渦電流による逆起電力の影響、高周波電磁界での表皮効果、パーマロイ自体の電気抵抗等物性、等がある。
 遮蔽板の重量低減化と、周波数が10Hzより低い電磁界での遮蔽性能と、電源周波数より高い周波数帯域での遮蔽性能とのバランスを取るための一例として、パーマロイ層の厚さを0.5mm前後の範囲内で選択することができる。厚さを0.5mm以上とすると、用途によっては十分な遮蔽性能を得ることができ、厚さを0.635mm以下とすると、用途によっては重量を十分に軽くすることができる。このように、一実施例では、パーマロイ層の厚さは0.500mm~0.635mmの範囲内とすると好適である。この場合には、パーマロイ材の透磁率の寄与による低い周波数帯域での磁束集中による遮蔽性能と、アモルファス材との積層効果による高周波帯域(電源同期周波数50Hzまたは60Hzより高い周波数帯域)での交番磁界での遮蔽性能とを、合わせて得ることができるので、静磁界から交番磁界にかけての遮蔽性能の両立が可能となる。パーマロイ層の例として、厚さ0.5mmのPCパーマロイ材は、外形加工、磁性焼鈍工程、および積層組立て工程での板材の剛性が適度であり、厚さ0.3mmのPCパーマロイ材よりも作業性が良好な為、量産の観点で有効と考えられる。
 図8のグラフに示すように、1Hzの静磁界に対しては、従来の遮蔽板(厚さ1mmのPCパーマロイ層)の遮蔽率が10.4となるのに対して、本発明の一実施例に係る遮蔽板(厚さ0.5mmのPCパーマロイ層と、アモルファス層)の遮蔽率は7.8と低減する。しかし、周波数50Hz~60Hzの交番電磁界に対しては、従来の遮蔽板が、6.7と低下するのに対し、本発明の一実施例に係る遮蔽板の遮蔽率が8.6となり、遮蔽性能が逆転し、積層構造で得られる遮蔽率の方が、パーマロイ単層で得られる遮蔽率よりも高い状況となる。このときの遮蔽板の重量は、厚さ1.5mmの耐蝕アルミ板材(補強材)の重量3.7kgと、厚さ0.5mmのPCパーマロイ層の重量3.74kgと、アモルファス層の重量0.703kgとの合計で約8.2kgとなり、従来の遮蔽板(厚さ1mmのパーマロイ層と、条件を同一化する為の最外層のアルミとで構成する遮蔽板)の約11.2kgと比較して、約30%の重量低減が達成できた。
 図9は、積層材料の積層固定に接着剤を用いる構成の例を示す。この例では接着剤の例として両面接着テープ8を用い、アモルファス層1と耐蝕アルミ板材4との間に両面接着テープ8を用いて、これらの層を接着し固定している。なお、アモルファス層1とパーマロイ層3との間に両面接着テープ8を介在させると、遮蔽性能が劣化する場合がある。アモルファス層1とパーマロイ層3との間に両面接着テープ8が介在する状態では、透磁率が低い接着テープ層からなる隙間(空間)が存在した状況となり、実測では10%程度の遮蔽性能の低下をもたらした。
 図9に示す様に、最外表面となる耐蝕アルミ板材4への、アモルファス層1の積層固定には、両面接着テープ8の使用が可能である。すなわち、耐蝕アルミ板材4と、アモルファス層1とが、両面に接着層を持つテープ材を介して接着される。ただし、アモルファス層1とパーマロイ層3との間には、両材料界面での磁壁の移動等を阻害しないように、テープ材を用いず、両材料の対向する面どうしができるだけ広い面積で、直接接触する構造にすると、遮蔽性能をより高めることができる。
 なお、ある程度(たとえば10%程度)の遮蔽性能の低下を許容できる用途では、両面接着テープ8を用いてアモルファス層1とパーマロイ層3とを接着し、本発明の実施例とすることも可能である。とくに、そのような構成では剛性が増加し、音波振動に対してより強くなる。
 パーマロイ層3とアモルファス層1との積層構造による遮蔽板で得られる、交番磁界に対しての遮蔽性能の向上は、両材料の積層界面での位相変化や反射損失による遮蔽効果と、アモルファス層1での電磁界の吸収損失による遮蔽効果とが、パーマロイ層3中への磁束の集中とが、複合的に作用して得られたものと推測される。
 図10に、比較例として、パーマロイ層3を用いない場合の実験結果を示す。対照比較の為に、アモルファス磁性材のみを補強材の耐蝕アルミ材と積層した層構成とし、遮蔽率を測定した。遮蔽率の測定は、アモルファス層を1枚(単層)とした場合と、2枚積層した場合と、3枚積層した場合とで、それぞれ実測により行った。結果として、僅かな遮蔽率の増加が観測されたが、図10のグラフの様に、遮蔽率は2.1~3.5の範囲内であった。本発明の実施例に係るパーマロイ層とアモルファス層との積層材で得られる8.0前後の遮蔽率は、静磁界でも、交番磁界でも得られなかった。
 図8に示す対照実験でも、PCパーマロイ材を用いて構成した遮蔽板では、1Hz静磁界の遮蔽率については、PCパーマロイ材の透磁率による磁束の集中効果で遮蔽率が10.4となるのに対し、PCパーマロイ材の厚さを2分の1の0.5mmとすると、板厚さの減少により、材料中を透過する磁束が減少し、遮蔽率が7.4と低下する。しかし、周波数50Hz~60Hzの電源周波数の交番磁界に関しては、厚さ1mmのPCパーマロイ材の遮蔽率が6.7となるのに対し、厚さ0.5mmのPCパーマロイ材の遮蔽率でも6.7と、静磁界の場合とは異なり、パーマロイ材の厚さが二分の一に減少したにもかかわらず、略同等の遮蔽率となる。
 これに対して、本発明の一実施例に係る厚さ0.5mmのPCパーマロイ層とアモルファス層との積層材では、50Hz~60Hzの交番磁界の遮蔽率が8.6となり、厚さ1mmのPCパーマロイ単層の遮蔽板で得られた遮蔽率6.7より向上する。電源周波数(50または60Hz)以上の交番磁界の遮蔽性能では、PCパーマロイ材での1mmという厚さは、必須ではないと判断される。
 以上の様に、アモルファス層と、PCパーマロイ材に代表されるパーマロイ材の層とを積層する遮蔽板の利点は、電源周波数以上における高周波の交番磁界での遮蔽性能の向上と、遮蔽板の重量低減との両観点で明確となる。なお、重量が問題にならず遮蔽率向上のみが要求される場合等には、パーマロイ層の厚さを1mm以上としてもよい。
 本発明の一実施例に係る積層構造の電磁界遮蔽板は、パーマロイ材と補強用の耐蝕アルミといった、音波の共鳴が発生し易い、比較的に薄い金属層だけが積層された状態ではなく、アモルファス層に含まれる樹脂材料が積層される構造である為、外来音波による遮蔽板内での音波共鳴に対しても、その耐性が向上する。
 パーマロイ材と積層するアモルファス材としては、Fe-Si-B-Cu-Nb系のものを用いると、Co系のものを用いた場合と比較して大きな飽和磁束密度が得られる為、飽和磁束密度が重要となる用途では適切と判断される。Co系アモルファス材では、遮蔽性能に関して、経時変化も発生する様である。
 アモルファス層1の内部構造は、当業者が適宜設計可能であるが、一例として、アモルファス材の薄膜テープ(条)を用いて層を構成してもよい。たとえば、薄膜テープを、各層毎に配向が変化する様に配置し、4層程度積層して一体化して板材としてもよい。このような板材では、磁性特性の異方性が相殺され、透磁率も略無指向性になるので、異方性を抑制すべき用途では有効である。
 図8および図10に係る実験では、アモルファス層のモデル評価のために、光洋産業株式会社から、商品名「MSシート」として販売される製品を使用した。同様の製品は、日立金属株式会社からも商品名「FM SHIELD」として販売されており、両者の併用も可能である。
