WO2022080809A1 - 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2022080809A1
WO2022080809A1 PCT/KR2021/014002 KR2021014002W WO2022080809A1 WO 2022080809 A1 WO2022080809 A1 WO 2022080809A1 KR 2021014002 W KR2021014002 W KR 2021014002W WO 2022080809 A1 WO2022080809 A1 WO 2022080809A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
secondary battery
lithium secondary
lithium
Prior art date
Application number
PCT/KR2021/014002
Other languages
English (en)
French (fr)
Inventor
하진수
안성진
문산
전성호
조민호
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to US18/003,952 priority Critical patent/US20230268512A1/en
Publication of WO2022080809A1 publication Critical patent/WO2022080809A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • It relates to a positive electrode for a lithium secondary battery and a lithium secondary battery including the same.
  • lithium secondary battery has been in the spotlight as a driving power source for a portable device because it is lightweight and has a high energy density. Accordingly, research and development efforts for improving the performance of lithium secondary batteries are being actively conducted.
  • an organic electrolyte or polymer electrolyte is charged between a positive electrode and a negative electrode made of an active material capable of intercalation and deintercalation of lithium ions, and lithium ions are intercalated/deintercalated from the positive electrode and the negative electrode. Electric energy is produced by a reduction reaction with
  • Lithium cobalt oxide LiCoO2
  • LiNiO2 lithium nickel oxide
  • lithium iron phosphate compound LiFePO4
  • a lithium composite metal oxide (hereinafter referred to as hereinafter) in which a part of nickel (Ni) is substituted with cobalt (Co) or manganese (Mn)/aluminum (Al) , 'NCM-based lithium composite transition metal oxide' or 'NCA-based lithium composite transition metal oxide') was developed.
  • the conventionally developed NCM-based/NCA-based lithium composite transition metal oxide does not have sufficient capacity characteristics, so there is a limit to its application in environments requiring high capacity, such as next-generation electric vehicles and secondary batteries for power storage.
  • the high heat resistance and high stability polyimide-based polymer does not phase decompose in the positive electrode to form a complex compound, and the positive electrode active material protects the surface of the positive electrode active material
  • a positive electrode for a lithium secondary battery that not only prevents a side reaction between an electrolyte and an electrolyte, but also has excellent lithium ion conductivity.
  • Another embodiment provides a lithium secondary battery including the positive electrode for the lithium secondary battery.
  • One embodiment provides a positive electrode for a lithium secondary battery comprising a positive electrode active material, a conductive material, and a binder, wherein the positive electrode includes a polyimide-based polymer including a carboxy group, a positive electrode for a lithium secondary battery.
  • the polyimide-based polymer may be included in an amount of 0.1 to 1 part by weight based on 100 parts by weight of the total amount of the mixture of the positive electrode active material, the conductive material, and the binder.
  • the positive active material may further include a coating layer on the surface, and the coating layer may include the polyimide-based polymer.
  • the thickness of the coating layer may be 1 nm to 50 nm.
  • the polyimide-based polymer may further include lithium ions.
  • the lithium ion may be included in an amount of 0.1 wt% to 1 wt% based on the total weight of the polyimide-based polymer.
  • the acid value of the polyimide-based polymer including the carboxyl group may be 10 to 100 KOH mg/g.
  • the glass transition temperature (T g ) of the polyimide-based polymer may be 160 o C to 280 o C.
  • the positive active material may be at least one type of lithium composite oxide represented by the following Chemical Formula 1.
  • M 1 , M 2 and M 3 are each independently Ni, Co, Mn, Al , any one selected from metals such as Sr, Mg or La, and combinations thereof.
  • the positive active material may be a lithium composite oxide represented by the following Chemical Formula 1-1.
  • Another embodiment provides a lithium secondary battery including the positive electrode, the negative electrode, and the electrolyte.
  • the negative electrode may include a negative active material, and the negative active material may include a Si-based active material, a carbon-based active material, lithium metal, or a combination thereof.
  • the positive electrode for a lithium secondary battery may include a polyimide-based polymer including a carboxyl group to implement a lithium secondary battery having improved capacity characteristics and lifespan characteristics.
  • FIG. 1 is a schematic diagram illustrating a lithium secondary battery according to an embodiment.
  • the positive electrode may provide a lithium secondary battery with improved lifespan characteristics due to excellent thermal stability.
  • the positive electrode for a lithium secondary battery includes a positive electrode active material, a conductive material, and a binder, and the positive electrode includes a polyimide-based polymer containing a carboxyl group.
  • a polyimide-based polymer having high heat resistance and high stability does not phase decompose in the positive electrode to form a complex compound, and a side reaction between the positive electrode active material and the electrolyte is prevented by protecting the surface of the positive electrode active material. It is possible to improve the lifespan characteristics of the lithium secondary battery under high temperature and high voltage conditions.
  • the polyimide-based polymer contains a carboxy group
  • the interaction between the polyimide-based polymer and the positive electrode active material increases, so that the polyimide-based polymer is well coated on the surface of the positive electrode active material, and as it contains lithium ions, lithium ions Since the conductivity is improved, it is possible to secure the stability of the lithium secondary battery including the same.
  • the polyimide-based polymer may be included in an amount of 0.1 to 1 part by weight, for example, 0.1 to 0.8 part by weight, for example, 0.1 to 1 part by weight based on 100 parts by weight of the mixture of the positive electrode active material, the conductive material, and the binder. It may be included in 0.6 parts by weight, for example, may be included in 0.2 to 0.6 parts by weight, for example, may be included in 0.2 to 0.5 parts by weight. When the content of the polyimide-based polymer satisfies the above range, thermal stability and high temperature lifespan characteristics of a lithium secondary battery including the same may be improved.
  • the positive active material may further include a coating layer on the surface, and the coating layer may include the polyimide-based polymer including the carboxyl group.
  • the polyimide-based polymer included in the coating layer may serve as a protective film that prevents the positive electrode active material from coming into direct contact with the electrolyte and prevents attack from HF (hydrogen fluoride) generated from the electrolyte by a trace amount of moisture.
  • the carboxyl group included in the polyimide-based polymer can promote the interaction between the metal and the ionic bond included in the positive electrode active material, and accordingly, the polyimide-based polymer is uniformly coated on the surface of the positive electrode active material to cause cracks in the positive electrode active material (crack) can be prevented, and the elution of the transition metal contained in the positive electrode active material can be prevented. Furthermore, the coating layer provides an electron movement path to maintain a uniform current and voltage distribution in the positive electrode, thereby improving the lifespan characteristics of the lithium secondary battery.
  • the thickness of the coating layer may be 1 nm to 50 nm, for example 1 nm to 40 nm, for example 1 nm to 30 nm, for example 3 nm to 20 nm, For example, it may be 3 nm to 10 nm. If the thickness of the coating layer is less than 1 nm, the effect of preventing side reactions between the cathode active material and the electrolyte due to the coating layer may be insignificant. can increase
  • the polyimide-based polymer may further include lithium ions.
  • the polyimide-based polymer distributed in the positive electrode or included in the coating layer of the positive electrode active material may improve ion conductivity to promote movement of lithium ions and electrons.
  • Lithium ions according to the embodiment may be included in an amount of 0.1 to 1% by weight based on the total weight of the polyimide-based polymer, for example, 0.1 to 0.7% by weight, for example, 0.1 to 0.5% by weight, for example, 0.1 to It may be included in 0.3 wt%. If the lithium ion is contained in an amount exceeding 1 wt% with respect to the polyimide-based polymer, the lithium ion is eluted in the electrolyte solution and forms a reduced metal salt at the negative electrode to increase the internal resistance of the battery, so within the above range properly adjusted in
  • the polyimide-based polymer including a carboxyl group has an acid value of 10 (KOH mg/g) to 100 (KOH mg/g) in consideration of the lithium ion content or resistance in the battery.
  • the polyimide-based polymer satisfies the acid value in the above range, a uniform coating layer is formed on the positive electrode active material, and ionic conductivity such as lithium ions is improved, thereby securing thermal stability and excellent lifespan characteristics of the battery.
  • the glass transition temperature (T g ) of the polyimide-based polymer may be 160 °C to 280 °C, for example, 170 °C to 250 °C.
  • T g glass transition temperature
  • the positive electrode may include a current collector and a positive electrode active material layer including a positive active material formed on the current collector.
  • the positive electrode is prepared by mixing the positive electrode active material, the binder, the conductive material, and the polyimide-based polymer in a solvent to prepare a positive electrode active material slurry, and then applying the positive electrode active material slurry to the current collector, drying it, and rolling it.
  • the polyimide-based polymer may be uniformly distributed in the positive electrode active material layer.
  • a compound capable of reversible intercalation and deintercalation of lithium (a lithiated intercalation compound) may be used.
  • a complex oxide of a nickel-containing metal and lithium can be used.
  • Examples of the positive electrode active material may include a compound represented by any one of the following formulas.
