WO2023162573A1 - 亜鉛めっき鋼板およびその製造方法 - Google Patents

亜鉛めっき鋼板およびその製造方法 Download PDF

Info

Publication number
WO2023162573A1
WO2023162573A1 PCT/JP2023/002565 JP2023002565W WO2023162573A1 WO 2023162573 A1 WO2023162573 A1 WO 2023162573A1 JP 2023002565 W JP2023002565 W JP 2023002565W WO 2023162573 A1 WO2023162573 A1 WO 2023162573A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
layer
content
alloy layer
Prior art date
Application number
PCT/JP2023/002565
Other languages
English (en)
French (fr)
Inventor
祐介 常見
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2023162573A1 publication Critical patent/WO2023162573A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the present invention relates to a galvanized steel sheet and its manufacturing method. This application claims priority based on Japanese Patent Application No. 2022-027919 filed in Japan on February 25, 2022, the content of which is incorporated herein.
  • High-strength steel sheets are used as steel sheets for automobiles in order to reduce the weight of automobiles, increase fuel efficiency, reduce carbon dioxide emissions, and ensure the safety of passengers.
  • high-strength alloyed hot-dip galvanized steel sheets have also been used as steel sheets for automobiles in order to sufficiently ensure the corrosion resistance of car bodies and parts (see, for example, Patent Document 1). ).
  • high-strength steel sheets used for automobile parts are required not only to have strength, but also to have properties (formability, elongation, bending resistance, etc.) necessary for forming parts, such as uniform elongation.
  • properties shapeability, elongation, bending resistance, etc.
  • DP steel plate and the like are known.
  • galvanized steel sheets can be spot welded together, or cold rolled steel sheets and galvanized steel sheets can be spot welded together.
  • LME liquid metal embrittlement
  • a high-strength TRIP steel sheet is a steel sheet that has higher C, Si, and Mn concentrations than ordinary high-strength steel sheets, and that contains retained austenite, thereby having excellent energy absorption capacity and press formability. Therefore, galvanized steel sheets, which are expected to be applied to automobile parts, are required to have high LME resistance.
  • Patent Document 2 discloses an internal oxide layer in which at least a part of the crystal grain boundary is covered with an oxide from the surface of the base material to a depth of 5.0 ⁇ m or more, A steel sheet, a hot-dip galvanized steel sheet, and a hot-dip galvanized steel sheet having excellent resistance to molten metal embrittlement cracking, wherein the grain boundary coverage of the oxide is 60% or more in a region from the surface of the base material to a depth of 5.0 ⁇ m, and An alloyed hot-dip galvanized steel sheet is disclosed.
  • Patent Literature 2 discloses that the generation of LME is suppressed by allowing a layer in which internal oxidation occurs to a predetermined depth and increasing the coverage of grain boundaries with oxide.
  • Patent Document 2 does not consider bending fatigue strength and bending resistance.
  • an object of the present invention is to provide a galvanized steel sheet that has high strength and is excellent in LME resistance and bending fatigue strength without lowering bending resistance.
  • the present inventors investigated a technique for improving the LME resistance and bending fatigue strength of high-strength galvanized steel sheets.
  • LME resistance can be obtained without reducing the bending resistance. It has been found that the performance can be improved.
  • bending fatigue strength is improved by forming a predetermined internal oxide layer on the surface of the base steel plate.
  • the control of the annealing process and the plating process is effective for the formation of such Fe--Al alloy layers and internal oxide layers.
  • a galvanized steel sheet according to an aspect of the present invention includes a base steel sheet, an Fe—Al alloy layer formed on at least part of the surface of the base steel sheet, and the base steel sheet or the Fe—Al a galvanized layer formed on the surface of the alloy layer, wherein the base material steel plate contains, in mass%, C: 0.10 to 0.40%, Si: 0.10 to 3.00%, Mn: 1.00-5.00%, sol.
  • the base steel plate has an internal oxide layer of 0.2 ⁇ m or more in the plate thickness direction from the surface of the base steel plate, and the average thickness of the Fe—Al alloy layer is 1 nm or more and less than 100 nm In the cross section in the
  • the chemical composition of the base steel sheet is, in mass%, Ti: 0.005 to 0.200%, B: 0.0005 to 0.0100% , Cr: 0.001 to 1.000%, Mo: 0.001 to 1.000%, Ni: 0.001 to 1.000%, Cu: 0.001 to 1.000%, Sn: 0.001 ⁇ 0.500%, Nb: 0.001-0.200%, V: 0.001-0.500%, W: 0.001-0.500%, Ca: 0.0001-0.0100%, Mg: 0.0001-0.0100%, Bi: 0.0001-0.0100%, Sb: 0.0001-0.1000%, Zr: 0.0001-0.0100%, and REM: 0.0001 ⁇ 0.1000%, may contain one or more selected from the group consisting of.
  • a method for producing a galvanized steel sheet according to another aspect of the present invention in mass%, C: 0.10 to 0.40%, Si: 0.10 to 3.00%, Mn: 1.00 ⁇ 5.00%, sol. Al: 0.001 to 1.500%, P: 0.0010 to 0.0300%, S: 0.0200% or less, N: 0.0100% or less, O: 0.0100% or less, Ti: 0 to 0.200%, B: 0-0.0100%, Cr: 0-1.000%, Mo: 0-1.000%, Ni: 0-1.000%, Cu: 0-1.000%, Sn: 0-0.500%, Nb: 0-0.200%, V: 0-0.500%, W: 0-0.500%, Ca: 0-0.0100%, Mg: 0-0 .0100%, Bi: 0 to 0.0100%, Sb: 0 to 0.1000%, Zr: 0 to 0.0100%, REM: 0 to 0.1000%, and the balance: chemical composition consisting of Fe and
  • the average heating rate in the first temperature range of 400 to 650 ° C. is 2.0 ° C./sec or more
  • the second temperature range from 650 ° C. to the annealing temperature.
  • the average heating rate in the second temperature range is 0.5 to 5.0 ° C./sec
  • the atmosphere (P(H2O)/P(H2)) is 0.05 to 2.00 in the second temperature range, and the plating In the process, the steel sheet is cooled to 440 to 550 ° C.
  • FIG. 1 is a schematic diagram showing an example of a cross section of a steel plate according to this embodiment.
  • the steel plate 1 according to the present embodiment includes a base steel plate 10 having a predetermined chemical composition, an Fe—Al alloy layer 20 formed on at least a part of the surface of the base steel plate, and the base steel plate 10 or Fe—Al and a galvanized layer 30 formed on the surface of the alloy layer 20 .
  • the base steel sheet 10 has an internal oxide layer 11 on the surface layer portion on the interface side with the Fe—Al alloy layer 20 or the galvanized layer 30 .
  • the Fe—Al alloy layer 20 When the Fe—Al alloy layer 20 is formed only on a part of the base steel plate 10, in the portion where the Fe—Al alloy layer 20 is formed on the surface of the base steel plate 10, the Fe—Al alloy layer The galvanized layer 30 is formed on the base steel plate 10 in the portion where the Fe—Al alloy layer 20 is not formed. Although the Fe--Al alloy layer and the galvanized layer are formed only on one side in FIG. 1, they may be formed on the other side as well.
  • the range shown between "-” basically includes the values at both ends as the lower limit and the upper limit. However, numerical values indicated as "more” and “less than” are not included in the range.
  • Base material steel plate First, the base material steel plate 10 included in the steel plate 1 according to this embodiment will be described.
  • the base steel plate 10 included in the steel plate 1 according to this embodiment contains the following elements.
  • % of the content of each element means % by mass.
  • C 0.10-0.40%
  • C (carbon) is an essential element for increasing the strength of steel sheets. If the C content is less than 0.10%, sufficient tensile strength cannot be obtained. Therefore, the C content is made 0.10% or more.
  • the C content is preferably 0.12% or more.
  • C is also an element that contributes to the formation of retained austenite. Retained austenite contributes to the improvement of elongation by the TRIP effect. To obtain this effect, the C content is preferably 0.16% or more.
  • the C content exceeds 0.40%, the weldability is remarkably deteriorated. Therefore, the C content is made 0.40% or less. From the viewpoint of suppressing deterioration of press formability and weldability, the C content is preferably 0.30% or less.
  • Si 0.10-3.00%
  • Si is a solid-solution strengthening element, and is an element effective in increasing the strength of a steel sheet. Si is also an element that contributes to the formation of retained austenite. In order to obtain these effects, the Si content is set to 0.10% or more. The Si content is preferably 0.30% or more. On the other hand, if Si is contained excessively, the chemical conversion treatability of the steel sheet and the wettability with hot-dip galvanization are remarkably deteriorated. Therefore, the Si content is set to 3.00% or less. The Si content is preferably 2.00% or less.
  • Mn 1.00-5.00%
  • Mn manganese
  • Mn is a strong austenite stabilizing element, and is an element effective in improving the hardenability of steel sheets.
  • the Mn content is set to 1.00% or more.
  • the Mn content is preferably 1.50% or more.
  • the Mn content is set to 5.00% or less. From the viewpoint of suppressing deterioration of weldability and low-temperature toughness, the Mn content is preferably 3.20% or less.
  • sol. Al 0.001-1.500%
  • Al aluminum
  • Al is an element that has a deoxidizing effect on steel.
  • Al is also an element that contributes to the formation of retained austenite.
  • sol. Al content is 0.001% or more.
  • sol. The Al content is preferably 0.005% or more.
  • sol. Al content is 1.500% or less.
  • the Al content is preferably 1.000% or less.
  • P 0.0010 to 0.0300%
  • P (phosphorus) is a solid-solution strengthening element, and is an element effective in increasing the strength of a steel sheet.
  • the P content is made 0.0010% or more.
  • the P content is preferably 0.0050% or more.
  • the P content is made 0.0300% or less.
  • the P content is preferably 0.0200% or less.
  • S 0.0200% or less
  • S sulfur
  • S is an element that causes hot shortness and is an element that impairs weldability and corrosion resistance. If the S content exceeds 0.0200%, the hot workability, weldability and corrosion resistance are remarkably lowered, so the S content is made 0.0200% or less.
  • the S content is preferably 0.0100% or less. The lower the S content is, the better, and it may be 0%, but if the S content is less than 0.0001%, the manufacturing cost increases significantly. Therefore, the S content may be 0.0001% or more.
  • the S content may be 0.0010% or more.
  • N 0.0100% or less
  • N nitrogen
  • the N content is preferably 0.0050% or less.
  • the N content is preferably as small as possible, and may even be 0%. good.
  • O 0.0100% or less
  • O oxygen
  • the O content is preferably 0.0070% or less.
  • the O content is preferably as small as possible, and may be 0%, but from the viewpoint of manufacturing costs, the O content may be 0.0001% or more.
  • the O content may be 0.0010% or more.
  • the steel sheet according to the present embodiment may contain the above elements and the balance may be Fe and impurities. However, for the purpose of improving various properties, it is further selected from the following Ti, B, Cr, Mo, Ni, Cu, Sn, Nb, V, W, Ca, Mg, Bi, Sb, Zr and REM It may contain one or more elements (optional elements). The lower limit is 0% because the optional element does not have to be contained.