 複数の遮蔽板を継ぎ合わせて用いる場合において、継ぎ合わせ部分の具体的構造は適宜設計可能であるが、一例を以下に説明する。
 図11に、継ぎ合わせ構造の例を示す。この例では、A部拡大図に示すように、平面状の遮蔽板と、陵部接続部材(図16等に関連して後に詳述する)とが継ぎ合わせられている。遮蔽板は、アモルファス層1と、パーマロイ層3と、樹脂テープ素材2とを備える。陵部接続部材は、陵部耐蝕アルミ板材4aと、陵部パーマロイ層3aと、陵部ステンレス層14とを備える。陵部ステンレス層14には、ボルト5の雄ネジ要素と螺合する雌ネジ要素16が設けられる。ここで、遮蔽板のパーマロイ層3と、陵部接続部材の陵部パーマロイ層3aとが、それぞれの端面に近い領域で重ね合わされている。この構造とすれば、外部から電磁界が印加された状況で、遮蔽板と陵部接続部材との間の磁壁移動が容易となり、前述の様な、遮蔽性能が確保できる。
 より高い周波数(たとえばkHz、MHz、またはそれ以上の周波数の帯域)の電磁界の遮蔽に関しては、空間として密閉状態となる遮蔽構造が望ましいが、実際の装置に用いる電磁界遮蔽構造では、開口部が必要となる場合がある。開口部は、たとえば、遮蔽空間内部への半導体ウエハの投入と回収、機構部や制御回路部からの放熱、さらにはクリーンルーム環境での塵埃の滞留防止を目的とした遮蔽板空間内部での気流確保、等の目的で必要となる。このような開口部では、アモルファス層1とパーマロイ層3とを積層した電磁界遮蔽領域と比較すると遮蔽性能が低下する可能性があるが、開口部の構造によっては、遮蔽性能の低下を比較的小さく抑制できる可能性がある。
 図12~図15に、開口部を備える電磁界遮蔽構造の例を示す。開口部はたとえば放熱用のものであるが、気流の確保のためのものであってもよい。図12の例では、遮蔽構造は、寸法8mm~10mmまたはその前後の穴(たとえば円形の穴)を多数個設けた軟磁性材料の板9を備える。軟磁性材料の板9は、たとえばパーマロイからなる。軟磁性材料の板9は開口部に装着されるものであり、遮蔽板に対し、たとえば耐蝕アルミ板材4側から開口部を覆う位置に固定される。この構造では、穴の寸法、穴の数、外部の電磁界の周波数等により遮蔽率が変動するが、開口部の無い密閉状態と比較して、約7%前後の電磁界遮蔽率の低下をもたらす場合がある。
 図13は、開口部の別の例を示す。この例では、電磁界遮蔽構造は、アルミ基材のハニカム材10(ハニカム構造部材)を備える。図14はハニカム材10の構造をより具体的に示す。図14(b)は図14(a)のA-A部断面図であり、図14(c)は部分斜視図である。
 ハニカム材10は開口部に装着されるものであり、遮蔽板に対し、たとえば耐蝕アルミ板材4側から開口部を覆う位置に固定される。ハニカム材10は、その外周部に、板金部材によって構成される補強部10aを備える。このような構造では、遮蔽率の低下は約3%前後となり、図12の構造と比較すると、開口部の影響による遮蔽性能の低下を抑制することが出来る。
 遮蔽空間内へのウエハ投入および回収の為の比較的大きな開口部を設ける場合には、遮蔽性能が低下する傾向が観られる。低下の原因は、開口部がある事によって、遮蔽領域の面積と、総量としての磁性材の体積とが減少することと考えられる。特に、開口率の大きな面では、静磁界から数十Hz程度までの帯域の遮蔽性能に関して、遮蔽板への磁束の集中による遮蔽効果が減少する為に、遮蔽性能が低下する。しかし、50Hz~500Hzの周波数帯域の電磁界では、密閉状態の遮蔽率と比較して開口の影響が明確には観られない為、交番電磁界の遮蔽性能の観点では、開口の影響は小さいようである。
 遮蔽空間内に配置される装置等の特性によっては、数十Hzまでの帯域の静磁界の遮蔽性能が重視される。そのような場合には、開口部(磁性材料の体積が減少する)が有る面での遮蔽性能を補完する手段として、この面のパーマロイ層の厚さを厚くすることで、遮蔽性能を補完することも可能となる。
 図15は、遮蔽構造にウエハ搬送用の開口部が設けられている場合の構造の例を示す。より高い周波数帯域(80MHz~2.4GHz)の電界外乱が遮蔽空間の内部に侵入することを防止するための策として、導電性を有する金属製メッシュ11によって開口部の周辺を巾着状に囲んでいる。金属製メッシュ11は、メッシュ構造により通気性を有しており、管状に形成される網目状管部材である。金属製メッシュ11は、開口部を覆うとともに、遮蔽板に密着するよう(この例では最外層の耐蝕アルミ板材4と密着するよう)装着されている。金属製メッシュ11は、遮蔽板の開口部と、ウエハ投入および回収部20とを接続する。
 このような構造とすると、クリーンルーム環境での塵埃の滞留防止の為の通気性を維持した状態で、電磁界遮蔽に関しては、部材の長さに関係した特定周波数での共振現象を防止することが可能となり、開口部からの直接の遮蔽空間内部への電波の侵入に対しても静電遮蔽効果を作用させることができて、遮蔽率の低下を抑制できる。
 また、従来の遮蔽板と比較して重量を低減することも可能である。このため、半導体製造環境の床面を排気のためのグレーチング構造とする場合であっても、床面の耐荷重制約に適合することがより容易となる。
[実施例2]
 実施例2は、実施例1に係る電磁界遮蔽板を備える電磁界遮蔽構造に係るものである。とくに、実施例2に係る電磁界遮蔽構造は陵部を備え、内部空間を囲む形状に構成される。
 図16に、陵部に配置される陵部接続部材の構成の例を示す。この陵部接続部材は、平面状の複数の遮蔽板を、互いに角度をなす配置で固定するための部材である。陵部接続部材は、ある角度(第1角度)をなす陵を有する。この角度は、図16の例では90度であるが、0度でない角度であれば任意に変更可能である。
 陵部接続部材は、少なくとも、陵部パーマロイ層3aと、陵部ステンレス層14とを重ねて構成される。さらに陵部耐蝕アルミ板材4aを重ねてもよい。陵部パーマロイ層3aは、パーマロイの板材またはシートからなる。陵部パーマロイ層3aの厚さは、遮蔽板のパーマロイ層3と同様の範囲から選択することができる。陵部ステンレス層14は、たとえば1.8mm~2.4mmの範囲内の厚さのオーステナイト系ステンレス材からなる。
 この例では、陵部接続部材は、外側から内側に向かって、陵部耐蝕アルミ板材4aと、陵部パーマロイ層3aと、陵部ステンレス層14とを、重ねて構成されている。なお、「外側」とはたとえば稜の凸側を意味し、「内側」とはたとえば稜の凹側を意味する。陵部接続部材は、これら以外の層を内側または外側に含んでもよい。
 陵部接続部材には、陵の両側において雌ネジ要素16が設けられる。雌ネジ要素16はたとえば陵部ステンレス層14に設けられる。陵部パーマロイ層3aにおいて、雌ネジ要素16に対応する位置には貫通穴が設けられてもよい。
 陵部接続部材の陵の片側の少なくとも一部と、電磁界遮蔽板(第1遮蔽板)の少なくとも一部とが重なるよう固定され、陵部接続部材の陵の他方側の少なくとも一部と、別の電磁界遮蔽板(第2遮蔽板)の少なくとも一部とが重なるよう固定される。図11はこのような構成の例を示す。図11のA部拡大図において、陵部パーマロイ層3aの一部と、遮蔽板(とくに遮蔽板のアモルファス層1およびパーマロイ層3)の一部とが重なるように、ボルト5および陵部ステンレス層14によって固定されている。
 陵部接続部材は、陵部パーマロイ層3a等の遮蔽効果により、それ自身遮蔽板としての機能をある程度有する。陵部接続部材は、各層の材料を所定角度(たとえば90度)曲げた状態としておき、これらを直接接触する状態で積層することにより、構成することができる。
