WO2020026078A1 - 正極活物質および正極活物質の作製方法 - Google Patents

正極活物質および正極活物質の作製方法 Download PDF

Info

Publication number
WO2020026078A1
WO2020026078A1 PCT/IB2019/056304 IB2019056304W WO2020026078A1 WO 2020026078 A1 WO2020026078 A1 WO 2020026078A1 IB 2019056304 W IB2019056304 W IB 2019056304W WO 2020026078 A1 WO2020026078 A1 WO 2020026078A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
secondary battery
electrode active
lithium
Prior art date
Application number
PCT/IB2019/056304
Other languages
English (en)
French (fr)
Inventor
門馬洋平
落合輝明
三上真弓
斉藤丞
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020237000192A priority Critical patent/KR20230010816A/ko
Priority to CN202211624446.2A priority patent/CN115995554A/zh
Priority to CN202210524402.6A priority patent/CN114853084A/zh
Priority to CN201980004083.2A priority patent/CN111095631A/zh
Priority to JP2020533884A priority patent/JPWO2020026078A1/ja
Priority to DE112019003909.1T priority patent/DE112019003909T5/de
Priority to KR1020217003600A priority patent/KR20210035206A/ko
Priority to KR1020237000191A priority patent/KR20230009528A/ko
Priority to CN202210529086.1A priority patent/CN115000365A/zh
Priority to US17/264,701 priority patent/US20210313571A1/en
Priority to KR1020227018570A priority patent/KR20220080206A/ko
Priority to CN202211626439.6A priority patent/CN115863743A/zh
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to KR1020227018571A priority patent/KR20220082091A/ko
Publication of WO2020026078A1 publication Critical patent/WO2020026078A1/ja
Priority to JP2022067861A priority patent/JP7410208B2/ja
Priority to JP2022067858A priority patent/JP7451592B2/ja
Priority to US17/727,300 priority patent/US20220246931A1/en
Priority to US17/729,236 priority patent/US20220263089A1/en
Priority to JP2022090094A priority patent/JP7344341B2/ja
Priority to JP2022184036A priority patent/JP2023018014A/ja
Priority to JP2022192675A priority patent/JP2023021181A/ja
Priority to JP2022192677A priority patent/JP2023021182A/ja
Priority to JP2023006378A priority patent/JP7401701B2/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One embodiment of the present invention relates to an object, a method, or a manufacturing method. Alternatively, one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter). One embodiment of the present invention relates to a semiconductor device, a display device, a light-emitting device, a power storage device, a lighting device, an electronic device, or a manufacturing method thereof. In particular, the present invention relates to a positive electrode active material that can be used for a secondary battery, a secondary battery, and an electronic device including the secondary battery.
  • a power storage device refers to all elements and devices having a power storage function.
  • a storage battery also referred to as a secondary battery
  • a lithium ion secondary battery such as a lithium ion secondary battery, a lithium ion capacitor, and an electric double layer capacitor are included.
  • electronic devices refer to all devices including a power storage device, and an electro-optical device including a power storage device, an information terminal device including a power storage device, and the like are all electronic devices.
  • lithium-ion rechargeable batteries with high output and high energy density are used in portable information terminals such as mobile phones, smartphones, tablets, and notebook computers, portable music players, digital cameras, medical devices, and next-generation clean energy vehicles (hybrid vehicles).
  • portable information terminals such as mobile phones, smartphones, tablets, and notebook computers, portable music players, digital cameras, medical devices, and next-generation clean energy vehicles (hybrid vehicles).
  • HEV high-voltage
  • EV electric vehicles
  • PHEV plug-in hybrid vehicles
  • Characteristics required for lithium-ion secondary batteries include higher energy density, improved cycle characteristics, safety in various operating environments, and improved long-term reliability.
  • Non-Patent Documents 1 and 2 improvement of the positive electrode active material has been studied with the aim of improving the cycle characteristics and increasing the capacity of the lithium ion secondary battery. Also, research on the crystal structure of the positive electrode active material has been performed (Non-Patent Documents 1 to 3).
  • X-ray diffraction is one of the techniques used for analyzing the crystal structure of the positive electrode active material.
  • ICSD Inorganic Crystal Structure Database
  • Patent Document 3 describes the Jahn-Teller effect in a nickel-based layered oxide.
  • FIG. 01471 Belsky, A .; et @ al. "New Developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of material and research and design", Act. , (2002) B58 @ 364-369.
  • ICSD Inorganic Crystal Structure Database
  • One object of one embodiment of the present invention is to provide a positive electrode active material for a lithium ion secondary battery, which has high capacity and excellent charge / discharge cycle characteristics, and a method for manufacturing the same. Another object is to provide a method for manufacturing a positive electrode active material with high productivity. Another object of one embodiment of the present invention is to provide a positive electrode active material in which a reduction in capacity in a charge and discharge cycle is suppressed by being used for a lithium ion secondary battery. Another object of one embodiment of the present invention is to provide a high-capacity secondary battery. Another object of one embodiment of the present invention is to provide a secondary battery with excellent charge and discharge characteristics.
  • Another object is to provide a positive electrode active material in which a transition metal such as cobalt is prevented from being eluted even when a state charged with a high voltage is held for a long time.
  • Another object of one embodiment of the present invention is to provide a secondary battery with high safety or reliability.
  • Another object of one embodiment of the present invention is to provide a novel substance, an active material particle, a power storage device, or a manufacturing method thereof.
  • One embodiment of the present invention has a composition of R-3m which has lithium, cobalt, magnesium, oxygen, and fluorine, and has a Rietveld analysis of a pattern obtained by powder X-ray diffraction using CuK ⁇ 1 radiation.
  • one embodiment of the present invention is a positive electrode active material including lithium, cobalt, magnesium, oxygen, and fluorine, in which the positive electrode active material is used for a positive electrode, and the lithium ion secondary
  • the battery was charged at a constant current under a 25 ° C. environment until the battery voltage reached 4.7 V, and then charged at a constant voltage until the current value reached 0.01 C.
  • the positive electrode was analyzed by powder X-ray diffraction using CuK ⁇ 1 line.
  • the positive electrode active material has a first diffraction peak in which 2 ⁇ is 19.10 ° to 19.50 ° and a second diffraction peak in which 2 ⁇ is 45.50 ° to 45.60 °, is there.
  • the concentration of magnesium measured by X-ray photoelectron spectroscopy is preferably 1.6 or more and 6.0 or less when the concentration of cobalt is 1.
  • any one of the above structures it is preferable to include nickel, aluminum, and phosphorus.
  • one embodiment of the present invention is a composite oxide including a first step of mixing a lithium source, a fluorine source, and a magnesium source to form a first mixture, and lithium, cobalt, and oxygen.
  • a second step of mixing the material and the first mixture to form a second mixture a third step of heating the second mixture to form a third mixture, and a third mixture
  • a source of aluminum a source of aluminum
  • a fourth step of producing a fourth mixture and a fifth step of heating the fourth mixture to produce a fifth mixture.
  • a method in which the number of aluminum atoms in the aluminum source in the fourth step is 0.001 to 0.02 times the number of cobalt atoms in the third mixture. .
  • the number of magnesium atoms in the magnesium source in the first step may be 0.005 to 0.05 times the number of cobalt atoms in the composite oxide in the second step. preferable.
  • a positive electrode active material for a lithium ion secondary battery which has high capacity and excellent charge / discharge cycle characteristics, and a method for manufacturing the same can be provided. Further, a method for manufacturing a positive electrode active material with high productivity can be provided.
  • a positive electrode active material in which a decrease in capacity in a charge and discharge cycle is suppressed can be provided. Further, a high-capacity secondary battery can be provided. In addition, a secondary battery having excellent charge / discharge characteristics can be provided.
  • a positive electrode active material in which a transition metal such as cobalt is prevented from being eluted even when a state charged with a high voltage is held for a long time. Further, a secondary battery with high safety or high reliability can be provided. Further, a novel substance, active material particles, a power storage device, or a method for manufacturing the same can be provided.
  • FIG. 1 is a diagram illustrating a charge depth and a crystal structure of a positive electrode active material.
  • FIG. 2 is a diagram illustrating the charge depth and the crystal structure of the positive electrode active material.
  • FIG. 3 is an XRD pattern calculated from the crystal structure.
  • FIG. 4A shows a lattice constant calculated from XRD.
  • FIG. 4B shows a lattice constant calculated from XRD.
  • FIG. 4C shows a lattice constant calculated from XRD.
  • FIG. 5A shows a lattice constant calculated from XRD.
  • FIG. 5B shows a lattice constant calculated from XRD.
  • FIG. 5C shows a lattice constant calculated from XRD.
  • FIG. 5A shows a lattice constant calculated from XRD.
  • FIG. 5B shows a lattice constant calculated from XRD.
  • FIG. 5C shows a lattice constant calculated from XRD.
  • FIG. 6 illustrates an example of a method for manufacturing a positive electrode active material of one embodiment of the present invention.
  • FIG. 7 illustrates an example of a method for manufacturing a positive electrode active material of one embodiment of the present invention.
  • FIG. 8 illustrates an example of a method for manufacturing a positive electrode active material of one embodiment of the present invention.
  • FIG. 9 illustrates an example of a method for manufacturing a positive electrode active material of one embodiment of the present invention.
  • FIG. 10A is a cross-sectional view of an active material layer in the case where a graphene compound is used as a conductive additive.
  • FIG. 10B is a cross-sectional view of an active material layer in the case where a graphene compound is used as a conductive additive.
  • FIG. 10A is a cross-sectional view of an active material layer in the case where a graphene compound is used as a conductive additive.
  • FIG. 10B is a cross-sectional view of an active material layer in the case where a graph
  • FIG. 11A illustrates a method for charging a secondary battery.
  • FIG. 11B is a diagram illustrating a method for charging a secondary battery.
  • FIG. 11C illustrates a method for charging a secondary battery.
  • FIG. 12A is a diagram illustrating a method for charging a secondary battery.
  • FIG. 12B is a diagram illustrating a method for charging a secondary battery.
  • FIG. 12C illustrates a method for charging a secondary battery.
  • FIG. 13A is a diagram illustrating a method for charging a secondary battery.
  • FIG. 13B is a diagram illustrating a method for discharging a secondary battery.
  • FIG. 14A illustrates a coin-type secondary battery.
  • FIG. 14B illustrates a coin-type secondary battery.
  • FIG. 14A illustrates a coin-type secondary battery.
  • FIG. 14C is a diagram illustrating current and electrons during charging.
  • FIG. 15A illustrates a cylindrical secondary battery.
  • FIG. 15B illustrates a cylindrical secondary battery.
  • FIG. 15C illustrates a plurality of cylindrical secondary batteries.
  • FIG. 15D illustrates a plurality of cylindrical secondary batteries.
  • FIG. 16A illustrates an example of a battery pack.
  • FIG. 16B is a diagram illustrating an example of a battery pack.
  • FIG. 17A1 illustrates an example of a secondary battery.
  • FIG. 17A2 illustrates an example of a secondary battery.
  • FIG. 17B1 illustrates an example of a secondary battery.
  • FIG. 17B2 illustrates an example of a secondary battery.
  • FIG. 18A illustrates an example of a secondary battery.
  • FIG. 18B illustrates an example of a secondary battery.
  • FIG. 18A illustrates an example of a secondary battery.
  • FIG. 18B illustrates an example of a secondary battery.
  • FIG. 18A illustrate
  • FIG. 19 is a diagram illustrating an example of a secondary battery.
  • FIG. 20A illustrates a laminate type secondary battery.
  • FIG. 20B illustrates a laminate type secondary battery.
  • FIG. 20C illustrates a laminate type secondary battery.
  • FIG. 21A illustrates a laminate type secondary battery.
  • FIG. 21B illustrates a laminate type secondary battery.
  • FIG. 22 is a diagram illustrating an appearance of a secondary battery.
  • FIG. 23 is a diagram illustrating an appearance of a secondary battery.
  • FIG. 24A illustrates a method for manufacturing a secondary battery.
  • FIG. 24B illustrates a method for manufacturing a secondary battery.
  • FIG. 24C illustrates a method for manufacturing a secondary battery.
  • FIG. 25A illustrates a bendable secondary battery.
  • FIG. 25B1 is a diagram illustrating a secondary battery that can be bent.
  • FIG. 25B2 is a diagram illustrating a secondary battery that can be bent.
  • FIG. 25C illustrates a bendable secondary battery.
  • FIG. 25D illustrates a bendable secondary battery.
  • FIG. 26A illustrates a bendable secondary battery.
  • FIG. 26B illustrates a bendable secondary battery.
  • FIG. 27A illustrates an example of an electronic device.
  • FIG. 27B illustrates an example of an electronic device.
  • FIG. 27C illustrates an example of an electronic device.
  • FIG. 27D illustrates an example of an electronic device.
  • FIG. 27E illustrates an example of an electronic device.
  • FIG. 27F illustrates an example of an electronic device.
  • FIG. 27G illustrates an example of an electronic device.
  • FIG. 27A illustrates an example of an electronic device.
  • FIG. 27B illustrates an example of an electronic device.
  • FIG. 27C illustrates an example of an electronic device.
  • FIG. 27H illustrates an example of an electronic device.
  • FIG. 28A illustrates an example of an electronic device.
  • FIG. 28B illustrates an example of an electronic device.
  • FIG. 28C illustrates an example of an electronic device.
  • FIG. 29 illustrates an example of an electronic device.
  • FIG. 30A illustrates an example of a vehicle.
  • FIG. 30B is a diagram illustrating an example of a vehicle.
  • FIG. 30C illustrates an example of a vehicle.
  • FIG. 31A shows the continuous charge resistance of the secondary battery.
  • FIG. 31B shows the continuous charge resistance of the secondary battery.
  • FIG. 32A shows the continuous charge resistance of the secondary battery.
  • FIG. 32B shows the continuous charge resistance of the secondary battery.
  • FIG. 33A shows the cycle characteristics of the secondary battery.
  • FIG. 33B shows the cycle characteristics of the secondary battery.
  • FIG. 33A shows the cycle characteristics of the secondary battery.
  • FIG. 33B shows the cycle characteristics of the secondary battery.
  • FIG. 34A shows an XRD evaluation result of the positive electrode.
  • FIG. 34B shows an XRD evaluation result of the positive electrode.
  • FIG. 35A shows an XRD evaluation result of the positive electrode.
  • FIG. 35B shows the XRD evaluation result of the positive electrode.
  • FIG. 36A shows the continuous charge resistance of the secondary battery.
  • FIG. 36B shows the continuous charge resistance of the secondary battery.
  • FIG. 37 shows the cycle characteristics of the secondary battery.
  • FIG. 38A shows a charge / discharge curve of a secondary battery.
  • FIG. 38B is a charge / discharge curve of a secondary battery.
  • FIG. 38C shows a charge / discharge curve of the secondary battery.
  • FIG. 39A is a TEM observation result of the positive electrode active material.
  • FIG. 39B shows an EDX analysis result of the positive electrode active material.
  • FIG. 40A shows an XRD evaluation result of the positive electrode.
  • FIG. 40B shows an XRD evaluation result of the positive electrode.
  • the crystal plane and direction are indicated by Miller index.
  • the notation of the crystal plane and direction is indicated by a superscript bar on the number in crystallography, but in this specification and the like, due to the restriction of the notation of the application, instead of adding the bar on the number,-(minus) is used before the number. (Symbol).
  • the individual orientation indicating the direction in the crystal is []
  • the collective orientation indicating all equivalent directions is ⁇ >
  • the individual plane indicating the crystal plane is ()
  • the collective plane having equivalent symmetry is ⁇ .
  • segregation refers to a phenomenon in which a certain element (for example, B) is spatially unevenly distributed in a solid composed of a plurality of elements (for example, A, B, and C).
  • the surface layer of particles of an active material or the like refers to a region from the surface to about 10 nm.
  • the surface caused by cracks and cracks may also be called the surface.
  • a region deeper than the surface layer portion is called an inside.
  • the layered rock salt crystal structure of a composite oxide containing lithium and a transition metal has a rock salt ion arrangement in which cations and anions are alternately arranged, and the transition metal and lithium are It refers to a crystal structure in which lithium can be two-dimensionally diffused because a two-dimensional plane is formed by regular arrangement. There may be a defect such as a cation or anion defect. Strictly speaking, the layered rock salt crystal structure may have a structure in which the lattice of the rock salt crystal is distorted.
  • the rock-salt-type crystal structure refers to a structure in which cations and anions are alternately arranged. There may be a cation or anion defect.
  • the pseudo-spinel crystal structure of a composite oxide containing lithium and a transition metal is a space group of R-3 m, which is not a spinel crystal structure. It refers to a crystal structure occupying the oxygen 6 coordination position and having a cation arrangement similar to that of the spinel type.
  • a light element such as lithium may occupy the oxygen four-coordinate position, and also in this case, the arrangement of ions has symmetry similar to that of the spinel type.
  • the pseudo-spinel type crystal structure is a crystal structure similar to the CdCl 2 type crystal structure although having Li at random between layers.
  • the crystal structure similar to the CdCl 2 type is similar to the crystal structure when lithium nickelate is charged to a charge depth of 0.94 (Li 0.06 NiO 2 ), but contains a large amount of pure lithium cobaltate or cobalt. It is known that a layered rock salt-type positive electrode active material usually does not have this crystal structure.
  • the layered rock-salt crystals and the anions of the rock-salt crystals have a cubic close-packed structure (face-centered cubic lattice structure). It is presumed that also in the pseudo spinel type crystal, the anion has a cubic close-packed structure. When they are in contact, there exists a crystal plane in which the orientation of the cubic close-packed structure constituted by the anions is aligned.
  • the space group of the layered rock salt type crystal and the pseudo spinel type crystal is R-3m
  • the space group of the rock salt type crystal Fm-3m (space group of a general rock salt type crystal) and Fd-3m (the simplest symmetry) Therefore, the mirror index of the crystal plane satisfying the above conditions is different between the layered rock salt type crystal and the pseudo spinel type crystal and the rock salt type crystal.
  • the orientation of the cubic close-packed structure composed of anions is aligned, it may be said that the orientation of the crystals is substantially the same. is there.
  • TEM transmission electron microscope
  • STEM scanning transmission electron microscope
  • HAADF-STEM high angle scattering annular dark field scanning transmission electron microscope
  • ABF-STEM Carcular bright field scanning transmission electron microscope
  • the angle formed by the repetition of the bright line and the dark line between the crystals is 5 degrees or less, and more preferably 2.5 degrees or less. Observable. In some cases, light elements such as oxygen and fluorine cannot be clearly observed in a TEM image or the like. In such a case, the alignment of the metal elements can be used to determine the coincidence of orientation.
  • the theoretical capacity of a positive electrode active material refers to the amount of electricity when all the insertable and removable lithium included in the positive electrode active material is desorbed.
  • the theoretical capacity of LiCoO 2 is 274 mAh / g
  • the theoretical capacity of LiNiO 2 is 274 mAh / g
  • the theoretical capacity of LiMn 2 O 4 is 148 mAh / g.
  • the charge depth when all the insertable and desorbable lithium is inserted is 0, and the charge depth when all the insertable and desorbable lithium included in the positive electrode active material is desorbed is 1.
  • charging refers to moving lithium ions from a positive electrode to a negative electrode in a battery and moving electrons from a negative electrode to a positive electrode in an external circuit.
  • the positive electrode active material the release of lithium ions is called charging.
  • a positive electrode active material having a charge depth of 0.7 or more and 0.9 or less may be referred to as a high-voltage charged positive electrode active material.
  • discharge refers to moving lithium ions from a negative electrode to a positive electrode in a battery and moving electrons from a positive electrode to a negative electrode in an external circuit.
  • inserting lithium ions is referred to as discharging.
  • a positive electrode active material having a charge depth of 0.06 or less, or a positive electrode active material having discharged a capacity of 90% or more of a charged capacity from a state charged at a high voltage is referred to as a sufficiently discharged positive electrode active material. .
  • a non-equilibrium phase change refers to a phenomenon that causes a non-linear change in a physical quantity.
  • a non-equilibrium phase change occurs before and after a peak in a dQ / dV curve obtained by differentiating a capacitance (Q) with a voltage (V), and the crystal structure is largely changed. .
  • a material having a layered rock salt type crystal structure such as lithium cobalt oxide (LiCoO 2 ) has a high discharge capacity and is excellent as a positive electrode active material of a secondary battery.
  • a material having a layered rock salt type crystal structure for example, a composite oxide represented by LiMO 2 can be given.
  • the element M one or more selected from Co or Ni can be given.
  • the element M include one or more selected from Al and Mn in addition to one or more selected from Co and Ni.
  • FIGS. 1 and 2 illustrate a case where cobalt is used as a transition metal included in a positive electrode active material.
  • the positive electrode active material 100C illustrated in FIG. 2 is lithium cobalt oxide (LiCoO 2 ) to which halogen and magnesium are not added in a manufacturing method described later.
  • LiCoO 2 lithium cobalt oxide
  • the crystal structure of lithium cobaltate shown in FIG. 2 changes depending on the depth of charge.
  • lithium cobalt oxide having a charge depth of 0 (discharged state) has a region having a crystal structure of space group R-3m, and three CoO 2 layers exist in a unit cell. Therefore, this crystal structure may be called an O3-type crystal structure.
  • the CoO 2 layer refers to a structure in which an octahedral structure in which oxygen is coordinated to cobalt by six coordinates is continuous on a plane in a state where edges are shared.
  • the crystal When the charge depth is 1, the crystal has the crystal structure of the space group P-3m1, and one CoO 2 layer exists in the unit cell. Therefore, this crystal structure may be called an O1-type crystal structure.
  • lithium cobalt oxide has a crystal structure of space group R-3m.
  • This structure can be said to be a structure in which a structure of CoO 2 such as P-3m1 (O1) and a structure of LiCoO 2 such as R-3m (O3) are alternately stacked. Therefore, this crystal structure may be called an H1-3 type crystal structure.
  • the number of cobalt atoms per unit cell in the H1-3 type crystal structure is twice as large as that in other structures.
  • the c-axis of the H1-3 type crystal structure is shown as a half of a unit cell for easy comparison with other structures.
  • the coordinates of cobalt and oxygen in a unit cell are represented by Co (0, 0, 0.42150 ⁇ 0.00016), O 1 (0 , 0, 0.27671 ⁇ 0.00045) and O 2 (0, 0, 0.11535 ⁇ 0.00045).
  • O 1 and O 2 are each an oxygen atom.
  • the H1-3 type crystal structure is represented by a unit cell using one cobalt and two oxygens.
  • the pseudo spinel-type crystal structure of one embodiment of the present invention is preferably represented by a unit cell using one cobalt and one oxygen.
  • Lithium oxide repeatedly changes its crystal structure (ie, non-equilibrium phase change) between the H1-3 type crystal structure and the structure of R-3m (O3) in a discharged state.
  • the difference in volume is also large.
  • the volume difference between the H1-3 type crystal structure and the O3 type crystal structure in the discharged state is 3.0% or more.
  • the structure in which the CoO 2 layer is continuous such as P-3m1 (O1), which the H1-3 type crystal structure has, is highly likely to be unstable.
  • the crystal structure of lithium cobalt oxide will be destroyed when high voltage charging and discharging are repeated.
  • the collapse of the crystal structure causes deterioration of the cycle characteristics. This is presumably because the collapse of the crystal structure reduces the number of sites where lithium can stably exist, and makes it difficult to insert and remove lithium.
  • the positive electrode active material of one embodiment of the present invention can reduce the displacement of the CoO 2 layer in repeated high-voltage charge and discharge. Further, a change in volume can be reduced. Thus, the positive electrode active material of one embodiment of the present invention can achieve excellent cycle characteristics. Further, the positive electrode active material of one embodiment of the present invention can have a stable crystal structure in a high-voltage charged state. Therefore, in the positive electrode active material of one embodiment of the present invention, in some cases, a short circuit is less likely to occur when a high-voltage charge state is maintained. Such a case is preferable because the safety is further improved.
  • the difference in crystal structure between the fully discharged state and the state charged at a high voltage and the difference in volume between the same number of transition metal atoms are small.
  • FIG. 2 shows the crystal structure of the positive electrode active material 100A before and after charge and discharge.
  • the positive electrode active material 100A is a composite oxide including lithium, cobalt, and oxygen. It is preferable to have magnesium in addition to the above. Further, it preferably contains halogen such as fluorine and chlorine.
  • the crystal structure at the state of charge 0 (discharged state) in FIG. 2 is R-3m (O3), which is the same as in FIG.
  • the positive electrode active material 100A has a crystal having a structure different from the H1-3 type crystal structure.
  • This structure is in the space group R-3m, and although not a spinel-type crystal structure, ions such as cobalt and magnesium occupy the oxygen 6 coordination position, and the arrangement of cations has a symmetry similar to that of the spinel-type. Therefore, this structure is referred to as a pseudo-spinel crystal structure in this specification and the like.
  • a light element such as lithium may occupy the oxygen four-coordinate position, and in this case also, the ion arrangement has symmetry similar to that of the spinel.
  • the pseudo-spinel type crystal structure is a crystal structure similar to the CdCl 2 type crystal structure although having Li at random between layers.
  • the crystal structure similar to the CdCl 2 type is similar to the crystal structure when lithium nickelate is charged to a charge depth of 0.94 (Li 0.06 NiO 2 ), but contains a large amount of pure lithium cobaltate or cobalt. It is known that a layered rock salt-type positive electrode active material usually does not have this crystal structure.
  • the layered rock-salt crystals and the anions of the rock-salt crystals have a cubic close-packed structure (face-centered cubic lattice structure). It is presumed that also in the pseudo spinel type crystal, the anion has a cubic close-packed structure. When they are in contact, there exists a crystal plane in which the orientation of the cubic close-packed structure constituted by the anions is aligned.
  • the space group of the layered rock salt type crystal and the pseudo spinel type crystal is R-3m
  • the space group of the rock salt type crystal Fm-3m (space group of a general rock salt type crystal) and Fd-3m (the simplest symmetry) Therefore, the mirror index of the crystal plane satisfying the above conditions is different between the layered rock salt type crystal and the pseudo spinel type crystal and the rock salt type crystal.
  • the orientation of the cubic close-packed structure composed of anions is aligned, it may be said that the orientation of the crystals is substantially the same. is there.
  • the positive electrode active material 100A In the positive electrode active material 100A, a change in crystal structure when a large amount of lithium is released due to charging at a high voltage is suppressed more than in the positive electrode active material 100C. For example, as shown by the dotted line in FIG. 2, there is almost no displacement of the CoO 2 layer in these crystal structures.
  • the positive electrode active material 100A has high structural stability even when the charging voltage is high.
  • the positive electrode active material 100C has a charge voltage that forms an H1-3 type crystal structure, for example, a voltage of about 4.6 V based on the potential of lithium metal
  • the positive electrode active material 100A has an R-3m (O3) crystal structure.
  • the H1-3 type crystal may be observed in some cases.
  • the charging voltage that can maintain the crystal structure of R-3m (O3) can be maintained.
  • the charging voltage is further increased, for example, a region where a pseudo spinel type crystal structure can be obtained even at a voltage of 4.35 V or more and 4.55 V or less based on the potential of lithium metal.
  • the crystal structure is not easily broken even when charge and discharge are repeated at a high voltage.
  • the coordinates of cobalt and oxygen in the unit cell are represented by Co (0, 0, 0.5), O (0, 0, x), and 0.20 ⁇ x ⁇ 0.25. Can be shown within.
  • a halogen compound such as a fluorine compound
  • lithium cobalt oxide before the heat treatment for distributing magnesium to the whole particles.
  • the addition of the halogen compound causes a decrease in the melting point of lithium cobaltate. By lowering the melting point, it becomes easy to distribute magnesium throughout the particles at a temperature at which cation mixing does not easily occur. Furthermore, if a fluorine compound is present, it can be expected that the corrosion resistance to hydrofluoric acid generated by decomposition of the electrolytic solution is improved.
  • the magnesium concentration is increased to a desired value or more, the effect on stabilizing the crystal structure may be reduced. It is considered that magnesium comes to enter the cobalt site in addition to the lithium site.
  • the number of atoms of magnesium contained in the positive electrode active material of one embodiment of the present invention is preferably 0.001 to 0.1 times, more preferably 0.01 to less than 0.04 times the number of cobalt atoms, About 0.02 times is more preferable.
  • the concentration of magnesium shown here may be, for example, a value obtained by performing elemental analysis of the whole particles of the positive electrode active material using ICP-MS or the like, or may be a value of the blending of the raw materials in the process of producing the positive electrode active material. May be based.
  • metal Z As a metal other than cobalt (hereinafter, metal Z), for example, one or more metals selected from nickel, aluminum, manganese, titanium, vanadium, and chromium may be added to lithium cobaltate. It is preferred to add. Manganese, titanium, vanadium, and chromium may be stable and easily tetravalent, and may contribute to structural stability in some cases.
  • the metal Z in the positive electrode active material of one embodiment of the present invention, for example, the crystal structure may be more stable in a charged state at a high voltage.
  • the metal Z is preferably added at a concentration that does not significantly change the crystallinity of lithium cobalt oxide.
  • the amount is preferably such that the above-described yarn-Teller effect or the like is not exhibited.
  • the capacity of the positive electrode active material may decrease as the magnesium concentration of the positive electrode active material of one embodiment of the present invention increases. For example, it is conceivable that the amount of lithium contributing to charging and discharging may be reduced by magnesium entering lithium sites. Further, excessive magnesium may generate a magnesium compound that does not contribute to charge and discharge.
  • the positive electrode active material of one embodiment of the present invention includes nickel as the metal Z in addition to magnesium, the capacity per weight and per volume can be increased in some cases.
  • the positive electrode active material of one embodiment of the present invention includes aluminum as the metal Z in addition to magnesium, the capacity per weight and per volume can be increased in some cases.
  • the positive electrode active material of one embodiment of the present invention includes nickel and aluminum in addition to magnesium, the capacity per weight and per volume can be increased in some cases.
  • the concentrations of elements such as magnesium and metal Z included in the positive electrode active material of one embodiment of the present invention are represented by the number of atoms.
  • the number of nickel atoms of the positive electrode active material of one embodiment of the present invention is preferably 7.5% or less, more preferably 0.05% or more and 4% or less, and 0.1% or more and 2% or less of the number of cobalt atoms. Is more preferred.
  • the concentration of nickel shown here may be, for example, a value obtained by performing an elemental analysis of the whole particles of the positive electrode active material using ICP-MS or the like, or a value of the blending of the raw materials in the process of producing the positive electrode active material. May be based.
  • the number of atoms of aluminum included in the positive electrode active material of one embodiment of the present invention is preferably 0.05% or more and 4% or less, more preferably 0.1% or more and 2% or less of the number of cobalt atoms.
  • the concentration of aluminum shown here may be, for example, a value obtained by performing elemental analysis of the whole particles of the positive electrode active material using ICP-MS or the like, or may be a value of the blending of the raw materials in the process of producing the positive electrode active material. May be based.
  • the positive electrode active material of one embodiment of the present invention preferably has the element X, and preferably uses phosphorus as the element X. It is more preferable that the positive electrode active material of one embodiment of the present invention include a compound containing phosphorus and oxygen.
  • the positive electrode active material of one embodiment of the present invention includes the compound containing the element X, a short circuit is less likely to occur when a high-voltage charge state is maintained.
  • the positive electrode active material of one embodiment of the present invention has phosphorus as the element X
  • hydrogen fluoride generated by decomposition of the electrolyte reacts with phosphorus, and the concentration of hydrogen fluoride in the electrolyte may decrease. is there.
  • hydrogen fluoride When the electrolyte has LiPF 6 , hydrogen fluoride may be generated by hydrolysis. Hydrogen fluoride may be generated by a reaction between PVDF used as a component of the positive electrode and an alkali. When the concentration of hydrogen fluoride in the electrolytic solution decreases, corrosion of the current collector and peeling of the film may be suppressed in some cases. In some cases, a decrease in adhesiveness due to gelation or insolubilization of PVDF may be suppressed.
  • the positive electrode active material of one embodiment of the present invention contains magnesium in addition to the element X, stability in a high-voltage charged state is extremely high.
  • the element X is phosphorus
  • the number of phosphorus atoms is preferably 1% or more and 20% or less, more preferably 2% or more and 10% or less, still more preferably 3% or more and 8% or less of the number of cobalt atoms.
  • the number of atoms of magnesium is preferably 0.1% or more and 10% or less of the number of atoms of cobalt, more preferably 0.5% or more and 5% or less, and more preferably 0.7% or more and 4% or less.
  • the concentration of phosphorus and magnesium shown here may be, for example, a value obtained by performing an elemental analysis of the whole particles of the positive electrode active material using ICP-MS or the like, or the concentration of the raw materials in the process of producing the positive electrode active material. It may be based on a value.
  • the progress of the crack may be suppressed by the presence of phosphorus, more specifically, for example, a compound containing phosphorus and oxygen.
  • Magnesium is preferably distributed over the entire particles of the positive electrode active material 100A, and in addition, the magnesium concentration in the surface layer of the particles is preferably higher than the average of the entire particles. For example, it is preferable that the magnesium concentration in the surface layer of the particles measured by XPS or the like is higher than the average magnesium concentration of the whole particles measured by ICP-MS or the like.
  • the concentration of the metal in the surface layer of the particles is higher than the average of the entire particles. High is preferred. For example, it is preferable that the concentration of an element other than cobalt in the surface layer of the particle measured by XPS or the like is higher than the concentration of the element in the average of the whole particles measured by ICP-MS or the like.
  • the surface of the particle is a portion where the lithium concentration is more likely to be lower than that of the inside because lithium escapes from the surface during charging in addition to crystal defects. Therefore, it is a portion that is likely to be unstable and the crystal structure is easily broken. If the magnesium concentration in the surface layer is high, the change in the crystal structure can be more effectively suppressed. Also, when the magnesium concentration in the surface layer is high, it can be expected that the corrosion resistance to hydrofluoric acid generated by decomposition of the electrolytic solution is improved.
  • the concentration of the halogen such as fluorine in the surface layer portion of the positive electrode active material 100A is higher than the average of the whole particles.
  • the presence of halogen in the surface layer, which is a region in contact with the electrolytic solution, can effectively improve the corrosion resistance to hydrofluoric acid.
  • the surface layer of the positive electrode active material 100A has a composition different from the inside, in which the concentrations of magnesium and fluorine are higher than the inside. It is preferable that the composition has a stable crystal structure at room temperature. For this reason, the surface layer may have a different crystal structure from the inside. For example, at least a part of the surface layer of the positive electrode active material 100A may have a rock salt type crystal structure. When the surface layer portion and the inside have different crystal structures, it is preferable that the orientation of the crystal in the surface layer portion and the inside of the surface layer portion substantially match.
  • the surface layer is made of only MgO or only a structure in which MgO and CoO (II) are dissolved, it becomes difficult to insert and remove lithium. Therefore, it is necessary that the surface layer portion has at least cobalt, has lithium in a discharged state, and has a path for insertion and desorption of lithium. Further, it is preferable that the concentration of cobalt is higher than that of magnesium.
  • the element X is located near the surface of the particles of the positive electrode active material 100A.
  • the positive electrode active material 100A may be covered with a film containing the element X.
  • the magnesium or halogen included in the positive electrode active material 100A may be present randomly and dilutely in the inside, but it is more preferable that a part thereof is segregated at the grain boundary.
  • the magnesium concentration in the crystal grain boundary of the positive electrode active material 100A and the vicinity thereof is also higher than the other regions inside.
  • the halogen concentration in the crystal grain boundary and in the vicinity thereof is higher than that in other regions inside.
  • the grain boundaries are also plane defects. As a result, the crystal structure tends to be unstable, and the crystal structure tends to change. Therefore, if the magnesium concentration at and near the crystal grain boundary is high, the change in the crystal structure can be more effectively suppressed.
  • the concentration of magnesium and halogen in the crystal grain boundary and the vicinity thereof is high, even when a crack occurs along the crystal grain boundary of the particles of the positive electrode active material 100A, the concentration of magnesium and halogen in the vicinity of the surface caused by the crack is low. Get higher. Therefore, the corrosion resistance to hydrofluoric acid can be improved even in the positive electrode active material after the crack has occurred.
  • the vicinity of a crystal grain boundary refers to a region from the grain boundary to about 10 nm.
  • the average particle diameter is preferably from 1 ⁇ m to 100 ⁇ m, more preferably from 2 ⁇ m to 40 ⁇ m, even more preferably from 5 ⁇ m to 30 ⁇ m.
  • a certain positive electrode active material is the positive electrode active material 100A of one embodiment of the present invention, which exhibits a pseudo-spinel crystal structure when charged at a high voltage, determines whether a positive electrode charged at a high voltage is XRD, The determination can be made by analyzing using line diffraction, neutron diffraction, electron spin resonance (ESR), nuclear magnetic resonance (NMR) and the like.
  • ESR electron spin resonance
  • NMR nuclear magnetic resonance
  • XRD can analyze the symmetry of transition metals such as cobalt in the positive electrode active material with high resolution, can compare the crystallinity and crystal orientation, and can analyze the periodic distortion of the lattice and the crystallite size. It is preferable because sufficient accuracy can be obtained even if the positive electrode obtained by disassembling the secondary battery can be measured as it is.
  • the positive electrode active material 100A of one embodiment of the present invention is characterized in that there is little change in crystal structure between a state charged at a high voltage and a discharged state.
  • a material occupying 50 wt% or more of a crystal structure which largely changes from a discharged state in a state charged at a high voltage is not preferable because it cannot withstand high voltage charging and discharging.
  • the desired crystal structure may not be obtained only by adding the impurity element. For example, even if lithium cobaltate having magnesium and fluorine is common, the pseudo spinel type crystal structure becomes 60 wt% or more when charged at a high voltage, and the H1-3 type crystal structure becomes 50 wt%. There are cases where the above is occupied.
  • the pseudo spinel type crystal structure becomes almost 100 wt%, and when the predetermined voltage is further increased, an H1-3 type crystal structure may be generated. Therefore, in order to determine whether or not the positive electrode active material 100A of one embodiment of the present invention is used, it is necessary to analyze a crystal structure including XRD.
  • the positive electrode active material charged or discharged at a high voltage may change its crystal structure when exposed to the air.
  • the crystal structure may change from a pseudo spinel type crystal structure to an H1-3 type crystal structure. Therefore, it is preferable to handle all the samples in an inert atmosphere such as an argon atmosphere.
  • a coin cell (CR2032 type, diameter: 20 mm, height: 3.2 mm) is manufactured using, for example, lithium counter electrode. Can be charged.
  • a slurry in which a positive electrode active material, a conductive additive, and a binder are mixed and applied to a positive electrode current collector of aluminum foil can be used.
  • Lithium metal can be used for the counter electrode.
  • the potential of the secondary battery is different from the potential of the positive electrode. Voltage and potential in this specification and the like refer to the potential of a positive electrode unless otherwise specified.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • VC vinylene carbonate
  • a 25 ⁇ m thick polypropylene can be used for the separator.
  • the positive electrode can and the negative electrode can be made of stainless steel (SUS).
  • the coin cell manufactured under the above conditions is charged at a constant current of 4.6 V and 0.5 C, and then charged at a constant voltage until the current value becomes 0.01 C.
  • 1C is 137 mA / g.
  • the temperature is 25 ° C.
  • the coin cell is disassembled in a glove box in an argon atmosphere and the positive electrode is taken out to obtain a positive electrode active material charged at a high voltage.
  • XRD can be performed by sealing in a sealed container in an argon atmosphere.
  • FIG. 3 shows an ideal powder XRD pattern by a CuK ⁇ 1 line calculated from a model of a pseudo spinel type crystal structure and an H1-3 type crystal structure.
  • an ideal XRD pattern calculated from the crystal structures of LiCoO 2 (O3) at a charge depth of 0 and CoO 2 (O1) at a charge depth of 1 is also shown.
  • the pattern of LiCoO 2 (O3) and CoO 2 (O1) is one of the Materials Studio (BIOVIA) modules from crystal structure information obtained from ICSD (Inorganic Crystal Structure Database) (see Non-Patent Document 5). Created using Reflex Powder Diffraction.
  • the pattern of the H1-3 type crystal structure was similarly created from the crystal structure information described in Non-Patent Document 3.
  • the pattern of the pseudo spinel-type crystal structure was estimated from the XRD pattern of the positive electrode active material of one embodiment of the present invention, and the value of TOPAS ver. 3 (Bruker's crystal structure analysis software), and an XRD pattern was created in the same manner as in the other methods.
  • the positive electrode active material 100A of one embodiment of the present invention has a pseudo-spinel crystal structure when charged at a high voltage; however, all of the particles need not have a pseudo-spinel crystal structure. Other crystal structures may be included, or some may be amorphous.
  • the pseudo spinel type crystal structure is preferably at least 50 wt%, more preferably at least 60 wt%, and even more preferably at least 66 wt%.
  • the pseudo spinel type crystal structure is at least 50 wt%, more preferably at least 60 wt%, and even more preferably at least 66 wt%, a positive electrode active material having sufficiently excellent cycle characteristics can be obtained.
  • the pseudo spinel type crystal structure is preferably 35% by weight or more, more preferably 40% by weight or more, and 43% by weight when Rietveld analysis is performed. More preferably, it is the above.
  • the crystallite size of the pseudo spinel type crystal structure of the particles of the positive electrode active material is reduced only to about 1/10 of LiCoO 2 (O 3) in a discharged state. Therefore, even under the same XRD measurement conditions as for the positive electrode before charging and discharging, a clear peak of a pseudo spinel-type crystal structure can be confirmed after high-voltage charging.
  • the crystallite size is small and the peak is broad and small, even if a part thereof can have a structure similar to the pseudo spinel type crystal structure.
  • the crystallite size can be determined from the half width of the XRD peak.
  • the positive electrode active material of one embodiment of the present invention it is preferable that the influence of the Jahn-Teller effect is small. It is preferable that the positive electrode active material of one embodiment of the present invention have a layered rock salt crystal structure and mainly include cobalt as a transition metal. In the positive electrode active material of one embodiment of the present invention, the metal Z described above may be included in addition to cobalt as long as the influence of the Jahn-Teller effect is small.
  • the range of the lattice constant which is estimated to have a small influence of the Jahn-Teller effect, is considered using XRD analysis.
  • FIGS. 4A and 4B show a-axis and c-axis lattices using XRD when the positive electrode active material of one embodiment of the present invention has a layered rock-salt crystal structure and has cobalt and nickel.
  • the result of estimating the constant is shown.
  • FIG. 4A shows the results on the a-axis
  • FIG. 4B shows the results on the c-axis.
  • the XRD used for calculating the lattice constants shown in FIGS. 4A and 4B is a powder after synthesizing the positive electrode active material and before being incorporated into the positive electrode.
  • the nickel concentration on the horizontal axis indicates the nickel concentration when the sum of the number of atoms of cobalt and nickel is 100%.
  • the positive electrode active material was produced using steps S21 to S25 described later, and a cobalt source and a nickel source were used in step S21.
  • the nickel concentration indicates the nickel concentration when the sum of the number of atoms of cobalt and nickel is set to 100% in step S21.
  • FIGS. 5A and 5B show the case where the positive electrode active material of one embodiment of the present invention has a layered rock-salt crystal structure and has cobalt and manganese, and has an a-axis and a c-axis using XRD.
  • the result of estimating the lattice constant is shown.
  • FIG. 5A shows the results on the a-axis
  • FIG. 5B shows the results on the c-axis.
  • the XRD used for calculating the lattice constants shown in FIGS. 5A and 5B is a powder after synthesizing the positive electrode active material, and before the incorporation into the positive electrode.
  • the manganese concentration on the horizontal axis indicates the manganese concentration when the sum of the number of atoms of cobalt and manganese is 100%.
  • the positive electrode active material was produced using steps S21 to S25 described later, and a cobalt source and a manganese source were used in step S21.
  • the manganese concentration indicates the manganese concentration when the sum of the number of atoms of cobalt and manganese is set to 100% in step S21.
  • FIG. 4C shows the value obtained by dividing the lattice constant of the a-axis by the lattice constant of the c-axis (a-axis / c) for the positive electrode active material whose lattice constants are shown in FIGS. 4A and 4B.
  • Axis shows a value obtained by dividing the lattice constant of the a-axis by the lattice constant of the c-axis (a-axis / c) for the positive electrode active material whose lattice constants are shown in FIGS. 5A and 5B. Axis).
  • the a-axis / c-axis tended to change remarkably at nickel concentrations of 5% and 7.5%, indicating that the distortion of the a-axis increased.
  • This distortion may be a Jahn-Teller distortion. It is suggested that when the nickel concentration is less than 7.5%, an excellent positive electrode active material having a small Jahn-Teller distortion can be obtained.
  • the concentration of manganese is preferably, for example, 4% or less.
  • the concentration may be higher than the above concentration in the surface layer of the particles.
  • the preferable range of the lattice constant was examined.
  • particles of the positive electrode active material in a state in which charge / discharge is not performed or in a discharge state, which can be estimated from an XRD pattern have in a layered rock-salt crystal structure, the lattice constant of a-axis is smaller than 2.814 ⁇ 10 -10 larger than m 2.817 ⁇ 10 -10 m, and a lattice constant of c-axis 14.05 ⁇ 10 -10 m It was found that it is preferable to be larger than 14.07 ⁇ 10 ⁇ 10 m.
  • the state in which charge and discharge are not performed may be, for example, a state of powder before producing a positive electrode of a secondary battery.
  • a value obtained by dividing an a-axis lattice constant by a c-axis lattice constant Is preferably larger than 0.20000 and smaller than 0.20049.
  • the first ⁇ is 18.50 ° to 19.30 °.
  • a peak may be observed and a second peak may be observed when 2 ⁇ is 38.00 ° or more and 38.80 ° or less.
  • XPS X-ray photoelectron spectroscopy
  • the relative value of the magnesium concentration is preferably 1.6 or more and 6.0 or less, more preferably 1.8 or more and less than 4.0 when the cobalt concentration is 1. .
  • the relative value of the concentration of halogen such as fluorine is preferably 0.2 or more and 6.0 or less, more preferably 1.2 or more and 4.0 or less.
  • ⁇ ⁇ When performing XPS analysis, for example, monochromated aluminum can be used as the X-ray source.
  • the take-out angle may be, for example, 45 °.
  • the peak indicating the binding energy between fluorine and another element is preferably 682 eV or more and less than 685 eV, and more preferably about 684.3 eV. This is a value different from both 685 eV which is the binding energy of lithium fluoride and 686 eV which is the binding energy of magnesium fluoride. That is, when the positive electrode active material 100A has fluorine, the bond is preferably a bond other than lithium fluoride and magnesium fluoride.
  • the peak indicating the binding energy between magnesium and another element is preferably 1302 eV or more and less than 1304 eV, more preferably about 1303 eV. This is a value different from 1305 eV, which is the binding energy of magnesium fluoride, and is close to the binding energy of magnesium oxide. That is, when the positive electrode active material 100A has magnesium, it is preferable that the bond is a bond other than magnesium fluoride.
  • EDX plane analysis Extracting data of a linear region from EDX surface analysis and evaluating the distribution of the atomic concentration in the positive electrode active material particles may be referred to as line analysis.
  • EDX plane analysis for example, element mapping
  • peaks of the concentrations of magnesium and fluorine can be analyzed by EDX-ray analysis.
  • the peak of the magnesium concentration in the surface layer preferably exists at a depth of 3 nm from the surface of the positive electrode active material 100A toward the center, and exists at a depth of 1 nm. More preferably, it is even more preferred that it exists up to a depth of 0.5 nm.
  • the distribution of fluorine contained in the positive electrode active material 100A overlaps with the distribution of magnesium. Therefore, when EDX analysis is performed, the peak of the fluorine concentration in the surface layer portion preferably exists up to a depth of 3 nm from the surface of the positive electrode active material 100A toward the center, and more preferably exists up to a depth of 1 nm. , More preferably, up to a depth of 0.5 nm.
  • Method 1 for producing positive electrode active material Next, an example of a method for manufacturing a positive electrode active material of one embodiment of the present invention will be described with reference to FIGS. 8 and 9 show another example of a specific manufacturing method.
  • a halogen source such as a fluorine source and a chlorine source and a magnesium source are prepared. It is also preferable to prepare a lithium source.
  • lithium fluoride for example, lithium fluoride, magnesium fluoride and the like can be used.
  • lithium fluoride is preferable because it has a relatively low melting point of 848 ° C. and easily melts in an annealing step described later.
  • chlorine source for example, lithium chloride, magnesium chloride and the like can be used.
  • magnesium source for example, magnesium fluoride, magnesium oxide, magnesium hydroxide, magnesium carbonate and the like can be used.
  • lithium source for example, lithium fluoride and lithium carbonate can be used. That is, lithium fluoride can be used as both a lithium source and a fluorine source. Magnesium fluoride can be used both as a fluorine source and a magnesium source.
  • lithium fluoride LiF is prepared as a fluorine source and a lithium source
  • magnesium fluoride MgF 2 is prepared as a fluorine source and a magnesium source (as a specific example of FIG. 6, step S11 in FIG. 8). ).
  • lithium fluoride increases, there is a concern that lithium becomes excessive and cycle characteristics deteriorate.
  • the term “near” means a value that is larger than 0.9 times and smaller than 1.1 times that value.
  • a solvent As the solvent, ketone such as acetone, alcohol such as ethanol and isopropanol, ether, dioxane, acetonitrile, N-methyl-2-pyrrolidone (NMP) and the like can be used. It is more preferable to use an aprotic solvent that does not easily react with lithium. In the present embodiment, acetone is used (see step S11 in FIG. 8).
  • Step S12 the material of the mixture 902 is mixed and pulverized (step S12 in FIGS. 6 and 8).
