WO2018026153A1 - 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2018026153A1
WO2018026153A1 PCT/KR2017/008244 KR2017008244W WO2018026153A1 WO 2018026153 A1 WO2018026153 A1 WO 2018026153A1 KR 2017008244 W KR2017008244 W KR 2017008244W WO 2018026153 A1 WO2018026153 A1 WO 2018026153A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
secondary battery
lithium secondary
Prior art date
Application number
PCT/KR2017/008244
Other languages
English (en)
French (fr)
Inventor
박영진
김창욱
이은성
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2018026153A1 publication Critical patent/WO2018026153A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • It relates to a cathode active material for a lithium secondary battery and a lithium secondary battery comprising the same.
  • Lithium secondary batteries are mainly used as driving power sources for mobile information terminals such as mobile phones, laptops, and smart phones.
  • the lithium secondary battery is composed of a positive electrode, a negative electrode and an electrolyte.
  • the positive electrode active material of the positive electrode is composed of lithium and transition metal having a structure capable of intercalation of lithium ions such as LiCoO 2 , LiMn 2 O 4 , LiNi 1 - x Co x O 2 (0 ⁇ x ⁇ 1), etc. Oxides are mainly used. Among them, a lithium cobalt oxide (LiCoO 2) is most widely used as a cathode active material.
  • O3 ⁇ H1-3 ⁇ O1 phase transition means Li x CoO 2 when charging and discharging
  • O 3 (ABCABC type, layered rock salt structure) is x> 0.1
  • O 1 (ABAB type) is shown in FIG. 1.
  • FIG. 1 also shows O octahedra surroding Co surrounding Co, edge sharing O octahedra in Li plane on the Li side and O octaheadra on the shuffled Li side. The face sharing O octahedra in shuffled Li plane is shown.
  • One embodiment is to provide a positive electrode active material for a lithium secondary battery having excellent battery characteristics such as mixture density and high temperature, as well as excellent high voltage characteristics.
  • Another embodiment is to provide a lithium secondary battery including the positive electrode active material.
  • One embodiment of the present invention is lithium nickel cobalt manganese oxide of the general formula (1) First positive electrode active material; And a lithium cobalt-based oxide second positive electrode active material of Formula 2, wherein the average particle diameter (D50) of the first positive electrode active material is smaller than the average particle diameter (D50) of the second positive electrode active material.
  • M 1 is K, Zr, W, Mg, Ti, Al or a combination thereof.
  • the average particle diameter (D50) of the first positive electrode active material may be 2 ⁇ m to 4 ⁇ m.
  • the average particle diameter (D50) of the second positive electrode active material may be 16 ⁇ m to 24 ⁇ m.
  • the ratio of the average particle diameter (D50) of the second positive electrode active material to the average particle diameter (D50) of the first positive electrode active material is It can be 4 to 12.
  • the volume ratio of the second cathode active material to the volume of the first cathode active material may be 3 to 9.
  • the mixing ratio of the first positive electrode active material and the second positive electrode active material may be 1: 9 to 1: 3.
  • An atomic ratio of Mg / Co in the second cathode active material may be 0.0035 to 0.01.
  • the positive electrode including the positive electrode active material; A negative electrode including a negative electrode active material; And it provides a lithium secondary battery comprising an electrolyte.
  • the positive electrode active material for a rechargeable lithium battery according to one embodiment may exhibit an excellent effect of battery characteristics such as mixture density and high temperature, as well as excellent high voltage characteristics.
  • FIG. 1 is a view schematically showing the structure of a lithium secondary battery according to one embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a rechargeable lithium battery according to one embodiment of the present invention.
  • FIG. 3 is a graph showing capacity retention characteristics of batteries prepared according to Comparative Examples 1, 2, and 5.
  • FIG. 3 is a graph showing capacity retention characteristics of batteries prepared according to Comparative Examples 1, 2, and 5.
  • FIG. 4 is a graph showing capacity retention characteristics of batteries prepared according to Examples 1 to 4 and Comparative Example 2.
  • FIG. 4 is a graph showing capacity retention characteristics of batteries prepared according to Examples 1 to 4 and Comparative Example 2.
  • FIG. 5 is a graph showing capacity retention characteristics of batteries prepared according to Comparative Examples 2, 5, and 9.
  • FIG. 5 is a graph showing capacity retention characteristics of batteries prepared according to Comparative Examples 2, 5, and 9.
  • a cathode active material for a lithium secondary battery may include a lithium nickel cobalt manganese oxide first cathode active material of Formula 1; And a lithium cobalt-based oxide second cathode active material of Formula 2 below.
  • M 1 is K, Zr, W, Mg, Ti, Al or a combination thereof.
  • the second positive electrode active material is one in which Mg replaces a part of Li, that is, is inserted into a Li site.
  • Mg When Mg is inserted into the Li site, when charged in the high voltage section using the positive electrode active material, Mg supports the layered structure even if all of the lithium ions are released in the lithium layer, thereby forming a layered O3 structure (ABCABC type, layered rock salt) Since the structure is further stabilized, the structure of the second positive electrode active material can be well maintained, and the high voltage characteristic can be further improved.
  • Mg when the content of Mg is less than 4 mol% (u is less than 0.04) with respect to 100 mol% of the total compound of Formula 2, Mg is inserted into the Li site, if Mg content If the content is 4 mol% or more, Mg may be inserted at the Co site, and thus the effect of Mg being inserted at the Li site cannot be obtained.
  • the M 2 serves to lower the oxidation number of Co, thereby maintaining a relatively stable structure compared to pristine LiCoO 2 during charge and discharge.
  • a positive electrode having a more stable structure can be provided. In particular, this effect can be most appropriately obtained when using F as M 2 .
  • the average particle diameter (D50) refers to the diameter of the particles having a cumulative volume of 50% by volume in the particle size distribution.
  • the average particle diameter (D50) of the first positive electrode active material is preferably smaller than the average particle diameter (D50) of the second positive electrode active material.
  • the average particle diameter (D50) of the first positive electrode active material is larger than the average particle diameter (D50) of the second positive electrode active material, since the true density of the first positive electrode active material is larger than that of the second positive electrode active material, a positive electrode is manufactured by using the same. In this case, the mixture density may decrease.
  • the average particle diameter (D50) of the first positive electrode active material means an average particle diameter (D50) of secondary particles formed by assembling primary particles of the compound represented by Chemical Formula 1.
  • the ratio of the average particle diameter (D50) of the second positive electrode active material to the average particle diameter (D50) of the first positive electrode active material is It can be 4 to 12.
  • the ratio of the average particle diameter (D50) of the second positive electrode active material to the average particle diameter (D50) of the first positive electrode active material is included in the above range, a high mixture density may be realized.
  • the volume ratio of the second cathode active material to the volume of the first cathode active material may be 3 to 9.
  • the volume ratio of the second positive electrode active material to the volume of the first positive electrode active material is included in the range, the mixture density may be further improved.
  • the mixing ratio of the first positive electrode active material and the second positive electrode active material may be 1: 9 to 1: 3. In another embodiment, the mixing ratio of the first positive electrode active material and the second positive electrode active material may be 1: 9 to 1: 4. When the mixing ratio of the first positive electrode active material and the second positive electrode active material is included in the above range, the mixture density may be improved.
  • a compound represented by Chemical Formula 1 is suitable, and in particular, as shown in Chemical Formula 1, the content of Ni is 60 mol% or less (x is 0.6 or less) based on 100 mol% of the entire compound of Chemical Formula 1 It is appropriate to use a low Ni compound of), which is more excellent in stability.
  • the low Ni compound is mixed with the second positive electrode active material represented by Formula 2, since the low Ni compound has no phase transition at high voltage, a positive electrode active material having improved thermal stability as well as high voltage stability may be obtained.
  • An atomic ratio of Mg / Co in the second cathode active material may be 0.0035 to 0.01.
  • the high voltage region may be in a range of, for example, 4.55V (vs Li / Li + ) or more.
  • the first positive electrode active material may include Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 , Li (Ni 0.4 Co 0.3 Mn 0.3 ) O 2 , and Li (Ni 0.5 Co 0.2 Mn 0.3 ) O 2 or a combination thereof.
  • specific examples of the second positive electrode active material include Li 0 . 9925 Mg 0 . 0075 CoO 2 , Li 0 . 995 Mg 0 . 005 CoO 2, Li 0.99375 Mg 0.00625 CoO 2, Li 0. 99625 Mg 0 . 00375 CoO 2 , Li 0 . 99 Mg 0 . 01 CoO 2 Or combinations thereof.
  • Another embodiment of the present invention provides a lithium secondary battery including a cathode including the cathode active material, an anode including an anode active material, and an electrolyte.
  • the positive electrode includes a positive electrode active material layer and a current collector supporting the positive electrode active material layer.
  • the content of the cathode active material may be 90% by weight to 98% by weight based on the total weight of the cathode active material layer.
  • the cathode active material layer may further include a binder and a conductive material.
  • the content of the binder and the conductive material may be 1% by weight to 5% by weight based on the total weight of the positive electrode active material layer, respectively.
  • the binder adheres the positive electrode active material particles to each other well, and also serves to adhere the positive electrode active material to the current collector well.
  • Representative examples of the binder include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinylchloride, polyvinyl fluoride, polymers including ethylene oxide, polyvinylpyrroli Don, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like can be used, but is not limited thereto. .
