WO2022230401A1 - 鋼板及びめっき鋼板 - Google Patents

鋼板及びめっき鋼板 Download PDF

Info

Publication number
WO2022230401A1
WO2022230401A1 PCT/JP2022/011400 JP2022011400W WO2022230401A1 WO 2022230401 A1 WO2022230401 A1 WO 2022230401A1 JP 2022011400 W JP2022011400 W JP 2022011400W WO 2022230401 A1 WO2022230401 A1 WO 2022230401A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
oxide
layer
steel
grained
Prior art date
Application number
PCT/JP2022/011400
Other languages
English (en)
French (fr)
Inventor
卓哉 光延
将明 浦中
敬太郎 松田
浩史 竹林
純 真木
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US18/274,960 priority Critical patent/US20240117475A1/en
Priority to MX2023011171A priority patent/MX2023011171A/es
Priority to KR1020237036058A priority patent/KR20230159559A/ko
Priority to JP2023517130A priority patent/JPWO2022230401A1/ja
Priority to CN202280017870.2A priority patent/CN116940704A/zh
Priority to EP22795324.7A priority patent/EP4332263A1/en
Publication of WO2022230401A1 publication Critical patent/WO2022230401A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0252Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with application of tension
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Definitions

  • the present invention relates to steel sheets and plated steel sheets. More specifically, the present invention relates to high-strength steel sheets and plated steel sheets having high plateability, LME resistance, and hydrogen embrittlement resistance.
  • Si, Mn, and Al which are easily oxidizable elements among the elements typically contained in high-strength steel sheets, combine with oxygen in the atmosphere during the heat treatment, and form a layer containing oxides near the surface of the steel sheet.
  • forms of such a layer include a form in which an oxide containing Si, Mn, or Al is formed as a film on the outside (surface) of the steel sheet (external oxide layer), and an form in which an oxide is formed inside (surface layer) of the steel sheet. (internal oxide layer).
  • a plating layer for example, a Zn-based plating layer
  • the oxide exists as a film on the surface of the steel sheet, so the steel composition (for example, Fe) and the plating Interdiffusion with components (for example, Zn) is hindered, and the adhesion between steel and plating may be affected, resulting in insufficient plateability (for example, increased unplated areas). Therefore, from the viewpoint of improving plateability, a steel sheet having an internal oxide layer is more preferable than a steel sheet having an external oxide layer.
  • Patent Documents 1 and 2 disclose a plated steel sheet having a zinc-based plating layer on a base steel sheet containing C, Si, Mn, Al, etc., and Si and / Alternatively, a high-strength plated steel sheet having a tensile strength of 980 MPa or more, which has an internal oxide layer containing an oxide of Mn, is described.
  • High-strength steel sheets used for automobile parts are sometimes used in an atmospheric corrosive environment where temperature and humidity fluctuate greatly. It is known that when a high-strength steel sheet is exposed to such an atmospheric corrosive environment, hydrogen generated during the corrosion process penetrates into the steel. Hydrogen that has penetrated into the steel segregates at martensite grain boundaries in the steel structure, embrittles the grain boundaries, and can cause cracks in the steel sheet. The phenomenon in which cracking occurs due to this penetrating hydrogen is called hydrogen embrittlement cracking (delayed fracture), and often poses a problem during processing of steel sheets. Therefore, in order to prevent hydrogen embrittlement cracking, it is effective to reduce the accumulated amount of hydrogen contained in the steel sheet used in a corrosive environment.
  • the plated steel sheet is processed at a high temperature (for example, about 900 ° C).
  • Zn can be processed in a molten state.
  • molten Zn may penetrate into the steel and cause cracks inside the steel plate.
  • Such a phenomenon is called liquid metal embrittlement (LME), and it is known that fatigue properties of steel sheets deteriorate due to the LME. Therefore, in order to prevent LME cracking, it is effective to prevent Zn and the like contained in the plating layer from penetrating into the steel sheet.
  • Patent Documents 1 and 2 teach that by controlling the average depth of the internal oxide layer to a thickness of 4 ⁇ m or more and allowing the internal oxide layer to function as a hydrogen trap site, hydrogen penetration can be prevented and hydrogen embrittlement can be suppressed. It is However, control of the form of oxides present in the internal oxide layer has not been studied at all, and there is room for improvement in resistance to hydrogen embrittlement. Moreover, no study has been made on improving the LME resistance.
  • an object of the present invention is to provide a high-strength steel sheet and a plated steel sheet having high plateability, LME resistance, and hydrogen embrittlement resistance.
  • the present inventors have found that it is important to form oxides in the surface layer of the steel sheet, that is, in the interior of the steel sheet, and to control the form of the oxides present in the surface layer of the steel sheet. I found out. More specifically, the present inventors ensured high plating properties by forming an internal oxide layer, and found that fine granular type oxide present in the crystal grains of the metal structure as a form of oxide contained in the internal oxide layer. In addition to functioning as a trap site for hydrogen that can penetrate into steel in corrosive environments, the formation of a large amount of oxides in the steel during hot stamping and welding processes By functioning as a trap site for Zn that can penetrate, high LME properties and hydrogen embrittlement resistance can be obtained.
  • LME property and hydrogen embrittlement resistance can be obtained, and furthermore, a layered region (sometimes referred to as a surface depletion layer) in which the composition of the metal structure at half the depth of the internal oxide layer is low in Si and high in Al. By forming, it was found that higher LME properties can be obtained.
  • the present invention was made based on the above findings, and the gist thereof is as follows. (1) in % by mass, C: 0.05 to 0.40%, Si: 0.2 to 3.0%, Mn: 0.1 to 5.0%, sol. Al: 0.4-1.50%, P: 0.0300% or less, S: 0.0300% or less, N: 0.0100% or less, B: 0 to 0.010%, Ti: 0 to 0.150%, Nb: 0 to 0.150%, V: 0 to 0.150%, Cr: 0 to 2.00%, Ni: 0 to 2.00%, Cu: 0 to 2.00%, Mo: 0 to 1.00%, W: 0 to 1.00%, Ca: 0-0.100%, Mg: 0-0.100%, Zr: 0 to 0.100%, A steel sheet containing Hf: 0 to 0.100% and REM: 0 to 0.100%, with the balance being Fe and impurities,
  • the surface layer of the steel sheet has an internal oxide layer containing fine-grained oxide
  • fine-grained oxides and coarse-grained oxides which are abundantly present in the surface layer of a steel sheet, function as trap sites for hydrogen intruding in a corrosive environment.
  • the amount of hydrogen that penetrates can be greatly suppressed, and hydrogen embrittlement resistance can be greatly improved.
  • the fine-grained oxide and the coarse-grained oxide also function as trap sites for Zn that penetrates into the steel during hot stamping and welding, greatly suppressing the amount of Zn that penetrates, and improving resistance to LME. can greatly improve performance.
  • a layered region (sometimes referred to as a "surface layer depletion layer") having a metallographic composition of low Si and high Al at half the depth of the internal oxide layer, Al also functions as a trap site for Zn that penetrates into the steel during hot stamping and welding, greatly suppressing the amount of Zn that penetrates, and can further improve LME resistance. Since the fine-grained oxides, coarse-grained oxides, and surface layer depleted layer are formed inside the steel sheet, when forming the coating layer, the interdiffusion of the steel components and the coating components is sufficiently performed, resulting in a high Plating properties can be obtained. Therefore, according to the present invention, it is possible to obtain high plateability, LME resistance, and hydrogen embrittlement resistance in a high-strength steel sheet.
  • FIG. 1 shows a schematic view of a cross-section of a steel sheet with an external oxide layer
  • FIG. 1 shows a schematic view of a cross-section of an exemplary steel plate according to the invention
  • the steel sheet according to the present invention is mass%, C: 0.05 to 0.40%, Si: 0.2 to 3.0%, Mn: 0.1 to 5.0%, sol. Al: 0.4-1.50%, P: 0.0300% or less, S: 0.0300% or less, N: 0.0100% or less, B: 0 to 0.010%, Ti: 0 to 0.150%, Nb: 0 to 0.150%, V: 0 to 0.150%, Cr: 0 to 2.00%, Ni: 0 to 2.00%, Cu: 0 to 2.00%, Mo: 0 to 1.00%, W: 0 to 1.00%, Ca: 0-0.100%, Mg: 0-0.100%, Zr: 0 to 0.100%, A steel sheet containing Hf: 0 to 0.100% and REM: 0 to 0.100%, with the balance being Fe and impurities,
  • the surface layer of the steel sheet has an internal oxide layer containing fine-grained oxides and coarse-grained oxides, The number density in
  • a layer containing oxides is formed in the vicinity of the surface of the steel sheet by combining relatively easily oxidizable components (eg, Si, Mn, Al) in the steel sheet with oxygen in the annealing atmosphere.
  • relatively easily oxidizable components eg, Si, Mn, Al
  • an external oxide layer 2 is formed in a film on the surface of the base steel 3 (that is, on the outside of the base steel 3).
  • the external oxide layer 2 is formed in the form of a film on the surface of the base steel 3, when a plating layer (for example, a zinc-based plating layer) is formed, the external oxidation layer 2 is formed by plating components (for example, Zn, Al ) and steel components (such as Fe), the adhesion between the steel and the plating cannot be sufficiently ensured, and non-plating portions where no plating layer is formed may occur.
  • a plating layer for example, a zinc-based plating layer
  • the external oxidation layer 2 is formed by plating components (for example, Zn, Al ) and steel components (such as Fe), the adhesion between the steel and the plating cannot be sufficiently ensured, and non-plating portions where no plating layer is formed may occur.
  • the steel plate 11 according to the present invention does not form an external oxide layer 2 on the surface of the base steel 3 like the steel plate 1 shown in FIG. , fine-grained oxides 12 and coarse-grained oxides 15 are present inside the base steel 14 . Therefore, when a plating layer is formed on the surface of the steel sheet 11, the steel sheet 11 according to the present invention in which the oxide 12 and the coarse grain type oxide 15 are formed inside the base steel 14 has the outer oxide layer 2. As compared with steel plate 1, interdiffusion of plating components and steel components occurs sufficiently, and high plating properties can be obtained. Therefore, the present inventors have found that it is effective to control the conditions during annealing to form oxides inside the steel sheet from the viewpoint of obtaining high plateability.
  • the non-plated portion portion where the plated layer is not formed
  • the plating layer can be formed in the absence of any.
  • highly plated when used for a plated steel sheet indicates a plated steel sheet with very little (for example, 5.0 area % or less) or no non-plated portion.
  • high-strength steel sheets used in atmospheric environments are repeatedly exposed to various environments with different temperatures and humidity.
  • Such an environment is called an atmospheric corrosion environment, and it is known that hydrogen is generated in the corrosion process under the atmospheric corrosion environment. Then, this hydrogen penetrates deeper than the surface layer region in the steel, segregates at the martensite grain boundary of the steel sheet structure, and embrittles the grain boundary, thereby causing hydrogen embrittlement cracking (delayed fracture) in the steel sheet.
  • martensite is a hard structure, it is highly sensitive to hydrogen and prone to hydrogen embrittlement cracking. Such cracks can be a problem during processing of steel sheets.
  • the amount of hydrogen accumulated in the steel more specifically, the amount of hydrogen accumulated at a position deeper than the surface layer region of the steel sheet It is effective to reduce
  • the present inventors have found that, more specifically, "fine-grained oxides" having a particle size and number density within a predetermined range as oxides are produced.
  • the fine-grained oxide functions as a trap site for hydrogen that penetrates in a corrosive environment in the surface layer region of the steel sheet, and reduces the amount of hydrogen accumulated in the steel sheet used in a corrosive environment.
  • a "coarse-grained oxide” having a particle size and number density within a predetermined range is also present as an oxide, so that the coarse-grained oxide can prevent corrosion in the surface layer region of the steel sheet. It has been found that it functions as a trap site for hydrogen that penetrates under the environment, and that it is possible to further reduce the amount of hydrogen accumulated in steel sheets that are used under corrosive environments.
  • the term "high resistance to hydrogen embrittlement” refers to a state in which the amount of hydrogen accumulated in the steel sheet and plated steel sheet is reduced so as to sufficiently suppress hydrogen embrittlement cracking.
  • the present inventors analyzed the relationship between the morphology of oxides and their effectiveness as hydrogen trap sites in detail. It has been found that it is effective to have a large amount of the particulate type oxide 12 spaced apart from each other. In addition, it has been found that it is more effective to have a large amount of coarse granular oxides 15 dispersed in the surface layer of the base steel 14 separated from each other. Although not bound by any particular theory, it is believed that the trapping function of the oxides in the steel sheet for penetrating hydrogen has a positive correlation with the surface area of the oxides.
  • the present inventors controlled the conditions during steel sheet production, particularly during annealing treatment, to trap sites for hydrogen that penetrates when placed in a corrosive environment.
  • the metal structure of the surface layer of the steel plate is typically composed of a softer metal structure than the inside of the steel plate (e.g., 1/8 position or 1/4 position of the plate thickness), so hydrogen is present in the surface layer of the steel plate. Hydrogen embrittlement cracking does not pose a particular problem even if it is used.
  • fine-grained oxides and coarse-grained oxides function as trap sites for Zn that tries to penetrate steel during high-temperature working.
  • Zn that tries to enter steel during hot stamping is captured by fine-grained oxides and coarse-grained oxides on the surface layer of the steel sheet, and the penetration of Zn into grain boundaries is suitably suppressed. be. Therefore, it has been found that it is important to allow a large amount of the fine-grained oxide and the coarse-grained oxide to improve not only the hydrogen penetration resistance described above but also the LME resistance. rice field.
  • fine granular oxides and coarse granular oxides are formed by oxidizing relatively easily oxidizable components (e.g., Si, Mn, Al) in the steel sheet.
  • the composition of the surrounding steel in other words, the metallographic structure
  • This region in which the element of the steel composition is depleted compared to the original steel plate base material is also called a "depleted region”.
  • a layered "depletion region” is also called a “depletion layer”
  • a layer existing in the surface layer of the steel sheet is also called a "surface layer depletion layer”.
  • the presence of such a depleted region in which the composition of the steel is low in Si and high in Al in a desired range also contributes to an improvement in LME resistance. More specifically, in addition to the granular-type oxide and the coarse-grained oxide that function as Zn trap sites, the presence of Al in the composition of the steel around the granular-type oxide causes the Al to Also, the higher the concentration of Si in the steel composition, the more easily LME cracking occurs. We also found that it can be suppressed.
  • the depleted region in which Si is present at a low concentration and Al at a high concentration can overlap with the region in which fine-grained oxides and coarse-grained oxides are distributed. Instead of being formed like the outer oxide layer 2 above, it can be formed inside the base steel. Therefore, when a plating layer is formed on the surface of the steel sheet, the steel sheet according to the present invention in which a depleted region, more specifically, a surface layer depleted layer is formed inside the base steel is compared to the steel sheet 1 having the outer oxide layer 2. Therefore, the interdiffusion of the plating components and the steel components occurs sufficiently, and high plating properties can be obtained.
  • the steel plate according to the present invention will be described in detail below.
  • the thickness of the steel sheet according to the present invention is not particularly limited, but may be, for example, 0.1 to 3.2 mm.
  • C (C: 0.05-0.40%) C (carbon) is an important element for ensuring the strength of steel. If the C content is insufficient, there is a possibility that sufficient strength cannot be secured. Furthermore, the lack of C content may not provide the desired internal oxide and/or surface depleted layer morphology. Therefore, the C content is 0.05% or more, preferably 0.07% or more, more preferably 0.10% or more, and still more preferably 0.12% or more. On the other hand, if the C content is excessive, weldability may deteriorate. Therefore, the C content is 0.40% or less, preferably 0.35% or less, more preferably 0.30% or less.
  • Si silicon
  • Si silicon
  • the Si content is 0.2% or more, preferably 0.3% or more, more preferably 0.5% or more, and still more preferably 1.0% or more.
  • the Si content is 3.0% or less, preferably 2.5% or less, more preferably 2.0% or less.
  • Mn manganese
  • Mn manganese
  • the Mn content is 0.1% or more, preferably 0.5% or more, more preferably 1.0% or more, further preferably 1.5% or more.
  • the Mn content is 5.0% or less, preferably 4.5% or less, more preferably 4.0% or less, and even more preferably 3.5% or less.
  • Al (aluminum) is an element that acts as a deoxidizing element. If the Al content is insufficient, there is a risk that a sufficient deoxidizing effect cannot be ensured. Furthermore, desired oxides, particularly fine-grained oxides, coarse-grained oxides and/or surface depleted layers may not be sufficiently formed inside the steel sheet.
  • the Al content may be 0.4% or more, but in order to obtain a sufficient desired effect, a fine-grained oxide, a coarse-grained oxide and a surface depleted layer, the Al content should be 0.5% or more, It is preferably 0.6% or more, more preferably 0.7% or more.
  • the Al content is 1.50% or less, preferably 1.20% or less, more preferably 0.80% or less.
  • the Al content means the so-called acid-soluble Al content (sol. Al).
  • P 0.0300% or less
  • P (phosphorus) is an impurity generally contained in steel. If the P content exceeds 0.0300%, weldability may deteriorate. Therefore, the P content is 0.0300% or less, preferably 0.0200% or less, more preferably 0.0100% or less, still more preferably 0.0050% or less. Although the lower limit of the P content is not particularly limited, from the viewpoint of manufacturing cost, the P content may be more than 0% or 0.0001% or more.
  • S sulfur
  • S is an impurity generally contained in steel. If the S content exceeds 0.0300%, the weldability is lowered, and furthermore, the amount of precipitation of MnS increases, which may lead to a decrease in workability such as bendability. Therefore, the S content is 0.0300% or less, preferably 0.0100% or less, more preferably 0.0050% or less, still more preferably 0.0020% or less.
  • the lower limit of the S content is not particularly limited, but from the viewpoint of desulfurization cost, the S content may be more than 0% or 0.0001% or more.
  • N nitrogen
  • nitrogen is an impurity generally contained in steel. If the N content exceeds 0.0100%, weldability may deteriorate. Therefore, the N content is 0.0100% or less, preferably 0.0080% or less, more preferably 0.0050% or less, still more preferably 0.0030% or less. Although the lower limit of the N content is not particularly limited, the N content may be more than 0% or 0.0010% or more from the viewpoint of manufacturing cost.
  • B (B: 0 to 0.010%)
  • B (boron) is an element that increases hardenability and contributes to strength improvement, and is an element that segregates at grain boundaries to strengthen grain boundaries and improve toughness, so it may be contained as necessary. . Therefore, the B content is 0% or more, preferably 0.001% or more, more preferably 0.002% or more, and still more preferably 0.003% or more. On the other hand, from the viewpoint of ensuring sufficient toughness and weldability, the B content is 0.010% or less, preferably 0.008% or less, more preferably 0.006% or less.
  • Ti titanium
  • Ti titanium
  • the Ti content is 0% or more, preferably 0.001% or more, more preferably 0.003% or more, still more preferably 0.005% or more, and even more preferably 0.010% or more.
  • coarse TiN may be generated and the toughness may be impaired, so the Ti content is 0.150% or less, preferably 0.100% or less, more preferably 0.050% or less.
  • Nb 0 to 0.150%
  • Nb (niobium) is an element that contributes to improvement of strength through improvement of hardenability, so it may be contained as necessary. Therefore, the Nb content is 0% or more, preferably 0.010% or more, more preferably 0.020% or more, and still more preferably 0.030% or more. On the other hand, from the viewpoint of ensuring sufficient toughness and weldability, the Nb content is 0.150% or less, preferably 0.100% or less, more preferably 0.060% or less.
  • V vanadium
  • V vanadium
  • the V content is 0% or more, preferably 0.010% or more, more preferably 0.020% or more, and still more preferably 0.030% or more.
  • the V content is 0.150% or less, preferably 0.100% or less, and more preferably 0.060% or less.
  • Cr Cr (chromium) is effective in increasing the hardenability of steel and increasing the strength of the steel, so it may be contained as necessary. Therefore, the Cr content is 0% or more, preferably 0.10% or more, more preferably 0.20% or more, still more preferably 0.50% or more, and even more preferably 0.80% or more. On the other hand, if it is contained excessively, a large amount of Cr carbide is formed, and there is a possibility that the hardenability may be impaired. % or less.