  • the mixing can be performed by a dry method or a wet method, but the wet method is preferable because the powder can be ground smaller.
  • a ball mill, a bead mill, or the like can be used.
  • zirconia balls it is preferable to use zirconia balls as a medium. It is preferable to sufficiently perform the mixing and pulverizing steps to pulverize the mixture 902.
  • Step S13, Step S14> The materials mixed and pulverized as described above are collected (step S13 in FIGS. 6 and 8), and a mixture 902 is obtained (step S14 in FIGS. 6 and 8).
  • the mixture 902 preferably has a D50 of, for example, 600 nm or more and 20 ⁇ m or less, and more preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the mixture 902 can easily be uniformly attached to the surfaces of the composite oxide particles. It is preferable that the mixture 902 is uniformly attached to the surfaces of the composite oxide particles because halogen and magnesium can be easily distributed to the surface layer portion of the composite oxide particles after heating. If there is a region where halogen and magnesium are not included in the surface layer portion, there is a possibility that the above-mentioned pseudo spinel-type crystal structure is hardly formed in a charged state.
  • Step S21 First, as shown in Step S21 of FIG. 6, a lithium source and a transition metal source are prepared as a material of a composite oxide having lithium, a transition metal, and oxygen.
  • lithium source for example, lithium carbonate, lithium fluoride, or the like can be used.
  • transition metal for example, at least one of cobalt, manganese, and nickel can be used.
  • the material ratio may be a mixture ratio of cobalt, manganese, and nickel that can take a layered rock salt type.
  • aluminum may be added to these transition metals as long as a layered rock salt type crystal structure can be obtained.
  • transition metal source oxides, hydroxides and the like of the above transition metals can be used.
  • cobalt source for example, cobalt oxide, cobalt hydroxide or the like can be used.
  • Manganese oxide, manganese hydroxide, or the like can be used as a manganese source.
  • nickel source nickel oxide, nickel hydroxide or the like can be used.
  • aluminum source aluminum oxide, aluminum hydroxide, or the like can be used.
  • Step S22 Next, the above-mentioned lithium source and transition metal source are mixed (Step S22 in FIG. 6). Mixing can be done dry or wet. For mixing, for example, a ball mill, a bead mill, or the like can be used. When using a ball mill, for example, it is preferable to use zirconia balls as a medium.
  • Step S23> the material mixed above is heated.
  • This step may be referred to as baking or first heating for distinction from the subsequent heating step.
  • the heating is preferably performed at 800 ° C. or more and less than 1100 ° C., more preferably 900 ° C. or more and 1000 ° C. or less, and further preferably about 950 ° C. If the temperature is too low, the decomposition and melting of the starting material may be insufficient. On the other hand, if the temperature is too high, defects may occur due to excessive reduction of the transition metal or evaporation of lithium. For example, a defect that cobalt is divalent may occur.
  • the heating time is preferably 2 hours or more and 20 hours or less.
  • the baking is preferably performed in an atmosphere with a small amount of water such as dry air (for example, a dew point of ⁇ 50 ° C. or less, more preferably ⁇ 100 ° C. or less).
  • a small amount of water such as dry air (for example, a dew point of ⁇ 50 ° C. or less, more preferably ⁇ 100 ° C. or less).
  • the heated material can be cooled to room temperature.
  • the temperature drop time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S23 is not essential. If there is no problem in performing the subsequent steps S24, S25, and steps S31 to S34, cooling may be performed to a temperature higher than room temperature.
  • the metal of the positive electrode active material may be introduced in steps S22 and S23 described above, or a part of the metal may be introduced in steps S41 to S46 described below. More specifically, a metal M1 (M1 is at least one selected from cobalt, manganese, nickel and aluminum) is introduced in steps S22 and S23, and a metal M2 (M2 is, for example, manganese, nickel or nickel) in steps S41 to S46. And one or more selected from aluminum).
  • M1 is at least one selected from cobalt, manganese, nickel and aluminum
  • M2 M2 is, for example, manganese, nickel or nickel
  • the profile of each metal in the depth direction can be sometimes changed.
  • the concentration of the metal M2 can be higher in the surface layer than in the interior of the particle.
  • the ratio of the number of atoms of the metal M2 to the reference can be higher in the surface layer than in the inside.
  • cobalt is selected as the metal M1
  • nickel and aluminum are selected as the metal M2.
  • Step S24 The material fired as described above is collected (Step S24 in FIG. 6), and a composite oxide containing lithium, a transition metal, and oxygen is obtained as the positive electrode active material 100C (Step S25 in FIG. 6). Specifically, lithium cobaltate, lithium manganate, lithium nickelate, lithium cobaltate in which part of cobalt is substituted by manganese, or nickel-manganese-lithium cobaltate is obtained.
  • step S25 a composite oxide containing lithium, a transition metal and oxygen synthesized in advance may be used (see FIG. 8). In this case, steps S21 to S24 can be omitted.
  • the main components of a composite oxide containing lithium, a transition metal, and oxygen, and a positive electrode active material are lithium, cobalt, nickel, manganese, aluminum, and oxygen, and elements other than the above main components are impurities.
  • the total impurity concentration is preferably 10,000 ppm wt or less, more preferably 5000 ppm wt or less.
  • the total impurity concentration of transition metals such as titanium and arsenic is preferably 3000 ppm wt or less, more preferably 1500 ppm wt or less.
  • lithium cobaltate particles (trade name: Cell Seed C-10N) manufactured by Nippon Chemical Industry Co., Ltd. can be used as lithium cobaltate synthesized in advance.
  • This has an average particle diameter (D50) of about 12 ⁇ m, and in impurity analysis by glow discharge mass spectrometry (GD-MS), the magnesium concentration and the fluorine concentration are 50 ppm wt or less, and the calcium concentration, the aluminum concentration and the silicon concentration are 100 ppm wt
  • lithium cobalt oxide having a nickel concentration of 150 ppm wt or less, a sulfur concentration of 500 ppm wt or less, an arsenic concentration of 1100 ppm wt or less, and a concentration of other elements other than lithium, cobalt and oxygen of 150 ppm wt or less.
  • lithium cobaltate particles (trade name: Cell Seed C-5H) manufactured by Nippon Chemical Industry Co., Ltd. can be used.
  • This is a lithium cobalt oxide having an average particle diameter (D50) of about 6.5 ⁇ m and an impurity analysis by GD-MS in which the concentration of elements other than lithium, cobalt and oxygen is about the same as or less than that of C-10N. is there.
  • cobalt is used as a transition metal
  • lithium cobalt oxide particles Cell Seed C-10N manufactured by Nippon Chemical Industry Co., Ltd.
  • the composite oxide containing lithium, transition metal and oxygen in step S25 preferably has a layered rock salt type crystal structure with few defects and distortion. Therefore, a composite oxide containing few impurities is preferable.
  • a complex oxide containing lithium, a transition metal, and oxygen contains a large amount of impurities, a crystal structure having many defects or strains is highly likely to be formed.
  • the positive electrode active material 100C may have a crack.
  • the crack occurs, for example, in any of the steps S21 to S25 or in a plurality of steps. For example, it occurs during the firing process in step S23.
  • the number of cracks that occur may vary depending on conditions such as the firing temperature and the rate of temperature rise or fall during firing. In addition, for example, there is a possibility that it occurs in steps such as mixing and pulverization.
  • Step S31 Next, the mixture 902 is mixed with a composite oxide containing lithium, a transition metal, and oxygen (Step S31 in FIGS. 6 and 8).
  • the mixing in step S31 is preferably performed under milder conditions than the mixing in step S12 so as not to destroy the composite oxide particles.
  • milder conditions For example, it is preferable to set a condition that the number of rotations is shorter or the time is shorter than the mixing in step S12.
  • dry conditions are milder than wet conditions.
  • a ball mill, a bead mill, or the like can be used.
  • zirconia balls it is preferable to use zirconia balls as a medium.
  • Step S32, Step S33> The materials mixed as described above are collected (Step S32 in FIGS. 6 and 8) to obtain a mixture 903 (Step S33 in FIGS. 6 and 8).
  • this embodiment mode describes a method in which a mixture of lithium fluoride and magnesium fluoride is added to lithium cobalt oxide with few impurities
  • one embodiment of the present invention is not limited thereto.
  • a material obtained by adding a magnesium source and a fluorine source to a starting material of lithium cobalt oxide and firing may be used. In this case, there is no need to separate the steps S11 to S14 from the steps S21 to S25, so that the productivity is simple and high.
  • lithium cobaltate to which magnesium and fluorine are added in advance may be used. If lithium cobaltate to which magnesium and fluorine are added is used, the steps up to step S32 can be omitted, which is more convenient.
  • a magnesium source and a fluorine source may be further added to lithium cobaltate to which magnesium and fluorine have been added in advance.
  • Step S34> the mixture 903 is heated. This step may be referred to as annealing or second heating for distinction from the previous heating step.
  • Annealing is preferably performed at an appropriate temperature and time.
  • the appropriate temperature and time vary depending on conditions such as the size and composition of the composite oxide particles having lithium, transition metal and oxygen in step S25. If the particles are small, lower temperatures or shorter times may be more favorable than if they are large.
  • the annealing temperature is preferably, for example, 600 ° C. or more and 950 ° C. or less.
  • the annealing time is, for example, preferably 3 hours or more, more preferably 10 hours or more, and even more preferably 60 hours or more.
  • the annealing temperature is preferably, for example, 600 ° C. or more and 950 ° C. or less.
  • the annealing time is, for example, preferably from 1 hour to 10 hours, more preferably about 2 hours.
  • the temperature lowering time after annealing is preferably, for example, not less than 10 hours and not more than 50 hours.
  • a material having a low melting point for example, lithium fluoride, melting point of 848 ° C.
  • the melting point of the other material is lowered by the presence of the melted material, and the other material is melted.
  • magnesium fluoride melting point 1263 ° C.
  • the element of the mixture 902 distributed in the surface layer portion forms a solid solution with the composite oxide containing lithium, a transition metal, and oxygen.
  • ⁇ Diffusion of the elements of the mixture 902 is faster in the surface layer and near the grain boundaries than in the interior of the composite oxide particles. Therefore, magnesium and halogen have a higher concentration in the surface layer portion and in the vicinity of the grain boundary than in the inside. As will be described later, when the magnesium concentration in the surface layer portion and the vicinity of the grain boundary is high, the change in the crystal structure can be more effectively suppressed.
  • Step S35 The material annealed as described above is collected (Step S35 in FIGS. 6 and 8) to obtain the positive electrode active material 100A_1 (Step S36 in FIGS. 6 and 8).
  • Method 2 for producing positive electrode active material Further processing may be performed on the positive electrode active material 100A_1 obtained in Step S36.
  • a process for adding the metal Z is performed. Performing this treatment after step S25 is preferable because the concentration of metal Z in the surface layer of the particles of the positive electrode active material can be increased as compared with the inside.
  • Addition of the metal Z may be performed, for example, by mixing a material having the metal Z with the mixture 902 and the like in step S31. This case is preferable because the number of steps can be reduced and the process can be simplified.
  • a step of adding metal Z may be performed after steps S31 to S35.
  • formation of a compound of magnesium and metal Z may be suppressed in some cases.
  • metal Z is added to the positive electrode active material of one embodiment of the present invention.
  • a liquid phase method such as a sol-gel method, a solid phase method, a sputtering method, an evaporation method, a CVD (chemical vapor deposition) method, a PLD (pulse laser deposition) method, or the like is applied.
  • CVD chemical vapor deposition
  • PLD pulse laser deposition
  • a metal source is prepared.
  • a solvent used for the sol-gel method is prepared.
  • the metal source metal alkoxide, metal hydroxide, metal oxide, and the like can be used.
  • the metal Z is aluminum, for example, the number of atoms of cobalt contained in lithium cobalt oxide is set to 1, and the concentration of aluminum contained in the metal source may be 0.001 times or more and 0.02 times or less.
  • the metal Z is nickel, for example, the number of atoms of cobalt contained in lithium cobalt oxide is set to 1, and the concentration of nickel contained in the metal source may be 0.001 times or more and 0.02 times or less.
  • the metal Z is aluminum and nickel, for example, the number of atoms of cobalt contained in lithium cobalt oxide is set to 1, the concentration of aluminum contained in the metal source is 0.001 times or more and 0.02 times or less, and the metal source has The concentration of nickel may be not less than 0.001 times and not more than 0.02 times.
  • step S41 in FIG. 9 an example is shown in which the sol-gel method is applied and aluminum isopropoxide is used as a metal source and isopropanol is used as a solvent (step S41 in FIG. 9).
  • Step S42> the aluminum alkoxide is dissolved in the alcohol, and the lithium cobaltate particles are further mixed (step S42 in FIGS. 7 and 9).
  • the required amount of metal alkoxide varies depending on the particle size of lithium cobalt oxide.
  • the particle size (D50) of lithium cobaltate is about 20 ⁇ m
  • the number of cobalt atoms in lithium cobaltate is set to 1 and the concentration of aluminum in aluminum isopropoxide is 0.001. It is preferable to add so as to be at least twice and at most 0.02 times.
  • the mixture of the alcohol solution of the metal alkoxide and the particles of lithium cobalt oxide is stirred in an atmosphere containing steam.
  • the stirring can be performed, for example, with a magnetic stirrer.
  • the stirring time may be a time sufficient for causing water and metal alkoxide in the atmosphere to undergo hydrolysis and polycondensation reactions.
  • the conditions are 4 hours, 25 ° C., and 90% RH (Relative Humidity, relative humidity). Can be done below.
  • the stirring may be performed in an atmosphere in which the humidity control and the temperature control are not performed, for example, in an air atmosphere in a draft chamber. In such a case, the stirring time is preferably made longer, for example, 12 hours or more at room temperature.
  • the sol-gel reaction can proceed more slowly than when liquid water is added.
  • the sol-gel reaction can proceed more slowly than, for example, when heating is performed at a temperature exceeding the boiling point of the solvent alcohol. By proceeding the sol-gel reaction slowly, a high-quality coating layer having a uniform thickness can be formed.
  • Step S43 The precipitate is collected from the mixed solution after the above processing (Step S43 in FIGS. 7 and 9).
  • a recovery method filtration, centrifugation, evaporation to dryness, and the like can be applied.
  • the precipitate can be washed with the same alcohol as the solvent in which the metal alkoxide is dissolved. In the case where evaporation to dryness is applied, it is not necessary to separate the solvent and the precipitate in this step. For example, the precipitate may be collected in the drying step of the next step (step S44).
  • the drying step can be, for example, vacuum or ventilation drying at 80 ° C. for 1 hour to 4 hours.
  • Step S45 Next, the obtained mixture 904 is fired (Step S45 in FIGS. 7 and 9).
  • the firing time is preferably such that the holding time within the specified temperature range is 1 hour to 50 hours, more preferably 2 hours to 20 hours. If the firing time is too short, the crystallinity of the compound having metal Z formed on the surface layer may be low. Alternatively, the diffusion of the metal Z may be insufficient. Alternatively, an organic substance may remain on the surface. However, if the firing time is too long, the diffusion of the metal Z may proceed too much, and the concentration in the surface layer portion and the vicinity of the crystal grain boundary may be reduced. Further, productivity is reduced.
  • the specified temperature is preferably 500 ° C to 1200 ° C, more preferably 700 ° C to 920 ° C, and even more preferably 800 ° C to 900 ° C. If the specified temperature is too low, the crystallinity of the compound having metal Z formed on the surface layer may be low. Alternatively, the diffusion of the metal Z may be insufficient. Alternatively, an organic substance may remain on the surface.
  • the firing be performed in an atmosphere containing oxygen.
  • Co may be reduced unless the firing temperature is lowered.
  • the specified temperature is maintained at 850 ° C. for 2 hours, the temperature is raised at 200 ° C./h, and the flow rate of oxygen is 10 L / min.
  • Cooling after calcination is preferable if the cooling time is long, because the crystal structure can be stabilized.
  • the temperature drop time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • the firing temperature in step S45 is preferably lower than the firing temperature in step S34.
  • Step S46, Step S47> the cooled particles are collected (Step S46 in FIGS. 7 and 9). Further, it is preferred to sieve the particles.
  • the positive electrode active material 100A_2 of one embodiment of the present invention can be manufactured (Step S47 in FIGS. 7 and 9).
  • step S47 the processing may be performed by repeating steps S41 to S46.
  • the number of repetitions may be one, or two or more.
  • the type of metal source used when performing the treatment a plurality of times may be the same or different.
  • an aluminum source can be used in the first treatment and a nickel source can be used in the second treatment.
  • Step S51 a compound having the element X is prepared as the first raw material 901 (Step S51 in FIGS. 7 and 9).
  • the first raw material 901 may be pulverized.
  • a ball mill, a bead mill or the like can be used.
  • the powder obtained after the pulverization may be classified using a sieve.
  • the first raw material 901 is a compound having the element X, and phosphorus can be used as the element X.
  • the first raw material 901 is preferably a compound having a bond between the element X and oxygen.
  • a phosphoric acid compound can be used as the first raw material 901.
  • a phosphate compound having the element D can be used as the phosphate compound.
  • Element D is one or more elements selected from lithium, sodium, potassium, magnesium, zinc, cobalt, iron, manganese, and aluminum.
  • a phosphoric acid compound having hydrogen in addition to the element D can be used.
  • ammonium phosphate and an ammonium salt having the element D can be used as the phosphoric acid compound.
  • lithium phosphate, sodium phosphate, potassium phosphate, magnesium phosphate, zinc phosphate, aluminum phosphate, ammonium phosphate, lithium dihydrogen phosphate, magnesium monohydrogen phosphate, lithium cobalt phosphate, etc. Is mentioned. It is particularly preferable to use lithium phosphate and magnesium phosphate as the positive electrode active material.
  • lithium phosphate is used as the first raw material 901 (Step S51 in FIGS. 7 and 9).
  • the first raw material 901 obtained in step S51 and the positive electrode active material 100A_2 obtained in step S47 are mixed (step S52 in FIGS. 7 and 9).
  • the first raw material 901 has a positive electrode active material 100A_2 obtained in step S25 of 0.01 mol or more and 0.1. mol, more preferably 0.02 mol or more and 0.08 mol or less.
  • a ball mill, a bead mill, or the like can be used.
  • the powder obtained after mixing may be classified using a sieve.
  • Step S53 the material mixed above is heated (step S53 in FIGS. 7 and 9). In the preparation of the positive electrode active material, this step may not be performed in some cases.
  • the heating is preferably performed at 300 ° C. or more and less than 1200 ° C., more preferably 550 ° C. or more and 950 ° C. or less, and further preferably about 750 ° C. If the temperature is too low, the decomposition and melting of the starting material may be insufficient. On the other hand, if the temperature is too high, defects may occur due to excessive reduction of the transition metal or evaporation of lithium.
  • Heat may produce a reaction product of the positive electrode active material 100A_2 and the first raw material 901.
  • the heating time is preferably 2 hours or more and 60 hours or less.
  • the baking is preferably performed in an atmosphere with a small amount of water such as dry air (for example, a dew point of ⁇ 50 ° C. or less, more preferably ⁇ 100 ° C. or less).
  • a small amount of water such as dry air (for example, a dew point of ⁇ 50 ° C. or less, more preferably ⁇ 100 ° C. or less).
  • the heated material can be cooled to room temperature.
  • the temperature drop time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S53 is not essential. If there is no problem in performing the subsequent step S54, the cooling may be performed to a temperature higher than room temperature.
  • Step S54> The material fired as described above is collected (step S54 in FIGS. 7 and 9) to obtain the positive electrode active material 100A_3 having the element D.
  • the positive electrode active material 100A_1 For the positive electrode active material 100A_1, the positive electrode active material 100A_2, and the positive electrode active material 100A_3, the description of the positive electrode active material 100A described in FIG.
  • Embodiment 2 In this embodiment, examples of materials which can be used for a secondary battery including the positive electrode active material 100 described in the above embodiment will be described. In this embodiment, a description will be given of a secondary battery in which a positive electrode, a negative electrode, and an electrolytic solution are enclosed in an outer package as an example.
  • the positive electrode has a positive electrode active material layer and a positive electrode current collector.
  • the positive electrode active material layer has at least a positive electrode active material.
  • the positive electrode active material layer may include, in addition to the positive electrode active material, another material such as a film on the surface of the active material, a conductive additive, or a binder.
  • the positive electrode active material 100 described in the above embodiment can be used. By using the positive electrode active material 100 described in the above embodiment, a secondary battery with high capacity and excellent cycle characteristics can be obtained.
  • a carbon material, a metal material, a conductive ceramic material, or the like can be used as the conductive assistant. Further, a fibrous material may be used as the conductive additive.
  • the content of the conductive additive with respect to the total amount of the active material layer is preferably 1 wt% or more and 10 wt% or less, more preferably 1 wt% or more and 5 wt% or less.
  • An electrically conductive network can be formed in the active material layer by the conductive additive. With the aid of the conductive additive, a path of electric conduction between the positive electrode active materials can be maintained. By adding a conductive additive to the active material layer, an active material layer having high electric conductivity can be realized.
  • the conductive additive for example, natural graphite, artificial graphite such as mesocarbon microbeads, and carbon fiber can be used.
  • carbon fibers for example, carbon fibers such as mesophase pitch-based carbon fibers and isotropic pitch-based carbon fibers can be used.
  • carbon nanofibers, carbon nanotubes, and the like can be used as carbon fibers.
  • Carbon nanotubes can be produced by, for example, a vapor phase growth method.
  • a carbon material such as carbon black (acetylene black (AB) or the like), graphite (graphite) particles, graphene, fullerene, or the like can be used.
  • metal powders such as copper, nickel, aluminum, silver, and gold, metal fibers, conductive ceramic materials, and the like can be used.
  • a graphene compound may be used as a conductive assistant.
  • a graphene compound may have excellent electrical properties such as high conductivity and excellent physical properties such as high flexibility and high mechanical strength. Further, the graphene compound has a planar shape. The graphene compound enables surface contact with low contact resistance. In addition, the conductivity may be very high even if the thickness is small, and a conductive path can be efficiently formed in the active material layer with a small amount. Therefore, it is preferable to use a graphene compound as the conductive additive because the contact area between the active material and the conductive additive can be increased. It is preferable to form a graphene compound which is a conductive additive as a coating over the entire surface of the active material by using a spray drying apparatus. Further, it is preferable because electric resistance can be reduced in some cases.
  • RGO refers to, for example, a compound obtained by reducing graphene oxide (GO).
  • an active material having a small particle size for example, an active material having a particle size of 1 ⁇ m or less is used, the specific surface area of the active material is large, and more conductive paths connecting the active materials are required. Therefore, the amount of the conductive additive tends to increase, and the amount of the active material carried tends to relatively decrease. When the carrying amount of the active material decreases, the capacity of the secondary battery decreases. In such a case, when a graphene compound is used as the conductive additive, the conductive path can be efficiently formed even with a small amount of the graphene compound. Therefore, the amount of the active material to be supported is not reduced, which is particularly preferable.
  • FIG. 10A shows a vertical cross-sectional view of the active material layer 200.
  • the active material layer 200 includes a granular positive electrode active material 100, a graphene compound 201 as a conductive additive, and a binder (not shown).
  • the graphene compound 201 for example, graphene or multigraphene may be used.
  • the graphene compound 201 preferably has a sheet shape.
  • the graphene compound 201 may be a sheet shape in which a plurality of multi-graphenes and / or a plurality of graphenes partially overlap.
  • the sheet-like graphene compound 201 is substantially uniformly dispersed inside the active material layer 200 as shown in FIG.
  • the graphene compound 201 is schematically shown by a thick line in FIG. 10B, it is actually a thin film having a single-layer or multi-layer thickness of carbon molecules. Since the plurality of graphene compounds 201 are formed so as to partially cover the plurality of granular positive electrode active materials 100 or to be attached to the surfaces of the plurality of granular positive electrode active materials 100, they are in surface contact with each other. .
  • a plurality of graphene compounds are bonded to each other to form a reticulated graphene compound sheet (hereinafter referred to as a graphene compound net or a graphene net).
  • the graphene net can also function as a binder for bonding the active materials. Therefore, since the amount of the binder can be reduced or not used, the ratio of the active material to the electrode volume or the electrode weight can be improved. That is, the capacity of the secondary battery can be increased.
  • graphene oxide be used as the graphene compound 201, mixed with an active material to form a layer to be the active material layer 200, and then reduced.
  • the graphene compound 201 can be substantially uniformly dispersed in the active material layer 200.
  • the graphene compounds 201 remaining in the active material layer 200 partially overlap and are dispersed to such an extent that they are in surface contact with each other. By doing so, a three-dimensional conductive path can be formed.
  • the reduction of graphene oxide may be performed by, for example, heat treatment or may be performed using a reducing agent.
  • the graphene compound 201 enables surface contact with low contact resistance. Electric conductivity between the positive electrode active material 100 and the graphene compound 201 can be improved. Therefore, the ratio of the positive electrode active material 100 in the active material layer 200 can be increased. Thereby, the discharge capacity of the secondary battery can be increased.
  • a graphene compound serving as a conductive additive can be formed as a coating over the entire surface of the active material, and a conductive path can be formed between the active materials using the graphene compound.
  • a rubber material such as styrene-butadiene rubber (SBR), styrene-isoprene-styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and ethylene-propylene-diene copolymer is preferably used.
  • SBR styrene-butadiene rubber
  • Fluororubber can be used as the binder.
  • a water-soluble polymer for example, a water-soluble polymer as the binder.
  • the water-soluble polymer for example, polysaccharides and the like can be used.
  • the polysaccharide include carboxymethylcellulose (CMC), methylcellulose, ethylcellulose, hydroxypropylcellulose, diacetylcellulose, cellulose derivatives such as regenerated cellulose, and starch. Further, it is more preferable to use these water-soluble polymers in combination with the aforementioned rubber material.
  • polystyrene polymethyl acrylate, polymethyl methacrylate (polymethyl methacrylate, PMMA), sodium polyacrylate, polyvinyl alcohol (PVA), polyethylene oxide (PEO), polypropylene oxide, polyimide, polyvinyl chloride
  • PVA polyvinyl alcohol
  • PEO polyethylene oxide
  • PEO polypropylene oxide
  • polyimide polyvinyl chloride
  • materials such as polytetrafluoroethylene, polyethylene, polypropylene, polyisobutylene, polyethylene terephthalate, nylon, polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), ethylene propylene diene polymer, polyvinyl acetate, and nitrocellulose.
  • a plurality of binders may be used in combination.
  • a material having particularly excellent viscosity adjusting effect may be used in combination with another material.
  • a rubber material or the like is excellent in adhesive strength and elasticity, but sometimes difficult to adjust the viscosity when mixed with a solvent. In such a case, for example, it is preferable to mix with a material having a particularly excellent viscosity adjusting effect.
  • a material having a particularly excellent viscosity adjusting effect for example, a water-soluble polymer may be used.
  • water-soluble polymer having particularly excellent viscosity adjusting effect examples include the above-mentioned polysaccharides, for example, cellulose derivatives such as carboxymethylcellulose (CMC), methylcellulose, ethylcellulose, hydroxypropylcellulose, diacetylcellulose, and regenerated cellulose, and starch. be able to.
  • CMC carboxymethylcellulose
  • methylcellulose methylcellulose
  • ethylcellulose methylcellulose
  • hydroxypropylcellulose ethylcellulose
  • diacetylcellulose diacetylcellulose
  • regenerated cellulose starch.
  • a cellulose derivative such as carboxymethylcellulose for example, is converted into a salt such as a sodium salt or ammonium salt of carboxymethylcellulose, so that the solubility is increased and the effect as a viscosity modifier is easily exerted.
  • the solubility is increased, the dispersibility of the electrode material with the active material and other components can be increased when preparing the electrode slurry.
  • the cellulose and the cellulose derivative used as the binder of the electrode include salts thereof.
  • the water-soluble polymer stabilizes the viscosity by dissolving in water, and can stably disperse the active material and other materials combined as a binder, such as styrene-butadiene rubber, in an aqueous solution.
  • a binder such as styrene-butadiene rubber
  • cellulose derivatives such as carboxymethylcellulose often have a material having a functional group such as a hydroxyl group or a carboxyl group, and have a functional group. There is expected.
  • the binder When a binder is formed on the surface of the active material or covers the surface of the active material, the binder functions as a passivation film and is expected to have an effect of suppressing the decomposition of the electrolytic solution.
  • the passivation film is a film having no electric conductivity or a film having extremely low electric conductivity.
  • the passivation film when a passivation film is formed on the surface of an active material, at a battery reaction potential, The decomposition of the electrolytic solution can be suppressed. Further, it is more desirable that the passivation film suppresses the conductivity of electricity and conducts lithium ions.
  • a highly conductive material such as a metal such as stainless steel, gold, platinum, aluminum, and titanium, and an alloy thereof can be used.
  • the material used for the positive electrode current collector preferably does not elute at the potential of the positive electrode.
  • the gate electrode may be formed using a metal element which forms silicide by reacting with silicon.
  • Examples of a metal element which forms silicide by reacting with silicon include zirconium, titanium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, nickel, and the like.
  • a shape such as a foil shape, a plate shape (sheet shape), a net shape, a punching metal shape, an expanded metal shape, or the like can be used as appropriate. It is preferable to use a current collector having a thickness of 5 ⁇ m or more and 30 ⁇ m or less.
  • the negative electrode has a negative electrode active material layer and a negative electrode current collector. Further, the negative electrode active material layer may have a conductive additive and a binder.
  • Niobium electrode active material for example, an alloy-based material, a carbon-based material, or the like can be used.
  • an element capable of performing a charge / discharge reaction by an alloying / dealloying reaction with lithium can be used.
  • a material containing at least one of silicon, tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium, indium, and the like can be used.
  • Such an element has a higher capacity than carbon, and in particular, silicon has a high theoretical capacity of 4200 mAh / g. Therefore, it is preferable to use silicon as the negative electrode active material. Further, compounds having these elements may be used.
  • an element capable of performing a charge / discharge reaction by an alloying / dealloying reaction with lithium, a compound containing the element, and the like may be referred to as an alloy-based material.
  • SiO refers to, for example, silicon monoxide.
  • SiO can also be expressed as SiO x.
  • x preferably has a value near 1.
  • x is preferably from 0.2 to 1.5, more preferably from 0.3 to 1.2.
  • graphite graphitizable carbon (soft carbon), non-graphitizable carbon (hard carbon), carbon nanotube, graphene, carbon black, or the like may be used.
  • Examples of graphite include artificial graphite and natural graphite.
  • Examples of the artificial graphite include mesocarbon microbeads (MCMB), coke-based artificial graphite, pitch-based artificial graphite, and the like.
  • MCMB mesocarbon microbeads
  • spherical graphite having a spherical shape can be used as artificial graphite.
  • MCMB may have a spherical shape, which is preferable.
  • MCMB is relatively easy to reduce its surface area, and may be preferable in some cases.
  • Examples of the natural graphite include flaky graphite and spheroidized natural graphite.
  • Graphite exhibits a potential as low as lithium metal (0.05 V or more and 0.3 V or less vs. Li / Li + ) when lithium ions are inserted into graphite (at the time of formation of a lithium-graphite intercalation compound). Thereby, the lithium ion secondary battery can exhibit a high operating voltage. Further, graphite is preferable because it has advantages such as relatively high capacity per unit volume, relatively small volume expansion, low cost, and higher safety than lithium metal.
  • titanium dioxide TiO 2
  • lithium titanium oxide Li 4 Ti 5 O 12
  • lithium-graphite intercalation compound Li x C 6
  • niobium pentoxide Nb 2 O 5
  • oxidation An oxide such as tungsten (WO 2 ) or molybdenum oxide (MoO 2 ) can be used.
  • Li 2.6 Co 0.4 N 3 is preferable because it shows a large charge / discharge capacity (900 mAh / g, 1890 mAh / cm 3 ).
  • lithium ions are contained in the negative electrode active material, it can be combined with a material such as V 2 O 5 or Cr 3 O 8 which does not contain lithium ions as the positive electrode active material, which is preferable. . Note that, even when a material containing lithium ions is used as the positive electrode active material, a double nitride of lithium and a transition metal can be used as the negative electrode active material by previously removing lithium ions contained in the positive electrode active material.
  • a material that causes a conversion reaction can be used as the negative electrode active material.
  • a transition metal oxide that does not form an alloy with lithium such as cobalt oxide (CoO), nickel oxide (NiO), and iron oxide (FeO)
  • Materials that cause the conversion reaction include oxides such as Fe 2 O 3 , CuO, Cu 2 O, RuO 2 , and Cr 2 O 3 , sulfides such as CoS 0.89 , NiS, and CuS, and Zn 3 N 2 , Cu 3 N, Ge 3 N 4 and other nitrides, NiP 2 , FeP 2 , CoP 3 and other phosphides, and FeF 3 and BiF 3 and other fluorides.
  • the same materials as the conductive auxiliary agent and the binder that the positive electrode active material layer can have can be used.
  • ⁇ Negative electrode current collector> The same material as the positive electrode current collector can be used for the negative electrode current collector. Note that a material which does not alloy with carrier ions such as lithium is preferably used for the negative electrode current collector.
  • the electrolyte has a solvent and an electrolyte.
  • an aprotic organic solvent is preferable.
  • dioxane, dimethoxyethane (DME) dimethyl sulfoxide, diethyl ether, methyl diglyme, acetonitrile, benzonitrile, tetrahydrofuran, sulfo
  • the ionic liquid is composed of a cation and an anion, and includes an organic cation and an anion.
  • organic cation used in the electrolyte examples include an aliphatic onium cation such as a quaternary ammonium cation, a tertiary sulfonium cation, and a quaternary phosphonium cation, and an aromatic cation such as an imidazolium cation and a pyridinium cation.
  • an aliphatic onium cation such as a quaternary ammonium cation, a tertiary sulfonium cation, and a quaternary phosphonium cation
  • aromatic cation such as an imidazolium cation and a pyridinium cation.
  • a monovalent amide-based anion a monovalent methide-based anion, a fluorosulfonic acid anion, a perfluoroalkylsulfonic acid anion, a tetrafluoroborate anion, a perfluoroalkylborate anion, and a hexafluorophosphate anion Or a perfluoroalkyl phosphate anion.
  • LiPF 6 LiClO 4, LiAsF 6 , LiBF 4, LiAlCl 4, LiSCN, LiBr, LiI, Li 2 SO 4, Li 2 B 10 Cl 10, Li 2 B 12 Cl 12, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiN (CF 3 SO 2) 2, LiN (C 4 F 9
  • LiPF 6 LiClO 4, LiAsF 6 , LiBF 4, LiAlCl 4, LiSCN, LiBr, LiI, Li 2 SO 4, Li 2 B 10 Cl 10, Li 2 B 12 Cl 12, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiN (CF 3 SO 2) 2, LiN (C 4 F 9
  • One kind of lithium salt such as SO 2 ) (CF 3 SO 2 ) and LiN (C 2 F 5 SO 2 ) 2 , or two or more kinds thereof can be used in any combination and ratio.
  • the weight ratio of the impurity to the electrolyte is preferably 1% or less, preferably 0.1% or less, and more preferably 0.01% or less.
  • vinylene carbonate, propane sultone (PS), tert-butylbenzene (TBB), fluoroethylene carbonate (FEC), lithium bis (oxalate) borate (LiBOB), and dinitrile compounds such as succinonitrile and adiponitrile are used for the electrolyte. May be added.
  • concentration of the material to be added may be, for example, 0.1 wt% or more and 5 wt% or less based on the entire solvent.
  • a polymer gel electrolyte obtained by swelling a polymer with an electrolytic solution may be used.
  • silicone gel acrylic gel, acrylonitrile gel, polyethylene oxide gel, polypropylene oxide gel, fluorine polymer gel, or the like can be used.
  • polymer for example, a polymer having a polyalkylene oxide structure such as polyethylene oxide (PEO), PVDF, polyacrylonitrile, and a copolymer containing them can be used.
  • PEO polyethylene oxide
  • PVDF-HFP which is a copolymer of PVDF and hexafluoropropylene (HFP) can be used.
  • the formed polymer may have a porous shape.
  • a solid electrolyte containing an inorganic material such as a sulfide or an oxide, or a solid electrolyte containing a polymer material such as a PEO (polyethylene oxide) can be used.
  • a solid electrolyte it is not necessary to provide a separator or a spacer. Further, since the entire battery can be solidified, there is no possibility of liquid leakage, and safety is dramatically improved.
  • the secondary battery preferably has a separator.
  • the separator for example, one formed of paper, nonwoven fabric, glass fiber, ceramics, or synthetic fiber using nylon (polyamide), vinylon (polyvinyl alcohol-based fiber), polyester, acryl, polyolefin, or polyurethane is used. Can be.
  • the separator is preferably processed into an envelope shape and arranged so as to surround either the positive electrode or the negative electrode.
  • the separator may have a multilayer structure.
  • an organic material film such as polypropylene or polyethylene can be coated with a ceramic material, a fluorine material, a polyamide material, or a mixture thereof.
  • the ceramic material for example, aluminum oxide particles, silicon oxide particles, and the like can be used.
  • the fluorine-based material for example, PVDF, polytetrafluoroethylene, or the like can be used.
  • the polyamide-based material for example, nylon, aramid (meta-aramid, para-aramid) and the like can be used.
  • Oxidation resistance is improved by coating with a ceramic material, so that deterioration of the separator during high-voltage charging and discharging can be suppressed, and the reliability of the secondary battery can be improved. Further, when a fluorine-based material is coated, the separator and the electrode are easily brought into close contact with each other, and output characteristics can be improved. When a polyamide-based material, particularly aramid, is coated, heat resistance is improved, so that safety of the secondary battery can be improved.
  • both surfaces of a polypropylene film may be coated with a mixed material of aluminum oxide and aramid.
  • a surface of the polypropylene film which contacts the positive electrode may be coated with a mixed material of aluminum oxide and aramid, and a surface which contacts the negative electrode may be coated with a fluorine-based material.
  • a metal material such as aluminum or a resin material can be used, for example.
  • a film-like exterior body can be used.
  • the film for example, a highly flexible metal thin film of aluminum, stainless steel, copper, nickel, etc. is provided on a film made of a material such as polyethylene, polypropylene, polycarbonate, ionomer, polyamide, and the like.
  • a film having a three-layer structure provided with an insulating synthetic resin film such as a polyamide resin or a polyester resin as an outer surface of the body can be used.
  • the charging and discharging of the secondary battery can be performed, for example, as follows.
  • CC charging is a charging method in which a constant current is supplied to a secondary battery during the entire charging period, and charging is stopped when a predetermined voltage is reached. It is assumed that the secondary battery is an equivalent circuit of an internal resistance R and a secondary battery capacity C as shown in FIG. In this case, the secondary battery voltage V B is the sum of the voltage V C applied to the voltage V R and the secondary battery capacity C according to the internal resistance R.
  • the switch is turned on, and a constant current I flows to the secondary battery.
  • the voltage V C applied to the secondary battery capacity C increases with time. Therefore, the secondary battery voltage V B increases with time.
  • CCCV charging is a charging method in which charging is first performed to a predetermined voltage by CC charging, and then charging is performed until the current flowing in CV (constant voltage) charging decreases, specifically until the terminal current value is reached. .
  • the switch of the constant current power supply is turned on, the switch of the constant voltage power supply is turned off, and a constant current I flows to the secondary battery.
  • the voltage V C applied to the secondary battery capacity C increases with time. Therefore, the secondary battery voltage V B increases with time.
  • CC discharge which is one of the discharge methods will be described.
  • CC discharge constant current in all the discharge period flowed from the secondary battery, a discharge process for stopping the discharge when the secondary battery voltage V B is has reached a predetermined voltage, for example 2.5V.
  • the discharge rate is a relative ratio of a current at the time of discharge to a battery capacity, and is expressed in a unit C.
  • a current corresponding to 1 C is X (A).
  • X (A) When discharged at a current of 2X (A), it is said to have been discharged at 2C, and when discharged at a current of X / 5 (A), it was said to have been discharged at 0.2C.
  • charging is performed at a current of 2X (A)
  • charging at a current of X / 5 (A) charging is performed at 0.2C. It was said.
  • FIG. 14A is an external view of a coin-type (single-layer flat type) secondary battery
  • FIG. 14B is a cross-sectional view thereof.
  • a positive electrode can 301 also serving as a positive electrode terminal and a negative electrode can 302 also serving as a negative electrode terminal are insulated and sealed by a gasket 303 made of polypropylene or the like.
  • the positive electrode 304 is formed by a positive electrode current collector 305 and a positive electrode active material layer 306 provided to be in contact with the current collector 305.
  • the negative electrode 307 is formed by the negative electrode current collector 308 and the negative electrode active material layer 309 provided so as to be in contact with the current collector 308.
  • the positive electrode 304 and the negative electrode 307 used for the coin-type secondary battery 300 may each have an active material layer formed only on one side.
  • the positive electrode can 301 and the negative electrode can 302 a metal such as nickel, aluminum, or titanium having corrosion resistance to an electrolytic solution, an alloy thereof, or an alloy thereof (for example, stainless steel) may be used. it can. Further, in order to prevent corrosion by the electrolytic solution, it is preferable to coat with nickel, aluminum, or the like.
  • the positive electrode can 301 is electrically connected to the positive electrode 304
  • the negative electrode can 302 is electrically connected to the negative electrode 307.
  • the negative electrode 307, the positive electrode 304, and the separator 310 are impregnated with an electrolyte, and the positive electrode 304, the separator 310, the negative electrode 307, and the negative electrode can 302 are laminated in this order with the positive electrode can 301 turned down as shown in FIG. Then, the positive electrode can 301 and the negative electrode can 302 are pressure-bonded via a gasket 303 to manufacture a coin-shaped secondary battery 300.
  • the positive electrode is “positive electrode” or “ The negative electrode is referred to as “negative electrode” or the “negative electrode”.
  • anode (anode) and cathode (cathode) related to the oxidation reaction and the reduction reaction are used, there is a possibility that charge and discharge are reversed and confusion is caused. Therefore, the terms anode (anode) and cathode (cathode) are not used in this specification. If the terms anode (cathode) and cathode (cathode) are used, indicate whether the battery is being charged or discharged, and also indicate whether it corresponds to the positive electrode (positive electrode) or the negative electrode (negative electrode). I do.
  • a charger is connected to the two terminals shown in FIG. 14C, and the secondary battery 300 is charged. As the charging of the secondary battery 300 proceeds, the potential difference between the electrodes increases.
  • FIG. 15A is an external view of a cylindrical secondary battery 600.
  • FIG. 15B is a diagram schematically illustrating a cross section of a cylindrical secondary battery 600.
  • a cylindrical secondary battery 600 has a positive electrode cap (battery lid) 601 on the upper surface, and a battery can (exterior can) 602 on the side and bottom surfaces.
  • the positive electrode cap and the battery can (exterior can) 602 are insulated by a gasket (insulating packing) 610.
  • a battery element in which a band-shaped positive electrode 604 and a negative electrode 606 are wound with a separator 605 interposed therebetween is provided inside the hollow cylindrical battery can 602.
  • the battery element is wound around the center pin.
  • the battery can 602 has one end closed and the other end open.
  • a metal such as nickel, aluminum, or titanium having corrosion resistance to an electrolytic solution, an alloy thereof, or an alloy of these and another metal (for example, stainless steel) can be used. .
  • the battery element in which the positive electrode, the negative electrode, and the separator are wound is sandwiched between a pair of opposed insulating plates 608 and 609.
  • a nonaqueous electrolyte (not shown) is injected into the inside of the battery can 602 provided with the battery element.
  • the non-aqueous electrolyte the same one as used in the coin-type secondary battery can be used.
  • the positive electrode 604 is connected to a positive terminal (positive current collecting lead) 603, and the negative electrode 606 is connected to a negative terminal (negative current collecting lead) 607.
  • a metal material such as aluminum can be used.
  • the positive terminal 603 is resistance-welded to the safety valve mechanism 612, and the negative terminal 607 is resistance-welded to the bottom of the battery can 602.
  • the safety valve mechanism 612 is electrically connected to the positive electrode cap 601 via a PTC element (Positive Temperature Coefficient) 611.
  • the safety valve mechanism 612 disconnects the electrical connection between the positive electrode cap 601 and the positive electrode 604 when the rise in the internal pressure of the battery exceeds a predetermined threshold.
  • the PTC element 611 is a thermal resistance element whose resistance increases when the temperature rises. The PTC element 611 limits the amount of current by increasing the resistance to prevent abnormal heat generation.
  • barium titanate (BaTiO 3 ) -based semiconductor ceramics or the like can be used.
  • a module 615 may be formed by sandwiching a plurality of secondary batteries 600 between the conductive plates 613 and 614.
  • the plurality of secondary batteries 600 may be connected in parallel, may be connected in series, or may be connected in series after being connected in parallel.
  • large power can be extracted.
  • FIG. 15D is a top view of the module 615.
  • the conductive plate 613 is shown by a dotted line.
  • the module 615 may include a conductive wire 616 that electrically connects the plurality of secondary batteries 600.
  • a conductive plate can be provided over the conductor 616 so as to overlap.
  • a temperature control device 617 may be provided between the plurality of secondary batteries 600. When the secondary battery 600 is overheated, it can be cooled by the temperature controller 617, and when the secondary battery 600 is too cold, it can be heated by the temperature controller 617. Therefore, the performance of the module 615 is hardly affected by the outside air temperature.
  • the heat medium included in the temperature control device 617 preferably has insulating properties and nonflammability.
  • FIGS. 16 (A) and 16 (B) are external views of the battery pack.
  • the battery pack has a circuit board 900 and a secondary battery 913.
  • a label 910 is attached to the secondary battery 913.
  • the secondary battery 913 includes a terminal 951 and a terminal 952.
  • the circuit board 900 includes the circuit 912.
  • the terminal 911 is connected to the terminal 951, the terminal 952, the antenna 914, and the circuit 912 via the circuit board 900.
  • a plurality of terminals 911 may be provided, and each of the plurality of terminals 911 may be a control signal input terminal, a power supply terminal, or the like.
  • the circuit 912 may be provided on the back surface of the circuit board 900.
  • the antenna 914 is not limited to a coil shape, and may be, for example, a linear shape or a plate shape. Further, an antenna such as a planar antenna, an aperture antenna, a traveling wave antenna, an EH antenna, a magnetic field antenna, or a dielectric antenna may be used.
  • the antenna 914 may be a flat conductor.
  • This flat conductor can function as one of the electric field coupling conductors. That is, the antenna 914 may function as one of two conductors of the capacitor.
  • power can be exchanged not only by an electromagnetic field and a magnetic field but also by an electric field.
  • the battery pack has a layer 916 between the antenna 914 and the secondary battery 913.
  • the layer 916 has a function of shielding an electromagnetic field generated by the secondary battery 913, for example.
  • a magnetic substance can be used as the layer 916.
  • FIGS. 17A1 and 17A2 an antenna is provided on each of a pair of opposing surfaces in the secondary battery 913 illustrated in FIGS. 16A and 16B. Is also good.
  • FIG. 17A1 is an external view showing one of the pair of surfaces
  • FIG. 17A2 is an external view showing the other of the pair of surfaces. Note that for the same portions as the secondary battery illustrated in FIGS. 16A and 16B, the description of the secondary battery illustrated in FIGS. 16A and 16B can be used as appropriate.
  • an antenna 914 is provided on one of a pair of surfaces of the secondary battery 913 with a layer 916 interposed therebetween. As illustrated in FIG. 17A2, a pair of surfaces of the secondary battery 913 are provided. On the other side, an antenna 918 is provided with a layer 917 interposed therebetween.
  • the layer 917 has a function of shielding an electromagnetic field generated by the secondary battery 913, for example.
  • a magnetic substance can be used as the layer 917.
  • the antenna 918 has a function of performing data communication with an external device, for example.
  • an antenna having a shape applicable to the antenna 914 can be used, for example.
  • a communication method between the secondary battery and another device through the antenna 918 a response method that can be used between the secondary battery and another device, such as NFC (Near Field Communication), is applied. Can be.
  • the display device 920 may be provided in the secondary battery 913 illustrated in FIGS. 16A and 16B.
  • the display device 920 is electrically connected to the terminal 911.
  • the label 910 does not have to be provided in a portion where the display device 920 is provided.
  • the description of the secondary battery illustrated in FIGS. 16A and 16B can be used as appropriate.
  • the display device 920 may display, for example, an image indicating whether or not charging is being performed, an image indicating the amount of stored power, and the like.
  • the display device 920 for example, electronic paper, a liquid crystal display device, an electroluminescence (EL) display device, or the like can be used. For example, by using electronic paper, power consumption of the display device 920 can be reduced.
  • EL electroluminescence
  • the sensor 921 may be provided in the secondary battery 913 illustrated in FIGS. 16A and 16B.
  • the sensor 921 is electrically connected to the terminal 911 via the terminal 922. Note that for the same portions as the secondary battery illustrated in FIGS. 16A and 16B, the description of the secondary battery illustrated in FIGS. 16A and 16B can be used as appropriate.
  • the senor 921 for example, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate It is only necessary to have a function capable of measuring humidity, inclination, vibration, smell, or infrared rays.
  • data temperature or the like
  • the environment in which the secondary battery is placed can be detected and stored in the memory in the circuit 912.
  • a secondary battery 913 illustrated in FIG. 18A includes a wound body 950 in which a terminal 951 and a terminal 952 are provided inside a housing 930.
  • the wound body 950 is impregnated with the electrolytic solution inside the housing 930.
  • the terminal 952 is in contact with the housing 930, and the terminal 951 is not in contact with the housing 930 by using an insulating material or the like.
  • the housing 930 is illustrated separately for convenience; however, in actuality, the wound body 950 is covered with the housing 930, and the terminals 951 and 952 are connected to the housing 930. Extends outside.
  • a metal material eg, aluminum
  • a resin material can be used as the housing 930.
  • the housing 930 illustrated in FIG. 18A may be formed using a plurality of materials.
  • a housing 930a and a housing 930b are attached to each other, and a wound body 950 is provided in a region surrounded by the housing 930a and the housing 930b. .
  • An insulating material such as an organic resin can be used for the housing 930a.
  • a material such as an organic resin for a surface on which an antenna is formed shielding of an electric field by the secondary battery 913 can be suppressed.