  • Li a A 1-b X b D 2 (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5); Li a A 1-b X b O 2-c D c (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); Li a E 1-b X b O 2-c D c (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); Li a E 2-b X b O 4-c D c (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); Li a Ni 1-bc Co b X c D ⁇ (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.5, 0 ⁇ ⁇ 2); Li a Ni 1-bc Co b
  • A is selected from the group consisting of Ni, Co, Mn, and combinations thereof;
  • X is selected from the group consisting of Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements, and combinations thereof;
  • D is selected from the group consisting of O, F, S, P, and combinations thereof;
  • E is selected from the group consisting of Co, Mn, and combinations thereof;
  • T is selected from the group consisting of F, S, P, and combinations thereof;
  • G is selected from the group consisting of Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, and combinations thereof;
  • Q is selected from the group consisting of Ti, Mo, Mn, and combinations thereof;
  • Z is selected from the group consisting of Cr, V, Fe, Sc, Y, and combinations thereof;
  • J is selected from the group consisting of V, Cr, Mn, Co, Ni, Cu, and combinations thereof.
  • the coating layer may include at least one coating element compound selected from the group consisting of an oxide of a coating element, a hydroxide of a coating element, an oxyhydroxide of a coating element, an oxycarbonate of a coating element, and a hydroxycarbonate of a coating element.
  • the compound constituting these coating layers may be amorphous or crystalline.
  • the coating element included in the coating layer Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr, or a mixture thereof may be used.
  • any coating method may be used as long as it can be coated by a method that does not adversely affect the physical properties of the positive electrode active material by using these elements in the compound (eg, spray coating, immersion method, etc.). Since the content can be well understood by those engaged in the field, a detailed description thereof will be omitted.
  • the positive active material may be, for example, at least one of lithium composite oxides represented by the following Chemical Formula 3.
  • M 1 , M 2 and M 3 are each independently Ni, Co, Mn, Al, Sr, Mg or It may be any one selected from metals such as La and combinations thereof.
  • M 1 may be Ni
  • M 2 and M 3 may each independently be a metal such as Co, Mn, Al, Sr, Mg, or La.
  • M 1 may be Ni
  • M 2 may be Co
  • M 3 may be Mn or Al, but is not limited thereto.
  • the cathode active material may be a lithium composite oxide represented by the following Chemical Formula 3-1.
  • the content of the cathode active material may be 90 wt% to 98 wt% based on the total weight of the cathode active material layer.
  • the positive electrode active material layer may include a binder and a conductive material.
  • the content of the binder and the conductive material may be 1 wt% to 5 wt%, respectively, based on the total weight of the positive electrode active material layer.
  • the binder serves to adhere the positive active material particles well to each other and also to the positive active material to the current collector, and representative examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl. Chloride, carboxylated polyvinylchloride, polyvinylfluoride, polymers including ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene- Butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, etc. may be used, but the present invention is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode, and in the battery configured, any electronic conductive material can be used as long as it does not cause a chemical change, for example, natural graphite, artificial graphite, carbon black, acetylene black, ketjen carbon-based materials such as black and carbon fiber; Metal-based substances, such as metal powders, such as copper, nickel, aluminum, and silver, or a metal fiber; conductive polymers such as polyphenylene derivatives; Alternatively, a conductive material including a mixture thereof may be used.
  • Al may be used as the current collector, but is not limited thereto.
  • Another embodiment provides a lithium secondary battery including the positive electrode, the negative electrode, and the electrolyte according to the embodiment.
  • a lithium secondary battery 100 includes a positive electrode 114 , a negative electrode 112 positioned to face the positive electrode 114 , and between the positive electrode 114 and the negative electrode 112 .
  • a battery cell including a separator 113 and a positive electrode 114, a negative electrode 112, and an electrolyte (not shown) for a lithium secondary battery impregnated with the separator 113, and a battery container containing the battery cell and a sealing member 140 sealing the battery container 120 and 120 .
  • the negative electrode includes a current collector and an anode active material layer including a negative active material formed on the current collector.
  • the negative active material includes a material capable of reversibly intercalating/deintercalating lithium ions, lithium metal, an alloy of lithium metal, a material capable of doping and dedoping lithium, or a transition metal oxide.
  • any carbon-based negative active material generally used in lithium ion secondary batteries may be used as a carbon-based negative electrode active material, and representative examples thereof include Crystalline carbon, amorphous carbon, or a combination thereof may be used.
  • the crystalline carbon include graphite such as amorphous, plate-like, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon or hard carbon ( hard carbon), mesophase pitch carbide, and calcined coke.
  • the lithium metal alloy includes lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al and Sn from the group consisting of Alloys of metals of choice may be used.
  • a Si-based negative active material or a Sn-based negative active material may be used as the material capable of doping and de-doping lithium, and as the Si-based negative active material, silicon, silicon-carbon composite, SiO x (0 ⁇ x ⁇ 2), Si -Q alloy (wherein Q is an element selected from the group consisting of alkali metals, alkaline earth metals, Group 13 elements, Group 14 elements, Group 15 elements, Group 16 elements, transition metals, rare earth elements, and combinations thereof, and not Si ), as the Sn-based negative active material, Sn, SnO 2 , Sn-R alloy (wherein R is an alkali metal, an alkaline earth metal, a group 13 element, a group 14 element, a group 15 element, a group 16 element, a transition metal, a rare earth element, and It is an element selected from the group consisting of these combinations, and is not Sn), etc., and also at least one of these and SiO 2 may be mixed and used.
  • the elements Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, One selected from the group consisting of S, Se, Te, Po, and combinations thereof may be used.
  • the silicon-carbon composite may be a silicon-carbon composite including a core including crystalline carbon and silicon particles and an amorphous carbon coating layer disposed on the surface of the core.
  • the crystalline carbon may be artificial graphite, natural graphite, or a combination thereof.
  • a coal-based pitch, a mesophase pitch, a petroleum-based pitch, a coal-based oil, a petroleum-based heavy oil, or a polymer resin such as a phenol resin, a furan resin, or a polyimide resin may be used as a phenol resin, a furan resin, or a polyimide resin.
  • the content of silicon may be 10 wt% to 50 wt% based on the total weight of the silicon-carbon composite.
  • the content of the crystalline carbon may be 10% to 70% by weight based on the total weight of the silicon-carbon composite, and the content of the amorphous carbon may be 20% to 40% by weight based on the total weight of the silicon-carbon composite.
  • the thickness of the amorphous carbon coating layer may be 5 nm to 100 nm.
  • the average particle diameter (D50) of the silicon particles may be 10 nm to 20 ⁇ m.
  • the average particle diameter (D50) of the silicon particles may be preferably 10 nm to 200 nm.
  • the silicon particles may exist in an oxidized form, and in this case, an atomic content ratio of Si:O in the silicon particles indicating the degree of oxidation may be in a weight ratio of 99:1 to 33:66.
  • the silicon particle may be a SiO x particle, and in this case, the range of x in SiO x may be greater than 0 and less than 2.
  • the average particle diameter (D50) means the diameter of particles having a cumulative volume of 50% by volume in the particle size distribution.
  • the Si-based negative active material or Sn-based negative active material may be mixed with the carbon-based negative active material.
  • the mixing ratio may be 1:99 to 10:90% by weight.
  • the carbon-based negative active material crystalline carbon or amorphous carbon may be used.
  • the crystalline carbon may be artificial graphite, natural graphite, or a combination thereof.
  • a coal-based pitch, mesophase pitch, petroleum-based pitch, coal-based oil, petroleum-based heavy oil, or a polymer resin such as a phenol resin, a furan resin, or a polyimide resin may be used.
  • a lithium secondary battery including an electrolyte including a Si-based negative active material or a Sn-based negative active material and including an additive including the compound represented by Formula 1 may exhibit excellent room temperature and high temperature cycle life characteristics. In particular, this effect may be more remarkably improved when the content of the additive including the compound represented by Formula 1 is included in the above range.
  • transition metal oxide examples include vanadium oxide, lithium vanadium oxide or lithium titanium oxide.
  • the content of the anode active material in the anode active material layer may be 95 wt% to 99 wt% based on the total weight of the anode active material layer.
  • the negative active material layer includes a binder, and may optionally further include a conductive material.
  • the content of the binder in the anode active material layer may be 1 wt% to 5 wt% based on the total weight of the anode active material layer.
  • 90 wt% to 98 wt% of the negative active material, 1 wt% to 5 wt% of the binder, and 1 wt% to 5 wt% of the conductive material may be used.
  • the binder serves to well adhere the negative active material particles to each other and also to adhere the negative active material to the current collector.
  • a water-insoluble binder, a water-soluble binder, or a combination thereof may be used as the binder.
