WO2019116531A1 - 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板 - Google Patents
鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板 Download PDFInfo
- Publication number
- WO2019116531A1 WO2019116531A1 PCT/JP2017/045065 JP2017045065W WO2019116531A1 WO 2019116531 A1 WO2019116531 A1 WO 2019116531A1 JP 2017045065 W JP2017045065 W JP 2017045065W WO 2019116531 A1 WO2019116531 A1 WO 2019116531A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- hot
- steel plate
- layer
- less
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 154
- 239000010959 steel Substances 0.000 title claims abstract description 154
- 239000011701 zinc Substances 0.000 title description 21
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title description 19
- 229910052725 zinc Inorganic materials 0.000 title description 19
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 239000000126 substance Substances 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 37
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 32
- 239000008397 galvanized steel Substances 0.000 claims description 32
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 28
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- 229910052742 iron Inorganic materials 0.000 claims description 12
- 239000013078 crystal Substances 0.000 abstract description 26
- 239000011248 coating agent Substances 0.000 abstract description 5
- 238000000576 coating method Methods 0.000 abstract description 5
- 239000011159 matrix material Substances 0.000 abstract 3
- 239000010410 layer Substances 0.000 description 73
- 238000007747 plating Methods 0.000 description 41
- 238000003466 welding Methods 0.000 description 41
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 36
- 238000012360 testing method Methods 0.000 description 30
- 238000000137 annealing Methods 0.000 description 27
- 229910052751 metal Inorganic materials 0.000 description 25
- 239000002184 metal Substances 0.000 description 25
- 238000005336 cracking Methods 0.000 description 24
- 238000005498 polishing Methods 0.000 description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 21
- 229910052760 oxygen Inorganic materials 0.000 description 21
- 239000001301 oxygen Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 17
- 239000011572 manganese Substances 0.000 description 16
- 230000000694 effects Effects 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 238000005275 alloying Methods 0.000 description 12
- 239000002344 surface layer Substances 0.000 description 12
- 239000010960 cold rolled steel Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 229910001566 austenite Inorganic materials 0.000 description 10
- 229910052761 rare earth metal Inorganic materials 0.000 description 10
- 229910000859 α-Fe Inorganic materials 0.000 description 10
- 239000010949 copper Substances 0.000 description 9
- 230000006872 improvement Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- 229910052748 manganese Inorganic materials 0.000 description 8
- 239000010955 niobium Substances 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 239000011575 calcium Substances 0.000 description 7
- 239000011651 chromium Substances 0.000 description 7
- 239000006104 solid solution Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- 230000000717 retained effect Effects 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000008119 colloidal silica Substances 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 5
- 238000005246 galvanizing Methods 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 229910052758 niobium Inorganic materials 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 238000002791 soaking Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229910000794 TRIP steel Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910001338 liquidmetal Inorganic materials 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000001887 electron backscatter diffraction Methods 0.000 description 2
- 229910001651 emery Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010053759 Growth retardation Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- -1 Mn and Ni Chemical compound 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012926 crystallographic analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
- B32B15/015—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
- C23C28/025—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/028—Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
- C25D7/0614—Strips or foils
Definitions
- the present invention relates to a steel plate, a hot-dip galvanized steel plate and an alloyed hot-dip galvanized steel plate.
- a high strength steel plate is used as a steel plate for a car in order to reduce the weight of the car to improve the fuel consumption, to reduce the emission of carbon dioxide gas, and to secure the safety of the passenger.
- high-strength galvanized steel sheets high-strength alloyed galvanized steel sheets have also been used in order to ensure sufficient corrosion resistance of car bodies and parts (see, for example, Patent Documents 1 to 4).
- LME Liquid Metal Embrittlement Cracking
- the high strength TRIP steel plate is a steel plate having higher energy absorbing capacity and press formability by containing C, Si, and Mn concentrations higher than ordinary high strength steel plates and containing retained austenite.
- LME is generally generated during spot welding of a galvanized high strength steel plate.
- LME occurs because the zinc melted with the galvanized steel sheet contacts the high strength cold rolled steel sheet There is.
- Patent Document 5 discloses a plated steel sheet having a surface subjected to alloying galvanization, and the base steel has C: 0.04 to 0.25 mass%. Si: 0.01 to 2.0% by mass, Mn: 0.5 to 3.0% by mass, P: 0.1% by mass or less, S: 0.03% by mass or less, Ti: 0.
- Patent Document 6 C: 0.05 to 0.20%, Si: 0.5 to 2.0%, Mn: 1.0 to 2.5% by mass%, and Fe and unavoidable in the balance.
- cooling after hot rolling at a cooling rate of 30 ° C / s or more, and winding it at 450 to 580 ° C.
- the hot-rolled steel plate is cold-rolled to a thickness of 5 ⁇ m or less, and the cold-rolled steel plate is subjected to Fe-based electroplating so that the adhesion amount is 3 g / m 2 or more.
- There has been proposed a method for producing an alloyed hot-dip galvanized steel sheet for spot welding wherein the grain boundary oxidation depth of the alloyed hot-dip galvanized steel sheet is 5 ⁇ m or less by performing the galvanizing treatment.
- the austenite generated during spot welding is refined by the pinning action of the precipitate of the additive element and / or the composite precipitate, and the diffusion penetration path of the molten zinc is complicated to make the molten zinc Intrusion is to be suppressed.
- the increase in the penetration resistance of molten zinc alone is not necessarily sufficient to improve the resistance to embrittlement resistance to molten metal.
- the steel plate manufactured by the method described in Patent Document 6 is melted even when spot welding is performed under conditions of a large current and a large heat input that causes scattering by setting the grain boundary oxidation depth to 5 ⁇ m or less. It is possible to suppress the occurrence of metal embrittlement cracking. However, if spot welding is performed on a portion where the residual stress after processing is large, molten zinc intrudes into the grain boundaries of the welded portion, and molten metal embrittlement cracking tends to occur.
- An object of the present invention is to provide a steel plate, a hot-dip galvanized steel plate and an alloyed hot-dip galvanized steel plate which are excellent in resistance to the embrittlement cracking resistance to molten metal.
- This invention is made in order to solve the said subject, and makes the following steel plates, a hot dip galvanized steel plate, and an alloying hot dip galvanized steel plate a summary.
- the chemical composition of the base material is mass%, C: 0.17 to 0.40%, Si: 0.10 to 2.50%, Mn: 1.00 to 10.00%, P: 0.001 to 0.03%, S: 0.0001 to 0.02%, Al: 0.001 to 2.50%, N: 0.0001 to 0.010%, O: 0.0001 to 0.010%, Ti: 0 to 0.10%, Nb: 0 to 0.10%, V: 0 to 0.10%, B: 0 to 0.010%, Cr: 0 to 2.00%, Ni: 0 to 2.00%, Cu: 0 to 2.00%, Mo: 0 to 2.00%, Ca: 0 to 0.50%, Mg: 0 to 0.50%, REM: 0 to 0.50%, Remainder: Fe and impurities, Having an internal oxide layer in which at least a part of the grain boundary is covered with an oxide to a depth of 5.0 ⁇ m or more from the surface of the base material, and The grain boundary coverage of the oxide is 60% or more in a region from
- a hot-dip galvanized layer is provided on the surface of the steel sheet according to any one of (1) to (4) above, Hot-dip galvanized steel sheet.
- the adhesion amount of the hot-dip galvanized layer is 70 g / m 2 or less.
- An alloyed hot-dip galvanizing layer is provided on the surface of the steel sheet according to any one of the above (1) to (4), Alloyed galvanized steel sheet.
- the adhesion amount of the galvannealed layer is 70 g / m 2 or less.
- the alloyed hot dip galvanized layer contains, by mass%, Fe: 7.0 to 15.0%.
- FIG. 3 is a schematic view for explaining the process of calculating the grain boundary coverage.
- A) shows the grain boundary oxide of the steel surface layer photographed by SEM-reflected electron image, and (b) shows a grain boundary MAP with a crystal orientation difference of 15 ° or more at the same position.
- (c) shows a portion covered with oxide at grain boundaries
- (d) shows a portion not covered with oxide. It is a figure which shows the aspect of the test which evaluates molten metal embrittlement cracking resistance.
- (A) shows the aspect which carries out spot welding of two steel plates
- (b) shows the aspect of current control at the time of spot welding two steel plates.
- FIG. 1 The aspect of LME which generate
- Three steel plates can be joined by overlapping the steel plates 1a, 1b, and 1c and spot welding them to form the nugget 2.
- LME is generated by the stress generated around the weld during welding, when the zinc of the plated layer melted by heat during welding intrudes into the grain boundaries of the structure of the weld and the grain boundary is embrittled. . LME can occur not only when three steel plates are stacked and welded as illustrated in FIG. 1, but also when two or four steel plates are stacked and spot welded.
- the present inventors focused their attention on the state of the surface layer of the steel sheet and repeatedly conducted intensive studies on a method of suppressing the generation of LME by molten metal (particularly, molten zinc), and reached the following findings.
- the oxidizable element When heat treatment is performed on a steel plate containing oxidizable elements such as Si and Mn in the base material under predetermined conditions, the oxidizable element is not at the surface of the steel plate but at the grain boundaries inside the steel plate. Oxides may form.
- inter oxide layer a layer in which the above internal oxidation has occurred is made to exist to a predetermined depth, and the crystal by oxide It has been found that it is important to increase the grain boundary coverage (hereinafter referred to as “grain boundary coverage").
- the oxide produced on the surface of the steel sheet during annealing is divided into the form of external oxidation and internal oxidation depending on the oxygen potential in the annealing atmosphere.
- the change in the form is determined by the competition between the flux due to the diffusion of the oxidizable element from the thickness center to the surface of the steel sheet and the flux due to the diffusion of oxygen from the surface to the thickness center of the steel sheet.
