WO2020022596A1 - 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치 - Google Patents

발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치 Download PDF

Info

Publication number
WO2020022596A1
WO2020022596A1 PCT/KR2019/000711 KR2019000711W WO2020022596A1 WO 2020022596 A1 WO2020022596 A1 WO 2020022596A1 KR 2019000711 W KR2019000711 W KR 2019000711W WO 2020022596 A1 WO2020022596 A1 WO 2020022596A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting diode
electrode
electrodes
contact
Prior art date
Application number
PCT/KR2019/000711
Other languages
English (en)
French (fr)
Inventor
바슈르베이더스
이신흥
이희근
태창일
공태진
김명희
Original Assignee
삼성디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성디스플레이 주식회사 filed Critical 삼성디스플레이 주식회사
Priority to EP19840534.2A priority Critical patent/EP3832740A4/en
Priority to CN201980050034.2A priority patent/CN112514086A/zh
Priority to US17/263,391 priority patent/US11749783B2/en
Publication of WO2020022596A1 publication Critical patent/WO2020022596A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes

Definitions

  • Embodiments of the present invention relate to a light emitting device, a manufacturing method thereof, and a display device having the same.
  • a technique has been developed for producing a very small sized light emitting diode using a highly reliable inorganic crystal structure material and for manufacturing a light emitting device using the light emitting diode.
  • a light emitting device using an ultra-small light emitting diode having a size as small as a micro scale or a nano scale has been developed.
  • Such a light emitting device may be used as a light source of various electronic devices such as a display device or a lighting device.
  • the present invention has been made in an effort to provide a light emitting device including a light emitting diode, a manufacturing method thereof, and a display device having the same.
  • a light emitting device a substrate; First and second electrodes spaced apart from each other on the substrate; At least one light emitting diode disposed between the first electrode and the second electrode, the at least one light emitting diode having a first end and a second end at both sides in a longitudinal direction; An insulating pattern disposed to cover an upper portion of the light emitting diode and exposing the first and second ends of the light emitting diode; A first contact electrode in contact with the first end of the light emitting diode and electrically connecting the first end to the first electrode; And a second contact electrode in contact with the second end of the light emitting diode and electrically connecting the second end to the second electrode.
  • the insulating pattern completely covers the first and second ends of the light emitting diode when viewed from the top of the substrate, and has a cross section of a width decreasing in a lower region.
  • the first and second contact electrodes may be in contact with both sides of the light emitting diode at the first and second ends, respectively. One end of each of the first and second contact electrodes may contact the lower region of the insulating pattern without extending on the upper surface of the light emitting diode.
  • the first and second contact electrodes may be spaced apart from each other with the light emitting diode interposed therebetween, and disposed on the same layer or the same height on the substrate.
  • the insulating pattern may include: a first side surface disposed on the first end of the light emitting diode and having an inclined surface or a curved surface; And a second side surface disposed on the second end of the light emitting diode and having an inclined surface or a curved surface.
  • an upper end portion of the first side surface may be located at a point spaced apart from the first end portion by a distance greater than or equal to the thickness of the first and second contact electrodes when viewed from the top of the substrate.
  • the upper end portion of the second side surface may be located at a point spaced apart from the second end portion by a distance greater than or equal to the thickness of the first and second contact electrodes when viewed from the top of the substrate.
  • the insulating pattern may have a thickness greater than or equal to the thickness of each of the first and second contact electrodes.
  • the light emitting device may include: at least one first insulating layer disposed between the first electrode and a region of the first contact electrode; And at least one second insulating layer disposed between the second electrode and one region of the second contact electrode.
  • the insulating pattern may have a thickness smaller than that of each of the first and second insulating layers.
  • an upper surface of the insulating pattern may have a width greater than a length of the light emitting diode.
  • the light emitting device may further include a conductive pattern disposed on the insulating pattern to overlap the light emitting diode and separated from the light emitting diode and the first and second contact electrodes by the insulating pattern. Can be.
  • the conductive pattern may be made of the same material as the first and second contact electrodes, and may be electrically isolated.
  • the light emitting device may further include a third insulating layer disposed between the substrate and the light emitting diode.
  • the light emitting diode may be horizontally disposed on one surface of the substrate, and arranged in a horizontal direction between the first electrode and the second electrode.
  • the light emitting diode may be a rod-type light emitting diode having a diameter or a length of nanoscale to microscale.
  • a method of manufacturing a light emitting device includes forming first and second electrodes spaced apart from each other on a substrate; Forming a first insulating material layer on the substrate on which the first and second electrodes are formed; Supplying at least one light emitting diode on the substrate on which the first insulating material layer is formed, and wherein the first and second ends of the light emitting diode are adjacent to the first and second electrodes, respectively.
  • the forming of the mask may include forming a photoresist layer on the substrate on which the second insulating material layer is formed; And first and second openings in the photoresist layer to partially expose the second insulating material layer overlying the first and second electrodes at points spaced a predetermined distance apart from the first and second ends, respectively. It may comprise the step of forming.
  • a conductive pattern may be further formed on the insulating pattern, the conductive pattern being separated from the light emitting diode and the first and second contact electrodes.
  • the first and second electrodes may be simultaneously formed on the same layer on the substrate.
  • the first and second contact electrodes may be simultaneously formed on the same layer on the substrate.
  • a display device includes a substrate including a display area and a pixel disposed in the display area.
  • the pixel may include a first electrode and a second electrode spaced apart from each other on one region of the substrate; At least one light emitting diode disposed between the first electrode and the second electrode, the at least one light emitting diode having a first end and a second end at both sides in a longitudinal direction; An insulating pattern disposed to cover an upper portion of the light emitting diode and exposing the first and second ends of the light emitting diode; A first contact electrode in contact with the first end of the light emitting diode and connecting the first end to the first electrode; And a second contact electrode in contact with the second end of the light emitting diode and connecting the second end to the second electrode.
  • the insulating pattern completely covers the first and second ends of the light emitting diode when viewed from the top of the substrate, and has a cross section of a width decreasing in a lower region.
  • the manufacturing process can be simplified while stably connecting the light emitting diode between the first electrode and the second electrode.
  • FIG. 1A and 1B are a perspective view and a cross-sectional view of a light emitting diode according to an embodiment of the present invention.
  • FIGS. 2A and 2B are a perspective view and a cross-sectional view of a light emitting diode according to an embodiment of the present invention.
  • 3A and 3B are a perspective view and a cross-sectional view of a light emitting diode according to an embodiment of the present invention.
  • FIG. 4 is a plan view illustrating a light emitting device according to an embodiment of the present invention.
  • 5 and 6 are cross-sectional views illustrating the structure of a light emitting device taken along the line II ′ of FIG. 4.
  • FIG. 7 is an enlarged cross-sectional view of an EA1 region of FIG. 5.
  • FIG. 8 is a cross-sectional view corresponding to area EA1 of FIG. 5 and shows another embodiment related to the shape of an insulation pattern.
  • FIG. 9 is a plan view schematically illustrating a mutual arrangement relationship between a light emitting diode and an insulating pattern according to an exemplary embodiment of the present invention.
  • 10A to 10I are cross-sectional views sequentially illustrating a method of manufacturing the light emitting device illustrated in FIG. 5.
  • FIG. 11 is a plan view illustrating a display device according to an exemplary embodiment of the present invention.
  • 12 to 14 are circuit diagrams illustrating different embodiments of the pixel of FIG. 11.
  • FIG. 15 is a plan view illustrating the pixel of FIG. 11, and in particular, a layout example of the light emitting unit of each pixel.
  • FIG. 15 is a plan view illustrating the pixel of FIG. 11, and in particular, a layout example of the light emitting unit of each pixel.
  • FIG. 16 is a cross-sectional view taken along line II-II ′ of FIG. 15.
  • first and second are only used to distinguish various components, and the components are not limited by the terms.
  • terms such as “include” or “have” are intended to indicate the presence of a feature, number, step, operation, component, part, or combination thereof described on the specification, and one or more other features or numbers. It should be understood that it does not exclude in advance the possibility of the presence or addition of steps, actions, components, parts or combinations thereof.
  • a part such as a layer, film, region, plate, etc. is said to be “on” another part, this includes not only the case where the other part is “right on” but also another part in the middle.
  • specific positions or directions defined in the following description are described in a relative viewpoint, and for example, it should be noted that this may be changed depending on the viewpoint or the direction in which they are viewed.
  • FIG. 1A and 1B, 2A and 2B, and 3A and 3B are perspective and cross-sectional views illustrating a light emitting diode LD according to an embodiment of the present invention, respectively.
  • the rod-shaped rod-shaped light emitting diode LD is illustrated, but the type and / or shape of the light emitting diode LD according to the present invention is not limited thereto.
  • a light emitting diode LD may include a first conductive semiconductor layer 11 and a second conductive semiconductor layer 13, and the first and second electrodes.
  • the active layer 12 is interposed between the conductive semiconductor layers 11 and 13.
  • the light emitting diode LD may be formed of a laminate in which the first conductive semiconductor layer 11, the active layer 12, and the second conductive semiconductor layer 13 are sequentially stacked along the length L direction.
  • the light emitting diode LD may be provided in a rod shape extending in one direction.
  • the extending direction of the light emitting diode LD is referred to as the length L direction
  • the light emitting diode LD may have one end and the other end along the length L direction.
  • one of the first and second conductive semiconductor layers 11 and 13 is disposed at one end of the light emitting diode LD, and the first and second ends of the light emitting diode LD are disposed at the other end of the light emitting diode LD.
  • the other one of the conductive semiconductor layers 11 and 13 may be disposed.
  • the light emitting diode LD may be manufactured in a rod shape.
  • the term "rod” refers to a rod-like or bar-like shape that is long (ie, has an aspect ratio greater than 1) in the length (L) direction, such as a circular column or a polygonal column. shape), and the shape of the cross section is not particularly limited.
  • the length L of the light emitting diode LD may be larger than the diameter D (or the width of the cross section).
  • the light emitting diode LD may have a diameter D and / or a length L ranging from nanoscale to microscale, for example, in the nanoscale or microscale range, respectively.
  • the size of the light emitting diode LD is not limited thereto.
  • the size of the light emitting diode LD may vary depending on design conditions of various devices, for example, a display device, using a light emitting device using the light emitting diode LD as a light source.
  • the first conductive semiconductor layer 11 may include at least one n-type semiconductor layer.
  • the first conductive semiconductor layer 11 includes any one of InAlGaN, GaN, AlGaN, InGaN, AlN, InN semiconductor material, and an n-type doped with a first conductive dopant such as Si, Ge, Sn, or the like. It may include a semiconductor layer.
  • the material constituting the first conductive semiconductor layer 11 is not limited thereto, and the first conductive semiconductor layer 11 may be formed of various materials.
  • the active layer 12 is disposed on the first conductive semiconductor layer 11 and may be formed in a single or multiple quantum well structure.
  • a cladding layer (not shown) doped with a conductive dopant may be formed on and / or under the active layer 12.
  • the cladding layer may be formed of an AlGaN layer or an InAlGaN layer.
  • materials such as AlGaN and AlInGaN may be used to form the active layer 12.
  • various materials may constitute the active layer 12.
  • the light emitting diode LD When an electric field of a predetermined voltage or more is applied to both ends of the light emitting diode LD, the light emitting diode LD emits light while the electron-hole pair is coupled in the active layer 12.
  • the light emitting diode LD may be used as a light source of various light emitting devices including pixels.
  • the second conductive semiconductor layer 13 is disposed on the active layer 12 and may include a semiconductor layer of a type different from that of the first conductive semiconductor layer 11.
  • the second conductive semiconductor layer 13 may include at least one p-type semiconductor layer.
  • the second conductive semiconductor layer 13 includes at least one semiconductor material of InAlGaN, GaN, AlGaN, InGaN, AlN, InN, and includes a p-type semiconductor layer doped with a second conductive dopant such as Mg. can do.
  • the material constituting the second conductive semiconductor layer 13 is not limited thereto, and various other materials may form the second conductive semiconductor layer 13.
  • an insulating coating INF may be provided on an outer circumferential surface of the light emitting diode LD (eg, an outer surface of a circular pillar).
  • the insulating film INF may be formed on the surface of the light emitting diode LD so as to surround at least the outer circumferential surface of the active layer 12, in addition to at least the first and second conductive semiconductor layers 11 and 13. You can surround some more.
  • the insulating film INF may expose both ends of the light emitting diode LD having different polarities.
  • the insulating film INF is formed at one end of each of the first and second conductive semiconductor layers 11 and 13 positioned at both ends of the light emitting diode LD in the length L direction, for example, two bottom surfaces of a cylinder ( Top and bottom surfaces) can be exposed without covering.
  • the insulating film INF may include at least one insulating material of SiO 2 , Si 3 N 4 , Al 2 O 3, and TiO 2 , but is not limited thereto. That is, the constituent material of the insulating film INF is not particularly limited, and the insulating film INF may be formed of various insulating materials currently known.
  • the light emitting diode LD may further include additional components in addition to the first conductive semiconductor layer 11, the active layer 12, and the second conductive semiconductor layer 13.
  • the light emitting diode LD may include at least one phosphor layer, an active layer, a semiconductor layer disposed on one side of the first conductive semiconductor layer 11, the active layer 12, and / or the second conductive semiconductor layer 13. And / or may further comprise an electrode layer.
  • the light emitting diode LD may further include at least one electrode layer 14 disposed on one end side of the second conductive semiconductor layer 13 as illustrated in FIGS. 2A and 2B.
  • the light emitting diode LD may further include at least one other electrode layer 15 disposed at one end of the first conductive semiconductor layer 11 as illustrated in FIGS. 3A and 3B. .
  • each of the electrode layers 14 and 15 may be an ohmic contact electrode, but is not limited thereto.
  • each of the electrode layers 14 and 15 may include a metal or a metal oxide.
  • Cr, Ti, Al, Au, Ni, ITO, IZO, ITZO, and oxides or alloys thereof may be used alone or in combination. It can be used in combination, but is not limited thereto.
  • the electrode layers 14 and 15 may be substantially transparent or translucent. Accordingly, light generated in the light emitting diode LD may pass through the electrode layers 14 and 15 and may be emitted to the outside of the light emitting diode LD.
  • the insulating film INF may or may not surround the outer circumferential surfaces of the electrode layers 14 and 15. That is, the insulating film INF may be selectively formed on the surfaces of the electrode layers 14 and 15.
  • the insulating film INF is formed to expose both ends of the light emitting diode LD having different polarities, and for example, may expose at least one region of the electrode layers 14 and 15.
  • the insulating film INF may not be provided.
  • the insulating film INF is provided on the surface of the light emitting diode LD, particularly the surface of the active layer 12, at least one electrode (for example, both ends of the light emitting diode LD) is not shown. And at least one of the electrodes connected to the electrode) can be prevented from being shorted. Accordingly, the electrical stability of the light emitting diode LD can be secured.
  • an insulating film INF on the surface of the light emitting diode LD, surface defects of the light emitting diode LD may be minimized to improve lifespan and efficiency.
  • the insulating film INF is formed on each of the light emitting diodes LD, even if a plurality of light emitting diodes LD are disposed in close proximity to each other, an unwanted short circuit is formed between the light emitting diodes LD. It can be prevented from occurring.
  • the light emitting diode LD may be manufactured through an additional surface treatment process.
  • the light emitting diodes LD are mixed in a fluid solution and supplied to each unit light emitting region (for example, each pixel region), the light emitting diodes LD are non-uniformly aggregated in the solution.
  • the light emitting diode LD may be surface treated (eg, coated) so as to be uniformly dispersed.
  • the light emitting device including the light emitting diode LD may be used as a light source in various kinds of devices including a display device.
  • at least one light emitting diode LD may be disposed in each pixel area of the light emitting display panel, thereby configuring the light emitting unit of each pixel.
  • the application field of the light emitting diode LD is not limited to the display device in the present invention.
  • the light emitting diode LD may be used in other kinds of devices that require a light source, such as a lighting device.
  • FIG. 4 is a plan view illustrating a light emitting device according to an embodiment of the present invention.
  • 4 illustrates a light emitting device including first and second power lines PL1 and PL2 or directly connected to the first and second power lines PL1 and PL2.
  • the light emitting device according to the present invention is not limited to the embodiment shown in FIG. 4.
  • the light emitting device may include the first and / or second power lines PL1 and PL2 via at least one other circuit element (eg, a pixel circuit) or an intermediate connection line. It may also be connected to.
  • the light emitting device is disposed between the first electrode ELT1 and the second electrode ELT2 and the first and second electrodes ELT1 and ELT2.
  • First light emitting diodes LD and first and second contact electrodes CNE1 and CNE2 electrically connecting the light emitting diodes LD between the first and second electrodes ELT1 and ELT2. ) May be included.
  • the light emitting device according to the present invention is not limited to the embodiment shown in FIG. 4.
  • each light emitting device may include only a single light emitting diode LD.
  • the light emitting device may include a first connection electrode CNL1 connecting the first electrode ELT1 to the first power line PL1 and a second electrode ELT2 connecting the second power line PL2.
  • the display device may further include a second connection electrode CNL2.
  • the first and second connection electrodes CNL1 and CNL2 may be integrally connected to the first and second electrodes ELT1 and ELT2, respectively, or may be connected to each other through at least one contact hole.
  • the first and second electrodes ELT1 and ELT2 may be electrically connected to each other.
  • the first and second connection electrodes CNL1 and CNL2 are integrally connected to the first and second electrodes ELT1 and ELT2, respectively, the first and second connection electrodes CNL1 and CNL2 are respectively connected. It may be regarded as one region of the first and second electrodes ELT1 and ELT2.
  • the first electrode ELT and the second electrode ELT2 may be spaced apart from each other, and at least one region may be disposed to face each other.
  • the first and second electrodes ELT1 and ELT2 may be arranged side by side at a predetermined interval on the same layer and / or height on the substrate serving as the base member of the light emitting device.
  • the present invention is not limited thereto.
  • the shape and / or mutual arrangement of the first and second electrodes ELT1 and ELT2 may be variously changed.
  • the first electrode ELT1 may be connected to the first power line PL1 through the first connection electrode CNL1.
  • the first electrode ELT1 and the first connection electrode CNL1 may extend in different directions. For example, when the first connection electrode CNL1 extends along the first direction DR1 (eg, in the horizontal direction), the first electrode ELT1 crosses the first direction DR1. It may extend along two directions DR2 (eg, longitudinal direction).
  • the first electrode ELT1 and the first connection electrode CNL1 may be integrally connected to each other.
  • the first electrode ELT1 may be formed by branching at least one branch from the first connection electrode CNL1.
  • the present invention is not limited thereto.
  • the first electrode ELT1 and the first connection electrode CNL1 may be separately formed and electrically connected to each other through at least one contact hole or via hole.
  • the first electrode ELT1 and / or the first connection electrode CNL1 may be integrally connected to the first power line PL1.
  • the first electrode ELT1 and / or the first connection electrode CNL1 are formed separately from the first power line PL1 to form at least one contact hole and / or at least one circuit.
  • the device may be electrically connected to the first power line PL1 via an element. As a result, the first power supplied to the first power line PL1 may be transferred to the first electrode ELT1.
  • the second electrode ELT2 may be connected to the second power line PL2 through the second connection electrode CNL2.
  • the second electrode ELT2 and the second connection electrode CNL2 may extend in different directions. For example, when the second connection electrode CNL2 extends along the first direction DR1, the second electrode ELT2 extends along the second direction DR2 crossing the first direction DR1. Can be.
  • the second electrode ELT2 and the second connection electrode CNL2 may be integrally connected to each other.
  • the second electrode ELT2 may be formed by branching at least one branch from the second connection electrode CNL2.
  • the present invention is not limited thereto.
  • the second electrode ELT2 and the second connection electrode CNL2 may be separately formed and electrically connected to each other through at least one contact hole or via hole.
  • the second electrode ELT2 and / or the second connection electrode CNL2 may be integrally connected with the second power line PL2.
  • the second electrode ELT2 and / or the second connection electrode CNL2 are formed separately from the second power line PL2 to form at least one contact hole and / or at least one circuit.
  • the device may be electrically connected to the second power line PL2 via an element. As a result, the second power supplied to the second power line PL2 may be transmitted to the second electrode ELT2.
  • the first power source and the second power source may have different potentials.
  • the potential difference between the first power supply and the second power supply may be equal to or greater than a threshold voltage of the light emitting diodes LD.
  • the first power source and the second power source may have a potential to allow at least one light emitting diode LD to be connected in a forward direction between the first and second electrodes ELT1 and ELT2. have. That is, the voltage between the first power source and the second power source may have a value that allows at least one light emitting diode LD included in the light emitting device to emit light.
  • the light emitting diodes LD may be connected in parallel between the first electrode ELT1 and the second electrode ELT2.
  • a first direction is disposed between the first and second electrodes ELT1 and ELT2.
  • DR1 for example, may be arranged in a horizontal direction.
  • one end of the light emitting diodes LD is electrically connected to the first electrode ELT1 through the first contact electrode CNE1, and the other end of the light emitting diodes LD is connected to the second contact.
  • the electrode CNE2 may be electrically connected to the second electrode ELT2.
  • the present invention is not limited thereto.
  • at least one of both ends of the light emitting diodes LD is in direct contact with the first or second electrodes ELT1 and ELT2 so that the first or second electrode ( May be electrically connected to ELT1, ELT2).
  • the light emitting diodes LD are uniformly arranged along one direction, for example, the first direction DR1, but the present invention is not limited thereto.
  • at least one of the light emitting diodes LD may be arranged in an oblique direction or the like between the first and second electrodes ELT1 and ELT2.
  • each of the light emitting diodes LD may be a light emitting diode having a small size using an inorganic crystal material, for example, small in size such as nano or micro scale.
  • each light emitting diode LD may be a very small rod-shaped light emitting diode having a diameter (D) and / or a length (L) in the nanoscale to microscale range, as shown in FIGS. 1A-3B. Can be.
  • the light emitting diodes LD may be prepared in a form dispersed in a predetermined solution and supplied to a predetermined light emitting region defined in the light emitting device by using an inkjet method.
  • the light emitting diodes LD may be mixed with a volatile solvent and dropped in each light emitting region.
  • the first power source and the second power source are applied to the first and second electrodes ELT1 and ELT2 through the first and second power lines PL1 and PL2, respectively, the first and second electrodes As the electric field is formed between the ELT1 and ELT2, the light emitting diodes LD self-align between the first and second electrodes ELT1 and ELT2.
  • the solvent may be volatilized or removed in other ways to stably arrange the light emitting diodes LD between the first and second electrodes ELT1 and ELT2.
  • the first and second contact electrodes CNE1 and CNE2 are formed at both ends of the light emitting diodes LD, so that the light emitting diodes LD are formed of the first and second electrodes ELT1, The ELT2) can be connected more stably.
  • the first contact electrode CNE1 may be formed to cover one end of the light emitting diodes LD and at least one region of the first electrode ELT1.
  • the first electrode ELT1 is physically and / or electrically connected.
  • the second contact electrode CNE2 is formed to cover the other end of the light emitting diodes LD and at least one region of the second electrode ELT2, so that the other end and the second end of the light emitting diodes LD are formed.
  • the electrode ELT2 is physically and / or electrically connected.
  • First power is applied to one end of the light emitting diodes LD via the first power line PL1 and the first electrode ELT1, and the second power line PL1 and the second electrode ELT2 and the like.
  • the second power is applied to the other ends of the light emitting diodes LD via the at least one light emitting diode, at least one light emitting diode LD connected in a forward direction between the first and second electrodes ELT1 and ELT2 emits light. Done.
  • the light emitting device can emit light.
  • FIG. 5 and 6 are cross-sectional views illustrating a structure of a light emitting device taken along line II ′ of FIG. 4. Specifically, FIG. 5 and FIG. 6 show an embodiment of a cross section taken along the line I to I 'of FIG. 4, respectively, which are different implementations with respect to the shapes of the first partition PW1 and the second partition PW2. Examples are shown.
  • a light emitting device includes a substrate SUB, a first electrode ELT1, and a second electrode disposed on the substrate SUB.
  • ELT2 at least one light emitting diode LD connected between the first and second electrodes ELT1 and ELT2, and both ends of the first and second light emitting diodes LDT1 and ELT2, respectively.
  • the first contact electrode CNE1 and the second contact electrode CNE2 connected to the second electrode ELT2 may be included.
  • the light emitting device is disposed between the first partition wall PW1 disposed between the substrate SUB and one region of the first electrode ELT1, and between the region of the substrate SUB and the second electrode ELT2.
  • the display device may further include at least one of an insulating pattern INP disposed on the upper portion of the LD and a conductive pattern CNP disposed on the insulating pattern INP.
  • the substrate SUB constitutes a base member of the light emitting device, and may be a rigid substrate or a flexible substrate.
  • the substrate SUB may be a rigid substrate composed of glass or tempered glass, or a flexible substrate composed of a thin film made of plastic or metal.
  • the substrate SUB may be a transparent substrate, but is not limited thereto.
  • the substrate SUB may be a translucent substrate, an opaque substrate, or a reflective substrate. That is, the material and physical properties of the substrate SUB are not particularly limited.
  • the first partition PW1 and the second partition PW2 may be disposed on the substrate SUB.
  • at least one buffer layer or the like, which is not shown, may be further disposed and / or formed on the substrate SUB.
  • first and second partition walls PW1 and PW2 may be disposed on the buffer layer.
  • the first and second partition walls PW1 and PW2 may be disposed to be spaced apart from each other on one surface of the substrate SUB.
  • the first and second barrier ribs PW1 and PW2 may be disposed on the same layer of the substrate SUB by a predetermined interval.
  • the first and second partitions PW1 and PW2 may have substantially the same structure, shape, and / or height as each other, but are not limited thereto.
  • each of the first and second barrier ribs PW1 and PW2 may include an insulating material including an inorganic material and / or an organic material.
  • each of the first and second partitions PW1 and PW2 may be formed of a single layer or multiple layers. That is, the constituent material and / or the laminated structure of the first and second partitions PW1 and PW2 are not particularly limited, and may be variously changed.
  • each of the first and second partitions PW1 and PW2 may have various shapes.
  • each of the first and second partitions PW1 and PW2 may have a trapezoidal cross section that becomes narrower toward the top as shown in FIG. 5.
  • each of the first and second partitions PW1 and PW2 may have a cross section of a semi-circle or semi-ellipse that becomes narrower toward the top as shown in FIG. 6. That is, the shapes of the first and second partitions PW1 and PW2 are not particularly limited, and may be variously changed.
  • at least one of the first and second partitions PW1 and PW2 may be omitted or its position may be changed.
  • the first electrode ELT1, the first insulating layer INS1, and the first contact electrode CNE1 are sequentially disposed on the first partition PW1, and the second electrode ELT2 is disposed on the second partition PW1.
  • the second insulating layer INS2 and the second contact electrode CNE2 may be sequentially disposed.
  • At least one electrode and / or insulating layer disposed on the first and second partitions PW1 and PW2 may have a shape corresponding to that of the first and second partitions PW1 and PW2. It is not limited to this.
  • the third insulating layer INS3, the light emitting diode LD, the insulating pattern INP, and the conductive pattern CNP are sequentially disposed.
  • the first end EP1 and the second end EP2 may be formed by the first and second partitions PW1 and PW2, respectively.
  • the second electrodes ELT1 and ELT2 may be disposed to face the inclined surfaces (or curved surfaces) of the second electrodes ELT1 and ELT2.
  • the first electrode ELT1 and the second electrode ELT2 may be spaced apart from each other on the substrate SUB on which the first and second partitions PW1 and PW2 are disposed.
  • a first electrode ELT1 is disposed on the first partition PW1 to cover the first partition PW1
  • a second electrode ELT2 covers the second partition PW2. 2 may be disposed on the partition wall PW2.
  • any one of the first and second electrodes ELT1 and ELT2 may be an anode electrode, and the other may be a cathode electrode.
  • the first and second electrodes ELT1 and ELT2 may have shapes corresponding to the shapes of the first and second partitions PW1 and PW2, respectively.
  • the first electrode ELT1 may have an inclined surface or curved surface corresponding to the shape of the first partition wall PW1
  • the second electrode ELT2 may have an inclined surface or curved surface corresponding to the shape of the second partition wall PW2. May have
  • the light emitting device may not be provided with the first and second partition walls PW1 and PW2.
  • the first and second electrodes ELT1 and ELT2 may be substantially flat.
  • the first and second electrodes ELT1 and ELT2 may be disposed on the same layer on the substrate SUB, and may have substantially the same height. As such, when the first and second electrodes ELT1 and ELT2 have the same height, the light emitting diodes LD may be more stably connected between the first and second electrodes ELT1 and ELT2. .
  • the present invention is not limited thereto, and shapes, structures, and / or mutual arrangements of the first and second electrodes ELT1 and ELT2 may be variously changed.
  • each of the first and second electrodes ELT1 and ELT2 may be composed of a single layer or multiple layers, and the stacked structure thereof is not particularly limited.
  • the first electrode ELT1 may be formed of multiple layers including the first reflective electrode REF1 and the first conductive capping layer CPL1
  • the second electrode ELT2 may be formed of the second reflective electrode REF2 and the first electrode.
  • 2 may be formed of a multilayer including a conductive capping layer (CPL2).
  • Each of the first and second reflective electrodes REF1 and REF2 may be made of a conductive material having a constant reflectance.
  • the first and second reflective electrodes REF1 and REF2 may include at least one of metals such as Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, and alloys thereof.
  • metals such as Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, and alloys thereof.
  • each of the first and second reflective electrodes REF1 and REF2 may be made of various reflective conductive materials.
  • the first and second reflective electrodes REF1 and REF2 may emit light emitted from both ends of each of the light emitting diodes LD, that is, the first and second ends EP1 and EP2. For example, in the front direction).
  • each of the light emitting diodes LD may be formed.
  • the light emitted from the first and second ends EP1 and EP2 may be reflected by the first and second reflective electrodes REF1 and REF2 to travel in a more frontal direction. Accordingly, the efficiency of light emitted from the light emitting diodes LD may be improved.
  • the first and second partitions PW1 and PW2 may also function as reflective members.
  • the first and second barrier ribs PW1 and PW2 together with the first and second reflective electrodes REF1 and REF2 provided thereon, improve efficiency of light emitted from each of the light emitting diodes LD. It can function as a reflective member.
  • First and second conductive capping layers CPL1 and CPL2 may be selectively disposed on the first and second reflective electrodes REF1 and REF2.
  • the first conductive capping layer CPL1 is disposed on the first reflective electrode REF1 to cover the first reflective electrode REF1
  • the second conductive capping layer CPL2 is the second reflective electrode REF2.
  • Each of the first and second conductive capping layers CPL1 and CPL2 may be made of a transparent conductive material including ITO or IZO to minimize the loss of light emitted from the light emitting diode LD.
  • the present invention is not limited thereto, and in addition, the constituent materials of the first and second conductive capping layers CPL1 and CPL2 may be variously changed.
  • the first and second conductive capping layers CPL1 and CPL2 prevent the first and second reflective electrodes REF1 and REF2 from being damaged due to a defect occurring during the manufacturing process of the light emitting device. An adhesion between the first and second reflective electrodes REF1 and REF2 and the substrate SUB may be enhanced. However, according to an exemplary embodiment, at least one of the first and second conductive capping layers CPL1 and CPL2 may be omitted.
  • the first_1 insulating layer INS1_1 forming the lower layer of the first insulating layer INS1 and the lower layer of the second insulating layer INS2 are formed.
  • the third insulating layer INS3 positioned between the second_1 insulating layer INS2_1 and the first and second electrodes ELT1 and ELT2 may be disposed.
  • the first_1 insulating layer INS1_1 may be disposed between the first electrode ELT1 and the first contact electrode CNE1.
  • the first_1 insulating layer INS1_1 may be interposed between the first conductive capping layer CPL1 and one region of the first contact electrode CNE1.
  • the first_1 insulating layer INS1_1 may be disposed on the remaining area of the first electrode ELT1 while exposing an upper portion of the first electrode ELT1.
  • the first_1 insulating layer INS1_1 exposes a region of the first conductive capping layer CPL1 adjacent to the first end EP1 of the light emitting diode LD, and the remaining portion of the first conductive capping layer CPL1 is exposed. May cover an area.
  • the second_1 insulating layer INS2_1 may be disposed between the second electrode ELT2 and the second contact electrode CNE2.
  • the second_1 insulating layer INS2_1 may be interposed between the second conductive capping layer CPL2 and one region of the second contact electrode CNE2.
  • the second_1 insulating layer INS2_1 may be disposed on the remaining area of the second electrode ELT2 while exposing an upper portion of the second area of the second electrode ELT2.
  • the second_1 insulating layer INS2_1 exposes a region of the second conductive capping layer CPL2 adjacent to the second end EP2 of the light emitting diode LD, and the rest of the second conductive capping layer CPL2. May cover an area.
  • the third insulating layer INS3 is disposed between the first electrode ELT1 and the second electrode ELT2 when viewed in plan view (for example, when viewed from the top of the substrate), and the thickness of the light emitting device.
  • the substrate SUB may be disposed between the substrate SUB and the light emitting diode OLED in a direction (eg, a thickness direction of the substrate SUB).
  • the light emitting diode LD may be disposed on the third insulating layer INS3. That is, the third insulating layer INS3 may be an insulating layer disposed under the light emitting diode LD.
  • the third insulating layer INS3 may stably support the light emitting diode LD and may prevent the light emitting diode LD from being separated.
  • the first_1 insulating layer INS1_1, the second_1 insulating layer INS2_1, and / or the third insulating layer INS3 may be simultaneously formed.
  • the first insulation layer INS1_1, the second insulation layer INS2_1, and / or the third insulation layer INS3 may include the same insulation material among various insulation materials including SiNx, and may be simultaneously formed in the same process step. have.
  • the present invention is not limited thereto.
  • the first_1 insulating layer INS1_1, the second_1 insulating layer INS2_1 and / or the third insulating layer INS3 may include at least one different insulating material or may be formed in different process steps. It may be.
  • each of the first insulating layer INS1_1, the second_1 insulating layer INS2_1, and the third insulating layer INS3 may be formed of a single layer or multiple layers, and the structure thereof is not particularly limited. That is, in the present invention, the structure, constituent material, and / or forming order of the first_1 insulating layer INS1_1, the second_1 insulating layer INS2_1, and / or the third insulating layer INS3 are not particularly limited.
  • At least one light emitting diode LD may be disposed on the substrate SUB on which the first_1 insulating layer INS1_1, the second_1 insulating layer INS2_1, and the third insulating layer INS3 are disposed.
  • the light emitting diode LD may be disposed on the third insulating layer INS3 and may be disposed between the first electrode ELT1 and the second electrode ELT2 when viewed from the top of the substrate SUB.
  • the light emitting diode LD may have a first end EP1 and a second end EP2 on both sides of the length direction.
  • the light emitting diode LD may be disposed horizontally on one surface of the substrate SUB.
  • the light emitting diode LD may be arranged in a horizontal direction between the first electrode ELT1 and the second electrode ELT2.
  • the first end EP1 of the light emitting diode LD is disposed toward the first electrode ELT1
  • the second end EP2 of the light emitting diode LD is disposed toward the second electrode ELT2.
  • the insulating pattern INP positioned on the light emitting diode LD may be disposed.
  • the first_2 insulating layer INS1_2 may be disposed between the first electrode ELT1 and the first contact electrode CNE1 together with the first_1 insulating layer INS1_1.
  • the first_2 insulating layer INS1_2 may be disposed on the first_1 insulating layer INS1_1.
  • the first_2 insulating layer INS1_2 may be disposed on the remaining region of the first electrode ELT1 while exposing an upper portion of the first electrode ELT1 together with the first_1 insulating layer INS1_1.
  • the first_2 insulating layer INS1_2 exposes a region of the first conductive capping layer CPL1 adjacent to the first end EP1 of the light emitting diode LD, and the remaining portion of the first conductive capping layer CPL1 is exposed. May cover an area.
  • the second_2 insulating layer INS2_2 may be disposed between the second electrode ELT2 and the second contact electrode CNE2 together with the second_1 insulating layer INS2_1.
  • the second_2 insulating layer INS2_2 may be disposed on the second_1 insulating layer INS2_1.
  • the second_2 insulating layer INS2_2 may be disposed on the remaining region of the second electrode ELT2 while exposing an upper portion of the second electrode ELT2 together with the second_1 insulating layer INS2_1.
  • the second_2 insulating layer INS2_2 exposes one region of the second conductive capping layer CPL2 adjacent to the second end EP2 of the light emitting diode LD, and the remaining portion of the second conductive capping layer CPL2 is exposed. May cover an area.
  • the insulating pattern INP is disposed to cover the upper portion of the light emitting diode LD, and the first and second ends EP1 and EP2 positioned at both sides of the light emitting diode LD are exposed.
  • the insulation pattern INP may be formed to completely cover the first and second ends EP1 and EP2 of the light emitting diode LD when viewed from the top of the substrate SUB, and may be formed on the side surface of the substrate SUB. When viewed in the cross-sectional direction, at least one area of each of the first and second ends EP1 and EP2 of the light emitting diode LD may not be covered.
  • the insulating pattern INP may be formed in the conductive film forming process for forming the first and second contact electrodes CNE1 and CNE2, and the conductive film may be formed on the first and second ends of the light emitting diode LD. It may be formed on the EP1 and EP2 so as to be disconnected (for example, broken) by the insulating pattern INP.
  • the insulating pattern INP may have a shape and / or size that may cause disconnection of the conductive film in the upper regions of the first and second ends EP1 and EP2 of the light emitting diode LD. Can be. A more detailed description of the exemplary structure and / or shape of the insulation pattern INP will be described later.
  • the first_2 insulating layer INS1_2, the second_2 insulating layer INS2_2, and / or the insulating pattern INP may be simultaneously formed.
  • the first_2 insulating layer INS1_2, the second_2 insulating layer INS2_2, and / or the insulating pattern INP may include the same insulating material among various insulating materials including SiNx, and may be simultaneously formed in the same process step. .
  • the present invention is not limited thereto.
  • the first_2 insulating layer INS1_2, the second_2 insulating layer INS2_2, and / or the insulating pattern INP may include at least one different insulating material or may be formed in different process steps. have.
  • the first_2 insulating layer INS1_2, the second_2 insulating layer INS2_2, and / or the insulating pattern INP may have the same insulation as the first_1 insulating layer INS1_1, the second_1 insulating layer INS2_1, and / or the third insulating layer INS3. It may also include a substance.
  • the first first insulating layer INS1_1, the second_1 insulating layer INS2_1, the third insulating layer INS3, the first_2 insulating layer INS1_2, the second_2 insulating layer INS2_2, and the insulating pattern INP may all be formed of SiNx.
  • the present invention is not limited thereto, and the material of the insulating layers may be variously changed.
  • each of the first_2 insulating layer INS1_2, the second_2 insulating layer INS2_2, and the insulating pattern INP may be formed of a single layer or multiple layers, and the structure thereof is not particularly limited. That is, the structure, constituent materials, and / or forming order of the first_2 insulating layer INS1_2, the second_2 insulating layer INS2_2, and / or the insulating pattern INP are not particularly limited.
  • first insulating layer INS1 and the second insulating layer INS2 may have substantially the same or similar materials and / or structures, and may be formed through the same process or method.
  • at least one of a constituent material, a laminated structure, a shape, a thickness, and a height of the first insulating layer INS1 and the second insulating layer INS2 may be the same.
  • each of the third insulating layers INS3 and the insulating pattern INP may form part of the first and second insulating layers INS1 and INS2, and thus, each of the first and second insulating layers INS1 and INS2 may be formed. It can be formed simultaneously with some.
  • the third insulating layer INS3 may be formed of a material substantially the same as or similar to those of the first and second_1 insulating layers INS1_1 and INS2_1, which form lower layers of the first and second insulating layers INS1 and INS2, respectively.