  • water-insoluble binder examples include polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, ethylene oxide-containing polymer, ethylene propylene copolymer, polystyrene, polyvinylpyrrolidone, polyurethane, polytetrafluoro ethylene, polyvinylidene fluoride, polyethylene, polypropylene, polyamideimide, polyimide, or combinations thereof.
  • the water-soluble binder may include a rubber-based binder or a polymer resin binder.
  • the rubber binder may be selected from styrene-butadiene rubber (SBR), acrylated styrene-butadiene rubber, acrylonitrile-butadiene rubber (ABR), acrylic rubber, butyl rubber, fluororubber, and combinations thereof. .
  • the polymer resin binder is polyethylene oxide, polyvinylpyrrolidone, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, ethylene propylene diene copolymer, polyvinylpyridine, chlorosulfonated polyethylene, latex, poly It may be selected from ester resins, acrylic resins, phenol resins, epoxy resins, polyvinyl alcohol, and combinations thereof.
  • a cellulose-based compound capable of imparting viscosity may be further included.
  • the cellulose-based compound one or more of carboxymethyl cellulose, hydroxypropylmethyl cellulose, methyl cellulose, or alkali metal salts thereof may be mixed and used.
  • the alkali metal Na, K or Li may be used.
  • the amount of the thickener used may be 0.1 parts by weight to 3 parts by weight based on 100 parts by weight of the negative active material.
  • the conductive material is used to impart conductivity to the electrode, and in the battery configured, any electronic conductive material can be used as long as it does not cause a chemical change, for example, natural graphite, artificial graphite, carbon black, acetylene black, ketjen carbon-based materials such as black and carbon fiber; Metal-based substances, such as metal powders, such as copper, nickel, aluminum, and silver, or a metal fiber; conductive polymers such as polyphenylene derivatives; Alternatively, a conductive material including a mixture thereof may be used.
  • the current collector one selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with conductive metal, and combinations thereof may be used.
  • the electrolyte includes a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent may be used.
  • the carbonate-based solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC), etc.
  • ester solvent examples include methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, and ethyl propionate.
  • ⁇ -butyrolactone, decanolide (decanolide), valerolactone, mevalonolactone, caprolactone, etc. may be used.
  • Dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc. may be used as the ether solvent, and cyclohexanone etc. may be used as the ketone solvent. there is.
  • the alcohol-based solvent ethyl alcohol, isopropyl alcohol, etc.
  • the aprotic solvent is R-CN (where R is a C2 to C20 linear, branched, or cyclic hydrocarbon group, , nitriles such as nitriles (which may contain a double bond aromatic ring or ether bond), amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolanes, and the like can be used.
  • the non-aqueous organic solvent may be used alone or in a mixture of one or more, and when one or more are mixed and used, the mixing ratio can be appropriately adjusted according to the desired battery performance, which is widely understood by those in the art. can be
  • the carbonate-based solvent it is preferable to use a mixture of a cyclic carbonate and a chain carbonate.
  • the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the performance of the electrolyte may be excellent.
  • the non-aqueous organic solvent of the present invention may further include an aromatic hydrocarbon-based organic solvent in the carbonate-based solvent.
  • the carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of about 1:1 to about 30:1.
  • aromatic hydrocarbon-based solvent an aromatic hydrocarbon-based compound represented by the following Chemical Formula 2 may be used.
  • R 4 to R 9 are the same as or different from each other and are selected from the group consisting of hydrogen, halogen, an alkyl group having 1 to 10 carbon atoms, a haloalkyl group, and combinations thereof.
  • aromatic hydrocarbon-based solvent examples include benzene, fluorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluoro Robenzene, 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1, 2,4-trichlorobenzene, iodobenzene, 1,2-diiodobenzene, 1,3-diiodobenzene, 1,4-diiodobenzene, 1,2,3-triiodobenzene, 1,2 ,4-triiodobenzene, toluene, fluorotoluene, 2,3-difluorotoluene, 2,4-difluoro
  • the electrolyte may further include vinylene carbonate or an ethylene-based carbonate-based compound represented by the following Chemical Formula 4 as a lifespan improving additive in order to improve battery life.
  • R 10 and R 11 are the same as or different from each other, and are selected from the group consisting of hydrogen, a halogen group, a cyano group (CN), a nitro group (NO 2 ), and a fluorinated alkyl group having 1 to 5 carbon atoms, At least one of R 10 and R 11 is selected from the group consisting of a halogen group, a cyano group (CN), a nitro group (NO 2 ), and a fluorinated alkyl group having 1 to 5 carbon atoms, with the proviso that both R 10 and R 11 are hydrogen not.
  • ethylene-based carbonate-based compound examples include difluoroethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate or fluoroethylene carbonate. can be heard When such a life-enhancing additive is further used, its amount can be appropriately adjusted.
  • the lithium salt is dissolved in a non-aqueous organic solvent, serves as a source of lithium ions in the battery, enables basic lithium secondary battery operation, and promotes movement of lithium ions between the positive electrode and the negative electrode.
  • Representative examples of such lithium salts include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 C 2 F 5 ) 2 , Li(CF 3 SO 2 ) 2 N, LiN(SO 3 C 2 F 5 ) 2 , Li(FSO 2 ) 2 N(lithium bis(fluorosulfonyl)imide (LiFSI)), LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN(C x F 2x+ 1 SO 2 )(C y F 2y+1 SO 2 ), where x and y are natural numbers, for example, integers from 1 to 20, LiCl, LiI and LiB(C 2 O 4 ) 2
  • the separator 113 separates the positive electrode 114 and the negative electrode 112 and provides a passage for lithium ions to move, and any one commonly used in a lithium ion battery may be used. That is, a material having low resistance to ion movement of the electrolyte and excellent moisture content of the electrolyte may be used. For example, it may be selected from glass fiber, polyester, Teflon, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), or a combination thereof, and may be in the form of a nonwoven fabric or a woven fabric.
  • PTFE polytetrafluoroethylene
  • a polyolefin-based polymer separator such as polyethylene or polypropylene is mainly used for lithium ion batteries, and a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and optionally single-layer or multi-layer structure can be used.
  • Lithium secondary batteries can be classified into lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries according to the type of separator and electrolyte used, and can be classified into cylindrical, prismatic, coin-type, pouch-type, etc. according to the shape, According to the size, it can be divided into a bulk type and a thin film type. Since the structure and manufacturing method of these batteries are well known in the art, a detailed description thereof will be omitted.
  • Tg Glass transition temperature
  • Viscosity Measured at 25 °C with a Brookfield rotational viscometer (Brookfield rotational viscometer).
  • a positive electrode active material Li 1.03 Ni 0.916 Co 0.07 Al 0.014 O 2 , 95.75:2:2:0.25 of the polyimide-based polymer prepared in Preparation Example 1 as a polyimide-based polymer including polyvinylidene fluoride (PVDF) as a binder, carbon black as a conductive material, and a carboxy group, respectively.
  • PVDF polyvinylidene fluoride
  • a cathode active material slurry is prepared by mixing in a weight ratio of and dispersing in N-methyl pyrrolidone (N-Methyl-2-pyrrolidone, NMP).
  • the cathode active material slurry was coated on an Al foil having a thickness of 15 ⁇ m to a loading level of 10 mg/cm 2 , dried at 120° C., and then pressed to prepare a cathode having an electrode density of 3.65 g/cc.
  • a coin-type half secondary battery (CHC) was manufactured using the prepared positive electrode, a lithium metal 0.7 mm thick, a separator made of polyethylene having a thickness of 25 ⁇ m, and an electrolyte.
  • the electrolyte composition is as follows.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the positive electrode active material, the binder, the conductive material, and the polyimide-based polymer prepared in Preparation Example 1 were mixed in a weight ratio of 95.5:2:2:0.5.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the positive electrode active material, the binder, and the conductive material were mixed in a weight ratio of 96:2:2, and a polyimide-based polymer was not added.
  • a lithium secondary battery was prepared in the same manner as in Example 1, except that the positive electrode active material, the binder, the conductive material, and the polyimide-based polymer prepared in Preparation Example 1 were mixed in a weight ratio of 95:2:2:1.
  • a lithium secondary battery was prepared in the same manner as in Example 1, except that the positive electrode active material, the binder, and the conductive material were mixed in a weight ratio of 95.5:2.5:2, and a polyimide-based polymer was not added.
  • the lithium secondary batteries of Examples 1 to 2 and Comparative Examples 1 to 3 were charged at a constant current of 0.2C until the voltage became 0.01V, and discharged at a constant current of 0.2C until the voltage became 1.5V. The characteristics of 50 cycles after charging/discharging times were obtained. The charging and discharging experiments were performed at 25 °C and 45 °C, respectively. The capacity retention rate is defined by Equation 1 below.
  • Capacity retention rate (%) (discharge capacity at 50th cycle/1 discharge capacity at 1st cycle) x 100
  • Table 2 below shows the capacity retention rate measurement results for the lithium secondary batteries of Examples 1 to 2 and Comparative Examples 1 to 3.
  • Example 1 and Comparative Example 3 Resistance characteristics of the lithium secondary batteries of Example 1 and Comparative Example 3 were confirmed. Each resistance value was measured using EIS (Electrochemical Impedance Spectroscopy). Specifically, using Solartron analytical EIS (Solartron, Inc.), at a frequency of 300000 to 0.1 Hz and an Ac Amplitude of 10 mA, the BOL (Beginning Of Life) and EOL (End Of Life) states of Example 1 and Comparative Example 3 was measured, and the results are shown in FIGS. 2 and 3 .
  • EIS Electrochemical Impedance Spectroscopy
  • lithium secondary battery 112 negative electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