- the heat treatment temperature is set high, tensile stress is applied to the steel plate, and heat treatment is performed in a state in which the crystal lattice is expanded, so that oxygen can be efficiently contained in the lattice in the crystal grains of the steel sheet surface layer. It has been found that it becomes possible to form a solid solution, and the coverage of internal oxide to grain boundaries is also improved.
- Carbon (C) is an element necessary for improvement of steel plate strength. If the C content is less than 0.17%, retained austenite can not be obtained sufficiently, which makes it difficult to achieve both high strength and high ductility. On the other hand, if the C content exceeds 0.40%, the weldability is significantly reduced. Therefore, the C content is 0.17 to 0.40%.
- the C content is preferably 0.20% or more and 0.35% or less.
- Si 0.10 to 2.50% Silicon (Si) is an element which contributes to the improvement of steel plate strength by suppressing temper softening of martensite in addition to solid solution strengthening. Further, Si is important for suppressing precipitation of iron-based carbides in austenite and securing retained austenite volume ratio of steel sheet structure in a steel sheet having improved workability by transformation-induced plasticity (TRIP effect) of retained austenite It is an element.
- Si is an element which contributes to the improvement of steel plate strength by suppressing temper softening of martensite in addition to solid solution strengthening. Further, Si is important for suppressing precipitation of iron-based carbides in austenite and securing retained austenite volume ratio of steel sheet structure in a steel sheet having improved workability by transformation-induced plasticity (TRIP effect) of retained austenite It is an element.
- the Si content is less than 0.10%, the hardness of tempered martensite is significantly reduced, and retained austenite can not be sufficiently obtained, and the workability is insufficient.
- the Si content exceeds 2.50%, the steel plate becomes brittle and the ductility is lowered, and the plating property is lowered and non-plating tends to occur. Therefore, the Si content is 0.10 to 2.50%.
- the Si content is preferably 0.50% or more, and more preferably 2.00% or less.
- Mn 1.00 to 10.00%
- Manganese (Mn) is an element that enhances the hardenability and contributes to the improvement of the steel sheet strength.
- Mn content is less than 1.00%, a soft structure is generated during cooling after annealing, and it becomes difficult to secure strength.
- the Mn content exceeds 10.00%, the plating property is lowered due to the selective oxidation at the time of reduction and annealing, and the workability and the weldability are lowered. Therefore, the Mn content is 1.00 to 10.00%.
- the Mn content is preferably 1.30% or more, and preferably 5.00% or less from the viewpoint of weldability.
- Phosphorus (P) is an element having the effect of enhancing the steel plate strength and suppressing the penetration of molten zinc into the steel plate structure. If the P content is less than 0.001%, the above effects can not be sufficiently obtained. On the other hand, if the P content exceeds 0.03%, the steel sheet becomes brittle due to the segregation of P to the grain boundaries. Therefore, the P content is made 0.001 to 0.03%.
- the P content is preferably 0.005% or more, and more preferably 0.02% or less.
- S 0.0001 to 0.02%
- Sulfur (S) is an element that causes hot embrittlement and inhibits weldability and corrosion resistance.
- the production cost is greatly increased, so the S content becomes substantially 0.0001% or more.
- the S content is made 0.0001 to 0.02%.
- the S content is preferably 0.0010% or more, and more preferably 0.01% or less.
- Al 0.001 to 2.50%
- Aluminum (Al) is a deoxidizing element, and is an element which suppresses the formation of iron-based carbides and contributes to the improvement of the strength. If the Al content is less than 0.001%, a sufficient deoxidizing effect can not be obtained. On the other hand, when the Al content exceeds 2.50%, the ferrite fraction increases and the strength decreases. Therefore, the Al content is set to 0.001 to 2.50%.
- the Al content is preferably 0.005% or more, and more preferably 2.00% or less.
- N 0.0001 to 0.010%
- Nitrogen (N) is an element that forms nitrides to inhibit stretch flangeability and causes blowholes during welding. In order to make the N content less than 0.0001%, the manufacturing cost is greatly increased, so the N content is substantially 0.0001% or more. On the other hand, if N exceeds 0.010%, the stretch flangeability is significantly reduced, and blow holes occur during welding. Therefore, the N content is made 0.0001 to 0.010%.
- the N content is preferably as low as possible, but is preferably 0.0010% or more in terms of production cost. Also, the N content is preferably 0.008% or less.
- Oxygen (O) is an element that forms an oxide and inhibits stretch flangeability. In order to make the O content less than 0.0001%, the manufacturing cost is greatly increased, so the O content becomes substantially 0.0001% or more. On the other hand, when the O content exceeds 0.010%, the stretch flangeability is significantly reduced. Therefore, the O content is made 0.0001 to 0.010%.
- the O content is preferably as low as possible, but is preferably 0.0010% or more in terms of production cost.
- the O content is preferably 0.007% or less.
- Ti 0 to 0.10% Nb: 0 to 0.10% V: 0 to 0.10% Titanium (Ti), niobium (Nb) and vanadium (V) are all elements that contribute to the improvement of steel sheet strength by dislocation strengthening through precipitation strengthening, fine grain strengthening by grain growth suppression, and recrystallization suppression. It is. Therefore, one or more selected from these elements may be contained as necessary.
- the content of each of Ti, Nb and V is 0.10% or less.
- the content of one or more selected from Ti, Nb and V is preferably 0.005% or more, more preferably 0.010% or more .
- B 0 to 0.010% Boron (B) is an element which segregates to austenite grain boundaries at the time of welding, strengthens the grain boundaries, and contributes to the improvement of resistance to molten metal embrittlement cracking. Therefore, B may be contained as needed. However, if the B content exceeds 0.010%, carbides and nitrides are formed, the above effects are saturated, and the hot workability is reduced. Therefore, the B content is made 0.010% or less. The B content is preferably 0.005% or less. In addition, in order to acquire said effect, it is preferable that B content is 0.0005% or more, and it is more preferable that it is 0.0008% or more.
- Cr 0 to 2.00%
- Ni 0 to 2.00%
- Cu 0 to 2.00%
- Chromium (Cr), nickel (Ni) and copper (Cu) are all elements contributing to the improvement of the strength. Therefore, one or more selected from these elements may be contained as necessary.
- the contents of Cr, Ni and Cu are all 2.00% or less.
- the content of these elements is preferably 1.50% or less.
- it is preferable that content of 1 or more types selected from Cr, Ni, and Cu is 0.01% or more, and it is more preferable that it is 0.10% or more .
- Mo 0 to 2.00% Molybdenum (Mo), like Mn and Ni, is an element that enhances the hardenability of the steel and contributes to the improvement of the strength. Therefore, Mo may be contained as needed. However, when the Mo content exceeds 2.00%, the hot workability is lowered and the productivity is lowered. Therefore, the Mo content is 2.00% or less. The Mo content is preferably 1.50% or less. In addition, in order to acquire said effect, it is preferable that Mo content is 0.01% or more, and it is more preferable that it is 0.10% or more.
- Ca 0 to 0.50% Mg: 0 to 0.50% REM: 0 to 0.50% Calcium (Ca), magnesium (Mg) and rare earth elements (REM) are all elements that contribute to the improvement of formability. Therefore, one or more selected from these elements may be contained as necessary.
- the content of each of Ca, Mg and REM is 0.50% or less.
- the content of these elements is preferably 0.35% or less.
- it is preferable that content of 1 or more types selected from Ca, Mg, and REM is 0.0001% or more, and it is more preferable that it is 0.0010% or more .
- REM refers to a total of 17 elements of Sc, Y and lanthanoid, and the content of the REM means the total content of these elements.
- lanthanoid is added industrially in the form of misch metal.
- the balance is Fe and impurities.
- impurity is a component which is mixed due to various factors such as ore, scrap, etc. and various factors of the manufacturing process when industrially producing a steel plate, and is allowed within a range which does not adversely affect the present invention Means one.
- the steel plate according to the present invention has an internal oxide layer from the surface of the base material to a depth of 5.0 ⁇ m or more.
- the internal oxide layer is a layer in which at least a part of the grain boundaries of the base material is covered with an oxide of an oxidizable element such as Si or Mn. By coating the grain boundaries with the oxide, it is possible to suppress the penetration of molten metal into the grain boundaries during welding and to suppress LME cracking during welding.
- the concentration of the oxide on the surface of the base material is suppressed.
- the oxide formed on the surface of the base material lowers the wettability of the hot-dip plated metal and causes unplating. Therefore, by forming the internal oxide layer, the occurrence of non-plating can be prevented, and the plating property can be improved.
- the grain boundary coverage of an oxide needs to be 60% or more.
- Grain boundary coverage is the ratio (%) of the length of grain boundaries covered with oxide to the total length of grain boundaries in the above-mentioned region. If the depth at which the internal oxide layer is present is less than 5.0 ⁇ m or the grain boundary coverage is less than 60%, the effect of improving the resistance to metal embrittlement cracking of the steel sheet can not be obtained.
- the depth at which the internal oxide layer is present is preferably 5.5 ⁇ m or more, more preferably 6.0 ⁇ m or more.
- the grain boundary coverage is preferably 70% or more, more preferably 80% or more. Although the grain boundary coverage is most preferably 100%, a great deal of restrictions on manufacturing conditions are required for realization, which leads to a significant increase in manufacturing costs. For this reason, the upper limit is made less than 100%.
- the depth at which the internal oxide layer exists and the grain boundary coverage are determined by the following method.
- a scanning electron microscope (SEM) and backscattered electron crystallographic analysis (SEM-EBSD) are used to observe the tissue.
- SEM scanning electron microscope
- SEM-EBSD backscattered electron crystallographic analysis
- wet polishing with emery paper is applied to the surface parallel to the rolling direction and perpendicular to the plate thickness, and buff polishing using diamond abrasive grains with an average diameter of 1 ⁇ m is further performed. Finish the mirror surface. Subsequently, in order to remove the strain introduced to the polishing surface by the above-mentioned mechanical polishing, colloidal silica polishing is performed using a suspension containing alcohol as a solvent.
- the surface layer of the sample prepared by the above procedure is observed by SEM and SEM-EBSD.