  • an antenna such as the antenna 914 or the antenna 918 may be provided inside the housing 930a as long as electric field shielding by the housing 930a is small.
  • a metal material can be used for the housing 930b.
  • the wound body 950 has a negative electrode 931, a positive electrode 932, and a separator 933.
  • the wound body 950 is a wound body in which the negative electrode 931 and the positive electrode 932 are laminated with the separator 933 sandwiched therebetween and the laminated sheet is wound. Note that a plurality of stacks of the negative electrode 931, the positive electrode 932, and the separator 933 may be further stacked.
  • the negative electrode 931 is connected to the terminal 911 illustrated in FIGS. 16A and 16B through one of the terminal 951 and the terminal 952.
  • the positive electrode 932 is connected to the terminal 911 illustrated in FIGS. 16A and 16B through the other of the terminals 951 and 952.
  • laminated secondary battery Next, an example of a laminated secondary battery is described with reference to FIGS. If the laminate type secondary battery is configured to have flexibility, if it is mounted on an electronic device having at least a part having flexibility, the secondary battery may be bent in accordance with the deformation of the electronic device. it can.
  • the laminated secondary battery 980 includes a wound body 993 illustrated in FIG.
  • the wound body 993 includes a negative electrode 994, a positive electrode 995, and a separator 996. Similar to the wound body 950 described with reference to FIG. 19, the wound body 993 is obtained by laminating a negative electrode 994 and a positive electrode 995 with a separator 996 sandwiched therebetween, and winding the laminated sheet.
  • the number of layers including the negative electrode 994, the positive electrode 995, and the separator 996 may be appropriately designed according to the required capacity and element volume.
  • the negative electrode 994 is connected to a negative electrode current collector (not shown) via one of the lead electrode 997 and the lead electrode 998
  • the positive electrode 995 is connected to a positive electrode current collector (not shown) via the other of the lead electrode 997 and the lead electrode 998. )).
  • the above-described wound body 993 is housed in a space formed by bonding a film 981 serving as an exterior body and a film 982 having a concave portion by thermocompression bonding or the like.
  • a secondary battery 980 can be manufactured as illustrated in FIG.
  • the wound body 993 has a lead electrode 997 and a lead electrode 998, and is impregnated with an electrolytic solution inside the film 981 and the film 982 having a concave portion.
  • a metal material such as aluminum or a resin material can be used, for example.
  • a resin material is used as the material of the film 981 and the film 982 having the concave portion, the film 981 and the film 982 having the concave portion can be deformed when a force is applied from the outside, so that a flexible storage battery is manufactured. be able to.
  • 20B and 20C show an example in which two films are used, a space is formed by bending one film, and the above-described wound body 993 is placed in the space. It may be stored.
  • FIGS. 21A and 21B illustrate an example of a secondary battery 980 having a wound body in a space formed by a film serving as an exterior body, for example, as illustrated in FIGS. 21A and 21B. Further, a secondary battery having a plurality of strip-shaped positive electrodes, a separator, and a negative electrode in a space formed by a film serving as an exterior body may be used.
  • a laminated secondary battery 500 illustrated in FIG. 21A includes a positive electrode 503 including a positive electrode current collector 501 and a positive electrode active material layer 502, a negative electrode 506 including a negative electrode current collector 504, and a negative electrode active material layer 505,
  • the battery includes a separator 507, an electrolytic solution 508, and an outer package 509.
  • a separator 507 is provided between the positive electrode 503 and the negative electrode 506 provided in the exterior body 509. Further, the inside of the exterior body 509 is filled with the electrolytic solution 508.
  • the electrolyte solution 508 the electrolyte solution described in Embodiment 2 can be used.
  • the positive electrode current collector 501 and the negative electrode current collector 504 also serve as terminals for obtaining electrical contact with the outside. Therefore, a part of the positive electrode current collector 501 and a part of the negative electrode current collector 504 may be arranged so as to be exposed to the outside from the exterior body 509. Also, the positive electrode current collector 501 and the negative electrode current collector 504 are not exposed to the outside from the outer package 509, and the lead electrode and the positive electrode current collector 501 or the negative electrode current collector 504 are ultrasonically bonded to each other by using a lead electrode. Then, the lead electrodes may be exposed to the outside.
  • the exterior body 509 is formed of a film made of a material such as polyethylene, polypropylene, polycarbonate, ionomer, polyamide, or the like, and a metal having excellent flexibility such as aluminum, stainless steel, copper, or nickel.
  • a laminate film having a three-layer structure in which a thin film is provided and an insulating synthetic resin film such as a polyamide resin or a polyester resin is provided on the metal thin film as an outer surface of the outer package can be used.
  • FIG. 21B ⁇ illustrates an example of a cross-sectional structure of a laminated secondary battery 500.
  • FIG. 21A shows an example in which two current collectors are used for the sake of simplicity. However, in actuality, as shown in FIG.
  • the number of electrode layers is 16 as an example. Note that the secondary battery 500 has flexibility even when the number of electrode layers is set to 16.
  • FIG. 21B illustrates a structure in which the negative electrode current collector 504 has eight layers and the positive electrode current collector 501 has eight layers, for a total of 16 layers. Note that FIG. 21B shows a cross section of a portion from which the negative electrode is taken out, and eight layers of the negative electrode current collector 504 are ultrasonically bonded.
  • the number of electrode layers is not limited to 16, and may be large or small. When the number of electrode layers is large, a secondary battery having a larger capacity can be obtained. In the case where the number of electrode layers is small, a secondary battery which can be reduced in thickness and excellent in flexibility can be obtained.
  • FIGS. 22 and 23 each include a positive electrode 503, a negative electrode 506, a separator 507, an outer package 509, a positive electrode lead electrode 510, and a negative electrode lead electrode 511.
  • FIG. 24A is an external view of a positive electrode 503 and a negative electrode 506.
  • the positive electrode 503 has a positive electrode current collector 501, and the positive electrode active material layer 502 is formed on a surface of the positive electrode current collector 501.
  • the positive electrode 503 has a region where the positive electrode current collector 501 is partially exposed (hereinafter, referred to as a tab region).
  • the negative electrode 506 has a negative electrode current collector 504, and the negative electrode active material layer 505 is formed on a surface of the negative electrode current collector 504.
  • the negative electrode 506 has a region where the negative electrode current collector 504 is partially exposed, that is, a tab region.
  • the areas and shapes of the tab regions included in the positive electrode and the negative electrode are not limited to the example illustrated in FIG.
  • FIG. 24B illustrates the stacked negative electrode 506, separator 507, and positive electrode 503.
  • an example is shown in which five pairs of negative electrodes and four pairs of positive electrodes are used.
  • the tab regions of the positive electrode 503 are joined together, and the positive electrode lead electrode 510 is joined to the outermost positive electrode tab region.
  • For joining for example, ultrasonic welding may be used.
  • the joining of the tab regions of the negative electrode 506 and the joining of the negative electrode lead electrode 511 to the tab region of the outermost negative electrode are performed.
  • the negative electrode 506, the separator 507, and the positive electrode 503 are arranged on the exterior body 509.
  • the exterior body 509 is bent at a portion indicated by a broken line. After that, the outer peripheral portion of the exterior body 509 is joined.
  • bonding for example, thermocompression bonding or the like may be used.
  • a region which is not joined to a part (or one side) of the exterior body 509 is provided so that the electrolyte solution 508 can be introduced later.
  • an electrolyte solution 508 (not shown) is introduced into the inside of the exterior body 509 from an inlet provided in the exterior body 509.
  • the introduction of the electrolyte solution 508 is preferably performed under a reduced-pressure atmosphere or an inert atmosphere.
  • the inlet is joined. In this way, a laminated secondary battery 500 can be manufactured.
  • the secondary battery 500 having high capacity and excellent cycle characteristics can be obtained.
  • FIG. 25A is a schematic top view of a secondary battery 250 that can be bent.
  • FIGS. 25 (B1), (B2), and (C) are schematic cross-sectional views taken along a cutting line C1-C2, a cutting line C3-C4, and a cutting line A1-A2 in FIG. 25A, respectively.
  • the secondary battery 250 has an exterior body 251 and a positive electrode 211a and a negative electrode 211b housed inside the exterior body 251.
  • the lead 212a electrically connected to the positive electrode 211a and the lead 212b electrically connected to the negative electrode 211b extend outside the exterior body 251.
  • An electrolyte (not shown) is enclosed in a region surrounded by the exterior body 251 in addition to the positive electrode 211a and the negative electrode 211b.
  • FIG. 26A is a perspective view illustrating a stacking order of the positive electrode 211a, the negative electrode 211b, and the separator 214.
  • FIG. 26B is a perspective view showing a lead 212a and a lead 212b in addition to the positive electrode 211a and the negative electrode 211b.
  • the secondary battery 250 includes a plurality of strip-shaped positive electrodes 211a, a plurality of strip-shaped negative electrodes 211b, and a plurality of separators 214.
  • Each of the positive electrode 211a and the negative electrode 211b has a protruding tab portion and a portion other than the tab.
  • a positive electrode active material layer is formed on a portion other than the tab on one surface of the positive electrode 211a, and a negative electrode active material layer is formed on a portion other than the tab on one surface of the negative electrode 211b.
  • the positive electrode 211a and the negative electrode 211b are stacked such that surfaces of the positive electrode 211a on which the positive electrode active material layer is not formed and surfaces of the negative electrode 211b on which the negative electrode active material is not formed are in contact with each other.
  • a separator 214 is provided between the surface of the positive electrode 211a on which the positive electrode active material is formed and the surface of the negative electrode 211b on which the negative electrode active material is formed.
  • the separator 214 is indicated by a dotted line for easy viewing.
  • the plurality of positive electrodes 211a and the leads 212a are electrically connected at the joint 215a.
  • the plurality of negative electrodes 211b and the leads 212b are electrically connected at a joint 215b.
  • the outer package 251 has a film-like shape, and is folded into two so as to sandwich the positive electrode 211a and the negative electrode 211b.
  • the exterior body 251 has a bent part 261, a pair of seal parts 262, and a seal part 263.
  • the pair of seal portions 262 are provided so as to sandwich the positive electrode 211a and the negative electrode 211b, and can also be called a side seal.
  • the seal portion 263 has a portion overlapping with the leads 212a and 212b, and can be referred to as a top seal.
  • the exterior body 251 has a wave shape in which ridge lines 271 and valley lines 272 are alternately arranged in a portion overlapping the positive electrode 211a and the negative electrode 211b. Further, it is preferable that the seal portion 262 and the seal portion 263 of the exterior body 251 are flat.
  • FIG. 25 (B1) is a cross section cut at a portion overlapping the ridge line 271
  • FIG. 25 (B2) is a cross section cut at a portion overlapping the valley line 272.
  • FIGS. 25B1 and 25B2 correspond to the cross sections in the width direction of the secondary battery 250 and the positive electrode 211a and the negative electrode 211b.
  • the distance between the ends of the positive electrode 211a and the negative electrode 211b in the width direction, that is, the ends of the positive electrode 211a and the negative electrode 211b and the seal portion 262 is defined as a distance La.
  • the positive electrode 211a and the negative electrode 211b are deformed so as to be displaced from each other in the length direction as described later.
  • the outer package 251 may be strongly rubbed against the positive electrode 211a and the negative electrode 211b, and the outer package 251 may be damaged.
  • the metal film of the exterior body 251 is exposed, the metal film may be corroded by the electrolytic solution. Therefore, it is preferable to set the distance La as long as possible.
  • the distance La is too large, the volume of the secondary battery 250 will increase.
  • the distance La is 0.8 to 3.0 times the thickness t, Preferably it is 0.9 times or more and 2.5 times or less, more preferably 1.0 times or more and 2.0 times or less.
  • the distance Lb is sufficiently larger than the width of the positive electrode 211a and the negative electrode 211b (here, the width Wb of the negative electrode 211b).
  • the difference between the distance Lb between the pair of seal portions 262 and the width Wb of the negative electrode 211b is 1.6 times or more and 6.0 times or less, preferably 1.8 times the thickness t of the positive electrode 211a and the negative electrode 211b. It is preferable that the ratio satisfies the range from 2.0 times to 5.0 times, more preferably from 2.0 times to 4.0 times.
  • the distance Lb, the width Wb, and the thickness t satisfy the relationship of the following Expression 1.
  • a satisfies 0.8 or more and 3.0 or less, preferably 0.9 or more and 2.5 or less, more preferably 1.0 or more and 2.0 or less.
  • FIG. 25C is a cross section including the lead 212a, and corresponds to a cross section in the length direction of the secondary battery 250, the positive electrode 211a, and the negative electrode 211b. As illustrated in FIG. 25C, it is preferable that the bent portion 261 have a space 273 between the longitudinal ends of the positive electrode 211 a and the negative electrode 211 b and the exterior body 251.
  • FIG. 25D is a schematic cross-sectional view when the secondary battery 250 is bent.
  • FIG. 25D corresponds to a cross section taken along a cutting line B1-B2 in FIG.
  • the positive electrode 211a and the negative electrode 211b located inside when bent are not in contact with the outer package 251 but relatively. Can be shifted.
  • the secondary battery 250 illustrated in FIGS. 25 (A), (B1), (B2), (C), (D), and FIGS. 26 (A) and (B) has an outer package even when repeatedly bent and stretched. Of the positive electrode 211a and the negative electrode 211b are unlikely to occur, and the battery characteristics are hardly deteriorated. By using the positive electrode active material described in the above embodiment for the positive electrode 211a included in the secondary battery 250, a battery with more excellent cycle characteristics can be obtained.
  • FIGS. 27A to 27G illustrate an example in which a bendable secondary battery described in part of Embodiment 3 is mounted on an electronic device.
  • electronic devices to which a bendable secondary battery is applied include a television device (also referred to as a television or a television receiver), a monitor for a computer, a digital camera, a digital video camera, a digital photo frame, and a mobile phone. (Also referred to as a mobile phone or a mobile phone device), a portable game machine, a portable information terminal, a sound reproducing device, a large game machine such as a pachinko machine, and the like.
  • a secondary battery having a flexible shape can be incorporated along the inner or outer wall of a house or building, or along the curved surface of the interior or exterior of an automobile.
  • FIG. 27A illustrates an example of a mobile phone.
  • the mobile phone 7400 is provided with a display portion 7402 incorporated in a housing 7401, operation buttons 7403, an external connection port 7404, a speaker 7405, a microphone 7406, and the like.
  • the mobile phone 7400 includes a secondary battery 7407.
  • the secondary battery 7407 By using the secondary battery of one embodiment of the present invention for the secondary battery 7407, a lightweight and long-life mobile phone can be provided.
  • FIG. 27B illustrates a state where the mobile phone 7400 is curved.
  • the secondary battery 7407 provided therein is also bent.
  • FIG. 27C illustrates a state of the secondary battery 7407 bent at that time.
  • the secondary battery 7407 is a thin storage battery.
  • the secondary battery 7407 is fixed in a bent state.
  • the secondary battery 7407 has a lead electrode electrically connected to a current collector.
  • the current collector is a copper foil, which is partially alloyed with gallium to improve the adhesion between the current collector and the active material layer in contact with the current collector, and to improve the reliability in a state where the secondary battery 7407 is bent. It has a high configuration.
  • FIG. 27D illustrates an example of a bangle-type display device.
  • the portable display device 7100 includes a housing 7101, a display portion 7102, operation buttons 7103, and a secondary battery 7104.
  • FIG. 27E illustrates a state of the bent secondary battery 7104.
  • the casing is deformed and the curvature of a part or all of the secondary battery 7104 changes.
  • the degree of bending at an arbitrary point on the curve expressed by the value of the radius of the corresponding circle is called a radius of curvature, and the reciprocal of the radius of curvature is called a curvature.
  • part or all of the main surface of the housing or the secondary battery 7104 changes within a range where the radius of curvature is 40 mm or more and 150 mm or less. If the radius of curvature on the main surface of the secondary battery 7104 is in the range of 40 mm to 150 mm, high reliability can be maintained.
  • the secondary battery of one embodiment of the present invention for the secondary battery 7104, a lightweight and long-life portable display device can be provided.
  • FIG. 27F illustrates an example of a wristwatch-type portable information terminal.
  • the portable information terminal 7200 includes a housing 7201, a display portion 7202, a band 7203, a buckle 7204, operation buttons 7205, an input / output terminal 7206, and the like.
  • the portable information terminal 7200 can execute various applications such as mobile phone, e-mail, text browsing and creation, music playback, Internet communication, and computer games.
  • the display portion 7202 is provided with a curved display surface, and can perform display along the curved display surface.
  • the display portion 7202 includes a touch sensor and can be operated by touching the screen with a finger, a stylus, or the like.
  • an application can be activated by touching an icon 7207 displayed on the display portion 7202.
  • the operation button 7205 can have various functions such as power ON / OFF operation, wireless communication ON / OFF operation, execution and release of a manner mode, and execution and release of a power saving mode, in addition to time setting.
  • the functions of the operation buttons 7205 can be freely set by an operating system incorporated in the portable information terminal 7200.
  • the portable information terminal 7200 is capable of executing short-range wireless communication specified by a communication standard. For example, by communicating with a headset capable of wireless communication, it is possible to make a hands-free call.
  • the portable information terminal 7200 has an input / output terminal 7206, and can directly exchange data with another information terminal via a connector. Charging can also be performed through the input / output terminal 7206. Note that the charging operation may be performed by wireless power feeding without using the input / output terminal 7206.
  • the display portion 7202 of the portable information terminal 7200 includes the secondary battery of one embodiment of the present invention.
  • the secondary battery of one embodiment of the present invention a lightweight and long-life portable information terminal can be provided.
  • the secondary battery 7104 illustrated in FIG. 27E can be incorporated in a state where it is bent inside the housing 7201 or in a state where it can be bent inside the band 7203.
  • Personal digital assistant 7200 preferably has a sensor.
  • a human body sensor such as a fingerprint sensor, a pulse sensor, and a body temperature sensor, a touch sensor, a pressure sensor, an acceleration sensor, and the like be mounted as the sensor.
  • FIG. 27G illustrates an example of an armband display device.
  • the display device 7300 includes a display portion 7304 and includes the secondary battery of one embodiment of the present invention.
  • the display portion 7304 can include a touch sensor, and can function as a portable information terminal.
  • the display portion 7304 has a curved display surface, and can perform display along the curved display surface.
  • the display device 7300 can change the display state by short-range wireless communication that is a communication standard.
  • the display device 7300 has an input / output terminal, and can directly exchange data with another information terminal via a connector. Charging can also be performed via an input / output terminal. Note that the charging operation may be performed by wireless power feeding without using the input / output terminal.
  • a lightweight and long-life display device can be provided.
  • the secondary battery of one embodiment of the present invention as a secondary battery in an electronic device for everyday use, a lightweight and long-life product can be provided.
  • electric appliances such as electric toothbrushes, electric shavers, and electric beauty appliances are used as daily-use electronic devices.
  • the secondary batteries of these products are shaped like sticks in consideration of the ease of holding by users, and are small and lightweight. Also, a large capacity secondary battery is desired.
  • FIG. 27H is a perspective view of a device also called a cigarette holding and smoking device (electronic cigarette).
  • an electronic cigarette 7500 includes an atomizer 7501 including a heating element, a secondary battery 7504 that supplies power to the atomizer, and a cartridge 7502 including a liquid supply bottle, a sensor, and the like.
  • a protection circuit for preventing overcharge or overdischarge of the secondary battery 7504 may be electrically connected to the secondary battery 7504.
  • the secondary battery 7504 illustrated in FIG. 27H has an external terminal so that the secondary battery 7504 can be connected to a charging device. Since the secondary battery 7504 becomes a tip portion when held, it is desirable that the total length is short and the weight is light. Since the secondary battery of one embodiment of the present invention has high capacity and favorable cycle characteristics, a small and lightweight electronic cigarette 7500 which can be used for a long time over a long period can be provided.
  • FIGS. 28A and 28B show an example of a tablet terminal that can be folded.
  • a tablet terminal 9600 illustrated in FIGS. 28A and 28B includes a housing 9630a, a housing 9630b, a movable portion 9640 which connects the housing 9630a to the housing 9630b, a display portion 9631a, and a display portion 9631b.
  • a display portion 9631, switches 9625 to 9627, a fastener 9629, and an operation switch 9628 are provided.
  • FIG. 28A illustrates a state in which the tablet terminal 9600 is open
  • FIG. 28B illustrates a state in which the tablet terminal 9600 is closed.
  • the tablet terminal 9600 includes a power storage body 9635 in the housing 9630a and the housing 9630b.
  • the power storage unit 9635 is provided over the housing 9630a and the housing 9630b through the movable portion 9640.
  • the display portion 9631 can use all or part of the region as a touch panel region, and can input data by touching an image, a character, an input form, or the like including an icon displayed in the region.
  • a keyboard button may be displayed on the entire surface of the display portion 9631a of the housing 9630a, and information such as characters and images may be displayed on the display portion 9631b of the housing 9630b.
  • a keyboard may be displayed on the display portion 9631b of the housing 9630b, and information such as characters and images may be displayed on the display portion 9631a of the housing 9630a.
  • a keyboard display switching button of a touch panel may be displayed on the display portion 9631, and a keyboard may be displayed on the display portion 9631 by touching the button with a finger or a stylus.
  • touch input can be performed simultaneously on a touch panel region of the display portion 9631a on the housing 9630a and a touch panel region of the display portion 9631b on the housing 9630b.
  • the switches 9625 to 9627 may be not only interfaces for operating the tablet terminal 9600 but also interfaces for switching various functions.
  • at least one of the switches 9625 to 9627 may function as a switch for turning on / off the power of the tablet terminal 9600.
  • at least one of the switches 9625 to 9627 may have a function of switching a display direction such as a vertical display or a horizontal display, or a function of switching between a monochrome display and a color display.
  • at least one of the switches 9625 to 9627 may have a function of adjusting the luminance of the display portion 9631.
  • the luminance of the display portion 9631 can be optimized according to the amount of external light in use which is detected by an optical sensor built in the tablet terminal 9600.
  • the tablet terminal may incorporate not only an optical sensor but also other detection devices such as a sensor for detecting a tilt such as a gyro or an acceleration sensor.
  • FIG. 28A illustrates an example in which the display area of the display portion 9631a on the housing 9630a and the display portion 9631b on the housing 9630b are substantially the same, but the display area of each of the display portions 9631a and 9631b is different.
  • the area is not particularly limited, and one size may be different from the other size, and the display quality may be different.
  • a display panel in which one of them can display a higher definition than the other may be used.
  • FIG. 28B illustrates a state in which the tablet terminal 9600 is folded in two.
  • the tablet terminal 9600 includes a housing 9630, a solar battery 9633, and a charge / discharge control circuit 9634 including a DCDC converter 9636.
  • the power storage element 9635 the power storage element of one embodiment of the present invention is used.
  • the tablet terminal 9600 can be folded in two, so that the housing 9630a and the housing 9630b can be folded so as to overlap each other when not in use.
  • the display portion 9631 can be protected by folding, so that the durability of the tablet terminal 9600 can be increased.
  • the power storage unit 9635 using the secondary battery of one embodiment of the present invention has high capacity and favorable cycle characteristics, the tablet terminal 9600 can be used for a long time over a long period.
  • the tablet terminal 9600 illustrated in FIGS. 28A and 28B has a function of displaying various kinds of information (a still image, a moving image, a text image, or the like), a calendar, a date or time, or the like. Can be displayed on the display unit, a touch input function of touch input operation or editing of information displayed on the display unit, a function of controlling processing by various software (programs), and the like can be provided.
  • ⁇ Power can be supplied to a touch panel, a display portion, a video signal processing portion, or the like with the solar cell 9633 mounted on the surface of the tablet terminal 9600.
  • the solar cell 9633 can be provided on one or both surfaces of the housing 9630, so that the power storage unit 9635 can be charged efficiently.
  • a lithium ion battery is used as the power storage unit 9635, there are advantages such as reduction in size.
  • FIG. 28C illustrates a solar battery 9633, a power storage unit 9635, a DCDC converter 9636, a converter 9637, switches SW1 to SW3, and a display portion 9631, and the power storage unit 9635, the DCDC converter 9636, the converter 9637, and the switches SW1 to SW63.
  • SW3 is a portion corresponding to the charge / discharge control circuit 9634 illustrated in FIG.
  • the power generated by the solar cell is boosted or stepped down by the DCDC converter 9636 so as to have a voltage for charging the power storage unit 9635.
  • the switch SW1 is turned on, and the converter 9637 steps up or down to a voltage required for the display portion 9631.
  • the power storage 9635 may be charged by turning off the switch SW1 and turning on the switch SW2.
  • the solar cell 9633 is described as an example of a power generation unit; however, there is no particular limitation, and the power storage unit 9635 is charged by another power generation unit such as a piezoelectric element (piezo element) or a thermoelectric conversion element (Peltier element). It may be.
  • a non-contact power transmission module that transmits and receives power wirelessly (contactlessly) and charges the battery, or a configuration in which another charging unit is combined and used.
  • FIG. 29 shows an example of another electronic device.
  • a display device 8000 is an example of an electronic device using a secondary battery 8004 according to one embodiment of the present invention.
  • the display device 8000 corresponds to a display device for receiving a TV broadcast, and includes a housing 8001, a display portion 8002, a speaker portion 8003, a secondary battery 8004, and the like.
  • a secondary battery 8004 according to one embodiment of the present invention is provided inside the housing 8001.
  • the display device 8000 can receive power from a commercial power supply or use power stored in the secondary battery 8004. Therefore, even when power cannot be supplied from a commercial power supply due to a power failure or the like, the display device 8000 can be used by using the secondary battery 8004 according to one embodiment of the present invention as an uninterruptible power supply.
  • a display portion 8002 includes a liquid crystal display device, a light-emitting device including a light-emitting element such as an organic EL element in each pixel, an electrophoretic display device, a digital micromirror device, a PDP (Plasma Display Panel), and a FED (Field Emission Display). ) Can be used.
  • the display devices include all information display devices, such as those for personal computer and advertisement display, in addition to TV broadcast reception.
  • a stationary lighting device 8100 is an example of an electronic device including a secondary battery 8103 according to one embodiment of the present invention.
  • the lighting device 8100 includes a housing 8101, a light source 8102, a secondary battery 8103, and the like.
  • FIG. 29 illustrates an example in which the secondary battery 8103 is provided inside the ceiling 8104 in which the housing 8101 and the light source 8102 are installed.
  • the secondary battery 8103 is provided inside the housing 8101. It may be.
  • the lighting device 8100 can receive power from a commercial power supply or can use power stored in the secondary battery 8103. Therefore, even when power cannot be supplied from a commercial power supply due to a power failure or the like, the lighting device 8100 can be used by using the secondary battery 8103 according to one embodiment of the present invention as an uninterruptible power supply.
  • FIG. 29 illustrates an example of a stationary lighting device 8100 provided on the ceiling 8104
  • a secondary battery according to one embodiment of the present invention can be used for a structure other than the ceiling 8104, such as a side wall 8105, a floor 8106, and a window 8107.
  • the present invention can be used for a stationary lighting device provided in a computer, or for a desktop lighting device.
  • an artificial light source that artificially obtains light using electric power can be used.
  • discharge lamps such as incandescent lamps and fluorescent lamps
  • light emitting elements such as LEDs and organic EL elements are examples of the artificial light source.
  • an air conditioner including an indoor unit 8200 and an outdoor unit 8204 is an example of an electronic device including a secondary battery 8203 according to one embodiment of the present invention.
  • the indoor unit 8200 includes a housing 8201, an air outlet 8202, a secondary battery 8203, and the like.
  • FIG. 29 illustrates the case where the secondary battery 8203 is provided in the indoor unit 8200; however, the secondary battery 8203 may be provided in the outdoor unit 8204. Alternatively, the secondary battery 8203 may be provided in both the indoor unit 8200 and the outdoor unit 8204.
  • the air conditioner can receive power from a commercial power supply or use power stored in the secondary battery 8203.
  • the secondary battery 8203 when the secondary battery 8203 is provided in both the indoor unit 8200 and the outdoor unit 8204, even when power cannot be supplied from a commercial power supply due to a power failure or the like, the secondary battery 8203 according to one embodiment of the present invention can be used.
  • an air conditioner can be used as an uninterruptible power supply.
  • FIG. 29 illustrates a separate type air conditioner including an indoor unit and an outdoor unit
  • an integrated air conditioner having the functions of an indoor unit and the function of an outdoor unit in one housing is illustrated.
  • the secondary battery according to one embodiment of the present invention can be used.
  • an electric refrigerator-freezer 8300 is an example of an electronic device using the secondary battery 8304 according to one embodiment of the present invention.
  • the electric refrigerator-freezer 8300 includes a housing 8301, a refrigerator door 8302, a refrigerator door 8303, a secondary battery 8304, and the like.
  • a secondary battery 8304 is provided inside a housing 8301.
  • the electric refrigerator-freezer 8300 can receive power from a commercial power supply or can use power stored in the secondary battery 8304. Therefore, even when power cannot be supplied from a commercial power supply due to a power failure or the like, the electric refrigerator-freezer 8300 can be used by using the secondary battery 8304 according to one embodiment of the present invention as an uninterruptible power supply.
  • the secondary battery according to one embodiment of the present invention as an auxiliary power supply for supporting power that cannot be covered by a commercial power supply, a breaker of the commercial power supply can be prevented from being dropped when an electronic device is used. .
  • the power usage rate the ratio of the actually used power amount (referred to as the power usage rate) to the total power amount that can be supplied by the commercial power supply source is low.
  • the power usage rate the ratio of the actually used power amount (referred to as the power usage rate) to the total power amount that can be supplied by the commercial power supply source is low.
  • the cycle characteristics of the secondary battery are improved and the reliability can be improved.
  • a high-capacity secondary battery can be provided, and thus characteristics of the secondary battery can be improved. Therefore, the size and weight of the secondary battery itself can be reduced. it can. Therefore, by mounting the secondary battery which is one embodiment of the present invention in the electronic device described in this embodiment, a longer life and lighter electronic device can be provided.
  • This embodiment can be implemented in appropriate combination with any of the other embodiments.
  • a next-generation clean energy vehicle such as a hybrid vehicle (HEV), an electric vehicle (EV), or a plug-in hybrid vehicle (PHEV) can be realized.
  • HEV hybrid vehicle
  • EV electric vehicle
  • PHEV plug-in hybrid vehicle
  • FIGS. 30A, 30B, and 30C illustrate a vehicle using a secondary battery which is one embodiment of the present invention.
  • An automobile 8400 illustrated in FIG. 30A is an electric vehicle using an electric motor as a power source for traveling. Alternatively, it is a hybrid vehicle in which an electric motor and an engine can be appropriately selected and used as power sources for traveling. By using one embodiment of the present invention, a vehicle with a long cruising distance can be realized.
  • the automobile 8400 has a secondary battery.
  • the secondary battery may be used by arranging the modules of the secondary battery shown in FIGS. 15C and 15D on the floor in the vehicle. Further, a battery pack in which a plurality of secondary batteries shown in FIGS. 18A and 18B are combined may be installed on the floor portion in the vehicle.
  • the secondary battery can not only drive the electric motor 8406 but also supply power to light-emitting devices such as a headlight 8401 and a room light (not shown).
  • the secondary battery can supply power to a display device such as a speedometer and a tachometer of the automobile 8400.
  • the secondary battery can supply power to a semiconductor device such as a navigation system included in the car 8400.
  • the vehicle 8500 illustrated in FIG. 30B can be charged by receiving power from an external charging facility using a plug-in system, a contactless power supply system, or the like with respect to the secondary battery included in the vehicle 8500.
  • FIG. 30B illustrates a state where charging is performed from a ground-mounted charging device 8021 to a secondary battery 8024 mounted on an automobile 8500 via a cable 8022.
  • the charging method, the standard of the connector, and the like may be appropriately performed by a predetermined method such as CHAdeMO (registered trademark) or a combo.
  • Charging device 8021 may be a charging station provided in a commercial facility or a home power supply.
  • the secondary battery 8024 mounted on the automobile 8500 can be charged by external power supply using a plug-in technique. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter.
  • a power receiving device can be mounted on a vehicle, and power can be supplied from a ground power transmitting device in a non-contact manner and charged.
  • charging can be performed not only when the vehicle is stopped but also when the vehicle is traveling by incorporating a power transmission device on a road or an outer wall.
  • electric power may be transmitted and received between vehicles by using the non-contact power supply method.
  • a solar battery may be provided on the exterior of the vehicle to charge the secondary battery when the vehicle stops or travels.
  • an electromagnetic induction system or a magnetic field resonance system can be used.
  • FIG. 30C illustrates an example of a motorcycle using a secondary battery of one embodiment of the present invention.
  • a scooter 8600 illustrated in FIG. 30C includes a secondary battery 8602, a side mirror 8601, and a direction indicator 8603.
  • the secondary battery 8602 can supply electricity to the turn signal lamp 8603.
  • a secondary battery 8602 can be stored in the storage 8604 below the seat.
  • the secondary battery 8602 can be stored in the under-seat storage 8604 even if the under-seat storage 8604 is small.
  • the secondary battery 8602 is detachable, and when charging, the secondary battery 8602 may be carried indoors, charged, and stored before traveling.
  • the cycle characteristics of the secondary battery are improved, and the capacity of the secondary battery can be increased. Therefore, the size and weight of the secondary battery itself can be reduced. If the secondary battery itself can be reduced in size and weight, it contributes to the weight reduction of the vehicle, so that the cruising distance can be improved. Further, a secondary battery mounted on a vehicle can be used as a power supply source other than the vehicle. In this case, for example, it is possible to avoid using a commercial power supply at the time of peak power demand. If the use of a commercial power supply can be avoided at the peak of power demand, it can contribute to energy saving and reduction of carbon dioxide emissions. Moreover, if the cycle characteristics are good, the secondary battery can be used for a long period of time, so that the amount of rare metals such as cobalt can be reduced.
  • This embodiment can be implemented in appropriate combination with any of the other embodiments.
  • a positive electrode active material containing magnesium, fluorine, and phosphorus was produced, a secondary battery having a positive electrode using the positive electrode active material was produced, and the continuous charge resistance and cycle characteristics of the secondary battery were evaluated.
  • a mixture 902 having magnesium and fluorine was produced (Steps S11 to S14 shown in FIG. 8).
  • Mixing and pulverization were performed by a ball mill using zirconia balls, and performed at 150 rpm for 1 hour. The material after the treatment was collected to obtain a mixture 902.
  • Step S25 a positive electrode active material having cobalt was prepared.
  • Cell Seed C-10N manufactured by Nippon Chemical Industry Co., Ltd. was used as lithium cobaltate synthesized in advance.
  • Cell seed C-10N is lithium cobalt oxide having a D50 of about 12 ⁇ m and a small amount of impurities.
  • Step S31 the mixture 902 and lithium cobaltate were mixed.
  • the atomic weight of magnesium in the mixture 902 was varied with respect to the atomic weight of cobalt in lithium cobalt oxide. The weight was weighed so as to be about 0.5%, 1.0%, 2.0%, 3.0%, and 6.0% as the value of the condition swing.
  • the atomic weight of each magnesium of the produced positive electrode active material is shown in Tables 1 and 2 described later.
  • the mixing was performed in a dry manner. Mixing was performed by a ball mill using zirconia balls, and performed at 150 rpm for 1 hour.
  • the mixture 903 was put into an alumina crucible and annealed at 850 ° C. for 60 hours in a muffle furnace in an oxygen atmosphere (step S34).
  • the alumina crucible was covered.
  • the flow rate of oxygen was 10 L / min.
  • the temperature was raised at 200 ° C./hr, and the temperature was lowered over 10 hours.
  • the material after the heat treatment was collected (step S35), and sieved to obtain a positive electrode active material (positive electrode active material 100A_1 shown in FIG. 8) in which the conditions of the amount of magnesium added were varied (step S36).
  • the positive electrode active materials 100A_1 having magnesium concentrations of 0.5%, 1.0%, 2.0%, 3.0%, and 6.0% are respectively Sample (Sample) # 11, Sample (Sample) # 12, Sample (Sample) # 13, Sample (Sample) # 14 and Sample (Sample) # 15.
  • Sample (Sample) # 11 Sample (Sample) # 12
  • Sample (Sample) # 13 Sample (Sample) # 14
  • Sample (Sample) # 15 Sample (Sample) # 15.
  • lithium phosphate was prepared (step S51).
  • lithium phosphate and the positive electrode active material 100A_1 were mixed (Step S52).
  • the amount of the mixed lithium phosphate was an amount corresponding to 0.06 mol per 1 mol of the positive electrode active material 100A_1.
  • Mixing was performed by a ball mill using zirconia balls, and performed at 150 rpm for 1 hour.
  • the mixture was sieved through a 300 ⁇ m ⁇ sieve. Thereafter, the obtained mixture was put into an alumina crucible, covered, and annealed at 750 ° C. for 20 hours in an oxygen atmosphere (step S53). Thereafter, the powder was passed through a 53 ⁇ m ⁇ sieve to collect the powder (step S54).
  • magnesium concentration is 0.5%, 1.0%, 2.0%, 3.0% and 6.0% of the positive electrode active materials are referred to as Sample (sample) # 21, Sample (sample) # 22, Sample (sample) # 23, Sample (sample) # 24, and Sample (sample) # 25, respectively.
  • Sample (sample) # 21 Sample (sample) # 22, Sample (sample) # 23, Sample (sample) # 24, and Sample (sample) # 25, respectively.
  • Each positive electrode was produced using each positive electrode active material obtained above.
  • a collector obtained by applying a slurry in which the positive electrode active material, AB, and PVDF were mixed in an active material ratio of AB: PVDF 95: 3: 2 (weight ratio) was used.
  • NMP was used as a solvent for the slurry.
  • the carrying amount of the positive electrode was approximately 20 mg / cm 2 .
  • a CR2032 type (diameter 20 mm, height 3.2 mm) coin-type secondary battery was produced.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • VC vinylene carbonate
  • the positive electrode can and the negative electrode can used were made of stainless steel (SUS).
  • the upper limit voltage is 4.55 V or 4.65 V
  • the termination condition is a time required for the voltage of the secondary battery to drop to less than the value obtained by subtracting 0.01 V from the upper limit voltage (4.54 V for 4.55 V). It was measured. When the voltage of the secondary battery falls below the upper limit voltage, for example, a phenomenon such as a short circuit may have occurred.
  • 1C was 200 mA / g.
  • Table 1 and Table 2 show the time measured for each secondary battery.
  • Table 1 shows the results obtained using the positive electrode active material obtained in step S36
  • Table 2 shows the positive electrode active material prepared through steps S51 to S54, that is, the positive electrode active material to which the phosphorus compound was added. It is the result of using.
  • FIG. 31A shows the time-current characteristics when the charging voltage is set to 4.55 V and the time when the charging voltage is set to 4.65 V for the result using the positive electrode active material obtained in step S36.
  • FIG. 31B shows current characteristics.
  • FIG. 32 (A) shows the time-current characteristics when the charging voltage is 4.65 V
  • FIG. 32 (B) shows each.
  • FIGS. 33 (A) and (B) the horizontal axis represents the cycle and the vertical axis represents the discharge capacity.
  • FIG. 33 (A) shows the result obtained by using the positive electrode active material obtained in step S36
  • FIG. 33 (B) further shows the addition of the positive electrode active material prepared through steps S51 to S54, that is, the addition of a phosphorus compound. This is the result of using the obtained positive electrode active material.
  • magnesium, fluorine, a positive electrode active material having a metal other than cobalt and cobalt and the like were prepared, a secondary battery having a positive electrode using the positive electrode active material was prepared, and a positive electrode after charging the secondary battery was manufactured.
  • continuous charge resistance of the secondary battery, and cycle characteristics of the secondary battery were evaluated.
  • a mixture 902 having magnesium and fluorine was prepared (Step S11 to Step S14).
  • Mixing and pulverization were performed by a ball mill using zirconia balls, and performed at 150 rpm for 1 hour. The material after the treatment was collected to obtain a mixture 902.
  • the mixture 902 and lithium cobaltate were mixed with respect to Sample (sample) # 30 to Sample (sample) # 35 (step S31).
  • the mixture 902 was weighed such that the atomic weight of magnesium contained in the mixture 902 was 2.0% based on the atomic weight of cobalt contained in lithium cobalt oxide.
  • the mixing was performed in a dry manner. Mixing was performed by a ball mill using zirconia balls, and performed at 150 rpm for 1 hour.
  • Step S34 the mixture 903 was put into an alumina crucible and annealed at 850 ° C. for 60 hours in a muffle furnace in an oxygen atmosphere.
  • the alumina crucible was covered.
  • the flow rate of oxygen was 10 L / min.
  • the temperature was raised at 200 ° C./hr, and the temperature was lowered over 10 hours.
  • the material after the heat treatment was collected and sieved (Step S35) to obtain a positive electrode active material 100A_1 (Step S36).
  • Step S41 to S46 were performed on Sample (Sample) # 31 to Sample (Sample) # 35.
  • Sample (Sample) # 30 the addition of the metal source in Steps S41 to S46 was not performed.
  • the positive electrode active material 100A_1 and the metal source were mixed. In some cases, a solvent was also mixed.
  • Sample (Sample) 31 and Sample (Sample) 32 a coating layer containing aluminum was formed on the positive electrode active material 100A_1 by a sol-gel method.
  • Al isopropoxide was used as a raw material, and 2-propanol was used as a solvent.
  • the sample (sample) 31 has an atomic weight of 0.1% with respect to the sum of the atomic weights of cobalt and aluminum
  • the sample (sample) 32 has an atomic weight of 0.5% with respect to the sum of the atomic weights of cobalt and aluminum.
  • Each processing was performed so that Thereafter, the obtained mixture was put into an alumina crucible, covered, and annealed at 850 ° C.
  • step S45 the mixture was sieved through a 53 ⁇ m ⁇ sieve to collect the powder (step S46), thereby obtaining Sample (sample) 31 and Sample (sample) 32 as positive electrode active materials.
  • sample (Sample) 33 and Sample (Sample) 34 nickel hydroxide as a metal source and the positive electrode active material 100A_1 were mixed.
  • the sample (sample) 33 has an atomic weight of 0.1% with respect to the sum of the atomic weights of cobalt and nickel, and the sample (sample) 34 has an atomic weight of 0.5% with respect to the sum of the atomic weights of cobalt and nickel.
  • Mixing was performed by a ball mill using zirconia balls, and performed at 150 rpm for 1 hour. After mixing, the mixture was sieved through a 300 ⁇ m ⁇ sieve.
  • step S45 the obtained mixture was put into an alumina crucible, covered, and annealed at 850 ° C. for 2 hours in an oxygen atmosphere. Thereafter, the mixture was sieved through a 53 ⁇ m ⁇ sieve to collect the powder (step S46), and Sample (sample) 33 and Sample (sample) 34 were obtained as positive electrode active materials.
  • Each of the positive electrodes was manufactured using Sample (Sample) 30 to Sample (Sample) 35 obtained above as the positive electrode active material.
  • a collector obtained by applying a slurry in which the positive electrode active material, AB, and PVDF were mixed in an active material ratio of AB: PVDF 95: 3: 2 (weight ratio) was used.
  • NMP was used as a solvent for the slurry.
  • the carrying amount of the positive electrode was approximately 20 mg / cm 2 .
  • a CR2032 type (diameter 20 mm, height 3.2 mm) coin-type secondary battery was produced.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • VC vinylene carbonate
  • the positive electrode can and the negative electrode can used were made of stainless steel (SUS).
  • FIGS. 34A and 34B show the XRD of the positive electrode before charge and discharge are performed. Remarkable peaks were observed at 2 ⁇ of 18.89 ° and 2 ⁇ of 38.35 °. In the graphs shown in FIGS. 34A and 34B, the horizontal axis is 2 ⁇ , and the vertical axis is Intensity.
  • each of the produced secondary batteries was charged with CCCV under conditions of 4.55 V, 4.6 V, 4.65 V, and 4.7 V one by one. Specifically, at 25 ° C., the battery was charged at a constant current of 0.2 C up to each voltage, and then charged at a constant voltage until the current value became 0.02 C. Here, 1C was 191 mA / g. Then, the charged secondary battery was disassembled in a glove box in an argon atmosphere to take out the positive electrode, and washed with DMC (dimethyl carbonate) to remove the electrolytic solution. Then, the sample was sealed in a sealed container in an argon atmosphere and subjected to XRD analysis.
  • DMC dimethyl carbonate
  • FIGS. 35A and 35B show XRD corresponding to each charging voltage condition for Sample (sample) 35.
  • the horizontal axis of the graph shown in FIGS. 35A and 35B is 2 ⁇ , and the vertical axis is Intensity.
  • FIG. 35A shows a peak observed when 2 ⁇ is in the range of 18 ° to 20 °.
  • the peak observed under the condition where the charging voltage is 4.55 V is considered to be due to the O3 type crystal structure.
  • the peak position moves to the higher angle side.
  • the charging voltage is 4.65 V
  • a peak is observed at around 19.2 ° in addition to the peak at around 18.9 °
  • two crystal structures of an O3 type crystal structure and a pseudo spinel type crystal structure are observed. It is suggested that this is a two-phase mixed state having It is considered that the peak near 19.3 ° observed under the condition where the charging voltage is 4.7 V is caused by a pseudo spinel type crystal structure.
  • FIG. 35B shows peaks observed when 2 ⁇ is in the range of 40 ° to 50 °. As the charging voltage is increased, a weak peak at 4.7 V near 43.9 ° indicating the H1-3 type crystal structure is observed.
  • the positive electrode active material of one embodiment of the present invention when the charging voltage is increased, a region where the O3 crystal structure changes to a pseudo-spinel crystal structure at 4.65 V is considered. Even when the voltage is increased to 0.7 V, although the H1-3 type crystal structure is mixed, it is considered that the positive electrode active material of one embodiment of the present invention mainly has a pseudo-spinel type crystal structure. Was suggested to be high.
  • the upper limit voltage is 4.55 V or 4.65 V
  • the termination condition is a time required for the voltage of the secondary battery to drop to less than the value obtained by subtracting 0.01 V from the upper limit voltage (4.54 V for 4.55 V). It was measured. When the voltage of the secondary battery falls below the upper limit voltage, for example, a phenomenon such as a short circuit may have occurred.
  • 1C was 200 mA / g.
  • Table 3 shows the time measured for each secondary battery. Note that two secondary batteries were manufactured for each condition. Table 3 shows the average of the two results.
  • FIG. 36A shows the time-current characteristics obtained when Sample (sample) # 30, Sample (sample) # 32, Sample (sample) # 34, and Sample (sample) # 35 are used when the charging voltage is 4.55V.
  • FIG. 36B shows the time-current characteristics when the charging voltage is set to 4.65 V.
  • FIG. 38 (A) shows the first charge / discharge curves of Sample # 32
  • FIG. 38 (B) shows the first charge / discharge curves of Sample # 34
  • FIG. 38 (C) shows the first charge / discharge curves of Sample # 35.
  • the addition of nickel improved the initial capacity (Sample (sample) # 34). Further, it is suggested that the addition of nickel or aluminum suppresses the capacity decrease due to the cycle, and more excellent results can be obtained particularly under the conditions of adding nickel and aluminum (Sample (sample) # 35). Was.
  • the positive electrode was evaluated by DC resistance measurement.
  • a positive electrode was manufactured using Sample (Sample) 11 shown in Example 1 as a positive electrode active material.
  • NMP was used as a solvent for the slurry.
  • the carrying amount of the positive electrode was approximately 20 mg / cm 2 .
  • a CR2032 type (diameter 20 mm, height 3.2 mm) coin-type secondary battery was produced.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • VC vinylene carbonate
  • the positive electrode can and the negative electrode can used were made of stainless steel (SUS).
  • cross-sectional TEM-EDX analysis of particles included in the positive electrode active material of one embodiment of the present invention was performed.
  • FIG. 39A shows a cross-sectional TEM image of Sample (sample) # 35 manufactured in Example 2.
  • FIG. 39A TEM-EDX analysis was performed on a portion surrounded by a broken line. The analysis was performed linearly from the surface to the inside of the particles. The lines were approximately perpendicular to the surface.
  • FIG. 39B shows the result of the EDX line analysis. In the vicinity of the surface, there was a tendency that the concentration of aluminum was relatively high and the concentration of cobalt was relatively low. It was also suggested that the concentration of magnesium increased near the surface. Thus, in the particles of the positive electrode active material, aluminum, magnesium, and the like may contribute to the stabilization of the structure on the particle surface.
  • a secondary battery having a positive electrode using the positive electrode active material of one embodiment of the present invention was manufactured, and the XRD of the positive electrode after charging the secondary battery was evaluated.
  • a positive electrode was manufactured using Sample (Sample) # 30 and Sample (Sample) # 35 manufactured in Example 2, and a secondary battery was manufactured using each positive electrode.
  • the manufacturing method described in Example 2 was used for manufacturing the positive electrode and the secondary battery.
  • each of the produced secondary batteries was selected from either 4.6 V or 4.65 V and charged with CCCV. Specifically, at 45 ° C., the battery was charged at a constant current of 0.2 C up to each voltage, and then charged at a constant voltage until the current value became 0.02 C. Here, 1C was 191 mA / g. Then, the charged secondary battery was disassembled in a glove box in an argon atmosphere to take out the positive electrode, and washed with DMC (dimethyl carbonate) to remove the electrolytic solution. Then, the sample was sealed in a sealed container in an argon atmosphere and subjected to XRD analysis.
  • DMC dimethyl carbonate
  • FIGS. 40A and 40B show the results of XRD.
  • Sample (Sample) 30 peaks near 20.9 ° and around 36.8 ° are remarkably observed in addition to peaks indicating the H1-3 type crystal structure.
  • the peaks near 20.9 ° and 36.8 ° are suggested to be due to CoO 2 , and it is considered that lithium is eliminated and the crystal structure is in an unstable state.
  • Sample (Sample) 35 suggested a pseudo spinel structure, indicating that the sample was stable even at a high charging voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