 このような電磁界遮蔽構造の全体的な形状は適宜設計可能であるが、たとえば、パーマロイ層3および陵部パーマロイ層3aが、各辺で隙間なく重ね合わされるように配置し、各遮蔽板を締結固定して構成することができる。
 陵部接続部材は、さらにアモルファス層を備えてもよい。しかし、アモルファス材は脆性材である為、曲げ加工すると、材料が破断する可能性がある。アモルファス材の曲げ加工が不可能な場合、図16のようにアモルファス材を省いても、実質的に本発明の効果を得られる場合がある。たとえば、陵部接続部材と遮蔽板の間を、磁壁が移動できる状況があれば、面積・体積とも遮蔽構造の外表面の殆どの面を占める平面部分を、パーマロイ材とアモルファス材の積層材で構成できる為、本発明としての遮蔽効果が少なくともある程度得られる。
[実施例3]
 実施例3は、複数のパーマロイ層を接続することにより、より大きな遮蔽板を構成するものである。図17に、実施例3に係る遮蔽板の例を示す。
 PCパーマロイ材等の軟磁性材では、材料の形成に圧延加工が行われるが、その圧延ロール幅に起因して、材料が定尺の幅を持つ場合がある。遮蔽板の幅を、この定尺の幅よりも大きく構成する場合には、材料を継ぎ足す構造が必要となる。
 図17(a)は、このような遮蔽材の層構成を示す。アモルファス層1および耐蝕アルミ板材4はそれぞれ1枚の板またはシートであるが、パーマロイ層3は複数枚の板が接合されて形成される。
 図17(b)は、図17(a)のパーマロイ層3を抜き出して示す図である。パーマロイ層3は、第1パーマロイ層3xと、第2パーマロイ層3yとが突き合わせられて構成される。第1パーマロイ層3xおよび第2パーマロイ層3yに対して、磁性焼き鈍しが完了した後に、条材18(帯状の板)を使用してこれらが継ぎ足される。この際の寸法および配置は、第1パーマロイ層3xおよび第2パーマロイ層3yそれぞれについて、他の層(たとえばアモルファス層1)と重ね合わせられるように設計される。第1パーマロイ層3x、第2パーマロイ層3yおよび条材18は、いずれも同一の材料(たとえばPCパーマロイ)から構成され、たとえばスポット溶接あるいはネジ固定により接合することができる。
 なお、スポット溶接工程を採用しても、作業中の外力によりパーマロイ層に対して極端な変形が加わらなければ、溶接により局部的に発生する熱の影響は抑制された状態で継ぎ足しを構成できる。また、磁性焼き鈍し工程の後にスポット溶接による継ぎ足しを行うことにより、焼き鈍し工程の熱による膨張と収縮による変形を抑制することができる。
 積層固定の際に、アモルファス層1とパーマロイ層3との接触面積をできるだけ大きく確保するべきであるが、撓み変形があると、接触面積の確保に関して不利な状態となる。パーマロイ層が材料の定尺寸法を超えた場合の継ぎ足しにおいて、条材18を装着する面は、アモルファス層1とパーマロイ層3との接触面積を増大させる目的で、アモルファス層1を積層する側の表面を避けて、反対側の表面(たとえば遮蔽空間の内部側の表面)とする。これにより、パーマロイ層3において、アモルファス層1に接触する側の表面の凹凸を減少できて、継ぎ足しの無い一枚のパーマロイ層とほぼ同等の性能を得られる。
 図17に示す遮蔽板の製造方法の一例を、以下に説明する。まず、パーマロイ層として、第1パーマロイ層3xおよび第2パーマロイ層3yを形成する。次に、第1パーマロイ層3xおよび第2パーマロイ層3yに対して磁性焼き鈍し工程を実行する。その後に、第1パーマロイ層3xの端面と第2パーマロイ層3yの端面とを突き合わせて配置するとともに、突き合わせられた端面に隣接する片面(たとえば上述のようにアモルファス層1に接触しない側の面)の少なくとも一部を覆うように、条材18を配置する。
 このように条材18が配置された状態で、第1パーマロイ層3xと、第2パーマロイ層3yと、条材18とを、スポット溶接により一体化する。このようにして、パーマロイ材の定尺以上の寸法を持つ遮蔽板を製造することができる。
 なお、条材18の形成は、スポット溶接より前の任意の時点で実行することができる。また、パーマロイ層3とアモルファス層1との積層固定は、スポット溶接の前に行ってもよいし、スポット溶接の後に行ってもよい。
 本実施例でも、各板材の積層固定には、実施例1で記載した様に、各材料の表面が直接接触した状態とする。なお、遮蔽性能の低下をある程度許容できる場合等には、層間に両面接着テープ等を使用してもよい。
 アモルファス材では影響が無いが、PCパーマロイ材等の軟磁性材料では、磁性焼き鈍しの後に外力による変形を受けると、金属組織の転移が発生するなどして透磁率が減少する場合がある。この為、点検整備の際の装置からの着脱の作業も含み、パーマロイ層3に対して、変形を生じる様な外力が加わらない構造とすることが好ましい。
 遮蔽板の変形防止を目的とした補強の例として、重量増加を抑制するとともに、高周波電界に対する静電遮蔽効果を補足するような補強材を用いることができる。たとえば、1.0mm~1.5mmの範囲内の厚さの耐蝕アルミ材(たとえば5000系アルミ)を補強材として用い、遮蔽板の最外層として配置すると好適である。このような構成の例は図4に示される。このような構成は、図7に示す実験用の遮蔽モデルでも用いた。
 このような構造を利用すると、例えば補強材の一辺を構成する端部に、上下一対の蝶番部品を設けることにより、遮蔽板を片開きドアの構造に用いることもできる。
 また、性能劣化防止等の為に、さらに機械的補強が必要な場合は、重量は比較的大きく増加する可能性はあるが、厚さ1mm程度のSUS316またはSUS304材のオーステナイト系ステンレス材を、アルミ材のさらに外層へ配置してもよい。このようにすると、さらに補強が強化される。
[実施例4]
 実施例4は、実施例1に係る電磁界遮蔽板を備える電磁界遮蔽構造に係るものである。とくに、実施例4に係る電磁界遮蔽構造は、遮蔽板を脱着可能に固定するための構造を含む。
 図18および図19に、実施例4に係る電磁界遮蔽構造の構成の例を示す。図18は固定構造周辺の拡大図であり、図19は全体図を含む図である。この例は正方形の遮蔽板を各面に用いた立方体形状の電磁界遮蔽構造に係るものである。1つ以上の遮蔽板に開口部が設けられていてもよい。
 各遮蔽板において、パーマロイ層およびアモルファス層には、それぞれ穿孔された穴部(第2貫通穴部)が設けられる。実施例1における第1貫通穴部(穴部H)の一部または全部が、実施例4に係る第2貫通穴部として機能してもよい。また、遮蔽板を固定する際に、遮蔽構造を構成する陵部(角部)にあたるフレーム部材に各々雌ネジ要素を設けることにより、各面の4辺の端部に固定用のネジ穴が配置された状態にする。たとえば実施例2の陵部接続部材を用いてフレーム部材を構成してもよい。
 実施例4に係る遮蔽構造は、遮蔽板をフレーム部材に固定するための固定部材(第2固定部材)と、座金とを備える。固定部材は雄ネジ要素を備える。図18および図19の例では、第2固定部材はボルト5aによって構成され、座金は座金12によって構成される。
 図18(a)は、ボルト5aが座金12を固定した状態を示す。図18(b)は、ボルト5aが緩められ、座金12の固定が解除された後に、座金12が取り外される工程を示す。図18(c)は、座金12が取り外された後に、耐蝕アルミ板材4が取り外される工程を示す。