  • the structure may have a thickness substantially the same as or similar to that of the first and second insulating layers INS1_1 and INS2_1.
  • the third insulating layer INS3 may have a thickness smaller than the total thickness of each of the first insulating layer INS1 and the second insulating layer INS2, and for example, approximately half of the thickness of the first or second insulating layers INS1 and INS2. It may have a thickness corresponding to.
  • the insulating pattern INP may be formed of a material and / or a structure that is substantially the same as or similar to that of the first and second second insulating layers INS1_2 and INS2_2 constituting an upper layer of each of the first and second insulating layers INS1 and INS2. And a thickness substantially the same as or similar to that of the first and second insulating layers INS1_2 and INS2_2.
  • the insulating pattern INP may have a thickness smaller than the overall thickness of each of the first insulating layer INS1 and the second insulating layer INS2.
  • the insulating pattern INP may be formed at about half the thickness of the first or second insulating layers INS1 and INS2. It may have a corresponding thickness.
  • the first contact electrode CNE1, the second contact electrode CNE2, and the conductive pattern CNP are disposed on the substrate SUB on which the first insulating layer INS1, the second insulating layer INS2, and the insulating pattern INP are disposed. do.
  • the conductive pattern CNP may be selectively included in the light emitting device, and may be removed depending on the embodiment.
  • the first contact electrode CNE1 is disposed on the first electrode ELT1 and the first insulating layer INS1, and is disposed on one region of the first electrode ELT1 not covered by the first insulating layer INS1. It is in contact with the first electrode ELT1. As a result, the first contact electrode CNE1 and the first electrode ELT1 are electrically connected to each other. In addition, one end of the first contact electrode CNE1 contacts the first end EP1 of the light emitting diode LD and is electrically connected to the first end EP1 through the first contact electrode CNE1. The first contact electrode CNE1 stably fixes the first end EP1 of the light emitting diode LD and electrically connects the first end EP1 to the first electrode ELT1.
  • the second contact electrode CNE2 is disposed on the second electrode ELT2 and the second insulating layer INS2, and is disposed on one region of the second electrode ELT2 not covered by the second insulating layer INS2. It is in contact with the second electrode ELT2. As a result, the second contact electrode CNE2 and the second electrode ELT2 are electrically connected to each other. In addition, one end of the second contact electrode CNE2 is in contact with the second end EP2 of the light emitting diode LD, and is electrically connected to the second end EP2 through the second contact electrode CNE2. The second contact electrode CNE2 stably fixes the second end EP2 of the light emitting diode LD and electrically connects the second end EP2 to the second electrode ELT2.
  • the first and second contact electrodes CNE1 and CNE2 may be substantially transparent or translucent.
  • the first and second contact electrodes CNE1 and CNE2 may be made of a transparent conductive material including ITO or IZO, and may be made of various kinds of transparent conductive materials currently known. Accordingly, light generated in the light emitting diode LD may pass through the first and second contact electrodes CNE1 and CNE2 and may be emitted to the outside of the light emitting diode LD.
  • the first and second contact electrodes CNE1 and CNE2 are formed at the first and second ends EP1 and EP2 of the light emitting diode LD, respectively. It may be in contact only with the side surface and may not be disposed on the upper surface of the light emitting diode LD. For example, one end of each of the first and second contact electrodes CNE1 and CNE2 may not be extended on the upper surface of the light emitting diode LD and may be in contact with the lower region of the side surface of the insulating pattern INP.
  • the first and second contact electrodes CNE1 and CNE2 are spaced apart from each other with the light emitting diode LD interposed therebetween, and disposed at the same layer and / or the same height on the substrate SUB.
  • the first and second contact electrodes CNE1 and CNE2 may have a shape and / or a structure symmetrical with each other with the light emitting diode LD therebetween.
  • the first and second contact electrodes CNE1 and CNE2 may be simultaneously formed in the same process, and may be formed by an insulating pattern INP having a shape that becomes narrower in the lower region (or toward the lower region). It is broken around the lower region of the insulating pattern INP. Therefore, even when the light emitting diode LD has a small length, for example, in a nanoscale to microscale range, the first and second contact electrodes CNE1 and CNE2 are disposed with each other with the light emitting diode LD therebetween. It will remain separated.
  • the formation and / or arrangement process of the light emitting diode LD and the formation of the insulating pattern INP are performed.
  • the insulating film INF formed on the surface of the light emitting diode LD is damaged in the process or the like, the intention with the first and / or second contact electrodes CNE1 and CNE2 through the damaged portion of the insulating film INF Unintended short circuits, i.e. short defects, can be prevented.
  • the shorts are caused by the first and second contact electrodes CNE1 and CNE2. It is possible to prevent defects and to ensure electrical stability of the light emitting device.
  • the manufacturing process of the light emitting device can be simplified while stably connecting the light emitting diode LD between the first electrode ELT1 and the second electrode ELT2. According to this embodiment of the present invention, it is possible to reduce the manufacturing cost and / or manufacturing time of the light emitting device to increase productivity, and simplify the light emitting device structure.
  • the conductive pattern CNP is disposed to overlap the light emitting diode LD on the insulating pattern INP, and the light emitting diode LD and the first and second contact electrodes CNE1 and CNE2 are disposed by the insulating pattern INP. Can be separated from.
  • the conductive pattern CNP is formed simultaneously with the first and second contact electrodes CNE1 and CNE2 in a process of forming the first and second contact electrodes CNE1 and CNE2.
  • the insulating pattern INP having a narrower width may be left on the insulating pattern INP in a state in which the first and second contact electrodes CNE1 and CNE2 are disconnected.
  • the conductive pattern CNP may be made of the same transparent conductive material as the first and second contact electrodes CNE1 and CNE2, and may be electrically isolated from the insulating pattern INP.
  • the conductive pattern CNP may be formed on the insulating pattern INP in a conductive film deposition process for forming the first and second contact electrodes CNE1 and CNE2, for example, in a sputtering conductive film deposition process. It may have a thickness substantially the same as or similar to that of the first and second contact electrodes CNE1 and CNE2.
  • the conductive pattern CNP is not necessarily formed or remained in the light emitting device.
  • the conductive pattern CNP may not be formed, or may be selectively removed after the formation of the conductive film to form the first and second contact electrodes CNE1 and CNE2.
  • the conductive pattern CNP may be selectively removed after the conductive pattern CNP is formed together with the first and second contact electrodes CNE1 and CNE2.
  • the overcoat layer OC may be disposed on the substrate SUB on which the first and second contact electrodes CNE1 and CNE2 are disposed.
  • the overcoat layer OC may be provided to cover the top surface of the substrate SUB on which the first and second contact electrodes CNE1 and CNE2 are disposed.
  • FIG. 7 is an enlarged cross-sectional view of the EA1 region of FIG. 5, and FIG. 8 is a cross-sectional view corresponding to the EA1 region of FIG. 5, and shows another embodiment related to the shape of the insulation pattern INP.
  • 9 is a plan view schematically illustrating a mutual arrangement relationship between the light emitting diode LD and the insulating pattern INP according to an exemplary embodiment of the present invention.
  • the insulating pattern INP includes the first and second ends EP1 and EP2 of the light emitting diode LD when viewed from the top of the substrate SUB. It may be formed to completely cover the upper surface of the). However, the insulation pattern INP may expose the first and second ends EP1 and EP2 of the light emitting diode LD when viewed from the side surface or the cross-sectional direction of the substrate SUB.
  • the insulating pattern INP may cover only the upper regions of the first and second ends EP1 and EP2 and not cover the remaining regions of the first and second ends EP1 and EP2. Can be.
  • the insulating pattern INP completely covers the upper surface of each light emitting diode LD, but is closer to the lower area closer to the substrate SUB, or toward the lower area gradually closer to the substrate SUB.
  • the first and second ends EP1 and EP2 positioned at both sides of the light emitting diode LD may be exposed while having a cross section having a shape of decreasing width.
  • the first end EP1 not covered by the insulation pattern INP is contacted and covered by the first contact electrode CNE1, and the second end EP2 not covered by the insulation pattern INP is formed by the first end EP1.
  • the first and second contact electrodes CNE1 and CNE2 are electrically connected to the light emitting diode LD through contact with the light emitting diode LD at both sides of the light emitting diode LD disposed in the horizontal direction. Can be connected.
  • the upper surface USUR of the insulation pattern INP has a first width W1 and W1 ′ having a value greater than the length L of the light emitting diode LD, and the light emitting diode LD is formed.
  • the top surface of the can be completely covered.
  • the insulating pattern INP may have a shape in which a width thereof decreases in a lower region or toward the lower region, and may include first and second ends EP1 and EP2 of the light emitting diode LD. Can be exposed.
  • the lower surface LSUR of the insulation pattern INP may have second widths W2 and W2 ′ that are equal to or smaller than the length L of the light emitting diode LD.
  • the insulating pattern INP may gradually decrease in width toward the bottom region at the side surfaces SSUR disposed on the first and second ends EP1 and EP2 of the light emitting diode LD. It may have a cross section of a shape.
  • the insulating pattern INP is disposed on the first side surface SSUR1 disposed on the first end EP1 of the light emitting diode LD and on the second end EP2 of the light emitting diode LD. It may include a second side (SSUR2).
  • the first and second side surfaces SSUR1 and SSUR2 have a curved surface (eg, a curved surface corresponding to a side portion of a mushroom shape) as illustrated in FIG. 7, or illustrated in FIG. 8.
  • the inclined surface may have an inclined surface (for example, an inclined surface corresponding to an inverted trapezoidal shape), and the width may gradually decrease toward the lower region.
  • the shape of the insulation pattern INP is not limited to the embodiment shown in FIGS. 7 and 8, and the shape of the insulation pattern INP may be variously changed.
  • the first and second side surfaces SSUR1 and SSUR2 of the insulating pattern INP may have a shape in which a curved surface and an inclined surface are combined, or may have a stepped or uneven shape.
  • the insulating pattern INP may be formed in the conductive film forming process for forming the first and second contact electrodes CNE1 and CNE2, and the conductive film may be formed on the first and second ends of the light emitting diode LD.
  • the upper regions of the EP1 and EP2 may have shapes and / or sizes that can be naturally broken by a shadow effect caused by the insulation pattern INP.
  • the first and second contact electrodes CNE1 and CNE2 each have a first thickness TH1, and the conductive pattern CNP has a value that is similar to, smaller than, or smaller than the first thickness TH1.
  • the upper end portion USE1 of the first side surface SSUR1 of the insulation pattern INP may have a thickness TH1 ′, and the first end portion EP1 of the light emitting diode LD may be viewed from the top of the substrate SUB. ) May be positioned at a point spaced apart from each other by the first distance d1 greater than or equal to the first thickness TH1 in the direction of the first electrode ELT1.
  • the upper end portion USE2 of the second side surface SSUR2 of the insulation pattern INP is viewed from the top of the substrate SUB from the second end EP2 of the light emitting diode LD.
  • the insulation pattern INP may be formed.
  • the upper ends USE1 and USE2 of each of the first and second side surfaces SSUR1 and SSUR2 are approximately 0.3 ⁇ m from the first end EP1 and the second end EP2 of the light emitting diode LD, respectively, when viewed in plan view. Above, for example, it may be located at a point spaced by 0.3 ⁇ m to 0.5 ⁇ m.
  • lower ends LSE1 and LSE2 of each of the first and second side surfaces SSUR1 and SSUR2 may be immediately adjacent to the first and second ends EP1 and EP2.
  • the lower ends LSE1 and LSE2 of each of the first and second side surfaces SSUR1 and SSUR2 may have the first and second ends EP1 and EP2 within a distance less than or equal to a first thickness TH1. It can be placed adjacent to. Accordingly, in the process of forming the first and second contact electrodes CNE1 and CNE2, the first and second contact electrodes CNE1 and CNE2 are formed at both ends of the light emitting diode LD, that is, the first electrode. And stable contact with the second ends EP1 and EP2.
  • the insulating pattern INP has a thickness such that the conductive pattern CNP can be stably separated from the light emitting diode LD and the first and second contact electrodes CNE1 and CNE2 around the conductive pattern CNP.
  • the insulation pattern INP may have a thickness of the first and second contact electrodes CNE1 and CNE2, that is, a second thickness TH2 greater than or equal to the first thickness TH1.
  • the first thickness TH1 is about 0.1 ⁇ m to 0.2 ⁇ m
  • the second thickness TH2 may be about 0.3 ⁇ m or more, for example, 0.3 ⁇ m to 0.5 ⁇ m.
  • the insulating pattern INP may have a shape such that the conductive film for forming the first and second contact electrodes CNE1 and CNE2 may be stably broken at the first and second side surfaces SSUR1 and SSUR2. Can be.
  • the insulating pattern INP may have a predetermined range of angles, inclinations, and / or curvatures in a narrower width toward the lower region, and may have a step shape.
  • the insulating pattern INP covering the upper surface of the light emitting diode LD is formed in the form of decreasing width in the lower region. Accordingly, the manufacturing process of the light emitting device can be simplified while stably connecting the light emitting diode LD between the first electrode ELT1 and the second electrode ELT2.
  • 10A to 10I are cross-sectional views sequentially illustrating a method of manufacturing the light emitting device illustrated in FIG. 5.
  • first partition walls PW1 and second partition walls PW2 are formed on one surface of the substrate SUB so as to be spaced apart from each other.
  • the first and second barrier ribs PW1 and PW2 may be formed through a formation process and / or a patterning process (eg, a mask process) including an inorganic material and / or an organic material. It can be formed through a variety of processes currently known. Further, according to an embodiment, the first and second partitions PW1 and PW2 may be simultaneously formed on the same layer (or the same plane) on the substrate SUB using the same material, but the present invention may It is not limited.
  • the first electrode ELT1 and the second electrode ELT2 are formed on the substrate SUB on which the first and second partitions PW1 and PW2 are formed.
  • the first and second electrodes ELT1 and ELT2 may be formed through a formation process and / or a patterning process of a conductive film including at least one conductive material. It can be formed through.
  • each of the first and second electrodes ELT1 and ELT2 may be formed in a single layer or multiple layers.
  • the first electrode ELT1 is formed of multiple layers including the first reflective electrode REF1 and the first conductive capping layer CPL1
  • the second electrode ELT2 is formed of the second reflective electrode REF2 and the first electrode. 2 may be formed of a multilayer including a conductive capping layer (CPL2).
  • forming the first and second electrodes ELT1 and ELT2 may include forming the first and second reflective electrodes REF1 and REF2 on the first and second partitions PW1 and PW2, respectively. And forming first and second conductive capping layers CPL1 and CPL2 on the first and second reflective electrodes REF1 and REF2.
  • first and second electrodes ELT1 and ELT2 may be simultaneously formed on the same layer on the substrate SUB, but are not limited thereto.
  • the number of mask processes used for manufacturing the light emitting device may be reduced or minimized.
  • the first insulating material layer IL1 is formed on the substrate SUB on which the first and second electrodes ELT1 and ELT2 are formed.
  • the first insulating material layer IL1 may be formed through a film forming process of an insulating film including an inorganic material and / or an organic material, and may be formed through various processes known in the art.
  • the first insulating material layer IL1 may be formed of a single layer or multiple layers.
  • At least one light emitting diode LD is supplied onto the substrate SUB on which the first insulating material layer IL1 is formed, and the first end EP1 and the second end of the light emitting diode LD are provided.
  • the light emitting diode LD is arranged between the first and second electrodes ELT1 and ELT2 such that the end EP2 is adjacent to the first electrode ELT1 and the second electrode ELT2, respectively.
  • the light emitting diode LD may be supplied onto the substrate SUB through various methods, such as an inkjet method, and may apply a predetermined voltage to the first and second electrodes ELT1 and ELT2. Accordingly, the first and second electrodes ELT1 and ELT2 may be aligned.
  • the second insulating material layer IL2 is formed on the substrate SUB on which the light emitting diode LD is arranged.
  • the second insulating material layer IL2 may be formed through a film forming process of an insulating film including an inorganic material and / or an organic material, and may be formed through various processes known in the art.
  • the second insulating material layer IL2 may be formed of a single layer or multiple layers.
  • a mask for example, first and second electrodes ELT1 and ELT2
  • the photoresist layer PR having the openings OP1 and OP2 corresponding to the first and second contact portions CNT1 and CNT2 for connecting to the electrodes CNE1 and CNE2 is formed, and the first and second The first and second insulating material layers IL1 and IL2 may be etched to expose at least one region of the electrodes ELT1 and ELT2 and the first and second ends EP1 and EP2 of the light emitting diode LD. Can be.
  • a first insulating layer INS1 exposing a region of the first electrode ELT1 on the first electrode ELT1 and a region of the second electrode ELT2 on the second electrode ELT2.
  • An insulating pattern INP may be formed on the light emitting diode LD to expose the second insulating layer INS2 exposing the top surface of the light emitting diode LD.
  • the forming of the mask may include forming a photoresist layer PR on the substrate SUB on which the second insulating material layer IL2 is formed, and forming first and second ends of the light emitting diode LD.
  • a photoresist layer PR on the substrate SUB on which the second insulating material layer IL2 is formed, and forming first and second ends of the light emitting diode LD.
  • the photoresist layer PR having the first and second openings OP1 and OP2 may be used as a mask for selectively etching one region of the first and second insulating material layers IL1 and IL2.
  • the first and second insulating material layers IL1 and IL2 may be simultaneously etched or sequentially etched.
  • the first and second insulating material layers IL1 and IL2 may be etched at least once and / or through at least one kind of etching process.
  • the first and second insulating material layers IL1 and IL2 may be etched through at least one dry and / or wet etching process.
  • the second insulating material layer IL2 is reduced in width toward the lower region on both sides of the light emitting diode LD in which the first and second ends EP1 and EP2 are located. It may be over-etched in the form. For example, by overetching both sides of the second insulating material layer IL2 on the upper portion of the light emitting diode LD, the first and second ends EP1 and EP2 may be removed from the upper portion of the light emitting diode LD.
  • the insulating pattern INP covers the first and second ends EP1 and EP2 in a lateral direction of the light emitting diode LD while being fully covered but decreasing in width toward the lower region closer to the light emitting diode LD. Can be formed.
  • the position and size of each of the first and second openings OP1 and OP2 formed in the photoresist PR may vary depending on an etching condition or a process margin.
  • the material and thickness of the first and second insulating material layers IL1 and IL2 and the concentration of the etching gas may be used.
  • the position and / or the size of the first and second openings OP1 and OP2 may be adjusted in consideration of at least one of an etching time.
  • the first and second openings OP1 and OP2 may be etched.
  • the position and / or size of the first and second openings OP1 and OP2 may be adjusted in consideration of being able to be extended. That is, the position and size of the first and second openings OP1 and OP2 formed in the mask may be set in consideration of process conditions or margins.
  • the first and second contact electrodes CNE1 and CNE2 and the conductive pattern CNP are formed on the substrate SUB on which the first and second insulating layers INS1 and INS2 and the insulating pattern INP are formed. ).
  • the first and second insulating layers INS1 and INS2 and the insulating pattern INP may be formed by forming and / or patterning the conductive layer through various methods, including sputtering.
  • the conductive pattern CNP may be formed with the second contact electrodes CNE1 and CNE2.
  • the conductive layer may be exposed to an upper portion of the first and second electrodes ELT1 and ELT2 and the light emitting diode LD, as well as to the etching process of the first and second insulating material layers IL1 and IL2.
  • the light emitting diode LD may be directly formed on the first and second ends EP1 and EP2. Accordingly, the conductive film is formed to be in direct contact with the first and second ends EP1 and EP2 of the light emitting diode LD, so that the first and second ends EP1 and EP2 are respectively formed in the first and second ends.
  • First and second contact electrodes CNE1 and CNE2 connected to the second electrodes ELT1 and ELT2 may be formed.
  • the conductive layer is formed on the light emitting diode LD, but is separated from the first and second contact electrodes CNE1 and CNE2 by the insulating pattern INP. Therefore, in the forming of the first and second contact electrodes CNE1 and CNE2, a conductive pattern CNP may be formed on the light emitting diode LD. The conductive pattern CNP may be kept separated from the light emitting diode LD and the first and second contact electrodes CNE1 and CNE2 by the insulating pattern INP.
  • an overcoat layer OC is formed on the substrate SUB on which the first and second contact electrodes CNE1 and CNE2 and the conductive pattern CNP are formed. Accordingly, the light emitting device according to the embodiment of FIG. 5 can be manufactured.
  • the first and second contact electrodes CNE1 and CNE2 may be simultaneously formed on the same layer on the substrate SUB. Accordingly, the number of mask processes used for manufacturing the light emitting device can be reduced or minimized.
  • the conductive pattern CNP on the upper part of the light emitting diode LD can be electrically isolated by the insulating pattern INP, a short defect occurs in the light emitting diode LD and / or its periphery.
  • the light emitting diode LD can be stably connected between the first and second electrodes ELT1 and ELT2.
  • FIG. 11 is a plan view illustrating a display device according to an exemplary embodiment of the present invention.
  • FIG. 11 illustrates a display device, in particular a display panel PNL provided in the display device, as an example of a device that may use the light emitting device according to the above-described embodiment as a light source.
  • the structure of the display panel PNL will be briefly illustrated in the center of the display area DA.
  • at least one driving circuit unit eg, at least one of the scan driver and the data driver
  • the plurality of wirings which are not shown, may be further disposed on the display panel PNL.
  • the display panel PNL may include a substrate SUB and a plurality of pixels PXL disposed on the substrate SUB.
  • the substrate SUB may include a display area DA for displaying an image and a non-display area NDA except for the display area DA.
  • the pixels PXL may be disposed in the display area DA on the substrate SUB.
  • the display area DA is disposed in the center area of the display panel PNL
  • the non-display area NDA is disposed in the edge area of the display panel PNL to surround the display area DA.
  • the positions of the display area DA and the non-display area NDA are not limited thereto, and their positions may be changed.
  • the substrate SUB may be a rigid substrate or a flexible substrate, and its material and physical properties are not particularly limited.
  • the substrate SUB may be a rigid substrate composed of glass or tempered glass, or a flexible substrate composed of a thin film made of plastic or metal.
  • the substrate SUB may include a display area DA including a plurality of pixel areas in which each pixel PXL is formed, and a non-display area NDA disposed outside the display area DA. can do.
  • Various wirings and / or internal circuits connected to the pixels PXL of the display area DA may be disposed in the non-display area NDA.
  • Each of the pixels PXL may include at least one light source driven by a corresponding scan signal and a data signal, for example, the light emitting device described in the above embodiment as each light source.
  • each of the pixels PXL may include at least one light emission connected between the pair of first and second electrodes ELT1 and ELT2 and the first and second electrodes ELT1 and ELT2. It may include a diode (LD).
  • the light emitting diode LD may be an ultra-small rod-shaped light emitting diode having a small size in a nanoscale to microscale range.
  • each of the pixels PXL may include a plurality of light emitting diodes LD connected in parallel between the first and second electrodes ELT1 and ELT2. The brightness of the level can be obtained.
  • each pixel PXL may be an active pixel, but is not limited thereto.
  • the type, structure, and / or driving method of the pixels PXL is not particularly limited. That is, each pixel PXL may be configured as a pixel of a passive or active light emitting display device having various structures currently known.
  • FIGS. 12 to 14 are circuit diagrams illustrating different embodiments of the pixel PXL of FIG. 11.
  • FIGS. 12 to 14 illustrate different embodiments of the pixel PXL that may be provided in the active light emitting display device.
  • each pixel PXL illustrated in FIGS. 12 to 14 may be any one of the pixels PXL included in the display panel PNL of FIG. 11, and the pixels PXL may be substantially the same. It may have the same or similar structure.
  • a pixel PXL may include a light emitting unit EMU for generating light having a luminance corresponding to a data signal, and a light emitting unit EMU for driving the light emitting unit EMU.
  • the pixel circuit PXC may be included.
  • the light emitting unit EMU may include a plurality of light emitting diodes LD connected in parallel between the first and second power sources VDD and VSS.
  • the first and second power sources VDD and VSS may have different potentials so that the light emitting diodes LD may emit light.
  • the first power supply VDD may be set as a high potential power
  • the second power supply VSS may be set as a low potential power.
  • the potential difference between the first and second power sources VDD and VSS may be set to be equal to or greater than the threshold voltage of the light emitting diodes LD during the light emitting period of the pixel PXL.
  • the light emitting diodes LD constituting the light emitting unit EMU of each pixel PXL have the same direction (eg, forward direction) between the first power source VDD and the second power source VSS.
  • An embodiment connected in parallel with) is illustrated, but the present invention is not limited thereto.
  • some of the light emitting diodes LD may be connected in the forward direction between the first and second power sources VDD and VSS, and the other part may be connected in the reverse direction.
  • at least one pixel PXL may include only a single light emitting diode LD.
  • one end (eg, EP1 of FIGS. 4 to 6) of the light emitting diodes LD constituting each light emitting unit EMU may include a first electrode (for example, FIGS. 4 to 6).
  • the pixel circuit PXC may be commonly connected to the pixel circuit PXC through the ELT1, and may be connected to the first power supply VDD through the pixel circuit PXC.
  • the other ends of the light emitting diodes LD (eg, EP2 of FIGS. 4 to 6) are commonly connected to the second power source VSS through the second electrode (eg, ELT2 of FIGS. 4 to 6). Can be connected.
  • the first electrode ELT1 and the second electrode ELT2 disposed in each light emitting unit EMU will be referred to as a first pixel electrode and a second pixel electrode, respectively.
  • Each light emitting unit EMU may emit light at a luminance corresponding to a driving current supplied through the pixel circuit PXC. Accordingly, a predetermined image may be displayed in the display area DA.
  • the pixel circuit PXC may be connected to the scan line Si and the data line Dj of the pixel PXL.
  • the pixel circuit PXC of the pixel PXL is the i-th scan line Si of the display area DA.
  • the j-th data line Dj may include first and second transistors T1 and T2 and a storage capacitor Cst.
  • the first electrode of the first transistor (driving transistor) T1 is connected to the first power source VDD, and the second electrode connects the first pixel electrode (that is, the first electrode ELT1 of the corresponding light emitting unit EMU). Are connected to the light emitting diodes LD.
  • the first and second electrodes of the first transistor T1 are different electrodes.
  • the first electrode is a source electrode
  • the second electrode may be a drain electrode.
  • the gate electrode of the first transistor T1 is connected to the first node N1.
  • the first transistor T1 controls the driving current supplied to the light emitting unit EMU in response to the voltage of the first node N1.
  • the first electrode of the second transistor (switching transistor) T2 is connected to the data line Dj, and the second electrode is connected to the first node N1.
  • the gate electrode of the first transistor T1 is connected to the scan line Si.
  • the second transistor T2 is turned on when a scan signal of a gate-on voltage (eg, a low voltage) is supplied from the scan line Si to electrically connect the data line Dj and the first node N1. Connect with In each frame period, the data signal of the frame is supplied to the data line Dj, and the data signal is transferred to the first node N1 via the second transistor T2. Accordingly, the storage capacitor Cst is charged with a voltage corresponding to the data signal.
  • a gate-on voltage eg, a low voltage
  • One electrode of the storage capacitor Cst is connected to the first power supply VDD, and the other electrode is connected to the first node N1.
  • the storage capacitor Cst charges a voltage corresponding to the data signal supplied to the first node N1 during each frame period, and maintains the charged voltage until the data signal of the next frame is supplied.
  • all of the transistors included in the pixel circuit PXC for example, the first and second transistors T1 and T2 are illustrated as P-type transistors, but the present invention is not limited thereto. That is, at least one of the first and second transistors T1 and T2 may be changed to an N type transistor.
  • the first and second transistors T1 and T2 may be N-type transistors.
  • the pixel PXL illustrated in FIG. 13 has the configuration and operation of the pixel circuit of FIG. 12 except that the connection positions of some circuit elements are changed according to the type change of the first and second transistors T1 and T2. Is substantially similar to (PXC). Therefore, a detailed description of the pixel PXL of FIG. 13 will be omitted.
  • the structure of the pixel circuit PXC is not limited to the embodiment shown in FIGS. 12 and 13. That is, the pixel circuit PXC may be configured with pixel circuits of various structures and / or driving schemes currently known. For example, the pixel circuit PXC may be configured as in the embodiment shown in FIG. 14.
  • the pixel circuit PXC may be further connected to at least one other scan line (or control line) in addition to the scan line Si of the corresponding horizontal line.
  • the pixel circuit PXC of the pixel PXL disposed in the i-th row of the display area DA may be connected to the i ⁇ 1 th scan line Si-1 and / or the i + 1 th scan line Si + 1.
  • the pixel circuit PXC may be further connected to a third power source in addition to the first and second power sources VDD and VSS.
  • the pixel circuit PXC may also be connected to the initialization power supply Vint.
  • the pixel circuit PXC may include first to seventh transistors T1 to T7 and a storage capacitor Cst.
  • the first electrode of the first transistor T1 is connected to the first power supply VDD via the fifth transistor T5, and the second electrode is connected to the light emitting diodes LD via the sixth transistor T6. Connected.
  • the gate electrode of the first transistor T1 may be connected to the first node N1.
  • the first transistor T1 controls the driving current supplied to the light emitting unit EMU in response to the voltage of the first node N1.
  • the second transistor T2 is connected between the data line Dj and the first electrode of the first transistor T1.
  • the gate electrode of the second transistor T2 is connected to the scan line Si.
  • the second transistor T2 is turned on when a scan signal of a gate-on voltage is supplied from the scan line Si to electrically connect the data line Dj to the first electrode of the first transistor T1. do. Therefore, when the second transistor T2 is turned on, the data signal supplied from the data line Dj is transferred to the first transistor T1.
  • the third transistor T3 is connected between the second electrode of the first transistor T1 and the first node N1.
  • the gate electrode of the third transistor T3 is connected to the scan line Si.
  • the third transistor T3 is turned on when a scan signal of a gate-on voltage is supplied from the scan line Si to electrically connect the second electrode and the first node N1 of the first transistor T1. Connect. Therefore, when the third transistor T3 is turned on, the first transistor T1 is connected in the form of a diode.
  • the fourth transistor T4 is connected between the first node N1 and the initialization power supply Vint.
  • the gate electrode of the fourth transistor T4 is connected to the previous scan line, for example, the i-1 th scan line Si-1.
  • the fourth transistor T4 is turned on when the scan signal of the gate-on voltage is supplied to the i-1 th scan line Si-1 to transfer the voltage of the initialization power supply Vint to the first node N1. To pass.
  • the voltage of the initialization power supply Vint may be equal to or less than the lowest voltage of the data signal.
  • the fifth transistor T5 is connected between the first power supply VDD and the first transistor T1.
  • the gate electrode of the fifth transistor T5 is connected to the emission control line, for example, the i-th emission control line Ei.
  • the fifth transistor T5 is turned off when the emission control signal of the gate-off voltage (eg, a high voltage) is supplied to the emission control line Ei, and is turned on in other cases.
  • the emission control signal of the gate-off voltage eg, a high voltage
  • the sixth transistor T6 is connected between the first transistor T1 and the light emitting diodes LD.
  • the gate electrode of the sixth transistor T6 is connected to the emission control line, for example, the i-th emission control line Ei.
  • the sixth transistor T6 is turned off when the emission control signal of the gate-off voltage is supplied to the emission control line Ei, and is turned on in other cases.
  • the seventh transistor T7 is connected between the light emitting unit EMU (eg, a first pixel electrode connected to one end of the light emitting diodes LD) and the initialization power supply Vint.
  • the gate electrode of the seventh transistor T7 is connected to any one of the next scan lines, for example, the i + 1 th scan line Si + 1.
  • the seventh transistor T7 is turned on when the scan signal of the gate-on voltage is supplied to the i + 1 th scan line Si + 1 to supply the voltage of the initialization power supply Vint to the first pixel electrode. do.
  • the storage capacitor Cst is connected between the first power supply VDD and the first node N1.
  • the storage capacitor Cst stores a data signal supplied to the first node N1 and a voltage corresponding to the threshold voltage of the first transistor T1 in each frame period.
  • all of the transistors included in the pixel circuit PXC for example, the first to seventh transistors T1 to T7 are illustrated as P-type transistors, but the present invention is not limited thereto. .
  • at least one of the first to seventh transistors T1 to T7 may be changed to an N type transistor.
  • each pixel PXL may have various structures currently known.
  • the pixel circuit PXC included in each pixel PXL may be configured as a pixel circuit of various structures and / or driving schemes currently known.
  • each pixel PXL may be configured in the passive light emitting display device. In this case, the pixel circuit PXC is omitted, and each of the first and second pixel electrodes of the light emitting unit EMU may be directly connected to the scan line Si, the data line Dj, the power line, and / or the control line. Can be.
  • FIG. 15 is a plan view illustrating the pixel PXL of FIG. 11, and in particular, illustrates a layout example of the light emitting unit EMU of each pixel PXL.
  • 16 is a cross-sectional view taken along line II-II 'of FIG. 15.
  • the light emitting unit EMU shown in FIG. 15 may be configured substantially similarly or identically to the light emitting device according to the above-described embodiment, for example, the embodiment shown in FIG. 4.
  • the display element layer LDL illustrated in FIG. 16 shows a cross section corresponding to the light emitting unit EMU of FIG. 15.
  • the display element layer LDL may be substantially similar to that of the light emitting device according to the exemplary embodiment illustrated in FIG. 5 or the like. The same may be configured. Therefore, in FIG. 15 and FIG. 16, the same or similar components as those in FIG. 4 and FIG. 5 are denoted by the same reference numerals and detailed description thereof will be omitted.
  • each pixel PXL may include a pixel circuit layer PCL and a display element layer LDL sequentially disposed on the substrate SUB.
  • the pixel circuit layer PCL includes a plurality of circuit elements disposed in the display area DA.
  • the pixel circuit layer PCL may include a plurality of circuit elements formed in each pixel area PXA to constitute each pixel circuit PXC.
  • the pixel circuit layer PCL may include at least one transistor T and a storage capacitor Cst disposed in each pixel area PXA.
  • the transistors constituting each pixel circuit PXC may have substantially the same or similar cross-sectional structure.
  • each transistor T is not limited to the embodiment shown in FIG.
  • each transistor T may have a variety of cross-sectional structures currently known.
  • the plurality of transistors constituting each pixel circuit PXC may have different types and / or structures.
  • the pixel circuit layer PCL includes a plurality of insulating layers.
  • the pixel circuit layer PCL may include a gate insulating layer GI, first and second interlayer insulating layers ILD1 and ILD2, and a passivation layer PSV sequentially stacked on one surface of the substrate SUB. can do.
  • the gate insulating layer GI, the first and second interlayer insulating layers ILD1 and ILD2, and the passivation layer PSV are sequentially stacked between the substrate SUB and the display element layer LDL. Can be.
  • the pixel circuit layer PCL may further include at least one buffer layer BFL disposed between the substrate SUB and the circuit elements.
  • At least one of the buffer layer BFL, the gate insulating layer GI, the first and second interlayer insulating layers ILD1 and ILD2, and the passivation layer PSV may be a display area DA and a non-display area NDA. It may be formed on one surface of the substrate (SUB) including.
  • the buffer layer BFL may prevent impurities from diffusing into the respective transistors T.
  • the buffer layer BFL may be composed of a single layer, but may be composed of at least two or more multilayers. When the buffer layer BFL is provided in multiple layers, each layer may be formed of the same material or different materials. In some embodiments, the buffer layer BFL may be omitted.
  • each transistor T includes a semiconductor layer SCL, a gate electrode GE, a first transistor electrode ET1, and a second transistor electrode ET2.
  • FIG. 16 an embodiment in which each transistor T includes first and second transistor electrodes ET1 and ET2 formed separately from the semiconductor layer SCL is illustrated. It is not limited to this.
  • at least one transistor T disposed in each pixel region PXA includes the first and / or second transistor electrodes ET1 and ET2, instead of the first and / or second transistor electrodes ET2 and ET2.
  • the second transistor electrodes ET1 and ET2 may be integrated with each semiconductor layer SCL.
  • the semiconductor layer SCL may be disposed on the buffer layer BFL.
  • the semiconductor layer SCL may be disposed between the substrate SUB on which the buffer layer BFL is formed and the gate insulating layer GI.
  • the semiconductor layer SCL may include a first region in contact with the first transistor electrode ET1, a second region in contact with the second transistor electrode ET2, and a channel located between the first and second regions. It can include an area.
  • one of the first and second regions may be a source region and the other may be a drain region.
  • the semiconductor layer SCL may be a semiconductor pattern made of polysilicon, amorphous silicon, an oxide semiconductor, or the like.
  • the channel region of the semiconductor layer SCL may be an intrinsic semiconductor as an impurity doped semiconductor pattern, and the first and second regions of the semiconductor layer SCL may be semiconductor patterns doped with a predetermined impurity, respectively. have.
  • the gate electrode GE may be disposed on the semiconductor layer SCL with the gate insulating layer GI interposed therebetween.
  • the gate electrode GE may be disposed between the gate insulating layer GI and the first interlayer insulating layer ILD1 and may overlap at least one region of the semiconductor layer SCL.
  • the first and second transistor electrodes ET1 and ET2 may be disposed on the semiconductor layer SCL with at least one insulating layer, for example, a plurality of insulating layers therebetween.
  • the first and second transistor electrodes ET1 and ET2 may be disposed between the second interlayer insulating film ILD2 and the passivation film PSV.
  • the first and second transistor electrodes ET1 and ET2 may be electrically connected to the semiconductor layer SCL.
  • each of the first and second transistor electrodes ET1 and ET2 may have a semiconductor layer through a contact hole penetrating through the gate insulating layer GI and the first and second interlayer insulating layers ILD1 and ILD2, respectively. It may be in contact with the first region and the second region of the SCL.
  • one of the first and second transistor electrodes ET1 and ET2 may be formed by at least one contact hole (for example, the first contact hole CH1) passing through the passivation layer PSV.
  • the first electrode ELT1 of the display element layer LDL disposed on the passivation layer PSV may be electrically connected to the first pixel electrode. However, this may be different for each transistor according to the connection position of each transistor T1.
  • the storage capacitor Cst may include first and second capacitor electrodes CSE1 and CSE2 spaced apart from each other.
  • the first capacitor electrode CSE1 may be disposed between the first and second interlayer insulating layers ILD1 and ILD2.
  • the second capacitor electrode CSE2 includes at least one conductive layer constituting the transistor T, for example, the semiconductor layer SCL, the gate electrode GE, the first and second transistor electrodes ET1, May be disposed on the same layer as at least one of ET2).
  • the second capacitor electrode CSE2 may be disposed between the gate insulating layer GI and the first interlayer insulating layer ILD1 together with the gate electrode GE of the transistor T.
  • each of the first and second capacitor electrodes CSE1 and CSE2 is illustrated as a single layer in FIG. 16, but the present invention is not limited thereto.
  • at least one of the first and second capacitor electrodes CSE1 and CSE2 may be formed of a multilayer, and the stacked structure of the first and second capacitor electrodes CSE1 and CSE2 and / or the same. The location may vary.
  • the display element layer LDL is a layer in which the light emitting unit EMU of each pixel PXL is disposed.
  • the display element layer LDL may be configured as in the light emitting device of FIGS. 4 and 5.
  • the display element layer LDL includes first and second electrodes ELT1 and ELT2 disposed in each pixel area PXA on the pixel circuit layer PCL, and the first and second electrodes. At least one light emitting diode LD may be electrically connected between the ELT1 and ELT2.
  • the display element layer LDL may include a plurality of light emitting diodes LD formed on the pixel circuit layer PCL in each pixel area PXA to constitute each light emitting unit EMU. Can be.
  • the first electrode ELT1 of the display element layer LDL may be a circuit element of the pixel circuit layer PCL, for example, at least one of the first and second pixel electrodes. It may be electrically connected to the transistor T.
  • the second electrode ELT2, that is, the second pixel electrode of the display element layer LDL may be electrically connected to a power line (or a control line) not shown through the second contact hole CH2.
  • the power line is disposed on the same layer as at least one conductive layer formed in the pixel circuit layer PCL, and the second electrode of the display element layer LDL is formed through the second contact hole CH2. It may be electrically connected to the ELT2, but is not limited thereto.
  • the light emitting unit EMU of each pixel PXL may be configured as a light emitting device using at least one light emitting diode LD. Since the light emitting device according to the embodiment of the present invention has been described in detail above, each light emitting unit EMU corresponding to the light emitting device and the display element layer LDL for configuring the light emitting unit EMU will be described in detail. Will be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명의 일 실시예에 의한 발광 장치는, 기판; 상기 기판 상에 서로 이격되어 배치된 제1 전극 및 제2 전극; 상기 제1 전극과 상기 제2 전극의 사이에 배치되며, 길이 방향의 양측에 제1 단부 및 제2 단부를 갖는 적어도 하나의 발광 다이오드; 상기 발광 다이오드의 상부를 커버하도록 배치되며, 상기 발광 다이오드의 상기 제1 및 제2 단부들을 노출하는 절연 패턴; 상기 발광 다이오드의 상기 제1 단부에 접촉되며, 상기 제1 단부를 상기 제1 전극에 전기적으로 연결하는 제1 컨택 전극; 및 상기 발광 다이오드의 상기 제2 단부에 접촉되며, 상기 제2 단부를 상기 제2 전극에 전기적으로 연결하는 제2 컨택 전극을 포함한다. 상기 절연 패턴은, 상기 기판의 상부에서 보았을 때 상기 발광 다이오드의 상기 제1 및 제2 단부들을 완전히 커버하며, 하단 영역에서 폭이 감소하는 형상의 단면을 가진다.