- the observation magnification is selected to be, for example, 3000 times, among 1000 to 9000 times that the number of ferrite crystal grains in the microstructure is 10 or more.
- the oxide which exists in a grain boundary is confirmed by the reflection electron image in SEM.
- the color tone changes depending on the atomic number (or mass)
- the oxide and the steel structure can be easily distinguished.
- the measurement magnification may be an arbitrary magnification of 1000 to 9000, and may be, for example, the same magnification as the observation of the SEM-reflected electron image described above. Further, the measurement interval (STEP) may be set to 0.01 to 0.1 ⁇ m and 0.05 ⁇ m may be selected.
- a CI value is a numerical value used as the parameter
- the grain boundary MAP of the ferrite obtained by the above procedure as shown in FIG. 3 (b)
- the length of the grain boundary covered with the oxide hereinafter referred to as “ Measure the oxide coating length.
- the length of the grain boundary not coated with the oxide hereinafter, referred to as "the length of the non-coated oxide”
- the grain boundary coverage (%) is calculated by dividing the obtained oxide coating length by the length of all grain boundaries.
- the steel plate according to the present invention has a decarburized layer from the surface of the base material to a depth of 50 ⁇ m or more.
- the decarburized layer is a carbon deficient layer present near the surface of the base material.
- the hardness decreases as the carbon content decreases.
- the area of the surface layer having a hardness of 80% or less with respect to the average hardness of the area of 2/5 to 3/5 of the plate thickness is used as the decarburized layer.
- a decarburized layer exists to a depth of 50 ⁇ m or more from the surface of the base material.
- the depth at which the decarburized layer is present is preferably more than 80 ⁇ m, and more preferably 100 ⁇ m or more.
- the upper limit is not particularly defined, even if it exceeds 150 ⁇ m, the effect of suppressing the occurrence of LME is saturated, and rather, the tensile strength is lowered and the load resistance at the bending deformation is lowered. Therefore, the depth at which the decarburized layer is present is preferably 150 ⁇ m or less.
- (D) Tensile Strength As described above, when the steel plate according to the present invention is used as a steel plate for an automobile, it is desirable to have high strength.
- the mechanical properties are not particularly limited, but the tensile strength is preferably 980 MPa or more, more preferably 1050 MPa or more, and still more preferably 1100 MPa or more.
- the upper limit of the tensile strength is preferably 2000 MPa.
- the steel plate according to the present invention may have a hot dip galvanized layer on the surface.
- the corrosion resistance is improved by applying a hot dip galvanized layer to the steel sheet surface.
- the hot-dip galvanized layer may be alloyed.
- the alloyed hot dip galvanized layer since Fe is taken into the hot dip galvanized layer by the alloying process, excellent weldability and paintability can be obtained.
- adhesion amount of the hot dip galvanized layer or the alloyed hot dip galvanized layer there is no particular limitation on the adhesion amount of the hot dip galvanized layer or the alloyed hot dip galvanized layer. However, if the amount of adhesion is too large, the amount of molten zinc at the time of welding will increase. Therefore, in order to more effectively suppress the occurrence of LME, it is preferable to set any adhesion amount to 70 g / m 2 or less, more preferably 60 g / m 2 or less.
- the Fe concentration of the galvannealed layer is preferably 7.0% by mass or more, and more preferably 9.0% by mass or more.
- the Fe concentration of the alloyed hot-dip galvanized layer exceeds 15.0 mass%, the proportion of ⁇ phase which is an intermetallic compound poor in workability in the alloyed layer of the hot-dip galvanized layer becomes high, and press forming In the middle, cracking of the plating layer may occur, and the so-called powdering phenomenon may cause a peeling phenomenon of plating due to plastic deformation during press molding. Therefore, the Fe concentration of the galvannealed layer is preferably 15.0% by mass or less, and more preferably 13.0% by mass or less.
- the steel plate according to the present invention may have a nickel electroplating layer on the surface of a base material.
- the presence of the nickel electroplated layer fuses zinc and nickel during spot welding and raises the solidification temperature of the molten zinc. As a result, since the molten zinc solidifies before entering the grain boundaries, the occurrence of LME is effectively suppressed.
- the steel plate according to the present invention can be manufactured, for example, by annealing a hot-rolled steel plate or a cold-rolled steel plate under predetermined conditions.
- a hot rolled steel sheet can be manufactured by casting a molten steel having the above-described chemical composition under ordinary conditions into steel pieces and then performing hot rolling under the ordinary conditions.
- the steel slab after casting may be subjected to hot rolling after being reheated after being cooled once to a temperature of 500 ° C. or less.
- an oxide film of an oxidizable element grows on the surface of the steel slab.
- the content of the oxidizable element decreases, and thereafter, it becomes difficult to form the internal oxide layer. Therefore, after casting, it is preferable that the steel sheet be reheated to a predetermined temperature and subjected to hot rolling before the surface temperature of the billet decreases to 800 ° C. or less.
- a cold rolled steel plate can be manufactured by cold-rolling said hot rolled steel plate on normal conditions.
- annealing can be performed by a continuous annealing line, for example.
- the annealing is preferably performed in an atmosphere containing 0.1 to 30% by volume of hydrogen and H 2 O with a dew point of -40 to 20 ° C., with the balance being nitrogen and impurities. More preferably, an atmosphere containing 0.5 to 20% by volume of hydrogen and H 2 O with a dew point of ⁇ 30 to 15 ° C., still more preferably, 1 to 10% by volume of hydrogen and H 2 O of a dew point of ⁇ 20 to 10 ° C. Atmosphere.
- an annealing furnace is divided roughly into three areas, a preheat zone, a heating zone, and soaking zones. And in the steel plate concerning the present invention, let the atmosphere in a heating zone be the above-mentioned conditions. Atmosphere control is possible also in the preheating zone and soaking area. However, in the preheating zone, the ambient temperature is low, and the diffusion flux of oxygen and the oxidizable element is significantly reduced. In addition, in the soaking zone, the holding temperature is high, and the formation of austenite in the structure significantly reduces the diffusion flux of oxygen and the oxidizable element. That is, the influence of atmosphere control in the preheating zone and soaking zone on the grain boundary coverage of the internal oxide layer is small.
- the annealing temperature In order to efficiently dissolve oxygen in the steel sheet at the time of annealing, the annealing temperature needs to be higher than 750 ° C. and 900 ° C. or lower. If the annealing temperature is 750 ° C. or less, the internal oxide layer may not be sufficiently formed. On the other hand, when the annealing temperature exceeds 900 ° C., plate breakage in the sheet-passing step, excessive decarburization and generation of surface defects are caused.
- the annealing temperature is preferably 780 ° C. or more, and preferably 840 ° C. or less.
- a tensile stress of 3 to 150 MPa is applied to the steel sheet in the region of 300 ° C. or more of the heating zone at the time of annealing. If the minimum tensile stress to be applied is less than 3 MPa, the steel sheet may sag, and the manufacturability is reduced. In addition, if the maximum tensile stress to be applied is less than 3 MPa, the effect of expanding the crystal lattice and facilitating the dissolution of oxygen can not be sufficiently obtained. From the viewpoint of increasing the grain boundary coverage of the internal oxide layer, the maximum tensile stress is preferably 15 MPa or more. On the other hand, if the maximum tensile stress exceeds 150 MPa, drawing and breaking of the plate in the sheet-passing process will be caused.
- a strong stress and a weak stress are alternately applied. This is because oxygen is dissolved in the lattice of grains when a strong stress is applied, and oxygen that has been dissolved in the lattice is diffused toward grain boundaries when the stress applied subsequently is weakened (see FIG. 2) to generate precipitates (oxides) on grain boundaries.
- the difference between the maximum tensile stress and the minimum tensile stress (hereinafter referred to as "maximum-minimum stress difference") is 2 MPa or more. It is preferable that the pressure be 4 MPa or more. Furthermore, in order to satisfy the grain boundary coverage of 80% or more, the maximum-minimum stress difference is preferably 20 MPa or more.
- the tensile stress applied to the steel plate can be changed, for example, by appropriately adjusting the feed rate and the frictional force of each roller at the time of passing the continuous annealing line, and the tension measured from the tension by the pinch roller You can ask for
- the continuous hot-dip galvanizing line may be passed after passing through the continuous annealing line.
- compositions and temperature of the plating bath in which the steel sheet is immersed when hot dip galvanizing is performed there are no particular restrictions on the composition and temperature of the plating bath in which the steel sheet is immersed when hot dip galvanizing is performed.
- the composition of the plating bath is mainly composed of Zn and the effective Al amount (value obtained by subtracting the total Fe amount from the total Al amount in the plating bath) is 0.050 to 0.250 mass%.
- the effective amount in the plating bath is less than 0.050% by mass, the penetration of Fe into the plating layer excessively proceeds, and the plating adhesion may be reduced.
- the effective amount of Al in the plating bath exceeds 0.250 mass%, Al-based oxides that inhibit the movement of Fe atoms and Zn atoms are formed at the boundary between the steel plate and the plating layer, and plating adhesion is It may decrease.
- the effective amount of Al in the plating bath is more preferably 0.065% by mass or more and more preferably 0.180% by mass or less.
- the plating bath is Ag, B, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Ge, Hf, I, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, One or more selected from Pb, Rb, S, Si, Sn, Sr, Ta, Ti, V, W, Zr and REM may be included.
- the plating bath temperature is preferably 450 to 490 ° C. If the temperature of the plating bath is less than 450 ° C., the viscosity of the plating bath excessively increases, which makes it difficult to control the thickness of the plating layer, and the appearance of the galvanized steel sheet may be impaired. On the other hand, if the plating bath temperature exceeds 490 ° C., a large amount of fumes may be generated, which may make it difficult to perform a safe plating operation.
- the plating bath temperature is more preferably 455 ° C. or more, and more preferably 480 ° C. or less.