 遮蔽板の穴部の内径は、ボルト5aの頭部の外径よりも大きく、ボルト5aを配置する際に精密な位置決めが不要となるようになっている。座金12には、所定の内径を有する切り欠きが設けられる。切り欠きは、座金12の周から径方向内側に向かって中央まで延びる。切り欠きは一定の幅を有し、座金12の軸心が切り欠きに含まれるよう形成される。
 座金12の外径は穴部の内径より大きく構成され、穴部を通過できないようになっている。また、座金12の内径(すなわち切り欠きの内径)は、ボルト5aの頭部の外径より小さく構成され、座金12の切り欠きを通してボルト5aを挿入できるようになっている。また、ボルト5aは、その軸部(とくに頭部に近い位置)を座金12の切り欠きに径方向外側から内側に向けて挿入できるように構成されている。言い換えると、ボルト5aおよび座金12は、座金12の切り欠きを、ボルト5aの軸部(とくに頭部に近い位置)に径方向外側からスライドさせて嵌められるように構成されている。
 座金12は、穴部において、アモルファス層に関してパーマロイ層とは反対側に配置される。たとえば図18に示すように、耐蝕アルミ板材4に外側から接触するよう配置される。ボルト5aの雄ネジ要素は、フレーム部材の雌ネジ要素(たとえば陵部ステンレス層14に設けられる)と螺合するとともに、座金12を(この例では耐蝕アルミ板材4を介して)アモルファス層1およびパーマロイ層3に向けて締め付け固定することができる。
 ボルト5aは、フレーム部材および遮蔽板のそれぞれ対向する面の接触面積ができるだけ大きくなるように、配列することができる。ボルト5aの配列間隔は、たとえばおよそ200mm~250mmの範囲内で選択出来る。各々のボルト5aの締結作業では、トルクドライバー等を使用して、一定の軸力で各部を固定することにより、遮蔽板の脱着の前後で、より安定した遮蔽性能を得ることが出来る。
 図19の例において、縦(高さ)900mm×横(幅)940mmの遮蔽板を用いる場合を考える。図19の様に、上、下、左、右各辺に5ヶ所の合計16ヶ所(角部四ヶ所は重複する)のボルト5aを配することができる。このようにして遮蔽板がフレーム部材に固定される。図7のモデルを用いた実験では、呼び径が4mmのボルト(M4ボルト)に対し、締め付けトルク0.7N/mで管理して遮蔽性能を実測した。この締め付けトルクを用いれば、M4ボルトでの降伏応力の2分の1程度の軸力となるので、ボルトの破断に関しても充分余裕がある。このため、遮蔽板の繰り返しの脱着が可能となり、遮蔽板と遮蔽板の接触も充分確保される。
 MHz帯域の電磁界遮蔽に関して、遮蔽板どうしの微細な隙間によりスロットアンテナを構成した状態となって共振が生じる場合がある。このような場合には、0.5mm~1mm程度の導電性フォーム材を、最外層のアルミ板の周囲端部に装着してもよい。
 たとえば図11の例では、導電性フォーム材は、最外層を構成する遮蔽板の耐蝕アルミ板材4と、陵部接続部材の陵部耐蝕アルミ板材4aとの間の隙間領域Xに、導電性フォーム材が配置される。導電性フォーム材の厚さおよび幅は、パーマロイ層3と陵部パーマロイ層3aとの間の接触が充分に確保できるように選定することが好ましい。
 遮蔽構造の保守または点検の際は、これらのボルト5aおよび座金12による固定を解除する作業が発生する。たとえば遮蔽板の穴部の内径がボルト5aの頭部の外径よりも小さい場合には、ボルト5aを取り外し、再び締結するという作業を、遮蔽板1枚毎に繰り返す作業が発生する。1枚の遮蔽板あたり12~16本のボルト5aを完全に取り外す作業が生じることとなるが、たとえば遮蔽構造1台で、左・右、前・後の四方向に遮蔽板が十枚以上配置される場合には、遮蔽板の脱着だけで膨大な作業を発生させることになる。
 図18に示すように、ボルト固定位置において遮蔽板に設ける穴部の内径は、ボルト5aの頭部の外径よりも大きくなるよう構成することができる。このようにすると、板金成形および穴開け加工時の寸法バラツキを考慮しても、遮蔽板固定の際の精密な位置決めが不要となり、作業効率が向上する。加えて、座金12はボルト5aの軸部からスライドして抜き差しできる形状に構成されており、遮蔽板の脱着作業性の向上が可能となる。
 この構造では、ボルト1本1本について、軸部全体を抜き取るまで回転させる必要は無い。抜き差し可能な座金12を無理なくスライドさせることが可能な程度まで、ボルト5aを回転して緩めることにより、抜き差し可能な座金12を抜き取ることができ、ボルト5aを抜き取らずに遮蔽板を取り外すことが可能となる。
 なお、穴部とボルト5aとの位置合わせに関して、何らかの支持構造を設けてもよい。例えば、図19に示すように、フレーム部材に遮蔽板支持部材17(第3固定部材)を配置してもよい。遮蔽板支持部材17は、たとえば雄ネジ要素を有する構造(ボルト等)と、雌ネジ要素を有する構造(ナットまたはステンレス層等)により構成することができる。遮蔽板支持部材17は、遮蔽板の下辺を支持できるように配置することができる。まず、この遮蔽板支持部材17上に、遮蔽板を、搭載すべき位置で仮置きしておく。次に、その状態で、抜き差し可能な座金12を、ボルト5aの頭部に挟みこんで遮蔽板を仮固定する。その後、各ボルトを所定の締め付けトルクで固定するという方法により、遮蔽構造を組み立てることができる。
 なお、この電磁界遮蔽構造において、遮蔽板支持部材17が遮蔽板をフレーム部材に対して(たとえばステンレス層に対して)固定した状態において、穴部の軸とボルト5aの軸とがある程度整合するよう構成されている。たとえば、穴部の軸心がボルト5aを通るよう構成されている。このようにすると、遮蔽板の取り外し作業がより効率的となる。
 また、実施例4において、さらに作業性を改善するために、図18に示すボルト5aとともに、図19のA部拡大図に示すボルト13を用いている。図20に、ボルト13の形状および作用を示す。ボルト13は、カムレバーを含むカム式の開閉機構を備える。カムレバーはボルト13の頭部に形成される。
 ボルト13および座金12は、カムレバーの回動動作に応じて座金12の軸方向位置範囲が規制されるよう構成されている。たとえば、図20(a)に示すようにカムレバーが閉位置にある場合には、座金12が遮蔽板に押し付けられて固定される。一方で、図20(b)に示すようにカムレバーが開位置にある場合には、座金12が遮蔽板に押し付けられず(たとえば軸方向にわずかに移動可能となり)、図20(c)に示すように座金12を容易に抜き取ることができる。
 また、カムレバーが開位置にある状態では、ボルト13の最大外径が、遮蔽板の穴部の内径より小さくなるよう構成されており、これによって、ボルト13の全体が軸方向に遮蔽板の穴部を通過できるようになっている。このため、座金12を抜き取った後には、図20(d)に示すように、ボルト13を配置したままで遮蔽板を取り外すことができる。この構造は、遮蔽板を再び取り付ける際の固定作業でも、カムレバーの操作による締め付けにより圧接が完了するので、遮蔽板の脱着作業がさらに簡易化できる。
 なお、実施例4のボルト5aおよびボルト13は併用する必要はなく、いずれか一方のみを用いてもよい。
[実施例5]