양극 활물질, 도전재 및 바인더를 포함하는 리튬 이차 전지용 양극으로서, 상기 양극은 카르복시기를 포함하는 폴리이미드계 고분자를 포함하는, 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지에 관한 것으로서, 고내열성 및 고안정성의 폴리이미드계 고분자가 양극 내에서 상분해되어 착화합물을 형성하지 않고, 양극 활물질의 표면을 보호하여 양극 활물질과 전해액의 부반응을 방지할 뿐만 아니라, 리튬 이온 전도도가 양극 및 리튬 이차 전지에 관한 것이다.

Description

리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차 전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차 전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차 전지의 성능향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차 전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차 전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4) 등이 사용되었다. 또한, LiNiO2의 우수한 가역 용량은 유지하면서도 낮은 열 안정성을 개선하기 위한 방법으로서, 니켈(Ni)의 일부를 코발트(Co)나 망간(Mn)/알루미늄(Al)으로 치환한 리튬 복합금속 산화물(이하, 'NCM계 리튬 복합 전이금속 산화물' 또는 'NCA계 리튬 복합 전이금속 산화물'이라 약칭함)이 개발되었다. 그러나, 종래의 개발된 NCM계/NCA계 리튬 복합 전이금속 산화물은 용량 특성이 충분하지 않아, 차세대 전기 자동차 및 전력 저장용 이차 전지 등 고용량의 요구되는 환경에서의 적용에 한계가 있었다.
이와 같은 문제점을 개선하기 위해, 최근에는 NCM계/NCA계 리튬 복합 전이금속 산화물에서 Ni의 함량을 증가시키려는 연구가 이루어지고 있다. 그러나, 니켈 함량이 높은 고농도 니켈 양극 활물질의 경우, 활물질의 구조적 안정성과 화학적 안정성이 떨어져 열 안정성이 급격히 저하된다는 문제점이 있다. 또한, 활물질 내의 니켈 함량이 높아짐에 따라 양극 활물질 표면에 LiOH, Li2CO3 등의 형태로 존재하는 리튬 부산물의 잔류량이 높아져 이로 인한 가스 발생 및 스웰링(swelling) 현상이 발생하여 전지의 수명 및 안정성이 저하되는 문제점도 발생한다.
따라서, 고용량화에 부합하면서도 구조적 및 열적 안정성이 우수하며, 리튬 부산물의 잔류량이 줄어들고, 수명 특성이 개선된 고농도 니켈(High-Ni) 양극 활물질의 개발이 요구되고 있다.
일 구현예는 양극 내 카르복시기를 포함하는 폴리이미드계 고분자를 포함함으로써, 고내열성 및 고안정성의 폴리이미드계 고분자가 양극 내에서 상분해되어 착화합물을 형성하지 않고, 양극 활물질의 표면을 보호하여 양극 활물질과 전해액의 부반응을 방지할 뿐만 아니라, 리튬 이온 전도도가 우수한 리튬 이차 전지용 양극을 제공한다.
다른 구현예는 상기 리튬 이차 전지용 양극을 포함하는 리튬 이차 전지를 제공한다.
일 구현예는, 양극 활물질, 도전재 및 바인더를 포함하는 리튬 이차 전지용 양극으로서, 상기 양극은 카르복시기를 포함하는 폴리이미드계 고분자를 포함하는, 리튬 이차 전지용 양극을 제공한다.
상기 폴리이미드계 고분자는 상기 양극 활물질, 도전재, 및 바인더의 혼합물의 총량 100 중량부에 대하여 0.1 내지 1 중량부로 포함될 수 있다.
상기 양극 활물질은 표면에 코팅층을 더 포함하고, 상기 코팅층은 상기 폴리이미드계 고분자를 포함할 수 있다.
상기 코팅층의 두께는 1 nm 내지 50 nm 일 수 있다.
상기 폴리이미드계 고분자는 리튬 이온을 더 포함할 수 있다.
상기 리튬 이온은 상기 폴리이미드계 고분자 전체 중량에 대하여 0.1 중량% 내지 1 중량%로 포함될 수 있다.
상기 카르복시기를 포함하는 폴리이미드계 고분자의 산가(acid value)는 10 내지 100 KOH mg/g 일 수 있다.
상기 폴리이미드계 고분자의 유리전이온도(Tg)는 160 oC 내지 280 oC일 수 있다.
상기 양극 활물질은 하기 화학식 1로 표현되는 리튬 복합 산화물 중 적어도 1종일 수 있다.
[화학식 1]
LiaM1 1-y1-z1M2 y1M3 z1O2
상기 화학식 1에서, 0.9≤a≤1.8, 0≤y1≤1, 0≤z1≤1, 0≤y1+z1<1, M1, M2 및 M3은 각각 독립적으로 Ni, Co, Mn, Al, Sr, Mg 또는 La 등의 금속 및 이들의 조합에서 선택되는 어느 하나이다.
상기 양극 활물질은 하기 화학식 1-1로 표현되는 리튬 복합 산화물일 수 있다.
[화학식 1-1]
Lix2Niy2Coz2Al1-y2-z2O2
상기 화학식 1-1에서, 0.9≤x2≤1.2, 0.5≤y2≤1, 그리고 0≤z2≤0.5이다.
다른 일 구현예는, 상기 양극, 음극 및 전해질을 포함하는 리튬 이차 전지를 제공한다.
상기 음극은 음극 활물질을 포함하고, 상기 음극 활물질은 Si계 활물질, 탄소계 활물질, 리튬 금속, 또는 이들의 조합을 포함할 수 있다.
상기 리튬 이차 전지용 양극은 카르복시기를 포함하는 폴리이미드계 고분자를 포함하여, 용량 특성 및 수명 특성이 개선된 리튬 이차 전지를 구현할 수 있다.
도 1은 일 구현예에 따른 리튬 이차 전지를 도시한 개략도이다.
도 2는 실시예 1, 비교예 1 및 비교예 3에서 제조한 리튬 이차 전지의 BOL(Beginning Of Life) 상태의 임피던스 측정 결과를 나타낸 것이다.
도 3은 실시예 1, 비교예 1 및 비교예 3에서 제조한 리튬 이차 전지의 EOL(End Of Life) 상태의 임피던스 측정 결과를 나타낸 것이다.
이하, 구체적인 구현예들에 대하여 이 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예들에 한정되지 않는다.
본 명세서에서 사용되는 용어는 단지 예시적인 구현예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었으며, 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.
이하 일 구현예에 따른 리튬 이차 전지용 양극에 관하여 설명한다.
상기 양극은 열적 안정성이 우수하여 수명 특성이 개선된 리튬 이차 전지를 제공할 수 있다.
구체적으로, 일 구현예에 따른 리튬 이차 전지용 양극은 양극 활물질, 도전재 및 바인더를 포함하고, 상기 양극은 카르복시기를 포함하는 폴리이미드계 고분자를 포함한다.
기존에는 고용량의 리튬 이차 전지를 구현하기 위해, NCM계/NCA계 리튬 복합 전이금속 산화물에서 Ni의 함량을 증가시킴으로써 용량 특성을 확보하고자 하였으나, 이러한 고농도 니켈 양극 활물질의 경우 전지의 고온 안정성이 저하되고 스웰링 현상 등으로 인한 수명 특성이 감소하는 문제점이 있었고, 이를 보완하기 위해 양극 활물질 자체에 이종 원소를 도핑하거나 코팅층으로 사용하는 경우에는 양극 활물질의 용량이 감소되는 문제점이 있었다.
일 구현예에 따른 리튬 이차 전지용 양극은, 고내열성 및 고안정성의 폴리이미드계 고분자가 양극 내에서 상분해되어 착화합물을 형성하지 않고, 양극 활물질의 표면을 보호하여 양극 활물질과 전해액의 부반응이 방지되므로 고온 및 고전압 조건에서의 리튬 이차 전지의 수명 특성을 향상시킬 수 있다. 또한, 상기 폴리이미드계 고분자는 카르복시기를 포함함에 따라 상기 폴리이미드계 고분자와 양극 활물질간의 상호 작용이 증가하여 상기 폴리이미드계 고분자가 양극 활물질 표면에 잘 도포되고, 리튬 이온을 포함함에 따라 리튬 이온의 전도도가 향상되어 이를 포함하는 리튬 이차 전지의 안정성을 확보할 수 있다.
상기 폴리이미드계 고분자는 상기 양극 활물질, 도전재, 및 바인더의 혼합물의 총량 100 중량부에 대하여 0.1 내지 1 중량부로 포함될 수 있고, 예를 들어 0.1 내지 0.8 중량부로 포함될 수 있고, 예를 들어 0.1 내지 0.6 중량부로 포함될 수 있고, 예를 들어 0.2 내지 0.6 중량부로 포함될 수 있고, 예를 들어 0.2 내지 0.5 중량부로 포함될 수 있다. 상기 폴리이미드계 고분자의 함량이 상기의 범위를 만족할 때, 이를 포함하는 리튬 이차 전지의 열적 안정성 및 고온 수명 특성이 향상될 수 있다.
일 구현예에서, 상기 양극 활물질은 표면에 코팅층을 더 포함하고, 상기 코팅층은 상기 카르복시기를 포함하는 폴리이미드계 고분자를 포함할 수 있다. 상기 코팅층에 포함되는 폴리이미드계 고분자는 양극 활물질이 전해질과 직접 접촉하는 것을 방지하고, 미량의 수분에 의해 전해질로부터 발생되는 HF(불화수소)로부터의 공격을 막아주는 보호막 역할을 할 수 있다. 또한, 상기 폴리이미드계 고분자에 포함된 카르복시기는 양극 활물질에 포함되는 금속과 이온 결합 등의 상호 작용을 촉진할 수 있으며, 이에 따라 폴리이미드계 고분자가 양극 활물질 표면을 균일하게 코팅되어 양극 활물질의 크랙(crack)을 방지하고, 양극 활물질에 포함된 전이금속의 용출을 방지할 수 있다. 나아가, 상기 코팅층은 전자 이동 경로를 제공하여 양극 내 전류 및 전압 분포를 균일하게 유지시켜 리튬 이차 전지의 수명 특성을 향상시킬 수 있다.
상기 코팅층의 두께는 1 nm 내지 50 nm 일 수 있고, 예를 들어 1 nm 내지 40 nm 일 수 있고, 예를 들어 1 nm 내지 30 nm 일 수 있고, 예를 들어 3 nm 내지 20 nm 일 수 있으며, 예를 들어 3 nm 내지 10 nm 일 수 있다. 만일 상기 코팅층의 두께가 1 nm 미만인 경우에는 상기 코팅층으로 인한 양극 활물질과 전해액과의 부반응 방지 효과가 미미할 수 있으며, 상기 코팅층의 두께가 50 nm를 초과하는 경우, 리튬 이온의 이동성이 감소하여 저항이 증가할 수 있다.