- the temperature of the steel plate at the time of immersing the steel plate in the plating bath is preferably 440 to 500.degree. If the steel plate temperature is less than 440 ° C., in order to maintain the plating temperature at 450 to 490 ° C., a large amount of heat needs to be given to the plating bath, which increases the manufacturing cost. On the other hand, when the steel plate temperature at which the steel plate is immersed in the plating bath exceeds 500 ° C., equipment for removing a large amount of heat from the plating bath is necessary to maintain the plating bath temperature at 490 ° C. or less. Will rise.
- the steel plate temperature is more preferably 450 ° C. or more, and more preferably 490 ° C. or less.
- a high pressure gas mainly composed of nitrogen on the surface of the steel plate to remove excess zinc to make the plating adhesion amount an appropriate amount.
- the steel sheet on which the hot-dip galvanized layer is formed is heated in a temperature range of 450 to 600.degree. If the alloying temperature is less than 450 ° C., alloying may not proceed sufficiently. On the other hand, when the alloying temperature exceeds 600 ° C., the alloying proceeds too much, and there is a possibility that the Fe concentration in the plating layer may exceed 15% due to the formation of the ⁇ phase.
- the alloying temperature is more preferably 470 ° C. or more, and more preferably 580 ° C. or less.
- the steel plate according to the present invention is a steel plate that can be applied to all welding such as spot, MIG, TIG, laser, etc., in which LME can occur at the time of welding.
- spot welding when spot welding is applied, the molten metal resistance to embrittlement cracking in the spot welded portion is remarkably excellent.
- test pieces for microstructure observation were taken from each test material so that the structure of the plate thickness section could be observed. Subsequently, in the test specimen after collection, a surface parallel to the rolling direction and perpendicular to the plate thickness is subjected to wet polishing with emery paper, and a buff using diamond abrasive grains having an average diameter of 1 ⁇ m. Polishing was performed to finish the observation surface into a mirror surface.
- colloidal silica polishing was performed using a suspension containing alcohol as a solvent.
- Vibromet 2 manufactured by BUEHLER was used, and automatic polishing was performed for 1 hour at a setting of an output of 40%.
- the surface layer of the test piece prepared by the above procedure was observed by SEM and SEM-EBSD.
- the SEM used for the measurement is JSM-7001F manufactured by JEOL Ltd. (JEOL).
- the observation magnification was selected such that the number of ferrite crystal grains in the microstructure is 10 or more among 1000 to 9000 times.
- the oxide which exists in a grain boundary was confirmed by the reflection electron image in SEM.
- tissue of the steel plate surface layer of 5 views was image
- the grain boundary coverage (%) was calculated by dividing the oxide coating length by the length of all grain boundaries in the grain boundary MAP of ferrite obtained by the above procedure.
- test pieces measurement of the depth at which the decarburized layer exists was performed. Specifically, Vickers hardness is measured from the surface of the base material of each test piece to a position 300 ⁇ m deep in 20 ⁇ m steps in the depth direction, and in the area of 2/5 to 3/5 plate thickness of the test material The At this time, the test force was 10 gf. And the area
- the adhesion amount (g / m ⁇ 2 >) of a plating layer and Fe concentration (mass%) were measured.
- the adhesion amount (g / m ⁇ 2 >) of the nickel electroplating layer was measured.
- the measurement of Fe concentration (mass%) of the plating layer was performed using the electron beam micro analyzer analyzer (EPMA).
- the instrument used for the measurement was JXA-8500F manufactured by JEOL Ltd. (JEOL).
- JIS No. 5 tensile test specimens were collected from the direction (width direction) perpendicular to the rolling direction and thickness direction of each test material, and a tensile test was performed according to JIS Z 2241 to measure the tensile strength (TS). .
- FIG. 4 shows the state of a test for evaluating the resistance to embrittlement resistance to molten metal.
- FIG. 4A shows an aspect of spot welding two steel plates
- FIG. 4B shows an aspect of current control when spot welding two steel plates.
- the steel plate 1d and the steel plate 1e were stacked and spot welded with a pair of electrodes 4a and 4b.
- the welding conditions are as follows.
- Electrode 4a, 4b DR type electrode made of Cr-Cu, tip outer diameter: 8 mm, R: 40 mm Applied pressure P: 450 kg Inclination angle of the electrode (the angle between the electrode center line 5 and the vertical line 6) ⁇ : 3 ° Up slope: None First energization time t1: 0.2 seconds Non-energization interval tc: 0.04 seconds Second energization time t2: 0.4 seconds Current ratio I1 / I2: 0.7 Holding time after power-on: 0.1 seconds
- Test No. 2 in Table 2 The galvannealed steel sheet shown in 24 is always used as the steel sheet 1 d in FIG. 4 and the steel sheets to be evaluated as 1 e are piled up and spot welded, and the occurrence of LME of the steel sheet on the 1 e side is observed by cross section evaluated.
- the steel plate cross section including the center of the nugget is polished, and SEM observation is performed in the same manner as described above, and the internal crack 3a between the steel plates, the external crack 3b of the contact portion between the steel plate and the spot welding electrode, and the electrode Cracks at three points of the outer crack 3c of the steel plate portion not in direct contact with the steel sheet were evaluated by the following crack scores.
- test No. 1 to 5 and 11 to 24 had a crack rating of 1 to 3 and exhibited good resistance to molten metal embrittlement cracking.
- test No. No. 1 14 and 17 were cooled once to a temperature of 500 ° C. or lower after casting, and reheating was performed, so the crack rating was 3 and compared to other examples of the present invention, molten metal embrittlement resistant cracking The result was inferior.
- test No. No. 9 had a maximum-minimum stress difference of 2 MPa or more, but the dew point at the time of annealing was extremely low, and the grain boundary coverage decreased.
- the composition, annealing conditions, and the like are outside the range defined by the present invention, there is a case where the grain boundary coverage decreases even if the maximum-minimum stress difference is large.
- test No. No. 10 did not apply tensile stress at the time of annealing, so the grain boundary coverage decreased.
- Test No. In the samples 31 to 36 and 38 to 46, since the chemical composition deviates from the specified range, the cracking rating is 4 regardless of the manufacturing conditions, and the resistance to embrittlement resistance to molten metal is deteriorated. In addition, test No. In No. 37, the C content was less than the lower limit value, so the molten metal resistance to embrittlement cracking was good, but the strength was reduced.
- test No. 33 and No. At 44 the maximum-minimum stress difference is small but the grain boundary coverage is high. This is the test No. 33 and No. At 44, the Si or Al content is higher than the range defined by the present invention, which is considered to be due to the formation of a large amount of oxide. However, since the above-mentioned composition is out of the specified range of the present invention, the resistance to metal embrittlement cracking has deteriorated.
- test No. Welding was performed in the same manner as in Example 1 using three test materials of 2, 4 and 24.
- the welding conditions are as follows.
- Electrode 4a, 4b DR type electrode made of Cr-Cu, tip outer diameter: 8 mm, R: 40 mm Applied pressure P: 450 kg Tilt angle of the electrode (the angle between the electrode center line 5 and the vertical line 6) ⁇ : 1 to 10 ° Up slope: None First energization time t1: 0.2 seconds Non-energization interval tc: 0.04 seconds Second energization time t2: 0.4 seconds Current ratio I1 / I2: 0.7 Holding time after power-on: 0.1 seconds
- Test No. 1 is performed.