 実施例5は、実施例1~4において、パーマロイ層3を軟磁性材層に変更するものである。「軟磁性材」の意味および範囲は、当業者が適宜定義可能であるが、たとえば、保持力が比較的小さく、透磁率が比較的大きいことを特徴とする材料をいう。または、たとえば、「硬磁性材」の対義語である(硬磁性材とは、たとえば、磁極が簡単に消えたり反転したりしない材料、すなわち保磁力が大きい材料をいい、いわゆる「磁石」がこれに含まれる)。ただし、パーマロイ材は非常に透磁率が高く保磁力が小さいので、パーマロイ材と比較した場合には、軟磁性材は透磁率が比較的小さく保持力が比較的大きい。以下、実施例1~4との相違を説明する。
 図21に、実施例5に係る電磁界遮蔽板の構成の例を示す。実施例5に係る電磁界遮蔽板は、軟磁性体の電磁鋼板材またはシートからなる電磁鋼層3bと、Fe-Si-B-Cu-Nb系アモルファスの板材またはシートからなるアモルファス層1とを、機械的な手段で重ねて構成される。機械的な手段とは、たとえばボルトを用いた締結固定によるものをいうが、これに限らない。
 「電磁鋼」の意味および範囲は、当業者が適宜定義可能であるが、たとえば、電磁エネルギーと磁気エネルギーとの変換効率が高い鋼材をいう。または、たとえば、大きな抵抗なく磁気を通す、鉄損の少ない鋼材をいう。電磁鋼の具体例は、純鉄、磁性ステンレス、ケイ素鋼、等を含む。電磁鋼によって構成される板材が電磁鋼板である。
 軟磁性体の電磁鋼板材は、所望の性能が得られるものであれば、いかなる材料を用いてもよい。たとえば、圧延後の磁性焼き鈍しまでの加工を完了したフルプロセス材の無方向性電磁鋼板(磁性ステンレスや珪素鋼板等)を採用してもよい。また、ファイバーレーザ加工機による成形または切断を応用してもよい。その場合には、外形加工時に、材料切断部周辺での加熱溶断に伴う局部的な特性変化が発生しても、その他の部分では磁性性能を加工以前の状態で略維持することができる為、焼き鈍し工程を省くことも可能となる。
 軟磁性体の電磁鋼板材を用いると、パーマロイ材(たとえばPCパーマロイ材)と比べ、材料のコストが大幅に低減され、さらに板材の製造工程での磁性焼き鈍しを省略できるので、遮蔽板の製造プロセスが低コスト化され、かつ簡略化される。なお、ここでの磁性焼き鈍しは、たとえば板材の切断成形後に実施されるものであり、たとえば所定の昇温時間および冷却時間を含むものであり、たとえば非酸化性雰囲気中において730℃~1100℃で焼き鈍しを実施するものである。
 但し、実施例5に係る遮蔽板では、軟磁性体の電磁鋼板材をアモルファス材1と積層しているので、アモルファス層1と電磁鋼層3bとの積層化による遮蔽効果が得られるものの、極端に大きな外部磁界が発生した場合には、その後に外部磁界が減少した後も、遮蔽板に磁場が残留した状況となる可能性が想定される。その理由は、電磁鋼板材ではパーマロイ材よりも透磁率が小さいこと、および、保磁力がパーマロイ材よりも大きいことである。
 電磁鋼層3bの厚さは任意に設計可能であるが、厚さを0.5mm以上とすると、用途によっては十分な遮蔽性能を得ることができ、厚さを0.635mm以下とすると、用途によっては重量を十分に軽くすることができる。このように、一実施例では、電磁鋼層3bの厚さは0.500mm~0.635mmの範囲内とすると好適である。
 以下、実施例5に係る遮蔽板と、従来技術に係る遮蔽板とを比較する。まず特許文献4には、鉄道の床下に設置される力率改善用のリアクトル(コイル様部品)からの放射電磁界を、客室において、ペースメーカ等機器へ悪影響を与えない程度にまで、低減することを目的とする遮蔽板が記載されている。
 特許文献4の遮蔽板は、Co系アモルファス材を用いており、実施例5のようなFe-Si-B-Cu-Nb系アモルファス材を用いるものではない。Co系アモルファス材はコストが高く、磁性の経時劣化が大きいという欠点がある。
 また、特許文献4の遮蔽板は、鉄道車両に用いられるものであり、とくに床面外部に装着されるものであるため、他の用途に用いるには厚さが大きすぎるという欠点がある。特許文献4に記載される遮蔽板の一例は、厚さ0.35mmのケイ素鋼鈑25枚と、厚さ0.5mmのCo系アモルファスシート5枚と、厚さ3.2mmのカバー部材2枚とを備え、合計の厚さが17.65mmとなる。また、この例では、1600×1300mmの寸法の部材で、重量は248kgとなる。
 これに対し、本発明の実施例5では厚さがはるかに小さい。たとえば、補強等の目的で追加される耐蝕アルミ板材4を含めても、厚さ1.2mmの耐蝕アルミ板材4と、厚さ0.5mmのアモルファス層1と、厚さ0.5mmの電磁鋼層3bとで、合計の厚さが2.2mm程度に留まる。電磁鋼層3bの厚さの範囲を考慮しても、アモルファス層1と電磁鋼層3bとを合わせた厚さが1.0mm以下、1.1mm以下、1.2mm以下、1.3mm以下、1.4mm以下、または1.5mm以下になるように、設計することが可能である。また、電磁鋼層3bの厚さも、1.0mm以下、1.1mm以下、1.2mm以下、1.3mm以下、1.4mm以下、または1.5mm以下になるように、設計することが可能である。このため、重量についても軽くなる。このように薄く軽い遮蔽板は、半導体製造検査装置の外周部における交番磁界(AC磁場)および電界の遮蔽に有効である。
 また、特許文献6には、核磁気共鳴測定や、SQUIDセンサの応用による生体磁気測定の際に用いられる遮蔽板が記載されている。特許文献6の遮蔽板は、極めて微弱な磁場を測定する際の外乱の抑制を目的とするものである。
 特許文献6の遮蔽板は、アモルファスと強磁性体とを積層するものであり、本発明の実施例5のように、保磁力が小さく、透磁率が高い軟磁性材を用いるものではない。
 また、特許文献6の遮蔽板は、磁性焼き鈍し工程を必須とする。たとえば、冷間圧延により素材を積層した後に、磁性焼き鈍しが行われる。磁性焼き鈍しは、非酸化雰囲気中、350℃で、30分間、15エルステッドの直流磁界中において行われる。このように調定された外部磁場を印加しながら、あるいは磁場の極めて小さい状態で、磁性焼き鈍しを行うのは手間がかかる。
 これに対し、本発明の実施例5では、各層が成形された後には、いずれの層に対しても磁性焼き鈍し工程を行わずに遮蔽板を製造することが可能である。
 図22は、実施例5に係る遮蔽板を製造する方法の一例を説明するフローチャートである。たとえば、アモルファス材を成型してアモルファス層1を製造する工程(ステップS11)と、電磁鋼材を成型して電磁鋼層3bを製造する工程(同じくステップS11)と、アモルファス層1および電磁鋼層を重ねる工程(ステップS12)とを含む方法によって、遮蔽板を製造することができる。すなわち、遮蔽板を製造する方法は、アモルファス層1を製造する工程(ステップS11)および電磁鋼層3bを製造する工程(同じくステップS11)より後には、電磁鋼層3bに対する磁性焼き鈍し工程を含まない。このため、製造工程および構造が極めて単純なものとなる。
 1 アモルファス層、2 樹脂テープ素材(被覆層)、3 パーマロイ層、3a 陵部パーマロイ層、3b 電磁鋼層、3x 第1パーマロイ層、3y 第2パーマロイ層、4 耐蝕アルミ板材、4a 陵部耐蝕アルミ板材、5 ボルト(第1固定部材)、5a ボルト(第2固定部材)、6 補強用板材(補強層)、10 ハニカム材(ハニカム構造部材)、10a 補強部、11 金属製メッシュ(網目状管部材)、12 座金、13 ボルト(第2固定部材)、14 陵部ステンレス層、15 ナット、16 雌ネジ要素、17 遮蔽板支持部材(第3固定部材)、18 条材、19 板材、H 穴部(第1貫通穴部、第2貫通穴部)。