要約書 高容量で充放電サイクル特性に優れた、リチウムイオン二次電池用正極活物質を提供する。 リチウムと、コバルトと、マグネシウムと、酸素と、フッ素と、を有し、CuKα1線による粉末X 線回折により得られるパターンについてリートベルト解析を行ったとき、R-3mの空間群を有す る結晶構造であり、かつ、a軸の格子定数が2.814×10(-10乗)mより大きく2.817 ×10(-10乗)mより小さく、かつc軸の格子定数が14.05×10(-10乗)mより大き く14.07×10(-10乗)mより小さく、X線光電子分光で分析したとき、コバルトの濃度を 1とした時のマグネシウムの濃度の相対値は1.6以上6.0以下の正極活物質である。

Description

正極活物質および正極活物質の作製方法
 本発明の一態様は、物、方法、又は、製造方法に関する。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関する。本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、照明装置または電子機器、またはそれらの製造方法に関する。特に、二次電池に用いることのできる正極活物質、二次電池、および二次電池を有する電子機器に関する。
 なお、本明細書中において、蓄電装置とは、蓄電機能を有する素子及び装置全般を指すものである。例えば、リチウムイオン二次電池などの蓄電池(二次電池ともいう)、リチウムイオンキャパシタ、及び電気二重層キャパシタなどを含む。
 また、本明細書中において電子機器とは、蓄電装置を有する装置全般を指し、蓄電装置を有する電気光学装置、蓄電装置を有する情報端末装置などは全て電子機器である。
 近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池等、種々の蓄電装置の開発が盛んに行われている。特に高出力、高エネルギー密度であるリチウムイオン二次電池は、携帯電話、スマートフォン、タブレット、もしくはノート型コンピュータ等の携帯情報端末、携帯音楽プレーヤ、デジタルカメラ、医療機器、次世代クリーンエネルギー自動車(ハイブリッド車(HEV)、電気自動車(EV)、プラグインハイブリッド車(PHEV)等)など、半導体産業の発展と併せて急速にその需要が拡大し、充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。
 リチウムイオン二次電池に要求されている特性としては、さらなる高エネルギー密度化、サイクル特性の向上及び様々な動作環境での安全性、長期信頼性の向上などがある。
 そこでリチウムイオン二次電池のサイクル特性の向上および高容量化を目指した、正極活物質の改良が検討されている(特許文献1および特許文献2)。また、正極活物質の結晶構造に関する研究も行われている(非特許文献1乃至非特許文献3)。
 X線回折(XRD)は、正極活物質の結晶構造の解析に用いられる手法の一つである。非特許文献5に紹介されているICSD(Inorganic Crystal Structure Database)を用いることにより、XRDデータの解析を行うことができる。
 特許文献3にはニッケル系層状酸化物におけるヤーン・テラー効果について述べられている。
特開2002−216760号公報 特開2006−261132号公報 特開2017−188466号公報
Toyoki Okumura et al,"Correlation of lithium ion distribution and X−ray absorption near−edge structure in O3−and O2−lithium cobalt oxides from first−principle calculation",Journal of Materials Chemistry,2012,22,p.17340−17348 Motohashi,T.et al,"Electronic phase diagram of the layered cobalt oxide system LixCoO2(0.0≦x≦1.0)",Physical Review B,80(16);165114 Zhaohui Chen et al,"Staging Phase Transitions in LixCoO2",Journal of The Electrochemical Society,2002,149(12)A1604−A1609 W.E.Counts et al,Journal of the American Ceramic Society,(1953) 36[1]12−17.Fig.01471 Belsky,A.et al.,"New developments in the Inorganic Crystal Structure Database(ICSD):accessibility in support of materials research and design",Acta Cryst.,(2002)B58 364−369.
 本発明の一態様は、高容量で充放電サイクル特性に優れた、リチウムイオン二次電池用正極活物質、およびその作製方法を提供することを課題の一とする。または、生産性のよい正極活物質の作製方法を提供することを課題の一とする。または、本発明の一態様は、リチウムイオン二次電池に用いることで、充放電サイクルにおける容量の低下が抑制される正極活物質を提供することを課題の一とする。または、本発明の一態様は、高容量の二次電池を提供することを課題の一とする。または、本発明の一態様は、充放電特性の優れた二次電池を提供することを課題の一とする。または、高電圧で充電した状態を長時間保持した場合でもコバルト等の遷移金属の溶出が抑制された正極活物質を提供することを課題の一とする。または、本発明の一態様は、安全性又は信頼性の高い二次電池を提供することを課題の一とする。
 または、本発明の一態様は、新規な物質、活物質粒子、蓄電装置、又はそれらの作製方法を提供することを課題の一とする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
 本発明の一態様は、リチウムと、コバルトと、マグネシウムと、酸素と、フッ素と、を有し、CuKα1線による粉末X線回折により得られるパターンについてリートベルト解析を行ったとき、R−3mの空間群を有する結晶構造であり、かつ、2.814×10−10mより大きく2.817×10−10mより小さく、かつc軸の格子定数が14.05×10−10mより大きく14.07×10−10mより小さく、X線光電子分光で分析したとき、コバルトの濃度を1とした時のマグネシウムの濃度の相対値は1.6以上6.0以下である正極活物質である。
 または本発明の一態様は、リチウムと、コバルトと、マグネシウムと、酸素と、フッ素と、を有する正極活物質であり、正極活物質を正極に用い、リチウム金属を負極に用いたリチウムイオン二次電池において、25℃環境下において電池電圧が4.7Vとなるまで定電流充電し、その後電流値が0.01Cとなるまで定電圧充電した後、正極をCuKα1線による粉末X線回折で分析したとき、2θが19.10°以上19.50°以下である第1の回折ピークと、2θが45.50°以上45.60°以下である第2の回折ピークと、を有する正極活物質である。
 また、上記いずれかの構成において、正極活物質を正極に用い、リチウム金属を負極に用いたリチウムイオン二次電池において、25℃環境下において電池電圧が4.7Vとなるまで定電流充電し、その後電流値が0.01Cとなるまで定電圧充電した後、正極をCuKα1線による粉末X線回折で分析したとき、2θが19.10°以上19.50°以下である第1の回折ピークと、2θが45.50°以上45.60°以下である第2の回折ピークと、を有することが好ましい。
 また、上記構成いずれかの構成において、X線光電子分光で測定されるマグネシウムの濃度は、コバルトの濃度を1としたとき、1.6以上6.0以下であることが好ましい。
 また、上記いずれかの構成において、ニッケル、アルミニウム、およびリンを有することが好ましい。
 または、本発明の一態様は、リチウム源と、フッ素源と、マグネシウム源と、を混合し第1の混合物を作製する第1のステップと、リチウムと、コバルトと、酸素と、を有する複合酸化物と、第1の混合物と、を混合し第2の混合物を作製する第2のステップと、第2の混合物を加熱し、第3の混合物を作製する第3のステップと、第3の混合物と、アルミニウム源と、を混合し第4の混合物を作製する第4のステップと、第4の混合物を加熱し、第5の混合物を作製する第5のステップと、を有する正極活物質の作製方法であり、第4のステップにおいてアルミニウム源が有するアルミニウムの原子数は、第3の混合物が有するコバルトの原子数の0.001倍以上0.02倍以下である正極活物質の作製方法である。
 また、上記構成において、第1のステップのマグネシウム源が有するマグネシウムの原子数は、第2のステップの複合酸化物が有するコバルトの原子数の0.005倍以上0.05倍以下であることが好ましい。
 本発明の一態様により、高容量で充放電サイクル特性に優れた、リチウムイオン二次電池用正極活物質、およびその作製方法を提供することができる。また、生産性のよい正極活物質の作製方法を提供することができる。また、リチウムイオン二次電池に用いることで、充放電サイクルにおける容量の低下が抑制される正極活物質を提供することができる。また、高容量の二次電池を提供することができる。また、充放電特性の優れた二次電池を提供することができる。また、高電圧で充電した状態を長時間保持した場合でもコバルト等の遷移金属の溶出が抑制された正極活物質を提供することができる。また、安全性又は信頼性の高い二次電池を提供することができる。また、新規な物質、活物質粒子、蓄電装置、又はそれらの作製方法を提供することができる。
図1は、正極活物質の充電深度と結晶構造を説明する図である。 図2は、正極活物質の充電深度と結晶構造を説明する図である。 図3は、結晶構造から計算されるXRDパターンである。 図4(A)は、XRDから算出される格子定数である。図4(B)は、XRDから算出される格子定数である。図4(C)は、XRDから算出される格子定数である。 図5(A)は、XRDから算出される格子定数である。図5(B)は、XRDから算出される格子定数である。図5(C)は、XRDから算出される格子定数である。 図6は、本発明の一態様の正極活物質の作製方法の一例を説明する図である。 図7は、本発明の一態様の正極活物質の作製方法の一例を説明する図である。 図8は、本発明の一態様の正極活物質の作製方法の一例を説明する図である。 図9は、本発明の一態様の正極活物質の作製方法の一例を説明する図である。 図10(A)は、導電助剤としてグラフェン化合物を用いた場合の活物質層の断面図である。図10(B)は、導電助剤としてグラフェン化合物を用いた場合の活物質層の断面図である。 図11(A)は、二次電池の充電方法を説明する図である。図11(B)は、二次電池の充電方法を説明する図である。図11(C)は、二次電池の充電方法を説明する図である。 図12(A)は、二次電池の充電方法を説明する図である。図12(B)は、二次電池の充電方法を説明する図である。図12(C)は、二次電池の充電方法を説明する図である。 図13(A)は、二次電池の充電方法を説明する図である。図13(B)は、二次電池の放電方法を説明する図である。 図14(A)は、コイン型二次電池を説明する図である。図14(B)は、コイン型二次電池を説明する図である。図14(C)は、充電時の電流と電子を説明する図である。 図15(A)は、円筒型二次電池を説明する図である。図15(B)は、円筒型二次電池を説明する図である。図15(C)は、複数の円筒型二次電池を説明する図である。図15(D)は、複数の円筒型二次電池を説明する図である。 図16(A)は、電池パックの例を説明する図である。図16(B)は、電池パックの一例を説明する図である。 図17(A1)は、二次電池の例を説明する図である。図17(A2)は、二次電池の例を説明する図である。図17(B1)は、二次電池の例を説明する図である。図17(B2)は、二次電池の例を説明する図である。 図18(A)は、二次電池の例を説明する図である。図18(B)は、二次電池の例を説明する図である。 図19は、二次電池の例を説明する図である。 図20(A)は、ラミネート型の二次電池を説明する図である。図20(B)は、ラミネート型の二次電池を説明する図である。図20(C)は、ラミネート型の二次電池を説明する図である。 図21(A)は、ラミネート型の二次電池を説明する図である。図21(B)は、ラミネート型の二次電池を説明する図である。 図22は、二次電池の外観を示す図である。 図23は、二次電池の外観を示す図である。 図24(A)は、二次電池の作製方法を説明するための図である。図24(B)は、二次電池の作製方法を説明するための図である。図24(C)は、二次電池の作製方法を説明するための図である。 図25(A)は、曲げることのできる二次電池を説明する図である。図25(B1)は、曲げることのできる二次電池を説明する図である。図25(B2)は、曲げることのできる二次電池を説明する図である。図25(C)は、曲げることのできる二次電池を説明する図である。図25(D)は、曲げることのできる二次電池を説明する図である。 図26(A)は、曲げることのできる二次電池を説明する図である。図26(B)は、曲げることのできる二次電池を説明する図である。 図27(A)は、電子機器の一例を説明する図である。図27(B)は、電子機器の一例を説明する図である。図27(C)は、電子機器の一例を説明する図である。図27(D)は、電子機器の一例を説明する図である。図27(E)は、電子機器の一例を説明する図である。図27(F)は、電子機器の一例を説明する図である。図27(G)は、電子機器の一例を説明する図である。図27(H)は、電子機器の一例を説明する図である。 図28(A)は、電子機器の一例を説明する図である。図28(B)は、電子機器の一例を説明する図である。図28(C)は、電子機器の一例を説明する図である。 図29は、電子機器の一例を説明する図である。 図30(A)は、車両の一例を説明する図である。図30(B)は、車両の一例を説明する図である。図30(C)は、車両の一例を説明する図である。 図31(A)は、二次電池の連続充電耐性である。図31(B)は、二次電池の連続充電耐性である。 図32(A)は、二次電池の連続充電耐性である。図32(B)は、二次電池の連続充電耐性である。 図33(A)は、二次電池のサイクル特性である。図33(B)は、二次電池のサイクル特性である。 図34(A)は、正極のXRD評価結果である。図34(B)は、正極のXRD評価結果である。 図35(A)は、正極のXRD評価結果である。図35(B)は、正極のXRD評価結果である。 図36(A)は、二次電池の連続充電耐性である。図36(B)は、二次電池の連続充電耐性である。 図37は、二次電池のサイクル特性である。 図38(A)は、二次電池の充放電カーブである。図38(B)は、二次電池の充放電カーブである。図38(C)は、二次電池の充放電カーブである。 図39(A)は、正極活物質のTEM観察結果である。図39(B)は、正極活物質のEDX分析結果である。 図40(A)は、正極のXRD評価結果である。図40(B)は、正極のXRD評価結果である。
 以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 また、本明細書等において結晶面および方向はミラー指数で示す。結晶面および方向の表記は、結晶学上、数字に上付きのバーを付すが、本明細書等では出願表記の制約上、数字の上にバーを付す代わりに、数字の前に−(マイナス符号)を付して表現する場合がある。また、結晶内の方向を示す個別方位は[ ]で、等価な方向すべてを示す集合方位は< >で、結晶面を示す個別面は( )で、等価な対称性を有する集合面は{ }でそれぞれ表現する。
 本明細書等において、偏析とは、複数の元素(例えばA,B,C)からなる固体において、ある元素(例えばB)が空間的に不均一に分布する現象をいう。
 本明細書等において、活物質等の粒子の表層部とは、表面から10nm程度までの領域をいう。ひびやクラックにより生じた面も表面といってよい。また表層部より深い領域を、内部という。
 本明細書等において、リチウムと遷移金属を含む複合酸化物が有する層状岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列する岩塩型のイオン配列を有し、遷移金属とリチウムが規則配列して二次元平面を形成するため、リチウムの二次元的拡散が可能である結晶構造をいう。なお陽イオンまたは陰イオンの欠損等の欠陥があってもよい。また、層状岩塩型結晶構造は、厳密に言えば、岩塩型結晶の格子が歪んだ構造となっている場合がある。
 また本明細書等において、岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列している構造をいう。なお陽イオンまたは陰イオンの欠損があってもよい。
 また本明細書等において、リチウムと遷移金属を含む複合酸化物が有する擬スピネル型の結晶構造とは、空間群R−3mであり、スピネル型結晶構造ではないものの、コバルト、マグネシウム等のイオンが酸素6配位位置を占め、陽イオンの配列がスピネル型と似た対称性を有する結晶構造をいう。なお、擬スピネル型の結晶構造は、リチウムなどの軽元素は酸素4配位位置を占める場合があり、この場合もイオンの配列がスピネル型と似た対称性を有する。
 また擬スピネル型の結晶構造は、層間にランダムにLiを有するもののCdCl型の結晶構造に類似する結晶構造であるということもできる。このCdCl型に類似した結晶構造は、ニッケル酸リチウムを充電深度0.94まで充電したとき(Li0.06NiO)の結晶構造と近いが、純粋なコバルト酸リチウム、またはコバルトを多く含む層状岩塩型の正極活物質では通常この結晶構造を取らないことが知られている。
 層状岩塩型結晶、および岩塩型結晶の陰イオンは立方最密充填構造(面心立方格子構造)をとる。擬スピネル型結晶も、陰イオンは立方最密充填構造をとると推定される。これらが接するとき、陰イオンにより構成される立方最密充填構造の向きが揃う結晶面が存在する。ただし、層状岩塩型結晶および擬スピネル型結晶の空間群はR−3mであり、岩塩型結晶の空間群Fm−3m(一般的な岩塩型結晶の空間群)およびFd−3m(最も単純な対称性を有する岩塩型結晶の空間群)とは異なるため、上記の条件を満たす結晶面のミラー指数は層状岩塩型結晶および擬スピネル型結晶と、岩塩型結晶では異なる。本明細書では、層状岩塩型結晶、擬スピネル型結晶、および岩塩型結晶において、陰イオンにより構成される立方最密充填構造の向きが揃うとき、結晶の配向が概略一致する、と言う場合がある。
 二つの領域の結晶の配向が概略一致することは、TEM(透過電子顕微鏡)像、STEM(走査透過電子顕微鏡)像、HAADF−STEM(高角散乱環状暗視野走査透過電子顕微鏡)像、ABF−STEM(環状明視野走査透過電子顕微鏡)像等から判断することができる。X線回折(XRD)、電子線回折、中性子線回折等も判断の材料にすることができる。TEM像等では、陽イオンと陰イオンの配列が、明線と暗線の繰り返しとして観察できる。層状岩塩型結晶と岩塩型結晶において立方最密充填構造の向きが揃うと、結晶間で、明線と暗線の繰り返しのなす角度が5度以下、より好ましくは2.5度以下である様子が観察できる。なお、TEM像等では酸素、フッ素をはじめとする軽元素は明確に観察できない場合があるが、その場合は金属元素の配列で配向の一致を判断することができる。
 また本明細書等において、正極活物質の理論容量とは、正極活物質が有する挿入脱離可能なリチウムが全て脱離した場合の電気量をいう。例えばLiCoOの理論容量は274mAh/g、LiNiOの理論容量は274mAh/g、LiMnの理論容量は148mAh/gである。
 また本明細書等において、挿入脱離可能なリチウムが全て挿入されているときの充電深度を0、正極活物質が有する挿入脱離可能なリチウムが全て脱離したときの充電深度を1ということとする。
 また本明細書等において、充電とは、電池内において正極から負極にリチウムイオンを移動させ、外部回路において負極から正極に電子を移動させることをいう。正極活物質については、リチウムイオンを離脱させることを充電という。また充電深度が0.7以上0.9以下の正極活物質を、高電圧で充電された正極活物質と呼ぶ場合がある。
 同様に、放電とは、電池内において負極から正極にリチウムイオンを移動させ、外部回路において正極から負極に電子を移動させることをいう。正極活物質については、リチウムイオンを挿入することを放電という。また充電深度が0.06以下の正極活物質、または高電圧で充電された状態から充電容量の90%以上の容量を放電した正極活物質を、十分に放電された正極活物質ということとする。
 また本明細書等において、非平衡な相変化とは、物理量の非線形変化を起こす現象をいうこととする。例えば容量(Q)を電圧(V)で微分(dQ/dV)することで得られるdQ/dV曲線におけるピークの前後では、非平衡な相変化が起き、結晶構造が大きく変わっていると考えられる。
(実施の形態1)
 本実施の形態では、本発明の一態様の正極活物質について説明する。
[正極活物質の構造]
 コバルト酸リチウム(LiCoO)などの層状岩塩型の結晶構造を有する材料は、放電容量が高く、二次電池の正極活物質として優れることが知られている。層状岩塩型の結晶構造を有する材料として例えば、LiMOで表される複合酸化物が挙げられる。元素Mの一例としてCoまたはNiより選ばれる一以上が挙げられる。また、元素Mの一例としてCoおよびNiより選ばれる一以上に加えて、AlおよびMnより選ばれる一以上が挙げられる。
 遷移金属化合物におけるヤーン・テラー効果は、遷移金属のd軌道の電子の数により、その効果の強さが異なることが知られている。
 ニッケルを有する化合物においては、ヤーン・テラー効果により歪みが生じやすい場合がある。よって、LiNiOにおいて高電圧における充放電を行った場合、歪みに起因する結晶構造の崩れが生じる懸念がある。LiCoOにおいてはヤーン・テラー効果の影響が小さいことが示唆され、高電圧における充放電の耐性がより優れる場合があり好ましい。
 図1および図2を用いて、正極活物質について説明する。図1および図2では、正極活物質が有する遷移金属としてコバルトを用いる場合について述べる。
<正極活物質1>
 図2に示す正極活物質100Cは、後述する作製方法にてハロゲンおよびマグネシウムが添加されないコバルト酸リチウム(LiCoO)である。図2に示すコバルト酸リチウムは、非特許文献1および非特許文献2等で述べられているように、充電深度によって結晶構造が変化する。
 図1に示すように、充電深度0(放電状態)であるコバルト酸リチウムは、空間群R−3mの結晶構造を有する領域を有し、ユニットセル中にCoO層が3層存在する。そのためこの結晶構造を、O3型結晶構造と呼ぶ場合がある。なお、CoO層とはコバルトに酸素が6配位した8面体構造が、稜共有の状態で平面に連続した構造をいうこととする。
 また充電深度1のときは、空間群P−3m1の結晶構造を有し、ユニットセル中にCoO層が1層存在する。そのためこの結晶構造を、O1型結晶構造と呼ぶ場合がある。
 また充電深度が0.88程度のときのコバルト酸リチウムは、空間群R−3mの結晶構造を有する。この構造は、P−3m1(O1)のようなCoOの構造と、R−3m(O3)のようなLiCoOの構造と、が交互に積層された構造ともいえる。そのためこの結晶構造を、H1−3型結晶構造と呼ぶ場合がある。なお、実際にはH1−3型結晶構造は、ユニットセルあたりのコバルト原子の数が他の構造の2倍となっている。しかし図1をはじめ本明細書では、他の構造と比較しやすくするためH1−3型結晶構造のc軸をユニットセルの1/2にした図で示すこととする。
 H1−3型結晶構造は一例として、非特許文献3に記載があるように、ユニットセルにおけるコバルトと酸素の座標を、Co(0、0、0.42150±0.00016)、O(0、0、0.27671±0.00045)、O(0、0、0.11535±0.00045)と表すことができる。OおよびOはそれぞれ酸素原子である。このようにH1−3型結晶構造は、1つのコバルトおよび2つの酸素を用いたユニットセルにより表される。一方、後述するように、本発明の一態様の擬スピネル型の結晶構造は好ましくは、1つのコバルトおよび1つの酸素を用いたユニットセルにより表される。これは、擬スピネルの構造の場合とH1−3型構造の場合では、コバルトと酸素との対称性が異なり、擬スピネルの構造の方が、H1−3型構造に比べてO3の構造からの変化が小さいことを示す。正極活物質が有する結晶構造をいずれのユニットセルを用いて表すのがより好ましいか、の選択は例えば、XRDのリートベルト解析において、GOF(good of fitness)の値がより小さくなるように選択すればよい。
 充電電圧がリチウム金属の酸化還元電位を基準に4.6V以上になるような高電圧の充電、あるいは充電深度が0.8以上になるような深い深度の充電と、放電とを繰り返すと、コバルト酸リチウムはH1−3型結晶構造と、放電状態のR−3m(O3)の構造と、の間で結晶構造の変化(つまり、非平衡な相変化)を繰り返すことになる。
 しかしながら、これらの2つの結晶構造は、CoO層のずれが大きい。図1に点線および矢印で示すように、H1−3型結晶構造では、CoO層がR−3m(O3)から大きくずれている。このようなダイナミックな構造変化は、結晶構造の安定性に悪影響を与えうる。
 さらに体積の差も大きい。同数のコバルト原子あたりで比較した場合、H1−3型結晶構造と放電状態のO3型結晶構造の体積の差は3.0%以上である。
 加えて、H1−3型結晶構造が有する、P−3m1(O1)のようなCoO層が連続した構造は不安定である可能性が高い。
 そのため、高電圧の充放電を繰り返すとコバルト酸リチウムの結晶構造は崩れていく。結晶構造の崩れが、サイクル特性の悪化を引き起こす。これは、結晶構造が崩れることで、リチウムが安定して存在できるサイトが減少し、またリチウムの挿入脱離が難しくなるためだと考えられる。
<正極活物質2>
≪内部≫
 本発明の一態様の正極活物質は、高電圧の充放電の繰り返しにおいて、CoO層のずれを小さくすることができる。さらに、体積の変化を小さくすることができる。よって、本発明の一態様の正極活物質は、優れたサイクル特性を実現することができる。また、本発明の一態様の正極活物質は、高電圧の充電状態において安定な結晶構造を取り得る。よって、本発明の一態様の正極活物質は、高電圧の充電状態を保持した場合において、ショートが生じづらい場合がある。そのような場合には安全性がより向上するため、好ましい。
 本発明の一態様の正極活物質では、十分に放電された状態と、高電圧で充電された状態における、結晶構造の変化および同数の遷移金属原子あたりで比較した場合の体積の差が小さい。
 正極活物質100Aの充放電前後の結晶構造を、図2に示す。正極活物質100Aはリチウムと、コバルトと、酸素と、を有する複合酸化物である。上記に加えてマグネシウムを有することが好ましい。またフッ素、塩素等のハロゲンを有することが好ましい。
 図2の充電深度0(放電状態)の結晶構造は、図1と同じR−3m(O3)である。一方、正極活物質100Aは、十分に充電された充電深度の場合、H1−3型結晶構造とは異なる構造の結晶を有する。本構造は、空間群R−3mであり、スピネル型結晶構造ではないものの、コバルト、マグネシウム等のイオンが酸素6配位位置を占め、陽イオンの配列がスピネル型と似た対称性を有する。よって、本構造を本明細書等では擬スピネル型の結晶構造と呼ぶ。なお、図2に示されている擬スピネル型の結晶構造の図では、コバルト原子の対称性と酸素原子の対称性について説明するために、リチウムの表示を省略しているが、実際はCoO層の間にコバルトに対して例えば20原子%以下のリチウムが存在する。また、O3型結晶構造および擬スピネル型の結晶構造のいずれの場合も、CoO層の間、つまりリチウムサイトに、希薄にマグネシウムが存在することが好ましい。また、酸素サイトに、ランダムかつ希薄に、フッ素等のハロゲンが存在することが好ましい。
 なお、擬スピネル型の結晶構造は、リチウムなどの軽元素は酸素4配位位置を占める場合があり、この場合もイオンの配列がスピネル型と似た対称性を有する。
 また擬スピネル型の結晶構造は、層間にランダムにLiを有するもののCdCl型の結晶構造に類似する結晶構造であるということもできる。このCdCl型に類似した結晶構造は、ニッケル酸リチウムを充電深度0.94まで充電したとき(Li0.06NiO)の結晶構造と近いが、純粋なコバルト酸リチウム、またはコバルトを多く含む層状岩塩型の正極活物質では通常この結晶構造を取らないことが知られている。
 層状岩塩型結晶、および岩塩型結晶の陰イオンは立方最密充填構造(面心立方格子構造)をとる。擬スピネル型結晶も、陰イオンは立方最密充填構造をとると推定される。これらが接するとき、陰イオンにより構成される立方最密充填構造の向きが揃う結晶面が存在する。ただし、層状岩塩型結晶および擬スピネル型結晶の空間群はR−3mであり、岩塩型結晶の空間群Fm−3m(一般的な岩塩型結晶の空間群)およびFd−3m(最も単純な対称性を有する岩塩型結晶の空間群)とは異なるため、上記の条件を満たす結晶面のミラー指数は層状岩塩型結晶および擬スピネル型結晶と、岩塩型結晶では異なる。本明細書では、層状岩塩型結晶、擬スピネル型結晶、および岩塩型結晶において、陰イオンにより構成される立方最密充填構造の向きが揃うとき、結晶の配向が概略一致する、と言う場合がある。
 正極活物質100Aでは、高電圧で充電し多くのリチウムが離脱したときの、結晶構造の変化が、正極活物質100Cよりも抑制されている。例えば、図2中に点線で示すように、これらの結晶構造ではCoO層のずれがほとんどない。
 より詳細に説明すれば、正極活物質100Aは、充電電圧が高い場合にも構造の安定性が高い。例えば、正極活物質100CにおいてはH1−3型結晶構造となる充電電圧、例えばリチウム金属の電位を基準として4.6V程度の電圧においても、正極活物質100AではR−3m(O3)の結晶構造を保持できる充電電圧の領域が存在し、さらに充電電圧を高めた領域、例えばリチウム金属の電位を基準として4.65V乃至4.7V程度の電圧においても擬スピネル型の結晶構造を取り得る領域が存在する。さらに充電電圧を高めるとようやく、H1−3型結晶が観測される場合がある。なお、二次電池において例えば負極活物質として黒鉛を用いる場合には、例えば二次電池の電圧が4.3V以上4.5V以下においてもR−3m(O3)の結晶構造を保持できる充電電圧の領域が存在し、さらに充電電圧を高めた領域、例えばリチウム金属の電位を基準として4.35V以上4.55V以下においても擬スピネル型の結晶構造を取り得る領域が存在する。
 そのため、正極活物質100Aにおいては、高電圧で充放電を繰り返しても結晶構造が崩れにくい。
 なお擬スピネル型の結晶構造は、ユニットセルにおけるコバルトと酸素の座標を、Co(0,0,0.5)、O(0,0,x)、0.20≦x≦0.25の範囲内で示すことができる。
 CoO層間、つまりリチウムサイトにランダムかつ希薄に存在するマグネシウムは、CoO層のずれを抑制する効果がある。そのためCoO層間にマグネシウムが存在すると、擬スピネル型の結晶構造になりやすい。そのためマグネシウムは正極活物質100Aの粒子全体に分布していることが好ましい。またマグネシウムを粒子全体に分布させるために、正極活物質100Aの作製工程において、加熱処理を行うことが好ましい。
 しかしながら、加熱処理の温度が高すぎると、カチオンミキシングが生じてマグネシウムがコバルトサイトに入る可能性が高まる。マグネシウムがコバルトサイトに存在すると、R−3mの構造を保つ効果がなくなってしまう。さらに、加熱処理の温度が高すぎると、コバルトが還元されて2価になってしまう、リチウムが蒸散するなどの悪影響も懸念される。
 そこで、マグネシウムを粒子全体に分布させるための加熱処理よりも前に、コバルト酸リチウムにフッ素化合物等のハロゲン化合物を加えておくことが好ましい。ハロゲン化合物を加えることでコバルト酸リチウムの融点降下が起こる。融点降下させることで、カチオンミキシングが生じにくい温度で、マグネシウムを粒子全体に分布させることが容易となる。さらにフッ素化合物が存在すれば、電解液が分解して生じたフッ酸に対する耐食性が向上することが期待できる。
 なお、マグネシウム濃度を所望の値以上に高くすると、結晶構造の安定化への効果が小さくなってしまう場合がある。マグネシウムが、リチウムサイトに加えて、コバルトサイトにも入るようになるためと考えられる。本発明の一態様の正極活物質が有するマグネシウムの原子数は、コバルトの原子数の0.001倍以上0.1倍以下が好ましく、0.01倍より大きく0.04倍未満がより好ましく、0.02倍程度がさらに好ましい。ここで示すマグネシウムの濃度は例えば、ICP−MS等を用いて正極活物質の粒子全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
 コバルト酸リチウムにコバルト以外の金属(以下、金属Z)として、例えばニッケル、アルミニウム、マンガン、チタン、バナジウムおよびクロムから選ばれる一以上の金属を添加してもよく、特にニッケルおよびアルミニウムの一以上を添加することが好ましい。マンガン、チタン、バナジウムおよびクロムは安定に4価を取りやすい場合があり、構造安定性への寄与が高い場合がある。金属Zを添加することにより本発明の一態様の正極活物質では例えば、高電圧での充電状態において結晶構造がより安定になる場合がある。ここで、本発明の一態様の正極活物質において、金属Zは、コバルト酸リチウムの結晶性を大きく変えることのない濃度で添加されることが好ましい。例えば、前述のヤーン・テラー効果等を発現しない程度の量であることが好ましい。
 本発明の一態様の正極活物質のマグネシウム濃度が高くなるのに伴って正極活物質の容量が減少することがある。その要因として例えば、リチウムサイトにマグネシウムが入ることにより、充放電に寄与するリチウム量が減少する可能性が考えられる。また、過剰なマグネシウムが、充放電に寄与しないマグネシウム化合物を生成する場合もある。本発明の一態様の正極活物質がマグネシウムに加えて、金属Zとしてニッケルを有することにより、重量あたりおよび体積あたりの容量を高めることができる場合がある。また本発明の一態様の正極活物質がマグネシウムに加えて、金属Zとしてアルミニウムを有することにより、重量あたりおよび体積あたりの容量を高めることができる場合がある。また本発明の一態様の正極活物質がマグネシウムに加えてニッケルおよびアルミニウムを有することにより、重量あたりおよび体積あたりの容量を高めることができる場合がある。
 以下に、本発明の一態様の正極活物質が有するマグネシウム、金属Z、等の元素の濃度を原子数を用いて表す。
 本発明の一態様の正極活物質が有するニッケルの原子数は、コバルトの原子数の7.5%以下が好ましく、0.05%以上4%以下がより好ましく、0.1%以上2%以下がさらに好ましい。ここで示すニッケルの濃度は例えば、ICP−MS等を用いて正極活物質の粒子全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
 本発明の一態様の正極活物質が有するアルミニウムの原子数は、コバルトの原子数の0.05%以上4%以下が好ましく、0.1%以上2%以下がより好ましい。ここで示すアルミニウムの濃度は例えば、ICP−MS等を用いて正極活物質の粒子全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
 本発明の一態様の正極活物質は、元素Xを有することが好ましく、元素Xとしてリンを用いることが好ましい。また、本発明の一態様の正極活物質は、リンと酸素を含む化合物を有することがより好ましい。
 本発明の一態様の正極活物質が元素Xを含む化合物を有することにより、高電圧の充電状態を保持した場合において、ショートが生じづらい場合がある。
 本発明の一態様の正極活物質が元素Xとしてリンを有する場合には、電解液の分解により発生したフッ化水素とリンが反応し、電解液中のフッ化水素濃度が低下する可能性がある。
 電解液がLiPFを有する場合、加水分解により、フッ化水素が発生する場合がある。また、正極の構成要素として用いられるPVDFとアルカリとの反応によりフッ化水素が発生する場合もある。電解液中のフッ化水素濃度が低下することにより、集電体の腐食や被膜はがれを抑制できる場合がある。また、PVDFのゲル化や不溶化による接着性の低下を抑制できる場合がある。
 本発明の一態様の正極活物質が元素Xに加えてマグネシウムを有する場合、高電圧の充電状態における安定性が極めて高い。元素Xがリンである場合、リンの原子数は、コバルトの原子数の1%以上20%以下が好ましく、2%以上10%以下がより好ましく、3%以上8%以下がさらに好ましく、加えてマグネシウムの原子数は、コバルトの原子数の0.1%以上10%以下が好ましく、0.5%以上5%以下がより好ましく、0.7%以上4%以下がより好ましい。ここで示すリンおよびマグネシウムの濃度は例えば、ICP−MS等を用いて正極活物質の粒子全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
 正極活物質がクラックを有する場合、その内部にリン、より具体的には例えばリンと酸素を含む化合物が存在することにより、クラックの進行が抑制される場合がある。
≪表層部≫
 マグネシウムは正極活物質100Aの粒子全体に分布していることが好ましいが、これに加えて粒子表層部のマグネシウム濃度が、粒子全体の平均よりも高いことが好ましい。例えば、XPS等で測定される粒子表層部のマグネシウム濃度が、ICP−MS等で測定される粒子全体の平均のマグネシウム濃度よりも高いことが好ましい。
 また、正極活物質100Aがコバルト以外の元素、例えばニッケル、アルミニウム、マンガン、鉄およびクロムから選ばれる一以上の金属を有する場合において、該金属の粒子表層部における濃度が、粒子全体の平均よりも高いことが好ましい。例えば、XPS等で測定される粒子表層部のコバルト以外の元素の濃度が、ICP−MS等で測定される粒子全体の平均における該元素の濃度よりも高いことが好ましい。
 粒子表面は、いうなれば全て結晶欠陥である上に、充電時には表面からリチウムが抜けていくので内部よりもリチウム濃度が低くなりやすい部分である。そのため、不安定になりやすく結晶構造が崩れやすい部分である。表層部のマグネシウム濃度が高ければ、結晶構造の変化をより効果的に抑制することができる。また表層部のマグネシウム濃度が高いと、電解液が分解して生じたフッ酸に対する耐食性が向上することも期待できる。
 またフッ素等のハロゲンも、正極活物質100Aの表層部の濃度が、粒子全体の平均よりも高いことが好ましい。電解液に接する領域である表層部にハロゲンが存在することで、フッ酸に対する耐食性を効果的に向上させることができる。
 このように正極活物質100Aの表層部は内部よりも、マグネシウムおよびフッ素の濃度が高い、内部と異なる組成であることが好ましい。またその組成として常温で安定な結晶構造をとることが好ましい。そのため、表層部は内部と異なる結晶構造を有していてもよい。例えば、正極活物質100Aの表層部の少なくとも一部が、岩塩型の結晶構造を有していてもよい。また表層部と内部が異なる結晶構造を有する場合、表層部と内部の結晶の配向が概略一致していることが好ましい。
 ただし表層部がMgOのみ、またはMgOとCoO(II)が固溶した構造のみでは、リチウムの挿入脱離が難しくなってしまう。そのため表層部は少なくともコバルトを有し、放電状態においてはリチウムも有し、リチウムの挿入脱離の経路を有している必要がある。また、マグネシウムよりもコバルトの濃度が高いことが好ましい。
 また、元素Xは正極活物質100Aの粒子の表面近傍に位置することが好ましい。例えば正極活物質100Aは、元素Xを有する被膜に覆われていてもよい。
≪粒界≫
 正極活物質100Aが有するマグネシウム又はハロゲンは、内部にランダムかつ希薄に存在していてもよいが、一部は粒界に偏析していることがより好ましい。
 換言すれば、正極活物質100Aの結晶粒界およびその近傍のマグネシウム濃度も、内部の他の領域よりも高いことが好ましい。また結晶粒界およびその近傍のハロゲン濃度も内部の他の領域より高いことが好ましい。
 粒子表面と同様、結晶粒界も面欠陥である。そのため不安定になりやすく結晶構造の変化が始まりやすい。そのため、結晶粒界およびその近傍のマグネシウム濃度が高ければ、結晶構造の変化をより効果的に抑制することができる。
 また、結晶粒界およびその近傍のマグネシウムおよびハロゲン濃度が高い場合、正極活物質100Aの粒子の結晶粒界に沿ってクラックが生じた場合でも、クラックにより生じた表面の近傍でマグネシウムおよびハロゲン濃度が高くなる。そのためクラックが生じた後の正極活物質においてもフッ酸に対する耐食性を高めることができる。
 なお本明細書等において、結晶粒界の近傍とは、粒界から10nm程度までの領域をいうこととする。
≪粒径≫
 正極活物質100Aの粒径は、大きすぎるとリチウムの拡散が難しくなる、集電体に塗工したときに活物質層の表面が粗くなりすぎる、等の問題がある。一方、小さすぎると、集電体への塗工時に活物質層を担持しにくくなる、電解液との反応が過剰に進む等の問題点も生じる。そのため、平均粒子径(D50:メディアン径ともいう。)が、1μm以上100μm以下が好ましく、2μm以上40μm以下であることがより好ましく、5μm以上30μm以下がさらに好ましい。
<分析方法>
 ある正極活物質が、高電圧で充電されたとき擬スピネル型の結晶構造を示す本発明の一態様の正極活物質100Aであるか否かは、高電圧で充電された正極を、XRD、電子線回折、中性子線回折、電子スピン共鳴(ESR)、核磁気共鳴(NMR)等を用いて解析することで判断できる。特にXRDは、正極活物質が有するコバルト等の遷移金属の対称性を高分解能で解析できる、結晶性の高さおよび結晶の配向性を比較できる、格子の周期性歪みおよび結晶子サイズの解析ができる、二次電池を解体して得た正極をそのまま測定しても十分な精度を得られる、等の点で好ましい。
 本発明の一態様の正極活物質100Aは、これまで述べたように高電圧で充電した状態と放電状態とで結晶構造の変化が少ないことが特徴である。高電圧で充電した状態で、放電状態との変化が大きな結晶構造が50wt%以上を占める材料は、高電圧の充放電に耐えられないため好ましくない。そして不純物元素を添加するだけでは目的の結晶構造をとらない場合があることに注意が必要である。例えばマグネシウムおよびフッ素を有するコバルト酸リチウム、という点で共通していても、高電圧で充電した状態で擬スピネル型の結晶構造が60wt%以上になる場合と、H1−3型結晶構造が50wt%以上を占める場合と、がある。また、所定の電圧では、擬スピネル型の結晶構造がほぼ100wt%になり、さらに当該所定の電圧をあげるとH1−3型結晶構造が生じる場合もある。そのため、本発明の一態様の正極活物質100Aであるか否かを判断するには、XRDをはじめとする結晶構造についての解析が必要である。
 ただし、高電圧で充電した状態または放電状態の正極活物質は、大気に触れると結晶構造の変化を起こす場合がある。例えば擬スピネル型の結晶構造からH1−3型結晶構造に変化する場合がある。そのため、サンプルはすべてアルゴン雰囲気等の不活性雰囲気でハンドリングすることが好ましい。
≪充電方法≫
 ある複合酸化物が、本発明の一態様の正極活物質100Aであるか否かを判断するための高電圧充電は、例えば対極リチウムでコインセル(CR2032タイプ、直径20mm高さ3.2mm)を作製して充電することができる。
 より具体的には、正極には、正極活物質、導電助剤およびバインダを混合したスラリーを、アルミニウム箔の正極集電体に塗工したものを用いることができる。
 対極にはリチウム金属を用いることができる。なお対極にリチウム金属以外の材料を用いたときは、二次電池の電位と正極の電位が異なる。本明細書等における電圧および電位は、特に言及しない場合、正極の電位である。
 電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)、ビニレンカーボネート(VC)が2wt%で混合されたものを用いることができる。
 セパレータには厚さ25μmのポリプロピレンを用いることができる。
 正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いることができる。
 上記条件で作製したコインセルを、4.6V、0.5Cで定電流充電し、その後電流値が0.01Cとなるまで定電圧充電する。なおここでは1Cは137mA/gとする。温度は25℃とする。このようにして充電した後に、コインセルをアルゴン雰囲気のグローブボックス中で解体して正極を取り出せば、高電圧で充電された正極活物質を得られる。この後に各種分析を行う際、外界成分との反応を抑制するため、アルゴン雰囲気で密封することが好ましい。例えばXRDは、アルゴン雰囲気の密閉容器内に封入して行うことができる。
≪XRD≫
 擬スピネル型の結晶構造と、H1−3型結晶構造のモデルから計算される、CuKα1線による理想的な粉末XRDパターンを図3に示す。また比較のため充電深度0のLiCoO(O3)と、充電深度1のCoO(O1)の結晶構造から計算される理想的なXRDパターンも示す。なお、LiCoO(O3)およびCoO(O1)のパターンはICSD(Inorganic Crystal Structure Database)(非特許文献5参照)より入手した結晶構造情報からMaterials Studio(BIOVIA)のモジュールの一つである、Reflex Powder Diffractionを用いて作成した。2θの範囲は15°から75°とし、Step size=0.01、波長λ1=1.540562×10−10m、λ2は設定なし、Monochromatorはsingleとした。H1−3型結晶構造のパターンは非特許文献3に記載の結晶構造情報から同様に作成した。擬スピネル型の結晶構造のパターンは本発明の一態様の正極活物質のXRDパターンから結晶構造を推定し、TOPAS ver.3(Bruker社製結晶構造解析ソフトウェア)を用いてフィッティングし、他と同様にXRDパターンを作成した。
 図3に示すように、擬スピネル型の結晶構造では、2θ=19.30±0.20°(19.10°以上19.50°以下)、および2θ=45.55±0.10°(45.45°以上45.65°以下)に回折ピークが出現する。より詳しく述べれば、2θ=19.30±0.10°(19.20°以上19.40°以下)、および2θ=45.55±0.05°(45.50°以上45.60以下)に鋭い回折ピークが出現する。しかしH1−3型結晶構造およびCoO(P−3m1、O1)ではこれらの位置にピークは出現しない。そのため、高電圧で充電された状態で2θ=19.30±0.20°、および2θ=45.55±0.10°のピークが出現することは、本発明の一態様の正極活物質100Aの特徴であるといえる。
 これは、充電深度0の結晶構造と、高電圧充電したときの結晶構造で、XRDの回折ピークが出現する位置が近いということもできる。より具体的には、両者の主な回折ピークのうち2つ以上、より好ましくは3つ以上において、ピークが出現する位置の差が、2θ=0.7以下、より好ましくは2θ=0.5以下であるということができる。