- the galvannealed steel sheet shown in 24 is always used as the steel sheet 1 d in FIG. 4 and the steel sheets to be evaluated as 1 e are piled up and spot welded, and the occurrence of LME of the steel sheet on the 1 e side is observed by cross section evaluated. Further, the length of the crack after welding was adjusted by changing the inclination angle of the electrode to 3 to 10 °. As the inclination angle is larger, the residual stress generated on the surface of the steel sheet at the time of welding is increased, and thus LME cracking is more likely to occur.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Electrochemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
C:0.17~0.40%、
Si:0.10~2.50%、
Mn:1.00~10.00%、
P:0.001~0.03%、
S:0.0001~0.02%、
Al:0.001~2.50%、
N:0.0001~0.010%、
O:0.0001~0.010%、
Ti:0~0.10%、
Nb:0~0.10%、
V:0~0.10%、
B:0~0.010%、
Cr:0~2.00%、
Ni:0~2.00%、
Cu:0~2.00%、
Mo:0~2.00%、
Ca:0~0.50%、
Mg:0~0.50%、
REM:0~0.50%、
残部:Feおよび不純物であり、
前記母材の表面から5.0μm以上の深さまで、結晶粒界の少なくとも一部が酸化物に被覆された内部酸化層を有し、かつ、
前記母材の表面から5.0μmの深さまでの領域において、前記酸化物の粒界被覆率が60%以上である、
鋼板。
上記(1)に記載の鋼板。
上記(1)または(2)に記載の鋼板。
上記(1)から(3)までのいずれかに記載の鋼板。
溶融亜鉛めっき鋼板。
上記(5)に記載の溶融亜鉛めっき鋼板。
合金化溶融亜鉛めっき鋼板。
上記(7)に記載の合金化溶融亜鉛めっき鋼板。
上記(7)または(8)に記載の合金化溶融亜鉛めっき鋼板。
各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
炭素(C)は、鋼板強度の向上に必要な元素である。C含有量が0.17%未満では、残留オーステナイトを十分に得ることができず、高強度と高延性との両立が困難になる。一方、C含有量が0.40%を超えると、溶接性が著しく低下する。したがって、C含有量は0.17~0.40%とする。C含有量は0.20%以上であるのが好ましく、0.35%以下であるのが好ましい。
ケイ素(Si)は、固溶強化に加えて、マルテンサイトの焼戻し軟化を抑制することで、鋼板強度の向上に寄与する元素である。また、Siは、残留オーステナイトの変態誘起塑性(TRIP効果)により加工性を改善した鋼板において、オーステナイト中の鉄系炭化物の析出を抑制し、鋼板組織の残留オーステナイト体積率を確保するのに重要な元素である。
マンガン(Mn)は、焼入れ性を高め、鋼板強度の向上に寄与する元素である。Mn含有量が1.00%未満では、焼鈍後の冷却中に軟質な組織が生成し、強度の確保が困難になる。一方、Mn含有量が10.00%を超えると、還元・焼鈍時の選択酸化により、めっき性が低下するとともに、加工性および溶接性が低下する。したがって、Mn含有量は1.00~10.00%とする。Mn含有量は1.30%以上であるのが好ましく、溶接性の観点から、5.00%以下であるのが好ましい。
リン(P)は、鋼板強度を高め、溶融亜鉛の鋼板組織への侵入を抑制する作用を有する元素である。P含有量が0.001%未満では、上記の効果が十分に得られない。一方、P含有量が0.03%を超えると、結晶粒界へのPの偏析により鋼板が脆化する。したがって、P含有量は0.001~0.03%とする。P含有量は0.005%以上であるのが好ましく、0.02%以下であるのが好ましい。
硫黄(S)は、熱間脆性の原因をなし、また、溶接性および耐食性を阻害する元素である。S含有量を0.0001%未満にするためには、製造コストが大幅に上昇するため、S含有量は、実質的には0.0001%以上となる。一方、S含有量が0.02%を超えると、熱間加工性、溶接性および耐食性が著しく低下する。したがって、S含有量は0.0001~0.02%とする。S含有量は0.0010%以上であるのが好ましく、0.01%以下であるのが好ましい。
アルミニウム(Al)は、脱酸元素であり、また、鉄系炭化物の生成を抑えて、強度の向上に寄与する元素である。Al含有量が0.001%未満では、脱酸効果が十分に得られない。一方、Al含有量が2.50%を超えると、フェライト分率が上昇して、強度が低下する。したがって、Al含有量は0.001~2.50%とする。Al含有量は0.005%以上であるのが好ましく、2.00%以下であるのが好ましい。
窒素(N)は、窒化物を形成して、伸びフランジ性を阻害し、また、溶接時のブローホールの発生原因になる元素である。N含有量を0.0001%未満にするためには、製造コストが大幅に上昇するため、N含有量は、実質的には0.0001%以上となる。一方、Nが0.010%を超えると、伸びフランジ性が著しく低下し、また、溶接時、ブローホールが発生する。したがって、N含有量は0.0001~0.010%とする。N含有量は、少ないほど好ましいが、製造コストの点から、0.0010%以上であるのが好ましい。また、N含有量は0.008%以下であるのが好ましい。
酸素(O)は、酸化物を形成し、伸びフランジ性を阻害する元素である。O含有量を0.0001%未満にするためには、製造コストが大幅に上昇するため、O含有量は、実質的には0.0001%以上となる。一方、O含有量が0.010%を超えると、伸びフランジ性が著しく低下する。したがって、O含有量は0.0001~0.010%とする。O含有量は、少ないほど好ましいが、製造コストの点から、0.0010%以上であるのが好ましい。また、O含有量は0.007%以下であるのが好ましい。
Nb:0~0.10%
V:0~0.10%
チタン(Ti)、ニオブ(Nb)およびバナジウム(V)は、いずれも、析出強化、結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化により、鋼板強度の向上に寄与する元素である。そのため、これらの元素から選択される1種以上を必要に応じて含有させてもよい。
ホウ素(B)は、溶接時に、オーステナイト粒界に偏析して、結晶粒界を強化し、耐溶融金属脆化割れ性の向上に寄与する元素である。そのため、Bを必要に応じて含有させてもよい。しかしながら、B含有量が0.010%を超えると、炭化物および窒化物が生成し、上記の効果が飽和するとともに、熱間加工性が低下する。したがって、B含有量は0.010%以下とする。B含有量は0.005%以下であるのが好ましい。なお、上記の効果を得たい場合には、B含有量は0.0005%以上であるのが好ましく、0.0008%以上であるのがより好ましい。
Ni:0~2.00%
Cu:0~2.00%
クロム(Cr)、ニッケル(Ni)および銅(Cu)は、いずれも、強度の向上に寄与する元素である。そのため、これらの元素から選択される1種以上を必要に応じて含有させてもよい。
モリブデン(Mo)は、MnおよびNiと同様に、鋼の焼入れ性を高め、強度の向上に寄与する元素である。そのため、Moを必要に応じて含有させてもよい。しかしながら、Mo含有量が2.00%を超えると、熱間加工性が低下し、生産性が低下する。したがって、Mo含有量は2.00%以下とする。Mo含有量は1.50%以下であるのが好ましい。なお、上記の効果を得たい場合には、Mo含有量は0.01%以上であるのが好ましく、0.10%以上であるのがより好ましい。
Mg:0~0.50%
REM:0~0.50%
カルシウム(Ca)、マグネシウム(Mg)および希土類元素(REM)は、いずれも、成形性の向上に寄与する元素である。そのため、これらの元素から選択される1種以上を必要に応じて含有させてもよい。
本発明に係る鋼板は、母材の表面から5.0μm以上の深さまで、内部酸化層を有する。内部酸化層とは、母材の結晶粒界の少なくとも一部がSi、Mn等の易酸化性元素の酸化物によって被覆された層のことである。結晶粒界が酸化物によって被覆されることで、溶接時に溶融金属の結晶粒界への侵入を抑制するとともに、溶接中のLME割れを抑制することが可能になる。
本発明に係る鋼板は、母材の表面から50μm以上の深さまで、脱炭層を有することが好ましい。脱炭層とは、母材の表面付近に存在する炭素欠乏層のことである。脱炭層では、炭素含有量の低下に伴い、硬さが低下する。本発明では、母材表層において、板厚が2/5~3/5の領域の平均硬さに対して硬さが80%以下の表層の領域を脱炭層とする。
上述のように、本発明に係る鋼板を自動車用鋼板として使用する場合には、高い強度を有することが望まれる。機械特性について特に制限は設けないが、引張強さは980MPa以上であるのが好ましく、1050MPa以上であるのがより好ましく、1100MPa以上であるのがさらに好ましい。なお、引張強度が2000MPaを超えると、溶接時の残留応力が高まるため、粒界上の内部酸化層が割れるようになり、LME割れの抑制の効果は顕著に低下する。このため、引張強度の上限は2000MPaとするのが好ましい。
本発明に係る鋼板は、表面に溶融亜鉛めっき層を有していてもよい。鋼板表面に溶融亜鉛めっき層を付与することで、耐食性が向上する。
本発明に係る鋼板は、母材の表面上にニッケル電気めっき層を有していてもよい。ニッケル電気めっき層が存在すると、スポット溶接中、亜鉛とニッケルとが融合し、溶融亜鉛の凝固温度が上昇する。その結果、溶融亜鉛が、結晶粒界に侵入する前に凝固するため、LMEの発生が効果的に抑制される。
本発明に係る鋼板は、例えば、熱延鋼板または冷延鋼板に対して、所定の条件で焼鈍を施すことにより製造することができる。
易酸化性元素の鋼板表面への拡散を防止し、内部酸化を促進するためには、焼鈍時の加熱帯での酸素ポテンシャルの制御が重要である。具体的には、焼鈍は、0.1~30体積%の水素および露点-40~20℃のH2Oを含み、残部が窒素および不純物である雰囲気で行うことが好ましい。より好ましくは、0.5~20体積%の水素および露点-30~15℃のH2Oを含む雰囲気、さらに好ましくは、1~10体積%の水素および露点-20~10℃のH2Oを含む雰囲気である。
焼鈍時に酸素を効率的に鋼板内部に固溶させるためには、焼鈍温度は750℃を超えて900℃以下とする必要がある。焼鈍温度が750℃以下では、内部酸化層が十分に形成されないおそれがあるためである。一方、焼鈍温度が900℃を超えると、通板工程での板破断、過度な脱炭および表面疵の生成を招く。焼鈍温度は780℃以上であるのが好ましく、840℃以下であるのが好ましい。
酸素を効率的に鋼板内部に固溶させるため、焼鈍時の加熱帯の300℃以上の領域において、鋼板に3~150MPaの引張応力を付与する。付与する最小引張応力が3MPa未満では、鋼板のタクレが発生し、製造性が低下する。また、付与する最大引張応力が3MPa未満では、結晶格子を拡げ酸素を固溶しやすくする効果が十分には得られない。なお、内部酸化層の粒界被覆率を高める観点から、最大引張応力は15MPa以上であるのが好ましい。一方、最大引張応力が150MPaを超えると、通板工程での板の絞りおよび破断を招く。
加圧力P:450kg
電極の傾斜角(電極中心線5と垂直線6のなす角)θ:3°
アップスロープ:なし
第1通電時間t1:0.2秒
無通電間tc :0.04秒
第2通電時間t2:0.4秒
電流比I1/I2 :0.7
通電終了後の保持時間:0.1秒
2:いずれか1箇所で割れが存在し、その長さが60μm以下である。
3:割れが2箇所以上かつ3箇所以下に認められ、かつ、それぞれの割れの長さは60μm以下である。
4:いずれか1箇所以上で割れの長さが60μmを超える。
加圧力P:450kg
電極の傾斜角(電極中心線5と垂直線6のなす角)θ:1~10°
アップスロープ:なし
第1通電時間t1:0.2秒
無通電間tc :0.04秒
第2通電時間t2:0.4秒
電流比I1/I2 :0.7
通電終了後の保持時間:0.1秒
Claims (9)
- 母材の化学組成が、質量%で、
C:0.17~0.40%、
Si:0.10~2.50%、
Mn:1.00~10.00%、
P:0.001~0.03%、
S:0.0001~0.02%、
Al:0.001~2.50%、
N:0.0001~0.010%、
O:0.0001~0.010%、
Ti:0~0.10%、
Nb:0~0.10%、
V:0~0.10%、
B:0~0.010%、
Cr:0~2.00%、
Ni:0~2.00%、
Cu:0~2.00%、
Mo:0~2.00%、
Ca:0~0.50%、
Mg:0~0.50%、
REM:0~0.50%、
残部:Feおよび不純物であり、
前記母材の表面から5.0μm以上の深さまで、結晶粒界の少なくとも一部が酸化物に被覆された内部酸化層を有し、かつ、
前記母材の表面から5.0μmの深さまでの領域において、前記酸化物の粒界被覆率が60%以上である、
鋼板。 - 前記母材の表面から50μm以上の深さまで、脱炭層を有する、
請求項1に記載の鋼板。 - 前記母材の表面上にニッケル電気めっき層を有する、
請求項1または請求項2に記載の鋼板。 - 980MPa以上の引張強さを有する、
請求項1から請求項3までのいずれかに記載の鋼板。 - 請求項1から請求項4までのいずれかに記載の鋼板の表面上に溶融亜鉛めっき層を有する、
溶融亜鉛めっき鋼板。 - 前記溶融亜鉛めっき層の付着量が、70g/m2以下である、