Claims (24)

  1.  パーマロイの板材またはシートからなるパーマロイ層と、Fe-Si-B-Cu-Nb系アモルファスの板材またはシートからなるアモルファス層とを、重ねて構成される電磁界遮蔽板。
  2.  請求項1に記載の電磁界遮蔽板において、前記パーマロイ層と前記アモルファス層とは、電磁界遮蔽領域の全体において接触する、電磁界遮蔽板。
  3.  請求項1に記載の電磁界遮蔽板において、前記アモルファス層の端部または開口部が露出しないよう被覆する被覆層を備える、電磁界遮蔽板。
  4.  請求項1に記載の電磁界遮蔽板において、
     非磁性材料からなる第1固定部材をさらに備え、
     前記パーマロイ層および前記アモルファス層には、それぞれ第1貫通穴部が設けられ、
     前記第1固定部材は、各前記第1貫通穴部において前記パーマロイ層および前記アモルファス層を互いに固定する、
    電磁界遮蔽板。
  5.  請求項1に記載の電磁界遮蔽板において、前記パーマロイ層の厚さは0.500mm~0.635mmの範囲内である、電磁界遮蔽板。
  6.  請求項4に記載の電磁界遮蔽板において、
     1.0mm~1.5mmの範囲内の厚さの耐蝕アルミ板材をさらに備え、
     前記耐蝕アルミ板材は、前記アモルファス層に関して前記パーマロイ層とは反対側に重ねられ、
     前記耐蝕アルミ板材には第1貫通穴部が設けられ、
     前記第1固定部材は、各前記第1貫通穴部において、前記耐蝕アルミ板材、前記パーマロイ層および前記アモルファス層を互いに固定する、
    電磁界遮蔽板。
  7.  請求項6に記載の電磁界遮蔽板において、前記耐蝕アルミ板材と、前記アモルファス層とは、両面に接着層を持つテープ材を介して接着される、電磁界遮蔽板。
  8.  請求項1に記載の電磁界遮蔽板において、前記パーマロイ層はミューメタルの板材またはシートからなる、電磁界遮蔽板。
  9.  請求項1に記載の電磁界遮蔽板において、補強材からなる補強層をさらに備える、電磁界遮蔽板。
  10.  請求項1に記載の電磁界遮蔽板を含む、荷電粒子ビーム装置用の電磁界遮蔽板。
  11.  請求項1に記載の電磁界遮蔽板を含む、走査型電子顕微鏡用の電磁界遮蔽板。
  12.  請求項1に記載の電磁界遮蔽板を含む第1遮蔽板と、
     請求項1に記載の別の電磁界遮蔽板を含む第2遮蔽板と、
     陵部接続部材と
    を備える、電磁界遮蔽構造であって、
     前記陵部接続部材は、少なくとも、パーマロイの板材またはシートからなる陵部パーマロイ層と、1.8mm~2.4mmの範囲内の厚さのオーステナイト系ステンレス材からなる陵部ステンレス層とを、重ねて構成されており、
     前記陵部接続部材は、第1角度をなす陵を有し、前記陵の両側において雌ネジ要素が設けられ、
     前記陵部接続部材の前記陵の片側の少なくとも一部と、前記第1遮蔽板の少なくとも一部とが重なるよう固定され、
     前記陵部接続部材の前記陵の他方側の少なくとも一部と、前記第2遮蔽板の少なくとも一部とが重なるよう固定される、
    電磁界遮蔽構造。
  13.  請求項12に記載の電磁界遮蔽構造において、
     前記陵部接続部材は、外側から内側に向かって、少なくとも、耐蝕アルミ板材と、前記陵部パーマロイ層と、前記陵部ステンレス層とを、重ねて構成されている、電磁界遮蔽構造。
  14.  請求項1に記載の電磁界遮蔽板を含む第1遮蔽板と、
     請求項1に記載の別の電磁界遮蔽板を含む第2遮蔽板と、
     雄ネジ要素が設けられた第2固定部材と、
     雌ネジ要素が設けられたフレーム部材と、
     座金と、
    を備える、電磁界遮蔽構造であって、
     前記パーマロイ層および前記アモルファス層には、それぞれ第2貫通穴部が設けられ、
     前記第2貫通穴部の内径は、前記第2固定部材の頭部の外径よりも大きく、
     前記座金の外径は、前記第2貫通穴部の内径より大きく、
     前記座金の内径は、前記第2固定部材の頭部の外径より小さく、
     前記座金は、前記第2貫通穴部において、前記アモルファス層に関して前記パーマロイ層とは反対側に配置され、
     前記第2固定部材の前記雄ネジ要素は、前記フレーム部材の前記雌ネジ要素と螺合するとともに、前記座金を前記アモルファス層および前記パーマロイ層に向けて締め付け固定することができる、
    電磁界遮蔽構造。
  15.  請求項14に記載の電磁界遮蔽構造において、
     前記第2固定部材はカムレバーを備え、
     前記第2固定部材および前記座金は、前記カムレバーの回動動作に応じて前記座金の軸方向位置範囲が規制されるよう構成されている、
    電磁界遮蔽構造。
  16.  請求項14に記載の電磁界遮蔽構造において、前記電磁界遮蔽構造は、第3固定部材が前記電磁界遮蔽板を前記フレーム部材に対して固定した状態において、前記第2貫通穴部の軸心が前記第2固定部材を通るよう構成されている、電磁界遮蔽構造。
  17.  請求項1に記載の電磁界遮蔽板と、
     50Hz以上の周波数の交流電源によって駆動される半導体製造関連装置と、
    を備える、半導体製造環境。
  18.  請求項1に記載の電磁界遮蔽板を備える電磁界遮蔽構造であって、
     前記電磁界遮蔽構造には、放熱用の開口部が設けられ、
     前記放熱用の開口部には、多数の穴を設けた軟磁性材の板材が装着されている、
    電磁界遮蔽構造。
  19.  請求項1に記載の電磁界遮蔽板を備える電磁界遮蔽構造であって、
     前記電磁界遮蔽構造には、放熱用の開口部が設けられ、
     前記放熱用の開口部には、アルミ基材のハニカム構造部材が装着されており、前記ハニカム構造部材は、その外周部に、板金部材によって構成される補強部を備える、
    電磁界遮蔽構造。
  20.  請求項1に記載の電磁界遮蔽板を備える電磁界遮蔽構造であって、
     前記電磁界遮蔽構造には、ウエハ搬送用の開口部が設けられ、
     前記ウエハ搬送用の開口部には、金属製の通気性を有する網目状管部材が、前記開口部を覆うとともに前記電磁界遮蔽板に密着するよう装着されている、
    電磁界遮蔽構造。
  21.  請求項1に記載の電磁界遮蔽板の製造方法であって、
     前記パーマロイ層として、第1パーマロイ層および第2パーマロイ層を形成するステップと、
     条材を形成するステップと、
     前記第1パーマロイ層および前記第2パーマロイ層に対して磁性焼き鈍し工程を実行するステップと、
     前記磁性焼き鈍し工程の後に、前記第1パーマロイ層の端面と前記第2パーマロイ層の端面とを突き合わせて配置するとともに、突き合わせられた端面に隣接する片面の少なくとも一部を覆うように前記条材を配置するステップと、
     前記第1パーマロイ層と、前記第2パーマロイ層と、前記条材とを、スポット溶接により一体化するステップと
    を備え、
     前記第1パーマロイ層、前記第2パーマロイ層および前記条材は、同一の材料から構成される、
    電磁界遮蔽板の製造方法。
  22.  軟磁性体の電磁鋼板材またはシートからなる電磁鋼層と、Fe-Si-B-Cu-Nb系アモルファスの板材またはシートからなるアモルファス層とを、機械的な手段で重ねて構成される電磁界遮蔽板。
  23.  請求項22に記載の電磁界遮蔽板において、前記電磁鋼層の厚さは1.5mm以下である、電磁界遮蔽板。
  24.  請求項22に記載の電磁界遮蔽板の製造方法であって、
     アモルファス材を成型して前記アモルファス層を製造するステップと、
     電磁鋼材を成型して前記電磁鋼層を製造するステップと、
     前記アモルファス層および前記電磁鋼層を重ねるステップと
    を含み、
     前記製造方法は、前記アモルファス層を製造する前記ステップおよび前記電磁鋼層を製造する前記ステップより後には、前記電磁鋼層に対する磁性焼き鈍し工程を含まない、
    電磁界遮蔽板の製造方法。
PCT/JP2019/000819 2019-01-15 2019-01-15 電磁界遮蔽板、その製造方法、電磁界遮蔽構造、および半導体製造環境 WO2020148796A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2019/000819 WO2020148796A1 (ja) 2019-01-15 2019-01-15 電磁界遮蔽板、その製造方法、電磁界遮蔽構造、および半導体製造環境
US17/294,576 US11690208B2 (en) 2019-01-15 2019-01-15 Electromagnetic field shielding plate, method for manufacturing same, electromagnetic field shielding structure, and semiconductor manufacturing environment
KR1020217014439A KR102567771B1 (ko) 2019-01-15 2019-01-15 전자계 차폐판, 그 제조 방법, 전자계 차폐 구조 및 반도체 제조 환경
JP2020566353A JP7254102B2 (ja) 2019-01-15 2019-01-15 電磁界遮蔽板、その製造方法、電磁界遮蔽構造、および半導体製造環境
CN201980075606.2A CN113615327B (zh) 2019-01-15 2019-01-15 电磁场屏蔽板及其制造方法、屏蔽构造及半导体制造环境
TW109101345A TWI766229B (zh) 2019-01-15 2020-01-15 電磁場遮蔽構造,其製造方法,及半導體製造環境