일 구현예에서, 상기 폴리이미드계 고분자는 리튬 이온을 더 포함할 수 있다. 이로 인해 양극 내 분포하거나 양극 활물질의 코팅층에 포함되는 폴리이미드계 고분자는 이온 전도도를 향상시켜 리튬 이온 및 전자의 이동을 촉진할 수 있다.
상기 일 구현예에 따른 리튬 이온은 폴리이미드계 고분자 전체 중량에 대하여 0.1 내지 1 중량%로 포함될 수 있고, 예를 들어 0.1 내지 0.7 중량%, 예를 들어 0.1 내지 0.5 중량%, 예를 들어 0.1 내지 0.3 중량%로 포함될 수 있다. 만일, 상기 리튬 이온이 폴리이미드계 고분자에 대하여 1 중량%을 초과하여 포함되는 경우, 상기 리튬 이온이 전해액에 용출되고 음극에서 환원된 금속염을 형성하여 전지 내부 저항을 증가시킬 수 있으므로, 상기 범위 내에서 적절히 조절한다.
상기 일 구현예에 따른 카르복시기를 포함하는 폴리이미드계 고분자는, 리튬 이온의 함량 또는 전지 내 저항 등을 고려하여, 산가(acid value)가 10 (KOH mg/g) 내지 100 (KOH mg/g)일 수 있고, 예를 들어 10 (KOH mg/g) 내지 80 (KOH mg/g), 예를 들어 10 (KOH mg/g) 내지 60 (KOH mg/g), 예를 들어 20 (KOH mg/g) 내지 60 (KOH mg/g), 예를 들어 30 (KOH mg/g) 내지 50 (KOH mg/g)일 수 있다. 폴리이미드계 고분자가 상기 범위의 산가를 만족하는 경우, 양극 활물질에 균일한 코팅층을 형성하고, 리튬 이온 등의 이온 전도도가 향상되어 전지의 열적 안정성 및 우수한 수명 특성을 확보할 수 있다.
일 구현예에서, 상기 폴리이미드계 고분자의 유리전이온도(Tg)는 160 ℃ 내지 280 ℃, 예를 들어 170 ℃ 내지 250 ℃ 일 수 있다. 상기 범위의 유리전이온도를 가짐으로써 상기 폴리이미드계 고분자의 용매에 대한 용해도를 조절하여 최적화할 수 있다.
상기 양극은 전류 집전체 및 이 전류 집전체 위에 형성된 양극 활물질을 포함하는 양극 활물질 층을 포함할 수 있다.
상기 양극은 양극 활물질, 바인더, 도전재 및 상기 폴리이미드계 고분자를 용매 중에서 혼합하여 양극 활물질 슬러리를 제조한 후, 상기 양극 활물질 슬러리를 전류 집전체에 도포, 건도 및 압연하는 통상의 공정으로 제조할 수 있다. 따라서, 일 구현예에 따른 양극은, 상기 양극 활물질층에 상기 폴리이미드계 고분자가 균일하게 분포된 것일 수 있다.
상기 양극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다.
구체적으로는 니켈 함유 금속과 리튬과의 복합 산화물을 사용할 수 있다.
상기 양극 활물질의 예로 하기 화학식 중 어느 하나로 표현되는 화합물을 들 수 있다.
LiaA1-bXbD2(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5); LiaA1-bXbO2-cDc(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05); LiaE1-bXbO2-cDc(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05); LiaE2-bXbO4-cDc(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05); LiaNi1-b-cCobXcDα(0.90 ≤ a ≤1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.5, 0 < α ≤ 2); LiaNi1-b-cCobXcO2-αTα(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2); LiaNi1-b-cCobXcO2-αT2(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2); LiaNi1-b-cMnbXcDα(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2); LiaNi1-b-cMnbXcO2-αTα(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2); LiaNi1-b-cMnbXcO2-αT2( 0.90 ≤ a ≤ 1.8, 0 ≤ b  ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2); LiaNibEcGdO2(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0.001 ≤ d ≤ 0.1); LiaNibCocMndGeO2(0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤0.5, 0.001 ≤ e ≤ 0.1); LiaNiGbO2(0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1); LiaCoGbO2(0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1); LiaMn1-bGbO2(0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1); LiaMn2GbO4(0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1); LiaMn1-gGgPO4(0.90 ≤ a ≤ 1.8, 0 ≤ g ≤ 0.5); QO2; QS2; LiQS2; V2O5; LiV2O5; LiZO2; LiNiVO4; Li(3-f)J2(PO4)3(0 ≤ f ≤ 2); Li(3-f)Fe2(PO4)3(0 ≤ f ≤ 2); LiaFePO4(0.90 ≤ a ≤ 1.8)
상기 화학식에 있어서, A는 Ni, Co, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; X는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되고; D는 O, F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; E는 Co, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; T는 F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, 및 이들의 조합으로 이루어진 군에서 선택되고; Q는 Ti, Mo, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; Z는 Cr, V, Fe, Sc, Y, 및 이들의 조합으로 이루어진 군에서 선택되며; J는 V, Cr, Mn, Co, Ni, Cu, 및 이들의 조합으로 이루어진 군에서 선택된다.
물론 상기 화합물 표면에 코팅층을 갖는 것도 사용할 수 있고, 또는 상기 화합물과 코팅층을 갖는 화합물을 혼합하여 사용할 수도 있다. 이 코팅층은 코팅 원소의 옥사이드, 코팅 원소의 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트 및 코팅 원소의 하이드록시카보네이트로 이루어진 군에서 선택되는 적어도 하나의 코팅 원소 화합물을 포함할 수 있다. 이들 코팅층을 이루는 화합물은 비정질 또는 결정질일 수 있다. 상기 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물을 사용할 수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법(예를 들어 스프레이 코팅, 침지법 등)으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.
양극 활물질은 예컨대 하기 화학식 3으로 표현되는 리튬 복합 산화물 중 1종 이상일 수 있다.
[화학식 3]
LiaM1 1-y1-z1M2 y1M3 z1O2
상기 화학식 3에서,
0.9≤a≤1.8, 0≤y1≤1, 0≤z1≤1, 0≤y1+z1<1, M1, M2 및 M3은 각각 독립적으로 Ni, Co, Mn, Al, Sr, Mg 또는 La 등의 금속 및 이들의 조합에서 선택되는 어느 하나일 수 있다.
일 구현예에서 상기 M1은 Ni일 수 있고, 상기 M2 및 M3은 각각 독립적으로 Co, Mn, Al, Sr, Mg 또는 La 등의 금속일 수 있다.
구체적인 일 구현예에서 상기 M1은 Ni일 수 있고, 상기 M2는 Co일 수 있으며, 상기 M3은 Mn 또는 Al일 수 있으나, 이에 한정되는 것은 아니다.
더욱 구체적인 일 구현예에서 상기 양극 활물질은 하기 화학식 3-1로 표현되는 리튬 복합 산화물일 수 있다.
[화학식 3-1]
Lix2Niy2Coz2Al1-y2-z2O2
상기 화학식 3-1에서, 0.9≤x2≤1.2, 0.5≤y2≤1, 그리고 0≤z2≤0.5)를 들 수 있다.
상기 양극 활물질의 함량은 양극 활물질 층 전체 중량에 대하여 90 중량% 내지 98 중량%일 수 있다.
일 구현예에 있어서, 상기 양극 활물질층은 바인더 및 도전재를 포함할 수 있다. 이때, 상기 바인더 및 도전재의 함량은 양극 활물질 층 전체 중량에 대하여 각각 1 중량% 내지 5 중량%일 수 있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 전류 집전체로는 Al을 사용할 수 있으나 이에 한정되는 것은 아니다.
다른 일 구현예는, 상기 일 구현예에 따른 양극, 음극 및 전해질을 포함하는 리튬 이차 전지를 제공한다.