  • Ti 0-0.200%
  • Ti titanium is an element that suppresses the formation of BN, which is a factor that reduces hardenability, by fixing N as TiN in steel.
  • Ti is an element that refines the austenite grain size during heating and improves toughness.
  • the Ti content is preferably 0.005% or more. More preferably, the Ti content is 0.010% or more.
  • the Ti content is set to 0.200% or less.
  • the Ti content is preferably 0.050% or less.
  • B 0 to 0.0100%
  • B is an element that segregates at the austenite grain boundary during welding, strengthens the grain boundary, and contributes to the improvement of molten metal embrittlement cracking resistance (LME resistance).
  • LME resistance molten metal embrittlement cracking resistance
  • the B content is preferably 0.0005% or more.
  • the B content is more preferably 0.0008% or more.
  • the content of B is set to 0.0100% or less.
  • the B content is preferably 0.0050% or less.
  • Cr 0 to 1.000% Mo: 0-1.000% Ni: 0 to 1.000% Cu: 0-1.000% Sn: 0-0.500% Cr (chromium), Mo (molybdenum), Ni (nickel), Cu (copper), and Sn (tin) are all effective elements for increasing the strength of steel sheets.
  • one or more selected from Cr, Mo, Ni, Cu and Sn is preferably contained in an amount of 0.001% or more, more preferably 0.010% or more.
  • the content is more preferably 0.050% or more.
  • excessive inclusion of these elements saturates the effect and increases the cost.
  • the contents of Cr, Mo, Ni and Cu are all set to 1.000% or less, and the Sn content is set to 0.500% or less.
  • the contents of Cr, Mo, Ni and Cu are all preferably 0.600% or less, and the Sn content is preferably 0.300% or less.
  • Nb 0-0.200%
  • V 0-0.500%
  • W 0-0.500%
  • Nb (niobium), V (vanadium) and W (tungsten) are carbide-forming elements and are effective elements for increasing the strength of steel sheets.
  • one or more selected from Nb, V and W is preferably contained in an amount of 0.001% or more, more preferably 0.005% or more, and 0.005% or more. It is more preferable to contain 0.10% or more.
  • the Nb content is set to 0.200% or less, and both the V content and the W content are set to 0.500% or less.
  • the Nb content is preferably 0.100% or less, and both the V content and the W content are preferably 0.300% or less.
  • Ca 0-0.0100% Mg: 0-0.0100% Bi: 0 to 0.0100% Sb: 0-0.1000% Zr: 0 to 0.0100% REM: 0-0.1000%
  • Ca (calcium), Mg (magnesium), Sb (antimony), Zr (zirconium), and REM (rare earth elements) are elements that contribute to the fine dispersion of inclusions in steel. It is an element that reduces the micro-segregation of substitutional alloy elements such as Si and Si. Each of these elements contributes to improving the bending resistance of the steel sheet. Therefore, it may be contained as necessary.
  • one or more selected from Ca, Mg, Bi, Sb, Zr and REM is preferably contained in an amount of 0.0001% or more, preferably 0.0010% or more. is more preferred.
  • Ca content, Mg content, Bi content, and Zr content are all set to 0.0100% or less.
  • the Sb content and the REM content are set to 0.1000% or less.
  • Ca content, Mg content, Bi content, and Zr content are all preferably 0.0080% or less, more preferably 0.0060% or less.
  • the Sb content and REM content are preferably 0.0800% or less, more preferably 0.0600% or less, and even more preferably 0.0200% or less.
  • REM refers to a total of 17 elements of Sc, Y and lanthanides, and REM content means the total content of these elements.
  • Lanthanides are added industrially in the form of misch metals.
  • the chemical composition of the base material steel sheet of the steel sheet according to this embodiment can be obtained by the following method.
  • the chemical composition of the base material steel plate may be measured by a general chemical composition. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • sol. Al can be measured by ICP-AES using the filtrate obtained by thermally decomposing the sample with acid.
  • C and S may be measured using the combustion-infrared absorption method, N using the inert gas fusion-thermal conductivity method, and O using the inert gas fusion-nondispersive infrared absorption method.
  • the coating layer is removed by mechanical grinding, and then the chemical composition can be analyzed.
  • the chemical composition of the base steel sheet of the steel sheet according to this embodiment is C, Si, Mn, sol. containing Al, P, S, O, N with the balance being Fe and impurities, or C, Si, Mn, sol.
  • the balance consists of Fe and impurities.
  • Impurities are elements that are mixed in raw materials or during the manufacturing process.
  • the total amount of impurities is preferably 0.5% or less, more preferably 0.1% or less.
  • the base steel plate of the steel plate according to the present embodiment is not limited in terms of metal structure, but when obtaining a tensile strength of 980 MPa or more, the center position is 1/4 of the plate thickness in the plate thickness direction from the surface of the base steel plate In the metal structure at the 1/4 thickness position, which is in the range of 1/8 to 3/8 of the plate thickness from the surface, the total volume fraction of fresh martensite and tempered martensite is 40% or more preferable. More preferably, it is over 50%, still more preferably 55% or more. When it is desired to obtain a higher tensile strength, the total volume fraction of fresh martensite and tempered martensite is preferably 80% or more. Other than fresh martensite and tempered martensite, it is, for example, one or more of ferrite, bainite, pearlite, cementite, and retained austenite.
  • the volume fractions of ferrite, bainite, martensite (tempered martensite and fresh martensite), pearlite, cementite, and retained austenite contained in the metal structure at the 1/4 thickness position can be measured using the method shown below.
  • a sample is taken with a cross section parallel to the rolling direction and thickness direction of the steel sheet as an observation surface, and the observation surface is polished and nital-etched.
  • magnification 5000 times, 1 field of view is 250 ⁇ m 2 or more, and a total of 5 fields of view are observed with a Field Emission Scanning Electron Microscope (FE-SEM).
  • the area ratios of ferrite, bainite, tempered martensite, fresh martensite, pearlite, cementite, and retained austenite are measured and regarded as the volume ratio.
  • a region having a substructure within grains and having carbides precipitated with a plurality of variants is determined to be tempered martensite.
  • a region in which cementite is precipitated in lamellar form is determined to be pearlite or cementite.
  • a region with low brightness and no substructure is judged to be ferrite.
  • a region with high brightness and in which the underlying structure is not revealed by etching is judged to be fresh martensite or retained austenite.
  • the remainder is determined to be bainite.
  • the volume ratio of each tissue is calculated by the point counting method.
  • the volume fraction of fresh martensite can be determined by subtracting the volume fraction of retained austenite determined by the EBSD method described below from the volume fraction of fresh martensite or retained austenite.
  • the volume fraction of retained austenite at the 1 ⁇ 4 thickness position is evaluated by high-resolution crystal structure analysis by the EBSD method (electron beam backscatter diffraction method). Specifically, a sample is collected using a cross section parallel to the rolling direction and thickness direction of the steel sheet as an observation surface, and the observation surface is polished to a mirror finish. Further, electrolytic polishing or mechanical polishing using colloidal silica is performed to remove the processed layer on the surface. Next, at the 1/4th thickness position of the steel plate, the crystal structure analysis is performed by the EBSD method for 5 fields of view with a magnification of 5000 times and a size of 1 field of view of 250 ⁇ m 2 or more.
  • the EBSD method electron beam backscatter diffraction method
  • the distance between scores (step) is set to 0.01 to 0.20 ⁇ m.
  • Data obtained by the EBSD method are analyzed using "OIM Analysys 6.0" manufactured by TSL. Based on the observation results at each position, the region judged to be FCC iron is judged to be retained austenite, and the volume ratio of retained austenite at each 1 ⁇ 4 thickness position is calculated.
  • the base steel plate 10 included in the steel plate 1 according to the present embodiment has a surface in the plate thickness direction (an interface with the Fe—Al alloy layer 20, or a galvanized layer for a portion where the Fe—Al alloy layer 20 is not formed. 30) has an internal oxide layer of 0.2 ⁇ m or more (the thickness of the internal oxide layer is 0.2 ⁇ m or more).
  • the internal oxide layer means that at least a part of the crystal grain boundary of the base material is covered with an oxide of an oxidizable element such as Si or Mn (when observing the cross section, an oxide layer on the crystal grain boundary is formed). layer in which objects are observed.
  • the grain boundary coverage of oxides in the internal oxide layer 11 is 60% or more.
  • the grain boundary coverage ratio is the ratio (%) of the length of the grain boundary covered with oxide to the total length of the grain boundary in the internal oxide layer 11 . Covering the crystal grain boundaries with oxides hinders dislocation movement and improves fatigue strength. If the thickness of the internal oxide layer 11 is less than 0.2 ⁇ m or the grain boundary coverage is less than 60%, the effect of improving the fatigue strength cannot be sufficiently obtained. There is no particular upper limit for the thickness of the internal oxide layer 11, but if it exceeds 3.0 ⁇ m, the effect of improving the fatigue strength is saturated, and the deformability and bendability may deteriorate.
  • the thickness of layer 11 is preferably 3.0 ⁇ m or less.
  • oxides are formed mainly on the grain boundaries in the internal oxide layer 11, so the oxides often exist in a mesh-like manner.
  • the thickness of the internal oxide layer (existing depth) and grain boundary coverage are determined by the following method.
  • a sample for microstructure observation is taken from the steel sheet so that the structure of the cross section in the plate thickness direction can be observed.
  • the surface parallel to the rolling direction and the plate thickness direction was subjected to wet polishing with emery paper, and further buffed using diamond abrasive grains having an average diameter of 1 ⁇ m. Mirror finish.
  • colloidal silica polishing is performed using a suspension containing alcohol as a solvent in order to remove the distortion introduced into the polished surface by the mechanical polishing described above. In colloidal silica polishing, if the load increases during polishing, strain may be further introduced, so the load is suppressed during polishing.
  • automatic polishing may be performed for 1 hour at a setting of 40% output using Vibromet 2 manufactured by BUEHLER.
  • electropolishing or chemical etching is applied in the process of removing the strain introduced by mechanical polishing, the oxide will dissolve, making it impossible to observe the actual state of the oxide existing on the grain boundary.
  • Similar precautions are required when performing polishing using water as a solvent. Water-soluble oxides are dissolved during polishing using water as a solvent, and internal oxides on grain boundaries cannot be observed. Therefore, in the polishing finishing process, a process that does not include the above procedure is adopted.
  • the surface layer of the observed surface of the sample prepared by the above procedure is observed by SEM and SEM-EBSD.
  • the observation magnification is selected from 1,000 to 9,000 times, and a magnification that includes 10 or more ferrite crystal grains in the microstructure is selected, for example, 3,000 times.
  • oxides existing at grain boundaries are confirmed in a backscattered electron image in a SEM. In the backscattered electron image, since the color tone changes depending on the atomic number (or mass), oxides and steel structures can be easily distinguished.
  • B.E. C. C. - Obtain the crystallographic orientation data of iron.
  • the magnification of the measurement is selected from 1000 to 9000, and may be the same magnification as the observation of the SEM-backscattered electron image described above.