  • Ni (Ni: 0 to 2.00%) Ni (nickel) is effective in increasing the hardenability of steel and increasing the strength of steel, so it may be contained as necessary. Therefore, the Ni content is 0% or more, preferably 0.10% or more, more preferably 0.20% or more, still more preferably 0.50% or more, and still more preferably 0.80% or more. On the other hand, excessive addition of Ni causes an increase in cost, so the Ni content is 2.00% or less, preferably 1.80% or less, more preferably 1.50% or less.
  • Cu (copper) is effective in increasing the hardenability of steel and increasing the strength of steel, so it may be contained as necessary. Therefore, the Cu content is 0% or more, preferably 0.10% or more, more preferably 0.20% or more, still more preferably 0.50% or more, and even more preferably 0.80% or more. On the other hand, the Cu content is 2.00% or less, preferably 1.80% or less, more preferably 1.50% or less, from the viewpoint of suppressing toughness deterioration, cracking of the slab after casting, and deterioration of weldability. .
  • Mo mobdenum
  • Mo mobdenum
  • the Mo content is 0% or more, preferably 0.10% or more, more preferably 0.20% or more, and still more preferably 0.30% or more.
  • the Mo content is 1.00% or less, preferably 0.90% or less, more preferably 0.80% or less.
  • W (W: 0-1.00%) W (tungsten) is effective in increasing the hardenability of steel and increasing the strength of steel, so it may be contained as necessary. Therefore, the W content is 0% or more, preferably 0.10% or more, more preferably 0.20% or more, and still more preferably 0.30% or more. On the other hand, the W content is 1.00% or less, preferably 0.90% or less, more preferably 0.80% or less, from the viewpoint of suppressing deterioration of toughness and weldability.
  • Ca (Ca: 0 to 0.100%)
  • Ca (calcium) is an element that contributes to the control of inclusions, particularly the fine dispersion of inclusions, and has the effect of increasing the toughness, so it may be contained as necessary. Therefore, the Ca content is 0% or more, preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.010% or more, and even more preferably 0.020% or more. On the other hand, if the Ca content is excessive, deterioration of the surface properties may become apparent, so the Ca content is 0.100% or less, preferably 0.080% or less, and more preferably 0.050% or less.
  • Mg manganesium
  • Mg is an element that contributes to the control of inclusions, particularly the fine dispersion of inclusions, and has the effect of increasing the toughness, so it may be contained as necessary. Therefore, the Mg content is 0% or more, preferably 0.001% or more, more preferably 0.003% or more, and still more preferably 0.010% or more. On the other hand, if the Mg content is excessive, deterioration of the surface properties may become apparent, so the Mg content is 0.100% or less, preferably 0.090% or less, and more preferably 0.080% or less.
  • Zr zirconium
  • the Zr content is 0% or more, preferably 0.001% or more, more preferably 0.005% or more, and still more preferably 0.010% or more.
  • the Zr content is 0.100% or less, preferably 0.050% or less, and more preferably 0.030% or less.
  • Hf (Hf: 0 to 0.100%) Hf (hafnium) is an element that contributes to the control of inclusions, particularly the fine dispersion of inclusions, and has the effect of increasing the toughness, so it may be contained as necessary. Therefore, the Hf content is 0% or more, preferably 0.001% or more, more preferably 0.005% or more, and still more preferably 0.010% or more. On the other hand, if the Hf content is excessive, deterioration of the surface properties may become apparent, so the Hf content is 0.100% or less, preferably 0.050% or less, and more preferably 0.030% or less.
  • REM 0-0.100%
  • REM rare earth element
  • the REM content is 0% or more, preferably 0.001% or more, more preferably 0.005% or more, and still more preferably 0.010% or more.
  • the REM content is 0.100% or less, preferably 0.050% or less, and more preferably 0.030% or less.
  • REM is an abbreviation for Rare Earth Metal, and refers to an element belonging to the lanthanide series. REM is usually added as a misch metal.
  • the balance other than the above composition consists of Fe and impurities.
  • impurities refers to components that are mixed due to various factors in the manufacturing process, including raw materials such as ores and scraps, when steel sheets are industrially manufactured. means that it is permissible to contain within a range that does not adversely affect the
  • the analysis of the chemical composition of the steel sheet may be performed using an elemental analysis method known to those skilled in the art, such as inductively coupled plasma mass spectrometry (ICP-MS method).
  • ICP-MS method inductively coupled plasma mass spectrometry
  • C and S should be measured using the combustion-infrared absorption method
  • N should be measured using the inert gas fusion-thermal conductivity method.
  • the "surface layer" of a steel sheet means a region from the surface of the steel sheet (the interface between the steel sheet and the coating layer in the case of a plated steel sheet) to a predetermined depth in the thickness direction, and the "predetermined depth” is It is typically 50 ⁇ m or less.
  • the steel sheet 11 includes fine oxides 12 and coarse granular oxides 15 in the surface layer of the steel sheet 11 .
  • the fine-grained oxide 12 and the coarse-grained oxide 15 are present only on the surface layer of the steel sheet 11 .
  • the presence of the fine-grained oxides 12 and the coarse-grained oxides 15 inside the base steel 14 i.e., as internal oxides results in the appearance of external particles on the surface of the base steel 3 shown in FIG.
  • the steel sheet 11 can have higher plateability.
  • the surface layer of the steel sheet 11 includes a surface layer depletion layer in addition to the fine-grained oxide 12 and the coarse-grained oxide 15.
  • This surface layer depletion layer is a region in which the elements of the steel composition around them are depleted compared to the original steel plate base material due to the formation of the fine-grained oxide 12 and the coarse-grained oxide 15. It exists so as to overlap with the region where the type oxide 12 and the coarse grain type oxide 15 are distributed.
  • the surface depletion layer exists inside the base material steel 14 in the same way as the fine-grained oxide 12 and the coarse-grained oxide 15, the fine-grained oxide 12, the coarse-grained oxide 15 and the surface-depleted layer Steel sheets containing layers and plated steel sheets also have high plateability.
  • pill type oxide refers to an oxide dispersed in the form of particles within grains or on grain boundaries of steel.
  • granular refers to being separated from each other in the steel matrix, for example, an aspect ratio of 1.0 to 5.0 (maximum line segment length across the granular type oxide ( long axis)/maximum line segment length (minor axis) crossing the oxide perpendicular to the long axis).
  • “Granularly dispersed” means that the positions of the particles of the oxide are not arranged according to a specific rule (for example, linearly) but are randomly arranged.
  • the granular oxide typically exists three-dimensionally in a spherical or nearly spherical shape on the surface layer of the steel sheet. It is generally observed to be circular or approximately circular.
  • FIG. 2 shows, as an example, a fine-grained oxide 12 and a coarse-grained oxide 15 that look substantially circular.
  • coarse-grained oxide 15 is shown below fine-grained oxide 12.
  • FIG. 2 it is considered that this is because the grain size of the granular oxide tends to grow larger in the interior of the steel sheet.
  • the diffusion speed of oxygen that diffuses into the steel plate from the atmosphere is fast, so the granular oxide is less likely to become coarse. is likely to become coarser.
  • coarse-grained oxides 15 may be formed near the surface of the base steel 14 in some cases.
  • the grain size of the particulate oxide is 20 nm or more and 600 nm or less. Within this range, the grain size of "fine" granular-type oxides is from 20 nm to 100 nm, and the grain size of "coarse” granular-type oxides is from 150 nm to 600 nm.
  • the reason why the upper limit (100 nm) of the grain size of the fine grain type oxide and the lower limit (150 nm) of the grain size of the coarse grain type oxide is set is that, from the viewpoint of measurement accuracy, the fine grain type oxide and the coarse grain type oxide This is to avoid the case where determination of is difficult.
  • the fine-grained oxide and the coarse-grained oxide can be dispersed in the surface layer of the steel sheet, and the fine-grained oxide and the coarse-grained oxide can be dispersed in a corrosive environment. It works well as a trap site for hydrogen that suppresses the penetration of hydrogen in the steel plate, and is also good as a trap site for Zn that can enter when hot stamping or welding a plated steel sheet with a coating layer formed on the steel sheet. function. On the other hand, if the particle size exceeds 600 nm, the number of particulate oxides may decrease, and the desired number density may not be obtained.
  • the lower limit of the grain size of the granular oxide is 20 nm or more. The finer the granular oxide, the higher the specific surface area and the higher the reactivity as a trap site. Zn cannot be trapped, and there is a possibility that it may not function sufficiently as a hydrogen trap site and/or a Zn trap site.
  • the fine particulate type oxide has a number density of 4.0 particles/ ⁇ m 2 or more.
  • the number density By controlling the number density within such a range, a large amount of fine granular oxide can be dispersed on the surface layer of the steel sheet, and the fine granular oxide traps hydrogen to suppress hydrogen penetration in a corrosive environment. It functions well as a site, and further functions well as a trap site for Zn that can enter when a plated steel sheet having a plated layer formed thereon is hot stamped or welded.
  • the number density of the fine particulate oxide is preferably 6.0/ ⁇ m 2 or more, more preferably 8.0/ ⁇ m 2 or more, and still more preferably 10.0/ ⁇ m 2 or more. From the viewpoint of functioning as a hydrogen trapping site and/or a Zn trapping site, the fine granular oxide is preferably present in large amounts. If it exceeds 2 , the LME resistance may decrease, so the number density of the fine particulate oxide may be 30/ ⁇ m 2 or less, 25/ ⁇ m 2 or less, or 20/ ⁇ m 2 or less.
  • the particle size and number density of fine-grained oxides are measured by scanning electron microscopy (SEM). Specific measurements are as follows. A cross-section of the surface layer of the steel sheet is observed by SEM to obtain an SEM image containing fine particulate oxides. A total of 10 regions of 1.0 ⁇ m (depth direction) ⁇ 1.0 ⁇ m (width direction) are selected as observation regions from the SEM image. As the observation position of each region, the depth direction (direction perpendicular to the surface of the steel plate) is set to 1.0 ⁇ m in the region from the steel plate surface to 1.5 ⁇ m, and the width direction (direction parallel to the surface of the steel plate) ) is 1.0 ⁇ m at an arbitrary position in the SEM image.
  • SEM scanning electron microscopy
  • the particle diameter (nm) of the particulate oxide is determined as the diameter of a circle having an area equal to the area, that is, the circle-equivalent diameter.
  • the number of fine-grained oxides in each binarized image is counted.
  • the average value of the total number of fine particulate oxides in the 10 regions obtained in this way is defined as the number density of fine particulate oxides (pieces/ ⁇ m 2 ). If only part of the granular oxide is observed in the observation area, that is, if the entire outline of the granular oxide is not within the observation area, the number is not counted.
  • the number density of the coarse particulate oxide is 4.0/25 ⁇ m 2 or more and 30.0/25 ⁇ m 2 or less.
  • the number density is 4.0/25 ⁇ m 2 or more and 30.0/25 ⁇ m 2 or less.
  • the number density of hydrogen trap sites and/or Zn trap sites is not sufficient, and the coarse granular oxide is a hydrogen trap site and/or It may not function sufficiently as a trap site for Zn, and good hydrogen embrittlement resistance and/or LME resistance may not be obtained.
  • the number density of the coarse-grained oxide is preferably 6.0/25 ⁇ m 2 or more, more preferably 8.0/25 ⁇ m 2 or more, and still more preferably 10.0/25 ⁇ m 2 or more. From the viewpoint of functioning as a hydrogen trapping site and/or a Zn trapping site, a large amount of the coarse-grained oxide is preferable.
  • the LME resistance may deteriorate, so the number density of the coarse granular oxide is 30 particles/25 ⁇ m 2 or less.
  • the number density may be preferably 25/25 ⁇ m 2 or less, more preferably 20/25 ⁇ m 2 or less.
  • the particle size and number density of coarse-grained oxides are measured with a scanning electron microscope (SEM). Specific measurements are as follows. A cross-section of the surface layer of the steel sheet is observed by SEM to obtain an SEM image containing coarse-grained oxides. A total of 10 regions of 5.0 ⁇ m (depth direction) ⁇ 5.0 ⁇ m (width direction) are selected as observation regions from the SEM image. As the observation position of each region, the depth direction (direction perpendicular to the surface of the steel plate) is set to 5.0 ⁇ m in the region from the steel plate surface to 8.0 ⁇ m, and the width direction (direction parallel to the surface of the steel plate) ) is 5.0 ⁇ m at an arbitrary position in the SEM image.
  • SEM scanning electron microscope
  • the particle size (nm) of the particulate oxide is determined as the diameter of a circle having an area equal to the area, that is, the equivalent circle diameter, and the oxide having a particle size in the range of 150 nm or more and 600 nm or less is defined as a coarse particulate oxide. Furthermore, the number of coarse-grained oxides in each binarized image is counted. The average value of the total number of coarse granular oxides in the 10 regions obtained in this manner is taken as the number density of coarse granular oxides (pieces/25 ⁇ m 2 ). If only part of the granular oxide is observed in the observation area, that is, if the entire outline of the granular oxide is not within the observation area, the number is not counted.
  • the internal oxide layer is a layer formed inside the steel sheet and includes fine-grained oxides 12 and coarse-grained oxides 15 . Therefore, the "internal oxide layer” is a continuous region from the surface of the steel sheet to the farthest position where either the fine-grained oxide 12 or the coarse-grained oxide 15 exists. Therefore, as shown as “Rn” in FIG. It is the distance from the surface of the steel sheet 11 to the farthest position where either the fine-grained oxide 12 or the coarse-grained oxide 15 exists when the surface of the steel sheet 11 is advanced in the direction perpendicular to the surface of the steel sheet.
  • the surface of the actual steel sheet is uneven, and depending on which location (point) on the steel sheet surface is selected, the positions of the fine-grained oxide 12 and the coarse-grained oxide 15 furthest from the steel sheet surface also vary. Observation regions are selected, and the average value of the results of measurement at the 10 locations is defined as the "average depth of the internal oxide layer" (sometimes referred to as "R").
  • FIG. 2 shows, as an example, the case where the coarse-grained oxide 15 exists at the deepest position.
  • the fine-grained oxide 12 and the coarse-grained oxide 15 can function as trap sites for hydrogen that penetrates in a corrosive environment or the like.
  • the lower limit of the average depth R of the internal oxide layer is not particularly limited. Therefore, it is 8 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and even more preferably 20 ⁇ m or more.
  • the upper limit of the average depth R is not particularly limited, it is substantially 100 ⁇ m or less.
  • the depth R is determined by cross-sectional observation of the surface layer of the steel plate 11, as shown in FIG.
  • a specific measuring method is as follows. A cross section of the surface layer of the steel plate 11 is observed by SEM. Ten observation positions were selected at random. Measure the surface length L 0 (ie, the width of the SEM image) from the observed SEM image. The length L 0 is set to 100 ⁇ m or more (for example, 100 ⁇ m, 150 ⁇ m or 200 ⁇ m), and the depth to be measured is a region from the surface of the steel sheet to 100 ⁇ m.
  • the positions of the fine-grained oxide 12 and the coarse-grained oxide 15 are specified from the SEM image, and among the specified fine-grained oxide 12 and the coarse-grained oxide 15, the farthest from the surface of the steel sheet Either the fine-grained oxide 12 or the coarse-grained oxide 15 existing at the position is selected, and the farthest from the surface of the steel plate 11 where either the fine-grained oxide 12 or the coarse-grained oxide 15 exists
  • the distance to the position is determined as depth Rn.
  • the average value of Rn measured at 10 points is obtained as "average depth of internal oxide layer" (sometimes referred to as "R").
  • the granular oxide contains one or more of the elements contained in the steel sheet described above in addition to oxygen, and typically includes: It has a component composition containing Si, O and Fe, and optionally containing Mn and Al.
  • the oxide may contain an element (for example, Cr) that may be contained in the steel sheet described above, in addition to these elements.
  • the fine-grained oxide and the coarse-grained oxide are formed by oxidizing relatively easily oxidizable components (e.g., Si, Mn, Al) in the steel sheet.
  • the composition of the surrounding steel in other words, the metallographic structure
  • This region in which the element of the steel composition is depleted compared to the original steel plate base material is also called a "depleted region”.
  • a layered "depletion region” is also called a "depletion layer”
  • a layer existing in the surface layer of the steel sheet is also called a "surface layer depletion layer”.
  • the low-Si, high-Al surface depletion layer is a steel that does not contain fine-grained oxides and coarse-grained oxides at a depth half the average depth of the internal oxide layer (in other words,
  • the composition of the metal structure) is mass % and satisfies Si ⁇ 0.6% and Al ⁇ 0.05%.
  • Si exceeds 0.6%, LME cracking is likely to occur. Therefore, Si ⁇ 0.6%.
  • the lower limit of Si is not particularly limited, and may be 0% or more.
  • Al also functions as a trap site for Zn that tries to penetrate into the steel during working at high temperatures. If Al is less than 0.05%, it may not function sufficiently as a trap site for Zn. Therefore, Al ⁇ 0.05%.
  • the concentration of Si and Al is the element concentration in the steel composition that does not contain fine-grained oxides and coarse-grained oxides in the internal oxide layer, and is half the average depth R of the internal oxide layer. is the elemental concentration measured at depth.
  • the starting point of the average depth of the internal oxide layer is the steel sheet surface (in the case of a plated steel sheet, the interface between the steel sheet and the coating layer).
  • the base point is the average line of the surface or interface of Element concentration measurement here is performed by EDS (Energy Dispersed Spectroscopy).
  • the surface layer depletion layer can overlap the regions where fine-grained oxides and coarse-grained oxides are distributed, and is present in the surface layer of the steel sheet, that is, formed inside the base steel. Therefore, when a plating layer is formed on the surface of the steel sheet, the steel sheet according to the present invention in which a depleted region, more specifically, a surface depleted layer is formed inside the base steel has The interdiffusion of the plating components and the steel components occurs sufficiently, making it possible to obtain high plating properties.
  • the plated steel sheet according to the present invention has a plating layer containing Zn on the steel sheet according to the present invention described above.
  • This plating layer may be formed on one side of the steel sheet, or may be formed on both sides.
  • the plating layer containing Zn includes, for example, a hot-dip galvanized layer, an alloyed hot-dip galvanized layer, an electro-galvanized layer, an electro-alloyed galvanized layer, and the like. More specifically, plating types include, for example, Zn-0.2% Al (GI), Zn-(0.3 to 1.5)% Al, Zn-4.5% Al, Zn-0. 09% Al-10% Fe (GA), Zn-1.5% Al-1.5% Mg, or Zn-11% Al-3% Mg-0.2% Si, Zn-11% Ni, Zn- 15% Mg or the like can be used.
  • GI Zn-0.2% Al
  • Zn-(0.3 to 1.5)% Al Zn-4.5% Al
  • Component composition of plating layer The component composition contained in the plating layer containing Zn in the present invention will be described. "%” regarding the content of an element means “% by mass” unless otherwise specified. In the numerical range of the component composition of the plating layer, unless otherwise specified, the numerical range represented using “ ⁇ ” means the range including the numerical values before and after " ⁇ " as the lower and upper limits. do.
  • Al is an element that improves the corrosion resistance of the plating layer by being contained or alloyed with Zn, so it may be contained as necessary. Therefore, the Al content may be 0%.
  • the Al content is preferably 0.01% or more, for example, 0.1% or more, 0.3% or more, 0.5% or more. , 1.0% or more, or 3.0% or more.
  • the Al content is preferably 60.0% or less, for example, 55.0% or less, 50.0% or less, 40.0% or less.
  • the Al content in the coating layer is in the range of 0.3 to 1.5%, the effect of Al significantly reduces the penetration rate of Zn into the steel grain boundary, resulting in LME resistance. can be improved. Therefore, from the viewpoint of improving LME resistance, the Al content in the plating layer is preferably 0.3 to 1.5%.
  • Mg is an element that improves the corrosion resistance of the plating layer by being contained together with Zn and Al or being alloyed with it, so it may be contained as necessary. Therefore, the Mg content may be 0%.
  • the Mg content is preferably 0.01% or more, for example, 0.1% or more, 0.5% or more, 1.0% or more. % or more, or 3.0% or more.
  • the Mg content is preferably 15.0% or less, for example, 10.0% or less, or 5.0% or less.
  • Fe (Fe: 0 to 15.0%) Fe can be contained in the coating layer by diffusing from the steel sheet when the coating layer containing Zn is formed on the steel sheet and then heat-treated. Therefore, the Fe content may be 0% since Fe is not contained in the plated layer when the heat treatment is not performed. Also, the Fe content may be 1.0% or more, 2.0% or more, 3.0% or more, 4.0% or more, or 5.0% or more. On the other hand, the Fe content is preferably 15.0% or less, such as 12.0% or less, 10.0% or less, 8.0% or less, or 6.0% or less.