도 1은 일 구현예에 따른 리튬 이차 전지를 도시한 개략도이다. 도 1을 참조하면, 본 발명의 일 구현예에 따른 리튬 이차 전지(100)는 양극(114), 양극(114)과 대향하여 위치하는 음극(112), 양극(114)과 음극(112) 사이에 배치되어 있는 세퍼레이터(113) 및 양극(114), 음극(112) 및 세퍼레이터(113)를 함침하는 리튬 이차 전지용 전해질(도시하지 않음)을 포함하는 전지 셀과, 상기 전지 셀을 담고 있는 전지 용기(120) 및 상기 전지 용기(120)를 밀봉하는 밀봉 부재(140)를 포함한다.
상기 음극은 전류 집전체 및 이 전류 집전체 위에 형성된 음극 활물질을 포함하는 음극 활물질 층을 포함한다.
상기 음극 활물질은 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬에 도프 및 탈도프 가능한 물질 또는 전이 금속 산화물을 포함한다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는 탄소계 음극 활물질로서, 리튬 이온 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 린편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.
상기 리튬에 도프 및 탈도프 가능한 물질로는 Si계 음극 활물질 또는 Sn계 음극 활물질을 사용할 수 있으며, 상기 Si계 음극 활물질로는 실리콘, 실리콘-탄소 복합체, SiOx(0<x<2), Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), 상기 Sn계 음극 활물질로는 Sn, SnO2, Sn-R 합금(상기 R은 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Q 및 R로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 실리콘-탄소 복합체는 결정질 탄소 및 실리콘 입자를 포함하는 코어 및 이 코어 표면에 위치하는 비정질 탄소 코팅층을 포함하는 실리콘-탄소 복합체일 수 있다. 상기 결정질 탄소는 인조 흑연, 천연 흑연 또는 이들의 조합일 수 있다. 상기 비정질 탄소 전구체로는 석탄계 핏치, 메조페이스 핏치(mesophase pitch), 석유계 핏치, 석탄계 오일, 석유계 중질유 또는 페놀 수지, 퓨란 수지, 폴리이미드 수지 등의 고분자 수지를 사용할 수 있다. 이때, 실리콘의 함량은 실리콘-탄소 복합체 전체 중량에 대하여 10 중량% 내지 50 중량%일 수 있다. 또한, 상기 결정질 탄소의 함량은 실리콘-탄소 복합체 전체 중량에 대하여 10 중량% 내지 70 중량%일 수 있고, 상기 비정질 탄소의 함량은 실리콘-탄소 복합체 전체 중량에 대하여 20 중량% 내지 40 중량%일 수 있다. 또한, 상기 비정질 탄소 코팅층의 두께는 5nm 내지 100nm일 수 있다. 상기 실리콘 입자의 평균 입경(D50)은 10nm 내지 20μm일 수 있다. 상기 실리콘 입자의 평균 입경(D50)은 바람직하게 10nm 내지 200nm일 수 있다. 상기 실리콘 입자는 산화된 형태로 존재할 수 있고, 이때, 산화 정도를 나타내는 실리콘 입자내 Si:O의 원자 함량 비율은 99:1 내지 33:66 중량비일 수 있다. 상기 실리콘 입자는 SiOx 입자일 수 있으며 이때 SiOx에서 x 범위는 0 초과, 2 미만일 수 있다. 본 명세서에서, 별도의 정의가 없는 한, 평균 입경(D50)은 입도 분포에서 누적 체적이 50 부피%인 입자의 지름을 의미한다.
상기 Si계 음극 활물질 또는 Sn계 음극 활물질은 탄소계 음극 활물질과 혼합하여 사용될 수 있다. Si계 음극 활물질 또는 Sn계 음극 활물질과 탄소계 음극 활물질을 혼합 사용시, 그 혼합비는 1 : 99 내지 10 : 90 중량%일 수 있다. 상기 탄소계 음극 활물질로는 결정질 탄소 또는 비정질 탄소를 사용할 수 있다. 상기 결정질 탄소는 인조 흑연, 천연 흑연 또는 이들의 조합일 수 있다. 상기 비정질 탄소 전구체로는 석탄계 핏치, 메조페이스 핏치(mesophase pitch), 석유계 핏치, 석탄계 오일, 석유계 중질유 또는 페놀 수지, 퓨란 수지, 폴리이미드 수지 등의 고분자 수지를 사용할 수 있다.
Si계 음극 활물질 또는 Sn계 음극 활물질을 포함하고, 상기 화학식 1로 표시되는 화합물을 포함하는 첨가제가 포함된 전해질을 포함하는 리튬 이차 전지는 우수한 상온 및 고온 사이클 수명 특성을 나타낼 수 있다. 특히, 이러한 효과는 상기 화학식 1로 표시되는 화합물을 포함하는 첨가제의 함량이 상기 범위에 포함되는 경우, 보다 현저하게 향상될 수 있다.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 또는 리튬 티타늄 산화물 등을 들 수 있다.
상기 음극 활물질 층에서 음극 활물질의 함량은 음극 활물질 층 전체 중량에 대하여 95 중량% 내지 99 중량%일 수 있다.
일 구현예에 있어서, 상기 음극 활물질 층은 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다. 상기 음극 활물질 층에서 바인더의 함량은 음극 활물질 층 전체 중량에 대하여 1 중량% 내지 5 중량%일 수 있다. 또한 도전재를 더욱 포함하는 경우에는 음극 활물질을 90 중량% 내지 98 중량%, 바인더를 1 중량% 내지 5 중량%, 도전재를 1 중량% 내지 5 중량% 사용할 수 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다. 상기 바인더로는 비수용성 바인더, 수용성 바인더 또는 이들의 조합을 사용할 수 있다.
상기 비수용성 바인더로는 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 에틸렌 프로필렌 공중합체, 폴리스티렌, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 폴리아미드이미드, 폴리이미드 또는 이들의 조합을 들 수 있다.
상기 수용성 바인더로는 고무계 바인더 또는 고분자 수지 바인더를 들 수 있다. 상기 고무계 바인더는 스티렌-부타디엔 러버(SBR), 아크릴레이티드 스티렌-부타디엔 러버, 아크릴로나이트릴-부타디엔 러버(ABR), 아크릴 고무, 부틸고무, 불소고무, 및 이들의 조합에서 선택되는 것일 수 있다. 상기 고분자 수지 바인더는 폴리에틸렌옥시드, 폴리비닐피롤리돈, 폴리에피크로로히드린, 폴리포스파젠, 폴리아크릴로니트릴, 에틸렌프로필렌디엔공중합체, 폴리비닐피리딘, 클로로설폰화폴리에틸렌, 라텍스, 폴리에스테르수지, 아크릴수지, 페놀수지, 에폭시 수지, 폴리비닐알콜으로 및 이들의 조합에서 선택되는 것일 수 있다.
상기 음극 바인더로 수용성 바인더를 사용하는 경우, 점성을 부여할 수 있는 셀룰로즈 계열 화합물을 더욱 포함할 수 있다. 이 셀룰로즈 계열 화합물로는 카르복시메틸 셀룰로즈, 하이드록시프로필메틸 셀룰로즈, 메틸 셀룰로즈, 또는 이들의 알칼리 금속염 등을 1종 이상 혼합하여 사용할 수 있다. 상기 알칼리 금속으로는 Na, K 또는 Li를 사용할 수 있다. 이러한 증점제 사용 함량은 음극 활물질 100 중량부에 대하여 0.1 중량부 내지 3 중량부일 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 전해질은 비수성 유기 용매와 리튬염을 포함한다.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계, 또는 비양성자성 용매를 사용할 수 있다. 상기 카보네이트계 용매로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있으며, 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone), 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(여기서, R은 C2 내지 C20 직쇄상, 분지상, 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류 설포란(sulfolane)류 등이 사용될 수 있다.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.
또한, 상기 카보네이트계 용매의 경우 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
본 발명의 비수성 유기용매는 상기 카보네이트계 용매에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 방향족 탄화수소계 유기용매는 약 1:1 내지 약 30:1의 부피비로 혼합될 수 있다.
상기 방향족 탄화수소계 용매로는 하기 화학식 2의 방향족 탄화수소계 화합물이 사용될 수 있다.
[화학식 3]
Figure PCTKR2021014002-appb-img-000001
상기 화학식 3에서, R4 내지 R9는 서로 동일하거나 상이하며 수소, 할로겐, 탄소수 1 내지 10의 알킬기, 할로알킬기 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.