Description

발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치
본 발명의 실시예는 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치에 관한 것이다.
최근, 신뢰성이 높은 무기 결정 구조의 재료를 이용하여 초소형의 발광 다이오드를 제조하고, 상기 발광 다이오드를 이용하여 발광 장치를 제조하는 기술이 개발되고 있다. 예를 들어, 마이크로 스케일 또는 나노 스케일 정도로 작은 크기를 가지는 초소형의 발광 다이오드를 이용한 발광 장치가 개발되고 있다. 이러한 발광 장치는 표시 장치나 조명 장치와 같은 각종 전자 장치의 광원으로 이용될 수 있다.
본 발명이 이루고자 하는 기술적 과제는, 발광 다이오드를 포함하는 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치를 제공하는 것이다.
본 발명의 일 실시예에 의한 발광 장치는, 기판; 상기 기판 상에 서로 이격되어 배치된 제1 전극 및 제2 전극; 상기 제1 전극과 상기 제2 전극의 사이에 배치되며, 길이 방향의 양측에 제1 단부 및 제2 단부를 갖는 적어도 하나의 발광 다이오드; 상기 발광 다이오드의 상부를 커버하도록 배치되며, 상기 발광 다이오드의 상기 제1 및 제2 단부들을 노출하는 절연 패턴; 상기 발광 다이오드의 상기 제1 단부에 접촉되며, 상기 제1 단부를 상기 제1 전극에 전기적으로 연결하는 제1 컨택 전극; 및 상기 발광 다이오드의 상기 제2 단부에 접촉되며, 상기 제2 단부를 상기 제2 전극에 전기적으로 연결하는 제2 컨택 전극을 포함한다. 상기 절연 패턴은, 상기 기판의 상부에서 보았을 때 상기 발광 다이오드의 상기 제1 및 제2 단부들을 완전히 커버하며, 하단 영역에서 폭이 감소하는 형상의 단면을 가진다.
실시예에 따라, 상기 제1 및 제2 컨택 전극들은 각각 상기 제1 및 제2 단부들에서 상기 발광 다이오드의 양 측면에 접촉될 수 있다. 그리고, 상기 제1 및 제2 컨택 전극들 각각의 일측 끝단은 상기 발광 다이오드의 상부면 상으로 연장되지 않고 상기 절연 패턴의 하단 영역에 접촉될 수 있다.
실시예에 따라, 상기 제1 및 제2 컨택 전극들은 상기 발광 다이오드를 사이에 두고 서로 이격되며, 상기 기판 상의 서로 동일한 층 또는 동일한 높이에 배치될 수 있다.
실시예에 따라, 상기 절연 패턴은, 상기 발광 다이오드의 상기 제1 단부 상에 배치되며, 경사면 또는 곡면을 가지는 제1 측면; 및 상기 발광 다이오드의 상기 제2 단부 상에 배치되며, 경사면 또는 곡면을 가지는 제2 측면을 포함할 수 있다.
실시예에 따라, 상기 제1 측면의 상단부는, 상기 기판의 상부에서 보았을 때 상기 제1 단부로부터 상기 제1 전극 방향으로 상기 제1 및 제2 컨택 전극들의 두께 이상의 거리만큼 이격된 지점에 위치될 수 있다. 그리고, 상기 제2 측면의 상단부는, 상기 기판의 상부에서 보았을 때 상기 제2 단부로부터 상기 제2 전극 방향으로 상기 제1 및 제2 컨택 전극들의 두께 이상의 거리만큼 이격된 지점에 위치될 수 있다.
실시예에 따라, 상기 절연 패턴은, 상기 제1 및 제2 컨택 전극들 각각의 두께 이상의 두께를 가질 수 있다.
실시예에 따라, 상기 발광 장치는, 상기 제1 전극과 상기 제1 컨택 전극의 일 영역 사이에 배치된 적어도 한 층의 제1 절연막; 및 상기 제2 전극과 상기 제2 컨택 전극의 일 영역 사이에 배치된 적어도 한 층의 제2 절연막을 더 포함할 수 있다.
실시예에 따라, 상기 절연 패턴은, 상기 제1 및 제2 절연막들 각각의 두께보다 작은 두께를 가질 수 있다.
실시예에 따라, 상기 절연 패턴의 상부면은 상기 발광 다이오드의 길이보다 큰 폭을 가질 수 있다.
실시예에 따라, 상기 발광 장치는, 상기 절연 패턴 상에 상기 발광 다이오드와 중첩되도록 배치되며 상기 절연 패턴에 의해 상기 발광 다이오드 및 상기 제1 및 제2 컨택 전극들과 분리된 도전 패턴을 더 포함할 수 있다.
실시예에 따라, 상기 도전 패턴은 상기 제1 및 제2 컨택 전극들과 동일한 물질로 구성되며, 전기적으로 격리될 수 있다.
실시예에 따라, 상기 발광 장치는, 상기 기판과 상기 발광 다이오드의 사이에 배치되는 제3 절연막을 더 포함할 수 있다.
실시예에 따라, 상기 발광 다이오드는 상기 기판의 일면 상에 수평으로 배치되며, 상기 제1 전극과 상기 제2 전극의 사이에 가로 방향으로 배열될 수 있다.
실시예에 따라, 상기 발광 다이오드는 나노 스케일 내지 마이크로 스케일의 직경 또는 길이를 가지는 막대형 발광 다이오드일 수 있다.
본 발명의 일 실시예에 의한 발광 장치의 제조 방법은, 기판 상에 서로 이격되도록 제1 및 제2 전극들을 형성하는 단계; 상기 제1 및 제2 전극들이 형성된 상기 기판 상에 제1 절연 물질층을 형성하는 단계; 상기 제1 절연 물질층이 형성된 상기 기판 상에 적어도 하나의 발광 다이오드를 공급하고, 상기 발광 다이오드의 제1 및 제2 단부들이 각각 상기 제1 및 제2 전극들에 인접하도록 상기 제1 및 제2 전극들의 사이에 상기 발광 다이오드를 배열하는 단계; 상기 발광 다이오드가 배열된 상기 기판 상에 제2 절연 물질층을 형성하는 단계; 상기 제2 절연 물질층이 형성된 상기 기판 상에 마스크를 형성하고, 상기 제1 및 제2 전극들의 적어도 일 영역과 상기 제1 및 제2 단부들을 노출하도록 상기 제1 및 제2 절연 물질층들을 식각하는 단계; 및 상기 제1 및 제2 단부들을 각각 상기 제1 및 제2 전극들에 연결하는 제1 및 제2 컨택 전극들을 형성하는 단계를 포함한다. 상기 제1 및 제2 절연 물질층들을 식각하는 단계에서, 상기 제1 및 제2 단부들이 위치한 상기 발광 다이오드의 양측 상부에서 상기 제2 절연 물질층을 과식각하여, 상기 발광 다이오드의 상부에서 상기 제1 및 제2 단부들을 완전히 커버하되 상기 발광 다이오드에 가까운 하단 영역에서 폭이 감소하는 절연 패턴을 형성한다.
실시예에 따라, 상기 마스크를 형성하는 단계는, 상기 제2 절연 물질층이 형성된 상기 기판 상에 포토 레지스트층을 형성하는 단계; 및 상기 제1 및 제2 단부들로부터 각각 소정 거리 이격된 지점들에서 상기 제1 및 제2 전극들 상부의 상기 제2 절연 물질층을 부분적으로 노출하도록 상기 포토 레지스트층에 제1 및 제2 개구부들을 형성하는 단계를 포함할 수 있다.
실시예에 따라, 상기 제1 및 제2 컨택 전극들을 형성하는 단계에서, 상기 절연 패턴 상에, 상기 발광 다이오드 및 상기 제1 및 제2 컨택 전극들과 분리되는 도전 패턴을 더 형성할 수 있다.
실시예에 따라, 상기 제1 및 제2 전극들을, 상기 기판 상의 동일한 층 상에 동시에 형성할 수 있다.
실시예에 따라, 상기 제1 및 제2 컨택 전극들을, 상기 기판 상의 동일한 층 상에 동시에 형성할 수 있다.
본 발명의 일 실시예에 의한 표시 장치는, 표시 영역을 포함하는 기판과, 상기 표시 영역에 배치된 화소를 포함한다. 상기 화소는, 상기 기판의 일 영역 상에 서로 이격되어 배치된 제1 전극 및 제2 전극; 상기 제1 전극과 상기 제2 전극의 사이에 배치되며, 길이 방향의 양측에 제1 단부 및 제2 단부를 갖는 적어도 하나의 발광 다이오드; 상기 발광 다이오드의 상부를 커버하도록 배치되며, 상기 발광 다이오드의 상기 제1 및 제2 단부들을 노출하는 절연 패턴; 상기 발광 다이오드의 상기 제1 단부에 접촉되며, 상기 제1 단부를 상기 제1 전극에 연결하는 제1 컨택 전극; 및 상기 발광 다이오드의 상기 제2 단부에 접촉되며, 상기 제2 단부를 상기 제2 전극에 연결하는 제2 컨택 전극을 포함한다. 상기 절연 패턴은, 상기 기판의 상부에서 보았을 때 상기 발광 다이오드의 상기 제1 및 제2 단부들을 완전히 커버하며, 하단 영역에서 폭이 감소하는 형상의 단면을 가진다.
본 발명의 실시예에 의한 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치에 따르면, 제1 전극과 제2 전극의 사이에 발광 다이오드를 안정적으로 연결하면서도 제조 공정을 간소화할 수 있다.
도1a 및 도 1b는 본 발명의 일 실시예에 의한 발광 다이오드를 나타내는 사시도 및 단면도이다.
도 2a 및 도 2b는 본 발명의 일 실시예에 의한 발광 다이오드를 나타내는 사시도 및 단면도이다.
도 3a 및 도 3b는 본 발명의 일 실시예에 의한 발광 다이오드를 나타내는 사시도 및 단면도이다.
도 4는 본 발명의 일 실시예에 의한 발광 장치를 나타내는 평면도이다.
도 5 및 도 6은 도 4의 Ⅰ~Ⅰ' 선에 따른 발광 장치의 구조를 나타내는 단면도이다.
도 7은 도 5의 EA1 영역을 확대한 단면도이다.
도 8은 도 5의 EA1 영역에 대응하는 단면도로서, 절연 패턴의 형상과 관련한 다른 실시예를 나타낸다.
도 9는 본 발명의 일 실시예에 의한, 발광 다이오드와 절연 패턴의 상호 배치 관계를 개략적으로 나타내는 평면도이다.
도 10a 내지 도 10i는 도 5에 도시된 발광 장치의 제조 방법을 순차적으로 나타내는 단면도들이다.
도 11은 본 발명의 일 실시예에 의한 표시 장치를 나타내는 평면도이다.
도 12 내지 도 14는 도 11의 화소에 대한 서로 다른 실시예들을 나타내는 회로도들이다.
도 15는 도 11의 화소를 나타내는 평면도로서, 특히 각 화소의 발광 유닛에 대한 레이아웃 실시예를 나타낸다.
도 16은 도 15의 Ⅱ~Ⅱ' 선에 따른 단면도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예를 도면에 예시하고 본문에 상세하게 설명하고자 한다. 다만, 본 발명은 이하에서 개시되는 실시예에 한정되지는 않으며, 다양한 형태로 변경되어 실시될 수 있을 것이다.
한편, 도면에서 본 발명의 특징과 직접적으로 관계되지 않은 일부 구성 요소는 본 발명을 명확하게 나타내기 위하여 생략되었을 수 있다. 또한, 도면 상의 일부 구성 요소는 그 크기나 비율 등이 다소 과장되어 도시되었을 수 있다. 도면 전반에서 동일 또는 유사한 구성 요소들에 대해서는 비록 다른 도면 상에 표시되더라도 가능한 한 동일한 참조 번호 및 부호를 부여하고, 중복되는 설명은 생략하기로 한다.
본 출원에서, 제1, 제2 등의 용어는 다양한 구성 요소들을 구별하여 설명하는데 사용될 뿐, 상기 구성 요소들이 상기 용어에 의해 한정되지는 않는다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들의 조합이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들의 조합의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 이하의 설명에서 규정하는 특정 위치 또는 방향 등은 상대적인 관점에서 기술한 것으로서, 일 예로 이는 보는 관점이나 방향에 따라서는 반대로 변경될 수도 있음에 유의하여야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 그 밖에 당업자가 본 발명의 내용을 쉽게 이해하기 위하여 필요한 사항에 대하여 상세히 설명하기로 한다. 아래의 설명에서, 단수의 표현은 문맥상 명백하게 단수만을 포함하지 않는 한, 복수의 표현도 포함한다.
도 1a 및 도 1b, 도 2a 및 도 2b, 및 도 3a 및 도 3b는 각각 본 발명의 일 실시예에 의한 발광 다이오드(LD)를 나타내는 사시도 및 단면도이다. 도 1a 내지 도 3b에서는 원 기둥 형상의 막대형 발광 다이오드(LD)를 도시하였으나, 본 발명에 의한 발광 다이오드(LD)의 종류 및/또는 형상 등이 이에 한정되지는 않는다.
먼저 도 1a 및 도 1b를 참조하면, 본 발명의 일 실시예에 의한 발광 다이오드(LD)는, 제1 도전성 반도체층(11) 및 제2 도전성 반도체층(13)과, 상기 제1 및 제2 도전성 반도체층들(11, 13)의 사이에 개재된 활성층(12)을 포함한다. 일 예로, 발광 다이오드(LD)는 길이(L) 방향을 따라 제1 도전성 반도체층(11), 활성층(12) 및 제2 도전성 반도체층(13)이 순차적으로 적층된 적층체로 구성될 수 있다.
실시예에 따라, 발광 다이오드(LD)는 일 방향을 따라 연장된 막대 형상으로 제공될 수 있다. 발광 다이오드(LD)의 연장 방향을 길이(L) 방향이라고 하면, 발광 다이오드(LD)는 상기 길이(L) 방향을 따라 일측 단부와 타측 단부를 가질 수 있다.
실시예에 따라, 발광 다이오드(LD)의 일측 단부에는 제1 및 제2 도전성 반도체층들(11, 13) 중 하나가 배치되고, 상기 발광 다이오드(LD)의 타측 단부에는 상기 제1 및 제2 도전성 반도체층들(11, 13) 중 나머지 하나가 배치될 수 있다.
실시예에 따라, 발광 다이오드(LD)는 막대 형상으로 제조될 수 있다. 본 명세서에서, "막대형"이라 함은 원 기둥 또는 다각 기둥 등과 같이 길이(L) 방향으로 긴(즉, 종횡비가 1보다 큰) 로드 형상(rod-like shape), 또는 바 형상(bar-like shape)을 포괄하며, 그 단면의 형상이 특별히 한정되지는 않는다. 예를 들어, 발광 다이오드(LD)의 길이(L)는 그 직경(D)(또는, 단면의 너비)보다 클 수 있다.
실시예에 따라, 발광 다이오드(LD)는 나노 스케일 내지 마이크로 스케일 정도로 작은 크기, 일 예로 각각 나노 스케일 또는 마이크로 스케일 범위의 직경(D) 및/또는 길이(L)를 가질 수 있다. 다만, 본 발명에서 발광 다이오드(LD)의 크기가 이에 한정되지는 않는다. 예를 들어, 발광 다이오드(LD)를 이용한 발광 장치를 광원으로 이용하는 각종 장치, 일 예로 표시 장치 등의 설계 조건에 따라 발광 다이오드(LD)의 크기는 다양하게 변경될 수 있다.
제1 도전성 반도체층(11)은 일 예로 적어도 하나의 n형 반도체층을 포함할 수 있다. 예를 들어, 제1 도전성 반도체층(11)은 InAlGaN, GaN, AlGaN, InGaN, AlN, InN 중 어느 하나의 반도체 재료를 포함하며, Si, Ge, Sn 등과 같은 제1 도전성 도펀트가 도핑된 n형 반도체층을 포함할 수 있다. 다만, 제1 도전성 반도체층(11)을 구성하는 물질이 이에 한정되는 것은 아니며, 이 외에도 다양한 물질로 제1 도전성 반도체층(11)을 구성할 수 있다.
활성층(12)은 제1 도전성 반도체층(11) 상에 배치되며, 단일 또는 다중 양자 우물 구조로 형성될 수 있다. 일 실시예에서, 활성층(12)의 상부 및/또는 하부에는 도전성 도펀트가 도핑된 클래드층(미도시)이 형성될 수도 있다. 일 예로, 상기 클래드층은 AlGaN층 또는 InAlGaN층으로 형성될 수 있다. 실시예에 따라, AlGaN, AlInGaN 등의 물질이 활성층(12)을 형성하는 데에 이용될 수 있으며, 이 외에도 다양한 물질이 활성층(12)을 구성할 수 있다.
발광 다이오드(LD)의 양단에 소정 전압 이상의 전계를 인가하게 되면, 활성층(12)에서 전자-정공 쌍이 결합하면서 상기 발광 다이오드(LD)가 발광하게 된다. 이러한 원리를 이용하여 발광 다이오드(LD)의 발광을 제어함으로써, 상기 발광 다이오드(LD)를 화소를 비롯한 다양한 발광 장치의 광원으로 이용할 수 있다.
제2 도전성 반도체층(13)은 활성층(12) 상에 배치되며, 제1 도전성 반도체층(11)과 상이한 타입의 반도체층을 포함할 수 있다. 일 예로, 제2 도전성 반도체층(13)은 적어도 하나의 p형 반도체층을 포함할 수 있다. 예를 들어, 제2 도전성 반도체층(13)은 InAlGaN, GaN, AlGaN, InGaN, AlN, InN 중 적어도 하나의 반도체 재료를 포함하며, Mg 등과 같은 제2 도전성 도펀트가 도핑된 p형 반도체층을 포함할 수 있다. 다만, 제2 도전성 반도체층(13)을 구성하는 물질이 이에 한정되는 것은 아니며, 이 외에도 다양한 물질이 제2 도전성 반도체층(13)을 구성할 수 있다.
실시예에 따라, 발광 다이오드(LD)의 외주면(일 예로, 원 기둥의 외측면)에는 절연성 피막(INF)이 제공될 수 있다. 예를 들어, 절연성 피막(INF)은 적어도 활성층(12)의 외주면을 둘러싸도록 발광 다이오드(LD)의 표면에 형성될 수 있으며, 이외에도 제1 및 제2 도전성 반도체층들(11, 13)의 적어도 일부를 더 둘러쌀 수 있다. 다만, 절연성 피막(INF)은 서로 다른 극성을 가지는 발광 다이오드(LD)의 양 단부는 노출할 수 있다. 예를 들어, 절연성 피막(INF)은 길이(L) 방향 상에서 발광 다이오드(LD)의 양단에 위치한 제1 및 제2 도전성 반도체층들(11, 13) 각각의 일단, 일 예로 원기둥의 두 밑면(상부면 및 하부면)은 커버하지 않고 노출할 수 있다.
실시예에 따라, 절연성 피막(INF)은 SiO2, Si3N4, Al2O3 및 TiO2 중 적어도 하나의 절연 물질을 포함할 수 있으나, 이에 한정되지는 않는다. 즉, 절연성 피막(INF)의 구성 물질이 특별히 한정되지는 않으며, 상기 절연성 피막(INF)은 현재 공지된 다양한 절연 물질로 구성될 수 있다.
일 실시예에서, 발광 다이오드(LD)는 제1 도전성 반도체층(11), 활성층(12) 및 제2 도전성 반도체층(13) 외에도 추가적인 구성 요소를 더 포함할 수 있다. 예를 들면, 발광 다이오드(LD)는 제1 도전성 반도체층(11), 활성층(12) 및/또는 제2 도전성 반도체층(13)의 일단 측에 배치된 하나 이상의 형광체층, 활성층, 반도체층 및/또는 전극층을 추가적으로 포함할 수 있다.
예를 들어, 발광 다이오드(LD)는 도 2a 및 도 2b에 도시된 바와 같이 제2 도전성 반도체층(13)의 일단 측에 배치되는 적어도 하나의 전극층(14)을 더 포함할 수 있다. 또한, 실시예에 따라 발광 다이오드(LD)는 도 3a 및 도 3b에 도시된 바와 같이 제1 도전성 반도체층(11)의 일단 측에 배치되는 적어도 하나의 다른 전극층(15)을 더 포함할 수도 있다.
상기 전극층들(14, 15) 각각은 오믹(Ohmic) 컨택 전극일 수 있으나, 이에 한정되지는 않는다. 또한, 상기 전극층들(14, 15) 각각은 금속 또는 금속 산화물을 포함할 수 있으며, 일 예로, Cr, Ti, Al, Au, Ni, ITO, IZO, ITZO 및 이들의 산화물 또는 합금 등을 단독 또는 혼합하여 사용할 수 있으나, 이에 한정되지 않는다. 또한, 실시예에 따라, 상기 전극층들(14, 15)은 실질적으로 투명 또는 반투명할 수 있다. 이에 따라, 발광 다이오드(LD)에서 생성되는 빛이 전극층들(14, 15)을 투과하여 발광 다이오드(LD)의 외부로 방출될 수 있다.
실시예에 따라, 절연성 피막(INF)은 상기 전극층들(14, 15)의 외주면을 감싸거나, 또는 감싸지 않을 수 있다. 즉, 절연성 피막(INF)은 상기 전극층들(14, 15)의 표면에 선택적으로 형성될 수 있다. 또한, 절연성 피막(INF)은 서로 다른 극성을 가지는 발광 다이오드(LD)의 양단을 노출하도록 형성되며, 일 예로 전극층들(14, 15)의 적어도 일 영역을 노출할 수 있다. 또는, 또 다른 실시예에서는, 절연성 피막(INF)이 제공되지 않을 수도 있다.
발광 다이오드(LD)의 표면, 특히 활성층(12)의 표면에 절연성 피막(INF)이 제공되면, 상기 활성층(12)이 도시되지 않은 적어도 하나의 전극(일 예로, 상기 발광 다이오드(LD)의 양단에 연결되는 전극들 중 적어도 하나의 전극) 등과 단락되는 것을 방지할 수 있다. 이에 따라, 발광 다이오드(LD)의 전기적 안정성을 확보할 수 있다.
또한, 발광 다이오드(LD)의 표면에 절연성 피막(INF)을 형성함에 의해 상기 발광 다이오드(LD)의 표면 결함을 최소화하여 수명 및 효율을 향상시킬 수 있다. 또한, 각각의 발광 다이오드(LD)에 절연성 피막(INF)이 형성되면, 다수의 발광 다이오드들(LD)이 서로 밀접하여 배치되어 있는 경우에도 상기 발광 다이오드들(LD)의 사이에서 원치 않는 단락이 발생하는 것을 방지할 수 있다.
또한, 본 발명의 일 실시예에서, 발광 다이오드(LD)는 추가적인 표면 처리 과정을 거쳐 제조될 수 있다. 예를 들어, 다수의 발광 다이오드들(LD)을 유동성의 용액에 혼합하여 각각의 단위 발광 영역(일 예로, 각각의 화소 영역)에 공급할 때, 상기 발광 다이오드들(LD)이 용액 내에 불균일하게 응집하지 않고 균일하게 분산될 수 있도록 발광 다이오드(LD)를 표면 처리(일 예로, 코팅)할 수 있다.
상술한 발광 다이오드(LD)를 포함한 발광 장치는, 표시 장치를 비롯한 다양한 종류의 장치에서 광원으로 이용될 수 있다. 예를 들어, 발광 표시 패널의 각 화소 영역에 적어도 하나의 발광 다이오드(LD)를 배치하고, 이를 통해 각 화소의 발광 유닛을 구성할 수 있다. 다만, 본 발명에서 발광 다이오드(LD)의 적용 분야가 표시 장치에 한정되지는 않는다. 예컨대, 발광 다이오드(LD)는 조명 장치 등과 같이 광원을 필요로 하는 다른 종류의 장치에도 이용될 수 있다.
도 4는 본 발명의 일 실시예에 의한 발광 장치를 나타내는 평면도이다. 실시예에 따라, 도 4에서는 제1 및 제2 전원선들(PL1, PL2)을 포함하거나, 또는 상기 제1 및 제2 전원선들(PL1, PL2)에 직접적으로 연결되는 발광 장치를 도시하였다. 다만, 본 발명에 의한 발광 장치가 도 4에 도시된 실시예에 한정되지는 않는다. 예를 들어, 본 발명의 다른 실시예에서는 발광 장치가 적어도 하나의 다른 회로 소자(일 예로, 화소 회로)나 중간의 연결 배선 등을 경유하여 제1 및/또는 제2 전원선들(PL1, PL2)에 연결될 수도 있다.
도 4를 참조하면, 본 발명의 일 실시예에 의한 발광 장치는, 제1 전극(ELT1) 및 제2 전극(ELT2)과, 상기 제1 및 제2 전극들(ELT1, ELT2)의 사이에 배치된 다수의 발광 다이오드들(LD)과, 상기 발광 다이오드들(LD)을 제1 및 제2 전극들(ELT1, ELT2)의 사이에 전기적으로 연결하는 제1 및 제2 컨택 전극들(CNE1, CNE2)을 포함할 수 있다. 다만, 본 발명에 의한 발광 장치가 도 4에 도시된 실시예에 한정되지는 않는다. 예를 들어, 각각의 발광 장치는, 단일의 발광 다이오드(LD)만을 포함할 수도 있다.
또한, 상기 발광 장치는, 제1 전극(ELT1)을 제1 전원선(PL1)에 연결하는 제1 연결 전극(CNL1)과, 제2 전극(ELT2)을 제2 전원선(PL2)에 연결하는 제2 연결 전극(CNL2)을 더 포함할 수 있다. 실시예에 따라, 제1 및 제2 연결 전극들(CNL1, CNL2)은 각각 제1 및 제2 전극들(ELT1, ELT2)에 일체로 연결되거나, 또는 적어도 하나의 컨택홀 등을 경유하여 상기 제1 및 제2 전극들(ELT1, ELT2)에 전기적으로 연결될 수 있다. 제1 및 제2 연결 전극들(CNL1, CNL2)이 각각 제1 및 제2 전극들(ELT1, ELT2)에 일체로 연결되는 경우, 상기 제1 및 제2 연결 전극들(CNL1, CNL2)을 각각 제1 및 제2 전극들(ELT1, ELT2)의 일 영역으로 간주할 수도 있다.
제1 전극(ELT) 및 제2 전극(ELT2)은 서로 이격되어 배치되며, 적어도 일 영역이 서로 마주하도록 배치될 수 있다. 일 예로, 제1 및 제2 전극들(ELT1, ELT2)은 발광 장치의 베이스 부재가 되는 기판 상의 동일한 층 및/또는 높이에 소정 간격만큼 이격되어 나란히 배치될 수 있다. 다만, 본 발명이 이에 한정되지는 않는다. 예를 들어, 제1 및 제2 전극들(ELT1, ELT2)의 형상 및/또는 상호 배치 관계 등은 다양하게 변경될 수 있다.
실시예에 따라, 제1 전극(ELT1)은 제1 연결 전극(CNL1)을 통해 제1 전원선(PL1)에 연결될 수 있다. 실시예에 따라, 제1 전극(ELT1) 및 제1 연결 전극(CNL1)은 서로 다른 방향을 따라 연장될 수 있다. 예를 들어, 제1 연결 전극(CNL1)이 제1 방향(DR1)(일 예로, 가로 방향)을 따라 연장된다고 할 때, 제1 전극(ELT1)은 상기 제1 방향(DR1)과 교차하는 제2 방향(DR2)(일 예로, 세로 방향)을 따라 연장될 수 있다.
일 실시예에서, 제1 전극(ELT1) 및 제1 연결 전극(CNL1)은 서로 일체로 연결될 수 있다. 예를 들어, 제1 전극(ELT1)은 제1 연결 전극(CNL1)으로부터 적어도 한 갈래로 분기되어 형성될 수 있다. 다만, 본 발명이 이에 한정되지는 않는다. 예를 들어, 다른 실시예에서는 제1 전극(ELT1) 및 제1 연결 전극(CNL1)이 개별적으로 형성되어, 적어도 하나의 컨택홀 또는 비아홀 등을 통해 서로 전기적으로 연결될 수도 있다.
또한, 일 실시예에서, 제1 전극(ELT1) 및/또는 제1 연결 전극(CNL1)은 제1 전원선(PL1)과 일체로 연결될 수 있다. 또는, 다른 실시예에서, 제1 전극(ELT1) 및/또는 제1 연결 전극(CNL1)은 상기 제1 전원선(PL1)과는 개별적으로 형성되어 적어도 하나의 컨택홀 및/또는 적어도 하나의 회로 소자를 경유하여 상기 제1 전원선(PL1)에 전기적으로 연결될 수도 있다. 이에 의해, 제1 전원선(PL1)으로 공급되는 제1 전원이 제1 전극(ELT1)으로 전달될 수 있다.
실시예에 따라, 제2 전극(ELT2)은 제2 연결 전극(CNL2)을 통해 제2 전원선(PL2)에 연결될 수 있다. 실시예에 따라, 제2 전극(ELT2) 및 제2 연결 전극(CNL2)은 서로 다른 방향을 따라 연장될 수 있다. 일 예로, 제2 연결 전극(CNL2)이 제1 방향(DR1)을 따라 연장된다고 할 때, 제2 전극(ELT2)은 상기 제1 방향(DR1)과 교차하는 제2 방향(DR2)을 따라 연장될 수 있다.
일 실시예에서, 제2 전극(ELT2) 및 제2 연결 전극(CNL2)은 서로 일체로 연결될 수 있다. 예를 들어, 제2 전극(ELT2)은 제2 연결 전극(CNL2)으로부터 적어도 한 갈래로 분기되어 형성될 수 있다. 다만, 본 발명이 이에 한정되지는 않는다. 예를 들어, 다른 실시예에서는 제2 전극(ELT2) 및 제2 연결 전극(CNL2)이 개별적으로 형성되어, 적어도 하나의 컨택홀 또는 비아홀 등을 통해 서로 전기적으로 연결될 수도 있다.