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000819 WO2020148796A1 (ja) 2019-01-15 2019-01-15 電磁界遮蔽板、その製造方法、電磁界遮蔽構造、および半導体製造環境

Publications (1)

Publication Number Publication Date
WO2020148796A1 true WO2020148796A1 (ja) 2020-07-23

Family

ID=71614484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000819 WO2020148796A1 (ja) 2019-01-15 2019-01-15 電磁界遮蔽板、その製造方法、電磁界遮蔽構造、および半導体製造環境

Country Status (6)

Country Link
US (1) US11690208B2 (ja)
JP (1) JP7254102B2 (ja)
KR (1) KR102567771B1 (ja)
CN (1) CN113615327B (ja)
TW (1) TWI766229B (ja)
WO (1) WO2020148796A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113837A1 (ja) * 2020-11-25 2022-06-02 株式会社エス・エッチ・ティ 電磁鋼板の切断方法及びコアの作製方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11469370B2 (en) * 2018-01-11 2022-10-11 Tdk Corporation Domain wall motion type magnetic recording element
CN114919265A (zh) * 2022-05-05 2022-08-19 北京卫星制造厂有限公司 一种高效屏蔽低频磁场轻质复合材料

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896295U (ja) * 1981-12-23 1983-06-30 日本原子力研究所 磁気シ−ルド
JPH02101598U (ja) * 1989-01-27 1990-08-13
JPH0483396A (ja) * 1990-07-26 1992-03-17 Yokogawa Medical Syst Ltd シールドルーム
JPH05291779A (ja) * 1992-04-07 1993-11-05 Fujita Corp 変動磁場シールド性能測定用シールドボックス
JPH062789U (ja) * 1992-06-17 1994-01-14 シールドルーム販売株式会社 シールドルームの放熱装置
JP2000306971A (ja) * 1999-04-21 2000-11-02 Canon Inc 半導体製造装置、ポッド装着方法および半導体デバイス生産方法
JP2000328691A (ja) * 1999-05-17 2000-11-28 Tokin Corp 電磁波及び磁気シールドルーム並びにその組立方法
JP2007295557A (ja) * 2006-03-31 2007-11-08 Nitta Ind Corp 磁気シールドシート、非接触icカード通信改善方法および非接触icカード収容容器
JP2007299923A (ja) * 2006-04-28 2007-11-15 Takenaka Komuten Co Ltd 磁気シールドパネル及び磁気シールドルーム
JP2007329150A (ja) * 2006-06-06 2007-12-20 Hitachi Metals Ltd 磁気シールドルーム
JP2015505166A (ja) * 2011-12-21 2015-02-16 アモセンス・カンパニー・リミテッドAmosense Co., Ltd. 無線充電器用磁場遮蔽シート及びその製造方法と、それを用いた無線充電器用受信装置
US20150060131A1 (en) * 2013-08-27 2015-03-05 Parker-Hannifin Corporation Homogeneous emi vent panel and method for preparation thereof