  • the conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electron conductive material without causing chemical change in the battery.
  • the conductive material include carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or a conductive material containing a mixture of these.
  • Al may be used as the current collector, but is not limited thereto.
  • the negative electrode includes a negative electrode active material layer including a current collector and a negative electrode active material formed on the current collector.
  • the anode active material includes a material capable of reversibly intercalating / deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material doped and undoped with lithium, or a transition metal oxide.
  • any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used, and representative examples thereof include crystalline carbon. , Amorphous carbon or these can be used together.
  • the crystalline carbon include graphite such as amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon or hard carbon ( hard carbon), mesophase pitch carbide, calcined coke, and the like.
  • alloy of the lithium metal examples include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. Alloys of metals selected from can be used.
  • the lithium doped and undoped materials include Si, Si-C composites, SiO x (0 ⁇ x ⁇ 2), Si-Q alloy (Q is an alkali metal, alkaline earth metal, group 13 element, group 14 element, An element selected from the group consisting of Group 15 elements, Group 16 elements, transition metals, rare earth elements, and combinations thereof, not Si), Sn, SnO 2 , Sn-R alloys (wherein R is an alkali metal, an alkaline earth metal, Element selected from the group consisting of Group 13 elements, Group 14 elements, Group 15 elements, Group 16 elements, transition metals, rare earth elements, and combinations thereof, and not Sn).
  • SiO 2 can also be mixed and used.
  • the elements Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, One selected from the group consisting of S, Se, Te, Po, and a combination thereof can be used.
  • transition metal oxide examples include vanadium oxide, lithium vanadium oxide or lithium titanium oxide.
  • the content of the negative electrode active material in the negative electrode active material layer may be 95% by weight to 99% by weight with respect to the total weight of the negative electrode active material layer.
  • the negative electrode active material layer includes a binder, and optionally may further include a conductive material.
  • the content of the binder in the negative electrode active material layer may be 1% by weight to 5% by weight based on the total weight of the negative electrode active material layer.
  • 90 wt% to 98 wt% of the negative electrode active material, 1 wt% to 5 wt% of the binder, and 1 wt% to 5 wt% of the conductive material may be used.
  • the binder adheres the anode active material particles to each other well, and also serves to adhere the anode active material to the current collector well.
  • a water-insoluble binder, a water-soluble binder or a combination thereof can be used as the binder.
  • the water-insoluble binder includes polyvinyl chloride, carboxylated polyvinylchloride, polyvinyl fluoride, polymers including ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride , Polyethylene, polypropylene, polyamideimide, polyimide, or a combination thereof.
  • the water-soluble binder may include styrene-butadiene rubber, acrylated styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, acrylic rubber, butyl rubber, fluorine rubber, ethylene propylene copolymer, polyepichlorohydrin, poly Phosphazene, polyacrylonitrile, polystyrene, ethylene propylene diene copolymer, polyvinylpyridine, chlorosulfonated polyethylene, latex, polyester resin, acrylic resin, phenol resin, epoxy resin, polyvinyl alcohol and combinations thereof It may be.
  • SBR acrylated styrene-butadiene rubber
  • SBR acrylated styrene-butadiene rubber
  • acrylonitrile-butadiene rubber acrylic rubber, butyl rubber, fluorine rubber, ethylene propylene copolymer, polyepichlorohydrin, poly Phosphazene, polyacryl
  • a water-soluble binder When using a water-soluble binder as the negative electrode binder, it may further include a cellulose-based compound that can impart viscosity as a thickener.
  • a cellulose-based compound that can impart viscosity as a thickener.
  • carboxymethyl cellulose, hydroxypropylmethyl cellulose, methyl cellulose, these alkali metal salts, etc. can be used in mixture of 1 or more types. Na, K or Li may be used as the alkali metal.
  • the amount of the thickener used may be 0.1 parts by weight to 3 parts by weight based on 100 parts by weight of the negative electrode active material.
  • the conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electron conductive material without causing chemical change in the battery.
  • the conductive material include conductive materials such as carbonaceous materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fibers, metal powders such as copper, nickel, aluminum, and silver, and polyphenylene derivatives such as metallic materials such as metal fibers. Conductive materials including polymers or mixtures thereof can be used.
  • the current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof.
  • the electrolyte includes a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • non-aqueous organic solvent a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent may be used.
  • Examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), and ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC) and the like can be used.
  • the ester solvent may be methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, decanolide, mevalonolactone, and caprolactone. And the like can be used.
  • Dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc. may be used as the ether solvent.
  • cyclohexanone may be used as the ketone solvent.
  • ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent, and the aprotic solvent may be R-CN (R is a straight-chain, branched, or cyclic hydrocarbon group having 2 to 20 carbon atoms. Nitriles such as a double bond aromatic ring or ether bond), amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolane, and the like can be used. .
  • the organic solvents may be used alone or in combination of one or more, and the mixing ratio in the case of mixing one or more may be appropriately adjusted according to the desired battery performance, which can be widely understood by those skilled in the art. have.
  • the carbonate solvent it is preferable to use a mixture of cyclic carbonate and chain carbonate.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of 1: 1 to 1: 9, so that the performance of the electrolyte may be excellent.
  • the organic solvent may further include an aromatic hydrocarbon organic solvent in the carbonate solvent.
  • the carbonate solvent and the aromatic hydrocarbon organic solvent may be mixed in a volume ratio of 1: 1 to 30: 1.
  • aromatic hydrocarbon organic solvent an aromatic hydrocarbon compound of Formula 3 may be used.
  • R 1 to R 6 are the same as or different from each other and are selected from the group consisting of hydrogen, halogen, an alkyl group having 1 to 10 carbon atoms, a haloalkyl group, and a combination thereof.
  • aromatic hydrocarbon organic solvent examples include benzene, fluorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-tri Fluorobenzene, 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1 , 2,4-trichlorobenzene, iodobenzene, 1,2-dioodobenzene, 1,3-dioiobenzene, 1,4-dioiobenzene, 1,2,3-triiodobenzene, 1, 2,4-triiodobenzene, toluene, fluorotoluene, 2,3-difluorotoluene, 2,4-difluorotol, to
  • the electrolyte may further include vinylene carbonate or an ethylene carbonate-based compound of Formula 4 as a lifespan additive to improve battery life.
  • R 7 and R 8 are the same as or different from each other, and are selected from the group consisting of hydrogen, a halogen group, a cyano group (CN), a nitro group (NO 2 ), and an alkyl group having 1 to 5 fluorinated carbon atoms).
  • R 7 and R 8 At least one is selected from the group consisting of a halogen group, a cyano group (CN), a nitro group (NO 2 ), and a fluorinated alkyl group having 1 to 5 carbon atoms, provided that R 7 and R 8 are not all hydrogen.
  • ethylene carbonate-based compound examples include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate or fluoroethylene carbonate. Can be. In the case of further using such life improving additives, the amount thereof can be properly adjusted.
  • the lithium salt is a substance that dissolves in an organic solvent and acts as a source of lithium ions in the battery to enable the operation of a basic lithium secondary battery and to promote the movement of lithium ions between the positive electrode and the negative electrode.
  • Representative examples of such lithium salts are LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 2 C 2 F 5 ) 2 , Li (CF 3 SO 2 ) 2 N, LiN (SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ), where x and y are natural numbers, for example Supporting one or more selected from the group consisting of LiCl, LiI and LiB (C 2 O 4 ) 2 (lithium bis (oxalato) borate (LiBOB)); It is preferable to
  • a separator may exist between the positive electrode and the negative electrode.
  • the separator polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used, and polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene / poly It goes without saying that a mixed multilayer film such as a propylene three-layer separator can be used.
  • FIG. 2 is an exploded perspective view of a rechargeable lithium battery according to one embodiment of the present invention.
  • a lithium secondary battery according to an embodiment is described as an example of being rectangular, the present invention is not limited thereto, and may be applied to various types of batteries, such as a cylindrical shape and a pouch type.
  • the lithium secondary battery 100 includes an electrode assembly 40 wound through a separator 30 between the positive electrode 10 and the negative electrode 20, and the electrode assembly 40. It may include a case 50 is built.
  • the positive electrode 10, the negative electrode 20, and the separator 30 may be impregnated with an electrolyte (not shown).
  • Ni 0 prepared by the coprecipitation reaction method . 5 Co 0 .
  • a LiNi 0.5 Co 0.2 Mn 0.3 O 2 first positive electrode active material having a (D50) of 3.5 ⁇ m was prepared. At this time, the atmosphere was injected into the oxidation atmosphere at a flow rate of 50 l / min.
  • Lithium carbonate, cobalt oxide and magnesium carbonate were dry mixed in a Hansel mixer for about 3 minutes to obtain a mixture of 0.995: 1.00: 0.005 in a Li: Co: Mg molar ratio.
  • the resulting mixture was calcined at about 1000 ° C. in an air atmosphere for about 10 hours, and the resulting calcined product was pulverized and classified to obtain a Li 0. With an average particle diameter (D50) of 19 ⁇ m . 995 Mg 0 . 005 CoO 2 Second positive electrode active material was prepared.