  • Si is an element that further improves corrosion resistance when contained in a Zn-containing plating layer, particularly a Zn--Al--Mg plating layer, and thus may be contained as necessary. Therefore, the Si content may be 0%. From the viewpoint of improving corrosion resistance, the Si content may be, for example, 0.005% or more, 0.01% or more, 0.05% or more, 0.1% or more, or 0.5% or more. Also, the Si content may be 3.0% or less, 2.5% or less, 2.0% or less, 1.5% or less, or 1.2% or less.
  • the basic composition of the plating layer is as above. Furthermore, the plating layer is optionally Sb: 0 to 0.50%, Pb: 0 to 0.50%, Cu: 0 to 1.00%, Sn: 0 to 1.00%, Ti: 0 to 1.00%, Sr: 0 to 0.50%, Cr: 0 to 1.00%, Ni: 0 to 1.00%, and Mn: 0 to 1.00%, one or more may contain.
  • the total content of these optional additive elements is preferably 5.00% or less, and 2.00%, from the viewpoint of sufficiently exhibiting the actions and functions of the basic components that constitute the plating layer. More preferably:
  • the balance other than the above components consists of Zn and impurities.
  • Impurities in the plating layer are components that are mixed in due to various factors in the manufacturing process, including raw materials, when manufacturing the plating layer, and are not intentionally added to the plating layer. do.
  • the plating layer may contain, as impurities, a trace amount of elements other than the above-described basic components and optional additive components within a range that does not interfere with the effects of the present invention.
  • the chemical composition of the plating layer can be determined by dissolving the plating layer in an acid solution containing an inhibitor that suppresses corrosion of the steel sheet, and measuring the resulting solution by ICP (inductively coupled plasma) emission spectroscopy. can.
  • the thickness of the plating layer may be, for example, 3-50 ⁇ m.
  • the amount of the plated layer deposited is not particularly limited, but may be, for example, 10 to 170 g/m 2 per side.
  • the adhesion amount of the plating layer is determined by dissolving the plating layer in an acid solution to which an inhibitor is added to suppress the corrosion of the base iron, and from the weight change before and after pickling and peeling the plating layer.
  • the steel sheet and plated steel sheet according to the present invention preferably have high strength, and specifically preferably have a tensile strength of 440 MPa or more.
  • the tensile strength may be 500 MPa or greater, 600 MPa or greater, 700 MPa or greater, or 800 MPa or greater.
  • the upper limit of the tensile strength is not particularly limited, it may be, for example, 2000 MPa or less from the viewpoint of ensuring toughness.
  • the tensile strength may be measured according to JIS Z 2241 (2011) by taking a JIS No. 5 tensile test piece whose longitudinal direction is perpendicular to the rolling direction.
  • the steel sheet and plated steel sheet according to the present invention have high strength, high platability, LME resistance, and hydrogen embrittlement resistance, and therefore can be suitably used in a wide range of fields such as automobiles, home appliances, and building materials. is particularly preferred for use in the automotive sector.
  • Steel sheets used for automobiles are usually subjected to plating treatment (typically Zn-based plating treatment). The effect is exhibited suitably.
  • plating treatment typically Zn-based plating treatment
  • steel sheets and plated steel sheets used for automobiles are often subjected to hot stamping, in which case hydrogen embrittlement cracking and LME cracking can become a significant problem. Therefore, when the steel sheet and the plated steel sheet according to the present invention are used as steel sheets for automobiles, the effect of the present invention that they have high hydrogen embrittlement resistance and LME resistance is suitably exhibited.
  • the steel sheet according to the present invention includes, for example, a casting process in which molten steel having an adjusted chemical composition is cast to form a steel slab, a hot rolling process in which the steel slab is hot rolled to obtain a hot-rolled steel sheet, and a hot-rolled steel sheet is coiled.
  • the cold rolling process may be performed as it is after pickling without winding after the hot rolling process.
  • Conditions for the casting process are not particularly limited. For example, following smelting by a blast furnace or an electric furnace, various secondary smelting may be performed, and then casting may be performed by a method such as ordinary continuous casting or casting by an ingot method.
  • a hot-rolled steel sheet can be obtained by hot-rolling the steel slab cast as described above.
  • the hot-rolling process is performed by hot-rolling a cast steel slab directly or by reheating it after cooling it once.
  • the heating temperature of the steel slab may be, for example, 1100.degree. C. to 1250.degree.
  • Rough rolling and finish rolling are usually performed in the hot rolling process.
  • the temperature and rolling reduction for each rolling may be appropriately changed according to the desired metal structure and plate thickness.
  • the finishing temperature of finish rolling may be 900 to 1050° C.
  • the rolling reduction of finish rolling may be 10 to 50%.
  • a hot-rolled steel sheet can be coiled at a predetermined temperature.
  • the coiling temperature may be appropriately changed according to the desired metal structure and the like, and may be, for example, 500 to 800°C.
  • the hot-rolled steel sheet may be subjected to a predetermined heat treatment by unwinding before or after winding. Alternatively, the coiling process may not be performed, and after the hot rolling process, pickling may be performed and the cold rolling process described below may be performed.
  • the hot-rolled steel sheet After subjecting the hot-rolled steel sheet to pickling or the like, the hot-rolled steel sheet can be cold-rolled to obtain a cold-rolled steel sheet.
  • the rolling reduction of cold rolling may be appropriately changed according to the desired metal structure and plate thickness, and may be, for example, 20 to 80%. After the cold-rolling process, for example, it may be air-cooled to room temperature.
  • Pretreatment process In order to obtain a large amount of fine-grained oxides and coarse-grained oxides in the surface layer of the finally obtained steel sheet and to obtain a depleted layer in the surface layer, a predetermined pretreatment step is performed before annealing the cold-rolled steel sheet. is valid.
  • the pretreatment process introduces a large amount of dislocations into the surface of the cold-rolled steel sheet. Since the diffusion of oxygen and the like is faster in grain boundaries than in grains, introducing a large amount of dislocations on the surface of the cold-rolled steel sheet enables the formation of many paths as in the case of grain boundaries. Therefore, during annealing, oxygen is likely to diffuse (penetrate) into the steel along these dislocations, and the diffusion rate of Si and Al also increases.
  • the pretreatment step includes grinding the surface of the cold-rolled steel sheet with a heavy grinding brush (brush grinding process). D-100 manufactured by Hotani Co., Ltd. may be used as the heavy-duty grinding brush.
  • the brush reduction amount is 0.5 to 10.0 mm, more preferably 5.0 to 10.0 mm, and the rotation speed is 100 to 1000 rpm.
  • Annealing is performed on the cold-rolled steel sheet that has undergone the pretreatment process.
  • Annealing is preferably performed under a tension of, for example, 0.1 to 30.0 MPa.
  • tension is applied during annealing, it is possible to introduce strain into the steel sheet more effectively. , oxides are likely to be generated inside the steel sheet. As a result, it is advantageous for increasing the number density of the particulate type oxide and forming a surface layer depleted layer.
  • the holding temperature in the annealing process should be 720°C to 750°C in order to properly form the internal oxide. By setting the content within such a range, the formation of an external oxide layer can be suppressed, and the oxide can be formed inside the steel sheet. If the holding temperature is lower than 720°C, the desired internal oxide may not be sufficiently formed during annealing. If the holding temperature is higher than 750° C., the particulate oxide may coarsen, and the particulate oxide may not satisfy the desired number density.
  • the rate of temperature increase to the holding temperature is not particularly limited, but may be 1 to 10° C./sec. Also, the temperature rise may be performed in two steps, with a first temperature rise rate of 1 to 10° C./sec and a second temperature rise rate of 1 to 10° C./sec different from the first temperature rise rate. good.
  • the holding time at the holding temperature in the annealing step is preferably 5 to 50 seconds. By setting the content within such a range, the formation of an external oxide layer can be suppressed, and the oxide can be formed inside the steel sheet. If the holding time is less than 5 seconds, the desired granular oxide may not be sufficiently formed during annealing. If the holding time is longer than 50 seconds, the particulate oxide may become coarse, and the particulate oxide may not satisfy the desired number density.
  • Humidification is performed during the heating and holding (isothermal) of the annealing process from the viewpoint of generating the desired fine-grained oxide, coarse-grained oxide, and surface depletion layer.
  • the atmosphere may have a dew point of ⁇ 20 to 10° C., preferably ⁇ 10 to 5° C., and 1 to 15 vol % H 2 . If the dew point is too low, an external oxide layer may be formed on the surface of the steel sheet, and an internal oxide layer may not be formed sufficiently, resulting in insufficient plating properties, hydrogen embrittlement resistance, and LME resistance. . On the other hand, if the dew point is too high, the particulate-type oxide may become coarse, and the particulate-type oxide may not satisfy the desired number density and/or the desired surface depletion layer may not be obtained.
  • the temperature at which humidification is started during temperature rise should be less than 600°C. If humidification is started above 600° C., the internal oxide layer and/or the surface layer depleted layer may not be sufficiently formed until the holding temperature is reached.
  • An internal oxide layer may be formed on the surface layer of the steel sheet during the above-described rolling process, particularly during the hot rolling process.
  • the internal oxide layer formed in such a rolling process may inhibit the formation of fine-grained oxides, coarse-grained oxides and/or surface depleted layers in the annealing process. is preferably removed by pickling or the like before annealing. More specifically, the depth of the internal oxide layer of the cold-rolled steel sheet during the annealing process is 0.5 ⁇ m or less, preferably 0.3 ⁇ m or less, more preferably 0.2 ⁇ m or less, and still more preferably 0.1 ⁇ m. You should do the following.
  • the plated steel sheet according to the present invention can be obtained by performing a plating treatment step of forming a plating layer containing Zn on the steel sheet manufactured as described above.
  • the plating process may be performed according to a method known to those skilled in the art.
  • the plating treatment step may be performed by, for example, hot dip plating or electroplating.
  • the plating step is performed by hot dip plating.
  • the conditions of the plating process may be appropriately set in consideration of the composition, thickness, adhesion amount, etc. of the desired plating layer.
  • An alloying treatment may be performed after the plating treatment.
  • the conditions for the plating process are Al: 0-60.0%, Mg: 0-15.0%, Fe: 0-15%, Ni: 0-20%, and Si: 0-3 %, with the balance being Zn and impurities.
  • the conditions of the plating process are, for example, Zn-0.2% Al (GI), Zn-(0.3 to 1.5)% Al, Zn-4.5% Al, Zn- 0.09% Al-10% Fe (GA), Zn-1.5% Al-1.5% Mg, or Zn-11% Al-3% Mg-0.2% Si, Zn-11% Ni, It may be appropriately set so as to form Zn-15% Mg.
  • Al in the plating layer is desirably 0.3 to 1.5%.
  • Example 1 Steel plate examples and comparative examples (Preparation of steel plate samples) Molten steel having an adjusted chemical composition was cast to form a steel slab, and the steel slab was hot-rolled, pickled, and then cold-rolled to obtain a cold-rolled steel sheet. Next, the cold-rolled steel sheet was air-cooled to room temperature, and the cold-rolled steel sheet was pickled to remove the internal oxide layer formed by rolling to the internal oxide layer depth ( ⁇ m) before annealing shown in Table 1. Next, a sample was taken from each cold-rolled steel sheet by a method conforming to JIS G0417:1999, and the chemical composition of the steel sheet was analyzed by the ICP-MS method or the like. Table 1 shows the chemical compositions of the measured steel sheets. All of the steel plates used had a plate thickness of 1.6 mm.
  • a portion of the cold-rolled steel sheet is coated with a 2.0% NaOH aqueous solution and brush-ground using a heavy-duty grinding brush (D-100 manufactured by Hotani Co., Ltd.) at a brush reduction of 2.0 mm and a rotation speed of 600 rpm.
  • Pretreatment was performed, and then annealing treatment was performed according to the dew point, holding temperature and holding time shown in Table 1 to prepare each steel plate sample.
  • the heating rate during annealing was 6.0°C/sec up to 500°C, and 2.0°C/sec from 500°C to the holding temperature.
  • the obtained SEM image of each region of each steel plate sample is binarized, the area of the granular oxide portion is calculated from the binarized image, and the diameter of a circle having an area equal to that area, that is, the equivalent circle diameter
  • the grain size (nm) of the particulate oxide was determined, and oxides within the grain size range of 20 to 100 nm were defined as fine particulate oxides. Furthermore, the number of fine-grained oxides in the SEM image was counted. The average value of the number of fine particulate oxides in the 10 binarized images obtained in this way was taken as the number density of fine particulate oxides.
  • Table 1 shows the number density (pieces/ ⁇ m 2 ) of fine particulate oxides for each steel plate sample.
  • the obtained SEM image of each region of each steel plate sample is binarized, the area of the granular oxide portion is calculated from the binarized image, and the diameter of a circle having an area equal to that area, that is, the equivalent circle diameter
  • the grain size (nm) of the particulate type oxide was determined, and those within the grain size range of 150 to 600 nm were defined as coarse particulate type oxides. Furthermore, the number of coarse granular oxides in the SEM image was counted. The average value of the number of coarse granular oxides in the 10 binarized images obtained in this way was taken as the number density of coarse granular oxides.
  • Table 1 shows the number density (pieces/25 ⁇ m 2 ) of coarse-grained oxides for each steel plate sample.
  • plating evaluation Each steel sheet sample was plated, and the plating property was evaluated by measuring the area ratio of the non-plated portion on the surface of the plated steel sheet. Specifically, hot-dip Zn-0.2% Al plating (bath temperature 450 to 470 ° C.) was applied, and a 1 mm ⁇ 1 mm area on the surface of each plated steel plate sample on which a coating layer was formed was observed with an optical microscope. From the observed image, the area where the plating layer was formed (plated area) and the area where the plating layer was not formed (non-plated area) were distinguished, and the area ratio of the non-plated area (area of the non-plated area/observed image) was calculated.
  • Evaluation A The area ratio of the plated portion is 95% or more (the area ratio of the non-plated portion is 5.0% or less)
  • Evaluation B The area ratio of the plated portion is less than 95% and 90% or more (the area ratio of the non-plated portion is more than 5.0% and 10% or less)
  • composition analysis of plating layer For the composition of the plating layer, a sample cut to 30 mm x 30 mm was immersed in a 10% hydrochloric acid aqueous solution containing an inhibitor (manufactured by Asahi Chemical Co., Ltd., IBIT), and after the plating layer was peeled off by pickling, the plating components dissolved in the aqueous solution were subjected to ICP. determined by analysis.
  • an inhibitor manufactured by Asahi Chemical Co., Ltd., IBIT
  • Each plated steel sheet sample of 100 ⁇ 100 mm was subjected to spot welding. Two pieces of 50 mm ⁇ 100 mm size cut were prepared, and the two Zn-based plated steel sheet samples were subjected to welding using a dome radius type welding electrode with a tip diameter of 8 mm at a striking angle of 5 ° and a pressure of 4.
  • a welded member was obtained by performing spot welding at 0.5 kN, a clearance of 0.5 mm, an energization time of 0.5 seconds, and an energization current of 7 kA. After the cross section of the welded portion was polished, the welded portion was observed with an optical microscope, and the length of the LME crack generated in the cross section of the welded portion was measured and evaluated as follows.
  • Table 1 shows the results.
  • the plating type in Table 1 was all GA, and the plating type in Table 2 was as described in Table 2.
  • Each plated steel plate sample of 50 mm ⁇ 100 mm was subjected to zinc phosphate treatment using a zinc phosphate chemical conversion treatment solution (Surfdyne SD5350 series: manufactured by Nippon Paint Industrial Coating Co., Ltd.), and then electrodeposition coating (PN110 Powernics Gray: manufactured by Nippon Paint Industrial Co., Ltd.) was formed to a thickness of 20 ⁇ m and baked at a baking temperature of 150° C. for 20 minutes to form a coating film on the plated steel sheet sample. Then, it was subjected to a combined cycle corrosion test according to JASO (M609-91), and evaluated by measuring the amount of diffusible hydrogen after 120 cycles by the thermal desorption method.
  • a zinc phosphate chemical conversion treatment solution Sudfdyne SD5350 series: manufactured by Nippon Paint Industrial Coating Co., Ltd.
  • electrodeposition coating PN110 Powernics Gray: manufactured by Nippon Paint Industrial Co., Ltd.
  • the test piece was heated to 400°C in a heating furnace equipped with a gas chromatograph, and the total amount of hydrogen released until the temperature dropped to 250°C was measured. Based on the measured amount of diffusible hydrogen, resistance to hydrogen embrittlement (amount of accumulated hydrogen in the sample) was evaluated according to the following criteria.
  • Evaluation B The amount of diffusible hydrogen exceeds 0.4 ppm
  • Example 2 Examples and comparative examples of plated steel sheets (Preparation of plated steel sheet samples) After cutting each steel plate sample of Example 1 into a size of 100 mm ⁇ 200 mm, various platings were performed as shown in Table 2.
  • plating type a is "alloyed hot-dip galvanized steel sheet (GA)”
  • plating type b is “hot-dip Zn-0.2% Al-plated steel sheet (GI)”
  • plating type c is "hot-dip Zn-(0 .3 to 1.5)% Al plated steel sheet (Al content is listed in Table 2)”.
  • the hot dip galvanizing step the cut sample was immersed in a 440° C. hot dip galvanizing bath for 3 seconds. After immersion, it was pulled out at 100 mm/sec, and the coating weight was controlled to 50 g/m 2 with N 2 wiping gas. After that, alloying treatment was performed at 500° C. for plating type a.
  • each evaluation item that is, the number density of fine-grained oxides and coarse-grained oxides, the surface layer depleted layer, the plating property, and the hydrogen resistance, was evaluated by the same evaluation method as in Example 1. Evaluation of embrittlement was performed, and it was confirmed that results equivalent to those of Example 1 were obtained.
  • the tensile strength it was slightly lowered by the plating treatment, but as in Example 1, No. For No. 16, the tensile strength was less than 440 MPa, and for the others it was 440 MPa or more.
  • the LME resistance the LME resistance was improved when the Al content was 0.3 to 1.5% by mass in the plating type c. Table 2 shows the results.
  • the plating property evaluation is A
  • the hydrogen embrittlement resistance evaluation is A
  • the LME resistance evaluation is AAA, AA or A
  • sample no. For Nos. 2 to 8 and 23 to 36, the chemical compositions of the steel sheets, the number densities of fine-grained oxides and coarse-grained oxides, and the surface layer depleted layer satisfied the scope of the present invention. It had hydrogen embrittlement resistance. Sample no.
  • Sample no. No. 9 had a low dew point during annealing, did not form the desired internal oxide layer and surface depleted layer, and did not provide high plating properties, hydrogen embrittlement resistance, and LME resistance. Sample no. In No. 10, the dew point during annealing is high, and fine-grained internal oxides are not formed and become coarse, and the desired surface depleted layer cannot be obtained. I didn't get it. Sample no. In No.
  • sample no. 22 had a deep internal oxide layer before annealing, and a sufficient internal oxide layer and surface depleted layer were not formed after annealing, and high plating properties, hydrogen embrittlement resistance, and LME resistance could not be obtained.
  • Sample no. In No. 37 since no tension was applied to the steel sheet during annealing, a sufficient internal oxide layer was not formed, and high hydrogen embrittlement resistance and LME resistance could not be obtained.
  • Sample no. In No. 38 since the brush grinding treatment before annealing was not performed, a sufficient internal oxide layer was not formed, and high hydrogen embrittlement resistance and LME resistance could not be obtained.
  • Sample no. In No. 39 the humidification start temperature was 600° C. or higher, a sufficient internal oxide layer was not formed, an external oxide layer was formed, and high plating properties, hydrogen embrittlement resistance and LME resistance could not be obtained.
  • the present invention it is possible to provide a high-strength steel sheet and a plated steel sheet having high plateability, LME resistance, and hydrogen embrittlement resistance, and the steel sheet and the plated steel sheet are used for automobiles, home appliances, building materials, etc.
  • the present invention can be suitably used for automobiles, and high collision safety and long life are expected as steel sheets for automobiles and plated steel sheets for automobiles. Therefore, the present invention can be said to be an invention of extremely high industrial value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