  • the measurement interval (STEP) is 0.01 to 0.1 ⁇ m, and 0.05 ⁇ m may be selected.
  • the B.O.M. obtained under these measurement conditions.
  • C. C. - In the crystal orientation MAP data of iron, the boundary where the crystal orientation difference is 15° or more is defined as the grain boundary, except for the region where the confidence value (CI value) is less than 0.1.
  • the CI value is a numerical value that serves as an index of the reliability of crystal orientation determination shown in analysis software, and generally, if the value is less than 0.1, the reliability is considered to be low. If an oxide exists in the grain boundary of ferrite, B. C. C. - Since the crystal orientation data of iron cannot be obtained, there are many regions where the CI value is less than 0.1 between adjacent grains. In this case, although the crystal grain boundary cannot be clearly confirmed, at the boundary where the orientation difference of the adjacent ferrite crystal grains is 15° or more, the crystal grain boundary passes through the center of the region where the CI value is less than 0.1. is drawn on the MAP.
  • the grain boundary coverage (%) is calculated by dividing the obtained oxide coating length by the length of all grain boundaries.
  • Fe--Al alloy layer In the steel plate 1 according to the present embodiment, the Fe—Al alloy layer 20 having an average thickness of 1 nm or more is formed on the surface of the base steel plate 10 with a coverage of 40% or more.
  • the Fe—Al alloy layer 20 is formed between the base steel plate 10 and the galvanized layer 30 .
  • LME cracking is caused by penetration of molten zinc into grain boundaries during welding. Therefore, the presence of the Fe—Al alloy layer at the interface between the plated layer and the base material serves as a barrier to zinc penetration, improving the LME resistance.
  • the Fe—Al alloy layer has an average thickness of 1 nm or more and a coverage of 40% or more.
  • the average thickness of the Fe—Al alloy layer is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 20 nm or more.
  • the coverage of the Fe—Al alloy layer is preferably 50% or more, more preferably 60% or more.
  • the average thickness of the Fe—Al alloy layer is 100 nm or more, the bending resistance is lowered. Therefore, the average thickness of the Fe—Al alloy layer is set to less than 100 nm. Moreover, although it is not necessary to limit the upper limit of the coverage, the cost is significantly increased to achieve 100%, so the coverage may be less than 100% or 98% or less.
  • the coverage rate is the ratio (%) of the length of the interface between the Fe—Al alloy layer and the base steel plate to the length of the surface of the base steel plate when viewed in a cross section in the thickness direction.
  • the average thickness and coverage of the Fe—Al alloy layer are obtained by the following methods. A sample is taken so that the cross section parallel to the rolling direction and the plate thickness direction of the steel plate will be the observation surface. Using an FE-SEM, this sample is photographed in the vicinity of the surface of the base steel sheet at a magnification of 50,000 times over a range of 1.5 ⁇ m 2 or more/1 field of view. Since the Fe--Al alloy layer is observed black in the backscattered electron image at the interface between the parent phase and the plating layer, the Fe--Al alloy layer is determined visually and its thickness is measured.
  • Photographing is performed for 5 fields of 5 points/1 field of view, and the average value of the thickness of the Fe-Al alloy layer in 5 fields of view (25 points) is the average thickness of the Fe-Al alloy layer of the steel sheet according to this embodiment. . Also, the length of the interface between the base steel plate and the Fe—Al alloy layer is measured in the length of the surface of the base steel plate in the observation field to determine the coverage. The measurement is performed for five fields of view, and the average of the coverage of each field of view is taken as the coverage of the steel sheet according to this embodiment.
  • the steel plate 1 has the base material steel plate 10 (the portion without the Fe—Al alloy layer) and / or the Fe—Al alloy layer 20 (the portion with the Fe—Al alloy layer on the base steel plate). , has a galvanized layer 30 .
  • the galvanized layer is, for example, a hot-dip galvanized layer.
  • the galvanized layer means a plated layer containing 80% by mass or more of Zn. Corrosion resistance is improved by the presence of the hot-dip galvanized layer on the surface.
  • the adhesion amount is preferably 100 g/m 2 or less, more preferably 80 g/m 2 or less.
  • the adhesion amount is preferably 10 g/m 2 or more.
  • the chemical composition of the galvanized layer is not limited, it preferably contains 0.1 to 2.0% by mass of Al, 5.0% or less of Fe, and the balance is Zn and impurities.
  • the total amount of impurities is preferably 0.1% by mass or less.
  • the adhesion amount and chemical composition of the galvanized layer are obtained by the following methods.
  • the plating layer is melted using inhibitor-containing hydrochloric acid, and the adhesion amount is determined by comparing the weights before and after melting.
  • the chemical composition of the plating layer is measured by quantitatively analyzing the solution obtained by melting with ICP.
  • the tensile strength is set to 980 MPa or more.
  • the tensile strength is preferably 1050 MPa or higher, more preferably 1100 MPa or higher.
  • the tensile strength is set to 2000 MPa or less.
  • the steel plate according to the present embodiment can obtain the effect as long as it has the above characteristics regardless of the manufacturing method.
  • the production conditions described below are preferable because stable production can be achieved.
  • the steel sheet according to the present embodiment can be produced by subjecting a steel sheet (hot-rolled steel sheet or cold-rolled steel sheet) to be a base material steel sheet to annealing and plating under predetermined conditions.
  • the manufacturing conditions for the steel sheet to be subjected to the annealing process are not limited.
  • a hot-rolled steel sheet can be produced by casting molten steel having the chemical composition described above to form a steel slab under normal conditions, and then subjecting the slab to hot rolling under normal conditions.
  • a cold-rolled steel sheet can be produced by subjecting the above hot-rolled steel sheet to cold rolling under normal conditions.
  • the annealing step includes a heating process of heating a steel plate having a predetermined chemical composition (the same chemical composition as the steel plate according to the present embodiment to be obtained) to an annealing temperature (maximum heating temperature) of 700 to 1000 ° C., and annealing the heated steel plate. and a holding step of holding at the temperature for 1 second or longer. From the viewpoint of productivity, annealing is preferably performed by passing the steel sheet through a continuous annealing line. If the annealing temperature is less than 700° C., the amount of austenite is insufficient, and a sufficient amount of hard structure cannot be secured by phase transformation during subsequent cooling, and sufficient tensile strength cannot be obtained.
  • the annealing temperature is set to 700° C. or higher.
  • the annealing temperature is preferably 720° C. or higher.
  • the annealing temperature is set to 1000° C. or lower.
  • the annealing temperature is preferably 900° C. or lower.
  • the steel sheet is heated to an annealing temperature (maximum heating temperature: 700 to 1000°C).
  • the average heating rate in the first temperature range of 400 to 650 ° C. is set to 2.0 ° C./sec or more, and the second temperature range from 650 ° C. to the annealing temperature is set.
  • the average heating rate is 0.5 to 5.0° C./sec, and the atmosphere (P(H2O)/P(H2)) is 0.05 to 2.00 in the second temperature range.
  • the average heating rate in the first temperature range of 400-650° C. recovery of dislocations mainly occurs during heating.
  • the average heating rate in this temperature range is 2.0° C./second or more, it is possible to suppress recovery of dislocations and leave many dislocations serving as recrystallization nuclei. In that case, recrystallization that occurs in the temperature range of 650° C. or higher can occur at many locations.
  • the upper limit of the average heating rate in the first temperature range is not limited, the average heating rate is preferably 20.0° C./sec or less from the viewpoint of cost.
  • the second temperature range from 650° C. to the annealing temperature is a temperature range in which recrystallization occurs, and is a temperature range in which an internal oxide layer is formed by controlling the atmosphere. If the average heating rate in this temperature range exceeds 5.0° C./sec, recrystallization of the steel sheet proceeds before oxides are formed on the surface layer, forming coarse ferrite grains. In this case, an internal oxide layer in which the grain boundaries are covered with oxide is not formed. On the other hand, if the average heating rate is less than 0.5° C./second, the decarburization reaction may proceed excessively and the tensile strength of the steel sheet may decrease.
  • (P(H2O)/P(H2)) exceeds 2.00, decarburization proceeds excessively, the thickness of the decarburized layer increases, and the tensile strength of the steel sheet decreases. Therefore, (P(H2O)/P(H2)) is set to 2.00 or less. (P(H2O)/P(H2)) is preferably 1.50 or less, more preferably 1.20 or less.
  • the average heating rate in the first temperature range should be higher than that in the second temperature range.
  • the average heating rate in the first temperature range is preferably faster than the average heating rate in the second temperature range by 2.0° C./second or more.
  • the steel sheet After heating to the annealing temperature in the manner described above, the steel sheet is held at a predetermined maximum heating temperature for 1 second or more. If the holding time is less than 1 second, it will not austenitize sufficiently. In this case, a sufficient amount of hard structure cannot be secured by phase transformation during subsequent cooling, and sufficient tensile strength cannot be obtained. There is no particular limitation on the upper limit of the retention time. However, if the holding time is too long, the manufacturability of the steel sheet is impaired, so the upper limit of the holding time is preferably 1000 seconds.
  • the steel sheet after the annealing process is cooled from the annealing temperature to 440 to 550 ° C. at an average cooling rate of 0.5 ° C./sec or more, and the steel plate is mainly composed of Zn and has an effective Al amount of 0.050. ⁇ 0.250% by mass, immersed in a plating bath, pulled up from the plating bath, cooled so that the time to reach 400 ° C. is within 10 seconds, followed by an average cooling rate of 400 to 350 ° C. is cooled to 350° C. or less so that the temperature is 1.0° C./sec or more and 5.0° C./sec or less.
  • a galvanized layer is formed on the surface of the steel sheet, and an Fe—Al alloy layer is formed on at least a portion of the interface between the steel sheet and the plating layer.
  • the average cooling rate from 440°C to 550°C is less than 0.5°C/sec, no hard structure is formed in the base steel sheet, resulting in reduced strength. Further, if the cooling stop temperature (steel sheet temperature when immersed in the plating bath) is less than 440°C, it is necessary to apply a large amount of heat to the plating bath in order to maintain the plating temperature, which increases the manufacturing cost. On the other hand, if the steel sheet temperature exceeds 550° C. when the steel sheet is immersed in the plating bath, equipment for removing a large amount of heat from the plating bath is required to maintain the plating bath temperature, which increases the manufacturing cost.
  • the composition of the plating bath in which the steel plate is immersed is mainly composed of Zn (for example, 80% by mass or more), and the effective Al amount (the value obtained by subtracting the total amount of Fe from the total amount of A in the plating bath) is 0.050 to 0.250. If it is mass%, it is not limited, and other elements such as Ag, B, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Ge, Hf, I, K, La, Li , Mg, Mn, Mo, Na, Nb, Ni, Pb, Rb, S, Si, Sn, Sr, Ta, Ti, V, W, Zr and REM.
  • the effective amount of Al in the plating bath is preferably 0.065% by mass or more.
  • the effective amount of Al in the plating bath is preferably 0.180% by mass or less.
  • the plating bath temperature is not limited, it is preferably 450 to 490°C. If the plating bath temperature is lower than 450° C., the viscosity of the plating bath increases excessively, making it difficult to control the thickness of the plating layer, which may impair the appearance of the hot-dip galvanized steel sheet.