  • the first positive electrode active material and the second positive electrode active material were mixed at a ratio of 10: 90% by weight to prepare a positive electrode active material. At this time, the volume ratio (volume of the second cathode active material / volume of the first cathode active material) of the second cathode active material to the volume of the first cathode active material was 9.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that the first positive electrode active material and the second positive electrode active material were mixed at a ratio of 15:85 wt%. At this time, the volume ratio (volume of the second cathode active material / volume of the first cathode active material) of the second cathode active material to the volume of the first cathode active material was 5.7.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that the first positive electrode active material and the second positive electrode active material were mixed at a ratio of 20:80 wt%. At this time, the volume ratio (volume of the second cathode active material / volume of the first cathode active material) of the second cathode active material to the volume of the first cathode active material was 4.
  • a positive electrode active material was prepared in the same manner as in Example 1 except that the first positive electrode active material and the second positive electrode active material were mixed at a ratio of 25:75 wt%. At this time, the volume ratio (volume of the second positive electrode active material / volume of the first positive electrode active material) of the second positive electrode active material to the volume of the first positive electrode active material was 3.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that the first positive electrode active material and the second positive electrode active material were mixed at a ratio of 100: 0 wt%.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that the first positive electrode active material and the second positive electrode active material were mixed at a ratio of 0: 100% by weight.
  • Ni 0 prepared by the coprecipitation reaction method . 5 Co 0 .
  • the mixture was placed in a high-temperature electric furnace and heated to a temperature of 650 ° C. at a heating rate of 5 ° C./min, and then calcined at that temperature for 6 hours, and then heated to a temperature of 800 ° C. for 10 hours to be heated to an average average particle diameter ( D50) is 16 ⁇ m of LiNi 0. 5 Co 0 . 2 Mn 0 .
  • a 3 0 2 first positive electrode active material was prepared. At this time, the atmosphere was injected into the oxidation atmosphere at a flow rate of 50 l / min.
  • Lithium carbonate, cobalt oxide and magnesium carbonate were dry mixed in a Hansel mixer for about 3 minutes to obtain a mixture of 0.995: 1.00: 0.005 in a Li: Co: Mg molar ratio.
  • the resulting mixture was calcined at about 1000 ° C. for about 10 hours in an air atmosphere, and the resulting calcined product was pulverized and classified to obtain a Li 0. With an average particle diameter (D50) of 4 ⁇ m . 995 Mg 0. 005 CoO 2 A second positive electrode active material was prepared.
  • the first positive electrode active material and the second positive electrode active material were mixed in a 90:10 wt% ratio to prepare a positive electrode active material.
  • the volume ratio (volume of the second cathode active material / volume of the first cathode active material) of the second cathode active material to the volume of the first cathode active material was 0.11.
  • a positive electrode active material was prepared in the same manner as in Comparative Example 3, except that the first positive electrode active material and the second positive electrode active material were mixed at a ratio of 85:15 wt%. At this time, the volume ratio (volume of the second cathode active material / volume of the first cathode active material) of the second cathode active material to the volume of the first cathode active material was 0.2.
  • Lithium carbonate and cobalt oxide were dry mixed in a Hansel mixer for about 3 minutes to obtain a mixture of 1.00: 1.00 in a Li: Co molar ratio.
  • the resulting mixture was calcined at about 1000 ° C. for about 10 hours in an air atmosphere, and the resulting calcined product was ground and classified to prepare a LiCoO 2 cathode active material having an average particle diameter (D50) of 19 ⁇ m.
  • Lithium carbonate, cobalt oxide and magnesium carbonate were dry mixed in a Hansel mixer for about 3 minutes to obtain a mixture of 0.99: 1.00: 0.01 in a Li: Co: Mg molar ratio.
  • the resulting mixture was calcined at about 1000 ° C. for about 10 hours in an air atmosphere, and the resulting calcined product was ground and classified to have a Li 0 of 19 ⁇ m with an average particle diameter (D50) .
  • 99 Mg 0 . 01 CoO 2 positive electrode active material was prepared.
  • Lithium carbonate, cobalt oxide and magnesium carbonate were dry mixed in a Hansel mixer for about 3 minutes to obtain a mixture of 0.98: 1.00: 0.02 in a Li: Co: Mg molar ratio.
  • the resulting mixture was calcined at about 1000 ° C. for about 10 hours in an air atmosphere, and the resulting calcined product was ground and classified to have a Li 0 of 19 ⁇ m with an average particle diameter (D50) .
  • 98 Mg 0 . 02 CoO 2 positive electrode active material was prepared.
  • Lithium carbonate, cobalt oxide and magnesium carbonate were dry mixed in a Hansel mixer for about 3 minutes to obtain a mixture of 0.97: 1.00: 0.03 in a Li: Co: Mg molar ratio.
  • the resulting mixture was calcined at about 1000 ° C. for about 10 hours in an air atmosphere, and the resulting calcined product was ground and classified to have a Li 0 of 19 ⁇ m with an average particle diameter (D50) .
  • 97 Mg 0 . 03 CoO 2 positive electrode active material was prepared.
  • Lithium carbonate, cobalt oxide and magnesium carbonate were dry mixed in a Hansel mixer for about 3 minutes to obtain a mixture of 0.95: 1.00: 0.05 in a Li: Co: Mg molar ratio.
  • the resulting mixture was calcined at about 1000 ° C. for about 10 hours in an air atmosphere, and the resulting calcined product was ground and classified to have a Li 0 of 19 ⁇ m with an average particle diameter (D50) .
  • D50 average particle diameter
  • a positive electrode active material was prepared in the same manner as in Example 1, except that the first positive electrode active material and the second positive electrode active material were mixed in a ratio of 30:70 wt%. At this time, the volume ratio (volume of the second cathode active material / volume of the first cathode active material) of the second cathode active material to the volume of the first cathode active material was 0.4.
  • the lattice constants of the second positive electrode active material prepared according to Example 1 and the positive electrode active materials prepared according to Comparative Example 1 and Comparative Examples 6 to 9 were obtained by X-ray diffraction measurement using CuK ⁇ rays.
  • the measured a-axis lengths are shown in Table 1 below.
  • the distance ratio (c / a axis ratio) between crystal axes is shown together in Table 1 below.
  • V ( ⁇ 3) represents the volume of the unit cell (unit cell).
  • Example 1 and Comparative Examples 6 to 8 having an Mg doping content of 0.5 mol% to 3 mol% is similar to that of Comparative Example 1 without Mg doping, but the c-axis length It can be seen that increases as the Mg doping content increases. From this result, it can be seen that Mg is inserted into the Li site up to about 3 mol% Mg doping content.
  • Comparative Example 9 having a Mg doping content of 5 mol%, it can be seen that the a-axis length is greatly increased. From this, when the Mg doping content is excessively increased, it is inserted into the Co site as well as the Li site. Can be.
  • Pellets were prepared by applying a pressure of 4 tons to the cathode active materials prepared according to Examples 1 to 4, Comparative Examples 1 to 4, and Reference Example 1. The density of the prepared pellets was measured, and the results are shown in Table 2 below.
  • Coin-type half cells were prepared using the positive electrode active materials prepared according to Examples 1 to 4, Comparative Examples 1 to 3 and 5, and Reference Example 1.
  • the positive electrode active material, polyvinylidene fluoride, and carbon black were mixed, and N-methyl pyrrolidone was added to the mixture, and then bubbles were removed using a mixer to prepare a slurry for forming a positive electrode active material layer uniformly dispersed. .
  • the mixing ratio of the positive electrode active material, polyvinylidene fluoride and carbon black was 92: 4: 4 weight ratio.
  • the prepared slurry was coated on an aluminum foil current collector using a doctor blade to form a thin electrode plate, and then dried at 120 ° C. for at least 3 hours, followed by rolling and vacuum drying to fabricate a cathode.
  • a 2032 type coin-type half cell was manufactured using a lithium metal counter electrode as the cathode and the counter electrode.
  • a coin-type half-cell was produced by interposing a separator (thickness: about 16 ⁇ m) made of a porous polyethylene (PE) film between the positive electrode and the lithium metal counter electrode.
  • the normal temperature (25 ° C) cycle life characteristics were evaluated by the following method.
  • the first charge / discharge is constant current charging until it reaches 4.6 V with 0.1C current, and the cell after charging has passed about 10 minutes of rest period, and then the voltage reaches 3V with 0.1C current. Constant current discharge was performed until.
  • the second charge and discharge is a constant current charge until reaching 4.6 V with a current of 0.2C, the cell after the charging is completed after about 10 minutes of rest, when the voltage reaches 3V with a current of 0.2C Constant current discharge was performed until.
  • the first and second charge-discharge cells that is, the cells subjected to the chemical conversion process, were subjected to constant current charge until they reached 4.6 V at a current of 1C.
  • the battery was charged for about 10 minutes, and then cycles of constant current charging and constant current discharge were performed 50 times in which constant current discharge was performed until the voltage reached 3 V at a current of 1C.
  • the discharge capacity ratio (%) was determined after 50 cycles with respect to the discharge capacity of the battery subjected to the chemical conversion process.
  • the results of Comparative Examples 1, 2 and 5 are shown in FIG. 3, and the results of Examples 1 to 4 and Comparative Example 2 are shown in FIG. 4.
  • Comparative Example 5 using the undoped LiCoO 2 positive electrode active material can be seen that the capacity retention is significantly degraded.
  • Comparative Example 2 using only the second positive electrode active material is significantly lower in capacity retention than Examples 1 to 4 using the first and second positive electrode active materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지에 관한 것으로서, 상기 양극 활물질은 하기 화학식 1의 리튬니켈코발트망간계 산화물 제1 양극 활물질; 및 하기 화학식 2의 리튬 코발트계 산화물 제2 양극 활물질을 포함하며, 상기 제1 양극 활물질의 평균 입경(D50)이 상기 제2 양극 활물질의 평균 입경(D50)보다 작은 것이다. [화학식 1] LiaNixCoyMnzM1 kO2 (상기 화학식 1에서, 0.9 ≤ a ≤ 1.1, 0.3 ≤ x < 0.6, 0.05 ≤ y ≤ 0.4, 0.05 ≤ z ≤ 0.4, 0 ≤ k ≤ 0.04, x + y + z + k =1, M1은 K, Zr, W, Mg, Ti, Al 또는 이들의 조합임.) [화학식 2] Li1-uMguCoO2-tM2 t (상기 화학식 2에서, 0 < u < 0.04, 0 ≤ t < 0.02, M2는 F임)