 なお、本発明の一態様の正極活物質100Aは高電圧で充電したとき擬スピネル型の結晶構造を有するが、粒子のすべてが擬スピネル型の結晶構造でなくてもよい。他の結晶構造を含んでいてもよいし、一部が非晶質であってもよい。ただし、XRDパターンについてリートベルト解析を行ったとき、擬スピネル型の結晶構造が50wt%以上であることが好ましく、60wt%以上であることがより好ましく、66wt%以上であることがさらに好ましい。擬スピネル型の結晶構造が50wt%以上、より好ましくは60wt%以上、さらに好ましくは66wt%以上あれば、十分にサイクル特性に優れた正極活物質とすることができる。
 また、測定開始から100サイクル以上の充放電を経ても、リートベルト解析を行ったとき擬スピネル型の結晶構造が35wt%以上であることが好ましく、40wt%以上であることがより好ましく、43wt%以上であることがさらに好ましい。
 また、正極活物質の粒子が有する擬スピネル型の結晶構造の結晶子サイズは、放電状態のLiCoO2(O3)の1/10程度までしか低下しない。そのため、充放電前の正極と同じXRDの測定条件であっても、高電圧充電後に明瞭な擬スピネル型の結晶構造のピークが確認できる。一方単純なLiCoO2では、一部が擬スピネル型の結晶構造に似た構造を取りえたとしても、結晶子サイズが小さくなり、ピークはブロードで小さくなる。結晶子サイズは、XRDピークの半値幅から求めることができる。
 本発明の一態様の正極活物質においては、前述の通り、ヤーン・テラー効果の影響が小さいことが好ましい。本発明の一態様の正極活物質は、層状岩塩型の結晶構造を有し、遷移金属としてコバルトを主として有することが好ましい。また、本発明の一態様の正極活物質において、ヤーン・テラー効果の影響が小さい範囲であれば、コバルトの他に、先に述べた金属Zを有してもよい。
 正極活物質において、XRD分析を用いて、ヤーン・テラー効果の影響が小さいと推測される格子定数の範囲について考察する。
 図4(A)および(B)は、本発明の一態様の正極活物質が層状岩塩型の結晶構造を有し、コバルトとニッケルを有する場合において、XRDを用いてa軸およびc軸の格子定数を見積もった結果を示す。図4(A)がa軸、図4(B)がc軸の結果である。なお、図4(A)および(B)に示す格子定数の算出に用いたXRDは、正極活物質の合成を行った後の粉体であり、正極に組み込む前のものである。横軸のニッケル濃度は、コバルトとニッケルの原子数の和を100%とした場合のニッケルの濃度を示す。正極活物質は、後述するステップS21乃至ステップS25を用いて作製し、ステップS21においてコバルト源およびニッケル源を用いた。ニッケルの濃度は、ステップS21においてコバルトとニッケルの原子数の和を100%とした場合のニッケルの濃度を示す。
 図5(A)および(B)には、本発明の一態様の正極活物質が層状岩塩型の結晶構造を有し、コバルトとマンガンを有する場合において、XRDを用いてa軸およびc軸の格子定数を見積もった結果を示す。図5(A)がa軸、図5(B)がc軸の結果である。なお、図5(A)および(B)に示す格子定数の算出に用いたXRDは、正極活物質の合成を行った後の粉体であり、正極に組み込む前のものである。横軸のマンガン濃度は、コバルトとマンガンの原子数の和を100%とした場合のマンガンの濃度を示す。正極活物質は、後述するステップS21乃至ステップS25を用いて作製し、ステップS21においてコバルト源およびマンガン源を用いた。マンガンの濃度は、ステップS21においてコバルトとマンガンの原子数の和を100%とした場合のマンガンの濃度を示す。
 図4(C)には、図4(A)および(B)に格子定数の結果を示した正極活物質について、a軸の格子定数をc軸の格子定数で割った値(a軸/c軸)を示す。図5(C)には、図5(A)および(B)に格子定数の結果を示した正極活物質について、a軸の格子定数をc軸の格子定数で割った値(a軸/c軸)を示す。
 図4(C)より、ニッケル濃度が5%と7.5%ではa軸/c軸が顕著に変化する傾向がみられ、a軸の歪みが大きくなっていると考えられる。この歪みはヤーン・テラー歪みである可能性がある。ニッケル濃度が7.5%未満において、ヤーン・テラー歪みの小さい、優れた正極活物質が得られることが示唆される。
 次に、図5(A)より、マンガン濃度が5%以上においては、格子定数の変化の挙動が異なり、ベガード則に従わないことが示唆される。よって、マンガン濃度が5%以上では結晶構造が異なることが示唆される。よって、マンガンの濃度は例えば、4%以下が好ましい。
 なお、上記のニッケル濃度およびマンガン濃度の範囲は、粒子の表層部においては必ずしもあてはまらない。すなわち、粒子の表層部においては、上記の濃度より高くてもよい場合がある。
 以上より、格子定数の好ましい範囲について考察を行ったところ、本発明の一態様の正極活物質において、XRDパターンから推定できる、充放電を行わない状態、あるいは放電状態の正極活物質の粒子が有する層状岩塩型の結晶構造において、a軸の格子定数が2.814×10−10mより大きく2.817×10−10mより小さく、かつc軸の格子定数が14.05×10−10mより大きく14.07×10−10mより小さいことが好ましいことがわかった。充放電を行わない状態とは例えば、二次電池の正極を作製する前の粉体の状態であってもよい。
 あるいは、充放電を行わない状態、あるいは放電状態の正極活物質の粒子が有する層状岩塩型の結晶構造において、a軸の格子定数をc軸の格子定数で割った値(a軸/c軸)が0.20000より大きく0.20049より小さいことが好ましい。
 あるいは、充放電を行わない状態、あるいは放電状態の正極活物質の粒子が有する層状岩塩型の結晶構造において、XRD分析をしたとき、2θが18.50°以上19.30°以下に第1のピークが観測され、かつ2θが38.00°以上38.80°以下に第2のピークが観測される場合がある。
≪XPS≫
 X線光電子分光(XPS)では、表面から2乃至8nm程度(通常5nm程度)の深さまでの領域の分析が可能であるため、表層部の約半分の領域について、各元素の濃度を定量的に分析することができる。また、ナロースキャン分析をすれば元素の結合状態を分析することができる。なおXPSの定量精度は多くの場合±1原子%程度、検出下限は元素にもよるが約1原子%である。
 正極活物質100AについてXPS分析をしたとき、コバルトの濃度を1としたときの、マグネシウムの濃度の相対値は1.6以上6.0以下が好ましく、1.8以上4.0未満がより好ましい。またフッ素等のハロゲン濃度の相対値は0.2以上6.0以下が好ましく、1.2以上4.0以下がより好ましい。
 XPS分析を行う場合には例えば、X線源として単色化アルミニウムを用いることができる。また、取出角は例えば45°とすればよい。
 また、正極活物質100AについてXPS分析したとき、フッ素と他の元素の結合エネルギーを示すピークは682eV以上685eV未満であることが好ましく、684.3eV程度であることがさらに好ましい。これは、フッ化リチウムの結合エネルギーである685eV、およびフッ化マグネシウムの結合エネルギーである686eVのいずれとも異なる値である。つまり、正極活物質100Aがフッ素を有する場合、フッ化リチウムおよびフッ化マグネシウム以外の結合であることが好ましい。
 さらに、正極活物質100AについてXPS分析したとき、マグネシウムと他の元素の結合エネルギーを示すピークは、1302eV以上1304eV未満であることが好ましく、1303eV程度であることがさらに好ましい。これは、フッ化マグネシウムの結合エネルギーである1305eVと異なる値であり、酸化マグネシウムの結合エネルギーに近い値である。つまり、正極活物質100Aがマグネシウムを有する場合、フッ化マグネシウム以外の結合であることが好ましい。
≪EDX≫
 EDX測定のうち、領域内を走査しながら測定し、領域内を2次元に評価することをEDX面分析と呼ぶ場合がある。またEDXの面分析から、線状の領域のデータを抽出し、原子濃度について正極活物質粒子内の分布を評価することを線分析と呼ぶ場合がある。
 EDX面分析(例えば元素マッピング)により、内部、表層部および結晶粒界近傍における、マグネシウムおよびフッ素の濃度を定量的に分析することができる。また、EDX線分析により、マグネシウムおよびフッ素の濃度のピークを分析することができる。
 正極活物質100AについてEDX線分析をしたとき、表層部のマグネシウム濃度のピークは、正極活物質100Aの表面から中心に向かった深さ3nmまでに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。
 また正極活物質100Aが有するフッ素の分布は、マグネシウムの分布と重畳することが好ましい。そのためEDX線分析をしたとき、表層部のフッ素濃度のピークは、正極活物質100Aの表面から中心に向かった深さ3nmまでに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。
≪dQ/dVvsV曲線≫
 また、本発明の一態様の正極活物質は、高電圧で充電した後、例えば0.2C以下の低いレートで放電すると、放電終了間近に特徴的な電圧の変化が表れることがある。この変化は、放電曲線から求めたdQ/dVvsV曲線において、3.5Vから3.9Vの範囲に、少なくとも1つのピークが存在することで明瞭に確かめることができる。
[正極活物質の作製方法1]
 次に、図6及び図7を用いて、本発明の一態様の正極活物質の作製方法の一例について説明する。また図8及び図9により具体的な作製方法の他の一例を示す。
<ステップS11>
 図6のステップS11に示すように、まず混合物902の材料として、フッ素源や塩素源等のハロゲン源およびマグネシウム源を用意する。またリチウム源も用意することが好ましい。
 フッ素源としては、例えばフッ化リチウム、フッ化マグネシウム等を用いることができる。なかでも、フッ化リチウムは融点が848℃と比較的低く、後述するアニール工程で溶融しやすいため好ましい。塩素源としては、例えば塩化リチウム、塩化マグネシウム等を用いることができる。マグネシウム源としては、例えばフッ化マグネシウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム等を用いることができる。リチウム源としては、例えばフッ化リチウム、炭酸リチウムを用いることができる。つまり、フッ化リチウムはリチウム源としてもフッ素源としても用いることができる。またフッ化マグネシウムはフッ素源としてもマグネシウム源としても用いることができる。
 本実施の形態では、フッ素源およびリチウム源としてフッ化リチウムLiFを用意し、フッ素源およびマグネシウム源としてフッ化マグネシウムMgFを用意することとする(図6の具体例として、図8のステップS11)。フッ化リチウムLiFとフッ化マグネシウムMgFは、LiF:MgF=65:35(モル比)程度で混合すると融点を下げる効果が最も高くなる(非特許文献4)。一方、フッ化リチウムが多くなると、リチウムが過剰になりすぎサイクル特性が悪化する懸念がある。そのため、フッ化リチウムLiFとフッ化マグネシウムMgFのモル比は、LiF:MgF=x:1(0≦x≦1.9)であることが好ましく、LiF:MgF=x:1(0.1≦x≦0.5)がより好ましく、LiF:MgF=x:1(x=0.33近傍)がさらに好ましい。なお本明細書等において近傍とは、その値の0.9倍より大きく1.1倍より小さい値とする。
 また、次の混合および粉砕工程を湿式で行う場合は、溶媒を用意する。溶媒としてはアセトン等のケトン、エタノールおよびイソプロパノール等のアルコール、エーテル、ジオキサン、アセトニトリル、N−メチル−2−ピロリドン(NMP)等を用いることができる。リチウムと反応が起こりにくい、非プロトン性溶媒を用いることがより好ましい。本実施の形態では、アセトンを用いることとする(図8のステップS11参照)。
<ステップS12>
 次に、上記の混合物902の材料を混合および粉砕する(図6および図8のステップS12)。混合は乾式または湿式で行うことができるが、湿式はより小さく粉砕することができるため好ましい。混合には例えばボールミル、ビーズミル等を用いることができる。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。この混合および粉砕工程を十分に行い、混合物902を微粉化することが好ましい。
<ステップS13、ステップS14>
 上記で混合、粉砕した材料を回収し(図6および図8のステップS13)、混合物902を得る(図6および図8のステップS14)。
 混合物902は、例えばD50が600nm以上20μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。このように微粉化された混合物902ならば、後の工程でリチウム、遷移金属および酸素を有する複合酸化物と混合したときに、複合酸化物の粒子の表面に混合物902を均一に付着させやすい。複合酸化物の粒子の表面に混合物902が均一に付着していると、加熱後に複合酸化物粒子の表層部にもれなくハロゲンおよびマグネシウムを分布させやすいため好ましい。表層部にハロゲンおよびマグネシウムが含まれない領域があると、充電状態において前述の擬スピネル型の結晶構造になりにくいおそれがある。
 次に、ステップS21乃至ステップS25を経て、リチウム、遷移金属および酸素を有する複合酸化物を得る。
<ステップS21>
 まず、図6のステップS21に示すように、リチウム、遷移金属および酸素を有する複合酸化物の材料として、リチウム源および遷移金属源を用意する。
 リチウム源としては、例えば炭酸リチウム、フッ化リチウム等を用いることができる。
 遷移金属としては例えば、コバルト、マンガン、ニッケルの少なくとも一を用いることができる。
 正極活物質として層状岩塩型の結晶構造を用いる場合、材料の比は、層状岩塩型をとりうるコバルト、マンガン、ニッケルの混合比とすればよい。また、層状岩塩型の結晶構造をとりうる範囲で、これらの遷移金属にアルミニウムを加えてもよい。
 遷移金属源としては、上記遷移金属の酸化物、水酸化物等を用いることができる。コバルト源としては、例えば酸化コバルト、水酸化コバルト等を用いることができる。マンガン源としては、酸化マンガン、水酸化マンガン等を用いることができる。ニッケル源としては、酸化ニッケル、水酸化ニッケル等を用いることができる。アルミニウム源としては、酸化アルミニウム、水酸化アルミニウム、等を用いることができる。
<ステップS22>
 次に、上記のリチウム源および遷移金属源を混合する(図6のステップS22)。混合は乾式または湿式で行うことができる。混合には例えばボールミル、ビーズミル等を用いることができる。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。
<ステップS23>
 次に、上記で混合した材料を加熱する。本工程は、後の加熱工程との区別のために、焼成または第1の加熱という場合がある。加熱は800℃以上1100℃未満で行うことが好ましく、900℃以上1000℃以下で行うことがより好ましく、950℃程度がさらに好ましい。温度が低すぎると、出発材料の分解および溶融が不十分となるおそれがある。一方温度が高すぎると、遷移金属が過剰に還元される、リチウムが蒸散するなどの原因で欠陥が生じるおそれがある。例えばコバルトが2価となる欠陥が生じうる。
 加熱時間は、2時間以上20時間以下とすることが好ましい。焼成は、乾燥空気等の水が少ない雰囲気(例えば露点−50℃以下、より好ましくは−100℃以下)で行うことが好ましい。例えば1000℃で10時間加熱することとし、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。
 ただし、ステップS23における室温までの冷却は必須ではない。その後のステップS24、ステップS25およびステップS31乃至ステップS34の工程を行うのに問題がなければ、冷却は室温より高い温度までとしてもよい。
 なお、正極活物質が有する金属については、上述のステップS22およびステップS23において導入してもよいし、金属のうち一部については後述するステップS41乃至ステップS46において導入することもできる。より具体的には、ステップS22およびステップS23において金属M1(M1はコバルト、マンガン、ニッケルおよびアルミニウムより選ばれる一以上)を導入し、ステップS41乃至ステップS46において金属M2(M2は例えば、マンガン、ニッケルおよびアルミニウムより選ばれる一以上)を導入する。このように、金属M1と金属M2を導入する工程を分けることにより、それぞれの金属の深さ方向のプロファイルを変えることができる場合がある。例えば、粒子の内部に比べて表層部で金属M2の濃度を高めることができる。また、金属M1の原子数を基準とし、該基準に対する金属M2の原子数の比を、内部よりも表層部において、より高くすることができる。
 本発明の一態様の正極活物質において好ましくは、金属M1としてコバルトを選択し、金属M2としてニッケルおよびアルミニウムを選択する。
<ステップS24、ステップS25>
 上記で焼成した材料を回収し(図6のステップS24)、正極活物質100Cとして、リチウム、遷移金属および酸素を有する複合酸化物を得る(図6のステップS25)。具体的には、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、コバルトの一部がマンガンで置換されたコバルト酸リチウム、またはニッケル−マンガン−コバルト酸リチウムを得る。
 また、ステップS25としてあらかじめ合成されたリチウム、遷移金属および酸素を有する複合酸化物を用いてもよい(図8参照)。この場合、ステップS21乃至ステップS24を省略することができる。
 あらかじめ合成されたリチウム、遷移金属および酸素を有する複合酸化物を用いる場合、不純物の少ないものを用いることが好ましい。本明細書等では、リチウム、遷移金属および酸素を有する複合酸化物、および正極活物質について主成分をリチウム、コバルト、ニッケル、マンガン、アルミニウムおよび酸素とし、上記主成分以外の元素を不純物とする。例えばグロー放電質量分析法で分析したとき、不純物濃度があわせて10,000ppm wt以下であることが好ましく、5000ppm wt以下がより好ましい。特に、チタンおよびヒ素等の遷移金属の不純物濃度があわせて3000ppm wt以下であることが好ましく、1500ppm wt以下であることがより好ましい。
 例えば、あらかじめ合成されたコバルト酸リチウムとして、日本化学工業株式会社製のコバルト酸リチウム粒子(商品名:セルシードC−10N)を用いることができる。これは平均粒子径(D50)が約12μmであり、グロー放電質量分析法(GD−MS)による不純物分析において、マグネシウム濃度およびフッ素濃度が50ppm wt以下、カルシウム濃度、アルミニウム濃度およびシリコン濃度が100ppm wt以下、ニッケル濃度が150ppm wt以下、硫黄濃度が500ppm wt以下、ヒ素濃度が1100ppm wt以下、その他のリチウム、コバルトおよび酸素以外の元素濃度が150ppm wt以下である、コバルト酸リチウムである。
 または、日本化学工業株式会社製のコバルト酸リチウム粒子(商品名:セルシードC−5H)を用いることもできる。これは平均粒子径(D50)が約6.5μmであり、GD−MSによる不純物分析において、リチウム、コバルトおよび酸素以外の元素濃度がC−10Nと同程度かそれ以下である、コバルト酸リチウムである。
 本実施の形態では、遷移金属としてコバルトを用い、あらかじめ合成されたコバルト酸リチウム粒子(日本化学工業株式会社製セルシードC−10N)を用いることとする(図8参照)。
 ステップS25のリチウム、遷移金属および酸素を有する複合酸化物は欠陥およびひずみの少ない層状岩塩型の結晶構造を有することが好ましい。そのため、不純物の少ない複合酸化物であることが好ましい。リチウム、遷移金属および酸素を有する複合酸化物に不純物が多く含まれると、欠陥またはひずみの多い結晶構造となる可能性が高い。
 ここで、正極活物質100Cがクラックを有する場合がある。クラックは例えば、ステップS21乃至ステップS25のいずれかの過程、あるいは複数の過程で発生する。例えば、ステップS23における焼成の過程で発生する。焼成の温度、焼成の昇温または降温の速度、等の条件により、発生するクラックの数が変化する場合がある。また例えば、混合および粉砕などの工程で発生する可能性もある。
<ステップS31>
 次に、混合物902と、リチウム、遷移金属および酸素を有する複合酸化物と、を混合する(図6および図8のステップS31)。リチウム、遷移金属および酸素を有する複合酸化物中の遷移金属の原子数TMと、混合物902が有するマグネシウムの原子数MgMix1との比は、TM:MgMix1=1:y(0.005≦y≦0.05)であることが好ましく、TM:MgMix1=1:y(0.007≦y≦0.04)であることがより好ましく、TM:MgMix1=1:0.02程度がさらに好ましい。
 ステップS31の混合は、複合酸化物の粒子を破壊しないためにステップS12の混合よりも穏やかな条件とすることが好ましい。例えば、ステップS12の混合よりも回転数が少ない、または時間が短い条件とすることが好ましい。また湿式よりも乾式のほうが穏やかな条件であると言える。混合には例えばボールミル、ビーズミル等を用いることができる。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。
<ステップS32、ステップS33>
 上記で混合した材料を回収し(図6および図8のステップS32)、混合物903を得る(図6および図8のステップS33)。
 なお、本実施の形態ではフッ化リチウムおよびフッ化マグネシウムの混合物を、不純物の少ないコバルト酸リチウムに添加する方法について説明しているが、本発明の一態様はこれに限らない。ステップS33の混合物903の代わりに、コバルト酸リチウムの出発材料にマグネシウム源およびフッ素源を添加して焼成したものを用いてもよい。この場合は、ステップS11乃至ステップS14の工程と、ステップS21乃至ステップS25の工程を分ける必要がないため簡便で生産性が高い。
 または、あらかじめマグネシウムおよびフッ素が添加されたコバルト酸リチウムを用いてもよい。マグネシウムおよびフッ素が添加されたコバルト酸リチウムを用いれば、ステップS32までの工程を省略することができより簡便である。
 さらに、あらかじめマグネシウムおよびフッ素が添加されたコバルト酸リチウムに、さらにマグネシウム源およびフッ素源を添加してもよい。
<ステップS34>
 次に、混合物903を加熱する。本工程は、先の加熱工程との区別のために、アニールまたは第2の加熱という場合がある。
 アニールは、適切な温度および時間で行うことが好ましい。適切な温度および時間は、ステップS25のリチウム、遷移金属および酸素を有する複合酸化物の粒子の大きさおよび組成等の条件により変化する。粒子が小さい場合は、大きい場合よりも低い温度または短い時間がより好ましい場合がある。
 例えばステップS25の粒子の平均粒子径(D50)が12μm程度の場合、アニール温度は例えば600℃以上950℃以下が好ましい。アニール時間は例えば3時間以上が好ましく、10時間以上がより好ましく、60時間以上がさらに好ましい。
 一方、ステップS25の粒子の平均粒子径(D50)が5μm程度の場合、アニール温度は例えば600℃以上950℃以下が好ましい。アニール時間は例えば1時間以上10時間以下が好ましく、2時間程度がより好ましい。
 アニール後の降温時間は、例えば10時間以上50時間以下とすることが好ましい。
 混合物903をアニールすると、まず混合物902のうち融点の低い材料(例えばフッ化リチウム、融点848℃)が溶融し、複合酸化物粒子の表層部に分布すると考えられる。次に、この溶融した材料の存在により他の材料の融点降下が起こり、他の材料が溶融すると推測される。例えば、フッ化マグネシウム(融点1263℃)が溶融し、複合酸化物粒子の表層部に分布すると考えられる。
 そして表層部に分布した混合物902が有する元素は、リチウム、遷移金属および酸素を有する複合酸化物中に固溶すると考えられる。
 この混合物902が有する元素の拡散は、複合酸化物粒子の内部よりも、表層部および粒界近傍の方が速い。そのためマグネシウムおよびハロゲンは、表層部および粒界近傍において、内部よりも高濃度となる。後述するが表層部および粒界近傍のマグネシウム濃度が高いと、結晶構造の変化をより効果的に抑制することができる。
<ステップS35、ステップS36>
 上記でアニールした材料を回収し(図6及び図8のステップS35)、正極活物質100A_1を得る(図6及び図8のステップS36)。
[正極活物質の作製方法2]
 ステップS36において得られる正極活物質100A_1にさらなる処理を施してもよい。ここでは金属Zを添加するための処理を行う。該処理をステップS25よりも後に行うことにより、正極活物質の粒子表層部における金属Zの濃度を内部に比べて高くすることができる場合があり、好ましい。
 また金属Zの添加は例えば、ステップS31において、混合物902等とともに金属Zを有する材料を混合することにより行ってもよい。この場合は工程数を減らして簡略化できるため好ましい。
 あるいは、以降に説明する通り、ステップS31乃至ステップS35の後に金属Zの添加工程を行ってもよい。この場合は例えば、マグネシウムと金属Zとの化合物の形成を抑制できる場合がある。
 以下に示すステップS41乃至ステップS53を経て、本発明の一態様の正極活物質において、金属Zを添加する。金属Zの添加は例えば、ゾルゲル法をはじめとする液相法、固相法、スパッタリング法、蒸着法、CVD(化学気相成長)法、PLD(パルスレーザデポジション)法等の方法を適用することができる。先に述べた金属M2の添加は例えば、以降に説明する金属Zの添加工程を用いて行うことができる。
<ステップS41>
 図7に示すように、まずステップS41において、金属源を準備する。また、ゾルゲル法を適用する場合には、ゾルゲル法に用いる溶媒を準備する。金属源としては、金属アルコキシド、金属水酸化物、金属酸化物、等を用いることができる。金属Zがアルミニウムの場合には例えば、コバルト酸リチウムが有するコバルトの原子数を1とし、金属源が有するアルミニウムの濃度が0.001倍以上0.02倍以下となればよい。金属Zがニッケルの場合には例えば、コバルト酸リチウムが有するコバルトの原子数を1とし、金属源が有するニッケルの濃度が0.001倍以上0.02倍以下となればよい。金属Zがアルミニウムおよびニッケルの場合には例えば、コバルト酸リチウムが有するコバルトの原子数を1とし、金属源が有するアルミニウムの濃度が0.001倍以上0.02倍以下、かつ、金属源が有するニッケルの濃度が0.001倍以上0.02倍以下となればよい。
 ここでは一例として、ゾルゲル法を適用し、金属源としてアルミニウムイソプロポキシドを、溶媒としてイソプロパノールを用いる例を示す(図9のステップS41)。
<ステップS42>
 次に、アルミニウムアルコキシドをアルコールに溶解させ、さらにコバルト酸リチウム粒子を混合する(図7及び図9のステップS42)。
 コバルト酸リチウムの粒径によって、金属アルコキシドの必要量は異なる。たとえばアルミニウムイソプロポキシドを用いる場合でコバルト酸リチウムの粒径(D50)が20μm程度ならば、コバルト酸リチウムが有するコバルトの原子数を1とし、アルミニウムイソプロポキシドが有するアルミニウムの濃度が0.001倍以上0.02倍以下となるよう加えることが好ましい。
 次に、金属アルコキシドのアルコール溶液とコバルト酸リチウムの粒子の混合液を、水蒸気を含む雰囲気下で撹拌する。撹拌はたとえばマグネチックスターラーで行うことができる。撹拌時間は、雰囲気中の水と金属アルコキシドが加水分解および重縮合反応を起こすのに十分な時間であればよく、例えば4時間、25℃、湿度90%RH(Relative Humidity、相対湿度)の条件下で行うことができる。また、湿度制御、および温度制御がされていない雰囲気下、例えばドラフトチャンバー内の大気雰囲気下において攪拌を行ってもよい。そのような場合には攪拌時間をより長くすることが好ましく、例えば室温において12時間以上、とすればよい。
 雰囲気中の水蒸気と金属アルコキシドを反応させることで、液体の水を加える場合よりもゆっくりとゾルゲル反応を進めることができる。また常温で金属アルコキシドと水を反応させることで、たとえば溶媒のアルコールの沸点を超える温度で加熱を行う場合よりもゆっくりとゾルゲル反応を進めることができる。ゆっくりとゾルゲル反応を進めることで、厚さが均一で良質な被覆層を形成することができる。
<ステップS43、ステップS44>
 上記の処理を終えた混合液から、沈殿物を回収する(図7及び図9のステップS43)。回収方法としては、ろ過、遠心分離、蒸発乾固等を適用することができる。沈殿物は金属アルコキシドを溶解させた溶媒と同じアルコールで洗浄することができる。なお、蒸発乾固を適用する場合には、本ステップにおいては溶媒と沈殿物の分離を行なわなくてもよく、例えば次のステップ(ステップS44)の乾燥工程において、沈殿物を回収すればよい。
 次に、回収した残渣を乾燥し、混合物904を得る(図7及び図9のステップS44)。乾燥工程は例えば、80℃で1時間以上4時間以下、真空または通風乾燥することができる。
<ステップS45>
 次に、得られた混合物904を焼成する(図7及び図9のステップS45)。
 焼成時間は、規定温度の範囲内での保持時間を1時間以上50時間以下とすることが好ましく、2時間以上20時間以下がより好ましい。焼成時間が短すぎると表層部に形成される金属Zを有する化合物の結晶性が低い場合がある。あるいは、金属Zの拡散が不充分となる場合がある。あるいは有機物が表面に残存する場合がある。しかし焼成時間が長すぎると、金属Zの拡散が進みすぎて表層部および結晶粒界近傍の濃度が低くなる恐れがある。また、生産性が低下する。
 規定温度としては500℃以上1200℃以下が好ましく、700℃以上920℃以下がより好ましく、800℃以上900℃以下がさらに好ましい。規定温度が低すぎると表層部に形成される金属Zを有する化合物の結晶性が低い場合がある。あるいは、金属Zの拡散が不充分となる場合がある。あるいは有機物が表面に残存する場合がある。
 また、焼成は酸素を含む雰囲気で行うことが好ましい。酸素分圧が低い場合、焼成温度をより低くしないとCoが還元するおそれがある。
 本実施の形態では、規定温度を850℃として2時間保持することとし、昇温は200℃/h、酸素の流量は10L/minとする。
 焼成後の冷却は、冷却時間を長くとると、結晶構造を安定させやすく好ましい。たとえば、規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ここで、ステップS45における焼成温度は、ステップS34における焼成温度よりも低い、ことが好ましい。
<ステップS46、ステップS47>
 次に、冷却された粒子を回収する(図7及び図9のステップS46)。さらに、粒子をふるいにかけることが好ましい。上記の工程で、本発明の一態様の正極活物質100A_2を作製することができる(図7及び図9のステップS47)。
 また、ステップS47の後、ステップS41からステップS46を繰り返して処理を行ってもよい。繰り返し回数は、1回でもよく、2回以上でもよい。
 また、複数回処理を行う場合に用いる金属源の種類は、同じものでもよいし、異なっていてもよい。異なるものを用いる場合、たとえば1回目の処理でアルミニウム源を用い、2回目の処理でニッケル源を用いることができる。
<ステップS51>
 次に、第1の原料901として、元素Xを有する化合物を用意する(図7及び図9のステップS51)。
 ステップS51において、第1の原料901を粉砕してもよい。粉砕には例えばボールミル、ビーズミル等を用いることができる。粉砕後に得られた粉体を、ふるいを用いて分級してもよい。
 第1の原料901は元素Xを有する化合物であり、元素Xとして、リンを用いることができる。また第1の原料901は、元素Xと酸素の結合を有する化合物であることが好ましい。
 第1の原料901として例えば、リン酸化合物を用いることができる。リン酸化合物として元素Dを有するリン酸化合物を用いることができる。元素Dはリチウム、ナトリウム、カリウム、マグネシウム、亜鉛、コバルト、鉄、マンガンおよびアルミニウムから選ばれる一以上の元素である。また元素Dに加えて水素を有するリン酸化合物を用いることができる。またリン酸化合物としてリン酸アンモニウム、および元素Dを有するアンモニウム塩を用いることができる。
 リン酸化合物としてリン酸リチウム、リン酸ナトリウム、リン酸カリウム、リン酸マグネシウム、リン酸亜鉛、リン酸アルミニウム、リン酸アンモニウム、リン酸二水素リチウム、リン酸一水素マグネシウム、リン酸コバルトリチウム、等が挙げられる。正極活物質として特に、リン酸リチウム、リン酸マグネシウムを用いることが好ましい。
 本実施の形態では、第1の原料901としてリン酸リチウムを用いる(図7及び図9のステップS51)。
<ステップS52>
 次に、ステップS51で得られる第1の原料901と、ステップS47で得られる正極活物質100A_2とを混合する(図7及び図9のステップS52)。第1の原料901は、ステップS25で得られる正極活物質100A_2が1molに対して、0.01mol以上0.1.mol以下、より好ましくは0.02mol以上0.08mol以下の量を混合することが好ましい。混合には例えばボールミル、ビーズミル等を用いることができる。混合後に得られた粉体を、ふるいを用いて分級してもよい。
<ステップS53>
 次に、上記で混合した材料を加熱する(図7及び図9のステップS53)。正極活物質の作製において、本ステップを行わなくても構わない場合がある。加熱を行う場合には300℃以上1200℃未満で行うことが好ましく、550℃以上950℃以下で行うことがより好ましく、750℃程度がさらに好ましい。温度が低すぎると、出発材料の分解および溶融が不十分となるおそれがある。一方温度が高すぎると、遷移金属が過剰に還元される、リチウムが蒸散するなどの原因で欠陥が生じるおそれがある。
 加熱により、正極活物質100A_2と第1の原料901の反応物が生成する場合がある。
 加熱時間は、2時間以上60時間以下とすることが好ましい。焼成は、乾燥空気等の水が少ない雰囲気(例えば露点−50℃以下、より好ましくは−100℃以下)で行うことが好ましい。例えば1000℃で10時間加熱することとし、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。
 ただし、ステップS53における室温までの冷却は必須ではない。その後のステップS54の工程を行うのに問題がなければ、冷却は室温より高い温度までとしてもよい。
<ステップS54>
 上記で焼成した材料を回収し(図7及び図9のステップS54)、元素Dを有する正極活物質100A_3を得る。
 正極活物質100A_1、正極活物質100A_2および正極活物質100A_3について、図2等にて述べた正極活物質100Aに関する記載を参照することができる。
(実施の形態2)
 本実施の形態では、先の実施の形態で説明した正極活物質100を有する二次電池に用いることのできる材料の例について説明する。本実施の形態では、正極、負極および電解液が、外装体に包まれている二次電池を例にとって説明する。
[正極]
 正極は、正極活物質層および正極集電体を有する。
<正極活物質層>
 正極活物質層は、少なくとも正極活物質を有する。また、正極活物質層は、正極活物質に加えて、活物質表面の被膜、導電助剤またはバインダなどの他の物質を含んでもよい。
 正極活物質としては、先の実施の形態で説明した正極活物質100を用いることができる。先の実施の形態で説明した正極活物質100を用いることで、高容量でサイクル特性に優れた二次電池とすることができる。
 導電助剤としては、炭素材料、金属材料、又は導電性セラミックス材料等を用いることができる。また、導電助剤として繊維状の材料を用いてもよい。活物質層の総量に対する導電助剤の含有量は、1wt%以上10wt%以下が好ましく、1wt%以上5wt%以下がより好ましい。
 導電助剤により、活物質層中に電気伝導のネットワークを形成することができる。導電助剤により、正極活物質どうしの電気伝導の経路を維持することができる。活物質層中に導電助剤を添加することにより、高い電気伝導性を有する活物質層を実現することができる。
 導電助剤としては、例えば天然黒鉛、メソカーボンマイクロビーズ等の人造黒鉛、炭素繊維などを用いることができる。炭素繊維としては、例えばメソフェーズピッチ系炭素繊維、等方性ピッチ系炭素繊維等の炭素繊維を用いることができる。また炭素繊維として、カーボンナノファイバーやカーボンナノチューブなどを用いることができる。カーボンナノチューブは、例えば気相成長法などで作製することができる。また、導電助剤として、例えばカーボンブラック(アセチレンブラック(AB)など)、グラファイト(黒鉛)粒子、グラフェン、フラーレンなどの炭素材料を用いることができる。また、例えば、銅、ニッケル、アルミニウム、銀、金などの金属粉末や金属繊維、導電性セラミックス材料等を用いることができる。
 また、導電助剤としてグラフェン化合物を用いてもよい。
 グラフェン化合物は、高い導電性を有するという優れた電気特性と、高い柔軟性および高い機械的強度を有するという優れた物理特性と、を有する場合がある。また、グラフェン化合物は平面的な形状を有する。グラフェン化合物は、接触抵抗の低い面接触を可能とする。また、薄くても導電性が非常に高い場合があり、少ない量で効率よく活物質層内で導電パスを形成することができる。そのため、グラフェン化合物を導電助剤として用いることにより、活物質と導電助剤との接触面積を増大させることができるため好ましい。スプレードライ装置を用いることで、活物質の表面全体を覆って導電助剤であるグラフェン化合物を被膜として形成することが好ましい。また、電気的な抵抗を減少できる場合があるため好ましい。ここでグラフェン化合物として例えば、グラフェン、マルチグラフェン、又はRGOを用いることが特に好ましい。ここで、RGOは例えば、酸化グラフェン(graphene oxide:GO)を還元して得られる化合物を指す。
 粒径の小さい活物質、例えば1μm以下の活物質を用いる場合には、活物質の比表面積が大きく、活物質同士を繋ぐ導電パスがより多く必要となる。そのため導電助剤の量が多くなりがちであり、相対的に活物質の担持量が減少してしまう傾向がある。活物質の担持量が減少すると、二次電池の容量が減少してしまう。このような場合には、導電助剤としてグラフェン化合物を用いると、グラフェン化合物は少量でも効率よく導電パスを形成することができるため、活物質の担持量を減らさずに済み、特に好ましい。
 以下では一例として、活物質層200に、導電助剤としてグラフェン化合物を用いる場合の断面構成例を説明する。
 図10(A)に、活物質層200の縦断面図を示す。活物質層200は、粒状の正極活物質100と、導電助剤としてのグラフェン化合物201と、バインダ(図示せず)と、を含む。ここで、グラフェン化合物201として例えばグラフェンまたはマルチグラフェンを用いればよい。ここで、グラフェン化合物201はシート状の形状を有することが好ましい。また、グラフェン化合物201は、複数のマルチグラフェン、または(および)複数のグラフェンが部分的に重なりシート状となっていてもよい。
 活物質層200の縦断面においては、図10(B)に示すように、活物質層200の内部において概略均一にシート状のグラフェン化合物201が分散する。図10(B)においてはグラフェン化合物201を模式的に太線で表しているが、実際には炭素分子の単層又は多層の厚みを有する薄膜である。複数のグラフェン化合物201は、複数の粒状の正極活物質100を一部覆うように、あるいは複数の粒状の正極活物質100の表面上に張り付くように形成されているため、互いに面接触している。
 ここで、複数のグラフェン化合物同士が結合することにより、網目状のグラフェン化合物シート(以下グラフェン化合物ネットまたはグラフェンネットと呼ぶ)を形成することができる。活物質をグラフェンネットが被覆する場合に、グラフェンネットは活物質同士を結合するバインダとしても機能することができる。よって、バインダの量を少なくすることができる、又は使用しないことができるため、電極体積や電極重量に占める活物質の比率を向上させることができる。すなわち、二次電池の容量を増加させることができる。
 ここで、グラフェン化合物201として酸化グラフェンを用い、活物質と混合して活物質層200となる層を形成後、還元することが好ましい。グラフェン化合物201の形成に、極性溶媒中での分散性が極めて高い酸化グラフェンを用いることにより、グラフェン化合物201を活物質層200の内部において概略均一に分散させることができる。均一に分散した酸化グラフェンを含有する分散媒から溶媒を揮発除去し、酸化グラフェンを還元するため、活物質層200に残留するグラフェン化合物201は部分的に重なり合い、互いに面接触する程度に分散していることで三次元的な導電パスを形成することができる。なお、酸化グラフェンの還元は、例えば熱処理により行ってもよいし、還元剤を用いて行ってもよい。
 従って、活物質と点接触するアセチレンブラック等の粒状の導電助剤と異なり、グラフェン化合物201は接触抵抗の低い面接触を可能とするものであるから、通常の導電助剤よりも少量で粒状の正極活物質100とグラフェン化合物201との電気伝導性を向上させることができる。よって、正極活物質100の活物質層200における比率を増加させることができる。これにより、二次電池の放電容量を増加させることができる。
 また、予め、スプレードライ装置を用いることで、活物質の表面全体を覆って導電助剤であるグラフェン化合物を被膜として形成し、さらに活物質同士間をグラフェン化合物で導電パスを形成することもできる。
 バインダとしては、例えば、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレン−スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレン−ジエン共重合体などのゴム材料を用いることが好ましい。またバインダとして、フッ素ゴムを用いることができる。
 また、バインダとしては、例えば水溶性の高分子を用いることが好ましい。水溶性の高分子としては、例えば多糖類などを用いることができる。多糖類としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、再生セルロースなどのセルロース誘導体や、澱粉などを用いることができる。また、これらの水溶性の高分子を、前述のゴム材料と併用して用いると、さらに好ましい。
 または、バインダとしては、ポリスチレン、ポリアクリル酸メチル、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)、ポリアクリル酸ナトリウム、ポリビニルアルコール(PVA)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリイミド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、ナイロン、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、エチレンプロピレンジエンポリマー、ポリ酢酸ビニル、ニトロセルロース等の材料を用いることが好ましい。
 バインダは上記のうち複数を組み合わせて使用してもよい。
 例えば粘度調整効果の特に優れた材料と、他の材料とを組み合わせて使用してもよい。例えばゴム材料等は接着力や弾性力に優れる反面、溶媒に混合した場合に粘度調整が難しい場合がある。このような場合には例えば、粘度調整効果の特に優れた材料と混合することが好ましい。粘度調整効果の特に優れた材料としては、例えば水溶性高分子を用いるとよい。また、粘度調整効果に特に優れた水溶性高分子としては、前述の多糖類、例えばカルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロースおよびジアセチルセルロース、再生セルロースなどのセルロース誘導体や、澱粉を用いることができる。
 なお、カルボキシメチルセルロースなどのセルロース誘導体は、例えばカルボキシメチルセルロースのナトリウム塩やアンモニウム塩などの塩とすることにより溶解度が上がり、粘度調整剤としての効果を発揮しやすくなる。溶解度が高くなることにより電極のスラリーを作製する際に活物質や他の構成要素との分散性を高めることもできる。本明細書においては、電極のバインダとして使用するセルロースおよびセルロース誘導体としては、それらの塩も含むものとする。
 水溶性高分子は水に溶解することにより粘度を安定化させ、また活物質や、バインダとして組み合わせる他の材料、例えばスチレンブタジエンゴムなどを、水溶液中に安定して分散させることができる。また、官能基を有するために活物質表面に安定に吸着しやすいことが期待される。また、例えばカルボキシメチルセルロースなどのセルロース誘導体は、例えば水酸基やカルボキシル基などの官能基を有する材料が多く、官能基を有するために高分子同士が相互作用し、活物質表面を広く覆って存在することが期待される。
 活物質表面を覆う、または表面に接するバインダが膜を形成する場合には、不動態膜としての役割を果たして電解液の分解を抑える効果も期待される。ここで、不動態膜とは、電気の伝導性のない膜、または電気伝導性の極めて低い膜であり、例えば活物質の表面に不動態膜が形成された場合には、電池反応電位において、電解液の分解を抑制することができる。また、不動態膜は、電気の伝導性を抑えるとともに、リチウムイオンは伝導できるとさらに望ましい。
<正極集電体>
 正極集電体としては、ステンレス、金、白金、アルミニウム、チタン等の金属、及びこれらの合金など、導電性が高い材料をもちいることができる。また正極集電体に用いる材料は、正極の電位で溶出しないことが好ましい。また、シリコン、チタン、ネオジム、スカンジウム、モリブデンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることができる。また、シリコンと反応してシリサイドを形成する金属元素で形成してもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケル等がある。集電体は、箔状、板状(シート状)、網状、パンチングメタル状、エキスパンドメタル状等の形状を適宜用いることができる。集電体は、厚みが5μm以上30μm以下のものを用いるとよい。
[負極]
 負極は、負極活物質層および負極集電体を有する。また、負極活物質層は、導電助剤およびバインダを有していてもよい。
<負極活物質>
 負極活物質としては、例えば合金系材料や炭素系材料等を用いることができる。
 負極活物質として、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素を用いることができる。例えば、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、インジウム等のうち少なくとも一つを含む材料を用いることができる。このような元素は炭素と比べて容量が大きく、特にシリコンは理論容量が4200mAh/gと高い。このため、負極活物質にシリコンを用いることが好ましい。また、これらの元素を有する化合物を用いてもよい。例えば、SiO、MgSi、MgGe、SnO、SnO、MgSn、SnS、VSn、FeSn、CoSn、NiSn、CuSn、AgSn、AgSb、NiMnSb、CeSb、LaSn、LaCoSn、CoSb、InSb、SbSn等がある。ここで、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素、および該元素を有する化合物等を合金系材料と呼ぶ場合がある。