  • the plating bath temperature is preferably 455° C. or higher. On the other hand, if the plating bath temperature exceeds 490° C., a large amount of fumes may be generated, making safe plating operations difficult.
  • the plating bath temperature is preferably 480° C. or lower.
  • an Fe—Zn alloy layer is formed instead of an Fe—Al alloy layer, and a desired Fe—Al alloy layer cannot be obtained.
  • Fe- An Al alloy layer can be formed with a coverage of 40% or more.
  • the time at 400 to 350° C. exceeds 50.0 seconds, the thickness of the Fe—Al alloy layer becomes 100 nm or more. Therefore, the average cooling rate from 400 to 350° C. should be 1.0° C./second or more.
  • the plating bath temperature is over 450 ° C., the time to reach 400 ° C.
  • the average cooling rate up to 400°C is within 10 seconds (that is, the average cooling rate to 400 ° C. is over 5.0 ° C./sec), and then the average cooling of 400 to 350 ° C.
  • the average cooling rate up to 400°C is preferably higher than the average cooling rate from 400 to 350°C so that the rate is 5.0°C/sec or less.
  • an Fe—Al alloy layer is appropriately formed at the interface between the galvanized layer and the base steel sheet.
  • the Fe—Al alloy layer formed at the interface between the galvanized layer and the base steel sheet incorporates and integrates the internal oxides present at the grain boundaries of the surface layer of the steel sheet. As a result, the Fe--Al alloy layer is less likely to separate from the base steel sheet, and a higher bending fatigue strength can be obtained.
  • the average cooling rate up to 400°C is 6.0°C/sec or more.
  • the steel sheet after the plating process may be subjected to skin-pass rolling for the purpose of shape adjustment and the like.
  • skin pass rolling it is preferable to set the rolling rate to 0.5% or less.
  • the base material steel sheet was observed by the method described above, and the thickness of the internal oxide layer, the grain boundary coverage of the internal oxide layer, and the thickness at the 1/4 thickness position. observed the tissue.
  • the results are shown in Tables 3-1 and 3-2.
  • the coating weight of the galvanized layer was 10 to 80 g/m 2 .
  • TS tensile strength
  • LME resistance bending fatigue strength
  • bending resistance of the obtained galvanized steel sheets were evaluated in the following manner.
  • ⁇ Tensile strength> A JIS No. 5 tensile test piece was taken from a direction (width direction) perpendicular to the rolling direction and thickness direction of the galvanized steel sheet (rolling direction and thickness direction of the base steel sheet), and tensile according to JIS Z 2241: 2011. A test was performed to measure the tensile strength (TS). A tensile strength of 980 MPa or more was judged to be high strength.
  • ⁇ Bending fatigue strength> A plane bending fatigue test was performed according to JISZ2275:1978.
  • the test piece was a No. 1 test piece with a width of 30 mm and an R of 40 mm.
  • the fatigue strength after 106 cycles was evaluated as follows. 10 6 times fatigue strength > 0.35 ⁇ TS: Ex (especially excellent in bending fatigue strength) 10 6 times fatigue strength > 0.30 ⁇ TS: OK (excellent bending fatigue strength) 10 6 times fatigue strength ⁇ 0.30 ⁇ TS: NG
  • No. 1 which has a chemical composition and manufacturing method within the scope of the present invention.
  • Nos. 1 8, 11, 12, 17 to 46, preferable Fe—Al alloy layers and internal oxide layers were formed, and tensile strength, LME resistance, bending fatigue strength, and bending resistance were all excellent.
  • No. 47 to 56 at least one of tensile strength, LME resistance, bending fatigue strength, and bending resistance was inferior.
  • the manufacturing method of No. 1 is outside the scope of the present invention.
  • the tensile strength was low, or the internal oxide layer and Fe-Al alloy layer were not formed in a preferable state, so the LME resistance, bending fatigue strength, and bending resistance were inferior in one or more of the sexes.
  • a galvanized steel sheet that has high strength, sufficient bending resistance, and excellent LME resistance and bending fatigue strength.
  • Such a steel sheet is useful as a high-strength steel sheet for automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

この亜鉛めっき鋼板は、所定の化学組成を有する母材鋼板と、前記母材鋼板の表面の少なくとも一部に形成されたFe-Al合金層と、前記母材鋼板または前記Fe-Al合金層の表面に形成された亜鉛めっき層と、を備え、前記母材鋼板が、前記母材鋼板の表面から板厚方向に0.2μm以上の内部酸化層を有し、前記Fe-Al合金層の平均厚さが1nm以上、100nm未満であり、厚さ方向の断面において、前記内部酸化層では、酸化物による粒界被覆率が60%以上であり、かつ前記Fe-Al合金層による、前記母材鋼板の前記表面の被覆率が、40%以上であり、引張強さが980MPa以上、2000MPa以下である。

Description

亜鉛めっき鋼板およびその製造方法
 本発明は亜鉛めっき鋼板およびその製造方法に関する。
 本願は、2022年02月25日に、日本に出願された特願2022-027919号に基づき優先権を主張し、その内容をここに援用する。
 自動車を軽量化して燃費を高め、炭酸ガスの排出量を低減するとともに、搭乗者の安全性を確保するため、自動車用鋼板として高強度鋼板が使用されている。近年、車体および部品の耐食性を十分に確保するため、自動車用鋼板として、高強度溶融亜鉛めっき鋼板に加えて、高強度合金化溶融亜鉛めっき鋼板も使用されている(例えば、特許文献1を参照)。
 また、自動車用部品に供する高強度鋼板には、強度だけでなく、例えば均一伸びなどの部品成形のために必要な特性(成形性、伸びや耐曲げ性など)が、要求される。強度と成形性とはトレードオフの関係にあるが、これらを両立する手段として、残留オーステナイトの変態誘起塑性を利用した高強度鋼板であるTRIP(TRansformation Induced Plasticity)鋼板や、軟質相と硬質相とを有するDP鋼板などが知られている。
 しかしながら、車体および/または部品の組立てのため、亜鉛めっき鋼板(溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板)同士をスポット溶接したり、冷延鋼板と亜鉛めっき鋼板とをスポット溶接したりすると、スポット溶接部において、溶融金属脆化(Liquid Metal Embrittlement:LME)割れと呼ばれる割れが発生することがある。LME割れは、スポット溶接時に発生する熱で亜鉛めっき層の亜鉛が溶融し、溶接部の鋼板組織の結晶粒界に溶融亜鉛が侵入し、その状態に引張応力が作用することで生じる割れである。