Description

리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
휴대 전화, 노트북, 스마트폰 등의 이동 정보 단말기의 구동 전원으로는 리튬 이차 전지가 주로 사용되고 있다.
상기 리튬 이차 전지는 양극, 음극 및 전해질으로 구성된다. 이때, 양극의 양극 활물질로는 LiCoO2, LiMn2O4, LiNi1 - xCoxO2(0 < x < 1)등과 같이 리튬 이온의 인터칼레이션이 가능한 구조를 가진 리튬과 전이 금속으로 이루어진 산화물이 주로 사용된다. 이 중에서, 양극 활물질로 리튬 코발트 산화물(LiCoO2)이 가장 널리 사용되고 있다.
그러나 리튬 이차 전지의 용도가 휴대 정보 전자기기에서 전동공구, 자동차 등 산업으로 확장됨에 따라, 고용량과 고출력 및 안전성이 더욱 요구되어, LiCoO2가 가지고 있는 용량적 한계 및 안전성 문제로 인하여 LiCoO2의 성능 개선을 위한 개발에 대한 연구가 활발히 진행 중이다. 특히, 고용량화를 위한 초고전압 LiCoO2의 경우, 4.55V에서 4.63V 부근에서 O3 → H1-3 → O1 상전이로 인한 성능 열화가 문제가 되고 있다. O3 → H1-3 → O1 상전이란, 충방전이 진행될 때 LixCoO2 양극 활물질에서 X의 감소, 즉 Li 이온이 빠짐에 따른 양극 활물질의 구조를 나타낸 것으로, 도 1에 나타낸 것과 같이, O3(ABCABC형태, layered rock salt structure)는 x>0.1, O1(ABAB 형태)은 x=0 일 때의 형태의 구조를 의미하며, H1-3는 O1과 O3의 혼재된 구조를 의미한다. 또한 도 1은 Co를 둘러싸는 O 옥타헤드라(O octahedra surroding Co), Li 면에서 O 옥타헤드라를 공유하는 엣지(edge sharing O octahedra in Li plane) 및 셔플된 Li 면에서 O 옥타헤드라를 공유하는 페이스(face sharing O octahedra in shuffled Li plane)을 나타낸 것이다.
일 구현예는 우수한 고전압 특성뿐만 아니라, 합제 밀도 및 고온 특성 등의 전지 특성이 우수한 리튬 이차 전지용 양극 활물질을 제공하는 것이다.
다른 일 구현예는 상기 양극 활물질을 포함하는 리튬 이차 전지를 제공하는 것이다.
본 발명의 일 구현예는 하기 화학식 1의 리튬 니켈 코발트 망간계 산화물 제1 양극 활물질; 및 하기 화학식 2의 리튬 코발트계 산화물 제2 양극 활물질을 포함하며, 상기 제1 양극 활물질의 평균 입경(D50)이 상기 제2 양극 활물질의 평균 입경(D50)보다 작은 것인 리튬 이차 전지용 양극 활물질을 제공하는 것이다.
[화학식 1]
LiaNixCoyMnzM1 kO2
상기 화학식 1에서, 0.9 ≤ a ≤ 1.1, 0.3 ≤ x ≤ 0.6, 0.05 ≤ y ≤0.4, 0.05 ≤ z ≤ 0.4, 0 ≤ k ≤ 0.04, x + y + z + k =1,
M1은 K, Zr, W, Mg, Ti, Al 또는 이들의 조합이다.
[화학식 2]
Li1-uMguCoO2-tM2 t
상기 화학식 2에서, 0 < u < 0.04, 0 ≤ t < 0.02, M2는 F이다.
상기 제1 양극 활물질의 평균 입경(D50)은 2㎛ 내지 4㎛일 수 있다. 또한, 상기 제2 양극 활물질의 평균 입경(D50)은 16㎛ 내지 24㎛일 수 있다.
상기 제1 양극 활물질의 평균 입경(D50)에 대한 상기 제2 양극 활물질의 평균 입경(D50) 비, 즉, 제2 양극 활물질의 평균 입경(D50)/제1 양극 활물질의 평균 입경(D50)은 4 내지 12일 수 있다.
상기 제1 양극 활물질 부피에 대한 상기 제2 양극 활물질의 부피비는 3 내지 9일 수 있다.
상기 제1 양극 활물질과 상기 제2 양극 활물질의 혼합비는 1 : 9내지 1: 3일 수 있다.
상기 제2 양극 활물질에서 Mg/Co의 원자비(atomic ratio)는 0.0035 내지 0.01일 수 있다.
본 발명의 다른 일 구현예는 상기 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 전해질을 포함하는 리튬 이차 전지를 제공한다.
기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
일 구현예에 따른 리튬 이차 전지용 양극 활물질은 우수한 고전압 특성뿐만 아니라, 합제 밀도 및 고온 특성 등의 전지 특성이 우수한 효과를 나타낼 수 있다.
도 1은 본 발명의 일 구현예에 따른 리튬 이차 전지의 구조를 개략적으로 나타낸 도면이다.
도 2는 본 발명의 일 구현예에 따른 리튬 이차 전지의 분해 사시도이다.
도 3은 비교예 1, 2 및 5에 따라 제조된 전지의 용량 유지율 특성을 나타낸 그래프.
도 4는 실시예 1 내지 4 및 비교예 2에 따라 제조된 전지의 용량 유지율 특성을 나타낸 그래프.
도 5는 비교예 2, 5 및 9에 따라 제조된 전지의 용량 유지율 특성을 나타낸 그래프.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
본 발명의 일 구현예에 따른 리튬 이차 전지용 양극 활물질은 하기 화학식 1의 리튬 니켈 코발트 망간계 산화물 제1 양극 활물질; 및 하기 화학식 2의 리튬 코발트계 산화물 제2 양극 활물질을 포함한다.
[화학식 1]
LiaNixCoyMnzM1 kO2
상기 화학식 1에서, 0.9 ≤ a ≤ 1.1, 0.3 ≤ x < 0.6, 0.05 ≤ y ≤ 0.4, 0.05 ≤ z ≤ 0.4, 0 ≤ k ≤ 0.04, x + y + z + k =1,
M1은 K, Zr, W, Mg, Ti, Al 또는 이들의 조합이다.
[화학식 2]
Li1 - uMguCoO2 - tM2 t
상기 화학식 2에서, 0 < u < 0.04, 0 ≤ t < 0.02, M2는 F이다.
상기 화학식 2에 나타낸 것과 같이, 상기 제2 양극 활물질은 Mg이 Li의 일부를 치환하는, 즉 Li 사이트에 삽입되어 위치하는 것이다. Mg이 Li 사이트에 삽입된 경우, 이 양극 활물질을 이용하여 고전압 구간에서 충전시 Mg은 리튬 이온이 리튬 층 내에서 전부 빠져나가더라도 층상구조를 지지하여 층상 구조인 O3 구조(ABCABC형태, layered rock salt structure)를 더 안정화 시키기 때문에, 상기 제2 양극 활물질의 구조를 잘 유지할 수 있어, 고전압 특성을 보다 향상시킬 수 있다. 또한, 상기 화학식 2로 표현되는 것과 같이, Mg의 함량이 화학식 2의 화합물 전체 100몰%에 대하여 4몰% 미만(u가 0.04 미만)인 경우, Mg가 Li 사이트에 삽입되는 것으로서, 만약 Mg 함량이 4몰% 이상인 경우에는 Mg이 Co 사이트에 삽입될 수 있어, Mg가 Li 사이트에 삽입됨에 따른 효과를 얻을 수 없다.
상기 M2는 Co의 산화수를 낮춰주는 역할을 하는 것으로서, 이로 인하여 충방전시 기본적인(pristine) LiCoO2 대비 상대적으로 안정한 구조를 유지할 수 있다. 이에 M2를 더욱 포함하는 제2 양극 활물질을 사용하는 경우, 보다 안정한 구조를 갖는 양극을 제공할 수 있다. 특히, 이러한 효과는 M2로 F를 사용하는 경우, 가장 적절하게 얻을 수 있다. 충전시 화학식2의 화합물에서 Li 이온이 빠져나오는 경우, Co3+ → Co4 +로 산화되어 화학식 2의 화합물이 붕괴되는 문제가 발생할 수 있으나, 산소자리에 F가 도핑되어 있으면 Co3 + → Co3.x +(0 < x < 9)까지만 산화되는, 즉 Co4 +로 산화가 발생하지 않기에, 화학식 2의 화합물이 붕괴되는 문제를 억제할 수 있다.
본 명세서에서 별도의 정의가 없는 한, 평균 입자 직경(D50)은 입도 분포에서 누적 체적이 50 부피%인 입자의 지름을 의미한다.
본 발명의 일 구현예에 있어서, 상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)보다 작은 것이 적절하다. 상기 제1 양극 활물질의 평균 입경(D50)이 상기 제2 양극 활물질의 평균 입경(D50)보다 큰 경우에는 제1 양극 활물질의 진밀도가 제2 양극 활물질보다 크기 때문에, 이를 이용하여 양극을 제조하는 경우 합제 밀도가 저하될 수 있다.
상기 제1 양극 활물질의 평균 입경(D50)은 상기 화학식 1로 표현되는 화합물의 1차 입자가 조립되어 형성된 2차 입자의 평균 입경(D50)을 의미한다.
상기 제1 양극 활물질의 평균 입경(D50)에 대한 상기 제2 양극 활물질의 평균 입경(D50) 비, 즉, 제2 양극 활물질의 평균 입경(D50)/제1 양극 활물질의 평균 입경(D50)은 4 내지 12일 수 있다. 상기 제1 양극 활물질의 평균 입경(D50)에 대한 상기 제2 양극 활물질의 평균 입경(D50) 비가 상기 범위에 포함되는 경우에는 고합제 밀도를 구현할 수 있다.
상기 제1 양극 활물질 부피에 대한 상기 제2 양극 활물질의 부피비, 즉 제2 양극 활물질의 부피/제1 양극 활물질 부피는 3 내지 9일 수 있다. 상기 제1 양극 활물질 부피에 대한 상기 제2 양극 활물질의 부피비가 상기 범위에 포함되는 경우에는 합제 밀도를 더욱 향상시킬 수 있다.