 本明細書等において、SiOは例えば一酸化シリコンを指す。あるいはSiOは、SiOと表すこともできる。ここでxは1近傍の値を有することが好ましい。例えばxは、0.2以上1.5以下が好ましく、0.3以上1.2以下がより好ましい。
 炭素系材料としては、黒鉛、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)、カーボンナノチューブ、グラフェン、カーボンブラック等を用いればよい。
 黒鉛としては、人造黒鉛や、天然黒鉛等が挙げられる。人造黒鉛としては例えば、メソカーボンマイクロビーズ(MCMB)、コークス系人造黒鉛、ピッチ系人造黒鉛等が挙げられる。ここで人造黒鉛として、球状の形状を有する球状黒鉛を用いることができる。例えば、MCMBは球状の形状を有する場合があり、好ましい。また、MCMBはその表面積を小さくすることが比較的容易であり、好ましい場合がある。天然黒鉛としては例えば、鱗片状黒鉛、球状化天然黒鉛等が挙げられる。
 黒鉛は、リチウムイオンが黒鉛に挿入されたとき(リチウム−黒鉛層間化合物の生成時)にリチウム金属と同程度に低い電位を示す(0.05V以上0.3V以下 vs.Li/Li)。これにより、リチウムイオン二次電池は高い作動電圧を示すことができる。さらに、黒鉛は、単位体積当たりの容量が比較的高い、体積膨張が比較的小さい、安価である、リチウム金属に比べて安全性が高い等の利点を有するため、好ましい。
 また、負極活物質として、二酸化チタン(TiO)、リチウムチタン酸化物(LiTi12)、リチウム−黒鉛層間化合物(Li)、五酸化ニオブ(Nb)、酸化タングステン(WO)、酸化モリブデン(MoO)等の酸化物を用いることができる。
 また、負極活物質として、リチウムと遷移金属の複窒化物である、LiN型構造をもつLi3−xN(M=Co、Ni、Cu)を用いることができる。例えば、Li2.6Co0.4は大きな充放電容量(900mAh/g、1890mAh/cm)を示し好ましい。
 リチウムと遷移金属の複窒化物を用いると、負極活物質中にリチウムイオンを含むため、正極活物質としてリチウムイオンを含まないV、Cr等の材料と組み合わせることができ好ましい。なお、正極活物質にリチウムイオンを含む材料を用いる場合でも、あらかじめ正極活物質に含まれるリチウムイオンを脱離させることで、負極活物質としてリチウムと遷移金属の複窒化物を用いることができる。
 また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。例えば、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウムとの合金を作らない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン反応が生じる材料としては、さらに、Fe、CuO、CuO、RuO、Cr等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn、CuN、Ge等の窒化物、NiP、FeP、CoP等のリン化物、FeF、BiF等のフッ化物でも起こる。
 負極活物質層が有することのできる導電助剤およびバインダとしては、正極活物質層が有することのできる導電助剤およびバインダと同様の材料を用いることができる。
<負極集電体>
 負極集電体には、正極集電体と同様の材料を用いることができる。なお負極集電体は、リチウム等のキャリアイオンと合金化しない材料を用いることが好ましい。
[電解液]
 電解液は、溶媒と電解質を有する。電解液の溶媒としては、非プロトン性有機溶媒が好ましく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、1,3−ジオキサン、1,4−ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフラン、スルホラン、スルトン等の1種、又はこれらのうちの2種以上を任意の組み合わせおよび比率で用いることができる。
 また、電解液の溶媒として、難燃性および難揮発性であるイオン液体(常温溶融塩)を一つ又は複数用いることで、二次電池の内部短絡や、過充電等によって内部温度が上昇しても、二次電池の破裂や発火などを防ぐことができる。イオン液体は、カチオンとアニオンからなり、有機カチオンとアニオンとを含む。電解液に用いる有機カチオンとして、四級アンモニウムカチオン、三級スルホニウムカチオン、および四級ホスホニウムカチオン等の脂肪族オニウムカチオンや、イミダゾリウムカチオンおよびピリジニウムカチオン等の芳香族カチオンが挙げられる。また、電解液に用いるアニオンとして、1価のアミド系アニオン、1価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキルスルホン酸アニオン、テトラフルオロボレートアニオン、パーフルオロアルキルボレートアニオン、ヘキサフルオロホスフェートアニオン、またはパーフルオロアルキルホスフェートアニオン等が挙げられる。
 また、上記の溶媒に溶解させる電解質としては、例えばLiPF、LiClO、LiAsF、LiBF、LiAlCl、LiSCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl12、LiCFSO、LiCSO、LiC(CFSO、LiC(CSO、LiN(CFSO、LiN(CSO)(CFSO)、LiN(CSO等のリチウム塩を一種、又はこれらのうちの二種以上を任意の組み合わせおよび比率で用いることができる。
 二次電池に用いる電解液は、粒状のごみや電解液の構成元素以外の元素(以下、単に「不純物」ともいう。)の含有量が少ない高純度化された電解液を用いることが好ましい。具体的には、電解液に対する不純物の重量比を1%以下、好ましくは0.1%以下、より好ましくは0.01%以下とすることが好ましい。
 また、電解液にビニレンカーボネート、プロパンスルトン(PS)、tert−ブチルベンゼン(TBB)、フルオロエチレンカーボネート(FEC)、リチウムビス(オキサレート)ボレート(LiBOB)、またスクシノニトリル、アジポニトリル等のジニトリル化合物などの添加剤を添加してもよい。添加する材料の濃度は、例えば溶媒全体に対して0.1wt%以上5wt%以下とすればよい。
 また、ポリマーを電解液で膨潤させたポリマーゲル電解質を用いてもよい。
 ポリマーゲル電解質を用いることで、漏液性等に対する安全性が高まる。また、二次電池の薄型化および軽量化が可能である。
 ゲル化されるポリマーとして、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、フッ素系ポリマーのゲル等を用いることができる。
 ポリマーとしては、例えばポリエチレンオキシド(PEO)などのポリアルキレンオキシド構造を有するポリマーや、PVDF、およびポリアクリロニトリル等、およびそれらを含む共重合体等を用いることができる。例えばPVDFとヘキサフルオロプロピレン(HFP)の共重合体であるPVDF−HFPを用いることができる。また、形成されるポリマーは、多孔質形状を有してもよい。
 また、電解液の代わりに、硫化物系や酸化物系等の無機物材料を有する固体電解質や、PEO(ポリエチレンオキシド)系等の高分子材料を有する固体電解質を用いることができる。固体電解質を用いる場合には、セパレータやスペーサの設置が不要となる。また、電池全体を固体化できるため、漏液のおそれがなくなり安全性が飛躍的に向上する。
[セパレータ]
 また二次電池は、セパレータを有することが好ましい。セパレータとしては、例えば、紙、不織布、ガラス繊維、セラミックス、或いはナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いることができる。セパレータはエンベロープ状に加工し、正極または負極のいずれか一方を包むように配置することが好ましい。
 セパレータは多層構造であってもよい。例えばポリプロピレン、ポリエチレン等の有機材料フィルムに、セラミック系材料、フッ素系材料、ポリアミド系材料、またはこれらを混合したもの等をコートすることができる。セラミック系材料としては、例えば酸化アルミニウム粒子、酸化シリコン粒子等を用いることができる。フッ素系材料としては、例えばPVDF、ポリテトラフルオロエチレン等を用いることができる。ポリアミド系材料としては、例えばナイロン、アラミド(メタ系アラミド、パラ系アラミド)等を用いることができる。
 セラミック系材料をコートすると耐酸化性が向上するため、高電圧充放電の際のセパレータの劣化を抑制し、二次電池の信頼性を向上させることができる。またフッ素系材料をコートするとセパレータと電極が密着しやすくなり、出力特性を向上させることができる。ポリアミド系材料、特にアラミドをコートすると、耐熱性が向上するため、二次電池の安全性を向上させることができる。
 例えばポリプロピレンのフィルムの両面に酸化アルミニウムとアラミドの混合材料をコートしてもよい。また、ポリプロピレンのフィルムの、正極と接する面に酸化アルミニウムとアラミドの混合材料をコートし、負極と接する面にフッ素系材料をコートしてもよい。
 多層構造のセパレータを用いると、セパレータ全体の厚さが薄くても二次電池の安全性を保つことができるため、二次電池の体積あたりの容量を大きくすることができる。
[外装体]
 二次電池が有する外装体としては、例えばアルミニウムなどの金属材料や樹脂材料を用いることができる。また、フィルム状の外装体を用いることもできる。フィルムとしては、例えばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のフィルムを用いることができる。
[充放電方法]
 二次電池の充放電は、例えば下記のように行うことができる。
≪CC充電≫
 まず、充電方法の1つとしてCC(定電流)充電について説明する。CC充電は、充電期間のすべてで一定の電流を二次電池に流し、所定の電圧になったときに充電を停止する充電方法である。二次電池を、図11(A)に示すように内部抵抗Rと二次電池容量Cの等価回路と仮定する。この場合、二次電池電圧Vは、内部抵抗Rにかかる電圧Vと二次電池容量Cにかかる電圧Vの和である。
 CC充電を行っている間は、図11(A)に示すように、スイッチがオンになり、一定の電流Iが二次電池に流れる。この間、電流Iが一定であるため、V=R×Iのオームの法則により、内部抵抗Rにかかる電圧Vも一定である。一方、二次電池容量Cにかかる電圧Vは、時間の経過とともに上昇する。そのため、二次電池電圧Vは、時間の経過とともに上昇する。
 そして二次電池電圧Vが所定の電圧、例えば4.3Vになったときに、充電を停止する。CC充電を停止すると、図11(B)に示すように、スイッチがオフになり、電流I=0となる。そのため、内部抵抗Rにかかる電圧Vが0Vとなる。そのため、二次電池電圧Vが下降する。
 CC充電を行っている間と、CC充電を停止してからの、二次電池電圧Vと充電電流の例を図11(C)に示す。CC充電を行っている間は上昇していた二次電池電圧Vが、CC充電を停止してから若干低下する様子が示されている。
≪CCCV充電≫
 次に、上記と異なる充電方法であるCCCV充電について説明する。CCCV充電は、まずCC充電にて所定の電圧まで充電を行い、その後CV(定電圧)充電にて流れる電流が少なくなるまで、具体的には終止電流値になるまで充電を行う充電方法である。
 CC充電を行っている間は、図12(A)に示すように、定電流電源のスイッチがオン、定電圧電源のスイッチがオフになり、一定の電流Iが二次電池に流れる。この間、電流Iが一定であるため、V=R×Iのオームの法則により、内部抵抗Rにかかる電圧Vも一定である。一方、二次電池容量Cにかかる電圧Vは、時間の経過とともに上昇する。そのため、二次電池電圧Vは、時間の経過とともに上昇する。
 そして二次電池電圧Vが所定の電圧、例えば4.3Vになったときに、CC充電からCV充電に切り替える。CV充電を行っている間は、図12(B)に示すように、定電圧電源のスイッチがオン、定電流電源のスイッチがオフになり、二次電池電圧Vが一定となる。一方、二次電池容量Cにかかる電圧Vは、時間の経過とともに上昇する。V=V+Vであるため、内部抵抗Rにかかる電圧Vは、時間の経過とともに小さくなる。内部抵抗Rにかかる電圧Vが小さくなるに従い、V=R×Iのオームの法則により、二次電池に流れる電流Iも小さくなる。
 そして二次電池に流れる電流Iが所定の電流、例えば0.01C相当の電流となったとき、充電を停止する。CCCV充電を停止すると、図12(C)に示すように、全てのスイッチがオフになり、電流I=0となる。そのため、内部抵抗Rにかかる電圧Vが0Vとなる。しかし、CV充電により内部抵抗Rにかかる電圧Vが十分に小さくなっているため、内部抵抗Rでの電圧降下がなくなっても、二次電池電圧Vはほとんど降下しない。
 CCCV充電を行っている間と、CCCV充電を停止してからの、二次電池電圧Vと充電電流の例を図13(A)に示す。CCCV充電を停止しても、二次電池電圧Vがほとんど降下しない様子が示されている。
≪CC放電≫
 次に、放電方法の1つであるCC放電について説明する。CC放電は、放電期間のすべてで一定の電流を二次電池から流し、二次電池電圧Vが所定の電圧、例えば2.5Vになったときに放電を停止する放電方法である。
 CC放電を行っている間の二次電池電圧Vと放電電流の例を図13(B)に示す。放電が進むに従い、二次電池電圧Vが降下していく様子が示されている。
 次に、放電レート及び充電レートについて説明する。放電レートとは、電池容量に対する放電時の電流の相対的な比率であり、単位Cで表される。定格容量X(Ah)の電池において、1C相当の電流は、X(A)である。2X(A)の電流で放電させた場合は、2Cで放電させたといい、X/5(A)の電流で放電させた場合は、0.2Cで放電させたという。また、充電レートも同様であり、2X(A)の電流で充電させた場合は、2Cで充電させたといい、X/5(A)の電流で充電させた場合は、0.2Cで充電させたという。
(実施の形態3)
 本実施の形態では、先の実施の形態で説明した正極活物質100を有する二次電池の形状の例について説明する。本実施の形態で説明する二次電池に用いる材料は、先の実施の形態の記載を参酌することができる。
[コイン型二次電池]
 まずコイン型の二次電池の一例について説明する。図14(A)はコイン型(単層偏平型)の二次電池の外観図であり、図14(B)は、その断面図である。
 コイン型の二次電池300は、正極端子を兼ねた正極缶301と負極端子を兼ねた負極缶302とが、ポリプロピレン等で形成されたガスケット303で絶縁シールされている。正極304は、正極集電体305と、これと接するように設けられた正極活物質層306により形成される。また、負極307は、負極集電体308と、これに接するように設けられた負極活物質層309により形成される。
 なお、コイン型の二次電池300に用いる正極304および負極307は、それぞれ活物質層は片面のみに形成すればよい。
 正極缶301、負極缶302には、電解液に対して耐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えばステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を被覆することが好ましい。正極缶301は正極304と、負極缶302は負極307とそれぞれ電気的に接続する。
 これら負極307、正極304およびセパレータ310を電解質に含浸させ、図14(B)に示すように、正極缶301を下にして正極304、セパレータ310、負極307、負極缶302をこの順で積層し、正極缶301と負極缶302とをガスケット303を介して圧着してコイン形の二次電池300を製造する。
 正極304に、先の実施の形態で説明した正極活物質を用いることで、高容量でサイクル特性に優れたコイン型の二次電池300とすることができる。
 ここで図14(C)を用いて二次電池の充電時の電流の流れを説明する。リチウムを用いた二次電池を一つの閉回路とみなした時、リチウムイオンの動きと電流の流れは同じ向きになる。なお、リチウムを用いた二次電池では、充電と放電でアノード(陽極)とカソード(陰極)が入れ替わり、酸化反応と還元反応とが入れ替わることになるため、反応電位が高い電極を正極と呼び、反応電位が低い電極を負極と呼ぶ。したがって、本明細書においては、充電中であっても、放電中であっても、逆パルス電流を流す場合であっても、充電電流を流す場合であっても、正極は「正極」または「+極(プラス極)」と呼び、負極は「負極」または「−極(マイナス極)」と呼ぶこととする。酸化反応や還元反応に関連したアノード(陽極)やカソード(陰極)という用語を用いると、充電時と放電時とでは、逆になってしまい、混乱を招く可能性がある。したがって、アノード(陽極)やカソード(陰極)という用語は、本明細書においては用いないこととする。仮にアノード(陽極)やカソード(陰極)という用語を用いる場合には、充電時か放電時かを明記し、正極(プラス極)と負極(マイナス極)のどちらに対応するものかも併記することとする。
 図14(C)に示す2つの端子には充電器が接続され、二次電池300が充電される。二次電池300の充電が進めば、電極間の電位差は大きくなる。
[円筒型二次電池]
 次に円筒型の二次電池の例について図15(A)、(B)、(C)および(D)を参照して説明する。円筒型の二次電池600の外観図を図15(A)に示す。図15(B)は、円筒型の二次電池600の断面を模式的に示した図である。、図15(B)に示すように、円筒型の二次電池600は、上面に正極キャップ(電池蓋)601を有し、側面および底面に電池缶(外装缶)602を有している。これら正極キャップと電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
 中空円柱状の電池缶602の内側には、帯状の正極604と負極606とがセパレータ605を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子はセンターピンを中心に捲回されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を電池缶602に被覆することが好ましい。電池缶602の内側において、正極、負極およびセパレータが捲回された電池素子は、対向する一対の絶縁板608、609により挟まれている。また、電池素子が設けられた電池缶602の内部は、非水電解液(図示せず)が注入されている。非水電解液は、コイン型の二次電池と同様のものを用いることができる。
 円筒型の蓄電池に用いる正極および負極は捲回するため、集電体の両面に活物質を形成することが好ましい。正極604には正極端子(正極集電リード)603が接続され、負極606には負極端子(負極集電リード)607が接続される。正極端子603および負極端子607は、ともにアルミニウムなどの金属材料を用いることができる。正極端子603は安全弁機構612に、負極端子607は電池缶602の底にそれぞれ抵抗溶接される。安全弁機構612は、PTC素子(Positive Temperature Coefficient)611を介して正極キャップ601と電気的に接続されている。安全弁機構612は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ601と正極604との電気的な接続を切断するものである。また、PTC素子611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導体セラミックス等を用いることができる。
 また、図15(C)のように複数の二次電池600を、導電板613および導電板614の間に挟んでモジュール615を構成してもよい。複数の二次電池600は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後さらに直列に接続されていてもよい。複数の二次電池600を有するモジュール615を構成することで、大きな電力を取り出すことができる。
 図15(D)はモジュール615の上面図である。図を明瞭にするために導電板613を点線で示した。図15(D)に示すようにモジュール615は、複数の二次電池600を電気的に接続する導線616を有していてもよい。導線616上に導電板を重畳して設けることができる。また複数の二次電池600の間に温度制御装置617を有していてもよい。二次電池600が過熱されたときは、温度制御装置617により冷却し、二次電池600が冷えすぎているときは温度制御装置617により加熱することができる。そのためモジュール615の性能が外気温に影響されにくくなる。温度制御装置617が有する熱媒体は絶縁性と不燃性を有することが好ましい。
 正極604に、先の実施の形態で説明した正極活物質を用いることで、高容量でサイクル特性に優れた円筒型の二次電池600とすることができる。
[二次電池の構造例]
 二次電池の別の構造例について、図16(A)乃至図20(C)を用いて説明する。
 図16(A)及び図16(B)は、電池パックの外観図を示す図である。電池パックは、回路基板900および二次電池913を有する。また、二次電池913には、ラベル910が貼られている。さらに、図16(B)に示すように、二次電池913は、端子951と、端子952を有する。
 回路基板900は、回路912を有する。端子911は、回路基板900を介して、端子951、端子952、アンテナ914、及び回路912に接続される。なお、端子911を複数設けて、複数の端子911のそれぞれを、制御信号入力端子、電源端子などとしてもよい。
 回路912は、回路基板900の裏面に設けられていてもよい。なお、アンテナ914は、コイル状に限定されず、例えば線状、板状であってもよい。また、平面アンテナ、開口面アンテナ、進行波アンテナ、EHアンテナ、磁界アンテナ、誘電体アンテナ等のアンテナを用いてもよい。
 又は、アンテナ914は、平板状の導体でもよい。この平板状の導体は、電界結合用の導体の一つとして機能することができる。つまり、コンデンサの有する2つの導体のうちの一つの導体として、アンテナ914を機能させてもよい。これにより、電磁界、磁界だけでなく、電界で電力のやり取りを行うこともできる。
 電池パックは、アンテナ914と、二次電池913との間に層916を有する。層916は、例えば二次電池913による電磁界を遮蔽することができる機能を有する。層916としては、例えば磁性体を用いることができる。
 なお、二次電池の構造は、図16(A)および(B)に限定されない。
 例えば、図17(A1)及び図17(A2)に示すように、図16(A)及び図16(B)に示す二次電池913のうち、対向する一対の面のそれぞれにアンテナを設けてもよい。図17(A1)は、上記一対の面の一方を示した外観図であり、図17(A2)は、上記一対の面の他方を示した外観図である。なお、図16(A)及び図16(B)に示す二次電池と同じ部分については、図16(A)及び図16(B)に示す二次電池の説明を適宜援用できる。
 図17(A1)に示すように、二次電池913の一対の面の一方に層916を挟んでアンテナ914が設けられ、図17(A2)に示すように、二次電池913の一対の面の他方に層917を挟んでアンテナ918が設けられる。層917は、例えば二次電池913による電磁界を遮蔽することができる機能を有する。層917としては、例えば磁性体を用いることができる。
 上記構造にすることにより、アンテナ914及びアンテナ918の両方のサイズを大きくすることができる。アンテナ918は、例えば、外部機器とのデータ通信を行うことができる機能を有する。アンテナ918には、例えばアンテナ914に適用可能な形状のアンテナを適用することができる。アンテナ918を介した二次電池と他の機器との通信方式としては、NFC(近距離無線通信)など、二次電池と他の機器との間で用いることができる応答方式などを適用することができる。
 又は、図17(B1)に示すように、図16(A)及び図16(B)に示す二次電池913に表示装置920を設けてもよい。表示装置920は、端子911に電気的に接続される。なお、表示装置920が設けられる部分にラベル910を設けなくてもよい。なお、図16(A)及び図16(B)に示す二次電池と同じ部分については、図16(A)及び図16(B)に示す二次電池の説明を適宜援用できる。
 表示装置920には、例えば充電中であるか否かを示す画像、蓄電量を示す画像などを表示してもよい。表示装置920としては、例えば電子ペーパー、液晶表示装置、エレクトロルミネセンス(ELともいう)表示装置などを用いることができる。例えば、電子ペーパーを用いることにより表示装置920の消費電力を低減することができる。
 又は、図17(B2)に示すように、図16(A)及び図16(B)に示す二次電池913にセンサ921を設けてもよい。センサ921は、端子922を介して端子911に電気的に接続される。なお、図16(A)及び図16(B)に示す二次電池と同じ部分については、図16(A)及び図16(B)に示す二次電池の説明を適宜援用できる。
 センサ921としては、例えば、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定することができる機能を有すればよい。センサ921を設けることにより、例えば、二次電池が置かれている環境を示すデータ(温度など)を検出し、回路912内のメモリに記憶しておくこともできる。
 さらに、二次電池913の構造例について図18(A)、(B)及び図19を用いて説明する。
 図18(A)に示す二次電池913は、筐体930の内部に端子951と端子952が設けられた捲回体950を有する。捲回体950は、筐体930の内部で電解液に含浸される。端子952は、筐体930に接し、端子951は、絶縁材などを用いることにより筐体930に接していない。なお、図18(A)では、便宜のため、筐体930を分離して図示しているが、実際は、捲回体950が筐体930に覆われ、端子951及び端子952が筐体930の外に延在している。筐体930としては、金属材料(例えばアルミニウムなど)又は樹脂材料を用いることができる。
 なお、図18(B)に示すように、図18(A)に示す筐体930を複数の材料によって形成してもよい。例えば、図18(B)に示す二次電池913は、筐体930aと筐体930bが貼り合わされており、筐体930a及び筐体930bで囲まれた領域に捲回体950が設けられている。
 筐体930aとしては、有機樹脂など、絶縁材料を用いることができる。特に、アンテナが形成される面に有機樹脂などの材料を用いることにより、二次電池913による電界の遮蔽を抑制できる。なお、筐体930aによる電界の遮蔽が小さければ、筐体930aの内部にアンテナ914やアンテナ918などのアンテナを設けてもよい。筐体930bとしては、例えば金属材料を用いることができる。
 さらに、捲回体950の構造について図19に示す。捲回体950は、負極931と、正極932と、セパレータ933と、を有する。捲回体950は、セパレータ933を挟んで負極931と、正極932が重なり合って積層され、該積層シートを捲回させた捲回体である。なお、負極931と、正極932と、セパレータ933と、の積層を、さらに複数重ねてもよい。
 負極931は、端子951及び端子952の一方を介して図16(A)および(B)に示す端子911に接続される。正極932は、端子951及び端子952の他方を介して図16(A)および(B)に示す端子911に接続される。
 正極932に、先の実施の形態で説明した正極活物質を用いることで、高容量でサイクル特性に優れた二次電池913とすることができる。
[ラミネート型二次電池]
 次に、ラミネート型の二次電池の例について、図20(A)乃至図26(B)を参照して説明する。ラミネート型の二次電池は、可撓性を有する構成とすれば、可撓性を有する部位を少なくとも一部有する電子機器に実装すれば、電子機器の変形に合わせて二次電池も曲げることもできる。
 図20(A)、(B)および(C)を用いて、ラミネート型の二次電池980について説明する。ラミネート型の二次電池980は、図20(A)に示す捲回体993を有する。捲回体993は、負極994と、正極995と、セパレータ996と、を有する。捲回体993は、図19で説明した捲回体950と同様に、セパレータ996を挟んで負極994と、正極995とが重なり合って積層され、該積層シートを捲回したものである。
 なお、負極994、正極995およびセパレータ996からなる積層の積層数は、必要な容量と素子体積に応じて適宜設計すればよい。負極994はリード電極997およびリード電極998の一方を介して負極集電体(図示せず)に接続され、正極995はリード電極997およびリード電極998の他方を介して正極集電体(図示せず)に接続される。
 図20(B)に示すように、外装体となるフィルム981と、凹部を有するフィルム982とを熱圧着などにより貼り合わせて形成される空間に上述した捲回体993を収納することで、図20(C)に示すように二次電池980を作製することができる。捲回体993は、リード電極997およびリード電極998を有し、フィルム981と、凹部を有するフィルム982との内部で電解液に含浸される。
 フィルム981と、凹部を有するフィルム982は、例えばアルミニウムなどの金属材料や樹脂材料を用いることができる。フィルム981および凹部を有するフィルム982の材料として樹脂材料を用いれば、外部から力が加わったときにフィルム981と、凹部を有するフィルム982を変形させることができ、可撓性を有する蓄電池を作製することができる。
 また、図20(B)および図20(C)では2枚のフィルムを用いる例を示しているが、1枚のフィルムを折り曲げることによって空間を形成し、その空間に上述した捲回体993を収納してもよい。
 正極995に、先の実施の形態で説明した正極活物質を用いることで、高容量でサイクル特性に優れた二次電池980とすることができる。
 また図20(B)および(C)では外装体となるフィルムにより形成された空間に捲回体を有する二次電池980の例について説明したが、例えば図21(A)および(B)のように、外装体となるフィルムにより形成された空間に、短冊状の複数の正極、セパレータおよび負極を有する二次電池としてもよい。
 図21(A)に示すラミネート型の二次電池500は、正極集電体501および正極活物質層502を有する正極503と、負極集電体504および負極活物質層505を有する負極506と、セパレータ507と、電解液508と、外装体509と、を有する。外装体509内に設けられた正極503と負極506との間にセパレータ507が設置されている。また、外装体509内は、電解液508で満たされている。電解液508には、実施の形態2で示した電解液を用いることができる。
 図21(A)に示すラミネート型の二次電池500において、正極集電体501および負極集電体504は、外部との電気的接触を得る端子の役割も兼ねている。そのため、正極集電体501および負極集電体504の一部は、外装体509から外側に露出するように配置してもよい。また、正極集電体501および負極集電体504を、外装体509から外側に露出させず、リード電極を用いてそのリード電極と正極集電体501、或いは負極集電体504と超音波接合させてリード電極を外側に露出するようにしてもよい。
 ラミネート型の二次電池500において、外装体509には、例えばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のラミネートフィルムを用いることができる。
 また、ラミネート型の二次電池500の断面構造の一例を図21(B)に示す。図21(A)では簡略のため、2つの集電体で構成する例を示しているが、実際は、図21(B)に示すように、複数の電極層で構成する。
 図21(B)では、一例として、電極層数を16としている。なお、電極層数を16としても二次電池500は、可撓性を有する。図21(B)では負極集電体504が8層と、正極集電体501が8層の合計16層の構造を示している。なお、図21(B)は負極の取り出し部の断面を示しており、8層の負極集電体504を超音波接合させている。勿論、電極層数は16に限定されず、多くてもよいし、少なくてもよい。電極層数が多い場合には、より多くの容量を有する二次電池とすることができる。また、電極層数が少ない場合には、薄型化でき、可撓性に優れた二次電池とすることができる。
 ここで、ラミネート型の二次電池500の外観図の一例を図22及び図23に示す。図22及び図23は、正極503、負極506、セパレータ507、外装体509、正極リード電極510及び負極リード電極511を有する。
 図24(A)は正極503及び負極506の外観図を示す。正極503は正極集電体501を有し、正極活物質層502は正極集電体501の表面に形成されている。また、正極503は正極集電体501が一部露出する領域(以下、タブ領域という)を有する。負極506は負極集電体504を有し、負極活物質層505は負極集電体504の表面に形成されている。また、負極506は負極集電体504が一部露出する領域、すなわちタブ領域を有する。正極及び負極が有するタブ領域の面積や形状は、図24(A)に示す例に限られない。
[ラミネート型二次電池の作製方法]
 ここで、図22に外観図を示すラミネート型二次電池の作製方法の一例について、図24(B)、(C)を用いて説明する。
 まず、負極506、セパレータ507及び正極503を積層する。図24(B)に積層された負極506、セパレータ507及び正極503を示す。ここでは負極を5組、正極を4組使用する例を示す。次に、正極503のタブ領域同士の接合と、最表面の正極のタブ領域への正極リード電極510の接合を行う。接合には、例えば超音波溶接等を用いればよい。同様に、負極506のタブ領域同士の接合と、最表面の負極のタブ領域への負極リード電極511の接合を行う。
 次に外装体509上に、負極506、セパレータ507及び正極503を配置する。
 次に、図24(C)に示すように、外装体509を破線で示した部分で折り曲げる。その後、外装体509の外周部を接合する。接合には例えば熱圧着等を用いればよい。この時、後に電解液508を入れることができるように、外装体509の一部(または一辺)に接合されない領域(以下、導入口という)を設ける。
 次に、外装体509に設けられた導入口から、電解液508(図示しない。)を外装体509の内側へ導入する。電解液508の導入は、減圧雰囲気下、或いは不活性雰囲気下で行うことが好ましい。そして最後に、導入口を接合する。このようにして、ラミネート型の二次電池500を作製することができる。
 正極503に、先の実施の形態で説明した正極活物質を用いることで、高容量でサイクル特性に優れた二次電池500とすることができる。
[曲げることのできる二次電池]
 次に、曲げることのできる二次電池の例について図25(A)、(B1)、(B2)、(C)、(D)、図26(A)および(B)を参照して説明する。
 図25(A)に、曲げることのできる二次電池250の上面概略図を示す。図25(B1)、(B2)、(C)にはそれぞれ、図25(A)中の切断線C1−C2、切断線C3−C4、切断線A1−A2における断面概略図である。二次電池250は、外装体251と、外装体251の内部に収容された正極211aおよび負極211bを有する。正極211aと電気的に接続されたリード212a、および負極211bと電気的に接続されたリード212bは、外装体251の外側に延在している。また外装体251で囲まれた領域には、正極211aおよび負極211bに加えて電解液(図示しない)が封入されている。
 二次電池250が有する正極211aおよび負極211bについて、図26(A)および(B)を用いて説明する。図26(A)は、正極211a、負極211bおよびセパレータ214の積層順を説明する斜視図である。図26(B)は正極211aおよび負極211bに加えて、リード212aおよびリード212bを示す斜視図である。
 図26(A)に示すように、二次電池250は、複数の短冊状の正極211a、複数の短冊状の負極211bおよび複数のセパレータ214を有する。正極211aおよび負極211bはそれぞれ突出したタブ部分と、タブ以外の部分を有する。正極211aの一方の面のタブ以外の部分に正極活物質層が形成され、負極211bの一方の面のタブ以外の部分に負極活物質層が形成される。
 正極211aの正極活物質層の形成されていない面同士、および負極211bの負極活物質の形成されていない面同士が接するように、正極211aおよび負極211bは積層される。
 また、正極211aの正極活物質が形成された面と、負極211bの負極活物質が形成された面の間にはセパレータ214が設けられる。図26(A)では見やすくするためセパレータ214を点線で示す。
 また図26(B)に示すように、複数の正極211aとリード212aは、接合部215aにおいて電気的に接続される。また複数の負極211bとリード212bは、接合部215bにおいて電気的に接続される。
 次に、外装体251について図25(B1)、(B2)、(C)、(D)を用いて説明する。
 外装体251は、フィルム状の形状を有し、正極211aおよび負極211bを挟むように2つに折り曲げられている。外装体251は、折り曲げ部261と、一対のシール部262と、シール部263と、を有する。一対のシール部262は、正極211aおよび負極211bを挟んで設けられ、サイドシールとも呼ぶことができる。また、シール部263は、リード212a及びリード212bと重なる部分を有し、トップシールとも呼ぶことができる。
 外装体251は、正極211aおよび負極211bと重なる部分に、稜線271と谷線272が交互に並んだ波形状を有することが好ましい。また、外装体251のシール部262及びシール部263は、平坦であることが好ましい。
 図25(B1)は、稜線271と重なる部分で切断した断面であり、図25(B2)は、谷線272と重なる部分で切断した断面である。図25(B1)、(B2)は共に、二次電池250及び正極211aおよび負極211bの幅方向の断面に対応する。
 ここで、正極211aおよび負極211bの幅方向の端部、すなわち正極211aおよび負極211bの端部と、シール部262との間の距離を距離Laとする。二次電池250に曲げるなどの変形を加えたとき、後述するように正極211aおよび負極211bが長さ方向に互いにずれるように変形する。その際、距離Laが短すぎると、外装体251と正極211aおよび負極211bとが強く擦れ、外装体251が破損してしまう場合がある。特に外装体251の金属フィルムが露出すると、当該金属フィルムが電解液により腐食されてしまう恐れがある。したがって、距離Laを出来るだけ長く設定することが好ましい。一方で、距離Laを大きくしすぎると、二次電池250の体積が増大してしまう。
 また、積層された正極211aおよび負極211bの合計の厚さが厚いほど、正極211aおよび負極211bと、シール部262との間の距離Laを大きくすることが好ましい。
 より具体的には、積層された正極211aおよび負極211bおよび図示しないがセパレータ214の合計の厚さをtとしたとき、距離Laは、厚さtの0.8倍以上3.0倍以下、好ましくは0.9倍以上2.5倍以下、より好ましくは1.0倍以上2.0倍以下であることが好ましい。距離Laをこの範囲とすることで、コンパクトで、且つ曲げに対する信頼性の高い電池を実現できる。
 また、一対のシール部262の間の距離を距離Lbとしたとき、距離Lbを正極211aおよび負極211bの幅(ここでは、負極211bの幅Wb)よりも十分大きくすることが好ましい。これにより、二次電池250に繰り返し曲げるなどの変形を加えたときに、正極211aおよび負極211bと外装体251とが接触しても、正極211aおよび負極211bの一部が幅方向にずれることができるため、正極211aおよび負極211bと外装体251とが擦れてしまうことを効果的に防ぐことができる。
 例えば、一対のシール部262の間の距離Lbと、負極211bの幅Wbとの差が、正極211aおよび負極211bの厚さtの1.6倍以上6.0倍以下、好ましくは1.8倍以上5.0倍以下、より好ましくは、2.0倍以上4.0倍以下を満たすことが好ましい。
 言い換えると、距離Lb、幅Wb、及び厚さtが、下記数式1の関係を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000001
 ここで、aは、0.8以上3.0以下、好ましくは0.9以上2.5以下、より好ましくは1.0以上2.0以下を満たす。
 また、図25(C)はリード212aを含む断面であり、二次電池250、正極211aおよび負極211bの長さ方向の断面に対応する。図25(C)に示すように、折り曲げ部261において、正極211aおよび負極211bの長さ方向の端部と、外装体251との間に空間273を有することが好ましい。
 図25(D)に、二次電池250を曲げたときの断面概略図を示している。図25(D)は、図25(A)中の切断線B1−B2における断面に相当する。
 二次電池250を曲げると、曲げの外側に位置する外装体251の一部は伸び、内側に位置する他の一部は縮むように変形する。より具体的には、外装体251の外側に位置する部分は、波の振幅が小さく、且つ波の周期が大きくなるように変形する。一方、外装体251の内側に位置する部分は、波の振幅が大きく、且つ波の周期が小さくなるように変形する。このように、外装体251が変形することにより、曲げに伴って外装体251にかかる応力が緩和されるため、外装体251を構成する材料自体が伸縮する必要がない。その結果、外装体251は破損することなく、小さな力で二次電池250を曲げることができる。
 また、図25(D)に示すように、二次電池250を曲げると、正極211aおよび負極211bとがそれぞれ相対的にずれる。このとき、複数の積層された正極211aおよび負極211bは、シール部263側の一端が固定部材217で固定されているため、折り曲げ部261に近いほどずれ量が大きくなるように、それぞれずれる。これにより、正極211aおよび負極211bにかかる応力が緩和され、正極211aおよび負極211b自体が伸縮する必要がない。その結果、正極211aおよび負極211bが破損することなく二次電池250を曲げることができる。
 また、正極211aおよび負極211bと外装体251との間に空間273を有していることにより、曲げた時内側に位置する正極211aおよび負極211bが、外装体251に接触することなく、相対的にずれることができる。
 図25(A)、(B1)、(B2)、(C)、(D)、図26(A)および(B)で例示した二次電池250は、繰り返し曲げ伸ばしを行っても、外装体の破損、正極211aおよび負極211bの破損などが生じにくく、電池特性も劣化しにくい電池である。二次電池250が有する正極211aに、先の実施の形態で説明した正極活物質を用いることで、さらにサイクル特性に優れた電池とすることができる。
(実施の形態4)
 本実施の形態では、本発明の一態様である二次電池を電子機器に実装する例について説明する。
 まず実施の形態3の一部で説明した、曲げることのできる二次電池を電子機器に実装する例を図27(A)乃至図27(G)に示す。曲げることのできる二次電池を適用した電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
 また、フレキシブルな形状を備える二次電池を、家屋やビルの内壁または外壁や、自動車の内装または外装の曲面に沿って組み込むことも可能である。
 図27(A)は、携帯電話機の一例を示している。携帯電話機7400は、筐体7401に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ7405、マイク7406などを備えている。なお、携帯電話機7400は、二次電池7407を有している。上記の二次電池7407に本発明の一態様の二次電池を用いることで、軽量で長寿命な携帯電話機を提供できる。
 図27(B)は、携帯電話機7400を湾曲させた状態を示している。携帯電話機7400を外部の力により変形させて全体を湾曲させると、その内部に設けられている二次電池7407も湾曲される。また、その時、曲げられた二次電池7407の状態を図27(C)に示す。二次電池7407は薄型の蓄電池である。二次電池7407は曲げられた状態で固定されている。なお、二次電池7407は集電体と電気的に接続されたリード電極を有している。例えば、集電体は銅箔であり、一部ガリウムと合金化させて、集電体と接する活物質層との密着性を向上し、二次電池7407が曲げられた状態での信頼性が高い構成となっている。
 図27(D)は、バングル型の表示装置の一例を示している。携帯表示装置7100は、筐体7101、表示部7102、操作ボタン7103、及び二次電池7104を備える。また、図27(E)に曲げられた二次電池7104の状態を示す。二次電池7104は曲げられた状態で使用者の腕への装着時に、筐体が変形して二次電池7104の一部または全部の曲率が変化する。なお、曲線の任意の点における曲がり具合を相当する円の半径の値で表したものを曲率半径と呼び、曲率半径の逆数を曲率と呼ぶ。具体的には、曲率半径が40mm以上150mm以下の範囲内で筐体または二次電池7104の主表面の一部または全部が変化する。二次電池7104の主表面における曲率半径が40mm以上150mm以下の範囲であれば、高い信頼性を維持できる。上記の二次電池7104に本発明の一態様の二次電池を用いることで、軽量で長寿命な携帯表示装置を提供できる。
 図27(F)は、腕時計型の携帯情報端末の一例を示している。携帯情報端末7200は、筐体7201、表示部7202、バンド7203、バックル7204、操作ボタン7205、入出力端子7206などを備える。
 携帯情報端末7200は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
 表示部7202はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、表示部7202はタッチセンサを備え、指やスタイラスなどで画面に触れることで操作することができる。例えば、表示部7202に表示されたアイコン7207に触れることで、アプリケーションを起動することができる。
 操作ボタン7205は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、携帯情報端末7200に組み込まれたオペレーティングシステムにより、操作ボタン7205の機能を自由に設定することもできる。
 また、携帯情報端末7200は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。
 また、携帯情報端末7200は入出力端子7206を備え、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。また入出力端子7206を介して充電を行うこともできる。なお、充電動作は入出力端子7206を介さずに無線給電により行ってもよい。
 携帯情報端末7200の表示部7202には、本発明の一態様の二次電池を有している。本発明の一態様の二次電池を用いることで、軽量で長寿命な携帯情報端末を提供できる。例えば、図27(E)に示した二次電池7104を、筐体7201の内部に湾曲した状態で、またはバンド7203の内部に湾曲可能な状態で組み込むことができる。
 携帯情報端末7200はセンサを有することが好ましい。センサとして例えば、指紋センサ、脈拍センサ、体温センサ等の人体センサや、タッチセンサ、加圧センサ、加速度センサ、等が搭載されることが好ましい。