 このLME割れは、TRIP鋼板やDP鋼板などの高合金で生じやすい。特に、高強度TRIP鋼板(変態誘起塑性鋼板)をスポット溶接した際に、顕著に発生する。高強度TRIP鋼板とは、通常の高強度鋼板よりもC、Si、Mn濃度が高く、残留オーステナイトを含むことにより、優れたエネルギー吸収能およびプレス成形性を有する鋼板のことである。
 そのため、自動車用部品への適用が想定される亜鉛めっき鋼板には、耐LME性が高いことが求められる。
 また、自動車用部品に高強度鋼板を適用することで、鋼板の板厚を薄くし、耐衝突性能を維持したまま、自動車を軽量化することが出来る。しかしながら、鋼板の板厚が薄くなることで、曲げ疲労強度が低下するという課題がある。
 このような課題に対し、例えば、特許文献2には、前記母材の表面から5.0μm以上の深さまで、結晶粒界の少なくとも一部が酸化物に被覆された内部酸化層を有し、かつ、前記母材の表面から5.0μmの深さまでの領域において、前記酸化物の粒界被覆率が60%以上である、耐溶融金属脆化割れ性に優れた鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板が開示されている。
 特許文献2では、内部酸化が生じている層を所定の深さまで存在させるとともに、酸化物による結晶粒界の被覆率を高めることで、LMEの発生を抑制すると開示されている。
 しかしながら、特許文献2では、曲げ疲労強度、耐曲げ性については考慮されていない。
国際公開第2018/043453号 日本国特許第6388099号公報
 上述の通り、従来、高強度かつ、十分な耐曲げ性を有し、耐LME性、曲げ疲労強度に優れる亜鉛めっき鋼板については提供されていなかった。そのため、本発明は、高強度でかつ、耐曲げ性を低下させずに、耐LME性及び曲げ疲労強度に優れる亜鉛めっき鋼板を提供することを課題とする。
 本発明者らは、上記の課題に鑑み、高強度亜鉛めっき鋼板において、耐LME性、曲げ疲労強度を高める手法について検討を行った。
 本発明者らの検討の結果、亜鉛めっき鋼板において、母材鋼板と亜鉛めっき層との間に、所定の厚みのFe-Al合金層を設けることで、耐曲げ性を低下させずに耐LME性を向上させることができることが分かった。
 また、母材鋼板の表面に、所定の内部酸化層を形成することで、曲げ疲労強度が向上することが分かった。
 さらに、このようなFe-Al合金層、内部酸化層の形成には、焼鈍工程及びめっき工程の制御が有効であることが分かった。
 本発明は上記の知見に鑑みてなされた。本発明の要旨は以下の通りである。
[1]本発明の一態様に係る亜鉛めっき鋼板は、母材鋼板と、前記母材鋼板の表面の少なくとも一部に形成されたFe-Al合金層と、前記母材鋼板または前記Fe-Al合金層の表面に形成された亜鉛めっき層と、を備え、前記母材鋼板が、質量%で、C:0.10~0.40%、Si:0.10~3.00%、Mn:1.00~5.00%、sol.Al:0.001~1.500%、P:0.0010~0.0300%、S:0.0200%以下、N:0.0100%以下、O:0.0100%以下、Ti:0~0.200%、B:0~0.0100%、Cr:0~1.000%、Mo:0~1.000%、Ni:0~1.000%、Cu:0~1.000%、Sn:0~0.500%、Nb:0~0.200%、V:0~0.500%、W:0~0.500%、Ca:0~0.0100%、Mg:0~0.0100%、Bi:0~0.0100%、Sb:0~0.1000%、Zr:0~0.0100%、REM:0~0.1000%、及び残部:Fe及び不純物、からなる化学組成を有し、前記母材鋼板が、前記母材鋼板の表面から板厚方向に0.2μm以上の内部酸化層を有し、前記Fe-Al合金層の平均厚さが1nm以上、100nm未満であり、厚さ方向の断面において、前記内部酸化層では、酸化物による粒界被覆率が60%以上であり、かつ前記Fe-Al合金層による、前記母材鋼板の前記表面の被覆率が、40%以上であり、引張強さが980MPa以上、2000MPa以下である。
[2][1]に記載の亜鉛めっき鋼板は、前記母材鋼板の、前記化学組成が、質量%で、Ti:0.005~0.200%、B:0.0005~0.0100%、Cr:0.001~1.000%、Mo:0.001~1.000%、Ni:0.001~1.000%、Cu:0.001~1.000%、Sn:0.001~0.500%、Nb:0.001~0.200%、V:0.001~0.500%、W:0.001~0.500%、Ca:0.0001~0.0100%、Mg:0.0001~0.0100%、Bi:0.0001~0.0100%、Sb:0.0001~0.1000%、Zr:0.0001~0.0100%、及びREM:0.0001~0.1000%、からなる群から選択される1種以上を含有してもよい。
[3]本発明の別の態様に係る亜鉛めっき鋼板の製造方法は、質量%で、C:0.10~0.40%、Si:0.10~3.00%、Mn:1.00~5.00%、sol.Al:0.001~1.500%、P:0.0010~0.0300%、S:0.0200%以下、N:0.0100%以下、O:0.0100%以下、Ti:0~0.200%、B:0~0.0100%、Cr:0~1.000%、Mo:0~1.000%、Ni:0~1.000%、Cu:0~1.000%、Sn:0~0.500%、Nb:0~0.200%、V:0~0.500%、W:0~0.500%、Ca:0~0.0100%、Mg:0~0.0100%、Bi:0~0.0100%、Sb:0~0.1000%、Zr:0~0.0100%、REM:0~0.1000%、及び残部:Fe及び不純物からなる化学組成を有する鋼板を、700~1000℃の焼鈍温度で1秒以上保持して焼鈍する焼鈍工程と、前記焼鈍工程後の前記鋼板の表面に亜鉛めっき層を形成する、めっき工程と、を有し、前記焼鈍工程では、前記焼鈍温度までの加熱過程において、400~650℃の第一温度域での平均加熱速度を2.0℃/秒以上とし、650℃~前記焼鈍温度までの第二温度域での平均加熱速度を0.5~5.0℃/秒とし、前記第二温度域において、雰囲気の(P(H2O)/P(H2))を0.05~2.00とし、前記めっき工程では、0.5℃/秒以上の平均冷却速度で440~550℃まで冷却し、前記鋼板を、Znを主体とし有効Al量が0.050~0.250質量%である、めっき浴に浸漬し、めっき浴から引き上げた後、400℃に達するまでの時間が10秒以内となるように冷却し、引き続いて400℃~350℃の平均冷却速度が1.0℃/秒以上、5.0℃/秒以下となるように350℃以下まで冷却する。
 本発明の上記態様によれば、高強度でかつ、十分な耐曲げ性を有し、耐LME性及び曲げ疲労強度に優れる亜鉛めっき鋼板を提供することができる。
本実施形態に係る鋼板の断面の一例を示す模式図である。
 本発明の一実施形態に係る亜鉛めっき鋼板(単に本実施形態に係る鋼板という場合がある)及びその製造方法について説明する。
 図1は、本実施形態に係る鋼板の断面の一例を示す模式図である。本実施形態に係る鋼板1は、所定の化学組成を有する母材鋼板10と、母材鋼板の表面の少なくとも一部に形成されたFe-Al合金層20と、母材鋼板10またはFe-Al合金層20の表面に形成された亜鉛めっき層30と、を備える。また、母材鋼板10は、Fe-Al合金層20または亜鉛めっき層30との界面側の表層部に、内部酸化層11を有する。
 Fe-Al合金層20が、母材鋼板10の一部にのみ形成されている場合、母材鋼板10の表面にFe-Al合金層20が形成されている部分では、Fe-Al合金層の上に亜鉛めっき層30が形成され、Fe-Al合金層20が形成されていない部分では、母材鋼板10の上に、亜鉛めっき層30が形成される。
 Fe-Al合金層、亜鉛めっき層は、図1では片面にのみ形成されているが、同様に他の面にも形成されていてもよい。
 以下、本実施形態に係る鋼板の各構成について説明する。
 説明において、「~」を挟んで示される範囲は、原則としてその両端の値を下限値及び上限値として範囲に含む。ただし、「超」「未満」と示される数値については、範囲に含まない。
「母材鋼板」
 まず、本実施形態に係る鋼板1が備える母材鋼板10について説明する。
<化学組成>
 本実施形態に係る鋼板1が備える母材鋼板10は、以下の元素を含む。本実施形態において、各元素の含有量の%は質量%を意味する。
 C:0.10~0.40%
 C(炭素)は、鋼板の高強度化のために必須の元素である。C含有量が0.10%未満では十分な引張強さを得ることができない。そのため、C含有量を0.10%以上とする。C含有量は、好ましくは0.12%以上である。また、Cは、残留オーステナイトの形成に寄与する元素でもある。残留オーステナイトは、TRIP効果によって、伸びの向上に寄与する。この効果を得る場合、C含有量を0.16%以上とすることが好ましい。
 一方、C含有量が0.40%を超えると溶接性が著しく低下する。そのため、C含有量は0.40%以下とする。プレス成形性および溶接性の劣化を抑制する観点から、C含有量は好ましくは0.30%以下である。
 Si:0.10~3.00%
 Si(ケイ素)は固溶強化元素であり、鋼板の高強度化に有効な元素である。また、Siは残留オーステナイトの形成に寄与する元素でもある。これらの効果を得るため、Si含有量を0.10%以上とする。Si含有量は好ましくは0.30%以上である。
 一方、Siを過度に含有させると鋼板の化成処理性および溶融亜鉛めっきとの濡れ性が著しく劣化する。そのため、Si含有量を3.00%以下とする。Si含有量は、好ましくは2.00%以下である。
 Mn:1.00~5.00%
 Mn(マンガン)は強力なオーステナイト安定化元素であり、鋼板の焼入性向上に有効な元素である。この効果を得るため、Mn含有量を1.00%以上とする。Mn含有量は、好ましくは1.50%以上である。
 一方、Mnを過度に含有させると溶接性および低温靭性が劣化する。そのため、Mn含有量を5.00%以下とする。溶接性および低温靭性の劣化を抑制する観点から、Mn含有量は、好ましくは3.20%以下である。
 sol.Al:0.001~1.500%
 Al(アルミニウム)は、鋼の脱酸作用を有する元素である。また、Alは、残留オーステナイトの形成に寄与する元素でもある。これらの効果を得るため、sol.Al含有量を0.001%以上とする。sol.Al含有量は、好ましくは0.005%以上である。
 一方、Alを過剰に含有させても効果が飽和してコスト上昇を招くばかりか、鋼の変態温度が上昇して、熱間圧延時の負荷が増大する。そのため、sol.Al含有量は1.500%以下とする。sol.Al含有量は、好ましくは1.000%以下である。
 P:0.0010~0.0300%
 P(リン)は固溶強化元素であり、鋼板の高強度化に有効な元素である。この効果を得るため、P含有量を0.0010%以上とする。P含有量は、好ましくは0.0050%以上である。
 一方、P含有量が0.0300%を超えると、結晶粒界へのPの偏析により鋼板が脆化する。また、溶接性、靭性が劣化する。そのため、P含有量を0.0300%以下とする。P含有量は、好ましくは0.0200%以下である。
 S:0.0200%以下
 S(硫黄)は、熱間脆性の原因となる元素であり、また、溶接性および耐食性を阻害する元素である。S含有量が0.0200%を超えると、熱間加工性、溶接性および耐食性が著しく低下するので、S含有量を0.0200%以下とする。S含有量は好ましくは0.0100%以下である。
 S含有量は低い方が好ましく、0%でもよいが、S含有量を0.0001%未満にするためには、製造コストが大幅に上昇する。そのため、S含有量は、0.0001%以上としてもよい。S含有量は0.0010%以上としてもよい。
 N:0.0100%以下