또한, 일 실시예에서, 제2 전극(ELT2) 및/또는 제2 연결 전극(CNL2)은 제2 전원선(PL2)과 일체로 연결될 수 있다. 또는, 다른 실시예에서, 제2 전극(ELT2) 및/또는 제2 연결 전극(CNL2)은 상기 제2 전원선(PL2)과는 개별적으로 형성되어 적어도 하나의 컨택홀 및/또는 적어도 하나의 회로 소자를 경유하여 상기 제2 전원선(PL2)에 전기적으로 연결될 수도 있다. 이에 의해, 제2 전원선(PL2)으로 공급되는 제2 전원이 제2 전극(ELT2)으로 전달될 수 있다.
실시예에 따라, 제1 전원과 제2 전원은 서로 다른 전위를 가질 수 있다. 일 예로, 제1 전원과 제2 전원 사이의 전위 차는, 발광 다이오드들(LD)의 문턱전압 이상일 수 있다. 또한, 실시예에 따라, 제1 전원과 제2 전원은, 제1 및 제2 전극들(ELT1, ELT2)의 사이에 적어도 하나의 발광 다이오드(LD)가 순방향으로 연결될 수 있도록 하는 전위를 가질 수 있다. 즉, 제1 전원과 제2 전원 사이의 전압은, 발광 장치에 포함된 적어도 하나의 발광 다이오드(LD)가 발광할 수 있도록 하는 값을 가질 수 있다.
실시예에 따라, 발광 다이오드들(LD)은 제1 전극(ELT1)과 제2 전극(ELT2)의 사이에 병렬로 연결될 수 있다. 일 예로, 발광 다이오드들(LD)은 제1 전극(ELT1)과 제2 전극(ELT2)이 마주하도록 배치된 영역에서, 상기 제1 및 제2 전극들(ELT1, ELT2)의 사이에 제1 방향(DR1), 일 예로 가로 방향으로 배열될 수 있다.
실시예에 따라, 발광 다이오드들(LD)의 일 단부는 제1 컨택 전극(CNE1)을 통해 제1 전극(ELT1)에 전기적으로 연결되고, 상기 발광 다이오드들(LD)의 다른 단부는 제2 컨택 전극(CNE2)을 통해 제2 전극(ELT2)에 전기적으로 연결될 수 있다. 다만, 본 발명이 이에 한정되지는 않는다. 예를 들어, 본 발명의 다른 실시예에서는, 발광 다이오드들(LD)의 양 단부 중 적어도 하나가, 제1 또는 제2 전극(ELT1, ELT2)에 직접적으로 접촉되어 상기 제1 또는 제2 전극(ELT1, ELT2)에 전기적으로 연결될 수도 있다.
한편, 도 4에서는 발광 다이오드들(LD)이 어느 하나의 방향, 일 예로, 제1 방향(DR1)을 따라 균일하게 배열된 것으로 도시하였으나, 본 발명이 이에 한정되지는 않는다. 예를 들어, 발광 다이오드들(LD) 중 적어도 하나는, 제1 및 제2 전극들(ELT1, ELT2)의 사이에 사선 방향 등으로 배열될 수도 있다.
실시예에 따라, 각각의 발광 다이오드(LD)는 무기 결정 구조의 재료를 이용한 초소형의, 일 예로 나노 또는 마이크로 스케일 정도로 작은 크기의, 발광 다이오드일 수 있다. 예를 들어, 각각의 발광 다이오드(LD)는 도 1a 내지 도 3b에 도시된 바와 같은, 나노 스케일 내지 마이크로 스케일 범위의 직경(D) 및/또는 길이(L)를 가지는 초소형의 막대형 발광 다이오드일 수 있다.
실시예에 따라, 발광 다이오드들(LD)은 소정의 용액 내에 분산된 형태로 준비되어, 잉크젯 방식 등을 이용해 발광 장치 내에 규정된 소정의 발광 영역에 공급될 수 있다. 일 예로, 발광 다이오드들(LD)은 휘발성 용매에 섞여 각각의 발광 영역에 투하될 수 있다. 이때, 제1 및 제2 전원선들(PL1, PL2)을 통해 제1 및 제2 전극들(ELT1, ELT2)에 각각 제1 전원 및 제2 전원을 인가하게 되면, 상기 제1 및 제2 전극들(ELT1, ELT2)의 사이에 전계가 형성되면서, 상기 제1 및 제2 전극들(ELT1, ELT2)의 사이에 발광 다이오드들(LD)이 자가 정렬하게 된다. 발광 다이오드들(LD)이 정렬된 이후에는 용매를 휘발시키거나 이 외의 다른 방식으로 제거하여 제1 및 제2 전극들(ELT1, ELT2)의 사이에 발광 다이오드들(LD)을 안정적으로 배열할 수 있다. 또한, 발광 다이오드들(LD)의 양 단부에 각각 제1 컨택 전극(CNE1) 및 제2 컨택 전극(CNE2)을 형성함으로써, 상기 발광 다이오드들(LD)을 제1 및 제2 전극들(ELT1, ELT2)의 사이에 보다 안정적으로 연결할 수 있다.
실시예에 따라, 제1 컨택 전극(CNE1)은 발광 다이오드들(LD)의 일 단부 및 제1 전극(ELT1)의 적어도 일 영역을 커버하도록 형성되어, 상기 발광 다이오드들(LD)의 일 단부와 제1 전극(ELT1)을 물리적 및/또는 전기적으로 연결한다. 유사하게, 제2 컨택 전극(CNE2)은 발광 다이오드들(LD)의 다른 단부 및 제2 전극(ELT2)의 적어도 일 영역을 커버하도록 형성되어, 상기 발광 다이오드들(LD)의 다른 단부와 제2 전극(ELT2)을 물리적 및/또는 전기적으로 연결한다.
제1 전원선(PL1) 및 제1 전극(ELT1) 등을 경유하여 발광 다이오드들(LD)의 일 단부에 제1 전원이 인가되고, 제2 전원선(PL1) 및 제2 전극(ELT2) 등을 경유하여 발광 다이오드들(LD)의 다른 단부에 제2 전원이 인가되면, 제1 및 제2 전극들(ELT1, ELT2)의 사이에 순 방향으로 연결되는 적어도 하나의 발광 다이오드(LD)가 발광하게 된다. 이에 따라, 발광 장치가 빛을 방출할 수 있게 된다.
도 5 및 도 6은 도 4의 Ⅰ~Ⅰ'선에 따른 발광 장치의 구조를 나타내는 단면도이다. 구체적으로, 도 5 및 도 6은 각각 도 4의 Ⅰ~Ⅰ'선에 따른 단면의 일 실시예를 나타내는 것으로서, 제1 격벽(PW1) 및 제2 격벽(PW2)의 형상과 관련하여 서로 다른 실시예들을 나타낸다.
도 5 및 도 6을 도 4와 함께 참조하면, 본 발명의 일 실시예에 의한 발광 장치는, 기판(SUB)과, 상기 기판(SUB) 상에 배치된 제1 전극(ELT1) 및 제2 전극(ELT2)과, 상기 제1 및 제2 전극들(ELT1, ELT2)의 사이에 연결된 적어도 하나의 발광 다이오드(LD)와, 상기 발광 다이오드(LD)의 양단을 각각 제1 전극(ELT1) 및 제2 전극(ELT2)에 연결하는 제1 컨택 전극(CNE1) 및 제2 컨택 전극(CNE2)을 포함할 수 있다. 또한, 상기 발광 장치는, 기판(SUB)과 제1 전극(ELT1)의 일 영역 사이에 배치된 제1 격벽(PW1)과, 기판(SUB)과 제2 전극(ELT2)의 일 영역 사이에 배치된 제2 격벽(PW2)과, 제1 전극(ELT1)과 제1 컨택 전극(CNE1)의 일 영역 사이에 배치된 적어도 한 층의 제1 절연막(INS1)과, 제2 전극(ELT2)과 제2 컨택 전극(CNE2)의 일 영역 사이에 배치된 적어도 한 층의 제2 절연막(INS2)과, 기판(SUB)과 발광 다이오드(LD)의 사이에 배치된 제3 절연막(INS3)과, 발광 다이오드(LD)의 상부에 배치된 절연 패턴(INP)과, 상기 절연 패턴(INP)의 상부에 배치된 도전 패턴(CNP) 중 적어도 하나를 더 포함할 수 있다.
실시예에 따라, 기판(SUB)은 발광 장치의 베이스 부재를 구성하며, 경성 기판 또는 가요성 기판일 수 있다. 일 예로, 기판(SUB)은 유리 또는 강화 유리로 구성된 경성 기판, 또는 플라스틱 또는 금속 재질의 박막 필름으로 구성된 가요성 기판일 수 있다. 또한, 기판(SUB)은 투명 기판일 수 있으나 이에 한정되지는 않는다. 일 예로, 기판(SUB)은 반투명 기판, 불투명 기판, 또는 반사성 기판일 수도 있다. 즉, 기판(SUB)의 재료나 물성이 특별히 한정되지는 않는다.
기판(SUB) 상에는 제1 격벽(PW1) 및 제2 격벽(PW2)이 배치될 수 있다. 또한, 실시예에 따라서는 기판(SUB)의 상부에 도시되지 않은 적어도 한 층의 버퍼층 등이 더 배치 및/또는 형성될 수 있다. 이 경우, 제1 및 제2 격벽들(PW1, PW2)은 상기 버퍼층 상에 배치될 수 있다.
제1 및 제2 격벽들(PW1, PW2)은 기판(SUB)의 일면 상에 서로 이격되도록 배치될 수 있다. 일 예로, 제1 및 제2 격벽들(PW1, PW2)은 기판(SUB)의 동일한 층 상에 일정 간격만큼 이격되어 배치될 수 있다. 일 실시예에서, 제1 및 제2 격벽들(PW1, PW2)은 실질적으로 서로 동일한 구조, 형상 및/또는 높이를 가질 수 있으나, 이에 한정되지는 않는다.
실시예에 따라, 제1 및 제2 격벽들(PW1, PW2) 각각은 무기 재료 및/또는 유기 재료를 포함하는 절연 물질을 포함할 수 있다. 또한, 제1 및 제2 격벽들(PW1, PW2) 각각은 단일층 또는 다중층으로 구성될 수 있다. 즉, 제1 및 제2 격벽들(PW1, PW2)의 구성 물질 및/또는 적층 구조가 특별히 한정되지는 않으며, 이는 다양하게 변경될 수 있다.
또한, 제1 및 제2 격벽들(PW1, PW2) 각각은 다양한 형상을 가질 수 있다. 일 예로, 제1 및 제2 격벽들(PW1, PW2) 각각은 도 5에 도시된 바와 같이 상부로 갈수록 폭이 좁아지는 사다리꼴의 단면을 가질 수 있다. 또는, 다른 실시예에서, 제1 및 제2 격벽들(PW1, PW2) 각각은 도 6에 도시된 바와 같이 상부로 갈수록 폭이 좁아지는 반원 또는 반타원의 단면을 가질 수도 있다. 즉, 제1 및 제2 격벽들(PW1, PW2)의 형상이 특별히 한정되지는 않으며, 이는 다양하게 변경될 수 있다. 또한, 실시예에 따라서는 제1 및 제2 격벽들(PW1, PW2) 중 적어도 하나가 생략되거나, 또는 그 위치가 변경될 수도 있다.
제1 격벽(PW1)의 상부에는 제1 전극(ELT1), 제1 절연막(INS1) 및 제1 컨택 전극(CNE1)이 순차적으로 배치되고, 제2 격벽(PW1)의 상부에는 제2 전극(ELT2), 제2 절연막(INS2) 및 제2 컨택 전극(CNE2)이 순차적으로 배치될 수 있다. 제1 및 제2 격벽들(PW1, PW2)의 상부에 배치되는 적어도 하나의 전극 및/또는 절연막 등은 상기 제1 및 제2 격벽들(PW1, PW2)의 형상에 상응하는 형상을 가질 수 있으나, 이에 한정되지는 않는다.
또한, 제1 및 제2 전극들(ELT1, ELT2) 사이의 기판(SUB) 상에는, 제3 절연막(INS3), 발광 다이오드(LD), 절연 패턴(INP) 및 도전 패턴(CNP)이 순차적으로 배치될 수 있다. 실시예에 따라, 발광 다이오드(LD)의 적어도 일 영역, 일 예로 각각 제1 단부(EP1) 및 제2 단부(EP2)는 제1 및 제2 격벽들(PW1, PW2)에 의해 형성된 제1 및 제2 전극들(ELT1, ELT2)의 경사면(또는, 곡면)을 마주하도록 배치될 수 있다.
제1 전극(ELT1) 및 제2 전극(ELT2)은, 제1 및 제2 격벽들(PW1, PW2)이 배치된 기판(SUB) 상에 서로 이격되어 배치될 수 있다. 예를 들어, 제1 전극(ELT1)은 제1 격벽(PW1)을 커버하도록 상기 제1 격벽(PW1) 상에 배치되고, 제2 전극(ELT2)은 제2 격벽(PW2)을 커버하도록 상기 제2 격벽(PW2) 상에 배치될 수 있다. 실시예에 따라, 제1 및 제2 전극들(ELT1, ELT2) 중 어느 하나는 애노드 전극일 수 있으며, 나머지 하나는 캐소드 전극일 수 있다.
이러한 제1 및 제2 전극들(ELT1, ELT2)은 각각 제1 및 제2 격벽들(PW1, PW2)의 형상에 대응되는 형상을 가질 수 있다. 일 예로, 제1 전극(ELT1)은 제1 격벽(PW1)의 형상에 대응되는 경사면 또는 곡면을 가질 수 있고, 제2 전극(ELT2)은 제2 격벽(PW2)의 형상에 대응되는 경사면 또는 곡면을 가질 수 있다. 한편, 실시예에 따라서는 발광 장치에 제1 및 제2 격벽들(PW1, PW2)이 제공되지 않을 수도 있다. 이 경우, 제1 및 제2 전극들(ELT1, ELT2)은 실질적으로 평탄하게 구현될 수 있다.
실시예에 따라, 제1 및 제2 전극들(ELT1, ELT2)은 기판(SUB) 상의 동일한 층에 배치될 수 있으며, 실질적으로 동일한 높이를 가질 수 있다. 이와 같이, 제1 및 제2 전극들(ELT1, ELT2)이 동일한 높이를 가지면, 상기 제1 및 제2 전극들(ELT1, ELT2)의 사이에 발광 다이오드들(LD)을 보다 안정적으로 연결할 수 있다. 다만, 본 발명이 이에 한정되지는 않으며, 제1 및 제2 전극들(ELT1, ELT2)의 형상, 구조 및/또는 상호 배치 관계는 다양하게 변경될 수 있다.
실시예에 따라, 제1 및 제2 전극들(ELT1, ELT2) 각각은 단일층 또는 다중층으로 구성될 수 있으며, 그 적층 구조가 특별히 한정되지는 않는다. 일 예로, 제1 전극(ELT1)은 제1 반사 전극(REF1)과 제1 도전성 캡핑층(CPL1)을 포함한 다중층으로 구성되고, 제2 전극(ELT2)은 제2 반사 전극(REF2)과 제2 도전성 캡핑층(CPL2)을 포함한 다중층으로 구성될 수 있다.
제1 및 제2 반사 전극들(REF1, REF2) 각각은, 일정한 반사율을 갖는 도전 물질로 구성될 수 있다. 일 예로, 제1 및 제2 반사 전극들(REF1, REF2)은 Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, 이들의 합금과 같은 금속 중 적어도 하나를 포함할 수 있으나, 이에 한정되지는 않는다. 즉, 제1 및 제2 반사 전극들(REF1, REF2) 각각은 다양한 반사성 도전 물질로 구성될 수 있다.
이러한 제1 및 제2 반사 전극들(REF1, REF2)은 발광 다이오드들(LD) 각각의 양단, 즉 제1 및 제2 단부들(EP1, EP2)에서 방출되는 광을 화상이 표시되는 방향(일 예로, 정면 방향)으로 진행되게 할 수 있다. 특히, 제1 및 제2 반사 전극들(REF1, REF2)이 각각 제1 및 제2 격벽들(PW1, PW2)의 형상에 대응되는 경사 또는 굴곡을 가지게 되면, 발광 다이오드들(LD) 각각의 제1 및 제2 단부들(EP1, EP2)에서 출사된 광은 제1 및 제2 반사 전극들(REF1, REF2)에 의해 반사되어 더욱 정면 방향으로 진행될 수 있다. 이에 따라, 발광 다이오드들(LD)에서 출사되는 광의 효율을 향상시킬 수 있다.
또한, 본 발명의 일 실시예에서, 제1 및 제2 격벽들(PW1, PW2)도 반사 부재로 기능할 수 있다. 일 예로, 제1 및 제2 격벽들(PW1, PW2)은 그 상부에 제공된 제1 및 제2 반사 전극들(REF1, REF2)과 함께 발광 다이오드들(LD) 각각에서 출사된 광의 효율을 향상시키는 반사 부재로 기능할 수 있다.
제1 및 제2 반사 전극들(REF1, REF2)의 상부에는, 제1 및 제2 도전성 캡핑층들(CPL1, CPL2)이 선택적으로 배치될 수 있다. 일 예로, 제1 도전성 캡핑층(CPL1)은 제1 반사 전극(REF1)을 커버하도록 상기 제1 반사 전극(REF1) 상에 배치되고, 제2 도전성 캡핑층(CPL2)은 제2 반사 전극(REF2)을 커버하도록 상기 제2 반사 전극(REF2) 상에 배치될 수 있다.
제1 및 제2 도전성 캡핑층들(CPL1, CPL2) 각각은, 발광 다이오드(LD)에서 방출되는 광의 손실을 최소화하기 위하여 ITO나 IZO를 비롯한 투명 도전성 재료로 이루어질 수 있다. 다만, 본 발명이 이에 한정되지는 않으며, 이외에도 제1 및 제2 도전성 캡핑층들(CPL1, CPL2)의 구성 물질은 다양하게 변경될 수 있다.
이러한 제1 및 제2 도전성 캡핑층들(CPL1, CPL2)은 발광 장치의 제조 공정 시 발생하는 불량 등으로 인해 제1 및 제2 반사 전극들(REF1, REF2)이 손상되는 것을 방지하며, 상기 제1 및 제2 반사 전극들(REF1, REF2)과 기판(SUB) 사이의 접착력을 강화할 수 있다. 다만, 실시예에 따라서는 제1 및 제2 도전성 캡핑층들(CPL1, CPL2) 중 적어도 하나가 생략될 수도 있다.
제1 및 제2 전극들(ELT1, ELT2)이 배치된 기판(SUB) 상에는 제1 절연막(INS1)의 하부층을 구성하는 제1_1 절연막(INS1_1)과, 제2 절연막(INS2)의 하부층을 구성하는 제2_1 절연막(INS2_1)과, 제1 및 제2 전극들(ELT1, ELT2)의 사이에 위치되는 제3 절연막(INS3)이 배치될 수 있다.
실시예에 따라, 제1_1 절연막(INS1_1)은 제1 전극(ELT1)과 제1 컨택 전극(CNE1)의 사이에 배치될 수 있다. 일 예로, 제1_1 절연막(INS1_1)은 제1 도전성 캡핑층(CPL1)과 제1 컨택 전극(CNE1)의 일 영역 사이에 개재될 수 있다. 이러한 제1_1 절연막(INS1_1)은 제1 전극(ELT1)의 일 영역 상부를 노출하면서 상기 제1 전극(ELT1)의 나머지 영역 상에 배치될 수 있다. 일 예로, 제1_1 절연막(INS1_1)은 발광 다이오드(LD)의 제1 단부(EP1)에 인접한 제1 도전성 캡핑층(CPL1)의 일 영역을 노출하고, 상기 제1 도전성 캡핑층(CPL1)의 나머지 영역을 커버할 수 있다.
실시예에 따라, 제2_1 절연막(INS2_1)은 제2 전극(ELT2)과 제2 컨택 전극(CNE2)의 사이에 배치될 수 있다. 일 예로, 제2_1 절연막(INS2_1)은 제2 도전성 캡핑층(CPL2)과 제2 컨택 전극(CNE2)의 일 영역 사이에 개재될 수 있다. 이러한 제2_1 절연막(INS2_1)은 제2 전극(ELT2)의 일 영역 상부를 노출하면서 상기 제2 전극(ELT2)의 나머지 영역 상에 배치될 수 있다. 일 예로, 제2_1 절연막(INS2_1)은 발광 다이오드(LD)의 제2 단부(EP2)에 인접한 제2 도전성 캡핑층(CPL2)의 일 영역을 노출하고, 상기 제2 도전성 캡핑층(CPL2)의 나머지 영역을 커버할 수 있다.
실시예에 따라, 제3 절연막(INS3)은 평면 상에서 보았을 때 (일 예로, 기판의 상부에서 보았을 때) 제1 전극(ELT1)과 제2 전극(ELT2)의 사이에 배치되며, 발광 장치의 두께 방향(일 예로, 기판(SUB)의 두께 방향) 상에서 기판(SUB)과 발광 다이오드(OLED)의 사이에 배치될 수 있다. 이러한 제3 절연막(INS3)의 상부에는 발광 다이오드(LD)가 배치될 수 있다. 즉, 제3 절연막(INS3)은 발광 다이오드(LD)의 하부에 배치된 절연막일 수 있다. 이러한 제3 절연막(INS3)은 발광 다이오드(LD)를 안정적으로 지지하며, 상기 발광 다이오드(LD)의 이탈을 방지할 수 있다.
실시예에 따라, 제1_1 절연막(INS1_1), 제2_1 절연막(INS2_1) 및/또는 제3 절연막(INS3)은 서로 동시에 형성될 수 있다. 일 예로, 제1_1 절연막(INS1_1), 제2_1 절연막(INS2_1) 및/또는 제3 절연막(INS3)은 SiNx를 비롯한 다양한 절연 물질 중 동일한 절연 물질을 포함할 수 있으며, 동일한 공정 단계에서 동시에 형성될 수 있다. 다만, 본 발명이 이에 한정되지는 않는다. 예를 들어, 다른 실시예에서는, 제1_1 절연막(INS1_1), 제2_1 절연막(INS2_1) 및/또는 제3 절연막(INS3)은 적어도 하나의 서로 다른 절연 물질을 포함하거나, 서로 다른 공정 단계에서 형성될 수도 있다. 또한, 제1_1 절연막(INS1_1), 제2_1 절연막(INS2_1) 및 제3 절연막(INS3) 각각은 단일층 또는 다중층으로 구성될 수 있으며, 그 구조가 특별히 한정되지는 않는다. 즉, 본 발명에서 제1_1 절연막(INS1_1), 제2_1 절연막(INS2_1) 및/또는 제3 절연막(INS3)의 구조, 구성 물질 및/또는 형성 순서 등이 특별히 한정되지는 않는다.
실시예에 따라, 제1_1 절연막(INS1_1), 제2_1 절연막(INS2_1) 및 제3 절연막(INS3)이 배치된 기판(SUB) 상에는 적어도 하나의 발광 다이오드(LD)가 배치될 수 있다. 발광 다이오드(LD)는 제3 절연막(INS3)의 상부에 배치될 수 있으며, 기판(SUB)의 상부에서 보았을 때 제1 전극(ELT1)과 제2 전극(ELT2)의 사이에 배치될 수 있다. 이러한 발광 다이오드(LD)는 길이 방향의 양측에 각각 제1 단부(EP1) 및 제2 단부(EP2)를 가질 수 있다.
실시예에 따라, 발광 다이오드(LD)는 기판(SUB)의 일면 상에 수평으로 배치될 수 있다. 또한, 상기 발광 다이오드(LD)는 제1 전극(ELT1)과 제2 전극(ELT2)의 사이에 가로 방향으로 배열될 수 있다. 일 예로, 발광 다이오드(LD)의 제1 단부(EP1)는 제1 전극(ELT1)을 향해 배치되고, 상기 발광 다이오드(LD)의 제2 단부(EP2)는 제2 전극(ELT2)을 향해 배치될 수 있다.
발광 다이오드(LD)가 배치된 기판(SUB) 상에는 제1 절연막(INS1)의 상부층을 구성하는 제1_2 절연막(INS1_2)과, 제2 절연막(INS2)의 상부층을 구성하는 제2_2 절연막(INS2_2)과, 발광 다이오드(LD)의 상부에 위치되는 절연 패턴(INP)이 배치될 수 있다.
실시예에 따라, 제1_2 절연막(INS1_2)은 제1_1 절연막(INS1_1)과 함께 제1 전극(ELT1)과 제1 컨택 전극(CNE1)의 사이에 배치될 수 있다. 일 예로, 제1_2 절연막(INS1_2)은 제1_1 절연막(INS1_1) 상에 배치될 수 있다. 이러한 제1_2 절연막(INS1_2)은, 제1_1 절연막(INS1_1)과 함께, 제1 전극(ELT1)의 일 영역 상부를 노출하면서 상기 제1 전극(ELT1)의 나머지 영역 상에 배치될 수 있다. 일 예로, 제1_2 절연막(INS1_2)은 발광 다이오드(LD)의 제1 단부(EP1)에 인접한 제1 도전성 캡핑층(CPL1)의 일 영역을 노출하고, 상기 제1 도전성 캡핑층(CPL1)의 나머지 영역을 커버할 수 있다.
실시예에 따라, 제2_2 절연막(INS2_2)은, 제2_1 절연막(INS2_1)과 함께 제2 전극(ELT2)과 제2 컨택 전극(CNE2)의 사이에 배치될 수 있다. 일 예로, 제2_2 절연막(INS2_2)은 제2_1 절연막(INS2_1) 상에 배치될 수 있다. 이러한 제2_2 절연막(INS2_2)은, 제2_1 절연막(INS2_1)과 함께, 제2 전극(ELT2)의 일 영역 상부를 노출하면서 상기 제2 전극(ELT2)의 나머지 영역 상에 배치될 수 있다. 일 예로, 제2_2 절연막(INS2_2)은 발광 다이오드(LD)의 제2 단부(EP2)에 인접한 제2 도전성 캡핑층(CPL2)의 일 영역을 노출하고, 상기 제2 도전성 캡핑층(CPL2)의 나머지 영역을 커버할 수 있다.
실시예에 따라, 절연 패턴(INP)은 발광 다이오드(LD)의 상부를 커버하도록 배치되되, 상기 발광 다이오드(LD)의 양측에 위치한 제1 및 제2 단부들(EP1, EP2)은 노출하도록 형성될 수 있다. 일 예로, 절연 패턴(INP)은 기판(SUB)의 상부에서 보았을 때 발광 다이오드(LD)의 제1 및 제2 단부들(EP1, EP2)를 완전히 커버하도록 형성되되, 기판(SUB)의 측면 또는 단면 방향에서 보았을 때 상기 발광 다이오드(LD)의 제1 및 제2 단부들(EP1, EP2) 각각의 적어도 일 영역을 커버하지 않을 수 있다.
일 실시예에서, 절연 패턴(INP)은 제1 및 제2 컨택 전극들(CNE1, CNE2)을 형성하기 위한 도전막의 형성 공정에서, 상기 도전막이 발광 다이오드(LD)의 제1 및 제2 단부들(EP1, EP2) 상에서 절연 패턴(INP)에 의해 단선될 수 있도록 (일 예로, 끊어지도록) 형성될 수 있다. 예를 들어, 절연 패턴(INP)은, 발광 다이오드(LD)의 제1 및 제2 단부들(EP1, EP2)의 상단 영역에서 도전막의 단선(disconnection)을 유발할 수 있는 형상 및/또는 크기를 가질 수 있다. 절연 패턴(INP)의 실시예적 구조 및/또는 형상 등에 대한 보다 상세한 설명은 후술하기로 한다.
실시예에 따라, 제1_2 절연막(INS1_2), 제2_2 절연막(INS2_2) 및/또는 절연 패턴(INP)은 서로 동시에 형성될 수 있다. 일 예로, 제1_2 절연막(INS1_2), 제2_2 절연막(INS2_2) 및/또는 절연 패턴(INP)은 SiNx를 비롯한 다양한 절연 물질 중 동일한 절연 물질을 포함할 수 있으며, 동일한 공정 단계에서 동시에 형성될 수 있다. 다만, 본 발명이 이에 한정되지는 않는다. 예를 들어, 다른 실시예에서는, 제1_2 절연막(INS1_2), 제2_2 절연막(INS2_2) 및/또는 절연 패턴(INP)은 적어도 하나의 서로 다른 절연 물질을 포함하거나, 서로 다른 공정 단계에서 형성될 수도 있다. 또한, 제1_2 절연막(INS1_2), 제2_2 절연막(INS2_2) 및/또는 절연 패턴(INP)은, 제1_1 절연막(INS1_1), 제2_1 절연막(INS2_1) 및/또는 제3 절연막(INS3)과 동일한 절연 물질을 포함할 수도 있다. 일 예로, 제1_1 절연막(INS1_1), 제2_1 절연막(INS2_1), 제3 절연막(INS3), 제1_2 절연막(INS1_2), 제2_2 절연막(INS2_2) 및 절연 패턴(INP)은 모두 SiNx로 이루어질 수 있다. 다만, 본 발명이 이에 한정되지는 않으며, 상기 절연막들의 구성 물질은 다양하게 변경될 수 있다.
또한, 실시예에 따라, 제1_2 절연막(INS1_2), 제2_2 절연막(INS2_2) 및 절연 패턴(INP) 각각은 단일층 또는 다중층으로 구성될 수 있으며, 그 구조가 특별히 한정되지는 않는다. 즉, 본 발명에서 제1_2 절연막(INS1_2), 제2_2 절연막(INS2_2) 및/또는 절연 패턴(INP)의 구조, 구성 물질 및/또는 형성 순서 등이 특별히 한정되지는 않는다.
추가적으로, 제1 절연막(INS1) 및 제2 절연막(INS2)은 실질적으로 동일 또는 유사한 물질 및/또는 구조를 가질 수 있으며, 동일 공정 또는 방식을 통해 형성될 수 있다. 일 예로, 제1 절연막(INS1) 및 제2 절연막(INS2)의 구성 물질, 적층 구조, 형상, 두께 및 높이 중 적어도 하나는 서로 동일할 수 있다.
한편, 제3 절연막(INS3) 및 절연 패턴(INP) 각각은 제1 및 제2 절연막들(INS1, INS2)의 일부를 형성하는 과정에서, 상기 제1 및 제2 절연막들(INS1, INS2)의 일부와 동시에 형성될 수 있다. 일 예로, 제3 절연막(INS3)은 제1 및 제2 절연막들(INS1, INS2) 각각의 하부층을 구성하는 제1_1 및 제2_1 절연막들(INS1_1, INS2_1)과 실질적으로 동일 또는 유사한 물질 및/또는 구조를 가지며, 상기 제1_1 및 제2_1 절연막들(INS1_1, INS2_1)과 실질적으로 동일 또는 유사한 두께를 가질 수 있다. 이러한 제3 절연막(INS3)은 제1 절연막(INS1) 및 제2 절연막(INS2) 각각의 전체 두께보다 작은 두께를 가질 수 있으며, 일 예로 제1 또는 제2 절연막(INS1, INS2) 두께의 대략 절반에 해당하는 두께를 가질 수 있다.