高いめっき性、耐LME性及び耐水素脆化性を有する高強度鋼板及びめっき鋼板を提供する。 C:0.05~0.40%、Si:0.2~3.0%、Mn:0.1~5.0%、及びsol.Al:0.4~1.50%を含む鋼板において、前記鋼板の表層に微細粒状型酸化物及び粗大粒状型酸化物を含む内部酸化層を有し、前記微細粒状型酸化物の内部酸化層における数密度が4.0個/μm2以上であり、前記粗大粒状型酸化物の内部酸化層における数密度が4.0個/25μm2以上、30.0個/25μm2以下であり、前記鋼板の断面SEM像から算出した内部酸化層の平均深さの1/2の深さにおける、酸化物を含まない鋼組成が質量%で、Si≦0.6%かつAl≧0.05%を満たす表層欠乏層を含む、鋼板及びそれを用いためっき鋼板を提供する。

Description

鋼板及びめっき鋼板
 本発明は、鋼板及びめっき鋼板に関する。より具体的には、本発明は、高いめっき性、耐LME性及び耐水素脆化性を有する高強度鋼板及びめっき鋼板に関する。
 近年、自動車、家電製品、建材等の様々な分野で使用される鋼板について高強度化が進められている。例えば、自動車分野においては、燃費向上のために車体の軽量化を目的として、高強度鋼板の使用が増加している。このような高強度鋼板は、典型的に、鋼の強度を向上させるためにC、Si、Mn及びAl等の元素を含有する。
 高強度鋼板の製造では、一般的に、圧延後に焼鈍処理のような熱処理が行われる。また、高強度鋼板に典型的に含まれる元素のうち易酸化元素であるSiやMnやAlは、上記熱処理時に雰囲気中の酸素と結合し、鋼板の表面近傍に酸化物を含む層を形成することがある。このような層の形態としては、鋼板の外部(表面)にSiやMnやAlを含む酸化物が膜として形成される形態(外部酸化層)と、鋼板の内部(表層)に酸化物が形成される形態(内部酸化層)とが挙げられる。
 外部酸化層が形成された鋼板の表面上にめっき層(例えばZn系めっき層)を形成する場合、酸化物が膜として鋼板の表面上に存在しているため、鋼成分(例えばFe)とめっき成分(例えばZn)との相互拡散が阻害され、鋼とめっきとの密着性に影響を及ぼし、めっき性が不十分となる(例えば不めっき部が増加する)場合がある。よって、めっき性を向上させる観点からは、外部酸化層が形成された鋼板よりも内部酸化層が形成された鋼板の方が好ましい。
 内部酸化層に関連して、特許文献1及び2には、C、Si、Mn及びAl等を含む素地鋼板上に亜鉛系めっき層を有するめっき鋼板であって、素地鋼板の表層にSi及び/又はMnの酸化物を含む内部酸化層を有する、引張強度が980MPa以上の高強度めっき鋼板が記載されている。
特開2016-130357号公報 特開2018-193614号公報
 自動車用部材等に用いられる高強度鋼板は、気温や湿度が大きく変動する大気腐食環境下で使用されることがある。高強度鋼板はこのような大気腐食環境にさらされると、腐食過程で生成される水素が鋼中に侵入することが知られている。鋼中に侵入した水素は、鋼組織のマルテンサイト粒界に偏析し、粒界を脆化させることで鋼板に割れを生じさせ得る。この侵入水素起因で割れが生じる現象は水素脆化割れ(遅れ破壊)と呼ばれ、鋼板の加工時に問題になることが多い。したがって、水素脆化割れを防止するために、腐食環境下で使用される鋼板においては、鋼中に含まれる水素蓄積量を低減することが有効である。
 また、高強度鋼板上にZn系めっき層等を設けためっき鋼板をホットスタンプ成形加工や溶接加工する場合、当該めっき鋼板は高温(例えば900℃程度)で加工されるため、めっき層中に含まれるZnが溶融した状態で加工され得る。この場合、溶融したZnが鋼中に侵入して鋼板内部に割れを生じることがある。このような現象は液体金属脆化(LME)と呼ばれ、当該LMEに起因して鋼板の疲労特性が低下することが知られている。したがって、LME割れを防止するために、めっき層に含まれるZn等が鋼板中へ侵入することを抑制することが有効である。
 特許文献1及び2では、内部酸化層の平均深さを4μm以上に厚く制御し、当該内部酸化層を水素のトラップサイトとして機能させることで、水素の侵入を防ぎ水素脆化を抑制できることが教示されている。しかしながら、上記内部酸化層に存在する酸化物の形態の制御については何ら検討されておらず、耐水素脆化性について改善の余地がある。また、耐LME性の改善についての検討はなされていない。
 本発明は、このような実情に鑑み、高いめっき性、耐LME性及び耐水素脆化性を有する高強度鋼板及びめっき鋼板を提供することを課題とするものである。
 本発明者らは、上記課題を解決するためには、酸化物を鋼板の表層、すなわち鋼板の内部に形成し、さらに、鋼板の表層に存在する酸化物の形態を制御することが重要であることを見出した。より詳細には、本発明者らは、内部酸化層を形成することで高いめっき性を確保し、内部酸化層に含まれる酸化物の形態として金属組織の結晶粒内に存在する微細粒状型酸化物を多量に形成することで、当該微細粒状型酸化物を腐食環境下で鋼中に侵入し得る水素のトラップサイトとして機能させるだけでなく、ホットスタンプ成形加工や溶接加工の際に鋼中に侵入し得るZnのトラップサイトとして機能させることで、高いLME性及び耐水素脆化性を得ることができることに加えて、粗大粒状型酸化物も多量に形成することで、当該粗大粒状型酸化物を腐食環境下で鋼中に侵入し得る水素のトラップサイトとして機能させるだけでなく、ホットスタンプ成形加工や溶接加工の際に鋼中に侵入し得るZnのトラップサイトとして機能させることで、より高いLME性及び耐水素脆化性を得ることができること、さらに内部酸化層の1/2の深さにおける金属組織の組成が低Siで高Alである層状領域(表層欠乏層と称することがある)を形成することで、より高いLME性を得ることができることを見出した。
 本発明は、上記知見を基になされたものであり、その主旨は以下のとおりである。
 (1)
 質量%で、
 C:0.05~0.40%、
 Si:0.2~3.0%、
 Mn:0.1~5.0%、
 sol.Al:0.4~1.50%、
 P:0.0300%以下、
 S:0.0300%以下、
 N:0.0100%以下、
 B:0~0.010%、
 Ti:0~0.150%、
 Nb:0~0.150%、
 V:0~0.150%、
 Cr:0~2.00%、
 Ni:0~2.00%、
 Cu:0~2.00%、
 Mo:0~1.00%、
 W:0~1.00%、
 Ca:0~0.100%、
 Mg:0~0.100%、
 Zr:0~0.100%、
 Hf:0~0.100%、及び
 REM:0~0.100%を含有し、残部がFe及び不純物からなる成分組成を有する鋼板において、
 前記鋼板の表層に微細粒状型酸化物及び粗大粒状型酸化物を含む内部酸化層を有し、
 前記鋼板の表層の断面を観察した場合において、
 前記微細粒状型酸化物の前記内部酸化層における数密度が4.0個/μm以上であり、
 前記粗大粒状型酸化物の前記内部酸化層における数密度が4.0個/25μm2以上、30.0個/25μm2以下であり、
 前記内部酸化層の平均深さの1/2の深さにおける、前記微細粒状型酸化物及び前記粗大粒状型酸化物を含まない鋼組成がmass%で、Si≦0.6%かつAl≧0.05%を満たす表層欠乏層を含む、鋼板。
 (2)
 前記微細粒状型酸化物の数密度が10個/μm2以上である、(1)に記載の鋼板。
 (3)
 (1)又は(2)に記載の鋼板上にZnを含むめっき層を有する、めっき鋼板。
 (4)
 (3)に記載のZnめっき鋼板であり、めっき層中に含有されるAlが0.3~1.5質量%であることを特徴とするめっき鋼板。
 本発明によれば、鋼板の表層に多量に存在する微細粒状型酸化物及び粗大粒状型酸化物を腐食環境下で侵入する水素のトラップサイトとして機能させることが可能となり、その結果、腐食環境下で侵入する水素量を大きく抑制し、耐水素脆化性を大きく向上させることができる。また、当該微細粒状型酸化物及び粗大粒状型酸化物はホットスタンプ成形加工や溶接加工の際に鋼中に侵入するZnのトラップサイトとしても機能し、侵入するZn量を大きく抑制し、耐LME性を大きく向上させることができる。さらに、本発明によれば、内部酸化層の1/2の深さにおける金属組織の組成が低Siで高Alである層状領域(「表層欠乏層」と称することがある)を形成することで、Alがホットスタンプ成形加工や溶接加工の際に鋼中に侵入するZnのトラップサイトとしても機能し、侵入するZn量を大きく抑制し、耐LME性をさらに向上させることができる。そして、微細粒状型酸化物、粗大粒状型酸化物及び表層欠乏層は鋼板の内部に形成されるため、めっき層を形成する場合、鋼成分とめっきの成分との相互拡散が十分になされ、高いめっき性を得ることが可能となる。よって、本発明により、高強度鋼板において、高いめっき性、耐LME性及び耐水素脆化性を得ることが可能となる。
外部酸化層を有する鋼板の断面についての概略図を示す。 本発明に係る例示の鋼板の断面についての概略図を示す。
 <鋼板>
 本発明に係る鋼板は、質量%で、
 C:0.05~0.40%、
 Si:0.2~3.0%、
 Mn:0.1~5.0%、
 sol.Al:0.4~1.50%、
 P:0.0300%以下、
 S:0.0300%以下、
 N:0.0100%以下、
 B:0~0.010%、
 Ti:0~0.150%、
 Nb:0~0.150%、
 V:0~0.150%、
 Cr:0~2.00%、
 Ni:0~2.00%、
 Cu:0~2.00%、
 Mo:0~1.00%、
 W:0~1.00%、
 Ca:0~0.100%、
 Mg:0~0.100%、
 Zr:0~0.100%、
 Hf:0~0.100%、及び
 REM:0~0.100%を含有し、残部がFe及び不純物からなる成分組成を有する鋼板において、
 前記鋼板の表層に微細粒状型酸化物及び粗大粒状型酸化物を含む内部酸化層を有し、
 前記微細粒状型酸化物の前記内部酸化層における数密度が4.0個/μm以上であり、
 前記粗大粒状型酸化物の前記内部酸化層における数密度が4.0個/25μm2以上、30.0個/25μm2以下であり、
 前記内部酸化層の平均深さの1/2の深さにおける、前記微細粒状型酸化物及び前記粗大粒状型酸化物を含まない鋼組成が質量%で、Si≦0.6%かつAl≧0.05%を満たす表層欠乏層を含むことを特徴としている。
 高強度鋼板の製造においては、所定の成分組成に調整した鋼片を圧延(典型的に熱間圧延及び冷間圧延)した後、所望の組織を得る等の目的のために、一般的に焼鈍処理が行われる。この焼鈍処理において、鋼板中の比較的酸化しやすい成分(例えばSi、Mn、Al)が焼鈍雰囲気中の酸素と結合することで、鋼板の表面近傍に酸化物を含む層が形成される。例えば、図1に示される鋼板1のように、母材鋼3の表面上(すなわち母材鋼3の外部)に外部酸化層2が膜状に形成される。外部酸化層2が母材鋼3の表面上に膜状に形成されると、めっき層(例えば亜鉛系めっき層)を形成した場合に、当該外部酸化層2が、めっき成分(例えばZn、Al)と鋼成分(例えばFe)との相互拡散を阻害するため、鋼とめっきとの間の密着性が十分確保できず、めっき層が形成されない不めっき部が生じる場合がある。
 これに対して、図2に例示されるように、本発明に係る鋼板11は、図1に示される鋼板1のように母材鋼3の表面上に外部酸化層2を形成するのではなく、母材鋼14の内部に微細粒状型酸化物12及び粗大粒状型酸化物15が存在している。したがって、鋼板11の表面上にめっき層を形成した場合に、母材鋼14の内部に酸化物12及び粗大粒状型酸化物15を形成した本発明に係る鋼板11は、外部酸化層2を有する鋼板1に比べて、めっき成分と鋼成分との相互拡散が十分に生じ、高いめっき性を得ることが可能となる。よって、本発明者らは、高いめっき性を得る観点から、焼鈍処理時の条件を制御して鋼板の内部に酸化物を形成することが有効であることを見出した。なお、「高いめっき性」という用語は、鋼板について用いられる場合、当該鋼板上にめっき処理を施した際に不めっき部(めっき層が形成されない部分)が少ない(例えば5.0面積%以下)又は全くない状態でめっき層を形成可能であることを示す。また、「高いめっき性」という用語は、めっき鋼板について用いられる場合、不めっき部が極めて少ない(例えば5.0面積%以下)又は全くない状態のめっき鋼板を示す。
 また、大気環境で使用される高強度鋼板、特に自動車用高強度鋼板は、気温や湿度が異なる様々な環境に繰り返し曝されて使用される。このような環境は大気腐食環境と呼ばれ、当該大気腐食環境下では、腐食過程において水素が発生することが知られている。そして、この水素は鋼中の表層領域より深くに侵入して、鋼板組織のマルテンサイト粒界に偏析し、粒界を脆化させることで鋼板に水素脆化割れ(遅れ破壊)を引き起こす。マルテンサイトは硬質組織であるため、水素感受性が高く、水素脆化割れが発生しやすい。このような割れは鋼板の加工時に問題になり得る。したがって、水素脆化割れを防止するために、大気腐食環境下で使用される高強度鋼板においては、鋼中の水素蓄積量、より具体的には鋼板の表層領域より深い位置での水素蓄積量を低減することが有効である。本発明者らは、鋼板の表層に存在する酸化物の形態を制御することで、より具体的には、酸化物として所定の範囲の粒径及び数密度を有する「微細粒状型酸化物」を存在させることで、当該微細粒状型酸化物が、鋼板の表層領域において、腐食環境下で侵入する水素のトラップサイトとして機能し、腐食環境下で使用される鋼板中の水素蓄積量を低減することが可能であること、加えて酸化物として所定の範囲の粒径及び数密度を有する「粗大粒状型酸化物」も存在させることで、当該粗大粒状型酸化物が、鋼板の表層領域において、腐食環境下で侵入する水素のトラップサイトとして機能し、腐食環境下で使用される鋼板中の水素蓄積量をさらに低減することが可能であることを見出した。なお、「高い耐水素脆化性」という用語は、水素脆化割れを十分に抑制できるように、鋼板及びめっき鋼板中に蓄積される水素量が低減された状態をいう。
 本発明者らは、酸化物の形態と水素のトラップサイトとしての有効性との間の関係を詳細に分析した結果、図2に示すように、母材鋼14の表層に粒状に分散した微細粒状型酸化物12を多量に互いに離間して存在させることが有効であることを見出した。加えて、母材鋼14の表層に粒状に分散した粗大粒状型酸化物15を多量に互いに離間して存在させることがより有効であることを見出した。特定の理論に拘束されるわけではないが、鋼板中の酸化物が有する侵入水素に対するトラップ機能は、当該酸化物の表面積と正の相関があると考えられる。すなわち、微細な酸化物が鋼板の表層で多量に互いに離散して分散することで、鋼板の表層での酸化物の表面積が増加し、水素のトラップ機能が向上すると考えられる。さらに、水素が過剰に侵入して、微細な酸化物がトラップできなかった場合に、粗大な酸化物は相対的に容量が大きくトラップできる水素量も多いので、過剰に侵入した水素もトラップすることができ、水素のトラップ機能がさらに向上すると考えられる。よって、本発明者らは、高い耐水素脆化性を得る観点から、鋼板の製造時、特に焼鈍処理時の条件を制御して、腐食環境下に置かれた際に侵入する水素のトラップサイトとして機能する微細粒状型酸化物及び粗大粒状型酸化物を多量に存在させることが重要であることを見出した。なお、鋼板の表層の金属組織は、典型的に、鋼板の内部(例えば板厚の1/8位置又は1/4位置)より軟質な金属組織で構成されるため、鋼板の表層に水素が存在していても水素脆化割れは特に問題とならない。
 一方、Znを含むめっき層を鋼板表面上に設けためっき鋼板にホットスタンプ成形加工や溶接加工を行うと、加工時に高温になるため、めっき層に含まれるZnが溶融する場合がある。Znが溶融するとその溶融したZnが鋼中に侵入し、その状態で加工がなされると、鋼板内部に液体金属脆化(LME)割れが発生し、当該LMEに起因して鋼板の疲労特性が低下することがある。本発明者らは、上述した微細粒状型酸化物及び粗大粒状型酸化物が所望の数密度を有すると、耐水素脆化性の向上だけでなく、耐LME性の向上にも寄与することも発見した。より詳細には、微細粒状型酸化物及び粗大粒状型酸化物が高温での加工中に鋼中に侵入しようとするZnのトラップサイトとして機能することを見出した。これにより、例えばホットスタンプ成形加工時に鋼中に侵入しようとするZnが鋼板の表層の微細粒状型酸化物及び粗大粒状型酸化物に捉えられ、結晶粒界へのZnの侵入が好適に抑制される。したがって、上述した耐水素侵入性を向上させるためだけでなく、耐LME性を向上させるためには、微細粒状型酸化物及び粗大粒状型酸化物を多量に存在させることが重要であることを見出した。
 また、微細粒状型酸化物及び粗大粒状型酸化物は、鋼板中の比較的酸化しやすい成分(例えばSi、Mn、Al)が酸化して形成されたものであるので、当該粒状型酸化物の周囲の鋼(言い換えると金属組織)の組成は、それらの酸化しやすい成分元素が元の鋼板の母材に比べて欠乏している。この、鋼組成の元素が元の鋼板母材に較べて欠乏した領域を「欠乏領域」とも称する。層状の「欠乏領域」は「欠乏層」とも称し、さらに鋼板の表層に存在するものを「表層欠乏層」とも称する。欠乏領域において、酸化しやすい元素のうち、Siは相対的に酸化しやすく、Alは相対的に酸化しにくいので、Siを低濃度でAlを高濃度で存在させることができる。本発明者らは、そのような鋼の組成が低Siかつ高Alである欠乏領域が所望の範囲に存在すると、耐LME性の向上にも寄与することも発見した。より詳細には、Znトラップサイトとして機能する粒状型酸化物及び粗大粒状型酸化物に加えて、当該粒状型酸化物の周囲の鋼の組成中にAlが存在することにより、当該Alが高温での加工中に鋼中に侵入しようとするZnのトラップサイトとして機能すること、また、鋼組成中のSiが高濃度であるほどLME割れを生じやすく、できるだけSiを低濃度とすることでLMEが抑制できることも見出した。これにより、例えばホットスタンプ成形加工時に鋼中に侵入しようとするZnが鋼の組成中のAlに捉えられ、結晶粒界へのZnの侵入が好適に抑制され、また、LMEを生じやすいSiが低濃度であるのでLMEが生じにくい。したがって、耐LME性を向上させるためには、Siが低濃度でAlが高濃度で存在する欠乏領域を存在させることが重要であることを見出した。
 Siが低濃度でAlが高濃度で存在する欠乏領域は、微細粒状型酸化物及び粗大粒状型酸化物が分布する領域と重複し得るものであり、すなわち、図1の母材鋼3の表面上の外部酸化層2のように形成されるのではなく、母材鋼の内部に形成することができる。したがって、鋼板の表面上にめっき層を形成した場合に、母材鋼の内部に欠乏領域、より詳しくは表層欠乏層を形成した本発明に係る鋼板は、外部酸化層2を有する鋼板1に比べて、めっき成分と鋼成分との相互拡散が十分に生じ、高いめっき性を得ることが可能となる。
 以下、本発明に係る鋼板について詳しく説明する。なお、本発明に係る鋼板の板厚は、特に限定されないが、例えば、0.1~3.2mmであればよい。
 [鋼板の成分組成]
 本発明に係る鋼板に含まれる成分組成について説明する。元素の含有量に関する「%」は、特に断りがない限り、「質量%」を意味する。成分組成における数値範囲において、「~」を用いて表される数値範囲は、特に指定しない限り、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 (C:0.05~0.40%)
 C(炭素)は、鋼の強度を確保する上で重要な元素である。C含有量が不足すると、十分な強度を確保することができないおそれがある。さらに、C含有量の不足により所望の内部酸化物、および/または表層欠乏層の形態が得られない場合がある。したがって、C含有量は0.05%以上、好ましくは0.07%以上、より好ましくは0.10%以上、さらに好ましくは0.12%以上である。一方、C含有量が過剰であると、溶接性が低下するおそれがある。したがって、C含有量は0.40%以下、好ましくは0.35%以下、より好ましくは0.30%以下である。
 (Si:0.2~3.0%)
 Si(ケイ素)は、鋼の強度を向上させるのに有効な元素である。Si含有量が不足すると、十分な強度を確保することができないおそれがある。さらに、所望の酸化物、特に微細粒状型酸化物、粗大粒状型酸化物、および/または表層欠乏層が鋼板の内部に十分に生成されないおそれがある。したがって、Si含有量は0.2%以上、好ましくは0.3%以上、より好ましくは0.5%以上、さらに好ましくは1.0%以上である。一方、Si含有量が過剰であると、表面性状の劣化を引き起こすおそれがある。さらに、粒状型酸化物の粗大化を招くおそれがある。したがって、Si含有量は3.0%以下、好ましくは2.5%以下、より好ましくは2.0%以下である。
 (Mn:0.1~5.0%)
 Mn(マンガン)は、硬質組織を得ることで鋼の強度を向上させるのに有効な元素である。Mn含有量が不足すると、十分な強度を確保することができないおそれがある。さらに、所望の酸化物、特に微細粒状型酸化物、粗大粒状型酸化物、および/または表層欠乏層が鋼板の内部に十分に生成されないおそれがある。したがって、Mn含有量は0.1%以上、好ましくは0.5%以上、より好ましくは1.0%以上、さらに好ましくは1.5%以上である。一方、Mn含有量が過剰であると、Mn偏析によって金属組織が不均一になり、加工性が低下するおそれがある。さらに、粒状型酸化物の粗大化を招くおそれがある。したがって、Mn含有量は5.0%以下、好ましくは4.5%以下、より好ましくは4.0%以下、さらにより好ましくは3.5%以下である。
 (sol.Al:0.4~1.50%)
 Al(アルミニウム)は、脱酸元素として作用する元素である。Al含有量が不足すると、十分な脱酸の効果を確保することができないおそれがある。さらに、所望の酸化物、特に微細粒状型酸化物、粗大粒状型酸化物および/または表層欠乏層が鋼板の内部に十分に生成されないおそれがある。Al含有量は0.4%以上でもよいが、十分な所望の効果、微細粒状型酸化物、粗大粒状型酸化物および表層欠乏層を得るためには、Al含有量は0.5%以上、好ましくは0.6%以上、より好ましくは0.7%以上であるとよい。一方、Al含有量が過剰であると加工性の低下や表面性状の劣化を引き起こすおそれがある。さらに、粒状型酸化物の粗大化を招くおそれがある。したがって、Al含有量は1.50%以下、好ましくは1.20%以下、より好ましくは0.80%以下である。Al含有量は、いわゆる酸可溶Alの含有量(sol.Al)を意味する。
 (P:0.0300%以下)
 P(リン)は、一般に鋼に含有される不純物である。P含有量が0.0300%超では溶接性が低下するおそれがある。したがって、P含有量は0.0300%以下、好ましくは0.0200%以下、より好ましくは0.0100%以下、さらに好ましくは0.0050%以下である。P含有量の下限は特に限定されないが、製造コストの観点から、P含有量は0%超又は0.0001%以上であってもよい。
 (S:0.0300%以下)
 S(硫黄)は、一般に鋼に含有される不純物である。S含有量が0.0300%超では溶接性が低下し、さらに、MnSの析出量が増加して曲げ性等の加工性が低下するおそれがある。したがって、S含有量は0.0300%以下、好ましくは0.0100%以下、より好ましくは0.0050%以下、さらに好ましくは0.0020%以下である。S含有量の下限は特に限定されないが、脱硫コストの観点から、S含有量は0%超又は0.0001%以上であってもよい。
 (N:0.0100%以下)
 N(窒素)は、一般に鋼に含有される不純物である。N含有量が0.0100%超では溶接性が低下するおそれがある。したがって、N含有量は0.0100%以下、好ましくは0.0080%以下、より好ましくは0.0050%以下、さらに好ましくは0.0030%以下である。N含有量の下限は特に限定されないが、製造コストの観点からN含有量は0%超又は0.0010%以上であってもよい。