請求項5に記載の溶融亜鉛めっき鋼板。 - 請求項1から請求項4までのいずれかに記載の鋼板の表面上に合金化溶融亜鉛めっき層を有する、
合金化溶融亜鉛めっき鋼板。 - 前記合金化溶融亜鉛めっき層の付着量が、70g/m2以下である、
請求項7に記載の合金化溶融亜鉛めっき鋼板。 - 前記合金化溶融亜鉛めっき層が、質量%で、Fe:7.0~15.0%を含有する、
請求項7または請求項8に記載の合金化溶融亜鉛めっき鋼板。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112020008427-1A BR112020008427A2 (pt) | 2017-12-15 | 2017-12-15 | chapa de aço, chapa de aço galvanizado por imersão a quente e chapa de aço galvanizado e recozido |
JP2018520633A JP6388099B1 (ja) | 2017-12-15 | 2017-12-15 | 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板 |
RU2020123267A RU2020123267A (ru) | 2017-12-15 | 2017-12-15 | Стальной лист, лист оцинкованной стали горячего цинкования и отожженный оцинкованный стальной лист |
CA3085282A CA3085282A1 (en) | 2017-12-15 | 2017-12-15 | Steel sheet, hot-dip galvanized steel sheet and galvannealed steel sheet |
CN201780097717.4A CN111492075B (zh) | 2017-12-15 | 2017-12-15 | 钢板、热浸镀锌钢板和合金化热浸镀锌钢板 |
EP17934816.4A EP3725904B1 (en) | 2017-12-15 | 2017-12-15 | Steel sheet, hot-dip zinc-coated steel sheet, and alloyed hot-dip zinc-coated steel sheet |
PCT/JP2017/045065 WO2019116531A1 (ja) | 2017-12-15 | 2017-12-15 | 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板 |
MX2020005828A MX2020005828A (es) | 2017-12-15 | 2017-12-15 | Lamina de acero, lamina de acero galvanizado por inmersion en caliente y lamina de acero galvanizado y recocido. |
KR1020207018269A KR102414090B1 (ko) | 2017-12-15 | 2017-12-15 | 강판, 용융 아연 도금 강판 및 합금화 용융 아연 도금 강판 |
US16/772,692 US11274356B2 (en) | 2017-12-15 | 2017-12-15 | Steel sheet, hot-dip galvanized steel sheet and galvannealed steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/045065 WO2019116531A1 (ja) | 2017-12-15 | 2017-12-15 | 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019116531A1 true WO2019116531A1 (ja) | 2019-06-20 |
Family
ID=63518867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/045065 WO2019116531A1 (ja) | 2017-12-15 | 2017-12-15 | 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板 |
Country Status (10)
Country | Link |
---|---|
US (1) | US11274356B2 (ja) |
EP (1) | EP3725904B1 (ja) |
JP (1) | JP6388099B1 (ja) |
KR (1) | KR102414090B1 (ja) |
CN (1) | CN111492075B (ja) |
BR (1) | BR112020008427A2 (ja) |
CA (1) | CA3085282A1 (ja) |
MX (1) | MX2020005828A (ja) |
RU (1) | RU2020123267A (ja) |
WO (1) | WO2019116531A1 (ja) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021125283A1 (ja) * | 2019-12-19 | 2021-06-24 | 日本製鉄株式会社 | 鋼板及びその製造方法 |
WO2022071305A1 (ja) | 2020-09-30 | 2022-04-07 | 日本製鉄株式会社 | 鋼板 |
WO2022097738A1 (ja) | 2020-11-06 | 2022-05-12 | Jfeスチール株式会社 | Fe系電気めっき鋼板及び合金化溶融亜鉛めっき鋼板、並びにこれらの製造方法 |
WO2022107580A1 (ja) * | 2020-11-17 | 2022-05-27 | 日本製鉄株式会社 | スポット溶接用めっき鋼板、接合部材、及び自動車用部材、並びに接合部材の製造方法 |
EP4006190A4 (en) * | 2019-07-30 | 2022-07-06 | JFE Steel Corporation | HIGH STRENGTH STEEL SHEET AND METHOD OF MAKING THE SAME |
WO2022149505A1 (ja) * | 2021-01-08 | 2022-07-14 | 日本製鉄株式会社 | 溶接継手及び自動車部品 |
WO2022149507A1 (ja) * | 2021-01-08 | 2022-07-14 | 日本製鉄株式会社 | 溶接継手及び自動車部品 |
WO2022149511A1 (ja) * | 2021-01-08 | 2022-07-14 | 日本製鉄株式会社 | 溶接継手及び自動車部品 |
WO2022149502A1 (ja) * | 2021-01-07 | 2022-07-14 | 日本製鉄株式会社 | 鋼板及びその製造方法 |
JP7140311B1 (ja) * | 2021-04-22 | 2022-09-21 | 日本製鉄株式会社 | 骨格部材 |
WO2022196733A1 (ja) * | 2021-03-17 | 2022-09-22 | 日本製鉄株式会社 | 鋼板、鋼部材及び被覆鋼部材 |
WO2022224898A1 (ja) * | 2021-04-22 | 2022-10-27 | 日本製鉄株式会社 | 骨格部材 |
WO2022230064A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 鋼板及びめっき鋼板 |
WO2022230401A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 鋼板及びめっき鋼板 |
WO2022230059A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 鋼板及びめっき鋼板 |
WO2022230402A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 合金化溶融亜鉛めっき鋼板 |
WO2022230399A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 鋼板及びめっき鋼板 |
WO2022230071A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 鋼溶接部材 |
WO2022230400A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 鋼板及びめっき鋼板 |
WO2022244772A1 (ja) | 2021-05-17 | 2022-11-24 | Jfeスチール株式会社 | Fe系電気めっき鋼板および溶融亜鉛めっき鋼板ならびにそれらの製造方法 |
WO2023054705A1 (ja) * | 2021-10-01 | 2023-04-06 | 日本製鉄株式会社 | めっき鋼板 |
WO2023054717A1 (ja) * | 2021-10-01 | 2023-04-06 | 日本製鉄株式会社 | 鋼溶接部材 |
WO2023162573A1 (ja) * | 2022-02-25 | 2023-08-31 | 日本製鉄株式会社 | 亜鉛めっき鋼板およびその製造方法 |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6916129B2 (ja) * | 2018-03-02 | 2021-08-11 | 株式会社神戸製鋼所 | ホットスタンプ用亜鉛めっき鋼板およびその製造方法 |
JP2020082102A (ja) * | 2018-11-19 | 2020-06-04 | 株式会社神戸製鋼所 | 接合構造体及び接合構造体の製造方法 |
JP2020082104A (ja) * | 2018-11-19 | 2020-06-04 | 株式会社神戸製鋼所 | 接合構造体及び接合構造体の製造方法 |
JP2020082105A (ja) * | 2018-11-19 | 2020-06-04 | 株式会社神戸製鋼所 | 接合構造体及び接合構造体の製造方法 |
KR102648242B1 (ko) * | 2018-12-19 | 2024-03-18 | 주식회사 포스코 | 전기 저항 점용접성이 우수한 고강도 아연도금강판 및 그 제조방법 |
MX2021008669A (es) * | 2019-01-18 | 2021-08-19 | Jfe Steel Corp | Metodo de produccion de lamina de acero galvanizada por inmersion en caliente. |
WO2020218572A1 (ja) | 2019-04-24 | 2020-10-29 | 日本製鉄株式会社 | 鋼板 |
US11555234B2 (en) | 2019-04-24 | 2023-01-17 | Nippon Steel Corporation | Steel sheet |
JP7059979B2 (ja) * | 2019-04-25 | 2022-04-26 | Jfeスチール株式会社 | スポット溶接部材 |
KR102626001B1 (ko) | 2019-05-09 | 2024-01-19 | 닛폰세이테츠 가부시키가이샤 | 강판 및 그 제조 방법 |
EP4108799A4 (en) * | 2020-02-18 | 2023-08-02 | Posco | STEEL SHEET WITH EXCELLENT SURFACE QUALITY AND PROCESS FOR ITS PRODUCTION |
EP4130323A4 (en) | 2020-03-31 | 2023-08-30 | JFE Steel Corporation | STEEL SHEET, ELEMENT AND METHOD OF PRODUCTION THEREOF |
EP4130324A4 (en) | 2020-03-31 | 2023-08-30 | JFE Steel Corporation | STEEL SHEET, ELEMENT AND METHODS OF PRODUCTION THEREOF |
KR20230085928A (ko) | 2020-11-06 | 2023-06-14 | 제이에프이 스틸 가부시키가이샤 | 합금화 아연 도금 강판, 전착 도장 강판, 자동차 부품, 전착 도장 강판의 제조 방법 및, 합금화 아연 도금 강판의 제조 방법 |
WO2022097734A1 (ja) | 2020-11-06 | 2022-05-12 | Jfeスチール株式会社 | Fe系電気めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及びFe系電気めっき鋼板の製造方法 |
MX2023005278A (es) | 2020-11-06 | 2023-07-26 | Jfe Steel Corp | Lámina de acero galvanizado, lámina de acero recubierta por electrodeposición, pieza automotriz, método de producción de lámina de acero recubierta por electrodeposición, y método de producción de lámina de acero galvanizado. |
JP7323063B2 (ja) | 2020-11-06 | 2023-08-08 | Jfeスチール株式会社 | 合金化亜鉛めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及び合金化亜鉛めっき鋼板の製造方法 |