유사하게, 절연 패턴(INP)은 제1 및 제2 절연막들(INS1, INS2) 각각의 상부층을 구성하는 제1_2 및 제2_2 절연막들(INS1_2, INS2_2)과 실질적으로 동일 또는 유사한 물질 및/또는 구조를 가지며, 상기 제1_2 및 제2_2 절연막들(INS1_2, INS2_2)과 실질적으로 동일 또는 유사한 두께를 가질 수 있다. 이러한 절연 패턴(INP)은 제1 절연막(INS1) 및 제2 절연막(INS2) 각각의 전체 두께보다 작은 두께를 가질 수 있으며, 일 예로 제1 또는 제2 절연막(INS1, INS2) 두께의 대략 절반에 해당하는 두께를 가질 수 있다.
제1 절연막(INS1), 제2 절연막(INS2) 및 절연 패턴(INP)이 배치된 기판(SUB) 상에는 제1 컨택 전극(CNE1), 제2 컨택 전극(CNE2) 및 도전 패턴(CNP)이 배치된다. 다만, 도전 패턴(CNP)은 발광 장치에 선택적으로 포함될 수 있는 것으로서, 실시예에 따라서는 제거될 수도 있다.
제1 컨택 전극(CNE1)은 제1 전극(ELT1) 및 제1 절연막(INS1)의 상부에 배치되며, 상기 제1 절연막(INS1)에 의해 커버되지 않는 제1 전극(ELT1)의 일 영역 상에서 상기 제1 전극(ELT1)에 접촉된다. 이에 의해, 제1 컨택 전극(CNE1)과 제1 전극(ELT1)이 전기적으로 연결된다. 또한, 제1 컨택 전극(CNE1)의 일단은 발광 다이오드(LD)의 제1 단부(EP1)에 접촉되며, 이를 통해 상기 제1 단부(EP1)에 전기적으로 연결된다. 이와 같은 제1 컨택 전극(CNE1)은 발광 다이오드(LD)의 제1 단부(EP1)를 안정적으로 고정하며, 상기 제1 단부(EP1)를 제1 전극(ELT1)에 전기적으로 연결한다.
제2 컨택 전극(CNE2)은 제2 전극(ELT2) 및 제2 절연막(INS2)의 상부에 배치되며, 상기 제2 절연막(INS2)에 의해 커버되지 않는 제2 전극(ELT2)의 일 영역 상에서 상기 제2 전극(ELT2)에 접촉된다. 이에 의해, 제2 컨택 전극(CNE2)과 제2 전극(ELT2)이 전기적으로 연결된다. 또한, 제2 컨택 전극(CNE2)의 일단은 발광 다이오드(LD)의 제2 단부(EP2)에 접촉되며, 이를 통해 상기 제2 단부(EP2)에 전기적으로 연결된다. 이와 같은 제2 컨택 전극(CNE2)은 발광 다이오드(LD)의 제2 단부(EP2)를 안정적으로 고정하며, 상기 제2 단부(EP2)를 제2 전극(ELT2)에 전기적으로 연결한다.
실시예에 따라, 제1 및 제2 컨택 전극들(CNE1, CNE2)은 실질적으로 투명 또는 반투명할 수 있다. 일 예로, 제1 및 제2 컨택 전극들(CNE1, CNE2)은 ITO나 IZO를 비롯한 투명 도전성 물질로 이루어질 수 있으며, 이 외에도 현재 공지된 다양한 종류의 투명 도전성 물질로 이루어질 수 있다. 이에 따라, 발광 다이오드(LD)에서 생성되는 빛이 제1 및 제2 컨택 전극들(CNE1, CNE2)을 투과하여 발광 다이오드(LD)의 외부로 방출될 수 있게 된다.
본 발명의 실시예에서, 제1 및 제2 컨택 전극들(CNE1, CNE2)은 각각 발광 다이오드(LD)의 제1 및 제2 단부들(EP1, EP2)에서, 상기 발광 다이오드(LD)의 양 측면에만 접촉되고, 상기 발광 다이오드(LD)의 상부면 상에는 배치되지 않을 수 있다. 예를 들어, 제1 및 제2 컨택 전극들(CNE1, CNE2) 각각의 일측 끝단은 발광 다이오드(LD)의 상부면 상으로는 연장되지 않고, 절연 패턴(INP)의 측면 하단 영역에 접촉될 수 있다.
또한, 실시예에 따라, 제1 및 제2 컨택 전극들(CNE1, CNE2)은 발광 다이오드(LD)를 사이에 두고 서로 이격되며, 기판(SUB) 상의 서로 동일한 층 및/또는 서로 동일한 높이에 배치될 수 있다. 일 예로, 제1 및 제2 컨택 전극들(CNE1, CNE2)은 발광 다이오드(LD)를 사이에 두고 서로 대칭을 이루는 형상 및/또는 구조를 가질 수 있다.
이러한 제1 및 제2 컨택 전극들(CNE1, CNE2)은 서로 동일한 공정에서 동시에 형성될 수 있으며, 하단 영역에서 (또는, 하단 영역으로 갈수록) 폭이 좁아지는 형상을 가지는 절연 패턴(INP)에 의해 상기 절연 패턴(INP)의 하단 영역 주변에서 끊어지게 된다. 따라서, 발광 다이오드(LD)가, 일 예로 나노 스케일 내지 마이크로 스케일 범위의 작은 길이를 가지는 경우에도, 제1 및 제2 컨택 전극들(CNE1, CNE2)은 상기 발광 다이오드(LD)를 사이에 두고 서로 분리된 상태를 유지하게 된다.
또한, 제1 및 제2 컨택 전극들(CNE1, CNE2)이 발광 다이오드(LD)의 상부면 상에는 배치되지 않기 때문에, 발광 다이오드(LD)의 형성 및/또는 배열 공정이나 절연 패턴(INP)의 형성 공정 등에서 상기 발광 다이오드(LD)의 표면에 형성된 절연성 피막(INF)이 손상되더라도, 상기 절연성 피막(INF)의 손상 부위를 통한 제1 및/또는 제2 컨택 전극들(CNE1, CNE2)과의 의도치 않은 단락, 즉 쇼트 결함을 방지할 수 있게 된다.
이에 따라, 제1 및 제2 컨택 전극들(CNE1, CNE2)을 서로 동일한 공정, 일 예로, 단일의 마스크 공정을 통해 동시에 형성하더라도 상기 제1 및 제2 컨택 전극들(CNE1, CNE2)에 의한 쇼트 결함을 방지하고, 발광 장치의 전기적 안정성을 확보할 수 있게 된다.
이러한 본 발명의 실시예에 의하면, 제1 및 제2 컨택 전극들(CNE1, CNE2)을 동일한 공정에서 동시에 형성할 수 있게 되므로, 발광 장치의 제조에 이용되는 마스크 공정의 수를 저감 또는 최소화할 수 있다. 이에 따라, 제1 전극(ELT1)과 제2 전극(ELT2)의 사이에 발광 다이오드(LD)를 안정적으로 연결하면서도 발광 장치의 제조 공정을 간소화할 수 있다. 이러한 본 발명의 실시예에 의하면, 발광 장치의 제조 비용 및/또는 제조 시간을 줄여 생산성을 높이고, 상기 발광 장치 구조를 간소화할 수 있다.
도전 패턴(CNP)은 절연 패턴(INP) 상에 발광 다이오드(LD)와 중첩되도록 배치되며, 절연 패턴(INP)에 의해 발광 다이오드(LD) 및 제1 및 제2 컨택 전극들(CNE1, CNE2)과 분리될 수 있다. 실시예에 따라, 도전 패턴(CNP)은 제1 및 제2 컨택 전극들(CNE1, CNE2)을 형성하는 공정에서 상기 제1 및 제2 컨택 전극들(CNE1, CNE2)과 동시에 형성되되, 하부로 갈수록 폭이 좁아지는 형상의 절연 패턴(INP)에 의해 제1 및 제2 컨택 전극들(CNE1, CNE2)과의 연결이 끊어진 상태로 절연 패턴(INP) 상에 남을 수 있다.
일 예로, 도전 패턴(CNP)은 제1 및 제2 컨택 전극들(CNE1, CNE2)과 동일한 투명 도전성 물질로 구성될 수 있으며, 절연 패턴(INP) 상에서 전기적으로 격리된 상태를 유지할 수 있다. 또한, 도전 패턴(CNP)은 제1 및 제2 컨택 전극들(CNE1, CNE2)을 형성하기 위한 도전막의 성막 공정, 일 예로 스퍼터링 방식의 도전막 성막 공정에서 절연 패턴(INP) 상에 형성될 수 있으며, 제1 및 제2 컨택 전극들(CNE1, CNE2)과 실질적으로 동일 또는 유사한 두께를 가질 수 있다.
다만, 본 발명에서 도전 패턴(CNP)이 발광 장치에 반드시 형성 또는 잔류하여야만 하는 것은 아니다. 예를 들어, 실시예에 따라서는 도전 패턴(CNP)이 형성되지 않거나, 또는 제1 및 제2 컨택 전극들(CNE1, CNE2)을 형성하기 위한 도전막의 성막 공정 이후 선택적으로 제거될 수도 있다. 일 예로, 본 발명의 다른 실시예에서는 절연 패턴(INP)의 상부에 마스크를 배치하여 도전 패턴(CNP)의 형성을 차단하거나, 제1 및 제2 컨택 전극들(CNE1, CNE2)을 형성하는 과정에서 상기 제1 및 제2 컨택 전극들(CNE1, CNE2)과 함께 도전 패턴(CNP)을 형성한 이후 상기 도전 패턴(CNP)을 선택적으로 제거할 수도 있다.
실시예에 따라, 제1 및 제2 컨택 전극들(CNE1, CNE2) 등이 배치된 기판(SUB) 상에는 오버 코트층(OC)이 배치될 수 있다. 일 예로, 오버 코트층(OC)은 제1 및 제2 컨택 전극들(CNE1, CNE2) 등이 배치된 기판(SUB)의 상면을 커버하도록 제공될 수 있다.
도 7은 도 5의 EA1 영역을 확대한 단면도이고, 도 8은 도 5의 EA1 영역에 대응하는 단면도로서, 절연 패턴(INP)의 형상과 관련한 다른 실시예를 나타낸다. 또한, 도 9는 본 발명의 일 실시예에 의한, 발광 다이오드(LD)와 절연 패턴(INP)의 상호 배치 관계를 개략적으로 나타내는 평면도이다.
도 7 내지 도 9를 참조하면, 절연 패턴(INP)은 기판(SUB)의 상부에서 보았을 때 발광 다이오드(LD)의 제1 및 제2 단부들(EP1, EP2)을 포함하여 상기 발광 다이오드(LD)의 상부면을 완전히 커버하도록 형성될 수 있다. 다만, 절연 패턴(INP)은 기판(SUB)의 측면 또는 단면 방향에서 보았을 때 상기 발광 다이오드(LD)의 제1 및 제2 단부들(EP1, EP2)을 노출할 수 있다.
예를 들어, 절연 패턴(INP)은 제1 및 제2 단부들(EP1, EP2)의 상단 영역만을 커버하고, 상기 제1 및 제2 단부들(EP1, EP2)의 나머지 영역은 커버하지 않도록 형성될 수 있다. 일 예로, 절연 패턴(INP)은, 각각의 발광 다이오드(LD)의 상부면을 완전히 덮되, 기판(SUB)에 보다 가까운 하단 영역에서, 또는, 기판(SUB)에 점차적으로 근접하는 하단 영역으로 갈수록, 폭이 감소하는 형상의 단면을 가지면서, 상기 발광 다이오드(LD)의 양측에 위치한 제1 및 제2 단부들(EP1, EP2)을 노출할 수 있다. 절연 패턴(INP)에 의해 커버되지 않은 제1 단부(EP1)는 제1 컨택 전극(CNE1)에 의해 접촉 및 커버되며, 상기 절연 패턴(INP)에 의해 커버되지 않은 제2 단부(EP2)는 제2 컨택 전극(CNE2)에 의해 접촉 및 커버될 수 있다. 즉, 제1 및 제2 컨택 전극들(CNE1, CNE2)은 가로 방향으로 배치된 발광 다이오드(LD)의 양 측면에서, 상기 발광 다이오드(LD)와의 접촉을 통해 상기 발광 다이오드(LD)에 전기적으로 연결될 수 있다.
실시예에 따라, 절연 패턴(INP)의 상부면(USUR)은 발광 다이오드(LD)의 길이(L)보다 큰 수치의 제1 폭(W1, W1')을 가지면서, 상기 발광 다이오드(LD)의 상부면을 완전히 커버할 수 있다. 한편, 상기 절연 패턴(INP)은, 하단 영역에서, 또는 상기 하단 영역으로 갈수록, 그 폭이 감소하는 형상을 가질 수 있으며, 발광 다이오드(LD)의 제1 및 제2 단부들(EP1, EP2)을 노출할 수 있다. 일 예로, 절연 패턴(INP)의 하부면(LSUR)은 발광 다이오드(LD)의 길이(L)와 유사하거나, 또는 그보다 작은 수치의 제2 폭(W2, W2')을 가질 수 있다.
예를 들어, 절연 패턴(INP)은, 발광 다이오드(LD)의 제1 및 제2 단부들(EP1, EP2) 상에 배치되는 측면(SSUR)에서, 하단 영역으로 갈수록 그 폭이 점진적으로 감소하는 형상의 단면을 가질 수 있다. 일 예로, 절연 패턴(INP)은, 발광 다이오드(LD)의 제1 단부(EP1) 상에 배치되는 제1 측면(SSUR1)과, 상기 발광 다이오드(LD)의 제2 단부(EP2) 상에 배치되는 제2 측면(SSUR2)을 포함할 수 있다. 그리고, 상기 제1 및 제2 측면들(SSUR1, SSUR2)은 도 7에 도시된 바와 같이 곡면(일 예로, 버섯 형상(mushroom shape)의 측면부에 대응하는 곡면)을 가지거나, 도 8에 도시된 바와 같이 기울어진 경사면(일 예로, 역사다리꼴 형상의 측면부에 대응하는 경사면)을 가질 수 있으며, 하단 영역으로 갈수록 그 폭이 점진적으로 감소할 수 있다. 다만, 절연 패턴(INP)의 형상이 도 7 및 8에 도시된 실시예에 한정되지는 않으며, 이외에도 절연 패턴(INP)의 형상은 다양하게 변경될 수 있다. 예를 들어, 본 발명의 다른 실시예에서는 절연 패턴(INP)의 제1 및 제2 측면들(SSUR1, SSUR2)이 곡면 및 경사면이 결합된 형상을 가지거나, 계단 또는 요철 형상을 가질 수도 있다.
실시예에 따라, 절연 패턴(INP)은 제1 및 제2 컨택 전극들(CNE1, CNE2)을 형성하기 위한 도전막의 형성 공정에서, 상기 도전막이 발광 다이오드(LD)의 제1 및 제2 단부들(EP1, EP2)의 상단 영역에서는 절연 패턴(INP)에 의한 음영 효과(shadow effect)에 의해 자연적으로 끊어질 수 있을 정도의 형상 및/또는 크기를 가질 수 있다. 일 예로, 제1 및 제2 컨택 전극들(CNE1, CNE2)이 각각 제1 두께(TH1)를 가지고, 도전 패턴(CNP)이 상기 제1 두께(TH1)와 유사 또는 동일하거나 그 보다 작은 수치의 두께(TH1')를 가진다고 할 때, 절연 패턴(INP)의 제1 측면(SSUR1)의 상단부(USE1)는, 상기 기판(SUB)의 상부에서 보았을 때 발광 다이오드(LD)의 제1 단부(EP1)로부터 제1 전극(ELT1) 방향으로 제1 두께(TH1) 이상의 제1 거리(d1)만큼 이격된 지점에 위치될 수 있다. 유사하게, 절연 패턴(INP)의 제2 측면(SSUR2)의 상단부(USE2)는, 상기 기판(SUB)의 상부에서 보았을 때 발광 다이오드(LD)의 제2 단부(EP2)로부터 제2 전극(ELT2) 방향으로 제1 두께(TH1) 이상의 제2 거리(d2)만큼 이격된 지점에 위치될 수 있다. 일 예로, 후속 공정에서 형성될 제1 및 제2 컨택 전극들(CNE1, CNE2)의 두께, 즉, 상기 제1 두께(TH1)가 대략 0.1㎛ 내지 0.2㎛라고 할 때, 절연 패턴(INP)의 제1 및 제2 측면들(SSUR1, SSUR2) 각각의 상단부들(USE1, USE2)은 평면 상에서 보았을 때 각각 발광 다이오드(LD)의 제1 단부(EP1) 및 제2 단부(EP2)로부터 대략 0.3㎛ 이상, 일 예로 0.3㎛ 내지 0.5㎛ 만큼 이격된 지점에 위치될 수 있다.
한편, 상기 제1 및 제2 측면들(SSUR1, SSUR2) 각각의 하단부들(LSE1, LSE2)은, 상기 제1 및 제2 단부들(EP1, EP2)에 바로 인접하여 배치될 수 있다. 일 예로, 상기 제1 및 제2 측면들(SSUR1, SSUR2) 각각의 하단부들(LSE1, LSE2)은, 제1 두께(TH1) 이하의 거리 이내에서 제1 및 제2 단부들(EP1, EP2)에 인접하여 배치될 수 있다. 이에 따라, 제1 및 제2 컨택 전극들(CNE1, CNE2)의 형성 공정에서, 상기 제1 및 제2 컨택 전극들(CNE1, CNE2)이 발광 다이오드(LD)의 양 단부들, 즉, 제1 및 제2 단부들(EP1, EP2)에 안정적으로 접촉될 수 있다.
또한, 절연 패턴(INP)은, 도전 패턴(CNP)이 그 주변의 발광 다이오드(LD)와 제1 및 제2 컨택 전극들(CNE1, CNE2)로부터 안정적으로 분리될 수 있도록 하는 정도의 두께를 가질 수 있다. 일 예로, 절연 패턴(INP)은 제1 및 제2 컨택 전극들(CNE1, CNE2)의 두께, 즉 제1 두께(TH1) 이상의 제2 두께(TH2)를 가질 수 있다. 일 예로, 상기 제1 두께(TH1)가 대략 0.1㎛ 내지 0.2㎛라고 할 때, 상기 제2 두께(TH2)는 대략 0.3㎛ 이상, 일 예로 0.3㎛ 내지 0.5㎛일 수 있다.
추가적으로, 절연 패턴(INP)은 제1 및 제2 컨택 전극들(CNE1, CNE2)을 형성하기 위한 도전막이 제1 및 제2 측면들(SSUR1, SSUR2)에서 안정적으로 끊어질 수 있도록 하는 형상을 가질 수 있다. 일 예로, 절연 패턴(INP)은 하단 영역으로 갈수록 폭이 좁아지는 형태로 소정 범위의 각도, 경사 및/또는 곡률을 가질 수 있으며, 이외에도 계단 형상 등을 가질 수 있다.
상술한 실시예에 의하면, 발광 다이오드(LD)의 상부면을 덮는 절연 패턴(INP)을, 하단 영역에서 폭이 감소하는 형태로 형성한다. 이에 따라, 제1 전극(ELT1)과 제2 전극(ELT2)의 사이에 발광 다이오드(LD)를 안정적으로 연결하면서도 발광 장치의 제조 공정을 간소화할 수 있다.
도 10a 내지 도 10i는 도 5에 도시된 발광 장치의 제조 방법을 순차적으로 나타내는 단면도들이다.
도 10a를 참조하면, 먼저 기판(SUB)의 일면 상에 서로 이격되도록 제1 격벽(PW1) 및 제2 격벽(PW2)을 형성한다. 실시예에 따라, 제1 및 제2 격벽들(PW1, PW2)은 무기 재료 및/또는 유기 재료를 포함하는 절연막의 형성 공정 및/또는 패터닝 공정(일 예로, 마스크 공정)을 통해 형성될 수 있으며, 현재 공지된 다양한 방식의 공정을 통해 형성될 수 있다. 또한, 실시예에 따라, 제1 및 제2 격벽들(PW1, PW2)은 동일한 물질을 이용하여 기판(SUB) 상의 동일한 층 (또는, 동일한 평면) 상에 동시에 형성될 수 있으나, 본 발명이 이에 한정되지는 않는다.
도 10b를 참조하면, 제1 및 제2 격벽들(PW1, PW2)이 형성된 기판(SUB) 상에 서로 이격되도록 제1 전극(ELT1) 및 제2 전극(ELT2)을 형성한다. 실시예에 따라, 제1 및 제2 전극들(ELT1, ELT2)은 적어도 하나의 도전 재료를 포함하는 도전막의 형성 공정 및/또는 패터닝 공정을 통해 형성될 수 있으며, 현재 공지된 다양한 방식의 공정을 통해 형성될 수 있다.
또한, 실시예에 따라, 제1 및 제2 전극들(ELT1, ELT2) 각각은 단일층 또는 다중층으로 형성될 수 있다. 일 예로, 제1 전극(ELT1)은 제1 반사 전극(REF1) 및 제1 도전성 캡핑층(CPL1)을 포함한 다중층으로 형성되고, 제2 전극(ELT2)은 제2 반사 전극(REF2) 및 제2 도전성 캡핑층(CPL2)을 포함한 다중층으로 형성될 수 있다. 이 경우, 제1 및 제2 전극들(ELT1, ELT2)을 형성하는 단계는, 제1 및 제2 격벽들(PW1, PW2) 상에 각각 제1 및 제2 반사 전극들(REF1, REF2)을 형성하는 단계와, 상기 제1 및 제2 반사 전극들(REF1, REF2) 상에 제1 및 제2 도전성 캡핑층들(CPL1, CPL2)을 형성하는 단계를 포함할 수 있다.
추가적으로, 제1 및 제2 전극들(ELT1, ELT2)은 기판(SUB) 상의 동일한 층 상에 동시에 형성될 수 있으나, 이에 한정되지는 않는다. 제1 및 제2 전극들(ELT1, ELT2)을 동시에 형성할 경우, 발광 장치의 제조에 이용되는 마스크 공정의 수를 저감 또는 최소화할 수 있게 된다.
도 10c를 참조하면, 제1 및 제2 전극들(ELT1, ELT2)이 형성된 기판(SUB) 상에 제1 절연 물질층(IL1)을 형성한다. 실시예에 따라, 제1 절연 물질층(IL1)은 무기 재료 및/또는 유기 재료를 포함하는 절연막의 성막 공정을 통해 형성될 수 있으며, 현재 공지된 다양한 방식의 공정을 통해 형성될 수 있다. 또한, 실시예에 따라, 제1 절연 물질층(IL1)은 단일층 또는 다중층으로 형성될 수 있다.
도 10d를 참조하면, 제1 절연 물질층(IL1)이 형성된 기판(SUB) 상에 적어도 하나의 발광 다이오드(LD)를 공급하고, 상기 발광 다이오드(LD)의 제1 단부(EP1) 및 제2 단부(EP2)가 각각 제1 전극(ELT1) 및 제2 전극(ELT2)에 인접하도록 상기 제1 및 제2 전극들(ELT1, ELT2)의 사이에 발광 다이오드(LD)를 배열한다. 실시예에 따라, 발광 다이오드(LD)는 잉크젯 방식 등을 비롯한 다양한 방식을 통해 기판(SUB) 상에 공급될 수 있고, 제1 및 제2 전극들(ELT1, ELT2)에 소정의 전압을 인가함에 따라 상기 제1 및 제2 전극들(ELT1, ELT2)의 사이에 정렬될 수 있다.
도 10e를 참조하면, 발광 다이오드(LD)가 배열된 기판(SUB) 상에 제2 절연 물질층(IL2)을 형성한다. 실시예에 따라, 제2 절연 물질층(IL2)은 무기 재료 및/또는 유기 재료를 포함하는 절연막의 성막 공정을 통해 형성될 수 있으며, 현재 공지된 다양한 방식의 공정을 통해 형성될 수 있다. 또한, 실시예에 따라, 제2 절연 물질층(IL2)은 단일층 또는 다중층으로 형성될 수 있다.
도 10f 및 도 10g를 참조하면, 제2 절연 물질층(IL2)이 형성된 기판(SUB) 상에 마스크(일 예로, 제1 및 제2 전극들(ELT1, ELT2)을 각각 제1 및 제2 컨택 전극들(CNE1, CNE2)에 연결하기 위한 제1 및 제2 컨택부들(CNT1, CNT2)에 대응하는 개구부(OP1, OP2)가 형성된 포토 레지스트층(PR))를 형성하고, 제1 및 제2 전극들(ELT1, ELT2)의 적어도 일 영역과 발광 다이오드(LD)의 제1 및 제2 단부들(EP1, EP2)을 노출하도록 제1 및 제2 절연 물질층들(IL1, IL2)을 식각할 수 있다. 이를 통해, 제1 전극(ELT1) 상에 상기 제1 전극(ELT1)의 일 영역을 노출하는 제1 절연막(INS1)을, 제2 전극(ELT2) 상에 상기 제2 전극(ELT2)의 일 영역을 노출하는 제2 절연막(INS2)을, 발광 다이오드(LD) 상에 상기 발광 다이오드(LD)의 상부를 커버하는 절연 패턴(INP)을 형성할 수 있다.
예를 들어, 마스크를 형성하는 단계는, 제2 절연 물질층(IL2)이 형성된 기판(SUB) 상에 포토 레지스트층(PR)을 형성하고, 발광 다이오드(LD)의 제1 및 제2 단부들(EP1, EP2)로부터 각각 소정의 제3 거리(d3) 및 제4 거리(d4)만큼 이격된 제1 컨택부(CNT1) 및 제2 컨택부(CNT2)에 대응하는 각각의 지점에서, 제1 및 제2 전극들(ELT1, ELT2) 상부의 제2 절연 물질층(IL2)을 부분적으로 노출하도록 포토 레지스트층(PR)에 제1 및 제2 개구부들(OP1, OP2)을 형성하는 단계를 포함할 수 있다. 이와 같이 제1 및 제2 개구부들(OP1, OP2)이 형성된 포토 레지스트층(PR)은 제1 및 제2 절연 물질층들(IL1, IL2)의 일 영역을 선택적으로 식각하기 위한 마스크로 이용될 수 있다.
실시예에 따라, 제1 및 제2 절연 물질층들(IL1, IL2)은 동시에 식각되거나, 또는 순차적으로 식각될 수 있다. 또한, 제1 및 제2 절연 물질층들(IL1, IL2)은 적어도 한 차례 및/또는 적어도 한 종류의 식각 공정을 통해 식각될 수 있다. 일 예로, 제1 및 제2 절연 물질층들(IL1, IL2)은 적어도 한 차례의 건식 및/또는 습식 식각 공정을 통해 식각될 수 있다.
단, 본 발명의 일 실시예에서, 적어도 제2 절연 물질층(IL2)은 제1 및 제2 단부들(EP1, EP2)이 위치한 발광 다이오드(LD)의 양측 상에서, 하단 영역으로 갈수록 폭이 감소하는 형태로 과식각(over-etching)될 수 있다. 예를 들어, 발광 다이오드(LD)의 상부에서 제2 절연 물질층(IL2)의 양 측면을 과식각함을 통해, 발광 다이오드(LD)의 상부에서는 제1 및 제2 단부들(EP1, EP2)을 완전히 커버하되 상기 발광 다이오드(LD)에 가까운 하단 영역으로 갈수록 폭이 감소하면서 상기 발광 다이오드(LD)의 측면 방향에서 상기 제1 및 제2 단부들(EP1, EP2)을 노출하는 절연 패턴(INP)을 형성할 수 있다.
실시예에 따라, 포토 레지스터(PR)에 형성되는 제1 및 제2 개구부들(OP1, OP2) 각각의 위치 및 크기 등은 식각 조건이나 공정 마진 등에 따라 달라질 수 있다. 일 예로, 발광 다이오드(LD) 상에 형성하고자 하는 절연 패턴(INP)의 크기, 형상 및 위치와 더불어, 제1 및 제2 절연 물질층들(IL1, IL2)의 재료 및 두께, 식각 가스의 농도 및 식각이 진행되는 시간 중 적어도 하나를 고려하여, 제1 및 제2 개구부들(OP1, OP2)의 위치 및/또는 크기를 조절할 수 있다. 또한, 제1 및/또는 제2 절연 물질층들(IL1, IL2)의 식각 과정에서 포토 레지스트층(PR)의 일부도 함께 식각될 수 있으므로, 제1 및 제2 개구부들(OP1, OP2)이 확장될 수 있음을 고려하여 상기 제1 및 제2 개구부들(OP1, OP2)의 위치 및/또는 크기를 조절할 수도 있다. 즉, 마스크에 형성되는 제1 및 제2 개구부들(OP1, OP2)의 위치 및 크기 등은 공정 조건이나 마진 등을 고려하여 설정될 수 있다.
도 10h를 참조하면, 제1 및 제2 절연막들(INS1, INS2) 및 절연 패턴(INP)이 형성된 기판(SUB) 상에 제1 및 제2 컨택 전극들(CNE1, CNE2)과 도전 패턴(CNP)을 형성한다. 예를 들어, 제1 및 제2 절연막들(INS1, INS2) 및 절연 패턴(INP)이 형성된 기판(SUB) 상에 스퍼터링 등을 비롯한 다양한 방식을 통해 도전막을 성막 및/또는 패터닝함으로써, 제1 및 제2 컨택 전극들(CNE1, CNE2)과 도전 패턴(CNP)을 형성할 수 있다.
실시예에 따라, 상기 도전막은 제1 및 제2 전극들(ELT1, ELT2)과 발광 다이오드(LD)의 상부는 물론, 제1 및 제2 절연 물질층들(IL1, IL2)의 식각 공정에서 노출된 발광 다이오드(LD)의 제1 및 제2 단부들(EP1, EP2) 상에도 바로 형성될 수 있다. 이에 따라, 상기 도전막이 발광 다이오드(LD)의 제1 및 제2 단부들(EP1, EP2)에 직접 접촉되도록 형성되면서, 상기 제1 및 제2 단부들(EP1, EP2)을 각각 제1 및 제2 전극들(ELT1, ELT2)에 연결하는 제1 및 제2 컨택 전극들(CNE1, CNE2)을 형성할 수 있다.
또한, 상기 도전막은 발광 다이오드(LD)의 상부에도 형성되되, 절연 패턴(INP)에 의해 제1 및 제2 컨택 전극들(CNE1, CNE2)과는 분리되어 형성되게 된다. 따라서, 제1 및 제2 컨택 전극들(CNE1, CNE2)을 형성하는 단계에서, 발광 다이오드(LD)의 상부에는 도전 패턴(CNP)이 형성될 수 있다. 이러한 도전 패턴(CNP)은, 절연 패턴(INP)에 의해, 발광 다이오드(LD)와 제1 및 제2 컨택 전극들(CNE1, CNE2)과는 분리된 상태를 유지할 수 있다.
도 10i를 참조하면, 제1 및 제2 컨택 전극들(CNE1, CNE2) 및 도전 패턴(CNP)이 형성된 기판(SUB) 상에 오버 코트층(OC)을 형성한다. 이에 따라, 도 5의 실시예 등에 의한 발광 장치를 제조할 수 있게 된다.
상술한 실시예에 의하면, 제1 및 제2 컨택 전극들(CNE1, CNE2)을, 기판(SUB) 상의 동일한 층 상에 동시에 형성할 수 있게 된다. 이에 따라, 발광 장치의 제조에 이용되는 마스크 공정의 수를 저감 또는 최소화할 수 있게 된다.