상기 제1 양극 활물질과 상기 제2 양극 활물질의 혼합비는 1 : 9 내지 1 : 3일 수 있다. 다른 일 구현예에 있어서, 상기 제1 양극 활물질과 상기 제2 양극 활물질의 혼합비는 1 : 9 내지 1 : 4일 수 있다. 상기 제1 양극 활물질과 상기 제2 양극 활물질의 혼합비가 상기 범위에 포함되는 경우에는 합제 밀도를 향상시킬 수 있다.
상기 제1 양극 활물질로 상기 화학식 1로 표현되는 화합물이 적절하며, 특히 상기 화학식 1에 나타낸 것과 같이, Ni의 함량이 화학식 1의 화합물 전체 100몰%에 대하여, 60 몰% 이하(x 가 0.6 이하)인 저Ni 화합물을 사용하는 것이, 안정성이 보다 우수하여 적절하다. 특히, 이러한 저Ni 화합물을 상기 화학식 2로 표현되는 제2 양극 활물질과 혼합하는 경우, 저Ni 화합물이 고전압에서 상전이가 없으므로 고전압 안정성뿐만 아니라 열적 안정성도 개선된 양극 활물질을 얻을 수 있다.
상기 제2 양극 활물질에서 Mg/Co의 원자비(atomic ratio)는 0.0035 내지 0.01일 수 있다. Mg/Co의 원자비가 이 범위에 포함되는 경우, 고전압 영역에서 일어나는 상전이를 효과적으로 억제할 수 있어, 고전압에서의 안정성을 보다 향상시킬 수 있고, 이에 따라 충방전 용량을 높일 수 있으며, 사이클 수명 특성을 향상시킬 수 있다. 상기 고전압 영역은 예를 들어 4.55V (vs Li/Li+) 이상의 범위일 수 있다.
상기 제1 양극 활물질의 구체적인 예로는, Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.4Co0.3Mn0.3)O2, Li(Ni0.5Co0.2Mn0.3)O2, 또는 이들의 조합을 들 수 있다. 또한, 상기 제2 양극 활물질의 구체적인 예로는, Li0 . 9925Mg0 . 0075CoO2, Li0 . 995Mg0 . 005CoO2, Li0.99375Mg0.00625CoO2, Li0 . 99625Mg0 . 00375CoO2, Li0 . 99Mg0 . 01CoO2 또는 이들의 조합일 수 있다.
본 발명의 다른 일 구현예는 상기 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극 및 전해질을 포함하는 리튬 이차 전지를 제공한다.
상기 양극은 양극 활물질 층 및 이 양극 활물질 층을 지지하는 전류 집전체를 포함한다. 상기 양극 활물질 층에서, 상기 양극 활물질의 함량은 양극 활물질 층 전체 중량에 대하여 90 중량% 내지 98 중량%일 수 있다.
본 발명의 일 구현예에 있어서, 상기 양극 활물질 층은 바인더 및 도전재를 더욱 포함할 수 있다. 이때, 상기 바인더 및 도전재의 함량은 양극 활물질 층 전체 중량에 대하여 각각 1 중량% 내지 5 중량%일 수 있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다. 바인더의 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다. 도전재의 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 들 수 있다.
상기 전류 집전체로는 Al을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 음극은 전류 집전체 및 이 전류 집전체 위에 형성된 음극 활물질을 포함하는 음극 활물질 층을 포함한다.
상기 음극 활물질은 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬에 도프 및 탈도프 가능한 물질 또는 전이 금속 산화물을 포함한다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 이온 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 린편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 리튬 금속의 합금으로는 리튬과, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.
상기 리튬에 도프 및 탈도프 가능한 물질로는 Si, Si-C 복합체, SiOx(0 < x < 2), Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-R 합금(상기 R은 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Q 및 R로는Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 또는 리튬 티타늄 산화물 등을 들 수 있다.
상기 음극 활물질 층에서 음극 활물질의 함량은 음극 활물질 층 전체 중량에 대하여 95 중량% 내지 99 중량%일 수 있다.
본 발명의 일 구현예에 있어서, 상기 음극 활물질 층은 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다. 상기 음극 활물질 층에서 바인더의 함량은 음극 활물질 층 전체 중량에 대하여 1 중량% 내지 5 중량%일 수 있다. 또한 도전재를 더욱 포함하는 경우에는 음극 활물질을 90 중량% 내지 98 중량%, 바인더를 1 중량% 내지 5 중량%, 도전재를 1 중량% 내지 5 중량% 사용할 수 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다. 상기 바인더로는 비수용성 바인더, 수용성 바인더 또는 이들의 조합을 사용할 수 있다.
상기 비수용성 바인더로는 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 폴리아미드이미드, 폴리이미드 또는 이들의 조합을 들 수 있다.
상기 수용성 바인더로는 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버(SBR), 아크릴로나이트릴-부타디엔 러버, 아크릴 고무, 부틸고무, 불소고무, 에틸렌프로필렌공중합체, 폴리에피클로로히드린, 폴리포스파젠, 폴리아크릴로니트릴, 폴리스티렌, 에틸렌프로필렌디엔공중합체, 폴리비닐피리딘, 클로로설폰화폴리에틸렌, 라텍스, 폴리에스테르수지, 아크릴수지, 페놀수지, 에폭시 수지, 폴리비닐알콜 및 이들의 조합에서 선택되는 것일 수 있다.
상기 음극 바인더로 수용성 바인더를 사용하는 경우, 점성을 부여할 수 있는 셀룰로즈 계열 화합물을 증점제로 더욱 포함할 수 있다. 이 셀룰로즈 계열 화합물로는 카르복시메틸 셀룰로즈, 하이드록시프로필메틸 셀룰로즈, 메틸 셀룰로즈, 또는 이들의 알칼리 금속염 등을 1종 이상 혼합하여 사용할 수 있다. 상기 알칼리 금속으로는 Na, K 또는 Li를 사용할 수 있다. 이러한 증점제 사용 함량은 음극 활물질 100 중량부에 대하여 0.1 중량부 내지 3 중량부일 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다. 도전재의 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질 폴리페닐렌 유도체 등의 도전성 폴리머 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 전해질은 비수성 유기 용매 및 리튬염을 포함한다.
상기 비수성 유기용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계, 또는 비양성자성 용매를 사용할 수 있다.
상기 카보네이트계 용매로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있다. 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, 데카놀라이드(decanolide), 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있다. 또한, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상, 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류, 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류, 설포란(sulfolane)류 등이 사용될 수 있다.
상기 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.
또한, 상기 카보네이트계 용매의 경우, 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 1:1 내지 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 유기용매는 상기 카보네이트계 용매에, 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 방향족 탄화수소계 유기용매는 1:1 내지 30:1의 부피비로 혼합될 수 있다.
상기 방향족 탄화수소계 유기용매로는 하기 화학식 3의 방향족 탄화수소계 화합물이 사용될 수 있다.
[화학식 3]
Figure PCTKR2017008244-appb-I000001