US20230407506A1 (en) | 2020-11-06 | 2023-12-21 | Jfe Steel Corporation | Fe-based electroplated steel sheet, electrodeposition-coated steel sheet, automotive part, method of producing electrodeposition-coated steel sheet, and method of producing fe-based electroplated steel sheet |
CN116457504A (zh) | 2020-11-06 | 2023-07-18 | 杰富意钢铁株式会社 | 镀锌钢板、电沉积涂装钢板、汽车部件、电沉积涂装钢板的制造方法以及镀锌钢板的制造方法 |
KR102547364B1 (ko) * | 2020-12-18 | 2023-06-22 | 주식회사 포스코 | 고강도강 용융아연도금강판 및 그 제조방법 |
CN112760562B (zh) * | 2020-12-22 | 2022-03-29 | 鞍钢集团北京研究院有限公司 | 一种耐延迟断裂2000MPa级钢板及其制备方法 |
WO2022209522A1 (ja) | 2021-03-31 | 2022-10-06 | Jfeスチール株式会社 | クラッド鋼板および部材、ならびに、それらの製造方法 |
US20240150876A1 (en) | 2021-03-31 | 2024-05-09 | Jfe Steel Corporation | Clad steel plate, member, and production methods for same |
JPWO2022239071A1 (ja) * | 2021-05-10 | 2022-11-17 |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003129175A (ja) * | 2001-10-24 | 2003-05-08 | Nisshin Steel Co Ltd | 加工性・亜鉛めっき性の良好な建築金具用高強度熱延鋼板 |
JP2004315960A (ja) | 2003-02-06 | 2004-11-11 | Nippon Steel Corp | 合金化溶融亜鉛めっき鋼板、およびその製造方法 |
JP2004323970A (ja) | 2003-04-10 | 2004-11-18 | Nippon Steel Corp | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2005060742A (ja) | 2003-08-19 | 2005-03-10 | Nippon Steel Corp | 密着性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法 |
JP2005154870A (ja) * | 2003-11-27 | 2005-06-16 | Jfe Steel Kk | プレス成形性に優れた溶融亜鉛めっき又は合金化溶融亜鉛めっき鋼板及びその製造方法 |
JP2006233333A (ja) | 2005-01-31 | 2006-09-07 | Nippon Steel Corp | 外観が良好な高強度合金化溶融亜鉛めっき鋼板及びその製造方法と製造設備 |
JP2006265671A (ja) | 2005-03-25 | 2006-10-05 | Nisshin Steel Co Ltd | 加工性及び耐溶融金属脆化割れ性に優れた合金化溶融亜鉛めっき高張力鋼板 |
JP2007211279A (ja) * | 2006-02-08 | 2007-08-23 | Nippon Steel Corp | 耐水素脆性に優れた超高強度鋼板とその製造方法及び超高強度溶融亜鉛めっき鋼板の製造方法並びに超高強度合金化溶融亜鉛めっき鋼板の製造方法 |
JP2008231493A (ja) | 2007-03-20 | 2008-10-02 | Nisshin Steel Co Ltd | スポット溶接用合金化溶融亜鉛めっき鋼板の製造方法 |
JP2013100590A (ja) * | 2011-11-10 | 2013-05-23 | Jfe Steel Corp | 化成処理性に優れた高Si冷延鋼板の製造方法 |
WO2014102901A1 (ja) * | 2012-12-25 | 2014-07-03 | 新日鐵住金株式会社 | 合金化溶融亜鉛めっき鋼板とその製造方法 |
JP2015510032A (ja) * | 2011-12-27 | 2015-04-02 | ポスコ | 高マンガン熱延亜鉛めっき鋼板及びその製造方法 |
JP2016130358A (ja) * | 2015-01-09 | 2016-07-21 | 株式会社神戸製鋼所 | 高強度めっき鋼板、並びにその製造方法 |
JP2016130356A (ja) * | 2015-01-09 | 2016-07-21 | 株式会社神戸製鋼所 | めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法 |
WO2016147549A1 (ja) * | 2015-03-18 | 2016-09-22 | Jfeスチール株式会社 | 高強度冷延鋼板およびその製造方法 |
WO2017057570A1 (ja) * | 2015-10-02 | 2017-04-06 | 株式会社神戸製鋼所 | 熱間プレス用亜鉛めっき鋼板および熱間プレス成形品の製造方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2517169B2 (ja) * | 1990-10-09 | 1996-07-24 | 新日本製鐵株式会社 | 溶融亜鉛めっき鋼板の製造方法 |
TW504519B (en) * | 1999-11-08 | 2002-10-01 | Kawasaki Steel Co | Hot dip galvanized steel plate excellent in balance of strength and ductility and in adhesiveness between steel and plating layer, and method for producing the same |
TWI314955B (en) * | 2002-03-01 | 2009-09-21 | Hot-dip galvanizing steel sheet and method for manufacturing a coated steel sheet | |
ES2347435T3 (es) | 2003-03-31 | 2010-10-29 | Nippon Steel Corporation | Chapa de acero recubierta en caliente con cinc aleado y metodo para su produccion. |
KR20050118306A (ko) | 2003-04-10 | 2005-12-16 | 신닛뽄세이테쯔 카부시키카이샤 | 고강도 용융 아연 도금 강판 및 그 제조 방법 |
JP4238153B2 (ja) * | 2004-02-02 | 2009-03-11 | 新日本製鐵株式会社 | 均一外観性に優れた高強度電気亜鉛めっき鋼板およびその製造方法 |
CA2640646C (en) | 2006-01-30 | 2011-07-26 | Nippon Steel Corporation | High strength hot-dip galvanized steel sheet and high strength hot-dip galvannealed steel sheet and methods of production and apparatuses for production of the same |
KR101597473B1 (ko) | 2011-07-29 | 2016-02-24 | 신닛테츠스미킨 카부시키카이샤 | 굽힘성이 우수한 고강도 아연 도금 강판 및 그 제조 방법 |
ES2706996T3 (es) | 2011-09-30 | 2019-04-02 | Nippon Steel & Sumitomo Metal Corp | Chapa de acero de alta resistencia galvanizada por inmersión en caliente con excelente resistencia a la fractura retardada y método para su fabricación |
JP5267638B2 (ja) * | 2011-11-17 | 2013-08-21 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板または高強度合金化溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法 |
JP5982906B2 (ja) * | 2012-03-19 | 2016-08-31 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板の製造方法 |
CN104271789B (zh) * | 2012-04-23 | 2017-06-06 | 株式会社神户制钢所 | 热冲压用合金化熔融镀锌钢板及其制造方法、以及热冲压部件 |
MX2017009017A (es) | 2015-01-09 | 2018-04-13 | Kobe Steel Ltd | Lamina de acero chapada de alta resistencia y metodo para su produccion. |
KR101758485B1 (ko) | 2015-12-15 | 2017-07-17 | 주식회사 포스코 | 표면품질 및 점 용접성이 우수한 고강도 용융아연도금강판 및 그 제조방법 |
WO2017145322A1 (ja) * | 2016-02-25 | 2017-08-31 | 新日鐵住金株式会社 | 鋼板の製造方法及び鋼板の連続焼鈍装置 |
CN105908089B (zh) * | 2016-06-28 | 2019-11-22 | 宝山钢铁股份有限公司 | 一种热浸镀低密度钢及其制造方法 |
-
2017
- 2017-12-15 BR BR112020008427-1A patent/BR112020008427A2/pt not_active Application Discontinuation
- 2017-12-15 CN CN201780097717.4A patent/CN111492075B/zh active Active
- 2017-12-15 MX MX2020005828A patent/MX2020005828A/es unknown
- 2017-12-15 CA CA3085282A patent/CA3085282A1/en not_active Abandoned
- 2017-12-15 WO PCT/JP2017/045065 patent/WO2019116531A1/ja unknown
- 2017-12-15 EP EP17934816.4A patent/EP3725904B1/en active Active
- 2017-12-15 US US16/772,692 patent/US11274356B2/en active Active
- 2017-12-15 RU RU2020123267A patent/RU2020123267A/ru not_active Application Discontinuation
- 2017-12-15 JP JP2018520633A patent/JP6388099B1/ja active Active
- 2017-12-15 KR KR1020207018269A patent/KR102414090B1/ko active IP Right Grant
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003129175A (ja) * | 2001-10-24 | 2003-05-08 | Nisshin Steel Co Ltd | 加工性・亜鉛めっき性の良好な建築金具用高強度熱延鋼板 |
JP2004315960A (ja) | 2003-02-06 | 2004-11-11 | Nippon Steel Corp | 合金化溶融亜鉛めっき鋼板、およびその製造方法 |
JP2004323970A (ja) | 2003-04-10 | 2004-11-18 | Nippon Steel Corp | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2005060742A (ja) | 2003-08-19 | 2005-03-10 | Nippon Steel Corp | 密着性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法 |
JP2005154870A (ja) * | 2003-11-27 | 2005-06-16 | Jfe Steel Kk | プレス成形性に優れた溶融亜鉛めっき又は合金化溶融亜鉛めっき鋼板及びその製造方法 |
JP2006233333A (ja) | 2005-01-31 | 2006-09-07 | Nippon Steel Corp | 外観が良好な高強度合金化溶融亜鉛めっき鋼板及びその製造方法と製造設備 |
JP2006265671A (ja) | 2005-03-25 | 2006-10-05 | Nisshin Steel Co Ltd | 加工性及び耐溶融金属脆化割れ性に優れた合金化溶融亜鉛めっき高張力鋼板 |