또한, 절연 패턴(INP)에 의해, 발광 다이오드(LD) 상부의 도전 패턴(CNP)이 전기적으로 격리된 상태를 유지할 수 있기 때문에, 발광 다이오드(LD) 및/또는 그 주변에서 쇼트 결함이 발생하는 것을 방지하고, 상기 발광 다이오드(LD)를 제1 및 제2 전극들(ELT1, ELT2)의 사이에 안정적으로 연결할 수 있게 된다.
도 11은 본 발명의 일 실시예에 의한 표시 장치를 나타내는 평면도이다. 도 11에서는 앞서 설명한 실시예에 의한 발광 장치를 광원으로서 이용할 수 있는 장치의 일 예로서, 표시 장치, 특히 상기 표시 장치에 구비되는 표시 패널(PNL)을 도시하기로 한다. 실시예에 따라, 도 11에서는 표시 영역(DA)을 중심으로 표시 패널(PNL)의 구조를 간략하게 도시하기로 한다. 다만, 실시예에 따라서는 도시되지 않은 적어도 하나의 구동 회로부(일 예로, 주사 구동부 및 데이터 구동부 중 적어도 하나) 및/또는 복수의 배선들이 표시 패널(PNL)에 더 배치될 수도 있다.
도 11을 참조하면, 본 발명의 일 실시예에 의한 표시 패널(PNL)은, 기판(SUB)과, 상기 기판(SUB) 상에 배치된 다수의 화소들(PXL)을 포함할 수 있다. 구체적으로, 기판(SUB)은, 영상을 표시하기 위한 표시 영역(DA)과, 상기 표시 영역(DA)을 제외한 비표시 영역(NDA)을 포함할 수 있다. 그리고, 기판(SUB) 상의 표시 영역(DA)에는 화소들(PXL)이 배치될 수 있다.
실시예에 따라, 표시 영역(DA)은 표시 패널(PNL)의 중앙 영역에 배치되고, 비표시 영역(NDA)은 상기 표시 영역(DA)을 둘러싸도록 상기 표시 패널(PNL)의 가장자리 영역에 배치될 수 있다. 다만, 표시 영역(DA) 및 비표시 영역(NDA)의 위치가 이에 한정되지는 않으며, 이들의 위치는 변경될 수 있다.
기판(SUB)은 경성 기판 또는 가요성 기판일 수 있으며, 그 재료나 물성이 특별히 한정되지는 않는다. 예컨대, 기판(SUB)은 유리 또는 강화 유리로 구성된 경성 기판, 또는 플라스틱 또는 금속 재질의 박막 필름으로 구성된 가요성 기판일 수 있다.
기판(SUB) 상의 일 영역은 표시 영역(DA)으로 규정되어 화소들(PXL)이 배치되고, 나머지 영역은 비표시 영역(NDA)으로 규정된다. 일 예로, 기판(SUB)은, 각각의 화소(PXL)가 형성되는 복수의 화소 영역들을 포함한 표시 영역(DA)과, 상기 표시 영역(DA)의 외곽에 배치되는 비표시 영역(NDA)을 포함할 수 있다. 비표시 영역(NDA)에는 표시 영역(DA)의 화소들(PXL)에 연결되는 각종 배선들 및/또는 내장 회로부가 배치될 수 있다.
화소들(PXL) 각각은 해당 주사 신호 및 데이터 신호에 의해 구동되는 적어도 하나의 광원, 일 예로 앞선 실시예에서 설명한 발광 장치를 각각의 광원으로서 포함할 수 있다. 예를 들어, 화소들(PXL) 각각은, 한 쌍의 제1 및 제2 전극들(ELT1, ELT2)과, 상기 제1 및 제2 전극들(ELT1, ELT2)의 사이에 연결된 적어도 하나의 발광 다이오드(LD)를 포함할 수 있다. 또한, 상기 발광 다이오드(LD)는 나노 스케일 내지 마이크로 스케일 범위의 작은 크기를 가지는 초소형의 막대형 발광 다이오드일 수 있다. 또한, 실시예에 따라, 화소들(PXL) 각각은, 제1 및 제2 전극들(ELT1, ELT2)의 사이에 병렬로 연결된 복수의 발광 다이오드들(LD)을 포함할 수 있으며, 이를 통해 원하는 레벨의 휘도를 얻을 수 있다.
일 실시예에서, 각각의 화소(PXL)는 능동형 화소일 수 있으나, 이에 한정되지는 않는다. 예를 들어, 본 발명에 의한 표시 장치에서, 화소들(PXL)의 종류, 구조 및/또는 구동 방식 등이 특별히 한정되지는 않는다. 즉, 각각의 화소(PXL)는 현재 공지된 다양한 구조의 수동형 또는 능동형 발광 표시 장치의 화소로 구성될 수 있다.
도 12 내지 도 14는 도 11의 화소(PXL)에 대한 서로 다른 실시예들을 나타내는 회로도들이다. 구체적으로, 도 12 내지 도 14는 능동형 발광 표시 장치에 구비될 수 있는 화소(PXL)의 서로 다른 실시예들을 도시한 것이다. 일 예로, 도 12 내지 도 14에 도시된 각각의 화소(PXL)는 도 11의 표시 패널(PNL)에 구비된 화소들(PXL) 중 어느 하나일 수 있으며, 상기 화소들(PXL)은 실질적으로 동일 또는 유사한 구조를 가질 수 있다.
먼저 도 12를 참조하면, 본 발명의 일 실시예에 의한 화소(PXL)는, 데이터 신호에 대응하는 휘도의 빛을 생성하기 위한 발광 유닛(EMU)과, 상기 발광 유닛(EMU)을 구동하기 위한 화소 회로(PXC)를 포함할 수 있다.
실시예에 따라, 발광 유닛(EMU)은 제1 및 제2 전원들(VDD, VSS)의 사이에 병렬로 연결된 복수의 발광 다이오드들(LD)을 포함할 수 있다. 여기서, 제1 및 제2 전원들(VDD, VSS)은 발광 다이오드들(LD)이 발광할 수 있도록 서로 다른 전위를 가질 수 있다. 일 예로, 제1 전원(VDD)은 고전위 전원으로 설정되고, 제2 전원(VSS)은 저전위 전원으로 설정될 수 있다. 이때, 제1 및 제2 전원들(VDD, VSS)의 전위 차는 적어도 화소(PXL)의 발광 기간 동안 발광 다이오드들(LD)의 문턱 전압 이상으로 설정될 수 있다.
한편, 도 12에서는 각 화소(PXL)의 발광 유닛(EMU)을 구성하는 발광 다이오드들(LD)이 제1 전원(VDD)과 제2 전원(VSS)의 사이에 서로 동일한 방향(일 예로, 순방향)으로 병렬 연결된 실시예를 도시하였으나, 본 발명이 이에 한정되지는 않는다. 예컨대, 다른 실시예에서는 상기 발광 다이오드들(LD) 중 일부는 제1 및 제2 전원들(VDD, VSS)의 사이에 순방향으로 연결되고, 다른 일부는 역방향으로 연결될 수도 있다. 또는, 또 다른 실시예에서는, 적어도 하나의 화소(PXL)가 단일의 발광 다이오드(LD)만을 포함할 수도 있다.
실시예에 따라, 각각의 발광 유닛(EMU)을 구성하는 발광 다이오드들(LD)의 일 단부(일 예로, 도 4 내지 도 6의 EP1)는 제1 전극(일 예로, 도 4 내지 도 6의 ELT1)을 통해 해당 화소 회로(PXC)에 공통으로 접속되며, 상기 화소 회로(PXC)를 통해 제1 전원(VDD)에 접속될 수 있다. 그리고, 발광 다이오드들(LD)의 다른 단부(일 예로, 도 4 내지 도 6의 EP2)는 제2 전극(일 예로, 도 4 내지 도 6의 ELT2)을 통해 제2 전원(VSS)에 공통으로 접속될 수 있다. 편의상, 이하에서는 각 발광 유닛(EMU)에 배치되는 제1 전극(ELT1) 및 제2 전극(ELT2)을 각각 제1 화소 전극 및 제2 화소 전극이라 지칭하기로 한다.
각각의 발광 유닛(EMU)은 해당 화소 회로(PXC)를 통해 공급되는 구동 전류에 대응하는 휘도로 발광할 수 있다. 이에 따라, 표시 영역(DA)에서 소정의 영상이 표시될 수 있다.
화소 회로(PXC)는 해당 화소(PXL)의 주사선(Si) 및 데이터선(Dj)에 접속될 수 있다. 일 예로, 화소(PXL)가 표시 영역(DA)의 i번째 행 및 j번째 열에 배치되었다고 할 때, 상기 화소(PXL)의 화소 회로(PXC)는 표시 영역(DA)의 i번째 주사선(Si) 및 j번째 데이터선(Dj)에 접속될 수 있다. 이러한 화소 회로(PXC)는 제1 및 제2 트랜지스터들(T1, T2)과 스토리지 커패시터(Cst)를 포함할 수 있다.
제1 트랜지스터(구동 트랜지스터; T1)의 제1 전극은 제1 전원(VDD)에 접속되고, 제2 전극은 제1 화소 전극(즉, 해당 발광 유닛(EMU)의 제1 전극(ELT1))을 통해 발광 다이오드들(LD)에 접속된다. 여기서, 상기 제1 트랜지스터(T1)의 제1 및 제2 전극들은 서로 다른 전극으로서, 일 예로 상기 제1 전극이 소스 전극이면 상기 제2 전극은 드레인 전극일 수 있다. 그리고, 제1 트랜지스터(T1)의 게이트 전극은 제1 노드(N1)에 접속된다. 이러한 제1 트랜지스터(T1)는 제1 노드(N1)의 전압에 대응하여 발광 유닛(EMU)으로 공급되는 구동 전류를 제어한다.
제2 트랜지스터(스위칭 트랜지스터; T2)의 제1 전극은 데이터선(Dj)에 접속되고, 제2 전극은 제1 노드(N1)에 접속된다. 그리고, 제1 트랜지스터(T1)의 게이트 전극은 주사선(Si)에 접속된다.
이러한 제2 트랜지스터(T2)는, 주사선(Si)으로부터 게이트-온 전압(예컨대, 로우 전압)의 주사 신호가 공급될 때 턴-온되어, 데이터선(Dj)과 제1 노드(N1)를 전기적으로 연결한다. 각각의 프레임 기간마다 데이터선(Dj)으로는 해당 프레임의 데이터 신호가 공급되고, 상기 데이터 신호는 제2 트랜지스터(T2)를 경유하여 제1 노드(N1)로 전달된다. 이에 따라, 스토리지 커패시터(Cst)에는 데이터 신호에 대응하는 전압이 충전된다.
스토리지 커패시터(Cst)의 일 전극은 제1 전원(VDD)에 접속되고, 다른 전극은 제1 노드(N1)에 접속된다. 이러한 스토리지 커패시터(Cst)는 각각의 프레임 기간 동안 제1 노드(N1)로 공급되는 데이터 신호에 대응하는 전압을 충전하고, 다음 프레임의 데이터 신호가 공급될 때까지 충전된 전압을 유지한다.
한편, 도 12에서는 화소 회로(PXC)에 포함되는 트랜지스터들, 예컨대 제1 및 제2 트랜지스터들(T1, T2)을 모두 P타입의 트랜지스터들로 도시하였으나, 본 발명이 이에 한정되지는 않는다. 즉, 제1 및 제2 트랜지스터들(T1, T2) 중 적어도 하나는 N타입의 트랜지스터로 변경될 수도 있다.
일 예로, 도 13에 도시된 바와 같이, 제1 및 제2 트랜지스터들(T1, T2)은 모두 N타입의 트랜지스터들일 수 있다. 도 13에 도시된 화소(PXL)는, 제1 및 제2 트랜지스터들(T1, T2)의 타입 변경에 따라 일부 회로 소자의 접속 위치가 변경된 것을 제외하고, 그 구성 및 동작이 도 12의 화소 회로(PXC)와 실질적으로 유사하다. 따라서, 도 13의 화소(PXL)에 대한 상세한 설명은 생략하기로 한다.
한편, 화소 회로(PXC)의 구조가 도 12 및 도 13에 도시된 실시예에 한정되지는 않는다. 즉, 화소 회로(PXC)는 현재 공지된 다양한 구조 및/또는 구동 방식의 화소 회로로 구성될 수 있다. 일 예로, 화소 회로(PXC)는 도 14에 도시된 실시예와 같이 구성될 수도 있다.
도 14를 참조하면, 화소 회로(PXC)는 해당 수평 라인의 주사선(Si) 외에도 적어도 하나의 다른 주사선(또는, 제어선)에 더 접속될 수 있다. 일 예로, 표시 영역(DA)의 i번째 행에 배치된 화소(PXL)의 화소 회로(PXC)는 i-1번째 주사선(Si-1) 및/또는 i+1번째 주사선(Si+1)에 더 접속될 수 있다. 또한, 실시예에 따라 화소 회로(PXC)는 제1 및 제2 전원들(VDD, VSS) 외에 제3의 전원에 더 연결될 수 있다. 일 예로, 화소 회로(PXC)는 초기화 전원(Vint)에도 연결될 수 있다. 실시예에 따라, 이러한 화소 회로(PXC)는 제1 내지 제7 트랜지스터들(T1 내지 T7)과 스토리지 커패시터(Cst)를 포함할 수 있다.
제1 트랜지스터(T1)의 제1 전극은 제5 트랜지스터(T5)를 경유하여 제1 전원(VDD)에 접속되고, 제2 전극은 제6 트랜지스터(T6)를 경유하여 발광 다이오드들(LD)에 접속된다. 그리고, 제1 트랜지스터(T1)의 게이트 전극은 제1 노드(N1)에 접속될 수 있다. 이러한 제1 트랜지스터(T1)는 제1 노드(N1)의 전압에 대응하여 발광 유닛(EMU)으로 공급되는 구동 전류를 제어한다.
제2 트랜지스터(T2)는 데이터선(Dj)과 제1 트랜지스터(T1)의 제1 전극 사이에 접속된다. 그리고, 제2 트랜지스터(T2)의 게이트 전극은 해당 주사선(Si)에 접속된다. 이와 같은 제2 트랜지스터(T2)는 상기 주사선(Si)으로부터 게이트-온 전압의 주사 신호가 공급될 때 턴-온되어 데이터선(Dj)을 제1 트랜지스터(T1)의 제1 전극에 전기적으로 연결한다. 따라서, 제2 트랜지스터(T2)가 턴-온되면, 데이터선(Dj)으로부터 공급되는 데이터 신호가 제1 트랜지스터(T1)로 전달된다.
제3 트랜지스터(T3)는 제1 트랜지스터(T1)의 제2 전극과 제1 노드(N1) 사이에 접속된다. 그리고, 제3 트랜지스터(T3)의 게이트 전극은 해당 주사선(Si)에 접속된다. 이와 같은 제3 트랜지스터(T3)는 상기 주사선(Si)으로부터 게이트-온 전압의 주사 신호가 공급될 때 턴-온되어 제1 트랜지스터(T1)의 제2 전극과 제1 노드(N1)를 전기적으로 연결한다. 따라서, 제3 트랜지스터(T3)가 턴-온되면, 제1 트랜지스터(T1)는 다이오드 형태로 접속된다.
제4 트랜지스터(T4)는 제1 노드(N1)와 초기화 전원(Vint)의 사이에 접속된다. 그리고, 제4 트랜지스터(T4)의 게이트 전극은 이전 주사선, 일 예로 i-1번째 주사선(Si-1)에 접속된다. 이와 같은 제4 트랜지스터(T4)는 i-1번째 주사선(Si-1)으로 게이트-온 전압의 주사 신호가 공급될 때 턴-온되어 초기화 전원(Vint)의 전압을 제1 노드(N1)로 전달한다. 여기서, 초기화 전원(Vint)의 전압은 데이터 신호의 최저 전압 이하일 수 있다.
제5 트랜지스터(T5)는 제1 전원(VDD)과 제1 트랜지스터(T1) 사이에 접속된다. 그리고, 제5 트랜지스터(T5)의 게이트 전극은 해당 발광 제어선, 일 예로 i번째 발광 제어선(Ei)에 접속된다. 이와 같은 제5 트랜지스터(T5)는 상기 발광 제어선(Ei)으로 게이트-오프 전압(일 예로, 하이 전압)의 발광 제어신호가 공급될 때 턴-오프되고, 그 외의 경우에 턴-온된다.
제6 트랜지스터(T6)는 제1 트랜지스터(T1)와 발광 다이오드들(LD)의 사이에 접속된다. 그리고, 제6 트랜지스터(T6)의 게이트 전극은 해당 발광 제어선, 일 예로 i번째 발광 제어선(Ei)에 접속된다. 이와 같은 제6 트랜지스터(T6)는 상기 발광 제어선(Ei)으로 게이트-오프 전압의 발광 제어신호가 공급될 때 턴-오프되고, 그 외의 경우에 턴-온된다.
제7 트랜지스터(T7)는 발광 유닛(EMU)(일 예로, 발광 다이오드들(LD)의 일 단부에 연결된 제1 화소 전극)과 초기화 전원(Vint)의 사이에 접속된다. 그리고, 제7 트랜지스터(T7)의 게이트 전극은 다음 단의 주사선들 중 어느 하나, 일 예로 i+1번째 주사선(Si+1)에 접속된다. 이와 같은 제7 트랜지스터(T7)는 상기 i+1번째 주사선(Si+1)으로 게이트-온 전압의 주사 신호가 공급될 때 턴-온되어 초기화 전원(Vint)의 전압을 제1 화소 전극으로 공급한다.
스토리지 커패시터(Cst)는 제1 전원(VDD)과 제1 노드(N1)의 사이에 접속된다. 이와 같은 스토리지 커패시터(Cst)는 각 프레임 기간에 제1 노드(N1)로 공급되는 데이터 신호 및 제1 트랜지스터(T1)의 문턱전압에 대응하는 전압을 저장한다.
한편, 도 14에서는 화소 회로(PXC)에 포함되는 트랜지스터들, 예를 들어 제1 내지 제7 트랜지스터들(T1 내지 T7)을 모두 P타입의 트랜지스터들로 도시하였으나, 본 발명이 이에 한정되지는 않는다. 일 예로, 제1 내지 제7 트랜지스터들(T1 내지 T7) 중 적어도 하나는 N타입의 트랜지스터로 변경될 수도 있다.
또한, 본 발명에 적용될 수 있는 화소(PXL)의 구조가 도 12 내지 도 14에 도시된 실시예에 한정되지는 않으며, 각각의 화소(PXL)는 현재 공지된 다양한 구조를 가질 수 있다. 예를 들어, 각각의 화소(PXL)에 포함된 화소 회로(PXC)는 현재 공지된 다양한 구조 및/또는 구동 방식의 화소 회로로 구성될 수 있다. 또한, 본 발명의 다른 실시예에서 각각의 화소(PXL)는 수동형 발광 표시 장치의 내부에 구성될 수도 있다. 이 경우, 화소 회로(PXC)는 생략되고, 발광 유닛(EMU)의 제1 및 제2 화소 전극들 각각은 주사선(Si), 데이터선(Dj), 전원선 및/또는 제어선에 직접 접속될 수 있다.
도 15는 도 11의 화소(PXL)를 나타내는 평면도로서, 특히 각 화소(PXL)의 발광 유닛(EMU)에 대한 레이아웃 실시예를 나타낸다. 그리고, 도 16은 도 15의 Ⅱ~Ⅱ' 선에 따른 단면도이다
실시예에 따라, 도 15에 도시된 발광 유닛(EMU)은 앞서 설명한 실시예, 일 예로 도 4 등에 도시된 실시예에 의한 발광 장치와 실질적으로 유사 또는 동일하게 구성될 수 있다. 또한, 도 16에 도시된 표시 소자층(LDL)은 도 15의 발광 유닛(EMU)에 대응하는 단면을 보여주는 것으로서, 일 예로 도 5 등에 도시된 실시예에 의한 발광 장치의 단면과 실질적으로 유사 또는 동일하게 구성될 수 있다. 따라서, 도 15 및 도 16에서, 도 4 및 도 5와 유사 또는 동일한 구성에 대해서는 동일 부호를 부여하고, 이에 대한 상세한 설명은 생략하기로 한다.
도 15 및 도 16을 참조하면, 각각의 화소(PXL)는, 기판(SUB) 상에 순차적으로 배치된 화소 회로층(PCL) 및 표시 소자층(LDL)을 포함할 수 있다.
실시예에 따라, 화소 회로층(PCL)은 표시 영역(DA)에 배치되는 복수의 회로 소자들을 포함한다. 예를 들어, 화소 회로층(PCL)은 각각의 화소 영역(PXA)에 형성되어 각각의 화소 회로(PXC)를 구성하는 복수의 회로 소자들을 포함할 수 있다. 일 예로, 화소 회로층(PCL)은 각각의 화소 영역(PXA)에 배치된 적어도 하나의 트랜지스터(T) 및 스토리지 커패시터(Cst)를 포함할 수 있다. 편의상, 도 15에서는 화소 회로(PXC)에 구비되는 트랜지스터들 중 표시 소자층(LDL)의 제1 전극(ELT1)(즉, 제1 화소 전극)에 직접적으로 연결되는 하나의 트랜지스터(T)만을 대표적으로 도시하기로 하며, 각각의 화소 회로(PXC)를 구성하는 트랜지스터들은 실질적으로 동일 또는 유사한 단면 구조를 가질 수 있다. 또한, 본 발명에서 각 트랜지스터(T)의 구조가 도 16에 도시된 실시예에 한정되지는 않는다. 예를 들어, 각각의 트랜지스터(T)는 현재 공지된 다양한 단면 구조를 가질 수 있다. 또한, 본 발명의 다른 실시예에서, 각각의 화소 회로(PXC)를 구성하는 복수의 트랜지스터들은 서로 다른 타입 및/또는 구조를 가질 수도 있다.
또한, 화소 회로층(PCL)은 복수의 절연막들을 포함한다. 일 예로, 화소 회로층(PCL)은 기판(SUB)의 일면 상에 순차적으로 적층된 게이트 절연막(GI), 제1 및 제2 층간 절연막들(ILD1, ILD2), 및 패시베이션막(PSV)을 포함할 수 있다. 실시예에 따라, 상기 게이트 절연막(GI), 제1 및 제2 층간 절연막들(ILD1, ILD2), 및 패시베이션막(PSV)은 기판(SUB)과 표시 소자층(LDL)의 사이에 순차적으로 적층될 수 있다. 또한, 화소 회로층(PCL)은 기판(SUB)과 회로 소자들의 사이에 배치된 적어도 한 층의 버퍼층(BFL)을 추가적으로 포함할 수 있다. 실시예에 따라, 버퍼층(BFL), 게이트 절연막(GI), 제1 및 제2 층간 절연막들(ILD1, ILD2) 및 패시베이션막(PSV) 중 적어도 하나는 표시 영역(DA) 및 비표시 영역(NDA)을 포함한 기판(SUB)의 일면 상에 형성될 수 있다.
실시예에 따라, 버퍼층(BFL)은 각각의 트랜지스터(T)에 불순물이 확산되는 것을 방지할 수 있다. 상기 버퍼층(BFL)은 단일층으로 구성될 수 있으나, 적어도 2중층 이상의 다중층으로 구성될 수도 있다. 버퍼층(BFL)이 다중층으로 제공될 경우, 각 층은 동일한 재료로 형성되거나 또는 서로 다른 재료로 형성될 수 있다. 한편, 실시예에 따라서는 버퍼층(BFL)이 생략될 수도 있다.
실시예에 따라, 각각의 트랜지스터(T)는 반도체층(SCL), 게이트 전극(GE), 제1 트랜지스터 전극(ET1) 및 제2 트랜지스터 전극(ET2)을 포함한다. 한편, 실시예에 따라 도 16에서는 각각의 트랜지스터(T)가 반도체층(SCL)과 별개로 형성된 제1 및 제2 트랜지스터 전극들(ET1, ET2)을 구비하는 실시예를 도시하였으나, 본 발명이 이에 한정되지는 않는다. 예컨대, 다른 실시예에서는 각각의 화소 영역(PXA)에 배치되는 적어도 하나의 트랜지스터(T)가 별개의 제1 및/또는 제2 트랜지스터 전극들(ET1, ET2)을 구비하는 대신, 상기 제1 및/또는 제2 트랜지스터 전극들(ET1, ET2)이 각각의 반도체층(SCL)과 통합되어 구성될 수도 있다.
반도체층(SCL)은 버퍼층(BFL) 상에 배치될 수 있다. 일 예로, 반도체층(SCL)은 버퍼층(BFL)이 형성된 기판(SUB)과 게이트 절연막(GI)의 사이에 배치될 수 있다. 이러한 반도체층(SCL)은 제1 트랜지스터 전극(ET1)에 접촉되는 제1 영역과, 제2 트랜지스터 전극(ET2)에 접촉되는 제2 영역과, 상기 제1 및 제2 영역들의 사이에 위치된 채널 영역을 포함할 수 있다. 실시예에 따라, 상기 제1 및 제2 영역들 중 하나는 소스 영역이고, 다른 하나는 드레인 영역일 수 있다.
실시예에 따라, 반도체층(SCL)은 폴리 실리콘, 아몰퍼스 실리콘, 산화물 반도체 등으로 이루어진 반도체 패턴일 수 있다. 또한, 반도체층(SCL)의 채널 영역은 불순물이 도핑되지 않는 반도체 패턴으로서 진성 반도체일 수 있고, 상기 반도체층(SCL)의 제1 및 제2 영역들은 각각 소정의 불순물이 도핑된 반도체 패턴일 수 있다.
게이트 전극(GE)은 게이트 절연막(GI)을 사이에 개재하고 반도체층(SCL) 상에 배치될 수 있다. 일 예로, 게이트 전극(GE)은 게이트 절연막(GI)과 제1 층간 절연막(ILD1)의 사이에 배치되며, 반도체층(SCL)의 적어도 일 영역과 중첩될 수 있다.
제1 및 제2 트랜지스터 전극들(ET1, ET2)은 적어도 한 층의 절연막, 일 예로 복수의 절연막을 사이에 개재하고 반도체층(SCL) 상에 배치될 수 있다. 예를 들어, 제1 및 제2 트랜지스터 전극들(ET1, ET2)은 제2 층간 절연막(ILD2)과 패시베이션막(PSV)의 사이에 배치될 수 있다. 이러한 제1 및 제2 트랜지스터 전극들(ET1, ET2)은 반도체층(SCL)에 전기적으로 연결될 수 있다. 예를 들어, 제1 및 제2 트랜지스터 전극들(ET1, ET2) 각각은 게이트 절연막(GI)과 제1 및 제2 층간 절연막들(ILD1, ILD2)을 관통하는 각각의 컨택홀을 통해 각각 반도체층(SCL)의 제1 영역 및 제2 영역에 접촉될 수 있다.
한편, 실시예에 따라 제1 및 제2 트랜지스터 전극들(ET1, ET2) 중 어느 하나는 패시베이션막(PSV)을 관통하는 적어도 하나의 컨택홀(일 예로, 제1 컨택홀(CH1))에 의해 상기 패시베이션막(PSV)의 상부에 배치된 표시 소자층(LDL)의 제1 전극(ELT1), 즉 제1 화소 전극에 전기적으로 연결될 수 있다. 다만, 이는 각 트랜지스터(T1)의 접속 위치 등에 따라 트랜지스터 별로 다를 수 있다.
실시예에 따라, 스토리지 커패시터(Cst)는 서로 다른 층에 이격되어 배치된 제1 및 제2 커패시터 전극들(CSE1, CSE2)을 포함할 수 있다. 일 예로, 제1 커패시터 전극(CSE1)은 제1 및 제2 층간 절연막들(ILD1, ILD2)의 사이에 배치될 수 있다. 그리고, 제2 커패시터 전극(CSE2)은 트랜지스터(T)를 구성하는 적어도 하나의 도전층, 예를 들어, 반도체층(SCL), 게이트 전극(GE), 제1 및 제2 트랜지스터 전극들(ET1, ET2) 중 적어도 하나와 동일한 층에 배치될 수 있다. 일 예로, 제2 커패시터 전극(CSE2)은 트랜지스터(T)의 게이트 전극(GE)과 함께 게이트 절연막(GI)과 제1 층간 절연막(ILD1)의 사이에 배치될 수 있다.
한편, 편의상 도 16에서는 제1 및 제2 커패시터 전극들(CSE1, CSE2) 각각을 단일층으로 도시하였으나, 본 발명이 이에 한정되지는 않는다. 예를 들어, 제1 및 제2 커패시터 전극들(CSE1, CSE2) 중 적어도 하나는 다중층으로 구성될 수도 있으며, 상기 제1 및 제2 커패시터 전극들(CSE1, CSE2)의 적층 구조 및/또는 그 위치는 다양하게 변경될 수 있다.
표시 소자층(LDL)은 각 화소(PXL)의 발광 유닛(EMU)이 배치되는 층으로서, 일 예로 도 4 및 도 5에서 설명한 발광 장치와 같이 구성될 수 있다. 예를 들어, 표시 소자층(LDL)은 화소 회로층(PCL) 상부의 각 화소 영역(PXA)에 배치되는 제1 및 제2 전극들(ELT1, ELT2)과, 상기 제1 및 제2 전극들(ELT1, ELT2)의 사이에 전기적으로 연결되는 적어도 하나의 발광 다이오드(LD)를 포함할 수 있다. 일 예로, 표시 소자층(LDL)은 각각의 화소 영역(PXA)에서 화소 회로층(PCL)의 상부에 형성되어 각각의 발광 유닛(EMU)을 구성하는 복수의 발광 다이오드들(LD)을 포함할 수 있다.
실시예에 따라, 표시 소자층(LDL)의 제1 전극(ELT1), 즉 제1 화소 전극은 제1 컨택홀(CH1)을 통해 화소 회로층(PCL)의 회로 소자, 일 예로, 적어도 하나의 트랜지스터(T)와 전기적으로 연결될 수 있다. 그리고, 표시 소자층(LDL)의 제2 전극(ELT2), 즉, 제2 화소 전극은 제2 컨택홀(CH2)을 통해 도시되지 않은 전원선(또는, 제어선)과 전기적으로 연결될 수 있다. 실시예에 따라, 상기 전원선은 화소 회로층(PCL)에 형성되는 적어도 하나의 도전층과 동일한 층 상에 배치되어, 제2 컨택홀(CH2)을 통해 표시 소자층(LDL)의 제2 전극(ELT2)과 전기적으로 연결될 수 있으나, 이에 한정되지는 않는다.
상술한 실시예와 같이, 각 화소(PXL)의 발광 유닛(EMU)은, 적어도 하나의 발광 다이오드(LD)를 이용한 발광 장치로 구성될 수 있다. 본 발명의 실시예에 의한 발광 장치에 대해서는 앞서 상세히 설명하였으므로, 상기 발광 장치에 대응하는 각각의 발광 유닛(EMU) 및 상기 발광 유닛(EMU)을 구성하기 위한 표시 소자층(LDL)에 대한 상세한 설명은 생략하기로 한다.
본 발명의 기술 사상은 전술한 실시예에 따라 구체적으로 기술되었으나, 상기 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 지식을 가진 자라면 본 발명의 기술 사상의 범위 내에서 다양한 변형 예가 가능함을 이해할 수 있을 것이다.
본 발명의 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라, 특허 청구범위에 의해 정해져야만 할 것이다. 또한, 특허 청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (20)