 図27(G)は、腕章型の表示装置の一例を示している。表示装置7300は、表示部7304を有し、本発明の一態様の二次電池を有している。また、表示装置7300は、表示部7304にタッチセンサを備えることもでき、また、携帯情報端末として機能させることもできる。
 表示部7304はその表示面が湾曲しており、湾曲した表示面に沿って表示を行うことができる。また、表示装置7300は、通信規格された近距離無線通信などにより、表示状況を変更することができる。
 また、表示装置7300は入出力端子を備え、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。また入出力端子を介して充電を行うこともできる。なお、充電動作は入出力端子を介さずに無線給電により行ってもよい。
 表示装置7300が有する二次電池として本発明の一態様の二次電池を用いることで、軽量で長寿命な表示装置を提供できる。
 また、先の実施の形態で示したサイクル特性のよい二次電池を電子機器に実装する例を図27(H)、図28(A)、(B)、(C)および図29を用いて説明する。
 日用電子機器に二次電池として本発明の一態様の二次電池を用いることで、軽量で長寿命な製品を提供できる。例えば、日用電子機器として、電動歯ブラシ、電気シェーバー、電動美容機器などが挙げられ、それらの製品の二次電池としては、使用者の持ちやすさを考え、形状をスティック状とし、小型、軽量、且つ、大容量の二次電池が望まれている。
 図27(H)はタバコ収容喫煙装置(電子タバコ)とも呼ばれる装置の斜視図である。図27(H)において電子タバコ7500は、加熱素子を含むアトマイザ7501と、アトマイザに電力を供給する二次電池7504と、液体供給ボトルやセンサなどを含むカートリッジ7502で構成されている。安全性を高めるため、二次電池7504の過充電や過放電を防ぐ保護回路を二次電池7504に電気的に接続してもよい。図27(H)に示した二次電池7504は、充電機器と接続できるように外部端子を有している。二次電池7504は持った場合に先端部分となるため、トータルの長さが短く、且つ、重量が軽いことが望ましい。本発明の一態様の二次電池は高容量、良好なサイクル特性を有するため、長期間に渡って長時間の使用ができる小型であり、且つ、軽量の電子タバコ7500を提供できる。
 次に、図28(A)および図28(B)に、2つ折り可能なタブレット型端末の一例を示す。図28(A)および図28(B)に示すタブレット型端末9600は、筐体9630a、筐体9630b、筐体9630aと筐体9630bを接続する可動部9640、表示部9631aと表示部9631bを有する表示部9631、スイッチ9625乃至スイッチ9627、留め具9629、操作スイッチ9628、を有する。表示部9631には、可撓性を有するパネルを用いることで、より広い表示部を有するタブレット端末とすることができる。図28(A)は、タブレット型端末9600を開いた状態を示し、図28(B)は、タブレット型端末9600を閉じた状態を示している。
 また、タブレット型端末9600は、筐体9630aおよび筐体9630bの内部に蓄電体9635を有する。蓄電体9635は、可動部9640を通り、筐体9630aと筐体9630bに渡って設けられている。
 表示部9631は、全て又は一部の領域をタッチパネルの領域とすることができ、また当該領域に表示されたアイコンを含む画像、文字、入力フォームなどに触れることでデータ入力をすることができる。例えば、筐体9630a側の表示部9631aの全面にキーボードボタンを表示させて、筐体9630b側の表示部9631bに文字、画像などの情報を表示させて用いてもよい。
 また、筐体9630b側の表示部9631bにキーボードを表示させて、筐体9630a側の表示部9631aに文字、画像などの情報を表示させて用いてもよい。また、表示部9631にタッチパネルのキーボード表示切り替えボタンを表示するようにして、当該ボタンに指やスタイラスなどで触れることで表示部9631にキーボードを表示するようにしてもよい。
 また、筐体9630a側の表示部9631aのタッチパネルの領域と筐体9630b側の表示部9631bのタッチパネルの領域に対して同時にタッチ入力することもできる。
 また、スイッチ9625乃至スイッチ9627には、タブレット型端末9600を操作するためのインターフェースだけでなく、様々な機能の切り替えを行うことができるインターフェースとしてもよい。例えば、スイッチ9625乃至スイッチ9627の少なくとも一は、タブレット型端末9600の電源のオン・オフを切り替えるスイッチとして機能してもよい。また、例えば、スイッチ9625乃至スイッチ9627の少なくとも一は、縦表示又は横表示などの表示の向きを切り替える機能、又は白黒表示やカラー表示の切り替える機能を有してもよい。また、例えば、スイッチ9625乃至スイッチ9627の少なくとも一は、表示部9631の輝度を調整する機能を有してもよい。また、表示部9631の輝度は、タブレット型端末9600に内蔵している光センサで検出される使用時の外光の光量に応じて最適なものとすることができる。なお、タブレット型端末は光センサだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検出装置を内蔵させてもよい。
 また、図28(A)では筐体9630a側の表示部9631aと筐体9630b側の表示部9631bの表示面積とがほぼ同じ例を示しているが、表示部9631a及び表示部9631bのそれぞれの表示面積は特に限定されず、一方のサイズと他方のサイズが異なっていてもよく、表示の品質も異なっていてもよい。例えば一方が他方よりも高精細な表示を行える表示パネルとしてもよい。
 図28(B)は、タブレット型端末9600を2つ折りに閉じた状態であり、タブレット型端末9600は、筐体9630、太陽電池9633、DCDCコンバータ9636を含む充放電制御回路9634を有する。また、蓄電体9635として、本発明の一態様に係る蓄電体を用いる。
 なお、上述の通り、タブレット型端末9600は2つ折りが可能であるため、未使用時に筐体9630aおよび筐体9630bを重ね合せるように折りたたむことができる。折りたたむことにより、表示部9631を保護できるため、タブレット型端末9600の耐久性を高めることができる。また、本発明の一態様の二次電池を用いた蓄電体9635は高容量、良好なサイクル特性を有するため、長期間に渡って長時間の使用ができるタブレット型端末9600を提供できる。
 また、この他にも図28(A)および図28(B)に示したタブレット型端末9600は、様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻などを表示部に表示する機能、表示部に表示した情報をタッチ入力操作又は編集するタッチ入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有することができる。
 タブレット型端末9600の表面に装着された太陽電池9633によって、電力をタッチパネル、表示部、又は映像信号処理部等に供給することができる。なお、太陽電池9633は、筐体9630の片面又は両面に設けることができ、蓄電体9635の充電を効率的に行う構成とすることができる。なお蓄電体9635としては、リチウムイオン電池を用いると、小型化を図れる等の利点がある。
 また、図28(B)に示す充放電制御回路9634の構成、および動作について図28(C)にブロック図を示し説明する。図28(C)には、太陽電池9633、蓄電体9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3、表示部9631について示しており、蓄電体9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3が、図28(B)に示す充放電制御回路9634に対応する箇所となる。
 まず外光により太陽電池9633により発電がされる場合の動作の例について説明する。太陽電池で発電した電力は、蓄電体9635を充電するための電圧となるようDCDCコンバータ9636で昇圧又は降圧がなされる。そして、表示部9631の動作に太陽電池9633からの電力が用いられる際にはスイッチSW1をオンにし、コンバータ9637で表示部9631に必要な電圧に昇圧又は降圧をすることとなる。また、表示部9631での表示を行わない際には、SW1をオフにし、SW2をオンにして蓄電体9635の充電を行う構成とすればよい。
 なお太陽電池9633については、発電手段の一例として示したが、特に限定されず、圧電素子(ピエゾ素子)や熱電変換素子(ペルティエ素子)などの他の発電手段による蓄電体9635の充電を行う構成であってもよい。例えば、無線(非接触)で電力を送受信して充電する無接点電力伝送モジュールや、また他の充電手段を組み合わせて行う構成としてもよい。
 図29に、他の電子機器の例を示す。図29において、表示装置8000は、本発明の一態様に係る二次電池8004を用いた電子機器の一例である。具体的に、表示装置8000は、TV放送受信用の表示装置に相当し、筐体8001、表示部8002、スピーカ部8003、二次電池8004等を有する。本発明の一態様に係る二次電池8004は、筐体8001の内部に設けられている。表示装置8000は、商用電源から電力の供給を受けることもできるし、二次電池8004に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る二次電池8004を無停電電源として用いることで、表示装置8000の利用が可能となる。
 表示部8002には、液晶表示装置、有機EL素子などの発光素子を各画素に備えた発光装置、電気泳動表示装置、DMD(Digital Micromirror Device)、PDP(Plasma Display Panel)、FED(Field Emission Display)などの、半導体表示装置を用いることができる。
 なお、表示装置には、TV放送受信用の他、パーソナルコンピュータ用、広告表示用など、全ての情報表示用表示装置が含まれる。
 図29において、据え付け型の照明装置8100は、本発明の一態様に係る二次電池8103を用いた電子機器の一例である。具体的に、照明装置8100は、筐体8101、光源8102、二次電池8103等を有する。図29では、二次電池8103が、筐体8101及び光源8102が据え付けられた天井8104の内部に設けられている場合を例示しているが、二次電池8103は、筐体8101の内部に設けられていても良い。照明装置8100は、商用電源から電力の供給を受けることもできるし、二次電池8103に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る二次電池8103を無停電電源として用いることで、照明装置8100の利用が可能となる。
 なお、図29では天井8104に設けられた据え付け型の照明装置8100を例示しているが、本発明の一態様に係る二次電池は、天井8104以外、例えば側壁8105、床8106、窓8107等に設けられた据え付け型の照明装置に用いることもできるし、卓上型の照明装置などに用いることもできる。
 また、光源8102には、電力を利用して人工的に光を得る人工光源を用いることができる。具体的には、白熱電球、蛍光灯などの放電ランプ、LEDや有機EL素子などの発光素子が、上記人工光源の一例として挙げられる。
 図29において、室内機8200及び室外機8204を有するエアコンディショナーは、本発明の一態様に係る二次電池8203を用いた電子機器の一例である。具体的に、室内機8200は、筐体8201、送風口8202、二次電池8203等を有する。図29では、二次電池8203が、室内機8200に設けられている場合を例示しているが、二次電池8203は室外機8204に設けられていても良い。或いは、室内機8200と室外機8204の両方に、二次電池8203が設けられていても良い。エアコンディショナーは、商用電源から電力の供給を受けることもできるし、二次電池8203に蓄積された電力を用いることもできる。特に、室内機8200と室外機8204の両方に二次電池8203が設けられている場合、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る二次電池8203を無停電電源として用いることで、エアコンディショナーの利用が可能となる。
 なお、図29では、室内機と室外機で構成されるセパレート型のエアコンディショナーを例示しているが、室内機の機能と室外機の機能とを1つの筐体に有する一体型のエアコンディショナーに、本発明の一態様に係る二次電池を用いることもできる。
 図29において、電気冷凍冷蔵庫8300は、本発明の一態様に係る二次電池8304を用いた電子機器の一例である。具体的に、電気冷凍冷蔵庫8300は、筐体8301、冷蔵室用扉8302、冷凍室用扉8303、二次電池8304等を有する。図29では、二次電池8304が、筐体8301の内部に設けられている。電気冷凍冷蔵庫8300は、商用電源から電力の供給を受けることもできるし、二次電池8304に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る二次電池8304を無停電電源として用いることで、電気冷凍冷蔵庫8300の利用が可能となる。
 なお、上述した電子機器のうち、電子レンジ等の高周波加熱装置、電気炊飯器などの電子機器は、短時間で高い電力を必要とする。よって、商用電源では賄いきれない電力を補助するための補助電源として、本発明の一態様に係る二次電池を用いることで、電子機器の使用時に商用電源のブレーカーが落ちるのを防ぐことができる。
 また、電子機器が使用されない時間帯、特に、商用電源の供給元が供給可能な総電力量のうち、実際に使用される電力量の割合(電力使用率と呼ぶ)が低い時間帯において、二次電池に電力を蓄えておくことで、上記時間帯以外において電力使用率が高まるのを抑えることができる。例えば、電気冷凍冷蔵庫8300の場合、気温が低く、冷蔵室用扉8302、冷凍室用扉8303の開閉が行われない夜間において、二次電池8304に電力を蓄える。そして、気温が高くなり、冷蔵室用扉8302、冷凍室用扉8303の開閉が行われる昼間において、二次電池8304を補助電源として用いることで、昼間の電力使用率を低く抑えることができる。
 本発明の一態様により、二次電池のサイクル特性が良好となり、信頼性を向上させることができる。また、本発明の一態様によれば、高容量の二次電池とすることができ、よって、二次電池の特性を向上することができ、よって、二次電池自体を小型軽量化することができる。そのため本発明の一態様である二次電池を、本実施の形態で説明した電子機器に搭載することで、より長寿命で、より軽量な電子機器とすることができる。本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態5)
 本実施の形態では、車両に本発明の一態様である二次電池を搭載する例を示す。
 二次電池を車両に搭載すると、ハイブリッド車(HEV)、電気自動車(EV)、又はプラグインハイブリッド車(PHEV)等の次世代クリーンエネルギー自動車を実現できる。
 図30(A)、(B)および(C)において、本発明の一態様である二次電池を用いた車両を例示する。図30(A)に示す自動車8400は、走行のための動力源として電気モーターを用いる電気自動車である。または、走行のための動力源として電気モーターとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。本発明の一態様を用いることで、航続距離の長い車両を実現することができる。また、自動車8400は二次電池を有する。二次電池は、車内の床部分に対して、図15(C)および図15(D)に示した二次電池のモジュールを並べて使用すればよい。また、図18(A)および(B)に示す二次電池を複数組み合わせた電池パックを車内の床部分に対して設置してもよい。二次電池は電気モーター8406を駆動するだけでなく、ヘッドライト8401やルームライト(図示せず)などの発光装置に電力を供給することができる。
 また、二次電池は、自動車8400が有するスピードメーター、タコメーターなどの表示装置に電力を供給することができる。また、二次電池は、自動車8400が有するナビゲーションシステムなどの半導体装置に電力を供給することができる。
 図30(B)に示す自動車8500は、自動車8500が有する二次電池にプラグイン方式や非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。図30(B)に、地上設置型の充電装置8021から自動車8500に搭載された二次電池8024に、ケーブル8022を介して充電を行っている状態を示す。充電に際しては、充電方法やコネクターの規格等はCHAdeMO(登録商標)やコンボ等の所定の方式で適宜行えばよい。充電装置8021は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給により自動車8500に搭載された二次電池8024を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。
 また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路や外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、車両どうしで電力の送受信を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時や走行時に二次電池の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式や磁界共鳴方式を用いることができる。
 また、図30(C)は、本発明の一態様の二次電池を用いた二輪車の一例である。図30(C)に示すスクータ8600は、二次電池8602、サイドミラー8601、方向指示灯8603を備える。二次電池8602は、方向指示灯8603に電気を供給することができる。
 また、図30(C)に示すスクータ8600は、座席下収納8604に、二次電池8602を収納することができる。二次電池8602は、座席下収納8604が小型であっても、座席下収納8604に収納することができる。二次電池8602は、取り外し可能となっており、充電時には二次電池8602を屋内に持って運び、充電し、走行する前に収納すればよい。
 本発明の一態様によれば、二次電池のサイクル特性が良好となり、二次電池の容量を大きくすることができる。よって、二次電池自体を小型軽量化することができる。二次電池自体を小型軽量化できれば、車両の軽量化に寄与するため、航続距離を向上させることができる。また、車両に搭載した二次電池を車両以外の電力供給源として用いることもできる。この場合、例えば電力需要のピーク時に商用電源を用いることを回避することができる。電力需要のピーク時に商用電源を用いることを回避できれば、省エネルギー、および二酸化炭素の排出の削減に寄与することができる。また、サイクル特性が良好であれば二次電池を長期に渡って使用できるため、コバルトをはじめとする希少金属の使用量を減らすことができる。
 本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
 本実施例では、マグネシウム、フッ素およびリンを有する正極活物質を作製し、該正極活物質を用いた正極を有する二次電池を作製し、二次電池の連続充電耐性およびサイクル特性を評価した。
<正極活物質の作製>
 図8および図9のフローを参照し、正極活物質の作製を行った。なお、ステップS42乃至ステップS47は行わなかった。
 まず、マグネシウムおよびフッ素を有する混合物902を作製した(図8に示すステップS11乃至ステップS14)。LiFとMgFのモル比が、LiF:MgF=1:3となるよう秤量し、溶媒としてアセトンを加えて湿式で混合および粉砕をした。混合および粉砕はジルコニアボールを用いたボールミルで行い、150rpm、1時間行った。処理後の材料を回収し、混合物902とした。
 次に、コバルトを有する正極活物質を準備した(ステップS25)。ここではあらかじめ合成されたコバルト酸リチウムとして、日本化学工業株式会社製のセルシードC−10Nを用いた。セルシードC−10Nは、D50が12μm程度で不純物の少ないコバルト酸リチウムである。
 次に、混合物902およびコバルト酸リチウムを混合した(ステップS31)。コバルト酸リチウムが有するコバルトの原子量に対して、混合物902が有するマグネシウムの原子量の条件振りを行った。条件振りの数値として約0.5%、1.0%、2.0%、3.0%、および6.0%となるように秤量した。作製した正極活物質のそれぞれのマグネシウムの原子量については、後述する表1および表2に示す。混合は、乾式で混合した。混合はジルコニアボールを用いたボールミルで行い、150rpm、1時間行った。
 次に処理後の材料を回収し、混合物903を得た(ステップS32およびステップS33)。
 次に、混合物903をアルミナ坩堝に入れ、酸素雰囲気のマッフル炉にて850℃、60時間アニールした(ステップS34)。アニールの際には、アルミナ坩堝にふたをした。酸素の流量は10L/minとした。昇温は200℃/hrとし、降温は10時間以上かけて行った。加熱処理後の材料を回収し(ステップS35)、ふるいを行い、マグネシウムの添加量の条件振りがなされた正極活物質(図8に示す正極活物質100A_1)を得た(ステップS36)。以下、マグネシウム濃度が0.5%、1.0%、2.0%、3.0%および6.0%の正極活物質100A_1をそれぞれ、Sample(サンプル) 11、Sample(サンプル) 12、Sample(サンプル) 13、Sample(サンプル) 14およびSample(サンプル) 15と呼ぶ。後述する正極の作製には、本ステップで得られた正極活物質100A_1と、本ステップの後、以下に説明するステップS51乃至ステップS54を行った正極活物質と、の両方を用いた。
 その後、図9に示すステップS42乃至ステップS47による金属添加は行わず、ステップS51に進んだ。
 次に、リン酸リチウムを準備した(ステップS51)。次に、リン酸リチウムと正極活物質100A_1を混合した(ステップS52)。混合したリン酸リチウムの量は、正極活物質100A_1を1molに対して0.06molに相当する量であった。混合はジルコニアボールを用いたボールミルで行い、150rpm、1時間行った。混合後、300μmφのふるいにかけた。その後、得られた混合物をアルミナ坩堝に入れ、ふたをして、酸素雰囲気にて750℃、20時間アニールした(ステップS53)。その後、53μmφのふるいにかけ、粉体を回収した(ステップS54)。以上の工程を経て、リンを有する化合物が添加され、かつ、マグネシウムの添加量の条件振りがなされた正極活物質(以下、マグネシウム濃度が0.5%、1.0%、2.0%、3.0%および6.0%の正極活物質をそれぞれ、Sample(サンプル) 21、Sample(サンプル) 22、Sample(サンプル) 23、Sample(サンプル) 24およびSample(サンプル) 25と呼ぶ)を得た。
<二次電池の作製>
 上記で得られた各々の正極活物質を用いて各々の正極を作製した。正極活物質、ABおよびPVDFを活物質:AB:PVDF=95:3:2(重量比)で混合したスラリーを集電体に塗工したものを用いた。スラリーの溶媒としてNMPを用いた。
 集電体にスラリーを塗工した後、溶媒を揮発させた。その後、210kN/mで加圧を行った後、さらに1467kN/mで加圧を行った。以上の工程により、正極を得た。正極の担持量はおよそ20mg/cmとした。
 作製した正極を用いて、CR2032タイプ(直径20mm高さ3.2mm)のコイン型の二次電池を作製した。
 対極にはリチウム金属を用いた。
 電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)で混合されたものを用いた。なお、サイクル特性の評価を行った二次電池については、電解液にビニレンカーボネート(VC)を2wt%添加した。
 セパレータには厚さ25μmのポリプロピレンを用いた。
 正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いた。
<連続充電耐性>
 次に、作製した各々の正極活物質を用いた各々の二次電池について、連続充電耐性の評価を行った。まず、充電をCCCV(0.05C、4.5Vまたは4.6V、終止電流0.005C)、放電をCC(0.05C、2.5V)として25℃において2サイクル測定した。
 その後、60℃にて、充電をCCCV(0.05C)で行った。上限電圧は4.55Vまたは4.65Vとし、終止条件は、二次電池の電圧が上限電圧から0.01V引いた値(4.55Vであれば4.54V)未満に低下するまでの時間を測定した。二次電池の電圧が上限電圧から下回る場合には例えば、ショートなどの現象が生じている可能性がある。1Cは200mA/gとした。
 それぞれの二次電池について測定された時間を表1および表2に示す。表1はステップS36で得られた正極活物質を用いた結果であり、表2はさらにステップS51乃至ステップS54を経て作製された正極活物質、すなわちリン化合物の添加が行われた正極活物質を用いた結果である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 また、ステップS36で得られた正極活物質を用いた結果について、充電電圧を4.55Vとした場合の時間−電流特性を図31(A)に、充電電圧を4.65Vとした場合の時間−電流特性を図31(B)に、それぞれ示す。
 また、ステップS51乃至ステップS54を経て作製された正極活物質、すなわちリン化合物の添加が行われた正極活物質を用いた結果について、充電電圧を4.55Vとした場合の時間−電流特性を図32(A)に、充電電圧を4.65Vとした場合の時間−電流特性を図32(B)に、それぞれ示す。
 リン化合物の添加を行うことにより、電圧降下が生じるまでの時間が長く、連続充電の耐性が向上することが示唆された。さらに、Mgの添加量が2%の条件において、連続充電の耐性が顕著に向上することが示唆された。
<サイクル特性>
 次に、作製した各々の正極活物質を用いた二次電池について、サイクル特性の評価を行った。まず、充電をCCCV(0.05C、4.6V、終止電流0.005C)、放電をCC(0.05C、2.5V)として25℃において2サイクル測定した。その後、25℃において、充電をCCCV(0.2C、4.6V、終止電流0.02C)、放電をCC(0.2C、2.5V)で繰り返し充放電を行い、サイクル特性を評価した。
 図33(A)および(B)の横軸はサイクル、縦軸は放電容量を示す。図33(A)はステップS36で得られた正極活物質を用いた結果であり、図33(B)はさらにステップS51乃至ステップS54を経て作製された正極活物質、すなわちリン化合物の添加が行われた正極活物質を用いた結果である。
 サイクル数に対する容量の減少率に着目すると、マグネシウムの添加濃度による顕著な違いをみることはできない。一方、マグネシウムの添加濃度が高いほど、初期容量の低下が顕著にみられた。これは、活物質重量に占めるリン化合物の割合が高くなり、相対的にコバルトの割合が減少し、充放電反応に寄与する物質の割合が減少するためと考えられる。
 本実施例では、マグネシウム、フッ素、コバルトおよびコバルト以外の金属等を有する正極活物質を作製し、該正極活物質を用いた正極を有する二次電池を作製し、二次電池の充電後の正極のXRD、二次電池の連続充電耐性、および二次電池のサイクル特性を評価した。
<正極活物質の作製>
 図8および図9のフローを参照し、正極活物質であるSample(サンプル) 30乃至Sample(サンプル) 35の作製を行った。なお、ステップS51乃至ステップS54は行わなかった。
 まず、Sample(サンプル) 30乃至Sample(サンプル) 35について、マグネシウムおよびフッ素を有する混合物902を作製した(ステップS11乃至ステップS14)。LiFとMgFのモル比が、LiF:MgF=1:3となるよう秤量し、溶媒としてアセトンを加えて湿式で混合および粉砕をした。混合および粉砕はジルコニアボールを用いたボールミルで行い、150rpm、1時間行った。処理後の材料を回収し、混合物902とした。
 次に、Sample(サンプル) 30乃至Sample(サンプル) 35について、コバルトを有する正極活物質として、日本化学工業株式会社製のセルシードC−10Nを準備した(ステップS25)。
 次に、Sample(サンプル) 30乃至Sample(サンプル) 35について、混合物902およびコバルト酸リチウムを混合した(ステップS31)。コバルト酸リチウムが有するコバルトの原子量に対して、混合物902が有するマグネシウムの原子量が2.0%となるように秤量した。混合は、乾式で混合した。混合はジルコニアボールを用いたボールミルで行い、150rpm、1時間行った。
 次に、Sample(サンプル) 30乃至Sample(サンプル) 35について、処理後の材料を回収し、混合物903を得た(ステップS32およびステップS33)。
 次に、Sample(サンプル) 30乃至Sample(サンプル) 35について、混合物903をアルミナ坩堝に入れ、酸素雰囲気のマッフル炉にて850℃、60時間アニールした(ステップS34)。アニールの際には、アルミナ坩堝にふたをした。酸素の流量は10L/minとした。昇温は200℃/hrとし、降温は10時間以上かけて行った。加熱処理後の材料を回収し、ふるいにかけ(ステップS35)、正極活物質100A_1を得た(ステップS36)。
 次に、Sample(サンプル) 31乃至Sample(サンプル) 35について、ステップS41乃至ステップS46の処理を行った。なお、Sample(サンプル) 30ではステップS41乃至ステップS46による金属源の添加を行わなかった。まず、Sample(サンプル) 31乃至Sample(サンプル) 35について、ステップS41により、正極活物質100A_1と、金属源とを混合した。また場合により、溶媒も合わせて混合した。
<<アルミニウムの添加>>
 Sample(サンプル) 31およびSample(サンプル) 32については、ゾル−ゲル法により、正極活物質100A_1にアルミニウムを含む被覆層を形成した。原料としてはAlイソプロポキシドを用いて、溶媒としては2−プロパノールを用いた。アルミニウムの原子量を、Sample(サンプル) 31ではコバルトとアルミニウムの原子量の和に対して0.1%となるように、Sample(サンプル) 32ではコバルトとアルミニウムの原子量の和に対して0.5%となるように、それぞれ処理を行った。その後、得られた混合物をアルミナ坩堝に入れ、ふたをして、酸素雰囲気にて850℃、2時間アニールした(ステップS45)。その後、53μmφのふるいにかけ、粉体を回収し(ステップS46)、正極活物質としてSample(サンプル) 31およびSample(サンプル) 32を得た。
<<ニッケルの添加>>
 Sample(サンプル) 33およびSample(サンプル) 34については、金属源である水酸化ニッケルと、正極活物質100A_1と、を混合した。ニッケルの原子量を、Sample(サンプル) 33ではコバルトとニッケルの原子量の和に対して0.1%となるように、Sample(サンプル) 34ではコバルトとニッケルの原子量の和に対して0.5%となるように、それぞれ混合した。混合はジルコニアボールを用いたボールミルで行い、150rpm、1時間行った。混合後、300μmφのふるいにかけた。その後、得られた混合物をアルミナ坩堝に入れ、ふたをして、酸素雰囲気にて850℃、2時間アニールした(ステップS45)。その後、53μmφのふるいにかけ、粉体を回収し(ステップS46)、正極活物質としてSample(サンプル) 33およびSample(サンプル) 34を得た。
<<アルミニウムおよびニッケルの添加>>
 Sample(サンプル) 35については、金属源である水酸化ニッケルと、正極活物質100A_1と、をボールミル混合し、その後ゾル−ゲル法により、アルミニウムを含む被覆層を形成した。金属源としてはAlイソプロポキシドを用いて、溶媒としては2−プロパノールを用いた。ニッケルの原子量およびアルミニウムの原子量をそれぞれ、コバルト、ニッケルおよびアルミニウムの原子量の和に対して0.5%となるように混合した。その後、得られた混合物をアルミナ坩堝に入れ、ふたをして、酸素雰囲気にて850℃、2時間アニールした(ステップS45)。その後、53μmφのふるいにかけ、粉体を回収し(ステップS46)、正極活物質としてSample(サンプル) 35を得た。
<二次電池の作製>
 上記で得られたSample(サンプル) 30乃至Sample(サンプル) 35を各々、正極活物質として用い、各々の正極を作製した。正極活物質、ABおよびPVDFを活物質:AB:PVDF=95:3:2(重量比)で混合したスラリーを集電体に塗工したものを用いた。スラリーの溶媒としてNMPを用いた。
 集電体にスラリーを塗工した後、溶媒を揮発させた。その後、210kN/mで加圧を行った後、さらに1467kN/mで加圧を行った。以上の工程により、正極を得た。正極の担持量はおよそ20mg/cmとした。
 作製した正極を用いて、CR2032タイプ(直径20mm高さ3.2mm)のコイン型の二次電池を作製した。
 対極にはリチウム金属を用いた。
 電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)、で混合されたものを用いた。なお、サイクル特性の評価を行った二次電池については、電解液にビニレンカーボネート(VC)を2wt%添加した。
 セパレータには厚さ25μmのポリプロピレンを用いた。
 正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いた。
<正極のXRD>
 まず、充放電を行う前に、正極のXRDの評価を行った。図34(A)および(B)には、充放電を行う前の正極のXRDを示す。2θが18.89°、および2θが38.35°に顕著なピークが観測された。図34(A)および(B)に示すグラフの横軸は2θ、縦軸はIntensity(強度)である。
<充電後の正極のXRD>
 次に、作製したそれぞれの二次電池を4.55V、4.6V、4.65Vおよび4.7Vのうち一条件ずつ選んでCCCV充電した。具体的には25℃において、各電圧まで0.2Cで定電流充電した後、電流値が0.02Cとなるまで定電圧充電した。なおここでは1Cは191mA/gとした。そして充電状態の二次電池をアルゴン雰囲気のグローブボックス内で解体して正極を取り出し、DMC(ジメチルカーボネート)で洗浄して電解液を取り除いた。そしてアルゴン雰囲気の密閉容器に封入し、XRD解析を行った。
 図35(A)および(B)には、Sample(サンプル) 35について、それぞれの充電電圧条件に対応するXRDを示す。図35(A)および(B)に示すグラフの横軸は2θ、縦軸はIntensity(強度)である。
 図35(A)には2θが18°から20°の範囲で観測されるピークを示す。充電電圧が4.55Vの条件で観測されるピークはO3型結晶構造に起因すると考えられる。充電電圧が高くなるのに伴い、ピーク位置は高角度側に移動する。充電電圧が4.65Vの条件においては、18.9°近傍のピークに加えて、19.2°近傍にもピークが観測され、O3型結晶構造と擬スピネル型の結晶構造の二つの結晶構造を有する二相混合の状態であることが示唆される。充電電圧が4.7Vの条件において観測される19.3°近傍のピークは擬スピネル型の結晶構造に起因すると考えられる。
 図35(B)には2θが40°から50°の範囲で観測されるピークを示す。充電電圧を高くしていくと、4.7Vにおいて43.9°近傍にH1−3型結晶構造を示唆するピークが弱く観測されるようになる。
 以上より、本発明の一態様の正極活物質において、充電電圧を高くしていくと、4.65VではO3型結晶構造から擬スピネル型の結晶構造に変化する領域が生じると考えられ、さらに4.7Vまで高くしても、H1−3型結晶構造が混在するものの、主として擬スピネル型の結晶構造を有すると考えられ、本発明の一態様の正極活物質は、高い充電電圧においても安定性が高いことが示唆された。
<連続充電耐性>
 次に、二次電池の連続充電耐性の評価を行った。まず、Sample(サンプル) 30乃至Sample(サンプル) 35を正極活物質としてそれぞれ用いた二次電池を、充電をCCCV(0.05C、4.5Vまたは4.6V、終止電流0.005C)、放電をCC(0.05C、2.5V)として25℃において2サイクル測定した。
 その後、60℃にて、充電をCCCV(0.05C)で行った。上限電圧は4.55Vまたは4.65Vとし、終止条件は、二次電池の電圧が上限電圧から0.01V引いた値(4.55Vであれば4.54V)未満に低下するまでの時間を測定した。二次電池の電圧が上限電圧から下回る場合には例えば、ショートなどの現象が生じている可能性がある。1Cは200mA/gとした。
 それぞれの二次電池について測定された時間を表3に示す。なお、各条件について二次電池を2つずつ作製した。表3には2つの結果の平均値を示す。
Figure JPOXMLDOC01-appb-T000004
 またSample(サンプル) 30、Sample(サンプル) 32、Sample(サンプル) 34およびSample(サンプル) 35を用いた結果について、充電電圧を4.55Vとした場合の時間−電流特性を図36(A)に、充電電圧を4.65Vとした場合の時間−電流特性を図36(B)に、それぞれ示す。
 アルミニウムの添加を行うことにより、電圧降下が生じるまでの時間が長く、連続充電の耐性が向上することが示唆された。またニッケルのみの添加を行う場合に比べ、ニッケルとアルミニウムとを添加することにより、連続充電に対する耐性の向上が顕著にみられた。
<サイクル特性>
 次に、Sample(サンプル) 30、Sample(サンプル) 32、Sample(サンプル) 34およびSample(サンプル) 35を用いた二次電池についてサイクル特性の評価を行った。まず、充電をCCCV(0.05C、4.6V、終止電流0.005C)、放電をCC(0.05C、2.5V)として25℃において2サイクル測定した。その後、25℃において、充電をCCCV(0.2C、4.6V、終止電流0.02C)、放電をCC(0.2C、2.5V)で繰り返し充放電を行い、サイクル特性を評価した。
 サイクル特性の結果を図37に示す。図37の横軸はサイクル、縦軸は放電容量を示す。また、図38(A)にはSample(サンプル) 32、図38(B)にはSample(サンプル) 34、図38(C)にはSample(サンプル) 35の初回の充放電カーブを示す。ニッケルの添加により初期容量の向上がみられた(Sample(サンプル) 34)。また、ニッケルやアルミニウムを添加することにより、サイクルに伴う容量減少が抑制されることが示唆され、特に、ニッケルとアルミニウムを添加した条件(Sample(サンプル) 35)において、より優れた結果が得られた。
 本実施例では、直流抵抗測定により正極の評価を行った。
<二次電池の作製>
 実施例1に示すSample(サンプル) 11を正極活物質として用い、正極を作製した。正極活物質、カーボンブラックおよびPVDFを活物質:カーボンブラック:PVDF=90:5:5(重量比)で混合したスラリーを集電体に塗工したものを用いた。スラリーの溶媒としてNMPを用いた。
 集電体にスラリーを塗工した後、溶媒を揮発させた。その後、210kN/mで加圧を行った後、さらに1467kN/mで加圧を行った。以上の工程により、正極を得た。正極の担持量はおよそ20mg/cmとした。
 作製した正極を用いて、CR2032タイプ(直径20mm高さ3.2mm)のコイン型の二次電池を作製した。
 対極にはリチウム金属を用いた。
 電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)で混合されたものを用いた。なお、サイクル特性の評価を行った二次電池については、電解液にビニレンカーボネート(VC)を2wt%添加した。
 セパレータには厚さ25μmのポリプロピレンを用いた。
 正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いた。
<充放電サイクル試験>
 直流抵抗は、充放電サイクル試験を行う前、および充放電サイクル試験を50サイクル行った後に測定した。充放電サイクル試験は実施例1に示す条件を参照した。
<直流抵抗測定>
 次に、作製した二次電池を用いて直流抵抗測定を行った。測定装置は電気化学測定システム 株式会社北斗電工 HJ1001SM8A型を用いた。
 まず、25℃で4.5VまでCCCVで充電を行った後、休止を20分間行った。次に、3.0VまでCC放電を行った後、休止を20分間行った。測定で得られた放電容量を基準とし、SOC条件を振って以下の通り、直流抵抗測定を行った。
 まず、25℃において、4.5VまでCCCVで充電を行った。次に、放電を行い、SOCが70%、20%、および10%の3つの状態のそれぞれにおいて、直流抵抗測定を行った。
 それぞれのSOCにおいて、放電容量が所定のSOCに到達した後に電流を一定時間流し、直流抵抗を求めた。得られた直流抵抗を表4に示す。
Figure JPOXMLDOC01-appb-T000005
 SOCが小さいほど、直流抵抗が大きくなる傾向がみられた。また、サイクル試験を行った後には直流抵抗が1.3倍から1.4倍ほど増加する様子がみられた。
 本実施例では、本発明の一態様の正極活物質が有する粒子の断面TEM−EDX分析を行った。
 FIB(Focused Ion Beam System:集束イオンビーム加工観察装置)により各サンプルを薄片化加工した後、TEM像を観察した。図39(A)には実施例2で作製したSample(サンプル) 35の断面TEM像を示す。
<TEM−EDX分析>
 図39(A)において、破線で囲んだ箇所のTEM−EDX分析を行った。分析は、粒子の表面から内部にかけて線状に分析を行った。線が表面に概略垂直になるようにした。図39(B)には、EDXの線分析の結果を示す。表面近傍においては、相対的に、アルミニウムの濃度が高くコバルトの濃度が低くなる傾向がみられた。またマグネシウムも表面近傍での濃度の上昇が示唆された。このことから、正極活物質が有する粒子において、アルミニウム、マグネシウム、等が粒子表面において構造の安定化に寄与している可能性がある。
 本実施例では、本発明の一態様の正極活物質を用いた正極を有する二次電池を作製し、二次電池の充電後の正極のXRDを評価した。
 実施例2で作製したSample(サンプル) 30およびSample(サンプル) 35を用いてそれぞれ正極を作製し、それぞれの正極を用いて二次電池をそれぞれ作製した。正極の作製および二次電池の作製は、実施例2に示した作製方法を用いた。
<充電後の正極のXRD>
 次に、作製したそれぞれの二次電池を4.6Vまたは4.65Vのいずれかを選んでCCCV充電した。具体的には45℃において、各電圧まで0.2Cで定電流充電した後、電流値が0.02Cとなるまで定電圧充電した。なおここでは1Cは191mA/gとした。そして充電状態の二次電池をアルゴン雰囲気のグローブボックス内で解体して正極を取り出し、DMC(ジメチルカーボネート)で洗浄して電解液を取り除いた。そしてアルゴン雰囲気の密閉容器に封入し、XRD解析を行った。
 図40(A)、(B)にはXRDの結果を示す。高い充電電圧においてはSample(サンプル)30ではH1−3型結晶構造を示唆するピークに加えて、20.9°近傍および36.8°近傍のピークが顕著に観測される。20.9°近傍および36.8°近傍のピークはCoOに起因すると示唆され、リチウムが脱離し、結晶構造が崩れた不安定な状態になっていると考えられる。対して、Sample(サンプル) 35では擬スピネル構造が示唆され、高い充電電圧においても安定であることが示唆された。
100:正極活物質、100A:正極活物質、100A_1:正極活物質、100A_2:正極活物質、100A_3:正極活物質、100C:正極活物質、200:活物質層、201:グラフェン化合物、211a:正極、211b:負極、212a:リード、212b:リード、214:セパレータ、215a:接合部、215b:接合部、217:固定部材、250:二次電池、251:外装体、261:折り曲げ部、262:シール部、263:シール部、271:稜線、272:谷線、273:空間、300:二次電池、301:正極缶、302:負極缶、303:ガスケット、304:正極、305:正極集電体、306:正極活物質層、307:負極、308:負極集電体、309:負極活物質層、310:セパレータ、500:二次電池、501:正極集電体、502:正極活物質層、503:正極、504:負極集電体、505:負極活物質層、506:負極、507:セパレータ、508:電解液、509:外装体、510:正極リード電極、511:負極リード電極、600:二次電池、601:正極キャップ、602:電池缶、603:正極端子、604:正極、605:セパレータ、606:負極、607:負極端子、608:絶縁板、609:絶縁板、611:PTC素子、612:安全弁機構、613:導電板、614:導電板、615:モジュール、616:導線、617:温度制御装置、900:回路基板、901:原料、902:混合物、903:混合物、904:混合物、910:ラベル、911:端子、912:回路、913:二次電池、914:アンテナ、916:層、917:層、918:アンテナ、920:表示装置、921:センサ、922:端子、930:筐体、930a:筐体、930b:筐体、931:負極、932:正極、933:セパレータ、950:捲回体、951:端子、952:端子、980:二次電池、981:フィルム、982:フィルム、993:捲回体、994:負極、995:正極、996:セパレータ、997:リード電極、998:リード電極、7100:携帯表示装置、7101:筐体、7102:表示部、7103:操作ボタン、7104:二次電池、7200:携帯情報端末、7201:筐体、7202:表示部、7203:バンド、7204:バックル、7205:操作ボタン、7206:入出力端子、7207:アイコン、7300:表示装置、7304:表示部、7400:携帯電話機、7401:筐体、7402:表示部、7403:操作ボタン、7404:外部接続ポート、7405:スピーカ、7406:マイク、7407:二次電池、7500:電子タバコ、7501:アトマイザ、7502:カートリッジ、7504:二次電池、8000:表示装置、8001:筐体、8002:表示部、8003:スピーカ部、8004:二次電池、8021:充電装置、8022:ケーブル、8024:二次電池、8100:照明装置、8101:筐体、8102:光源、8103:二次電池、8104:天井、8105:側壁、8106:床、8107:窓、8200:室内機、8201:筐体、8202:送風口、8203:二次電池、8204:室外機、8300:電気冷凍冷蔵庫、8301:筐体、8302:冷蔵室用扉、8303:冷凍室用扉、8304:二次電池、8400:自動車、8401:ヘッドライト、8406:電気モーター、8500:自動車、8600:スクータ、8601:サイドミラー、8602:二次電池、8603:方向指示灯、8604:座席下収納、9600:タブレット型端末、9625:スイッチ、9627:スイッチ、9628:操作スイッチ、9629:留め具、9630:筐体、9630a:筐体、9630b:筐体、9631:表示部、9631a:表示部、9631b:表示部、9633:太陽電池、9634:充放電制御回路、9635:蓄電体、9636:DCDCコンバータ、9637:コンバータ、9640:可動部