상기 방향족 탄화수소계 용매의 구체적인 예로는 벤젠, 플루오로벤젠, 1,2-디플루오로벤젠, 1,3-디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3-트리플루오로벤젠, 1,2,4-트리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠, 1,3-디클로로벤젠, 1,4-디클로로벤젠, 1,2,3-트리클로로벤젠, 1,2,4-트리클로로벤젠, 아이오도벤젠, 1,2-디아이오도벤젠, 1,3-디아이오도벤젠, 1,4-디아이오도벤젠, 1,2,3-트리아이오도벤젠, 1,2,4-트리아이오도벤젠, 톨루엔, 플루오로톨루엔, 2,3-디플루오로톨루엔, 2,4-디플루오로톨루엔, 2,5-디플루오로톨루엔, 2,3,4-트리플루오로톨루엔, 2,3,5-트리플루오로톨루엔, 클로로톨루엔, 2,3-디클로로톨루엔, 2,4-디클로로톨루엔, 2,5-디클로로톨루엔, 2,3,4-트리클로로톨루엔, 2,3,5-트리클로로톨루엔, 아이오도톨루엔, 2,3-디아이오도톨루엔, 2,4-디아이오도톨루엔, 2,5-디아이오도톨루엔, 2,3,4-트리아이오도톨루엔, 2,3,5-트리아이오도톨루엔, 자일렌, 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.
상기 전해액은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또는 하기 화학식 4의 에틸렌계 카보네이트계 화합물을 수명 향상 첨가제로 더욱 포함할 수도 있다.
[화학식 4]
Figure PCTKR2021014002-appb-img-000002
상기 화학식 4에서, R10 및 R11은 서로 동일하거나 상이하며, 수소, 할로겐기, 시아노기(CN), 니트로기(NO2) 및 불소화된 탄소수 1 내지 5의 알킬기로 이루어진 군에서 선택되며, 상기 R10 및 R11 중 적어도 하나는 할로겐기, 시아노기(CN), 니트로기(NO2) 및 불소화된 탄소수 1 내지 5의 알킬기로 이루어진 군에서 선택되나, 단 R10 및 R11 모두 수소는 아니다.
상기 에틸렌계 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트 또는 플루오로에틸렌 카보네이트 등을 들 수 있다. 이러한 수명 향상 첨가제를 더욱 사용하는 경우 그 사용량은 적절하게 조절할 수 있다.
상기 리튬염은 비수성 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 이러한 리튬염의 대표적인 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiN(SO3C2F5)2, Li(FSO2)2N(리튬 비스플루오로설포닐이미드 (lithium bis(fluorosulfonyl)imide: LiFSI), LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수이며, 예를 들면 1 내지 20의 정수임), LiCl, LiI 및 LiB(C2O4)2(리튬 비스옥살레이트 보레이트(lithium bis(oxalato) borate: LiBOB)로 이루어진 군에서 선택되는 하나 또는 둘 이상을 들 수 있다. 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
세퍼레이터(113)는 양극(114)과 음극(112)을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로 리튬 이온 전지에서 통상적으로 사용되는 것이라면 모두 사용할 수 있다.  즉, 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 사용될 수 있다.  예를 들어, 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE) 또는 이들의 조합물 중에서 선택된 것으로서, 부직포 또는 직포 형태이어도 무방하다.  예를 들어, 리튬 이온 전지에는 폴리에틸렌, 폴리프로필렌 등과 같은 폴리올레핀계 고분자 세퍼레이터가 주로 사용되고, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
리튬 이차 전지는 사용하는 세퍼레이터와 전해질의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러한 하기한 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.
폴리이미드 중합체 제조예 1
지환족 이무수물인 (4,4'-(헥사플루오로이소프로필리덴)디프탈산무수물; 6-FDA)와 카르복실기를 함유하고 있는 방향족 디아민, 수산화리튬을 탈수 축합 반응시켜 메틸피롤리돈에 용해되어 있는 상태의 폴리이미드 중합체를 제조한다. 수득한 폴리이미드계 중합체의 특성을 하기의 방법으로 측정하고, 그 결과를 하기 표 1에 나타낸다.
* 유리 전이 온도(Tg): Perkin Elmer사의 Pyris 6 DSC를 사용하여 측정한다.
* 산가: ASTM D 974법에 따라 측정한다.
* 점도: 브룩필드 회전 점도계(Brookfield rotational viscometer)로 25℃에서 측정한다.
유리전이온도(Tg)
(℃)
산가
(KOH mg/g)
점도
(cPs/25 ℃)
제조예 1 240 40 280
리튬 이차 전지의 제작실시예 1
양극 활물질로서 Li1.03Ni0.916Co0.07Al0.014O2, 바인더로서 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVDF), 도전재로서 카본블랙, 및 카르복시기를 포함하는 폴리이미드계 고분자로 상기 제조예 1에서 제조한 폴리이미드계 중합체를 각각 95.75:2:2:0.25의 중량비로 혼합하여, N-메틸 피롤리돈(N-Methyl-2-pyrrolidone, NMP)에 분산시켜 양극 활물질 슬러리를 제조한다.
상기 양극 활물질 슬러리를 15 ㎛ 두께의 Al 포일 위에 로딩 레벨 10 mg/cm2이 되도록 코팅하고 120℃에서 건조한 후, 압연(press)하여 전극 밀도 3.65 g/cc의 양극을 제조하였다.
상기 제조된 양극과 0.7 mm 두께의 리튬 금속, 두께 25㎛의 폴리에틸렌 재질의 세퍼레이터 그리고 전해액을 사용하여 코인 타입의 반쪽 이차 전지(CHC)를 제조하였다.
전해액 조성은 하기와 같다.
(전해액 조성)
염: 1.5 M LiPF6
용매: 에틸렌 카보네이트:에틸메틸카보네이트:디메틸카보네이트 (EC:EMC:DMC=2:1:7의 부피비)
실시예 2
양극 활물질, 바인더, 도전재 및 상기 제조예 1에서 제조한 폴리이미드계 고분자를 95.5:2:2:0.5의 중량비로 혼합한 것을 제외하고 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 1
양극 활물질, 바인더, 및 도전재를 96:2:2의 중량비로 혼합하고, 폴리이미드계 고분자를 투입하지 않은 것을 제외하고 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 2
양극 활물질, 바인더, 도전재 및 상기 제조예 1에서 제조한 폴리이미드계 고분자를 95:2:2:1의 중량비로 혼합한 것을 제외하고 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 3
양극 활물질, 바인더, 및 도전재를 95.5:2.5:2의 중량비로 혼합하고, 폴리이미드계 고분자를 투입하지 않은 것을 제외하고 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
실험예 1: 고온 특성 평가
상기 실시예 1 내지 2, 및 비교예 1 내지 3의 리튬 이차 전지에 대하여 0.2C의 정전류로 전압이 0.01V가 될 때까지 충전하고 0.2C의 정전류로 전압이 1.5V가 될 때까지 방전하여 1회 충전/방전 이후의 50회 사이클 특성을 구하였다. 상기 충방전 실험은 각각 25 ℃와 45 ℃에서 수행되었다. 용량 유지율(capaciry retention rate)은 하기 수학식 1로 정의된다.
[수학식 1]
용량 유지율(capacity retention rate)(%)=(50 번째 사이클에서의 방전용량/1 번째 사이클에서의 방전 용량) x 100
실시예 1 내지 2, 및 비교예 1 내지 3의 리튬 이차 전지에 대한 용량 유지율 측정 결과를 하기 표 2에 나타낸다.
용량 유지율
(%, 50회 사이클, 25℃)
용량 유지율
(%, 50회 사이클, 45℃)
실시예 1 95.4 92.4
실시예 2 95.1 91.8
비교예 1 95.0 90.3
비교예 2 94.6 91.7
비교예 3 93.3 89.5
상기 표 2에서 나타난 바와 같이, 일 구현예에 따른 실시예 1 내지 2의 리튬 이차 전지의 경우, 비교예 1 내지 3의 리튬 이차 전지에 비해, 고온 수명 특성이 우수한 것을 확인할 수 있다.
실험예 2: 저항 특성 평가
상기 실시예 1 및 비교예 3의 리튬 이차 전지의 저항 특성을 확인하였다. 각각의 저항값은 EIS(Electrochemical Impedance Spectroscopy)를 사용하여 측정하였다. 구체적으로, Solartron analytical EIS(Solartron 社)를 사용하여, Frequency 300000~0.1Hz, Ac Amplitude 10mA 조건에서, 상기 실시예 1 및 비교예 3의 BOL(Beginning Of Life), 및 EOL(End Of Life) 상태의 저항값을 측정하였고, 그 결과를 도 2 및 도 3에 나타내었다.
도 2 및 도 3에 나타난 바와 같이, 실시예 1에서 제조한 리튬 이차 전지의 경우, 양극 내 폴리이미드계 고분자를 포함하지 않는 비교예 1의 리튬 이차 전지와 동등 수준 이상의 저항 특성을 나타내는 것을 확인하였다.
앞에서, 본 발명의 실시예가 설명되고 도시되었지만 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다. 따라서, 그러한 수정예 또는 변형예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안되며, 변형된 실시예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.
[부호의 설명]
100: 리튬 이차 전지 112: 음극
113: 분리막 114: 양극
120: 전지 용기 140: 봉입 부재