  1. 기판;
    상기 기판 상에 서로 이격되어 배치된 제1 전극 및 제2 전극;
    상기 제1 전극과 상기 제2 전극의 사이에 배치되며, 길이 방향의 양측에 제1 단부 및 제2 단부를 갖는 적어도 하나의 발광 다이오드;
    상기 발광 다이오드의 상부를 커버하도록 배치되며, 상기 발광 다이오드의 상기 제1 및 제2 단부들을 노출하는 절연 패턴;
    상기 발광 다이오드의 상기 제1 단부에 접촉되며, 상기 제1 단부를 상기 제1 전극에 전기적으로 연결하는 제1 컨택 전극; 및
    상기 발광 다이오드의 상기 제2 단부에 접촉되며, 상기 제2 단부를 상기 제2 전극에 전기적으로 연결하는 제2 컨택 전극을 포함하며,
    상기 절연 패턴은, 상기 기판의 상부에서 보았을 때 상기 발광 다이오드의 상기 제1 및 제2 단부들을 완전히 커버하며, 하단 영역에서 폭이 감소하는 형상의 단면을 가지는 발광 장치.
  2. 제1항에 있어서,
    상기 제1 및 제2 컨택 전극들은 각각 상기 제1 및 제2 단부들에서 상기 발광 다이오드의 양 측면에 접촉되며,
    상기 제1 및 제2 컨택 전극들 각각의 일측 끝단은 상기 발광 다이오드의 상부면 상으로 연장되지 않고 상기 절연 패턴의 하단 영역에 접촉되는 발광 장치.
  3. 제1항에 있어서,
    상기 제1 및 제2 컨택 전극들은 상기 발광 다이오드를 사이에 두고 서로 이격되며, 상기 기판 상의 서로 동일한 층 또는 동일한 높이에 배치되는 발광 장치.
  4. 제1항에 있어서,
    상기 절연 패턴은,
    상기 발광 다이오드의 상기 제1 단부 상에 배치되며, 경사면 또는 곡면을 가지는 제1 측면; 및
    상기 발광 다이오드의 상기 제2 단부 상에 배치되며, 경사면 또는 곡면을 가지는 제2 측면을 포함하는 발광 장치.
  5. 제4항에 있어서,
    상기 제1 측면의 상단부는, 상기 기판의 상부에서 보았을 때 상기 제1 단부로부터 상기 제1 전극 방향으로 상기 제1 및 제2 컨택 전극들의 두께 이상의 거리만큼 이격된 지점에 위치되고,
    상기 제2 측면의 상단부는, 상기 기판의 상부에서 보았을 때 상기 제2 단부로부터 상기 제2 전극 방향으로 상기 제1 및 제2 컨택 전극들의 두께 이상의 거리만큼 이격된 지점에 위치되는 발광 장치.
  6. 제1항에 있어서,
    상기 절연 패턴은, 상기 제1 및 제2 컨택 전극들 각각의 두께 이상의 두께를 가지는 발광 장치.
  7. 제1항에 있어서,
    상기 제1 전극과 상기 제1 컨택 전극의 일 영역 사이에 배치된 적어도 한 층의 제1 절연막; 및
    상기 제2 전극과 상기 제2 컨택 전극의 일 영역 사이에 배치된 적어도 한 층의 제2 절연막을 더 포함하는 발광 장치.
  8. 제7항에 있어서,
    상기 절연 패턴은, 상기 제1 및 제2 절연막들 각각의 두께보다 작은 두께를 가지는 발광 장치.
  9. 제1항에 있어서,
    상기 절연 패턴의 상부면은 상기 발광 다이오드의 길이보다 큰 폭을 가지는 발광 장치.
  10. 제1항에 있어서,
    상기 절연 패턴 상에 상기 발광 다이오드와 중첩되도록 배치되며, 상기 절연 패턴에 의해 상기 발광 다이오드 및 상기 제1 및 제2 컨택 전극들과 분리된 도전 패턴을 더 포함하는 발광 장치.
  11. 제10항에 있어서,
    상기 도전 패턴은 상기 제1 및 제2 컨택 전극들과 동일한 물질로 구성되며, 전기적으로 격리된 발광 장치.
  12. 제1항에 있어서,
    상기 기판과 상기 발광 다이오드의 사이에 배치되는 제3 절연막을 더 포함하는 발광 장치.
  13. 제1항에 있어서,
    상기 발광 다이오드는 상기 기판의 일면 상에 수평으로 배치되며, 상기 제1 전극과 상기 제2 전극의 사이에 가로 방향으로 배열되는 발광 장치.
  14. 제1항에 있어서,
    상기 발광 다이오드는 나노 스케일 내지 마이크로 스케일의 직경 또는 길이를 가지는 막대형 발광 다이오드인 발광 장치.
  15. 기판 상에 서로 이격되도록 제1 및 제2 전극들을 형성하는 단계;
    상기 제1 및 제2 전극들이 형성된 상기 기판 상에 제1 절연 물질층을 형성하는 단계;
    상기 제1 절연 물질층이 형성된 상기 기판 상에 적어도 하나의 발광 다이오드를 공급하고, 상기 발광 다이오드의 제1 및 제2 단부들이 각각 상기 제1 및 제2 전극들에 인접하도록 상기 제1 및 제2 전극들의 사이에 상기 발광 다이오드를 배열하는 단계;
    상기 발광 다이오드가 배열된 상기 기판 상에 제2 절연 물질층을 형성하는 단계;
    상기 제2 절연 물질층이 형성된 상기 기판 상에 마스크를 형성하고, 상기 제1 및 제2 전극들의 적어도 일 영역과 상기 제1 및 제2 단부들을 노출하도록 상기 제1 및 제2 절연 물질층들을 식각하는 단계; 및
    상기 제1 및 제2 단부들을 각각 상기 제1 및 제2 전극들에 연결하는 제1 및 제2 컨택 전극들을 형성하는 단계를 포함하며,
    상기 제1 및 제2 절연 물질층들을 식각하는 단계에서, 상기 제1 및 제2 단부들이 위치한 상기 발광 다이오드의 양측 상부에서 상기 제2 절연 물질층을 과식각하여, 상기 발광 다이오드의 상부에서 상기 제1 및 제2 단부들을 완전히 커버하되 상기 발광 다이오드에 가까운 하단 영역에서 폭이 감소하는 절연 패턴을 형성함을 특징으로 하는 발광 장치의 제조 방법.
  16. 제15항에 있어서,
    상기 마스크를 형성하는 단계는,
    상기 제2 절연 물질층이 형성된 상기 기판 상에 포토 레지스트층을 형성하는 단계; 및
    상기 제1 및 제2 단부들로부터 각각 소정 거리 이격된 지점들에서 상기 제1 및 제2 전극들 상부의 상기 제2 절연 물질층을 부분적으로 노출하도록 상기 포토 레지스트층에 제1 및 제2 개구부들을 형성하는 단계를 포함하는 발광 장치의 제조 방법.
  17. 제15항에 있어서,
    상기 제1 및 제2 컨택 전극들을 형성하는 단계에서, 상기 절연 패턴 상에, 상기 발광 다이오드 및 상기 제1 및 제2 컨택 전극들과 분리되는 도전 패턴을 더 형성함을 특징으로 하는 발광 장치의 제조 방법.
  18. 제15항에 있어서,
    상기 제1 및 제2 전극들을, 상기 기판 상의 동일한 층 상에 동시에 형성하는 발광 장치의 제조 방법.
  19. 제15항에 있어서,
    상기 제1 및 제2 컨택 전극들을, 상기 기판 상의 동일한 층 상에 동시에 형성하는 발광 장치의 제조 방법.
  20. 표시 영역을 포함하는 기판; 및
    상기 표시 영역에 배치된 화소를 포함하며,
    상기 화소는,
    상기 기판의 일 영역 상에 서로 이격되어 배치된 제1 전극 및 제2 전극;
    상기 제1 전극과 상기 제2 전극의 사이에 배치되며, 길이 방향의 양측에 제1 단부 및 제2 단부를 갖는 적어도 하나의 발광 다이오드;
    상기 발광 다이오드의 상부를 커버하도록 배치되며, 상기 발광 다이오드의 상기 제1 및 제2 단부들을 노출하는 절연 패턴;
    상기 발광 다이오드의 상기 제1 단부에 접촉되며, 상기 제1 단부를 상기 제1 전극에 연결하는 제1 컨택 전극; 및
    상기 발광 다이오드의 상기 제2 단부에 접촉되며, 상기 제2 단부를 상기 제2 전극에 연결하는 제2 컨택 전극을 포함하며,
    상기 절연 패턴은, 상기 기판의 상부에서 보았을 때 상기 발광 다이오드의 상기 제1 및 제2 단부들을 완전히 커버하며, 하단 영역에서 폭이 감소하는 형상의 단면을 가지는 표시 장치.
PCT/KR2019/000711 2018-07-27 2019-01-17 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치 WO2020022596A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19840534.2A EP3832740A4 (en) 2018-07-27 2019-01-17 LIGHT EMITTING DEVICE, METHOD OF MANUFACTURE THEREOF AND DISPLAY DEVICE THEREFOR
CN201980050034.2A CN112514086A (zh) 2018-07-27 2019-01-17 发光器件、其制造方法及具有其的显示设备
US17/263,391 US11749783B2 (en) 2018-07-27 2019-01-17 Light emitting device, manufacturing method thereof, and display device having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180087701A KR102559097B1 (ko) 2018-07-27 2018-07-27 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치
KR10-2018-0087701 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020022596A1 true WO2020022596A1 (ko) 2020-01-30