 (B:0~0.010%)
 B(ホウ素)は、焼入れ性を高めて強度の向上に寄与し、また粒界に偏析して粒界を強化して靭性を向上させる元素であるため、必要に応じて含有していてもよい。したがって、B含有量は0%以上、好ましくは0.001%以上、より好ましくは0.002%以上、さらに好ましくは0.003%以上である。一方、十分な靭性及び溶接性を確保する観点から、B含有量は0.010%以下、好ましくは0.008%以下、より好ましくは0.006%以下である。
 (Ti:0~0.150%)
 Ti(チタン)は、TiCとして鋼の冷却中に析出し、強度の向上に寄与する元素であるため、必要に応じて含有していてもよい。したがって、Ti含有量は0%以上、好ましくは0.001%以上、より好ましくは0.003%以上、さらに好ましくは0.005%以上、さらにより好ましくは0.010%以上である。一方、過剰に含有すると粗大なTiNが生成して靭性が損なわれるおそれがあるため、Ti含有量は0.150%以下、好ましくは0.100%以下、より好ましくは0.050%以下である。
 (Nb:0~0.150%)
 Nb(ニオブ)は焼入れ性の向上を通じて強度の向上に寄与する元素であるため、必要に応じて含有していてもよい。したがって、Nb含有量は0%以上、好ましくは0.010%以上、より好ましくは0.020%以上、さらに好ましくは0.030%以上である。一方、十分な靭性及び溶接性を確保する観点から、Nb含有量は、0.150%以下、好ましくは0.100%以下、より好ましくは0.060%以下である。
 (V:0~0.150%)
 V(バナジウム)は焼入れ性の向上を通じて強度の向上に寄与する元素であるため、必要に応じて含有していてもよい。したがって、V含有量は0%以上、好ましくは0.010%以上、より好ましくは0.020%以上、さらに好ましくは0.030%以上である。一方、十分な靭性及び溶接性を確保する観点から、V含有量は、0.150%以下、好ましくは0.100%以下、より好ましくは0.060%以下である。
 (Cr:0~2.00%)
 Cr(クロム)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効であるため、必要に応じて含有していてもよい。したがって、Cr含有量は0%以上、好ましくは0.10%以上、より好ましくは0.20%以上、さらに好ましくは0.50%以上、さらにより好ましくは0.80%以上である。一方、過剰に含有するとCr炭化物が多量に形成し、逆に焼入れ性が損なわれるおそれがあるため、Cr含有量は2.00%以下、好ましくは1.80%以下、より好ましくは1.50%以下である。
 (Ni:0~2.00%)
 Ni(ニッケル)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効であるため、必要に応じて含有していてもよい。したがって、Ni含有量は0%以上、好ましくは0.10%以上、より好ましくは0.20%以上、さらに好ましくは0.50%以上、さらにより好ましくは0.80%以上である。一方、Niの過剰な添加はコストの上昇を招くため、Ni含有量は2.00%以下、好ましくは1.80%以下、より好ましくは1.50%以下である。
 (Cu:0~2.00%)
 Cu(銅)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効であるため、必要に応じて含有していてもよい。したがって、Cu含有量は0%以上、好ましくは0.10%以上、より好ましくは0.20%以上、さらに好ましくは0.50%以上、さらにより好ましくは0.80%以上である。一方、靭性低下や鋳造後のスラブの割れや溶接性の低下を抑制する観点から、Cu含有量は2.00%以下、好ましくは1.80%以下、より好ましくは1.50%以下である。
 (Mo:0~1.00%)
 Mo(モリブデン)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効であるため、必要に応じて含有していてもよい。したがって、Mo含有量は0%以上、好ましくは0.10%以上、より好ましくは0.20%以上、さらに好ましくは0.30%以上である。一方、靭性と溶接性の低下を抑制する観点から、Mo含有量は1.00%以下、好ましくは0.90%以下、より好ましくは0.80%以下である。
 (W:0~1.00%)
 W(タングステン)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効であるため、必要に応じて含有していてもよい。したがって、W含有量は0%以上、好ましくは0.10%以上、より好ましくは0.20%以上、さらに好ましくは0.30%以上である。一方、靭性と溶接性の低下を抑制する観点から、W含有量は1.00%以下、好ましくは0.90%以下、より好ましくは0.80%以下である。
 (Ca:0~0.100%)
 Ca(カルシウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素であるため、必要に応じて含有していてもよい。したがって、Ca含有量は0%以上、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上、さらにより好ましくは0.020%以上である。一方、過剰に含有すると表面性状の劣化が顕在化する場合があるため、Ca含有量は0.100%以下、好ましくは0.080%以下、より好ましくは0.050%以下である。
 (Mg:0~0.100%)
 Mg(マグネシウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素であるため、必要に応じて含有していてもよい。したがって、Mg含有量は0%以上、好ましくは0.001%以上、より好ましくは0.003%以上、さらに好ましくは0.010%以上である。一方、過剰に含有すると表面性状の劣化が顕在化する場合があるため、Mg含有量は0.100%以下、好ましくは0.090%以下、より好ましくは0.080%以下である。
 (Zr:0~0.100%)
 Zr(ジルコニウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素であるため、必要に応じて含有していてもよい。したがって、Zr含有量は0%以上、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。一方、過剰に含有すると表面性状の劣化が顕在化する場合があるため、Zr含有量は0.100%以下、好ましくは0.050%以下、より好ましくは0.030%以下である。
 (Hf:0~0.100%)
 Hf(ハフニウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素であるため、必要に応じて含有していてもよい。したがって、Hf含有量は0%以上、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。一方、過剰に含有すると表面性状の劣化が顕在化する場合があるため、Hf含有量は0.100%以下、好ましくは0.050%以下、より好ましくは0.030%以下である。
 (REM:0~0.100%)
 REM(希土類元素)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素であるため、必要に応じて含有していてもよい。したがって、REM含有量は0%以上、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。一方、過剰に含有すると表面性状の劣化が顕在化する場合があるため、REM含有量は0.100%以下、好ましくは0.050%以下、より好ましくは0.030%以下である。なお、REMとは、Rare Earth Metalの略であり、ランタノイド系列に属する元素をいう。REMは通常ミッシュメタルとして添加される。
 本発明に係る鋼板において、上記成分組成以外の残部は、Fe及び不純物からなる。ここで、不純物とは、鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分であって、本発明に係る鋼板の特性に悪影響を与えない範囲で含有することが許容されるものを意味する。
 本発明において、鋼板の成分組成の分析は、当業者に公知の元素分析法を用いればよく、例えば、誘導結合プラズマ質量分析法(ICP-MS法)により行われる。ただし、C及びSについては燃焼-赤外線吸収法を用い、Nについては不活性ガス融解-熱伝導度法を用いて測定するとよい。これらの分析は、鋼板をJIS G0417:1999に準拠した方法で採取したサンプルで行えばよい。
 [表層]
 本発明において、鋼板の「表層」とは、鋼板の表面(めっき鋼板の場合は鋼板とめっき層の界面)から板厚方向に所定の深さまでの領域を意味し、「所定の深さ」は典型的には50μm以下である。
 図2に例示されるように、本発明に係る鋼板11においては、鋼板11の表層に微細酸化物12及び粗大粒状型酸化物15を含む。好ましくは、微細粒状型酸化物12及び粗大粒状型酸化物15が鋼板11の表層のみに存在する。この微細粒状型酸化物12及び粗大粒状型酸化物15が母材鋼14の内部に存在する(すなわち内部酸化物として存在する)ことにより、図1に示される母材鋼3の表面上に外部酸化層2が存在する場合に比べ、鋼板11が高いめっき性を有することが可能となる。これは、めっき(例えばZn系めっき)を鋼板の表面上に形成する際にめっき成分と鋼成分との相互拡散を阻害し得る酸化物が、鋼板の外部ではなく内部に生成されるために起こると考えられる。したがって、鋼板の表層、すなわち鋼板の内部に粒状型酸化物を含む本発明に係る鋼板及びめっき鋼板は、高いめっき性を有する。
 また、図2に図示されないが、本発明に係る鋼板11においては、鋼板11の表層には、上記微細粒状型酸化物12及び粗大粒状型酸化物15に加えて、表層欠乏層を含む。この表層欠乏層は、微細粒状型酸化物12及び粗大粒状型酸化物15の形成にともなって、それらの周囲の鋼組成の元素が元の鋼板母材に較べて欠乏した領域であり、微細粒状型酸化物12及び粗大粒状型酸化物15の分布する領域と重複するように存在する。すなわち、表層欠乏層は、微細粒状型酸化物12及び粗大粒状型酸化物15と同様に母材鋼14の内部に存在するため、微細粒状型酸化物12、粗大粒状型酸化物15及び表層欠乏層を含む鋼板及びめっき鋼板もまた、高いめっき性を有する。
 [微細粒状型酸化物及び粗大粒状型酸化物]
 本発明において、「粒状型酸化物」とは、鋼の結晶粒内又は結晶粒界上に粒状に分散した酸化物をいう。また、「粒状」とは、鋼マトリクス内で互いに離間して存在していることをいい、例えば、1.0~5.0のアスペクト比(粒状型酸化物を横断する最大線分長さ(長径)/長径と垂直な酸化物を横断する最大線分長さ(短径))を有することをいう。「粒状に分散」とは、酸化物の各粒子の位置が特定の規則に沿って(例えば直線状に)配置されておらず、ランダムに配置されていることをいう。実際には、粒状型酸化物は鋼板の表層において、典型的に球状又は略球状に三次元的に存在しているため、鋼板の表層の断面を観察した場合は、当該粒状型酸化物は典型的に円状又は略円状に観察される。図2においては、例として、略円状に見える微細粒状型酸化物12及び粗大粒状型酸化物15を示している。図2において、鋼板11の典型的な例として、粗大粒状型酸化物15は微細粒状型酸化物12の下部に示されている。これは、鋼板の内部ほど粒状酸化物の粒径が大きく成長しやすいためと考えられる。鋼板表面近傍では、雰囲気中から鋼板内部に拡散する酸素の拡散速度が速いため、粒状酸化物が粗大化しにくく、鋼板表面から鋼板内部方向に遠位になるにつれて酸素の拡散が遅いため粒状酸化物が粗大化しやすくなることが考えられる。ただし、粗大粒状型酸化物15が母材鋼14の表面付近に形成される場合もある。
 (粒径)
 本発明において、粒状型酸化物の粒径は20nm以上600nm以下である。この範囲内で「微細」粒状型酸化物の粒径は20nm以上100nm以下であり、「粗大」粒状型酸化物の粒径は150nm以上600nm以下である。微細粒状型酸化物の粒径の上限(100nm)とし、粗大粒状型酸化物の粒径の下限(150nm)とするのは、測定精度の観点から、微細粒状型酸化物と粗大粒状型酸化物の判定が困難になる場合を回避するためである。粒径をこのような範囲に制御することで、鋼板の表層に微細粒状型酸化物及び粗大粒状型酸化物を分散させることができ、微細粒状型酸化物及び粗大粒状型酸化物が腐食環境下での水素侵入を抑制する水素のトラップサイトとして良好に機能し、さらに、鋼板上にめっき層が形成されためっき鋼板をホットスタンプ成形加工や溶接加工した際に侵入し得るZnのトラップサイトとして良好に機能する。一方、粒径が600nm超となると粒状型酸化物の数が低下することがあり、所望の数密度が得られないおそれがある。粒状型酸化物の粒径は、下限は20nm以上である。粒状型酸化物は微細であるほど、比表面積が高くなり、トラップサイトとしての反応性が向上するものの、一粒子あたりがトラップできる水素及び/又はZnの量が低下し、十分に水素及び/又はZnをトラップできず、水素のトラップサイト及び/又はZnのトラップサイトとして十分に機能しないおそれがある。
 (微細粒状型酸化物の数密度)
 本発明において、微細粒状型酸化物の数密度は4.0個/μm2以上である。数密度をこのような範囲に制御することで、鋼板の表層に微細粒状型酸化物を多量に分散させることができ、微細粒状型酸化物が腐食環境下での水素侵入を抑制する水素のトラップサイトとして良好に機能し、さらに、鋼板上にめっき層が形成されためっき鋼板をホットスタンプ成形加工や溶接加工した際に侵入し得るZnのトラップサイトとして良好に機能する。一方、数密度が4.0個/μm2未満であると、水素のトラップサイト及び/又はZnのトラップサイトとしての数密度が十分でなく、微細粒状型酸化物が水素のトラップサイト及び/又はZnのトラップサイトとして十分に機能せず、良好な耐水素脆化性及び/又は耐LME性を得られないおそれがある。微細粒状型酸化物の数密度は、好ましくは6.0個/μm2以上、より好ましくは8.0個/μm2以上、さらに好ましくは10.0個/μm2以上である。微細粒状型酸化物は水素のトラップサイト及び/又はZnのトラップサイトとして機能する観点からは多量に存在するほど好ましいが、粒状型酸化物がLME割れの起点になることがあり、30個/μm2超では耐LME性が低下するおそれがあるため、微細粒状型酸化物の数密度は、30個/μm2以下、25個/μm2以下、20個/μm2以下であってもよい。
 微細粒状型酸化物の粒径及び数密度は走査型電子顕微鏡(SEM)で測定される。具体的な測定は、以下のとおりである。鋼板の表層の断面をSEMにより観察し、微細粒状型酸化物を含むSEM画像を得る。当該SEM画像から観察領域として、1.0μm(深さ方向)×1.0μm(幅方向)の領域を合計10箇所選択する。各領域の観察位置としては、深さ方向(鋼板の表面と垂直な方向)については、鋼板表面から1.5μmまでの領域のうちの1.0μmとし、幅方向(鋼板の表面と平行な方向)については、上記SEM画像の任意の位置の1.0μmとする。次いで、上記のように選択した各領域のSEM画像を抽出し、酸化物部分と鋼部分とを分けるために二値化し、各二値化像から粒状型酸化物部分の面積を算出し、当該面積と等しい面積を有する円の直径、すなわち円相当直径として当該粒状型酸化物の粒径(nm)を求め、粒径が20nm以上100nm以下の範囲のものを微細粒状型酸化物とする。さらに各二値化像内の微細粒状型酸化物の個数を数える。こうして求めた10箇所の領域の合計の微細粒状型酸化物の個数の平均値を、微細粒状型酸化物の数密度(個/μm2)とする。なお、粒状型酸化物の一部のみが観察領域で観察される場合、すなわち、粒状型酸化物の輪郭全てが観察領域内に無い場合は、個数として計上しない。
 (粗大粒状型酸化物の数密度)
 また、粗大粒状型酸化物の数密度は4.0個/25μm2以上、30.0個/25μm2以下である。数密度をこのような範囲に制御することで、鋼板の表層に粗大細粒状型酸化物を多量に分散させることができ、粗大粒状型酸化物が腐食環境下での水素侵入を抑制する水素のトラップサイトとして良好に機能し、さらに、鋼板上にめっき層が形成されためっき鋼板をホットスタンプ成形加工や溶接加工した際に侵入し得るZnのトラップサイトとして良好に機能する。一方、数密度が4.0個/25μm2未満であると、水素のトラップサイト及び/又はZnのトラップサイトとしての数密度が十分でなく、粗大粒状型酸化物が水素のトラップサイト及び/又はZnのトラップサイトとして十分に機能せず、良好な耐水素脆化性及び/又は耐LME性を得られないおそれがある。粗大粒状型酸化物の数密度は、好ましくは6.0個/25μm2以上、より好ましくは8.0個/25μm2以上、さらに好ましくは10.0個/25μm2以上である。粗大粒状型酸化物は水素のトラップサイト及び/又はZnのトラップサイトとして機能する観点からは多量に存在するほど好ましいが、粗大粒状型酸化物がLME割れの起点になることがあり、30個/25μm2超では耐LME性が低下するおそれがあるため、粗大粒状型酸化物の数密度は、30個/25μm2以下である。当該数密度は、好ましくは、25個/25μm2以下、より好ましくは、20個/25μm2以下であってもよい。
 粗大粒状型酸化物の粒径及び数密度は走査型電子顕微鏡(SEM)で測定される。具体的な測定は、以下のとおりである。鋼板の表層の断面をSEMにより観察し、粗大粒状型酸化物を含むSEM画像を得る。当該SEM画像から観察領域として、5.0μm(深さ方向)×5.0μm(幅方向)の領域を合計10箇所選択する。各領域の観察位置としては、深さ方向(鋼板の表面と垂直な方向)については、鋼板表面から8.0μmまでの領域のうちの5.0μmとし、幅方向(鋼板の表面と平行な方向)については、上記SEM画像の任意の位置の5.0μmとする。次いで、上記のように選択した各領域のSEM画像を抽出し、酸化物部分と鋼部分とを分けるために二値化し、各二値化像から粒状型酸化物部分の面積を算出し、当該面積と等しい面積を有する円の直径、すなわち円相当直径として当該粒状型酸化物の粒径(nm)を求め、粒径が150nm以上600nm以下の範囲のものを粗大粒状型酸化物とする。さらに各二値化像内の粗大粒状型酸化物の個数を数える。こうして求めた10箇所の領域の合計の粗大粒状型酸化物の個数の平均値を、粗大粒状型酸化物の数密度(個/25μm2)とする。なお、粒状型酸化物の一部のみが観察領域で観察される場合、すなわち、粒状型酸化物の輪郭全てが観察領域内に無い場合は、個数として計上しない。
 (内部酸化層の深さ)
 本発明に係る鋼板において、内部酸化層は、鋼板の内部に形成される層であって、微細粒状型酸化物12及び粗大粒状型酸化物15を含む。したがって、「内部酸化層」とは、鋼板の表面から、微細粒状型酸化物12及び粗大粒状型酸化物15のいずれかが存在する最も遠い位置までの領域が連なったものである。よって、「内部酸化層の深さ」とは、図2において「Rn」として示されるように、鋼板11の表面(めっき鋼板の場合は鋼板とめっき層の界面)から鋼板11の板厚方向(鋼板の表面に垂直な方向)に進んだ場合における、鋼板11の表面から微細粒状型酸化物12及び粗大粒状型酸化物15のいずれかが存在する最も遠い位置までの距離をいう。ただし、実際の鋼板の表面は凹凸があり、鋼板表面のどの場所(点)を選ぶかによって鋼板表面から最も遠い微細粒状型酸化物12及び粗大粒状型酸化物15の位置も変動するので、10箇所の観測領域を選択し、その10箇所で測定した結果の平均値を、「内部酸化層の平均深さ」(「R」と称することもある)とする。図2では、例として、粗大粒状型酸化物15が最も深い位置に存在する場合が示されている。上述したように、微細粒状型酸化物12及び粗大粒状型酸化物15は、腐食環境下等で侵入する水素をトラップサイトとして機能することができる。したがって、内部酸化層の平均深さRが大きいほど、より多くの水素を鋼板の表層領域でトラップすることが可能となる。本発明に係る鋼板においては、内部酸化層の平均深さRの下限は特に限定されないが、浅すぎると微細粒状型酸化物及び粗大粒状型酸化物15が十分に分散することができないことがあるので、8μm以上であり、10μm以上であると好ましく、15μm以上であるとより好ましく、20μm以上であるとさらに好ましい。平均深さRの上限は特に限定されないが、実質的に100μm以下である。
 深さRは、図2に示すように、鋼板11の表層を断面観察することで決定される。具体的な測定方法は、以下のとおりである。鋼板11の表層の断面をSEMにより観察する。観察位置は無作為に選択した10箇所とする。観察したSEM画像から表面の長さL0(すなわちSEM画像の幅)を測定する。長さL0は100μm以上(例えば、100μm、150μm又は200μm)とし、測定する深さは鋼板の表面から100μmまでの領域とする。次いで、当該SEM画像から微細粒状型酸化物12及び粗大粒状型酸化物15の位置を特定し、特定した微細粒状型酸化物12及び粗大粒状型酸化物15の中から、鋼板の表面から最も遠い位置に存在する微細粒状型酸化物12及び粗大粒状型酸化物15のいずれかを選出し、鋼板11の表面から微細粒状型酸化物12及び粗大粒状型酸化物15のいずれかが存在する最も遠い位置までの距離を、深さRnとして求める。10箇所で測定したRnの平均値を、「内部酸化層の平均深さ」(「R」と称することもある)として求める。
 [酸化物の成分組成]
 本発明において、粒状型酸化物(以下、単に酸化物ともいう)は、酸素に加え、上述した鋼板中に含まれる元素のうち1種又は2種以上を含むものであって、典型的に、Si、O及びFeを含み、場合によりさらにMnやAlを含む成分組成を有する。当該酸化物は、これらの元素以外にも上述した鋼板に含まれ得る元素(例えばCrなど)を含んでもよい。
 [表層欠乏層]
 本発明において、微細粒状型酸化物及び粗大粒状型酸化物は、鋼板中の比較的酸化しやすい成分(例えばSi、Mn、Al)が酸化して形成されたものであるので、当該粒状型酸化物の周囲の鋼(言い換えると金属組織)の組成は、それらの酸化しやすい成分元素が元の鋼板の母材に比べて欠乏している。この、鋼組成の元素が元の鋼板母材に較べて欠乏した領域を「欠乏領域」とも称する。層状の「欠乏領域」は「欠乏層」とも称し、さらに鋼板の表層に存在するものを「表層欠乏層」とも称する。欠乏領域において、酸化しやすい元素のうち、Siは相対的に酸化しやすく、Alは相対的に酸化しにくいので、Siを低濃度でAlを高濃度で存在させることができる。鋼の組成が低Siかつ高Alである欠乏領域が所望の範囲に存在すると、耐LME性の向上にも寄与する。この理由として、特定の理論に拘束されることを望むものではないが、Znトラップサイトとして機能する粒状型酸化物に加えて、当該粒状型酸化物の周囲の鋼の組成中にAlが存在することにより、当該Alが高温での加工中に鋼中に侵入しようとするZnのトラップサイトとして機能すること、また、鋼組成中のSiは高濃度であるほどLME割れを生じやすいのでできるだけSiを低濃度とすることでLMEが抑制できること、が考えられる。これにより、ホットスタンプ成形加工や溶接加工の際に、鋼中に侵入しようとするZnが鋼の組成中のAlに捉えられ、結晶粒界へのZnの侵入が好適に抑制され、また、LMEを生じやすいSiが低濃度であるのでLMEが生じにくく、耐LME性を向上することができる。