(상기 화학식 3에서, R1 내지 R6는 서로 동일하거나 상이하며 수소, 할로겐, 탄소수 1 내지 10의 알킬기, 할로알킬기 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.)
상기 방향족 탄화수소계 유기용매의 구체적인 예로는 벤젠, 플루오로벤젠, 1,2-디플루오로벤젠, 1,3-디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3-트리플루오로벤젠, 1,2,4-트리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠, 1,3-디클로로벤젠, 1,4-디클로로벤젠, 1,2,3-트리클로로벤젠, 1,2,4-트리클로로벤젠, 아이오도벤젠, 1,2-디아이오도벤젠, 1,3-디아이오도벤젠, 1,4-디아이오도벤젠, 1,2,3-트리아이오도벤젠, 1,2,4-트리아이오도벤젠, 톨루엔, 플루오로톨루엔, 2,3-디플루오로톨루엔, 2,4-디플루오로톨루엔, 2,5-디플루오로톨루엔, 2,3,4-트리플루오로톨루엔, 2,3,5-트리플루오로톨루엔, 클로로톨루엔, 2,3-디클로로톨루엔, 2,4-디클로로톨루엔, 2,5-디클로로톨루엔, 2,3,4-트리클로로톨루엔, 2,3,5-트리클로로톨루엔, 아이오도톨루엔, 2,3-디아이오도톨루엔, 2,4-디아이오도톨루엔, 2,5-디아이오도톨루엔, 2,3,4-트리아이오도톨루엔, 2,3,5-트리아이오도톨루엔, 자일렌, 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.
상기 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또는 하기 화학식 4의 에틸렌 카보네이트계 화합물을 수명 향상 첨가제로 더욱 포함할 수도 있다.
[화학식 4]
Figure PCTKR2017008244-appb-I000002
(상기 화학식 4에서, R7 및 R8은 서로 동일하거나 상이하며, 수소, 할로겐기, 시아노기(CN), 니트로기(NO2) 및 불소화된 탄소수 1 내지 5의 알킬기로 이루어진 군에서 선택되며, 상기 R7 및 R8 중 적어도 하나는 할로겐기, 시아노기(CN), 니트로기(NO2) 및 불소화된 탄소수 1 내지 5의 알킬기로 이루어진 군에서 선택되나, 단 R7 및 R8이 모두 수소는 아니다.)
상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트 또는 플루오로에틸렌 카보네이트 등을 들 수 있다. 이러한 수명 향상 첨가제를 더욱 사용하는 경우 그 사용량은 적절하게 조절할 수 있다.
상기 리튬염은 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 이러한 리튬염의 대표적인 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiN(SO3C2F5)2, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x + 1SO2)(CyF2y + 1SO2)(여기서, x 및 y는 자연수이며, 예를 들면 1 내지 20의 정수임), LiCl, LiI 및 LiB(C2O4)2(리튬 비스옥살레이트 보레이트(lithium bis(oxalato) borate: LiBOB)로 이루어진 군에서 선택되는 하나 또는 둘 이상을 지지(supporting) 전해염으로 포함한다. 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수도 있다. 이러한 세퍼레이터로는 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있음은 물론이다.
도 2에 본 발명의 일 구현예에 따른 리튬 이차 전지의 분해 사시도를 나타내었다. 일 구현예에 따른 리튬 이차 전지는 각형인 것을 예로 설명하지만, 본 발명이 이에 제한되는 것은 아니며, 원통형, 파우치형 등 다양한 형태의 전지에 적용될 수 있다.
도 2를 참고하면, 일 구현예에 따른 리튬 이차 전지(100)는 양극(10)과 음극(20) 사이에 세퍼레이터(30)를 개재하여 귄취된 전극 조립체(40)와, 상기 전극 조립체(40)가 내장되는 케이스(50)를 포함할 수 있다. 상기 양극(10), 상기 음극(20) 및 상기 세퍼레이터(30)는 전해액(미도시)에 함침되어 있을 수 있다.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러한 하기한 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.
(실시예 1)
공침 반응법으로 제조된 Ni0 . 5Co0 . 2Mn0 .3(OH)2 전구체를 Li2CO3와 1.03 : 1 중량비로 혼합하였다. 이 혼합물을 고온 전기로에 넣고 5℃/min의 승온 속도로 650℃의 온도까지 승온 후 그 온도에서 6시간 동안 소성하고, 이어서, 820℃의 온도까지 승온 후 그 온도에서 10시간 동안 소성하여 평균 입경(D50)이 3.5㎛인 LiNi0.5Co0.2Mn0.3O2 제1 양극 활물질을 제조하였다. 이 때 분위기는 산화분위기로 공기를 50ℓ/min의 유량으로 주입하였다.
탄산 리튬, 산화코발트 및 탄산마그네슘을 약 3분 동안 헨셀믹서(hansel mixer)에서 건식으로 혼합해서 Li:Co:Mg 몰비로 0.995 : 1.00 : 0.005인 혼합물을 얻었다. 얻어진 혼합물을 약 1000℃에서 공기분위기에서 약 10 시간 동안 소성하고, 얻어진 소성물을 분쇄, 분급하여 평균 입경(D50)이 19㎛인 Li0 . 995Mg0 . 005CoO2 제 2 양극 활물질을 제조하였다.
상기 제1 양극 활물질과 상기 제2 양극 활물질을 10 : 90 중량%비로 혼합하여 양극 활물질을 제조하였다. 이때, 제1 양극 활물질 부피에 대한 상기 제2 양극 활물질의 부피비(제2 양극 활물질의 부피/제1 양극 활물질 부피)는 9 이었다.
(실시예 2)
상기 제1 양극 활물질과 상기 제2 양극 활물질을 15 : 85 중량%비로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여 양극 활물질을 제조하였다. 이때, 제1 양극 활물질 부피에 대한 상기 제2 양극 활물질의 부피비(제2 양극 활물질의 부피/제1 양극 활물질 부피)는 5.7 이었다.
(실시예 3)
상기 제1 양극 활물질과 상기 제2 양극 활물질을 20 : 80 중량%비로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여 양극 활물질을 제조하였다. 이때, 제1 양극 활물질 부피에 대한 상기 제2 양극 활물질의 부피비(제2 양극 활물질의 부피/제1 양극 활물질 부피)는 4 이었다.
(실시예 4)
*상기 제1 양극 활물질과 상기 제2 양극 활물질을 25 : 75 중량%비로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여 양극 활물질을 제조하였다. 이때, 제1 양극 활물질 부피에 대한 상기 제2 양극 활물질의 부피비(제2 양극 활물질의 부피/제1 양극 활물질 부피)는 3 이었다.
(비교예 1)
상기 제1 양극 활물질과 상기 제2 양극 활물질을 100 : 0 중량%비로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여 양극 활물질을 제조하였다.
(비교예 2)
상기 제1 양극 활물질과 상기 제2 양극 활물질을 0 : 100 중량%비로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여 양극 활물질을 제조하였다.
(비교예 3)
공침 반응법으로 제조된 Ni0 . 5Co0 . 2Mn0 .3(OH)2 전구체를 Li2CO3와 1.03 : 1 중량비로 혼합하였다. 이 혼합물을 고온 전기로에 넣고 5℃/min의 승온 속도로 650℃의 온도까지 승온 후 그 온도에서 6시간 동안 소성하고, 800℃의 온도까지 승온 후 그 온도에서 10시간 동안 소성하여 평균 평균 입경(D50)이 16㎛인 LiNi0 . 5Co0 . 2Mn0 . 3O2 제1 양극 활물질을 제조하였다. 이 때 분위기는 산화분위기로 공기를 50ℓ/min의 유량으로 주입하였다.
탄산 리튬, 산화코발트 및 탄산마그네슘을 약 3분 동안 헨셀믹서(hansel mixer)에서 건식으로 혼합해서 Li:Co:Mg 몰비로 0.995 : 1.00 : 0.005인 혼합물을 얻었다. 얻어진 혼합물을 약 1000℃에서 공기분위기에서 약 10 시간 동안 소성하고, 얻어진 소성물을 분쇄, 분급하여 평균 입경(D50)이 4㎛인 Li0 . 995Mg0 . 005CoO2 제2 양극 활물질을 제조하였다.
상기 제1 양극 활물질과 상기 제2 양극 활물질을 90 : 10 중량%비로 혼합하여 양극 활물질을 제조하였다. 이때, 제1 양극 활물질 부피에 대한 상기 제2 양극 활물질의 부피비(제2 양극 활물질의 부피/제1 양극 활물질 부피)는 0.11 이었다.
(비교예 4)