 N(窒素)は鋼中に粗大な窒化物を形成して耐曲げ性および穴広げ性を劣化させる元素である。N含有量が0.0100%を超えると、上記の劣化が著しくなるので、N含有量を0.0100%以下とする。N含有量は、好ましくは0.0050%以下である。
 N含有量は少ない方が好ましく、0%でもよいが、N含有量を極度に低減させるには、脱Nコストが高くなるため、経済性の観点からN含有量を0.0005%以上としてもよい。
 O:0.0100%以下
 O(酸素)は鋼中に粗大な酸化物を形成して耐曲げ性および穴広げ性を劣化させる元素である。O含有量が0.0100%を超えると、上記特性劣化が著しくなるので、O含有量を0.0100%以下とする。O含有量は、好ましくは0.0070%以下である。
 O含有量は少ない方が好ましく、0%でもよいが、製造コストの観点からO含有量を0.0001%以上としてもよい。O含有量を0.0010%以上としてもよい。
 本実施形態に係る鋼板は、上記の元素を含有し、残部がFe及び不純物であってもよい。しかしながら、各種特性の向上を目的として、さらに、以下に示すTi、B、Cr、Mo、Ni、Cu、Sn、Nb、V、W、Ca、Mg、Bi、Sb、ZrおよびREMから選択される1種以上の元素(任意元素)を含有してもよい。任意元素は含有しなくてもよいので、下限は0%である。
 Ti:0~0.200%
 Ti(チタン)は鋼中でTiNとしてNを固定することで、焼入性低下因子となるBNの形成を抑制する元素である。また、Tiは、加熱時のオーステナイト粒径を微細化し靱性を向上させる元素である。この効果を得る場合、Ti含有量を0.005%以上とすることが好ましい。Ti含有量は0.010%以上とすることがより好ましい。
 一方、Ti含有量が過剰になると鋼板の延性が低下する。したがって、含有させる場合、Ti含有量は0.200%以下とする。Ti含有量は0.050%以下とすることが好ましい。
 B:0~0.0100%
 B(ホウ素)は、溶接時に、オーステナイト粒界に偏析して、結晶粒界を強化し、耐溶融金属脆化割れ性(耐LME性)の向上に寄与する元素である。この効果を得る場合、B含有量を0.0005%以上とすることが好ましい。B含有量は、0.0008%以上とすることがより好ましい。
 一方、B含有量が0.0100%を超えると、炭化物および窒化物が生成し、上記の効果が飽和するとともに、熱間加工性が低下する。そのため、B有量は0.0100%以下とする。B含有量は、好ましくは0.0050%以下である。
 Cr:0~1.000%
 Mo:0~1.000%
 Ni:0~1.000%
 Cu:0~1.000%
 Sn:0~0.500%
 Cr(クロム)、Mo(モリブデン)、Ni(ニッケル)、Cu(銅)、Sn(スズ)はいずれも鋼板の高強度化に有効な元素である。上記の効果を得るためには、Cr、Mo、Ni、CuおよびSnから選択される1種以上を、それぞれ、0.001%以上含有させることが好ましく、0.010%以上含有させることがより好ましく、0.050%以上含有させることがさらに好ましい。
 一方、これらの元素を過度に含有させると効果が飽和し、コストが上昇する。したがって、含有させる場合、Cr、Mo、NiおよびCuの含有量をいずれも1.000%以下とし、Sn含有量を0.500%以下とする。Cr、Mo、NiおよびCuの含有量はいずれも0.600%以下とすることが好ましく、Sn含有量は0.300%以下とすることが好ましい。
 Nb:0~0.200%
 V:0~0.500%
 W:0~0.500%
 Nb(ニオブ)、V(バナジウム)およびW(タングステン)は炭化物形成元素であり、鋼板の高強度化に有効な元素である。上記の効果を得るためには、Nb、VおよびWから選択される1種以上を、それぞれ、0.001%以上含有させることが好ましく、0.005%以上含有させることがより好ましく、0.010%以上含有させることがさらに好ましい。
 一方、これらの元素を過度に含有させても効果が飽和し、コストが上昇する。したがって、含有させる場合、Nb含有量を0.200%以下とし、V含有量およびW含有量をいずれも0.500%以下とする。Nb含有量は0.100%以下とすることが好ましく、V含有量およびW含有量はいずれも0.300%以下とすることが好ましい。
Ca:0~0.0100%
Mg:0~0.0100%
Bi:0~0.0100%
Sb:0~0.1000%
Zr:0~0.0100%
REM:0~0.1000%
 Ca(カルシウム)、Mg(マグネシウム)、Sb(アンチモン)、Zr(ジルコニウム)、REM(希土類元素)は鋼中介在物の微細分散化に寄与する元素であり、Bi(ビスマス)は鋼中におけるMn、Si等の置換型合金元素のミクロ偏析を軽減する元素である。これらの元素は、それぞれ、鋼板の耐曲げ性向上に寄与する。そのため必要に応じて含有させてもよい。
 上記の効果を得るためには、Ca、Mg、Bi、Sb、ZrおよびREMから選択される1種以上を、それぞれ、0.0001%以上含有させることが好ましく、0.0010%以上含有させることがより好ましい。
 一方、これらの元素を過度に含有させると延性が劣化する。したがって、Ca含有量、Mg含有量、Bi含有量、およびZr含有量をいずれも0.0100%以下とする。また、Sb含有量およびREMの含有量を0.1000%以下とする。Ca含有量、Mg含有量、Bi含有量、Zr含有量はいずれも0.0080%以下とすることが好ましく、0.0060%以下とすることがより好ましい。Sb含有量およびREM含有量は、0.0800%以下が好ましく、0.0600%以下がより好ましく、0.0200%以下がさらに好ましい。
 ここで、REMはSc、Yおよびランタノイドの合計17元素を指し、REM含有量はこれらの元素の合計含有量を意味する。ランタノイドは、工業的には、ミッシュメタルの形で添加される。
 本実施形態に係る鋼板の母材鋼板の化学組成は、以下の方法で求めることができる。
 母材鋼板の化学組成は、一般的な化学組成によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。sol.Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。また、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。鋼板が表面にめっき層を備える場合は、機械研削によりめっき層を除去してから化学組成の分析を行えばよい。
 上述の通り、本実施形態に係る鋼板の母材鋼板の化学組成は、C、Si、Mn、sol.Al、P、S、O、Nを含有し、残部がFe及び不純物からなる、または、C、Si、Mn、sol.Al、P、S、O、Nを含有し、Ti、B、Cr、Mo、Ni、Cu、Sn、Nb、V、W、Ca、Mg、Bi、Sb、ZrおよびREMから選択される1種以上の元素をさらに含有し、残部がFe及び不純物からなる。不純物とは、原料や製造過程で混入する元素である。不純物は合計で0.5%以下であることが好ましく、0.1%以下であることがより好ましい。
<金属組織(ミクロ組織)>
 本実施形態に係る鋼板の母材鋼板は、金属組織については限定されないが、980MPa以上の引張強さを得る場合、母材鋼板の表面から板厚方向に板厚の1/4の位置を中心とする表面から板厚の1/8~3/8の範囲である、1/4厚さ位置の金属組織において、フレッシュマルテンサイト及び焼き戻しマルテンサイトの合計体積率が40%以上であることが好ましい。より好ましくは、50%超、さらに好ましくは55%以上である。さらに高い引張強さを得たい場合、フレッシュマルテンサイト及び焼き戻しマルテンサイトの合計体積率は80%以上が好ましい。
 フレッシュマルテンサイト、焼き戻しマルテンサイト以外は、例えば、フェライト、ベイナイト、パーライト、セメンタイト、残留オーステナイトの1種以上である。
 1/4厚さ位置での金属組織に含まれるフェライト、ベイナイト、マルテンサイト(焼戻しマルテンサイト及びフレッシュマルテンサイト)、パーライト、セメンタイト、残留オーステナイトの体積率は、以下に示す方法を用いて測定できる。
 鋼板の圧延方向及び板厚方向に平行な断面を観察面として試料を採取し、観察面を研磨してナイタールエッチングする。
 次いで、1/4厚さ位置の組織の観察の場合には、表面から1/4厚の位置を中心とした1/8厚~3/8厚の範囲において、倍率:5000倍で、1視野を250μm以上として、合計5視野を、電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)で観察する。そして、フェライト、ベイナイト、焼戻しマルテンサイト、フレッシュマルテンサイト、パーライト、セメンタイト、残留オーステナイトの面積率をそれぞれ測定し、それを以て体積率と見なす。
 ここで、各相の同定に関し、粒内に下部組織を有し、かつ、炭化物が複数のバリアントを持って析出している領域を焼戻しマルテンサイトと判断する。また、セメンタイトがラメラ状に析出している領域をパーライトまたはセメンタイトと判断する。輝度が小さく、かつ下部組織が認められない領域をフェライトと判断する。輝度が大きく、かつ下部組織がエッチングにより現出されていない領域をフレッシュマルテンサイトまたは残留オーステナイトと判断する。残部をベイナイトと判断する。各々の体積率を、ポイントカウンティング法によって算出することで、各組織の体積率とする。
 フレッシュマルテンサイトの体積率については、フレッシュマルテンサイトまたは残留オーステナイトである体積率から、後述するEBSD法により求めた残留オーステナイトの体積率を引くことにより、求めることができる。
 本実施形態に係る鋼板において、1/4厚さ位置の残留オーステナイトの体積率は、EBSD法(電子線後方散乱回折法)により高分解能結晶構造解析を行うことにより評価する。具体的には、鋼板の圧延方向及び板厚方向に平行な断面を観察面として試料を採取し、観察面を研磨して鏡面に仕上げる。更に、表層の加工層を除去するために電解研磨またはコロイダルシリカを用いた機械研磨を行う。
 次いで、鋼板の1/4厚さ位置において、倍率:5000倍、1視野のサイズを250μm以上として、5視野をEBSD法による結晶構造解析を行う。また、評点間距離(step)は0.01~0.20μmとする。
 EBSD法により得られたデータを、TSL社製の「OIM Analysys 6.0」を用いて解析する。それぞれの位置の観察結果から、FCC鉄と判断される領域を残留オーステナイトと判断し、1/4厚さ位置のそれぞれの残留オーステナイトの体積率を算出する。
<内部酸化層>
 本実施形態に係る鋼板1が備える母材鋼板10は、板厚方向に表面(Fe-Al合金層20との界面、または、Fe-Al合金層20が形成されてない部分については亜鉛めっき層30との界面)から0.2μm以上の内部酸化層を有する(内部酸化層の厚さが0.2μm以上である)。本実施形態において、内部酸化層とは、母材の結晶粒界の少なくとも一部がSi、Mn等の易酸化性元素の酸化物によって被覆された(断面観察の際、結晶粒界上に酸化物が観察される)層のことである。
 また、本実施形態に係る鋼板1が備える母材鋼板10では、内部酸化層11における、酸化物の粒界被覆率が60%以上である。粒界被覆率は、内部酸化層11における結晶粒界の全長に対する、酸化物によって被覆された結晶粒界の長さの割合(%)である。
 結晶粒界が酸化物によって被覆されることで、転位運動の障害となり、疲労強度が向上する。
 内部酸化層11の厚さが0.2μm未満であるか、または粒界被覆率が60%未満であると、疲労強度の向上効果が十分に得られない。
 内部酸化層11の厚さは特に上限を設けないが、3.0μmを超える場合、疲労強度向上の効果は飽和する上、変形能が低下し、曲げ性が低下する場合があるので、内部酸化層11の厚さは3.0μm以下であることが好ましい。
 また、Si、Mn等の易酸化性元素が酸化物として結晶粒界に存在すると、母材の表面への酸化物の濃化が抑制される。母材表面に形成された酸化物は、溶融めっき金属の濡れ性を低下させ、不めっきの原因ともなる。そのため、内部酸化層を形成することにより、不めっきの発生を防止し、めっき性を向上させることができる。
 本実施形態に係る鋼板において、内部酸化層11では、酸化物を主に粒界上に形成させるので、酸化物は網目状に存在することが多い。