 本発明において、低Siかつ高Alである表層欠乏層は、内部酸化層の平均深さの1/2の深さにおける、微細粒状型酸化物及び粗大粒状型酸化物を含まない鋼(言い換えると金属組織)の組成が質量%で、Si≦0.6%かつAl≧0.05%を満たす。Siは、0.6%超であると、LME割れを生じやすくなる。したがって、Si≦0.6%である。Siの下限は特に限定されるものではなく、0%以上であってもよい。また、Alは、高温での加工中に鋼中に侵入しようとするZnのトラップサイトとして機能する。Alが0.05%未満であると、Znのトラップサイトとして十分に機能することができないおそれがある。したがって、Al≧0.05%とする。Alは多いほど、トラップサイトとしての機能が高くなり好ましいが、Al濃度が高すぎても、その効果は飽和するので、Alの上限を1.2%以下または1.0%以下としてもよい。また、当該SiおよびAlの濃度は、内部酸化層の微細粒状型酸化物及び粗大粒状型酸化物を含まない鋼組成での元素濃度であり、内部酸化層の平均深さRの1/2の深さにおいて測定される元素濃度である。内部酸化層の平均深さの基点は、鋼板表面(めっき鋼板の場合は鋼板とめっき層の界面)であるが、これらが凹凸を有する場合は、内部酸化層の平均深さを求めた10箇所の表面または界面の平均ラインを基点とする。ここでの元素濃度測定は、EDS(Energy Dispersed Spectroscopy:エネルギー分散型分光法)によって行なう。
 表層欠乏層は、微細粒状型酸化物及び粗大粒状型酸化物が分布する領域と重複し得るものであり、鋼板表層に在るものであり、すなわち母材鋼の内部に形成される。したがって、鋼板の表面上にめっき層を形成した場合に、母材鋼の内部に欠乏領域、より詳しくは表層欠乏層を形成した本発明に係る鋼板は、外部酸化層を有する鋼板に比べて、めっき成分と鋼成分との相互拡散が十分に生じ、高いめっき性を得ることが可能となる。
 <めっき鋼板>
 本発明に係るめっき鋼板は、上述した本発明に係る鋼板上にZnを含むめっき層を有する。このめっき層は鋼板の片面に形成されていても、両面に形成されていてもよい。Znを含むめっき層としては、例えば、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、電気亜鉛めっき層、電気合金亜鉛めっき層などが挙げられる。より具体的には、めっき種としては、例えば、Zn-0.2%Al(GI)、Zn-(0.3~1.5)%Al、Zn-4.5%Al、Zn-0.09%Al-10%Fe(GA)、Zn-1.5%Al-1.5%Mg、又はZn-11%Al-3%Mg-0.2%Si、Zn-11%Ni、Zn-15%Mgなどを用いることができる。
 [めっき層の成分組成]
 本発明におけるZnを含むめっき層に含まれる成分組成について説明する。元素の含有量に関する「%」は、特に断りがない限り、「質量%」を意味する。めっき層についての成分組成における数値範囲において、「~」を用いて表される数値範囲は、特に指定しない限り、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 (Al:0~60.0%)
 Alは、Znと共に含まれる又は合金化することでめっき層の耐食性を向上させる元素であるため、必要に応じて含有していてもよい。したがって、Al含有量は0%であってもよい。ZnとAlとを含むめっき層を形成するために、好ましくは、Al含有量は0.01%以上であるとよく、例えば、0.1%以上、0.3%以上、0.5%以上、1.0%以上、又は3.0%以上であってよい。一方、60.0%超では耐食性を向上させる効果が飽和するため、Al含有量は、60.0%以下であるとよく、例えば、55.0%以下、50.0%以下、40.0%以下、30.0%以下、20.0%以下、10.0%以下、又は5.0%以下であってよい。詳細な機構は不明であるが、めっき層中のAlが0.3~1.5%の範囲にある場合、Alの効果によりZnが鋼粒界に侵入速度が大幅に低減され、耐LME性を向上させることが可能となる。従って、耐LME性向上の観点から、めっき層中のAlは0.3~1.5%が望ましい。
 (Mg:0~15.0%)
 Mgは、Zn及びAlと共に含まれる又は合金化することでめっき層の耐食性を向上させる元素であるため、必要に応じて含有していてもよい。したがって、Mg含有量は0%であってもよい。ZnとAlとMgとを含むめっき層を形成するために、好ましくは、Mg含有量は0.01%以上であるとよく、例えば、0.1%以上、0.5%以上、1.0%以上、又は3.0%以上であってよい。一方、15.0%超ではめっき浴中にMgが溶解しきれずに酸化物として浮遊し、このめっき浴で亜鉛めっきするとめっき表層に酸化物が付着して外観不良を起こし、あるいは、不めっき部が発生するおそれがあるため、Mg含有量は、15.0%以下であるとよく、例えば、10.0%以下、5.0%以下であってよい。
 (Fe:0~15.0%)
 Feは、鋼板上にZnを含むめっき層を形成した後にめっき鋼板を熱処理した場合に鋼板から拡散することでめっき層中に含まれ得る。したがって、熱処理がされていない状態においては、Feはめっき層中に含まれないため、Fe含有量は0%であってもよい。また、Fe含有量は、1.0%以上、2.0%以上、3.0%以上、4.0%以上又は5.0%以上であってもよい。一方、Fe含有量は、15.0%以下であるとよく、例えば、12.0%以下、10.0%以下、8.0%以下又は6.0%以下であってもよい。
 (Si:0~3.0%)
 Siは、Znを含むめっき層、特にZn-Al-Mgめっき層に含まれるとさらに耐食性を向上させる元素であるため、必要に応じて含有していてもよい。したがって、Si含有量は0%であってもよい。耐食性向上の観点から、Si含有量は、例えば、0.005%以上、0.01%以上、0.05%以上、0.1%以上又は0.5%以上であってもよい。また、Si含有量は、3.0%以下、2.5%以下、2.0%以下、1.5%以下又は1.2%以下であってもよい。
 めっき層の基本の成分組成は上記のとおりである。さらに、めっき層は、任意選択で、Sb:0~0.50%、Pb:0~0.50%、Cu:0~1.00%、Sn:0~1.00%、Ti:0~1.00%、Sr:0~0.50%、Cr:0~1.00%、Ni:0~1.00%、及びMn:0~1.00%のうち1種又は2種以上を含有してもよい。特に限定されないが、めっき層を構成する上記基本成分の作用及び機能を十分に発揮させる観点から、これらの任意添加元素の合計含有量は5.00%以下とすることが好ましく、2.00%以下とすることがより好ましい。
 めっき層において上記成分以外の残部はZn及び不純物からなる。めっき層における不純物とは、めっき層を製造する際に、原料を始めとして、製造工程の種々の要因によって混入する成分であって、めっき層に対して意図的に添加した成分ではないものを意味する。めっき層においては、不純物として、上で説明した基本成分及び任意添加成分以外の元素が、本発明の効果を妨げない範囲内で微量に含まれていてもよい。
 めっき層の成分組成は、鋼板の腐食を抑制するインヒビターを加えた酸溶液にめっき層を溶解し、得られた溶液をICP(高周波誘導結合プラズマ)発光分光法によって測定することにより決定することができる。
 めっき層の厚さは、例えば3~50μmであってよい。また、めっき層の付着量は、特に限定されないが、例えば、片面当たり10~170g/m2であってよい。本発明において、めっき層の付着量は、地鉄の腐食を抑制するインヒビターを加えた酸溶液にめっき層を溶解し、めっき層酸洗剥離前後の重量変化から決定される。
 [引張強度]
 本発明に係る鋼板及びめっき鋼板は、高強度を有していることが好ましく、具体的には440MPa以上の引張強度を有することが好ましい。例えば、引張強度は500MPa以上、600MPa以上、700MPa以上、又は800MPa以上であってもよい。引張強度の上限は特に限定されないが、靭性確保の観点から例えば2000MPa以下であればよい。引張強度の測定は、圧延方向に直角な方向を長手方向とするJIS5号引張試験片を採取し、JIS Z 2241(2011)に準拠して行えばよい。
 本発明に係る鋼板及びめっき鋼板は、高強度であり、高いめっき性、耐LME性及び耐水素脆化性を有するため、自動車、家電製品、建材等の広い分野において好適に使用することができるが、特に自動車分野で使用されるのが好ましい。自動車用に用いられる鋼板は、通常、めっき処理(典型的にZn系めっき処理)が行われるため、本発明に係る鋼板を自動車用鋼板として使用した場合に、高いめっき性を有するという本発明の効果が好適に発揮される。また、自動車用に用いられる鋼板及びめっき鋼板はホットスタンプ成形することが多く、その場合に水素脆化割れやLME割れが顕著に問題になり得る。そのため、本発明に係る鋼板及びめっき鋼板を自動車用鋼板として使用した場合に、高い耐水素脆化性及び耐LME性を有するという本発明の効果が好適に発揮される。
 <鋼板の製造方法>
 以下で、本発明に係る鋼板の好ましい製造方法について説明する。以下の説明は、本発明に係る鋼板を製造するための特徴的な方法の例示を意図するものであって、当該鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
 本発明に係る鋼板は、例えば、成分組成を調整した溶鋼を鋳造して鋼片を形成する鋳造工程、鋼片を熱間圧延して熱延鋼板を得る熱延工程、熱延鋼板を巻取る巻取工程、巻取った熱延鋼板を冷間圧延して冷延鋼板を得る冷延工程、冷延鋼板に対してブラシ研削処理する前処理工程、及び前処理した冷延鋼板を焼鈍する焼鈍工程を行うことで得ることができる。代替的に、熱延工程後に巻き取らず、酸洗してそのまま冷延工程を行ってもよい。
 [鋳造工程]
 鋳造工程の条件は特に限定されない。例えば、高炉や電炉等による溶製に引き続き、各種の二次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造などの方法で鋳造すればよい。
 [熱延工程]
 上記のように鋳造した鋼片を熱間圧延して熱延鋼板を得ることができる。熱延工程は、鋳造した鋼片を直接又は一旦冷却した後に再加熱して熱間圧延することにより行われる。再加熱を行う場合には、鋼片の加熱温度は、例えば1100℃~1250℃であればよい。熱延工程においては、通常、粗圧延と仕上圧延とが行われる。各圧延の温度や圧下率は、所望の金属組織や板厚に応じて適宜変更すればよい。例えば仕上げ圧延の終了温度を900~1050℃、仕上圧延の圧下率を10~50%としてもよい。
 [巻取工程]
 熱延鋼板は所定の温度で巻取ることができる。巻取温度は、所望の金属組織等に応じて適宜変更すればよく、例えば500~800℃であればよい。巻取る前又は巻取った後に巻き戻して、熱延鋼板に所定の熱処理を与えてもよい。代替的に、巻取工程は行わずに熱延工程後に酸洗して後述する冷延工程を行うこともできる。
 [冷延工程]
 熱延鋼板に酸洗等を行った後、熱延鋼板を冷間圧延して冷延鋼板を得ることができる。冷間圧延の圧下率は、所望の金属組織や板厚に応じて適宜変更すればよく、例えば20~80%であればよい。冷延工程後は、例えば空冷して室温まで冷却すればよい。
 [前処理工程]
 最終的に得られる鋼板の表層において微細粒状型酸化物及び粗大粒状型酸化物を多量に、さらに表層欠乏層を得るためには、冷延鋼板を焼鈍する前に所定の前処理工程を行うことが有効である。当該前処理工程は、冷延鋼板の表面に多量の転位を導入するものである。酸素等の拡散は粒内よりも粒界の方が速いため、冷延鋼板の表面に多量の転位を導入することで粒界の場合と同様に多くのパスを形成することができる。このため、焼鈍時に酸素がこれらの転位に沿って鋼の内部まで拡散(侵入)しやすくなり、またSi及びAlの拡散速度も向上するため、結果として酸素が鋼の内部のSi及び/又はAlと結び付いて微細粒状型酸化物および粗大粒状型酸化物を形成するのを促進することが可能となる。また、このような内部酸化物の形成促進に伴い、周囲のSi及びAl濃度の低下も促進されるため、所望の組成を有する表層欠乏層の形成も促進させることができる。よって、このような前処理工程を行った場合は、後述する焼鈍工程において所望の微細粒状型酸化物、粗大粒状型酸化物及び表層欠乏層を生成しやすい。当該前処理工程は、重研削ブラシで冷延鋼板表面を研削すること(ブラシ研削処理)を含む。重研削ブラシとして、ホタニ社製D-100を用いてもよい。研削する際に鋼板表面にNaOH 1.0~5.0%水溶液を塗布するとよい。ブラシ圧下量0.5~10.0mm、より好ましくは5.0~10.0mm、回転数100~1000rpmであるとよい。このような塗布液条件、ブラシ圧下量、回転数に制御してブラシ研削処理を行うことで、後述する焼鈍工程において、微細粒状型酸化物、粗大粒状型酸化物及び表層欠乏層を効率的に鋼板の表層に形成することができる。
 [焼鈍工程]
 上記前処理工程を行った冷延鋼板に焼鈍を行う。焼鈍は、例えば0.1~30.0MPaの張力をかけた状態で行うのが好ましい。焼鈍時に張力をかけると鋼板に歪みをより効果的に導入することが可能となり、歪みによって鋼板の金属組織の転位が促進され、その転位に沿って酸素が鋼の内部に侵入しやすくなることで、鋼板の内部に酸化物が生成されやすくなる。その結果、粒状型酸化物の数密度の増加及び表層欠乏層の形成に有利となる。
 内部酸化物を適切に形成するために、焼鈍工程の保持温度は720℃~750℃であるとよい。このような範囲にすることで、外部酸化層の形成を抑制し、酸化物を鋼板の内部に形成することができる。上記保持温度が720℃未満であると、焼鈍時に所望の内部酸化物が十分に形成されないおそれがある。上記保持温度が750℃超であると、粒状型酸化物が粗大化するおそれがあり、粒状型酸化物が所望の数密度を満たさない場合がある。上記保持温度までの昇温速度は、特に限定されないが1~10℃/秒で行えばよい。また、昇温は、1~10℃/秒の第1昇温速度と、当該第1昇温速度とは異なる1~10℃/秒の第2昇温速度とにより、2段階で行ってもよい。
 上記焼焼鈍工程の保持温度での保持時間は、5~50秒間であるとよい。このような範囲にすることで、外部酸化層の形成を抑制し、酸化物を鋼板の内部に形成することができる。上記保持時間が5秒間未満であると、焼鈍時に所望の粒状型酸化物が十分に形成されないおそれがある。上記保持時間が50秒間超であると、粒状型酸化物が粗大化するおそれがあり、粒状型酸化物が所望の数密度を満たさない場合がある。
 焼鈍工程の昇温中及び保持(等温)中に、所望の微細粒状型酸化物、粗大粒状型酸化物、及び表層欠乏層を生成させる観点から、加湿を行なう。その雰囲気は、露点-20~10℃であるとよく、好ましくは-10~5℃であり、1~15vol%Hである。露点が低すぎると、鋼板の表面上に外部酸化層が形成され、内部酸化層が十分に形成されないおそれがあり、めっき性、耐水素脆化性及び耐LME性が不十分になる場合がある。一方、露点が高すぎると、粒状型酸化物が粗大化するおそれがあり、粒状型酸化物が所望の数密度を満たさないこと、及び/又は所望の表層欠乏層が得られないことがある。
 昇温中に加湿を開始する温度は600℃未満であるとよい。600℃超で加湿を開始すると、保持温度に到達するまでに内部酸化層及び/又は表層欠乏層が十分に形成されないおそれがある。
 さらに、焼鈍工程を行う際、特にブラシ研削処理前に鋼板の内部酸化層を除去しておくことが有効である。上述した圧延工程、特に熱延工程の間に鋼板の表層に内部酸化層が形成される場合がある。そのような圧延工程で形成された内部酸化層は、焼鈍工程において微細粒状型酸化物、粗大粒状型酸化物及び/又は表層欠乏層を形成するのを阻害するおそれがあるため、当該内部酸化層は酸洗処理等により焼鈍前に除去しておくことが好ましい。より具体的には、焼鈍工程を行う際の冷延鋼板の内部酸化層の深さは、0.5μm以下、好ましくは0.3μm以下、より好ましくは0.2μm以下、さらに好ましくは0.1μm以下にしておくとよい。
 上述した各工程を行うことにより、鋼板の表層に粒状型酸化物が十分に多量に含まれ、表層欠乏層が生成された鋼板を得ることができる。
 <めっき鋼板の製造方法>
 以下で、本発明に係るめっき鋼板の好ましい製造方法について説明する。以下の説明は、本発明に係るめっき鋼板を製造するための特徴的な方法の例示を意図するものであって、当該めっき鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
 本発明に係るめっき鋼板は、上述のように製造した鋼板上にZnを含むめっき層を形成するめっき処理工程を行うことで得ることができる。
 [めっき処理工程]
 めっき処理工程は、当業者に公知の方法に従って行えばよい。めっき処理工程は、例えば、溶融めっきにより行ってもよく、電気めっきにより行ってもよい。好ましくは、めっき処理工程は溶融めっきにより行われる。めっき処理工程の条件は、所望のめっき層の成分組成、厚さ及び付着量等を考慮して適宜設定すればよい。めっき処理の後、合金化処理を行ってもよい。典型的には、めっき処理工程の条件は、Al:0~60.0%、Mg:0~15.0%、Fe:0~15%、Ni:0~20%、及びSi:0~3%を含み、残部がZn及び不純物からなるめっき層を形成するように設定するとよい。より具体的には、めっき処理工程の条件は、例えば、Zn-0.2%Al(GI)、Zn-(0.3~1.5)%Al、Zn-4.5%Al、Zn-0.09%Al-10%Fe(GA)、Zn-1.5%Al-1.5%Mg、又はZn-11%Al-3%Mg-0.2%Si、Zn-11%Ni、Zn-15%Mgを形成するように適宜設定すればよい。耐LME性向上の観点から、めっき層中のAlは0.3~1.5%が望ましい。
 以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 例1:鋼板の実施例、比較例について
 (鋼板試料の作製)
 成分組成を調整した溶鋼を鋳造して鋼片を形成し、鋼片を熱間圧延し、酸洗した後に冷間圧延して冷延鋼板を得た。次いで、室温まで空冷し、冷延鋼板に酸洗処理を施して圧延により形成された内部酸化層を表1に記載の焼鈍前の内部酸化層深さ(μm)まで除去した。次いで、各冷延鋼板からJIS G0417:1999に準拠した方法でサンプルを採取し、鋼板の成分組成をICP-MS法等により分析した。測定した鋼板の成分組成を表1に示す。使用した鋼板の板厚は全て1.6mmであった。
 次いで、一部の冷延鋼板について、NaOH 2.0%水溶液を塗布し、重研削ブラシ(ホタニ社製D-100)を用いて、ブラシ圧下量2.0mm、回転数600rpmで、ブラシ研削する前処理を行い、その後、表1に示す露点、保持温度及び保持時間により焼鈍処理を行い、各鋼板試料を作製した。全ての鋼板試料において、焼鈍時の昇温速度は、500℃までは6.0℃/秒とし、500℃から保持温度までは2.0℃/秒とした。上記焼鈍処理において、一部の冷延鋼板については30.0MPaの張力をかけた状態で焼鈍処理を行い、その他の冷延鋼板については張力をかけずに焼鈍処理を行った。前処理の有無、及び焼鈍処理の条件(張力有無、加湿帯、露点(℃)、水素濃度(vol%)、昇温工程における加湿開始温度(℃)、保持温度(℃)、及び保持時間(秒))を表1に示す。なお、各鋼板試料について、圧延方向に直角な方向を長手方向とするJIS5号引張試験片を採取し、引張試験をJIS Z 2241(2011)に準拠して行った結果、No.16については、引張強度が440MPa未満であり、それ以外については440MPa以上であった。
 (鋼板試料の表層の分析:微細粒状型酸化物の数密度)
 上記のように作成した各鋼板試料を25mm×15mmに切断し、切断後の試料を樹脂に埋め込み鏡面研磨を施し、各鋼板試料の断面について、1.0μm×1.0μmの領域をSEMで10箇所観察した。観察位置としては、深さ方向(鋼板の表面と垂直な方向)については、鋼板表面から0.2~1.2μmまでの1.0μmとし、幅方向(鋼板の表面と平行な方向)については、上記SEM画像の任意の位置の1.0μmとした。得られた各鋼板試料についての各領域のSEM画像を二値化し、二値化像から粒状型酸化物部分の面積を算出し、当該面積と等しい面積を有する円の直径、すなわち円相当直径として当該粒状型酸化物の粒径(nm)を求め、20~100nmの粒径範囲内のものを微細粒状型酸化物とした。さらにSEM画像内の微細粒状型酸化物の個数を数えた。こうして求めた10箇所の二値化像における微細粒状型酸化物の個数の平均値を、微細粒状型酸化物の数密度とした。各鋼板試料についての微細粒状型酸化物の数密度(個/μm2)を表1に示す。
 (鋼板試料の表層の分析:粗大粒状型酸化物の数密度)
 上記のように作成した各鋼板試料を25mm×15mmに切断し、切断後の試料を樹脂に埋め込み鏡面研磨を施し、各鋼板試料の断面について、5.0μm×5.0μmの領域をSEMで10箇所観察した。観察位置としては、深さ方向(鋼板の表面と垂直な方向)については、鋼板表面から0.2~8.0μmまでの5.0μmとし、幅方向(鋼板の表面と平行な方向)については、上記SEM画像の任意の位置の5.0μmとした。得られた各鋼板試料についての各領域のSEM画像を二値化し、二値化像から粒状型酸化物部分の面積を算出し、当該面積と等しい面積を有する円の直径、すなわち円相当直径として当該粒状型酸化物の粒径(nm)を求め、150~600nmの粒径範囲内のものを粗大粒状型酸化物とした。さらにSEM画像内の粗大粒状型酸化物の個数を数えた。こうして求めた10箇所の二値化像における粗大粒状型酸化物の個数の平均値を、粗大粒状型酸化物の数密度とした。各鋼板試料についての粗大粒状型酸化物の数密度(個/25μm2)を表1に示す。
 (鋼板試料の表層の分析:表層欠乏層)
 各鋼板試料について、表層欠乏層を評価するために、TEM-EDSを用いて鋼板の断面SEM像から算出した内部酸化層の平均深さの1/2の深さにおいて、酸化物を含まない鋼組織の成分を分析した。Si≦0.6%かつAl≧0.05% を満たす場合を「○」、Si≦0.6%かつAl≧0.05% を満たさない場合は「×」とした。
 (めっき性評価)
 各鋼板試料について、めっきを施して、当該めっき鋼板の表面の不めっき部の面積率を測定することでめっき性の評価を行った。具体的には、溶融Zn-0.2%Alめっき(浴温450~470℃)を施して、めっき層を形成した各めっき鋼板試料の表面の1mm×1mmの領域を光学顕微鏡で観察し、観察した画像からめっき層が形成された部分(めっき部)とめっき層が形成されなかった部分(不めっき部)とを判別し、不めっき部の面積率(不めっき部の面積/観察した画像の面積)を算出し、以下の基準によりめっき性を評価し、その結果を表1に示す。
 評価A:めっき部の面積率95%以上(不めっき部の面積率5.0%以下)
 評価B:めっき部の面積率95%未満90%以上(不めっき部の面積率5.0%超10%以下)
(めっき層の組成分析)
 めっき層の組成は、30mm×30mmに切断したサンプルをインヒビター(朝日化学製、イビット)入りの10%塩酸水溶液に浸漬し、めっき層を酸洗剥離した後、水溶液中に溶解しためっき成分をICP分析することで求めた。
 (耐LME性評価)
 100×100mmの各めっき鋼板試料をスポット溶接に供した。50mm×100mmのサイズに切断したものを2枚準備し、その2枚のZn系めっき鋼板試料に対して、ドームラジアス型の先端直径8mmの溶接電極を用いて、打角5°、加圧力4.5kN、クリアランス0.5mm、通電時間0.5秒、通電電流7kAにてスポット溶接を行うことで、溶接部材を得た。溶接部を断面研磨した後、光学顕微鏡で観察し、溶接部の断面に生じたLME割れの長さを測定し、以下のように評価した。その結果を表1に示す。表1のめっき種は全種GAとし、表2のめっき種は表2に記載の通りとした。