Claims (12)

  1. 양극 활물질, 도전재 및 바인더를 포함하는 리튬 이차 전지용 양극으로서,
    상기 양극은 카르복시기를 포함하는 폴리이미드계 고분자를 포함하는, 리튬 이차 전지용 양극.
  2. 제1항에서,
    상기 카르복시기를 포함하는 폴리이미드계 고분자는 상기 양극 활물질, 도전재, 및 바인더의 혼합물의 총량 100 중량부에 대하여 0.1 내지 1 중량부로 포함되는, 리튬 이차 전지용 양극.
  3. 제1항에서,
    상기 양극 활물질은 표면에 코팅층을 더 포함하고,
    상기 코팅층은 상기 폴리이미드계 고분자를 포함하는, 리튬 이차 전지용 양극.
  4. 제3항에서,
    상기 코팅층의 두께는 1 nm 내지 50 nm 인, 리튬 이차 전지용 양극.
  5. 제1항에서,
    상기 카르복시기를 포함하는 폴리이미드계 고분자는 리튬 이온을 더 포함하는, 리튬 이차 전지용 양극.
  6. 제5항에서,
    상기 리튬 이온은 상기 카르복시기를 포함하는 폴리이미드계 고분자 전체 중량에 대하여 0.1 중량% 내지 1 중량%로 포함되는, 리튬 이차 전지용 양극.
  7. 제1항에서,
    상기 카르복시기를 포함하는 폴리이미드계 고분자의 산가(acid value)는 10 내지 100 KOH mg/g인, 리튬 이차 전지용 양극.
  8. 제1항에서,
    상기 폴리이미드계 고분자의 유리전이온도(Tg)는 160 oC 내지 280 oC인, 리튬 이차 전지용 양극.
  9. 제1항에서,
    상기 양극 활물질은 하기 화학식 1로 표현되는 리튬 복합 산화물 중 적어도 1종인, 리튬 이차 전지용 양극:
    [화학식 1]
    LiaM1 1-y1-z1M2 y1M3 z1O2
    상기 화학식 1에서,
    0.9≤a≤1.8, 0≤y1≤1, 0≤z1≤1, 0≤y1+z1<1, M1, M2 및 M3은 각각 독립적으로 Ni, Co, Mn, Al, Sr, Mg 또는 La 등의 금속 및 이들의 조합에서 선택되는 어느 하나이다.
  10. 제1항에서,
    상기 양극 활물질은 하기 화학식 1-1로 표현되는 리튬 복합 산화물인, 리튬 이차 전지용 양극:
    [화학식 1-1]
    Lix2Niy2Coz2Al1-y2-z2O2
    상기 화학식 1-1에서,
    0.9≤x2≤1.2, 0.5≤y2≤1, 그리고 0≤z2≤0.5이다.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 양극;
    음극; 및
    전해질을 포함하는 리튬 이차 전지.
  12. 제11항에서,
    상기 음극은 음극 활물질을 포함하고,
    상기 음극 활물질은 Si계 활물질, 탄소계 활물질, 리튬 메탈 또는 이들의 조합을 포함하는, 리튬 이차 전지.
PCT/KR2021/014002 2020-10-13 2021-10-12 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지 WO2022080809A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/003,952 US20230268512A1 (en) 2020-10-13 2021-10-12 Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200132162A KR20220048837A (ko) 2020-10-13 2020-10-13 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
KR10-2020-0132162 2020-10-13

Publications (1)

Publication Number Publication Date
WO2022080809A1 true WO2022080809A1 (ko) 2022-04-21

Family

ID=81208460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014002 WO2022080809A1 (ko) 2020-10-13 2021-10-12 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지

Country Status (3)

Country Link
US (1) US20230268512A1 (ko)
KR (1) KR20220048837A (ko)
WO (1) WO2022080809A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240026793A (ko) 2022-08-22 2024-02-29 주식회사 엘지에너지솔루션 리튬 이차전지용 양극의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120117215A (ko) * 2011-04-14 2012-10-24 경북대학교 산학협력단 유기라디칼 폴리이미드 전극 활물질 및 이를 포함하는 전기화학소자
US20160233513A1 (en) * 2013-09-26 2016-08-11 Ube Industries, Ltd. Polyimide binder for power storage device, electrode sheet using same, and power storage device
KR20170014388A (ko) * 2015-07-30 2017-02-08 주식회사 엘지화학 고체 리튬이온 이차전지용 양극 및 그를 포함하는 고체 리튬이온 이차전지
KR20170060515A (ko) * 2015-11-24 2017-06-01 주식회사 엘지화학 양극 활물질 코팅재, 이의 제조방법, 및 이를 포함하는 리튬 이차전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120117215A (ko) * 2011-04-14 2012-10-24 경북대학교 산학협력단 유기라디칼 폴리이미드 전극 활물질 및 이를 포함하는 전기화학소자
US20160233513A1 (en) * 2013-09-26 2016-08-11 Ube Industries, Ltd. Polyimide binder for power storage device, electrode sheet using same, and power storage device
KR20170014388A (ko) * 2015-07-30 2017-02-08 주식회사 엘지화학 고체 리튬이온 이차전지용 양극 및 그를 포함하는 고체 리튬이온 이차전지
KR20170060515A (ko) * 2015-11-24 2017-06-01 주식회사 엘지화학 양극 활물질 코팅재, 이의 제조방법, 및 이를 포함하는 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, JUNYUN: "Preparation of Polyimide Copolymer and Its Application as Lithium Ion Secondary Battery Binder", MASTER THESIS, 1 June 2020 (2020-06-01), Korea, pages 1 - 35, XP009536006 *

Also Published As

Publication number Publication date
KR20220048837A (ko) 2022-04-20
US20230268512A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
WO2018062719A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2018012821A1 (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
WO2018084526A2 (ko) 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
WO2019093634A1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2018080071A1 (ko) 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
KR20110063335A (ko) 리튬 이차 전지용 양극 활물질 및 이를 이용한 리튬 이차 전지
WO2020218773A1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2017222113A1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2020218780A1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2018048155A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2019013525A2 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2019013521A2 (ko) 리튬 이차 전지
WO2014061881A1 (ko) 리튬 이차 전지용 음극 활물질, 리튬 이차 전지용 음극 활물질의 제조 방법 및 상기 리튬 이차 전지용 음극 활물질을 포함하는 리튬 이차 전지
WO2018048156A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2020204625A1 (ko) 리튬 이차전지용 전극
WO2020153690A1 (ko) 리튬 복합 음극 활물질, 이를 포함하는 음극 및 이들의 제조방법
WO2019050162A1 (ko) 리튬 이차 전지
WO2018074684A1 (ko) 리튬 이차 전지
WO2018038453A1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
WO2018026153A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2022080809A1 (ko) 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
WO2019194407A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2022108267A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차 전지
WO2022108268A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차 전지
WO2021225321A1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880456

Country of ref document: EP

Kind code of ref document: A1