 内部酸化層の厚さ(存在する深さ)および粒界被覆率は以下の方法により求める。
 板厚方向の断面の組織を観察できるように、鋼板からミクロ組織観察用のサンプルを採取する。
 採取したサンプルにおいて、圧延方向及び板厚方向に対して平行な面に、エメリー紙による湿式研磨を施し、さらに、平均径が1μmのダイヤモンド砥粒を用いたバフ研磨を実施して、観察面を鏡面に仕上げる。
 続いて、前述の機械研磨によって研磨面に導入された歪を除去するために、アルコールを溶剤とする懸濁液を用いてコロイダルシリカ研磨を施す。
 コロイダルシリカ研磨では、研磨時に荷重の負荷が高まると、歪がさらに導入されることもあるため、研磨時には荷重を抑える。このため、例えば、コロイダルシリカによる研磨では、BUEHLER社製のバイブロメット2を用いて、出力40%の設定にて1時間の自動研磨を施してもよい。
 ただし、機械研磨によって導入された歪を除去する過程で、電解研磨または化学エッチング等を適用すると、酸化物が溶けるため、粒界上に存在する酸化物の実態を観察では捉えることができなくなる。また、水を溶剤とする研磨を施す場合も同様の注意が必要である。水溶性の酸化物は水を溶剤とする研磨の途中で溶解し、粒界上の内部酸化物が観察できなくなる。このため、研磨の仕上げ工程では、上記の手順を含まない工程を採用する。
 上記の手順で調整したサンプルの観察面の表層部をSEMおよびSEM-EBSDにより観察する。観察の倍率は1000~9000倍のうち、ミクロ組織中のフェライトの結晶粒数が10個以上含まれる倍率を選択し、例えば3000倍とする。
 まず、SEMにおける反射電子像で粒界に存在する酸化物を確認する。反射電子像では、原子番号(または質量)によって色調が変化するため、酸化物と鉄鋼組織とを容易に区別することができる。
 反射電子像の組織観察において、例えば、原子番号(または質量)が小さい状態を“黒い色調”で表示するように設定した場合、鉄に対して質量が小さい酸化物は黒い色調で観察画像中に表示されるようになる。この観察条件で、5視野の鋼板表層部の組織を撮影し、内部酸化物の存在状態を確認する。観察された内部酸化層の最大深さを内部酸化層の厚さとする。
 続いて、上記のSEM-反射電子像によって観察した視野と同じ位置において、SEM-EBSDによりB.C.C.-鉄の結晶方位データを取得する。測定の倍率は1000~9000倍のうち任意の倍率を選択し、例えば前述のSEM-反射電子像の観察と同じ倍率としてもよい。また、測定の間隔(STEP)は0.01~0.1μmとし、0.05μmを選択してもよい。
 この測定条件で得られたB.C.C.-鉄の結晶方位MAPデータにおいて、信頼値(CI値)が0.1未満の領域を除き、結晶方位差が15°以上である境界を結晶粒界とする。CI値とは、解析ソフトにおいて示される結晶方位決定の信頼性の指標となる数値であり、一般的にその値が0.1未満であると信頼性が低いとされる。
 フェライトの結晶粒界に酸化物が存在する場合はB.C.C.-鉄の結晶方位データが得られないため、隣接する結晶粒との間にCI値が0.1未満の領域が多く存在するようになる。この場合、結晶粒界を明瞭には確認できないものの、隣接するフェライトの結晶粒の方位差が15°以上である境界では、CI値が0.1未満の領域の中心を通るように結晶粒界をMAP上に描く。
 以上の手順で得られたフェライトの結晶粒界MAPにおいて、表面から上記で得られた内部酸化層の最大深さまでの範囲の、酸化物によって被覆された結晶粒界の長さ(以下、「酸化物被覆長さ」と記載する。)を測定する。続いて、酸化物で被覆されていない結晶粒界の長さ(以下、「酸化物非被覆長さ」と記載する。)を測定する。そして、得られた酸化物被覆長さを全ての結晶粒界の長さで除することによって、粒界被覆率(%)を算出する。
「Fe-Al合金層」
 本実施形態に係る鋼板1では、母材鋼板10の表面に、平均厚さが1nm以上のFe-Al合金層20が、40%以上の被覆率で形成されている。Fe-Al合金層20は、母材鋼板10と、亜鉛めっき層30との間に形成されている。
 LME割れは溶接中に溶融した亜鉛が粒界に侵入することで起こる。そのため、めっき層と母材の界面にFe-Al合金層が存在すると、亜鉛侵入のバリアとなり、耐LME性が改善する。
 厚さ方向(母材鋼板の板厚方向)の断面でみたとき、Fe-Al合金層の平均厚さが1nm未満である、または、被覆率が40%未満である場合には、十分なバリア性が確保できず、耐LME性を十分に向上させることができない。そのため、Fe-Al合金層の平均厚さは1nm以上とし、被覆率は、40%以上とする。Fe-Al合金層の平均厚さは好ましくは5nm以上、より好ましくは10nm以上、さらに好ましくは20nm以上である。また、Fe-Al合金層の被覆率は、好ましくは50%以上であり、より好ましくは60%以上である。
 一方、Fe-Al合金層の平均厚さが100nm以上となると、耐曲げ性が低下する。そのため、Fe-Al合金層の平均厚さは100nm未満とする。
 また、被覆率の上限を限定する必要はないが、100%とするためには、コストが著しく高くなるので、被覆率を100%未満、または、98%以下としてもよい。
 ここで、被覆率は、厚さ方向の断面でみたとき、母材鋼板の表面の長さに占める、Fe-Al合金層と母材鋼板との界面の長さの割合(%)である。
 Fe-Al合金層の平均厚さ、及び、被覆率は、以下の方法で求める。
 鋼板の圧延方向及び板厚方向に平行な断面が観察面となるように試料を採取する。この試料を、FE-SEMを用いて、母材鋼板の表面近傍を50000倍の倍率で、1.5μm以上/1視野の範囲について撮影する。
 Fe-Al合金層は母相とめっき層の界面で反射電子像にて黒色に観察されるので、目視によりFe-Al合金層を判断し、その厚みを測定する。
 撮影は5箇所/1視野を5視野について行い、5視野(25箇所)におけるFe-Al合金層の厚さの平均値を、本実施形態に係る鋼板のFe-Al合金層の平均厚さとする。
 また、観察視野内における母材鋼板の表面の長さにおける、母材鋼板とFe-Al合金層との界面の長さを測定し、被覆率を求める。測定は5視野について行い、各視野の被覆率の平均を、本実施形態に係る鋼板の被覆率とする。
「めっき層」
 本実施形態に係る鋼板1は、母材鋼板10(Fe-Al合金層がない部分)及び/またはFe-Al合金層20(母材鋼板上にFe-Al合金層がある部分)の表面に、亜鉛めっき層30を有する。亜鉛めっき層は、例えば溶融亜鉛めっき層である。本実施形態において、亜鉛めっき層は、Znを80質量%以上含むめっき層を意味する。表面に溶融亜鉛めっき層が存在することで、耐食性が向上する。
 亜鉛めっき層の付着量について、特に制限は設けない。しかしながら、付着量が多すぎると溶接時の溶融亜鉛量が増加する。そのため、LMEの発生をより効果的に抑制する点から、付着量を100g/m以下とするのが好ましく、80g/m以下とするのがより好ましい。
 一方、耐食性を向上させる点で、付着量は、10g/m以上であることが好ましい。
 亜鉛めっき層の化学組成は限定されないが、例えば、質量%で、Al:0.1~2.0%、Fe:5.0%以下を含み、残部がZn及び不純物からなることが好ましい。不純物は合計で0.1質量%以下であることが好ましい。
 亜鉛めっき層の付着量、化学組成は、以下の方法で求める。
 インヒビター入りの塩酸を用いてめっき層を溶融し、溶融前後の重量を比較することで、付着量を求める。また、溶融して得られたその溶液をICPで定量分析することにより、めっき層の化学組成を測定する。
「機械的特性」
 本実施形態に係る鋼板を自動車用鋼板として使用する場合には、高い強度を有することが望まれる。自動車の軽量化への寄与を考え、引張強さは980MPa以上とする。引張強さは、1050MPa以上であるのが好ましく、1100MPa以上であるのがより好ましい。
 一方、引張強さが2000MPaを超えると、溶接時の残留応力が高まるため、粒界上の内部酸化層が割れるようになり、LME割れの抑制の効果は顕著に低下する。このため、引張強さは2000MPa以下とする。
「製造方法」
 本実施形態に係る鋼板は、製造方法に関わらず、上記の特徴を有していればその効果は得られる。しかしながら、以下に説明する製造条件であれば、安定して製造できるので好ましい。
 すなわち、本実施形態に係る鋼板は、母材鋼板となる鋼板(熱延鋼板または冷延鋼板)に対して、所定の条件で焼鈍及びめっきを施すことにより製造することができる。
 焼鈍工程に供する鋼板の製造条件については、制限されない。例えば、上述した化学組成を有する溶鋼を、通常の条件で鋳造して鋼片とした後、通常の条件で熱間圧延を施すことにより、熱延鋼板を製造することができる。また、上記の熱延鋼板に、通常の条件で冷間圧延を施すことにより、冷延鋼板を製造することができる。
<焼鈍工程>
 焼鈍工程は、所定の化学組成(得たい本実施形態に係る鋼板と同じ化学組成)を有する鋼板を700~1000℃の焼鈍温度(最高加熱温度)まで加熱する加熱過程と、加熱した鋼板を焼鈍温度で1秒以上保持する保持過程とを含む。
 生産性の観点では、鋼板を連続焼鈍ラインに通板させることで焼鈍を行うことが好ましい。
 焼鈍温度が700℃未満ではオーステナイトの量が不十分となり、その後の冷却中の相変態で十分な量の硬質組織を確保できず、十分な引張強さが得られない。そのため、焼鈍温度は700℃以上とする。焼鈍温度は、好ましくは720℃以上である。
 一方、焼鈍温度が1000℃を超えると、オーステナイトの粒径が粗大となり、冷却中に変態が進みにくくなり、成形性の向上に寄与する軟質組織を十分に得ることが困難となる。そのため、焼鈍温度を1000℃以下とする。焼鈍温度は、好ましくは900℃以下である。
(加熱過程)
 加熱過程では、鋼板を焼鈍温度(最高加熱温度:700~1000℃)に加熱する。
 焼鈍工程での焼鈍温度までの加熱過程では、400~650℃の第一温度域での平均加熱速度を2.0℃/秒以上とし、650℃~前記焼鈍温度までの第二温度域での平均加熱速度を0.5~5.0℃/秒とし、前記第二温度域において、雰囲気の(P(H2O)/P(H2))を0.05~2.00とする。
 400~650℃の第一温度域では、加熱の際、主に転位の回復が起こる。この温度域の平均加熱速度を2.0℃/秒以上とすることで、転位の回復を抑制し、再結晶の核となる転位を多く残すことができる。その場合、650℃以上の温度域で起こる再結晶を、多くの場所で起こすことが出来る。
 第一温度域の平均加熱速度の上限は限定されないが、コストの点で平均加熱速度は20.0℃/秒以下が好ましい。
 650℃~焼鈍温度の第二温度域は、再結晶が起こる温度域であり、雰囲気を制御することで、内部酸化層が形成される温度域である。
 この温度域の平均加熱速度が5.0℃/秒を超える場合、表層部に酸化物が形成する前に鋼板の再結晶が進行し、粗大なフェライト粒が生成する。この場合、粒界を酸化物が被覆した内部酸化層が形成されない。
 一方、平均加熱速度が0.5℃/秒未満の場合、過度に脱炭反応が進行し、鋼板の引張強さが低下するおそれがある。
 また、第二温度域での加熱の際は、炉内の雰囲気の、水蒸気分圧P(H2O)と水素分圧P(H2)の比である(P(H2O)/P(H2))について、(P(H2O)/P(H2))が0.05未満では、十分な内部酸化層を確保することが出来ない。そのため、(P(H2O)/P(H2))を0.05以上とする。(P(H2O)/P(H2))は好ましくは0.07以上、より好ましくは0.10以上である。
 一方、(P(H2O)/P(H2))が2.00を超えると、脱炭が過度に進行し、脱炭層の厚みが大きくなり、鋼板の引張強さが低下する。そのため、(P(H2O)/P(H2))は2.00以下とする。(P(H2O)/P(H2))は、好ましくは1.50以下、より好ましくは1.20以下である。
 第二温度域での平均加熱速度、雰囲気を制御することで、多くの再結晶核から再結晶を開始させ、同時に粒界に内部酸化物を生じさせることで、粒成長を阻害し、同時に酸化物の粒界被覆率を60%以上とする。