評価AAA:LME割れなし
評価AA:LME亀裂長さ0μm超~100μm
評価A:LME亀裂長さ100μm超~200μm
評価B:LME亀裂長さ200μm超
 (耐水素脆化性の評価)
 50mm×100mmの各めっき鋼板試料に、リン酸亜鉛系化成処理液(サーフダインSD5350系:日本ペイント・インダストリアルコーティング社製)を用いたリン酸亜鉛処理を行い、その後、電着塗装(PN110パワーニクスグレー:日本ペイント・インダストリアルコーディング社製)を20μm形成し、150℃の焼付温度で20分間焼き付け、めっき鋼板試料上に塗膜を形成した。次いで、JASO(M609-91)に従った複合サイクル腐食試験に供して、120サイクル経過後の拡散性水素量を昇温脱離法により測定することで評価した。具体的には、拡散性水素量の測定では、ガスクロマトグラフィを備えた加熱炉中で試験片を400℃まで加熱し、250℃まで下がるまでに放出された水素量の総和を測定した。測定した拡散性水素量に基づき、以下の基準により、耐水素脆化性(試料中の水素蓄積量)を評価し、その結果を表1に示す。
評価AA:拡散性水素量が0.2ppm以下
評価A:拡散性水素量が0.2ppm超~0.4ppm
評価B:拡散性水素量が0.4ppm超
Figure JPOXMLDOC01-appb-T000001
 例2:めっき鋼板の実施例、比較例について
 (めっき鋼板試料の作製)
 例1の各鋼板試料を100mm×200mmのサイズに切断した後、表2に示すように、各種のめっきを行った。表2において、めっき種aは「合金化溶融亜鉛めっき鋼板(GA)」、めっき種bは「溶融Zn-0.2%Alめっき鋼板(GI)」、めっき種cは「溶融Zn-(0.3~1.5)%Alめっき鋼板(Al含有量を表2に記載)」を意味する。溶融亜鉛めっき工程では、切断した試料を440℃の溶融亜鉛めっき浴に3秒間浸漬した。浸漬後、100mm/秒で引き抜き、N2ワイピングガスによりめっき付着量を50g/m2に制御した。めっき種aについては、その後500℃で合金化処理を行った。
 例2のために得ためっき鋼板試料について、例1と同様の評価手法で、各評価項目、すなわち、微細粒状型酸化物及び粗大粒状型酸化物の数密度、表層欠乏層、めっき性、および耐水素脆化性について評価を行ない、例1と同等の結果が得られることを確認した。引張強度については、めっき処理によって若干低下することがあったが、例1と同様に、No.16については、引張強度が440MPa未満であり、それ以外については440MPa以上であった。耐LME性については、めっき種cでAl含有量が0.3~1.5質量%である場合に、耐LME性が向上した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 本例では、引張強度が440MPa以上であり、めっき性の評価がAであり、耐水素脆化性の評価がAであり、及び耐LME性の評価がAAA、AAまたはAである場合を、高いめっき性、耐水素脆化性及び耐LME性を有する高強度鋼板またはめっき鋼板として評価した。例1、2を通して、試料No.2~8及び23~36については、鋼板の成分組成、微細粒状型酸化物及び粗大粒状型酸化物の数密度、並びに表層欠乏層が本発明の範囲を満たしていたため、高いめっき性、耐LME性及び耐水素脆化性を有していた。試料No.1は、C量が不足し、所望の微細粒状型酸化物、粗大粒状型酸化物及び表層欠乏層を得られなかったため、高いめっき性、耐水素脆化性及び耐LME性が得られなかった。試料No.9は焼鈍時の露点が低く、所望の内部酸化層及び表層欠乏層が形成されず、高いめっき性、耐水素脆化性及び耐LME性を得られなかった。試料No.10は焼鈍時の露点が高く、微細粒状型の内部酸化物が形成せず粗大化してしまい、また所望の表層欠乏層が得られず、高いめっき性、耐水素脆化性及び耐LME性を得られなかった。試料No.11は焼鈍時の保持温度が高く、粒状型酸化物が粗大化し、粒状型酸化物が所望の数密度を満たさず、高い耐LME性を得られなかった。試料No.12は焼鈍時の保持温度が低く、十分に内部酸化層が形成されず、高いめっき性、耐水素脆化性及び耐LME性を得られなかった。試料No.13は焼鈍時の保持時間が短く、粒状型酸化物が粗大化せず、粗大粒状型酸化物が所望の数密度を満たさず、高い耐水素脆化性及び耐LME性を得られなかった。試料No.14は焼鈍時の保持時間が長く、粒状型酸化物が粗大化し、粗大粒状型酸化物が所望の数密度を満たさず、高い耐LME性を得られなかった。試料No.15及び17はそれぞれSi量及びMn量が過剰であり、粒状型酸化物が粗大化し、微細粒状型酸化物が所望の数密度を満たさず、高い耐水素脆化性及び耐LME性を得られなかった。試料No.16及び18はそれぞれSi量及びMn量が不足し、所望の内部型酸化層及び表層欠乏層が形成されず、高いめっき性、耐水素脆化性及び耐LME性を得られなかった。試料No.19はAl量が過剰であり、粒状型酸化物が粗大化し、微細粒状型酸化物が所望の数密度を満たさず、高い耐水素脆化性及び耐LME性を得られなかった。試料No.20はAl量が不足し、所望の内部酸化層及び表層欠乏層が形成されず、高い耐水素脆化性及び耐LME性を得られなかった。試料No.21は、焼鈍昇温時にのみ加湿し、加湿時間が短くなり、粒状型酸化物が粗大化せず、粗大粒状型酸化物が所望の数密度を満たさず、高い耐水素脆化性及び耐LME性を得られなかった。試料No22は、焼鈍前の内部酸化層深さが厚く、焼鈍後に十分に内部酸化層及び表層欠乏層が形成されず、高いめっき性、耐水素脆化性及び耐LME性を得られなかった。試料No.37は焼鈍時に鋼板に張力をかけなかったため、十分に内部酸化層が形成されず、高い耐水素脆化性及び耐LME性を得られなかった。試料No.38は焼鈍前のブラシ研削処理を行わなかったため、十分に内部酸化層が形成されず、高い耐水素脆化性及び耐LME性を得られなかった。試料No.39は加湿開始温度が600℃以上であり、十分に内部酸化層が形成されず、外部酸化層が形成され、高いめっき性、耐水素脆化性及び耐LME性を得られなかった。
 発明例では、微細粒状型酸化物及び粗大粒状型酸化物が所定の個数密度で確認され、EDSによって所定の表層欠乏層が得られていることも確認された。そのため、高いめっき性、耐水素脆化性及び耐LME性が得られた。一方、比較例では、鋼板表面近傍に内部酸化層及び/または表層欠乏層が適切に形成されていない。そのため、めっき性が低いこと、多量の水素が侵入すること、耐LME性が劣っていること、の少なくとも一つが確認された。
 本発明によれば、高いめっき性、耐LME性及び耐水素脆化性を有する高強度鋼板及びめっき鋼板を提供することが可能となり、当該鋼板及びめっき鋼板は自動車、家電製品、建材等の用途、特に自動車用に好適に用いることができ、自動車用鋼板及び自動車用めっき鋼板として高い衝突安全性、長寿命化が期待される。したがって、本発明は産業上の価値が極めて高い発明といえるものである。
 1  鋼板
 2  外部酸化層
 3  母材鋼
 11  鋼板
 12  微細粒状型酸化物
 14  母材鋼
 15  粗大粒状型酸化物