Claims (7)

  1.  リチウムと、コバルトと、マグネシウムと、酸素と、フッ素と、を有し、
     CuKα1線による粉末X線回折により得られるパターンについてリートベルト解析を行ったとき、R−3mの空間群を有する結晶構造であり、かつ、2.814×10−10mより大きく2.817×10−10mより小さく、かつc軸の格子定数が14.05×10−10mより大きく14.07×10−10mより小さく、
     X線光電子分光で分析したとき、コバルトの濃度を1とした時のマグネシウムの濃度の相対値は1.6以上6.0以下である正極活物質。
  2.  リチウムと、コバルトと、マグネシウムと、酸素と、フッ素と、を有する正極活物質であり、
     前記正極活物質を正極に用い、リチウム金属を負極に用いたリチウムイオン二次電池において、
     25℃環境下において電池電圧が4.7Vとなるまで定電流充電し、その後電流値が0.01Cとなるまで定電圧充電した後、前記正極をCuKα1線による粉末X線回折で分析したとき、2θが19.10°以上19.50°以下である第1の回折ピークと、2θが45.50°以上45.60°以下である第2の回折ピークと、を有する正極活物質。
  3.  請求項1において、
     前記正極活物質を正極に用い、リチウム金属を負極に用いたリチウムイオン二次電池において、
     25℃環境下において電池電圧が4.7Vとなるまで定電流充電し、その後電流値が0.01Cとなるまで定電圧充電した後、前記正極をCuKα1線による粉末X線回折で分析したとき、2θが19.10°以上19.50°以下である第1の回折ピークと、2θが45.50°以上45.60°以下である第2の回折ピークと、を有する正極活物質。
  4.  請求項1乃至請求項3のいずれか一において、
     X線光電子分光で測定されるマグネシウムの濃度は、コバルトの濃度を1としたとき、1.6以上6.0以下である正極活物質。
  5.  請求項1乃至請求項4のいずれか一において、
     ニッケル、アルミニウム、およびリンを有する前記正極活物質。
  6.  リチウム源と、フッ素源と、マグネシウム源と、を混合し第1の混合物を作製する第1のステップと、
     リチウムと、コバルトと、酸素と、を有する複合酸化物と、前記第1の混合物と、を混合し第2の混合物を作製する第2のステップと、
     前記第2の混合物を加熱し、第3の混合物を作製する第3のステップと、
     前記第3の混合物と、アルミニウム源と、を混合し第4の混合物を作製する第4のステップと、
     前記第4の混合物を加熱し、第5の混合物を作製する第5のステップと、を有する正極活物質の作製方法であり、
     前記第4のステップにおいて前記アルミニウム源が有するアルミニウムの原子数は、前記第3の混合物が有するコバルトの原子数の0.001倍以上0.02倍以下である正極活物質の作製方法。
  7.  請求項6において、
     前記第1のステップの前記マグネシウム源が有するマグネシウムの原子数は、前記第2のステップの前記複合酸化物が有するコバルトの原子数の0.005倍以上0.05倍以下である正極活物質の作製方法。
PCT/IB2019/056304 2018-08-03 2019-07-24 正極活物質および正極活物質の作製方法 WO2020026078A1 (ja)

Priority Applications (22)

Application Number Priority Date Filing Date Title
KR1020227018570A KR20220080206A (ko) 2018-08-03 2019-07-24 양극 활물질 및 양극 활물질의 제작 방법
CN202210524402.6A CN114853084A (zh) 2018-08-03 2019-07-24 锂离子二次电池
CN201980004083.2A CN111095631A (zh) 2018-08-03 2019-07-24 正极活性物质及正极活性物质的制造方法
JP2020533884A JPWO2020026078A1 (ja) 2018-08-03 2019-07-24
DE112019003909.1T DE112019003909T5 (de) 2018-08-03 2019-07-24 Positivelektrodenaktivmaterial und Herstellungsverfahren eines Positivelektrodenaktivmaterials
KR1020217003600A KR20210035206A (ko) 2018-08-03 2019-07-24 양극 활물질 및 양극 활물질의 제작 방법
KR1020237000191A KR20230009528A (ko) 2018-08-03 2019-07-24 양극 활물질 및 양극 활물질의 제작 방법
CN202210529086.1A CN115000365A (zh) 2018-08-03 2019-07-24 锂离子二次电池的制造方法
CN202211624446.2A CN115995554A (zh) 2018-08-03 2019-07-24 锂离子二次电池
CN202211626439.6A CN115863743A (zh) 2018-08-03 2019-07-24 锂离子二次电池
US17/264,701 US20210313571A1 (en) 2018-08-03 2019-07-24 Positive electrode active material and manufacturing method of positive electrode active material
KR1020237000192A KR20230010816A (ko) 2018-08-03 2019-07-24 양극 활물질 및 양극 활물질의 제작 방법
KR1020227018571A KR20220082091A (ko) 2018-08-03 2019-07-24 양극 활물질 및 양극 활물질의 제작 방법
JP2022067861A JP7410208B2 (ja) 2018-08-03 2022-04-15 リチウムイオン二次電池の作製方法
JP2022067858A JP7451592B2 (ja) 2018-08-03 2022-04-15 リチウムイオン二次電池
US17/727,300 US20220246931A1 (en) 2018-08-03 2022-04-22 Positive electrode active material and manufacturing method of positive electrode active material
US17/729,236 US20220263089A1 (en) 2018-08-03 2022-04-26 Positive electrode active material and manufacturing method of positive electrode active material
JP2022090094A JP7344341B2 (ja) 2018-08-03 2022-06-02 リチウムイオン二次電池の作製方法
JP2022184036A JP2023018014A (ja) 2018-08-03 2022-11-17 リチウムイオン二次電池
JP2022192675A JP2023021181A (ja) 2018-08-03 2022-12-01 リチウムイオン二次電池
JP2022192677A JP2023021182A (ja) 2018-08-03 2022-12-01 リチウムイオン二次電池
JP2023006378A JP7401701B2 (ja) 2018-08-03 2023-01-19 リチウムイオン二次電池の作製方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-146603 2018-08-03
JP2018146603 2018-08-03
JP2018-155213 2018-08-22
JP2018155213 2018-08-22
JP2018195850 2018-10-17
JP2018-195850 2018-10-17

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US17/264,701 A-371-Of-International US20210313571A1 (en) 2018-08-03 2019-07-24 Positive electrode active material and manufacturing method of positive electrode active material
US17/727,300 Continuation US20220246931A1 (en) 2018-08-03 2022-04-22 Positive electrode active material and manufacturing method of positive electrode active material
US17/729,236 Continuation US20220263089A1 (en) 2018-08-03 2022-04-26 Positive electrode active material and manufacturing method of positive electrode active material

Publications (1)

Publication Number Publication Date
WO2020026078A1 true WO2020026078A1 (ja) 2020-02-06

Family

ID=69231095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/056304 WO2020026078A1 (ja) 2018-08-03 2019-07-24 正極活物質および正極活物質の作製方法

Country Status (7)

Country Link
US (3) US20210313571A1 (ja)
JP (8) JPWO2020026078A1 (ja)
KR (5) KR20220080206A (ja)
CN (5) CN111095631A (ja)
DE (1) DE112019003909T5 (ja)
TW (3) TW202320376A (ja)
WO (1) WO2020026078A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220055428A (ko) 2020-10-26 2022-05-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 이차 전지 및 전자 기기
WO2022090844A1 (ja) * 2020-10-26 2022-05-05 株式会社半導体エネルギー研究所 正極活物質の作製方法、正極、二次電池、電子機器、蓄電システムおよび車両
KR20220152161A (ko) 2021-05-07 2022-11-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질, 이차 전지, 전자 기기, 및 차량
WO2023281346A1 (ja) * 2021-07-09 2023-01-12 株式会社半導体エネルギー研究所 正極活物質
WO2023209477A1 (ja) * 2022-04-25 2023-11-02 株式会社半導体エネルギー研究所 リチウムイオン電池、及び電子機器
KR20230160287A (ko) 2021-03-22 2023-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전지, 전자 기기, 및 차량
KR20230168978A (ko) 2022-06-08 2023-12-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전지
KR20230171953A (ko) 2021-04-16 2023-12-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 이차 전지, 전자 기기, 및 차량
DE102023119314A1 (de) 2022-07-29 2024-02-01 Semiconductor Energy Laboratory Co., Ltd. Sekundärbatterie
WO2024023625A1 (ja) * 2022-07-29 2024-02-01 株式会社半導体エネルギー研究所 電池
KR20240025462A (ko) 2022-08-18 2024-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 및 이차 전지

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117096337A (zh) * 2017-05-19 2023-11-21 株式会社半导体能源研究所 锂离子二次电池
CN112885993B (zh) * 2021-01-15 2022-07-29 北京泰丰先行新能源科技有限公司 一种包覆纳米磷酸钴锂的钴酸锂正极材料及制备方法
WO2024074938A1 (ja) * 2022-10-04 2024-04-11 株式会社半導体エネルギー研究所 二次電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231246A (ja) * 2000-11-29 2002-08-16 Toda Kogyo Corp 非水電解質二次電池用正極活物質及びその製造法
JP2003221235A (ja) * 2001-11-20 2003-08-05 Nippon Chem Ind Co Ltd リチウムコバルト系複合酸化物、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2003229129A (ja) * 2001-11-30 2003-08-15 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
JP2012508444A (ja) * 2008-11-10 2012-04-05 エルジー・ケム・リミテッド 高電圧における改善された特性を示すカソード活物質
WO2012091015A1 (ja) * 2010-12-27 2012-07-05 株式会社Gsユアサ 非水電解質二次電池用正極活物質、その正極活物質の製造方法、非水電解質二次電池用電極、非水電解質二次電池及びその二次電池の製造方法
JP2014116308A (ja) * 2012-12-06 2014-06-26 Samsung Fine Chemicals Co Ltd 正極活物質、その製造方法およびそれを含むリチウム二次電池
JP2014523840A (ja) * 2011-06-17 2014-09-18 ユミコア コア材料の元素と1種類以上の金属酸化物との混合物でコーティングされたリチウム金属酸化物粒子
WO2018026153A1 (ko) * 2016-08-02 2018-02-08 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4022937B2 (ja) * 1997-04-24 2007-12-19 宇部興産株式会社 リチウムイオン非水電解質二次電池
JP3777988B2 (ja) 2001-01-23 2006-05-24 日亜化学工業株式会社 リチウム二次電池用正極活物質及びその製造方法
TW565961B (en) * 2001-11-30 2003-12-11 Sanyo Electric Co Nonaqueous electrolyte secondary battery and its manufacturing method
JP4896034B2 (ja) * 2005-11-02 2012-03-14 Agcセイミケミカル株式会社 リチウム含有複合酸化物及びその製造方法
JP4736943B2 (ja) 2006-05-17 2011-07-27 日亜化学工業株式会社 リチウム二次電池用正極活物質およびその製造方法
EP2351124A4 (en) * 2008-09-30 2012-08-29 Envia Systems Inc BATTERY MATERIALS FOR POSITIVE ELECTRODE POSITIVE ELECTRODE METAL OXIDE RICH IN LITHIUM DOPED BY FLUOR OF HIGH SPECIFIC CAPACITY AND BATTERY CORRESPONDING
JP5526636B2 (ja) * 2009-07-24 2014-06-18 ソニー株式会社 非水電解質二次電池の正極活物質、非水電解質二次電池の正極および非水電解質二次電池
JP5644176B2 (ja) * 2009-11-18 2014-12-24 ソニー株式会社 正極活物質、およびリチウムイオン二次電池
JP5149927B2 (ja) 2010-03-05 2013-02-20 株式会社日立製作所 リチウム二次電池用正極材料、リチウム二次電池及びそれを用いた二次電池モジュール
JP2013048061A (ja) * 2011-08-29 2013-03-07 Sony Corp 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CN102779976B (zh) * 2011-10-10 2015-05-20 北大先行泰安科技产业有限公司 一种钴酸锂基锂离子电池正极材料的制备方法
KR102012304B1 (ko) * 2012-02-16 2019-08-20 가부시키가이샤 지에스 유아사 비수 전해질 2차 전지용 활물질, 그 활물질의 제조 방법, 비수 전해질 2차 전지용 전극 및 비수 전해질 2차 전지
KR20150095451A (ko) * 2014-02-13 2015-08-21 삼성에스디아이 주식회사 리튬전지
EP3168908B1 (en) 2014-07-07 2019-01-23 Hitachi Metals, Ltd. Lithium ion secondary battery positive electrode material, lithium ion secondary battery positive electrode and lithium ion secondary battery that use same, and method for manufacturing lithium ion secondary battery positive electrode material
JP6587804B2 (ja) * 2015-01-23 2019-10-09 住友化学株式会社 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
CN108140830A (zh) * 2015-11-10 2018-06-08 Nec能源元器件株式会社 锂离子二次电池及其制造方法
CN110957479A (zh) * 2016-07-05 2020-04-03 株式会社半导体能源研究所 正极活性物质
KR20190065324A (ko) * 2016-10-12 2019-06-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
US20180145317A1 (en) * 2016-11-18 2018-05-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
JP6885724B2 (ja) * 2016-12-28 2021-06-16 株式会社半導体エネルギー研究所 リチウムイオン二次電池及び正極活物質
CN110998931B (zh) 2017-08-30 2023-04-04 株式会社村田制作所 正极活性物质、正极、电池、电池包、电子设备、电动车辆、蓄电装置以及电力系统
CN107768619B (zh) * 2017-09-26 2020-04-28 格林美(无锡)能源材料有限公司 一种高容量单晶高镍锂电池正极材料及其制备方法
KR20190085356A (ko) * 2018-01-10 2019-07-18 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
JP6992897B2 (ja) 2018-06-21 2022-01-13 株式会社村田製作所 正極活物質および電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231246A (ja) * 2000-11-29 2002-08-16 Toda Kogyo Corp 非水電解質二次電池用正極活物質及びその製造法
JP2003221235A (ja) * 2001-11-20 2003-08-05 Nippon Chem Ind Co Ltd リチウムコバルト系複合酸化物、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2003229129A (ja) * 2001-11-30 2003-08-15 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
JP2012508444A (ja) * 2008-11-10 2012-04-05 エルジー・ケム・リミテッド 高電圧における改善された特性を示すカソード活物質
WO2012091015A1 (ja) * 2010-12-27 2012-07-05 株式会社Gsユアサ 非水電解質二次電池用正極活物質、その正極活物質の製造方法、非水電解質二次電池用電極、非水電解質二次電池及びその二次電池の製造方法
JP2014523840A (ja) * 2011-06-17 2014-09-18 ユミコア コア材料の元素と1種類以上の金属酸化物との混合物でコーティングされたリチウム金属酸化物粒子
JP2014116308A (ja) * 2012-12-06 2014-06-26 Samsung Fine Chemicals Co Ltd 正極活物質、その製造方法およびそれを含むリチウム二次電池
WO2018026153A1 (ko) * 2016-08-02 2018-02-08 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022090844A1 (ja) * 2020-10-26 2022-05-05 株式会社半導体エネルギー研究所 正極活物質の作製方法、正極、二次電池、電子機器、蓄電システムおよび車両
KR20220055428A (ko) 2020-10-26 2022-05-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 이차 전지 및 전자 기기
KR20230027121A (ko) 2020-10-26 2023-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 이차 전지 및 전자 기기
KR20230027122A (ko) 2020-10-26 2023-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 이차 전지 및 전자 기기
KR20230160287A (ko) 2021-03-22 2023-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전지, 전자 기기, 및 차량
KR20230171953A (ko) 2021-04-16 2023-12-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 이차 전지, 전자 기기, 및 차량
KR20220152161A (ko) 2021-05-07 2022-11-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질, 이차 전지, 전자 기기, 및 차량
WO2023281346A1 (ja) * 2021-07-09 2023-01-12 株式会社半導体エネルギー研究所 正極活物質
WO2023209477A1 (ja) * 2022-04-25 2023-11-02 株式会社半導体エネルギー研究所 リチウムイオン電池、及び電子機器
KR20230168978A (ko) 2022-06-08 2023-12-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전지
DE102023119314A1 (de) 2022-07-29 2024-02-01 Semiconductor Energy Laboratory Co., Ltd. Sekundärbatterie
WO2024023625A1 (ja) * 2022-07-29 2024-02-01 株式会社半導体エネルギー研究所 電池
KR20240016919A (ko) 2022-07-29 2024-02-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 이차 전지
KR20240025462A (ko) 2022-08-18 2024-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 및 이차 전지

Also Published As

Publication number Publication date
JP2023033572A (ja) 2023-03-10
KR20210035206A (ko) 2021-03-31
JPWO2020026078A1 (ja) 2020-02-06
JP2023018014A (ja) 2023-02-07
TW202316704A (zh) 2023-04-16
CN115995554A (zh) 2023-04-21
JP7410208B2 (ja) 2024-01-09
JP2022100355A (ja) 2022-07-05
JP7344341B2 (ja) 2023-09-13
CN114853084A (zh) 2022-08-05
JP7401701B2 (ja) 2023-12-19
KR20230009528A (ko) 2023-01-17
JP2023021181A (ja) 2023-02-09
JP2022087324A (ja) 2022-06-09
TW202017868A (zh) 2020-05-16
DE112019003909T5 (de) 2021-04-15
JP7451592B2 (ja) 2024-03-18
US20220246931A1 (en) 2022-08-04
KR20220082091A (ko) 2022-06-16
CN115000365A (zh) 2022-09-02
TW202320376A (zh) 2023-05-16
US20210313571A1 (en) 2021-10-07
KR20220080206A (ko) 2022-06-14
JP2023021182A (ja) 2023-02-09
US20220263089A1 (en) 2022-08-18
KR20230010816A (ko) 2023-01-19
CN115863743A (zh) 2023-03-28
JP2022116279A (ja) 2022-08-09
CN111095631A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
JP7301206B2 (ja) リチウムイオン二次電池
JP6741385B2 (ja) リチウムイオン二次電池の正極活物質の作製方法
JP7410208B2 (ja) リチウムイオン二次電池の作製方法
JP2020140954A (ja) 正極活物質および正極活物質の作製方法、及び二次電池
WO2019243952A1 (ja) 正極活物質、正極、および二次電池、ならびに正極の作製方法
WO2020065441A1 (ja) リチウムイオン二次電池用正極材、二次電池、電子機器および車両、並びにリチウムイオン二次電池用正極材の作製方法
WO2020104881A1 (ja) 正極活物質、および二次電池
WO2020099978A1 (ja) 正極活物質、二次電池、電子機器及び車両
WO2020201874A1 (ja) 正極活物質、および二次電池
WO2020261040A1 (ja) 正極活物質、正極、二次電池、およびこれらの作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533884

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217003600

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19845492

Country of ref document: EP

Kind code of ref document: A1