상기 제1 양극 활물질과 상기 제2 양극 활물질을 85 : 15 중량%비로 혼합한 것을 제외하고는 상기 비교예 3과 동일한 방법으로 실시하여 양극 활물질을 제조하였다. 이때, 제1 양극 활물질 부피에 대한 상기 제2 양극 활물질의 부피비(제2 양극 활물질의 부피/제1 양극 활물질 부피)는 0.2 이었다.
(비교예 5)
탄산 리튬 및 산화코발트를 약 3분 동안 헨셀믹서(hansel mixer)에서 건식으로 혼합해서 Li:Co 몰비로 1.00 : 1.00인 혼합물을 얻었다. 얻어진 혼합물을 약 1000℃에서 공기 분위기에서 약 10 시간 동안 소성하고, 얻어진 소성물을 분쇄, 분급하여 평균 입경(D50)이 19㎛인 LiCoO2 양극 활물질을 제조하였다.
(비교예 6)
탄산 리튬, 산화코발트 및 탄산마그네슘을 약 3분 동안 헨셀믹서(hansel mixer)에서 건식으로 혼합해서 Li:Co:Mg 몰비로 0.99 : 1.00 : 0.01인 혼합물을 얻었다. 얻어진 혼합물을 약 1000℃에서 공기 분위기에서 약 10 시간 동안 소성하고, 얻어진 소성물을 분쇄, 분급하여 평균 입경(D50)이 19㎛인 Li0 . 99Mg0 . 01CoO2 양극 활물질을 제조하였다.
(비교예 7)
탄산 리튬, 산화코발트 및 탄산마그네슘을 약 3분 동안 헨셀믹서(hansel mixer)에서 건식으로 혼합해서 Li:Co:Mg 몰비로 0.98 : 1.00 : 0.02인 혼합물을 얻었다. 얻어진 혼합물을 약 1000℃에서 공기 분위기에서 약 10 시간 동안 소성하고, 얻어진 소성물을 분쇄, 분급하여 평균 입경(D50)이 19㎛인 Li0 . 98Mg0 . 02CoO2 양극 활물질을 제조하였다.
(비교예 8)
탄산 리튬, 산화코발트 및 탄산마그네슘을 약 3분 동안 헨셀믹서(hansel mixer)에서 건식으로 혼합해서 Li:Co:Mg 몰비로 0.97 : 1.00 : 0.03인 혼합물을 얻었다. 얻어진 혼합물을 약 1000℃에서 공기 분위기에서 약 10 시간 동안 소성하고, 얻어진 소성물을 분쇄, 분급하여 평균 입경(D50)이 19㎛인 Li0 . 97Mg0 . 03CoO2 양극 활물질을 제조하였다.
(비교예 9)
탄산 리튬, 산화코발트 및 탄산마그네슘을 약 3분 동안 헨셀믹서(hansel mixer)에서 건식으로 혼합해서 Li:Co:Mg 몰비로 0.95 : 1.00 : 0.05인 혼합물을 얻었다. 얻어진 혼합물을 약 1000℃에서 공기 분위기에서 약 10 시간 동안 소성하고, 얻어진 소성물을 분쇄, 분급하여 평균 입경(D50)이 19㎛인 Li0 . 95Mg0 . 05CoO2 양극 활물질을 제조하였다.
(참고예 1)
상기 제1 양극 활물질과 상기 제2 양극 활물질을 30 : 70 중량%비로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여 양극 활물질을 제조하였다. 이때, 제1 양극 활물질 부피에 대한 상기 제2 양극 활물질의 부피비(제2 양극 활물질의 부피/제1 양극 활물질 부피)는 0.4 이었다.
* 격자 상수 측정
상기 실시예 1에 따라 제조된 제2 양극 활물질, 및 상기 비교예 1, 비교예 6 내지 9에 따라 제조된 양극 활물질의 격자 상수를 CuKα선을 사용하여 X-선 회절 측정으로 얻었다. 측정된 a축 길이 및 하기 표 1에 나타내었다. 또한, 결정 축간의 거리비(c/a 축비)를 하기 표 1에 함께 나타내었다. 하기 표 1에서, V(Å3)은 단위 셀(unit cell)의 부피를 나타낸다.
Mg 도핑양(몰%) a축 길이(Å) c축 길이(Å) V(Å3) 거리비(c/a 축비)
비교예 1 0 2.8149 14.0467 96.39 4.990
실시예 1 0.5 2.8147 14.0497 96.40 4.992
비교예 6 1 2.8145 14.0510 96.39 4.992
비교예 7 2 2.8149 14.0511 96.42 4.991
비교예 8 3 2.8151 14.0529 96.45 4.992
비교예 9 5 2.8175 14.0531 96.54 4.988
상기 표 1에 나타낸 것과 같이, Mg 도핑 함량이 0.5몰% 내지 3몰%인 실시예 1 및 비교예 6 내지 8의 a축 길이는, Mg가 도핑되지 않은 비교예 1과 유사하나, c축 길이는 Mg 도핑 함량이 증가함에 따라 증가함을 알 수 있다. 이 결과로부터, Mg 도핑 함량이 약 3몰%까지는 Mg가 Li 사이트(site)에 삽입됨을 알 수 있다.
반면에, Mg 도핑 함량이 5몰%인 비교예 9 경우에는 a축 길이가 크게 증가함을 알 수 있고, 이로부터, Mg 도핑 함량이 과도하게 증가하는 경우 Li 사이트뿐만 아니라 Co 사이트에 삽입됨을 알 수 있다.
* 펠렛 밀도 측정
상기 실시예 1 내지 4, 비교예 1 내지 4 및 참고예 1에 따라 제조된 양극 활물질에 4ton의 압력(press force)을 가하여 펠렛을 제조하였다. 제조된 펠렛의 밀도를 측정하여, 그 결과를 하기 표 2에 나타내었다.
제1 양극 활물질(몰%) 제2 양극 활물질(몰%) 펠렛 밀도(g/cc)
비교예 1 100 0 3.01
비교예 2 0 100 3.93
비교예 3 90 10 3.36
비교예 4 85 15 3.37
참고예 1 30 70 3.87
실시예 1 10 90 3.98
실시예 2 15 85 3.99
실시예 3 20 80 3.95
실시예 4 25 75 3.92
상기 표 2에 나타낸 것과 같이, 실시예 1 내지 4의 양극 활물질은 비교예 1과, 참고예 1에 비하여 펠렛 밀도가 매우 우수하므로, 합제 밀도가 높은 양극을 제조할 수 있음을 알 수 있다. 특히, 제1 양극 활물질만 사용한 비교예 1의 양극 활물질은 펠렛 밀도가 현저하게 낮기에, 합제 밀도가 높은 양극을 제조할 수 없다고 생각된다.
* 전지 특성
상기 실시예 1 내지 4, 비교예 1 내지 3 및 5, 참고예 1에 따라 제조된 양극 활물질을 이용하여 코인형 반쪽 전지를 다음과 같이 제작하였다.
양극 활물질, 폴리비닐리덴플로라이드 및 카본블랙을 혼합하고, 이 혼합물에 N-메틸 피롤리돈을 첨가한 후, 믹서기를 이용하여 기포를 제거하여 균일하게 분산된 양극 활물질층 형성용 슬러리를 제조하였다. 이때, 상기 양극 활물질, 폴리비닐리덴 플루오라이드 및 카본블랙의 혼합비는 92:4:4 중량비로 하였다.
제조된 슬러리를 닥터 블래이드를 사용하여 알루미늄 포일 전류 집전체에 코팅하여 얇은 극판 형태로 만든 후, 이를 120℃에서 3시간 이상 건조시킨 후, 압연과 진공 건조 과정을 거쳐 양극을 제작하였다.
상기 양극과 대극으로 리튬금속 대극을 사용하여 2032 타입의 코인형 반쪽전지를 제조하였다. 상기 양극과 리튬 금속 대극 사이에 다공질 폴리에틸렌(PE) 필름으로 이루어진 세퍼레이터(두께: 약 16㎛)를 개재하고, 전해액을 주입하여 코인형 반쪽 전지를 제작하였다. 상기전해액은 에틸렌카보네이트(EC)와 에틸메틸카보네이트(EMC)와 디메틸카보네이트(DMC)를 3:4:3의 부피비로 혼합한 용매에 용해된 1.1M LiPF6가 포함된 용액을 사용하였다.
제조된 전지를 이용하여 다음 방법으로 상온(25℃) 사이클 수명 특성을 평가하였다.
첫 번째 충방전은 0.1C의 전류로 4.6 V에 도달할 때까지 정전류 충전을 실시하고, 충전이 완료된 셀은 약 10 분간의 휴지기간을 거친 후, 0.1C의 전류로 전압이 3 V에 이를 때까지 정전류 방전을 수행하였다.
두 번째 충방전은 0.2C의 전류로 4.6 V에 도달할 때까지 정전류 충전을 실시하고, 충전이 완료된 셀은 약 10 분간의 휴지기간을 거친 후, 0.2C 의 전류로 전압이 3 V에 이를 때까지 정전류 방전을 수행하였다.
상기 조건으로 첫 번째 및 두 번째 충방전을 실시한, 즉 화성 공정을 실시한 전지를, 1C의 전류로 4.6 V에 도달할 때까지 정전류 충전을 실시하였다. 충전이 완료된 전지를 약 10 분간 휴지기간을 거친 후, 1C의 전류로 전압이 3 V에 이를 때까지 정전류 방전을 실시하는 정전류 충전 및 정전류 방전의 사이클을 50회 반복적으로 실시하였다. 화성 공정을 실시한 전지의 방전 용량에 대하여 50회 사이클 후 방전 용량비(%)를 구하였다. 얻어진 결과 중, 비교예 1, 2 및 5의 결과를 도 3에 나타내었고, 실시예 1 내지 4 및 비교예 2의 결과를 도 4에 나타내었다.
도 3에 나타낸 것과 같이, 도핑되지 않은 LiCoO2 양극 활물질을 사용한 비교예 5는 용량 유지율이 현저하게 열화됨을 알 수 있다.
또한, 도 4에 나타낸 것과 같이, 제2 양극 활물질만을 사용한 비교예 2는, 제1 및 제2 양극 활물질을 혼합 사용한 실시예 1 내지 4에 비하여, 용량 유지율이 현저하게 저하됨을 알 수 있다.
아울러, 충방전 사이클에 따라 측정된 비교예 2, 5, 9의 용량 결과를 도 5에 나타내었다. 도 5에 나타낸 것과 같이, Mg가 도핑된 비교예 2 및 9의 용량 유지율이 Mg 도핑되지 않은 비교예 5보다 우수하기는 하나, Mg 도핑양이 5몰%로 과량인 비교예 9가, Mg 도핑량이 0.5몰%인 비교예 2에 비하여 용량 유지율이 저하된 결과가 얻어져다. 따라서, 이 결과로부터, Mg 도핑량이 증가할수록 용량 유지율은 저하됨을 알 수 있다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.