JP2007211279A (ja) * | 2006-02-08 | 2007-08-23 | Nippon Steel Corp | 耐水素脆性に優れた超高強度鋼板とその製造方法及び超高強度溶融亜鉛めっき鋼板の製造方法並びに超高強度合金化溶融亜鉛めっき鋼板の製造方法 |
JP2008231493A (ja) | 2007-03-20 | 2008-10-02 | Nisshin Steel Co Ltd | スポット溶接用合金化溶融亜鉛めっき鋼板の製造方法 |
JP2013100590A (ja) * | 2011-11-10 | 2013-05-23 | Jfe Steel Corp | 化成処理性に優れた高Si冷延鋼板の製造方法 |
JP2015510032A (ja) * | 2011-12-27 | 2015-04-02 | ポスコ | 高マンガン熱延亜鉛めっき鋼板及びその製造方法 |
WO2014102901A1 (ja) * | 2012-12-25 | 2014-07-03 | 新日鐵住金株式会社 | 合金化溶融亜鉛めっき鋼板とその製造方法 |
JP2016130358A (ja) * | 2015-01-09 | 2016-07-21 | 株式会社神戸製鋼所 | 高強度めっき鋼板、並びにその製造方法 |
JP2016130356A (ja) * | 2015-01-09 | 2016-07-21 | 株式会社神戸製鋼所 | めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法 |
WO2016147549A1 (ja) * | 2015-03-18 | 2016-09-22 | Jfeスチール株式会社 | 高強度冷延鋼板およびその製造方法 |
WO2017057570A1 (ja) * | 2015-10-02 | 2017-04-06 | 株式会社神戸製鋼所 | 熱間プレス用亜鉛めっき鋼板および熱間プレス成形品の製造方法 |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4006190A4 (en) * | 2019-07-30 | 2022-07-06 | JFE Steel Corporation | HIGH STRENGTH STEEL SHEET AND METHOD OF MAKING THE SAME |
JPWO2021125283A1 (ja) * | 2019-12-19 | 2021-06-24 | ||
JP7311808B2 (ja) | 2019-12-19 | 2023-07-20 | 日本製鉄株式会社 | 鋼板及びその製造方法 |
WO2021125283A1 (ja) * | 2019-12-19 | 2021-06-24 | 日本製鉄株式会社 | 鋼板及びその製造方法 |
EP4079881A4 (en) * | 2019-12-19 | 2023-05-31 | Nippon Steel Corporation | STEEL SHEET AND METHOD OF PRODUCTION THEREOF |
KR20230056040A (ko) | 2020-09-30 | 2023-04-26 | 닛폰세이테츠 가부시키가이샤 | 강판 |
WO2022071305A1 (ja) | 2020-09-30 | 2022-04-07 | 日本製鉄株式会社 | 鋼板 |
US12077832B2 (en) | 2020-09-30 | 2024-09-03 | Nippon Steel Corporation | Steel sheet |
EP4223901A4 (en) * | 2020-09-30 | 2024-03-13 | Nippon Steel Corporation | STEEL SHEET |
WO2022097738A1 (ja) | 2020-11-06 | 2022-05-12 | Jfeスチール株式会社 | Fe系電気めっき鋼板及び合金化溶融亜鉛めっき鋼板、並びにこれらの製造方法 |
WO2022107580A1 (ja) * | 2020-11-17 | 2022-05-27 | 日本製鉄株式会社 | スポット溶接用めっき鋼板、接合部材、及び自動車用部材、並びに接合部材の製造方法 |
WO2022149502A1 (ja) * | 2021-01-07 | 2022-07-14 | 日本製鉄株式会社 | 鋼板及びその製造方法 |
JP7124992B1 (ja) * | 2021-01-08 | 2022-08-24 | 日本製鉄株式会社 | 溶接継手及び自動車部品 |
EP4276215A4 (en) * | 2021-01-08 | 2024-07-03 | Nippon Steel Corp | WELDED JOINT AND VEHICLE PART |
EP4276216A4 (en) * | 2021-01-08 | 2024-07-03 | Nippon Steel Corp | WELD JOINT AND AUTOMOTIVE COMPONENT |
WO2022149507A1 (ja) * | 2021-01-08 | 2022-07-14 | 日本製鉄株式会社 | 溶接継手及び自動車部品 |
JP7124991B1 (ja) * | 2021-01-08 | 2022-08-24 | 日本製鉄株式会社 | 溶接継手及び自動車部品 |
WO2022149505A1 (ja) * | 2021-01-08 | 2022-07-14 | 日本製鉄株式会社 | 溶接継手及び自動車部品 |
WO2022149511A1 (ja) * | 2021-01-08 | 2022-07-14 | 日本製鉄株式会社 | 溶接継手及び自動車部品 |
JP7124990B1 (ja) * | 2021-01-08 | 2022-08-24 | 日本製鉄株式会社 | 溶接継手及び自動車部品 |
WO2022196733A1 (ja) * | 2021-03-17 | 2022-09-22 | 日本製鉄株式会社 | 鋼板、鋼部材及び被覆鋼部材 |
JP7140311B1 (ja) * | 2021-04-22 | 2022-09-21 | 日本製鉄株式会社 | 骨格部材 |
WO2022224898A1 (ja) * | 2021-04-22 | 2022-10-27 | 日本製鉄株式会社 | 骨格部材 |
WO2022230401A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 鋼板及びめっき鋼板 |
JP7564489B2 (ja) | 2021-04-27 | 2024-10-09 | 日本製鉄株式会社 | 鋼板及びめっき鋼板 |
JP7564490B2 (ja) | 2021-04-27 | 2024-10-09 | 日本製鉄株式会社 | 鋼板及びめっき鋼板 |
JP7564491B2 (ja) | 2021-04-27 | 2024-10-09 | 日本製鉄株式会社 | 鋼板及びめっき鋼板 |
WO2022230400A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 鋼板及びめっき鋼板 |
WO2022230071A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 鋼溶接部材 |
WO2022230399A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 鋼板及びめっき鋼板 |
WO2022230402A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 合金化溶融亜鉛めっき鋼板 |
WO2022230059A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 鋼板及びめっき鋼板 |
JP7506350B2 (ja) | 2021-04-27 | 2024-06-26 | 日本製鉄株式会社 | 鋼溶接部材 |
WO2022230064A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | 鋼板及びめっき鋼板 |
KR20230166131A (ko) | 2021-05-17 | 2023-12-06 | 제이에프이 스틸 가부시키가이샤 | Fe계 전기 도금 강판 및 용융 아연 도금 강판 그리고 그들의 제조 방법 |
WO2022244772A1 (ja) | 2021-05-17 | 2022-11-24 | Jfeスチール株式会社 | Fe系電気めっき鋼板および溶融亜鉛めっき鋼板ならびにそれらの製造方法 |
WO2023054717A1 (ja) * | 2021-10-01 | 2023-04-06 | 日本製鉄株式会社 | 鋼溶接部材 |
WO2023054705A1 (ja) * | 2021-10-01 | 2023-04-06 | 日本製鉄株式会社 | めっき鋼板 |
WO2023162573A1 (ja) * | 2022-02-25 | 2023-08-31 | 日本製鉄株式会社 | 亜鉛めっき鋼板およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20200092351A (ko) | 2020-08-03 |
CN111492075A (zh) | 2020-08-04 |
EP3725904A4 (en) | 2021-04-07 |
CN111492075B (zh) | 2021-10-12 |
RU2020123267A3 (ja) | 2022-01-17 |
US20200325554A1 (en) | 2020-10-15 |
CA3085282A1 (en) | 2019-06-20 |
JP6388099B1 (ja) | 2018-09-12 |
BR112020008427A2 (pt) | 2020-11-17 |
MX2020005828A (es) | 2020-08-20 |
JPWO2019116531A1 (ja) | 2019-12-19 |
KR102414090B1 (ko) | 2022-06-28 |
EP3725904A1 (en) | 2020-10-21 |
US11274356B2 (en) | 2022-03-15 |
EP3725904B1 (en) | 2024-03-06 |
RU2020123267A (ru) | 2022-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019116531A1 (ja) | 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板 | |
JP6501046B1 (ja) | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法 | |
JP6777173B2 (ja) | スポット溶接用高強度亜鉛めっき鋼板 | |
JP6264507B2 (ja) | 高強度亜鉛めっき鋼板及びその製造方法 | |
JP5162836B2 (ja) | 溶接部の耐水素脆性に優れる高強度冷延鋼板及びその製造方法 | |
WO2019189842A1 (ja) | 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法 | |
KR102626001B1 (ko) | 강판 및 그 제조 방법 | |
KR20190089024A (ko) | 고강도 아연 도금 강판 및 그 제조 방법 | |
JP2019504196A (ja) | 表面品質及びスポット溶接性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法 | |
JP6296214B1 (ja) | 薄鋼板およびその製造方法 | |
CA2786381C (en) | High-strength galvanized steel sheet having excellent formability and spot weldability and method for manufacturing the same | |
CN115362277B (zh) | 钢板、部件及其制造方法 | |
JP7440799B2 (ja) | 鋼板及びその製造方法 | |
CN113272465B (zh) | 高强度冷轧钢板及其制造方法 | |
WO2022071305A1 (ja) | 鋼板 | |
CN115362275B (zh) | 钢板、部件及其制造方法 | |
JP7311808B2 (ja) | 鋼板及びその製造方法 | |
TWI670378B (zh) | 鋼板、熱浸鍍鋅鋼板及合金化熱浸鍍鋅鋼板 | |
KR20220122750A (ko) | 고강도 강판 및 그 제조 방법 | |
WO2024203491A1 (ja) | 鋼板、部材及びそれらの製造方法 | |
CN118742664A (zh) | 镀锌钢板及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018520633 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17934816 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3085282 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20207018269 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017934816 Country of ref document: EP Effective date: 20200715 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020008427 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112020008427 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200428 |