Claims (4)

  1.  質量%で、
     C:0.05~0.40%、
     Si:0.2~3.0%、
     Mn:0.1~5.0%、
     sol.Al:0.4~1.50%、
     P:0.0300%以下、
     S:0.0300%以下、
     N:0.0100%以下、
     B:0~0.010%、
     Ti:0~0.150%、
     Nb:0~0.150%、
     V:0~0.150%、
     Cr:0~2.00%、
     Ni:0~2.00%、
     Cu:0~2.00%、
     Mo:0~1.00%、
     W:0~1.00%、
     Ca:0~0.100%、
     Mg:0~0.100%、
     Zr:0~0.100%、
     Hf:0~0.100%、及び
     REM:0~0.100%を含有し、残部がFe及び不純物からなる成分組成を有する鋼板において、
     前記鋼板の表層に微細粒状型酸化物及び粗大粒状型酸化物を含む内部酸化層を有し、
     前記鋼板の表層の断面を観察した場合において、
     前記微細粒状型酸化物の前記内部酸化層における数密度が4.0個/μm以上であり、
     前記粗大粒状型酸化物の前記内部酸化層における数密度が4.0個/25μm2以上、30.0個/25μm2以下であり、
     前記内部酸化層の平均深さの1/2の深さにおける、前記微細粒状型酸化物及び前記粗大粒状型酸化物を含まない鋼組成が質量%で、Si≦0.6%かつAl≧0.05%を満たす表層欠乏層を含む、鋼板。
  2.  前記微細粒状型酸化物の数密度が10個/μm2以上である、請求項1に記載の鋼板。
  3.  請求項1又は2に記載の鋼板上にZnを含むめっき層を有する、めっき鋼板。
  4.  請求項3に記載のZnめっき鋼板であり、めっき層中に含有されるAlが0.3~1.5質量%であることを特徴とするめっき鋼板。
PCT/JP2022/011400 2021-04-27 2022-03-14 鋼板及びめっき鋼板 WO2022230401A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/274,960 US20240117475A1 (en) 2021-04-27 2022-03-14 Steel sheet and plated steel sheet
MX2023011171A MX2023011171A (es) 2021-04-27 2022-03-14 Lamina de acero y lamina de acero enchapada.
KR1020237036058A KR20230159559A (ko) 2021-04-27 2022-03-14 강판 및 도금 강판
JP2023517130A JPWO2022230401A1 (ja) 2021-04-27 2022-03-14
CN202280017870.2A CN116940704A (zh) 2021-04-27 2022-03-14 钢板及镀覆钢板
EP22795324.7A EP4332263A1 (en) 2021-04-27 2022-03-14 Steel sheet and plated steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-075169 2021-04-27
JP2021075169 2021-04-27

Publications (1)

Publication Number Publication Date
WO2022230401A1 true WO2022230401A1 (ja) 2022-11-03

Family

ID=83847394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011400 WO2022230401A1 (ja) 2021-04-27 2022-03-14 鋼板及びめっき鋼板

Country Status (7)

Country Link
US (1) US20240117475A1 (ja)
EP (1) EP4332263A1 (ja)
JP (1) JPWO2022230401A1 (ja)
KR (1) KR20230159559A (ja)
CN (1) CN116940704A (ja)
MX (1) MX2023011171A (ja)
WO (1) WO2022230401A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117040A (ja) * 2009-12-03 2011-06-16 Sumitomo Metal Ind Ltd 合金化溶融亜鉛めっき鋼板およびその製造方法
JP2011219779A (ja) * 2009-03-31 2011-11-04 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2013140730A1 (ja) * 2012-03-19 2013-09-26 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
WO2016111273A1 (ja) * 2015-01-09 2016-07-14 株式会社神戸製鋼所 高強度めっき鋼板、並びにその製造方法
JP2016130357A (ja) 2015-01-09 2016-07-21 株式会社神戸製鋼所 高強度めっき鋼板、並びにその製造方法
JP2018193614A (ja) 2013-07-12 2018-12-06 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
WO2019116531A1 (ja) * 2017-12-15 2019-06-20 日本製鉄株式会社 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
WO2019130713A1 (ja) * 2017-12-27 2019-07-04 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2020130602A2 (ko) * 2018-12-19 2020-06-25 주식회사 포스코 점 용접성이 우수한 아연도금강판 및 그 제조방법
WO2021251275A1 (ja) * 2020-06-08 2021-12-16 日本製鉄株式会社 鋼板及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219779A (ja) * 2009-03-31 2011-11-04 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2011117040A (ja) * 2009-12-03 2011-06-16 Sumitomo Metal Ind Ltd 合金化溶融亜鉛めっき鋼板およびその製造方法
WO2013140730A1 (ja) * 2012-03-19 2013-09-26 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
JP2018193614A (ja) 2013-07-12 2018-12-06 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
WO2016111273A1 (ja) * 2015-01-09 2016-07-14 株式会社神戸製鋼所 高強度めっき鋼板、並びにその製造方法
JP2016130357A (ja) 2015-01-09 2016-07-21 株式会社神戸製鋼所 高強度めっき鋼板、並びにその製造方法
WO2019116531A1 (ja) * 2017-12-15 2019-06-20 日本製鉄株式会社 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
WO2019130713A1 (ja) * 2017-12-27 2019-07-04 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2020130602A2 (ko) * 2018-12-19 2020-06-25 주식회사 포스코 점 용접성이 우수한 아연도금강판 및 그 제조방법
WO2021251275A1 (ja) * 2020-06-08 2021-12-16 日本製鉄株式会社 鋼板及びその製造方法

Also Published As

Publication number Publication date
MX2023011171A (es) 2023-09-29
EP4332263A1 (en) 2024-03-06
US20240117475A1 (en) 2024-04-11
JPWO2022230401A1 (ja) 2022-11-03
CN116940704A (zh) 2023-10-24
KR20230159559A (ko) 2023-11-21

Similar Documents

Publication Publication Date Title
JP2017066508A (ja) 熱間プレス用亜鉛めっき鋼板および熱間プレス成形品の製造方法
WO2022230064A1 (ja) 鋼板及びめっき鋼板
WO2022230400A1 (ja) 鋼板及びめっき鋼板
JP7137492B2 (ja) 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法
WO2023054717A1 (ja) 鋼溶接部材
WO2022230071A1 (ja) 鋼溶接部材
JP7260840B2 (ja) ホットスタンプ部材およびその製造方法
WO2022230401A1 (ja) 鋼板及びめっき鋼板
WO2022230399A1 (ja) 鋼板及びめっき鋼板
WO2022230402A1 (ja) 合金化溶融亜鉛めっき鋼板
WO2022230059A1 (ja) 鋼板及びめっき鋼板
WO2023054705A1 (ja) めっき鋼板
JP6699633B2 (ja) 塗装後耐食性と耐遅れ破壊特性に優れた高強度冷延鋼板及びその製造方法
WO2024053663A1 (ja) めっき鋼板
WO2024053669A1 (ja) 溶接継手
WO2024053667A1 (ja) 鋼板及びめっき鋼板
JP2022169169A (ja) 鋼板及びめっき鋼板
JP2022169341A (ja) 鋼板及びめっき鋼板
WO2023176100A1 (ja) 熱間プレス部材および熱間プレス用鋼板、ならびにそれらの製造方法
JP2023085984A (ja) 鋼板およびめっき鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023517130

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18274960

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280017870.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/011171

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2301006214

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20237036058

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237036058

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022795324

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022795324

Country of ref document: EP

Effective date: 20231127