Claims (8)

  1. 하기 화학식 1의 리튬 니켈 코발트 망간계 산화물 제1 양극 활물질; 및
    하기 화학식 2의 리튬 코발트계 산화물 제2 양극 활물질을 포함하며,
    상기 제1 양극 활물질의 평균 입경(D50)이 상기 제2 양극 활물질의 평균 입경(D50)보다 작은 것인
    리튬 이차 전지용 양극 활물질.
    [화학식 1]
    LiaNixCoyMnzM1 kO2
    (상기 화학식 1에서, 0.9 ≤ a ≤ 1.1, 0.3 ≤ x < 0.6, 0.05 ≤ y ≤ 0.4, 0.05 ≤ z ≤ 0.4, 0 ≤ k ≤ 0.04, x + y + z + k =1,
    M1은 K, Zr, W, Mg, Ti, Al 또는 이들의 조합임.)
    [화학식 2]
    Li1 - uMguCoO2 - tM2 t
    (상기 화학식 2에서, 0 < u < 0.04, 0 ≤ t < 0.02, M2는 F임)
  2. 제1항에 있어서,
    상기 제1 양극 활물질의 평균 입경(D50)은 2㎛ 내지 4㎛인 리튬 이차 전지용 양극 활물질.
  3. 제1항에 있어서,
    상기 제2 양극 활물질의 평균 입경(D50)은 16㎛ 내지 24㎛인 리튬 이차 전지용 양극 활물질.
  4. 제1항에 있어서,
    상기 제1 양극 활물질의 평균 입경(D50)에 대한 상기 제2 양극 활물질의 평균 입경(D50) 비(제2 양극 활물질의 평균 입경(D50)/제1 양극 활물질의 평균 입경(D50))는 4 내지 12인 리튬 이차 전지용 양극 활물질.
  5. 제1항에 있어서,
    상기 제1 양극 활물질 부피에 대한 상기 제2 양극 활물질의 부피비는 3 내지 9인 리튬 이차 전지용 양극 활물질.
  6. 제1항에 있어서,
    상기 제1 양극 활물질과 상기 제2 양극 활물질의 혼합비는 1 : 9 내지 1 : 3인 리튬 이차 전지용 양극 활물질.
  7. 제1항에 있어서,
    상기 제2 양극 활물질에서 Mg/Co의 원자비(atomic ratio)는 0.0035 내지 0.01인 리튬 이차 전지용 양극 활물질.
  8. 제1항 내지 제7항 중 어느 한 항의 양극 활물질을 포함하는 양극;
    음극 활물질을 포함하는 음극; 및
    전해질;
    을 포함하는 리튬 이차 전지.
PCT/KR2017/008244 2016-08-02 2017-07-31 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 WO2018026153A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160098459A KR20180014962A (ko) 2016-08-02 2016-08-02 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR10-2016-0098459 2016-08-02

Publications (1)

Publication Number Publication Date
WO2018026153A1 true WO2018026153A1 (ko) 2018-02-08

Family

ID=61073760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008244 WO2018026153A1 (ko) 2016-08-02 2017-07-31 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지

Country Status (2)

Country Link
KR (1) KR20180014962A (ko)
WO (1) WO2018026153A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020026078A1 (ko) * 2018-08-03 2020-02-06

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020180160A1 (ko) * 2019-03-07 2020-09-10 주식회사 엘지화학 리튬 이차전지
CN112531151B (zh) * 2020-10-28 2022-02-15 珠海冠宇电池股份有限公司 一种正极片及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020025815A (ko) * 2000-09-29 2002-04-04 다카노 야스아키 비수 전해질 이차 전지
KR20040026378A (ko) * 2002-09-24 2004-03-31 삼성에스디아이 주식회사 리튬 이차 전지용 혼합 양극 활물질 및 이를 포함하는리튬 이차 전지
KR20060091486A (ko) * 2005-02-15 2006-08-21 삼성에스디아이 주식회사 양극 활물질, 그 제조 방법 및 이를 채용한 양극과 리튬 전지
KR101511935B1 (ko) * 2012-08-01 2015-04-14 주식회사 엘지화학 이차전지용 전극조립체 및 이를 포함하는 리튬 이차전지
WO2015136881A1 (ja) * 2014-03-11 2015-09-17 三洋電機株式会社 非水電解質二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020025815A (ko) * 2000-09-29 2002-04-04 다카노 야스아키 비수 전해질 이차 전지
KR20040026378A (ko) * 2002-09-24 2004-03-31 삼성에스디아이 주식회사 리튬 이차 전지용 혼합 양극 활물질 및 이를 포함하는리튬 이차 전지
KR20060091486A (ko) * 2005-02-15 2006-08-21 삼성에스디아이 주식회사 양극 활물질, 그 제조 방법 및 이를 채용한 양극과 리튬 전지
KR101511935B1 (ko) * 2012-08-01 2015-04-14 주식회사 엘지화학 이차전지용 전극조립체 및 이를 포함하는 리튬 이차전지
WO2015136881A1 (ja) * 2014-03-11 2015-09-17 三洋電機株式会社 非水電解質二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020026078A1 (ko) * 2018-08-03 2020-02-06
WO2020026078A1 (ja) * 2018-08-03 2020-02-06 株式会社半導体エネルギー研究所 正極活物質および正極活物質の作製方法

Also Published As

Publication number Publication date
KR20180014962A (ko) 2018-02-12

Similar Documents

Publication Publication Date Title
WO2018062719A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR101264364B1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 이용한 리튬 이차 전지
WO2018012821A1 (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
WO2018084526A2 (ko) 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
WO2018080071A1 (ko) 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
WO2010035950A2 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2018048155A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2018048156A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2019013521A2 (ko) 리튬 이차 전지
WO2019156434A1 (ko) 전해액 조성물 및 이를 이용한 이차전지
EP1710855A2 (en) Negative electrode for non-aqueous secondary battery
WO2019013525A2 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2020204625A1 (ko) 리튬 이차전지용 전극
WO2020153690A1 (ko) 리튬 복합 음극 활물질, 이를 포함하는 음극 및 이들의 제조방법
WO2019050162A1 (ko) 리튬 이차 전지
WO2018038453A1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
WO2018026153A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2018074684A1 (ko) 리튬 이차 전지
WO2012141503A2 (ko) 양극 활물질, 그 제조 방법 및 이를 채용한 양극 및 리튬 전지
WO2018084525A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2019194407A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR20100065778A (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2022080809A1 (ko) 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
WO2022108267A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차 전지
WO2022108268A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17837204

Country of ref document: EP

Kind code of ref document: A1