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221199A (ja) 1986-03-24 1987-09-29 株式会社 リケン 磁気シ−ルド材
JP2606971B2 (ja) 1991-02-20 1997-05-07 新日本製鐵株式会社 電磁気シールド用材料
JPH066068A (ja) * 1992-06-23 1994-01-14 Fujita Corp 変動磁場シールド性能測定用シールドボックス
JP2837595B2 (ja) 1992-10-22 1998-12-16 株式会社フジタ アモルファス磁気シールド板と磁気シールド工法
JP3325964B2 (ja) * 1993-08-10 2002-09-17 日本電信電話株式会社 電磁シールド筐体
JPH07231191A (ja) 1994-02-15 1995-08-29 Riken Corp 磁界遮へい装置
JPH10145077A (ja) * 1996-11-08 1998-05-29 Fujitsu General Ltd 筐体のシールド構造
JPH1126981A (ja) 1997-07-04 1999-01-29 Hitachi Metals Ltd シールド部材
JP4117860B2 (ja) * 1998-08-17 2008-07-16 Tdk株式会社 電磁波シールド用床構造およびその製造方法
JP2000077890A (ja) * 1998-08-27 2000-03-14 Hitachi Ltd 磁気シールドルーム
JP2000165080A (ja) * 1998-11-25 2000-06-16 Kenwood Corp 電子回路のシールド装置
TWI340623B (en) * 2003-03-17 2011-04-11 Kajima Corp A magnetic shield structure having openings and a magnetic material frame therefor
WO2005026462A1 (en) * 2003-09-12 2005-03-24 Nippon Steel Corporation Magnetic shield panel
AU2005242329B2 (en) 2004-04-30 2008-05-29 Interdigital Technology Corporation Method and apparatus for minimizing redundant enhanced uplink allocation requests and fault-isolating enhanced uplink transmission failures
JP2007251012A (ja) * 2006-03-17 2007-09-27 Hitachi Metals Ltd 磁気シールド装置
JP2008109075A (ja) * 2006-09-26 2008-05-08 Bridgestone Corp 電波吸収材
CN101472455A (zh) * 2007-12-29 2009-07-01 3M创新有限公司 电磁屏蔽衬垫和用于填充电磁屏蔽系统中的间隙的方法
JP5247315B2 (ja) * 2008-09-05 2013-07-24 鹿島建設株式会社 透光性電磁波シールド板
US8247888B2 (en) * 2009-04-28 2012-08-21 Dai Nippon Printing Co., Ltd. Semiconductor device and method for manufacturing metallic shielding plate
JP5896295B2 (ja) 2011-07-04 2016-03-30 東洋紡株式会社 ナノろ過用の分離膜
KR101790684B1 (ko) 2011-11-30 2017-10-26 세이지 까가와 복합 전자파 흡수 시트
JP2013149887A (ja) * 2012-01-23 2013-08-01 Pacific Ind Co Ltd 電磁波シールド方法、電磁波シールドケース及びその製造方法
JP5950617B2 (ja) * 2012-02-22 2016-07-13 三菱電機株式会社 シールド構成体及び電子機器
US9451734B2 (en) * 2012-09-18 2016-09-20 Seiko Epson Corporation Magnetic shielding device and magnetic shielding method
WO2014200035A1 (ja) 2013-06-13 2014-12-18 住友ベークライト株式会社 電磁波シールド用フィルム、および電子部品搭載基板
KR20150085253A (ko) * 2014-01-15 2015-07-23 삼성전기주식회사 복합 페라이트 시트와 그 제조 방법 및 이를 구비하는 전자 기기
TW201601915A (zh) 2014-07-07 2016-01-16 聯茂電子股份有限公司 電磁波干擾遮蔽薄膜
CN106208529B (zh) * 2015-04-30 2018-11-06 韩磊 电动汽车电机控制器的电磁场屏蔽系统
WO2017100030A1 (en) * 2015-12-08 2017-06-15 3M Innovative Properties Company Magnetic isolator, method of making the same, and device containing the same
TWI635384B (zh) * 2016-09-20 2018-09-11 仁寶電腦工業股份有限公司 折疊式電子裝置
CN208128626U (zh) * 2018-04-23 2018-11-20 深圳市景尚科技有限公司 一种适用于PXI和PXIe标准的9U板卡的加强结构
JP6461414B1 (ja) * 2018-08-02 2019-01-30 加川 清二 電磁波吸収複合シート

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896295U (ja) * 1981-12-23 1983-06-30 日本原子力研究所 磁気シ−ルド
JPH02101598U (ja) * 1989-01-27 1990-08-13
JPH0483396A (ja) * 1990-07-26 1992-03-17 Yokogawa Medical Syst Ltd シールドルーム
JPH05291779A (ja) * 1992-04-07 1993-11-05 Fujita Corp 変動磁場シールド性能測定用シールドボックス
JPH062789U (ja) * 1992-06-17 1994-01-14 シールドルーム販売株式会社 シールドルームの放熱装置
JP2000306971A (ja) * 1999-04-21 2000-11-02 Canon Inc 半導体製造装置、ポッド装着方法および半導体デバイス生産方法
JP2000328691A (ja) * 1999-05-17 2000-11-28 Tokin Corp 電磁波及び磁気シールドルーム並びにその組立方法
JP2007295557A (ja) * 2006-03-31 2007-11-08 Nitta Ind Corp 磁気シールドシート、非接触icカード通信改善方法および非接触icカード収容容器
JP2007299923A (ja) * 2006-04-28 2007-11-15 Takenaka Komuten Co Ltd 磁気シールドパネル及び磁気シールドルーム
JP2007329150A (ja) * 2006-06-06 2007-12-20 Hitachi Metals Ltd 磁気シールドルーム
JP2015505166A (ja) * 2011-12-21 2015-02-16 アモセンス・カンパニー・リミテッドAmosense Co., Ltd. 無線充電器用磁場遮蔽シート及びその製造方法と、それを用いた無線充電器用受信装置
US20150060131A1 (en) * 2013-08-27 2015-03-05 Parker-Hannifin Corporation Homogeneous emi vent panel and method for preparation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113837A1 (ja) * 2020-11-25 2022-06-02 株式会社エス・エッチ・ティ 電磁鋼板の切断方法及びコアの作製方法

Also Published As

Publication number Publication date
US20220007556A1 (en) 2022-01-06
US11690208B2 (en) 2023-06-27
JPWO2020148796A1 (ja) 2021-10-14
TW202028478A (zh) 2020-08-01
JP7254102B2 (ja) 2023-04-07
KR102567771B1 (ko) 2023-08-18
TWI766229B (zh) 2022-06-01
CN113615327B (zh) 2023-10-13
KR20210072092A (ko) 2021-06-16
CN113615327A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
WO2020148796A1 (ja) 電磁界遮蔽板、その製造方法、電磁界遮蔽構造、および半導体製造環境
JP2005514797A (ja) 磁気シールドルーム用壁部材及び、磁気シールドルーム
US5777537A (en) Quiet magnetic structures such as power transformers and reactors
JP7047931B2 (ja) 巻鉄心及び変圧器
JP2018113313A (ja) 磁気シールド部材、磁気シールド部材の製造方法及び磁気シールドパネル
JP5930400B2 (ja) 導体回路付き開放型磁気シールド構造
JP5404272B2 (ja) 磁気シールド工法及び構造
JP2007251011A (ja) 磁気シールド部材
JP2725248B2 (ja) 電磁シールド用パネル
EP1220243B2 (en) Electrical steel sheet for low-noise transformer and low-noise transformer
JP2696771B2 (ja) 磁気シールド格子体
JP5865143B2 (ja) 磁気シールド部材
JP2001137212A (ja) 静磁場発生装置及びそれを用いた磁気共鳴イメージング装置
JP2005045165A (ja) 大面積磁気シールドシート及びそれを積層した磁気シールドパネル
JP2007221005A (ja) 磁気シールド部材
JPH09186023A (ja) 低騒音変圧器鉄心
WO2024043283A1 (ja) シート状磁性部材
JP2002374089A (ja) 磁気シールド用磁性積層体および磁気シールド装置
JPH05183290A (ja) 磁気シールド用パネル
JP2606971B2 (ja) 電磁気シールド用材料
JP4919433B2 (ja) 磁気シールド用ブレード材及びその製造方法
JP2006013294A (ja) リアクトル
JP2007317769A (ja) 磁気シールド部材
JP2009218614A (ja) 磁気シールド装置
JP2003257751A (ja) 磁気シールド装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566353

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20217014439

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909638

Country of ref document: EP

Kind code of ref document: A1