Family

ID=69181838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000711 WO2020022596A1 (ko) 2018-07-27 2019-01-17 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치

Country Status (5)

Country Link
US (1) US11749783B2 (ko)
EP (1) EP3832740A4 (ko)
KR (1) KR102559097B1 (ko)
CN (1) CN112514086A (ko)
WO (1) WO2020022596A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210288104A1 (en) * 2020-03-11 2021-09-16 Samsung Display Co., Ltd. Display device and manufacturing method thereof
US20210376210A1 (en) * 2020-06-01 2021-12-02 Samsung Display Co., Ltd. Pixel, method of manufacturing the same, and display device including the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102604659B1 (ko) * 2018-07-13 2023-11-21 삼성디스플레이 주식회사 발광 장치 및 이의 제조 방법
KR102535276B1 (ko) 2018-12-20 2023-05-23 삼성디스플레이 주식회사 표시 장치 및 그의 제조 방법
KR20210035362A (ko) * 2019-09-23 2021-04-01 삼성디스플레이 주식회사 표시 장치
KR20210065239A (ko) * 2019-11-26 2021-06-04 삼성디스플레이 주식회사 표시 장치
KR20200026845A (ko) * 2020-02-20 2020-03-11 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치
KR20210124564A (ko) * 2020-04-03 2021-10-15 삼성디스플레이 주식회사 표시 장치
KR20210132255A (ko) 2020-04-24 2021-11-04 삼성디스플레이 주식회사 표시 장치
KR20210143961A (ko) * 2020-05-20 2021-11-30 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 표시 장치
KR20210150631A (ko) 2020-06-03 2021-12-13 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR20210151272A (ko) 2020-06-04 2021-12-14 삼성디스플레이 주식회사 표시 장치
KR20210152086A (ko) * 2020-06-05 2021-12-15 삼성디스플레이 주식회사 발광 소자, 이의 제조 방법 및 표시 장치
KR20220019141A (ko) * 2020-08-06 2022-02-16 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR20220070127A (ko) * 2020-11-20 2022-05-30 고려대학교 산학협력단 나노로드 발광소자 및 그 제조 방법
KR20220088565A (ko) 2020-12-18 2022-06-28 삼성디스플레이 주식회사 표시 장치
CN113571619B (zh) * 2021-06-30 2023-04-07 上海天马微电子有限公司 显示面板、显示装置及显示面板的制备方法
KR20230028608A (ko) * 2021-08-19 2023-03-02 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150037708A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 유기 발광 소자
JP2017055020A (ja) * 2015-09-11 2017-03-16 株式会社東芝 半導体装置の製造方法
KR20170063326A (ko) * 2015-11-30 2017-06-08 엘지디스플레이 주식회사 유기 발광 표시 장치
JP2017201649A (ja) * 2016-05-02 2017-11-09 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
KR20180009436A (ko) * 2016-07-18 2018-01-29 삼성전자주식회사 반도체 발광소자

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914929B1 (ko) 1968-05-13 1974-04-11
JPS4814394B1 (ko) 1968-12-06 1973-05-07
JP3337405B2 (ja) * 1996-12-27 2002-10-21 シャープ株式会社 発光表示素子およびその電気配線基板への接続方法ならびに製造方法
TWI302382B (en) 2004-09-15 2008-10-21 Yu Nung Shen Light emitting diode package and its packaging method
JP2006318910A (ja) 2005-05-11 2006-11-24 Lg Electronics Inc 電界発光素子及びその製造方法、電界発光表示装置及びその製造方法
JP4914929B2 (ja) 2009-10-15 2012-04-11 シャープ株式会社 発光装置およびその製造方法
KR20110041401A (ko) 2009-10-15 2011-04-21 샤프 가부시키가이샤 발광 장치 및 그 제조 방법
US8872214B2 (en) 2009-10-19 2014-10-28 Sharp Kabushiki Kaisha Rod-like light-emitting device, method of manufacturing rod-like light-emitting device, backlight, illuminating device, and display device
JP4814394B2 (ja) * 2010-03-05 2011-11-16 シャープ株式会社 発光装置の製造方法
WO2012005540A2 (ko) 2010-07-08 2012-01-12 주식회사 엘지화학 유기 발광 소자 및 이의 제조방법
KR101490758B1 (ko) 2013-07-09 2015-02-06 피에스아이 주식회사 초소형 led 전극어셈블리 및 이의 제조방법
KR101436123B1 (ko) 2013-07-09 2014-11-03 피에스아이 주식회사 초소형 led를 포함하는 디스플레이 및 이의 제조방법
KR101987196B1 (ko) * 2016-06-14 2019-06-11 삼성디스플레이 주식회사 픽셀 구조체, 픽셀 구조체를 포함하는 표시장치 및 그 제조 방법
KR20180007025A (ko) 2016-07-11 2018-01-22 삼성디스플레이 주식회사 초소형 발광 소자를 포함하는 픽셀 구조체, 표시장치 및 그 제조방법
KR102608419B1 (ko) * 2016-07-12 2023-12-01 삼성디스플레이 주식회사 표시장치 및 표시장치의 제조방법
KR102592276B1 (ko) * 2016-07-15 2023-10-24 삼성디스플레이 주식회사 발광장치 및 그의 제조방법
KR20180071465A (ko) * 2016-12-19 2018-06-28 삼성디스플레이 주식회사 발광장치 및 그의 제조방법
KR102587215B1 (ko) * 2016-12-21 2023-10-12 삼성디스플레이 주식회사 발광 장치 및 이를 구비한 표시 장치
KR102513267B1 (ko) * 2017-10-13 2023-03-23 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR102552602B1 (ko) 2018-07-10 2023-07-10 삼성디스플레이 주식회사 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150037708A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 유기 발광 소자
JP2017055020A (ja) * 2015-09-11 2017-03-16 株式会社東芝 半導体装置の製造方法
KR20170063326A (ko) * 2015-11-30 2017-06-08 엘지디스플레이 주식회사 유기 발광 표시 장치
JP2017201649A (ja) * 2016-05-02 2017-11-09 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
KR20180009436A (ko) * 2016-07-18 2018-01-29 삼성전자주식회사 반도체 발광소자

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210288104A1 (en) * 2020-03-11 2021-09-16 Samsung Display Co., Ltd. Display device and manufacturing method thereof
EP3890012A1 (en) * 2020-03-11 2021-10-06 Samsung Display Co., Ltd. Display device and manufacturing method thereof
US20210376210A1 (en) * 2020-06-01 2021-12-02 Samsung Display Co., Ltd. Pixel, method of manufacturing the same, and display device including the same

Also Published As

Publication number Publication date
KR102559097B1 (ko) 2023-07-26
KR20200013190A (ko) 2020-02-06
US11749783B2 (en) 2023-09-05
KR20230115279A (ko) 2023-08-02
EP3832740A1 (en) 2021-06-09
US20210167253A1 (en) 2021-06-03
EP3832740A4 (en) 2022-04-27
CN112514086A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2020022596A1 (ko) 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치
WO2020017718A1 (ko) 발광 장치, 그의 제조 방법, 및 이를 포함한 표시 장치
WO2020059990A1 (ko) 표시 장치 및 그의 제조 방법
WO2020149471A1 (ko) 표시 장치
WO2020040384A1 (ko) 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치
WO2020175783A1 (ko) 표시 장치
WO2020059989A1 (ko) 표시 장치 및 그의 제조 방법
WO2020145461A1 (ko) 표시 장치 및 그의 제조 방법
WO2020122337A1 (ko) 표시 장치 및 그의 제조 방법
WO2020075935A1 (ko) 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치
WO2020130249A1 (ko) 표시 장치 및 그의 제조 방법
WO2020138610A1 (ko) 표시 장치 및 그의 리페어 방법
WO2020111413A1 (ko) 표시 장치
WO2020075936A1 (ko) 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치
WO2020149474A1 (ko) 발광 장치, 이를 포함하는 표시 장치 및 표시 장치의 제조 방법
WO2020071599A1 (ko) 표시 장치 및 그의 제조 방법
WO2020013408A1 (ko) 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치
WO2020226276A1 (ko) 화소 및 이를 구비한 표시 장치
WO2020071600A1 (ko) 표시 장치
WO2020149476A1 (ko) 발광 장치, 이를 포함하는 표시 장치
WO2020209484A1 (ko) 화소, 이를 구비한 표시 장치 및 그의 제조 방법
WO2020111391A1 (ko) 표시 장치 및 그의 제조 방법
WO2020116732A1 (ko) 표시 장치 및 이의 제조 방법
WO2021215581A1 (ko) 표시 장치 및 그의 리페어 방법
WO2020059987A1 (ko) 발광 장치 및 이를 구비하는 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019840534

Country of ref document: EP

Effective date: 20210301