 また、転位の回復、再結晶、粒成長をコントロールし、効率的に粒界に内部酸化物を生じさせるには、第一温度域での平均加熱速度が第二温度域での平均加熱速度よりも速いことが好ましく、第一温度域での平均加熱速度が第二温度域での平均加熱速度より2.0℃/秒以上速いことがより好ましい。
(保持過程)
 上述の要領で焼鈍温度まで加熱した後、鋼板を所定の最高加熱温度において、1秒以上保持する。保持時間が1秒未満であると、十分にオーステナイト化しない。この場合、その後の冷却中の相変態で十分な量の硬質組織を確保できず、十分な引張強さが得られない。
 保持時間の上限については特に制限は設けない。しかしながら、保持時間が長すぎると鋼板の製造性を阻害するため、1000秒を保持時間の上限値とするのが好ましい。
<めっき工程>
 めっき工程では、焼鈍工程後の鋼板を、焼鈍温度から、0.5℃/秒以上の平均冷却速度で440~550℃まで冷却し、前記鋼板を、Znを主体とし有効Al量が0.050~0.250質量%である、めっき浴に浸漬し、めっき浴から引き上げた後、400℃に達するまでの時間が10秒以内となるように冷却し、引き続いて400~350℃の平均冷却速度が1.0℃/秒以上5.0℃/秒以下となるように350℃以下まで冷却する。これにより、鋼板の表面に亜鉛めっき層を形成するとともに、鋼板とめっき層との界面の少なくとも一部にFe-Al合金層を形成する。
 440~550℃までの平均冷却速度が0.5℃/秒未満では、母材鋼板において硬質組織が形成されず、強度が低下する。
 また、冷却停止温度(めっき浴に浸漬する際の鋼板温度)が440℃未満であると、めっき温度を維持するため、めっき浴に多量の熱量を与える必要が生じ、製造コストが上昇する。
 一方、鋼板がめっき浴に浸漬する際の鋼板温度が550℃を超えると、めっき浴温度を維持するために、めっき浴から多量の熱量を抜熱する設備が必要となり、製造コストが上昇する。
 鋼板を浸漬するめっき浴の組成は、Znを主体(例えば80質量%以上)とし、有効Al量(めっき浴中の全A量から全Fe量を引いた値)が0.050~0.250質量%であれば、限定されず、必要に応じてその他の元素、例えばAg、B、Be、Bi、Ca、Cd、Co、Cr、Cs、Cu、Ge、Hf、I、K、La、Li、Mg、Mn、Mo、Na、Nb、Ni、Pb、Rb、S、Si、Sn、Sr、Ta、Ti、V、W、ZrおよびREMから選択される1種以上を含んでいてもよい。
 めっき浴中の有効Al量が0.050質量%未満であると、Fe-Al合金層の形成が不十分となる。また、めっき層中へのFeの侵入が過度に進み、めっき密着性が低下するおそれがある。めっき浴中の有効Al量は、好ましくは0.065質量%以上である。
 一方、めっき浴中の有効Al量が0.250質量%を超えると、鋼板とめっき層との境界に、Fe原子およびZn原子の移動を阻害するAl系酸化物が生成し、めっき密着性が低下するおそれがある。めっき浴中の有効Al量は、好ましくは0.180質量%以下である。
 めっき浴温度は、限定されないが、450~490℃であることが好ましい。めっき浴温度が450℃未満であると、めっき浴の粘度が過大に上昇し、めっき層の厚さの制御が困難となり、溶融亜鉛めっき鋼板の外観が損なわれるおそれがある。めっき浴温度は好ましくは455℃以上である。
 一方、めっき浴温度が490℃を超えると、多量のヒュームが発生し、安全なめっき操業が困難となるおそれがある。めっき浴温度は、好ましくは480℃以下である。
 鋼板をめっき浴から引き上げた後は、Nガス等によるワイピング等で付着量を調整しつつ、400℃に達するまでの時間が10秒以内となるように冷却し、その後、400~350℃の平均冷却速度が1.0℃/秒以上5.0℃/秒以下となるように、350℃以下まで冷却する。
 めっき層は主に400℃以上で母相との合金化が進む。そのため、めっき浴から引き上げてから400℃に達するまでの時間が10秒以内となるように(10秒以内に400℃に達するように)冷却することで、めっき層が過度に合金化することを防ぐことができる。400℃までの時間が10秒超であると、Fe-Al合金層ではなく、Fe-Zn合金層が形成され、所定のFe-Al合金層が得られない。
 その後、400~350℃である時間が10.0秒以上となるように400~350℃の平均冷却速度を5.0℃/秒以下とすることで、めっき層と母相の界面にFe-Al合金層を形成し、その被覆率を40%以上とすることができる。
 一方で、400~350℃である時間が、50.0秒超であると、Fe-Al合金層の厚みが100nm以上となる。そのため、400~350℃の平均冷却速度は、1.0℃/秒以上とする。
 また、めっき浴温度を450℃超とし、400℃に達するまでの時間が10秒以内(すなわち、400℃までの平均冷却速度が5.0℃/秒超)、その後400~350℃の平均冷却速度を5.0℃/秒以下となるように、400℃までの平均冷却速度が400~350℃の平均冷却速度よりも大きいことが好ましい。このように二段階の冷却を行うことで、適度に亜鉛めっき層と母材鋼板との界面にFe-Al合金層が形成される。亜鉛めっき層と母材鋼板との界面に形成されたFe-Al合金層は、鋼板表層部の粒界にある内部酸化物を取り込み一体化する。このため母材鋼板からFe-Al合金層が剥離しにくく、より高い曲げ疲労強度を得ることができるという効果が得られる。400℃までの平均冷却速度は6.0℃/秒以上であることがより好ましい。
<スキンパス圧延工程>
 本実施形態に係る鋼板の製造方法では、めっき工程後の鋼板に対し、形状調整等を目的として、スキンパス圧延を行ってもよい。スキンパス圧延を行う場合、圧延率を0.5%以下とすることが好ましい。
 表1-1~表1-4に記載の化学組成を有するスラブを、熱間圧延し、巻き取って、板厚が3.0mmの熱延鋼板を得た。この熱延鋼板に対し、冷間圧延を行い、板厚が1.6mmの冷延鋼板を得た。
 この冷延鋼板に対し、表2-1、表2-2に示す条件で、焼鈍温度まで加熱し、保持した。
 保持後、表2-1、表2-2に示すように、440~550℃まで冷却した後、めっき浴に浸漬し、亜鉛めっき層を形成した。
 めっき浴浸漬後、400℃までの冷却時間、平均冷却速度が、表2-1、表2-2の値となるように冷却した。その後、冷却を切替え、400~350℃の平均冷却速度が表2-1、表2-2の値となるように、350℃以下まで冷却した。
 その後、表2-1、表2-2に示す条件でスキンパス圧延を行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 得られた亜鉛めっき鋼板(溶融亜鉛めっき鋼板)に対し、上述の方法で、母材鋼板を観察し、内部酸化層の厚み、内部酸化層の粒界被覆率、1/4厚さ位置での組織を観察した。結果を表3-1、表3-2に示す。
 また、表には示さないが、亜鉛めっき層の付着量は10~80g/mであった。
 また、得られた亜鉛めっき鋼板に対し。上述の方法で、Fe-Al合金層の厚み、Fe-Al合金層の被覆率を測定した。結果を表3-1、表3-2に示す。
 また、得られた亜鉛めっき鋼板に対し、引張強さ(TS)、耐LME性、曲げ疲労強度、耐曲げ性を、以下の要領で評価した。
<引張強さ>
 亜鉛めっき鋼板の圧延方向および厚さ方向(母材鋼板の圧延方向および板厚方向)に直角な方向(幅方向)からJIS5号引張試験片を採取し、JIS Z 2241:2011に準拠して引張試験を行い、引張強さ(TS)を測定した。
 引張強さが980MPa以上であれば高強度であると判断した。
<耐LME性>
 亜鉛めっき鋼板から、30mm×30mmのサイズの評価材を採取し、この評価材を2枚重ね合わせ、下記の条件にて通電して、スポット溶接試験を実施した。
電極:φ8,R40
加圧力:4.5kN
電極の傾斜角:4°
アップスロープ:0.02秒
通電時間:0.4秒
通電後保持時間:0.3秒
電流はナゲット径が5mmとなるように設定した。
 スポット溶接後の評価材の断面を、SEMを用いて観察し、割れの長さで以下のように評価した。
 割れの長さが80μm以下:OK(耐LME性に優れる)
 割れの長さが80μm超 :NG
<耐曲げ性>
 VDA238-100に従って、曲げ試験を実施し、その際の曲げ角(°)によって以下のように評価した。試験片は、曲げ稜線が圧延方向と平行となる方向に採取した。
 曲げ角>110-TS×0.03:Ex(耐曲げ性に特に優れる)
 曲げ角>110-TS×0.04:OK(耐曲げ性に優れる)
 曲げ角≦110-TS×0.04:NG
<曲げ疲労強度>
 JISZ2275:1978に従って、平面曲げ疲労試験を実施した。試験片は幅30mm、R40mmの1号試験片とした。
 試験の結果、繰返し数10回の疲労強度によって、以下のように評価した。
 10回の疲労強度>0.35×TS:Ex(曲げ疲労強度に特に優れる)
 10回の疲労強度>0.30×TS:OK(曲げ疲労強度に優れる)
 10回の疲労強度≦0.30×TS:NG
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表1-1~3-2から分かるように、化学組成、製造方法が本発明範囲にあるNo.1、8、11、12、17~46では、好ましいFe-Al合金層、内部酸化層が形成されており、引張強さ、耐LME性、曲げ疲労強度、耐曲げ性の全てに優れていた。
 一方、化学組成が本発明範囲を外れた、No.47~56では、引張強さ、耐LME性、曲げ疲労強度、耐曲げ性の少なくとも1つが劣っていた。
 また、化学組成が本発明範囲内であっても、製造方法が本発明範囲を外れたNo.2~7、9、10、13~16では、引張強さが低い、または内部酸化層、Fe-Al合金層が好ましい状態で形成されなかったことで、耐LME性、曲げ疲労強度、耐曲げ性のいずれか1つ以上が劣っていた。
 1  鋼板(亜鉛めっき鋼板)
 10  母材鋼板
 11  内部酸化層
 20  Fe-Al合金層
 30  亜鉛めっき層
 本発明によれば、高強度でかつ、十分な耐曲げ性を有し、耐LME性及び曲げ疲労強度に優れる亜鉛めっき鋼板を提供することができる。このような鋼板は、高強度自動車用鋼板として有用である。

Claims (3)

  1.  母材鋼板と、
     前記母材鋼板の表面の少なくとも一部に形成されたFe-Al合金層と、
     前記母材鋼板または前記Fe-Al合金層の表面に形成された亜鉛めっき層と、
    を備え、
     前記母材鋼板が、質量%で、
     C:0.10~0.40%、
     Si:0.10~3.00%、
     Mn:1.00~5.00%、
     sol.Al:0.001~1.500%、
     P:0.0010~0.0300%、
     S:0.0200%以下、
     N:0.0100%以下、
     O:0.0100%以下、
     Ti:0~0.200%、
     B:0~0.0100%、
     Cr:0~1.000%、
     Mo:0~1.000%、
     Ni:0~1.000%、
     Cu:0~1.000%、
     Sn:0~0.500%、
     Nb:0~0.200%、
     V:0~0.500%、
     W:0~0.500%、
     Ca:0~0.0100%、
     Mg:0~0.0100%、
     Bi:0~0.0100%、
     Sb:0~0.1000%、
     Zr:0~0.0100%、
     REM:0~0.1000%、及び
     残部:Fe及び不純物、
    からなる化学組成を有し、
     前記母材鋼板が、前記母材鋼板の表面から板厚方向に0.2μm以上の内部酸化層を有し、
     前記Fe-Al合金層の平均厚さが1nm以上、100nm未満であり、
     厚さ方向の断面において、
      前記内部酸化層では、酸化物による粒界被覆率が60%以上であり、かつ
      前記Fe-Al合金層による、前記母材鋼板の前記表面の被覆率が、40%以上であり、
     引張強さが980MPa以上、2000MPa以下である、
    亜鉛めっき鋼板。
  2.  前記母材鋼板の、前記化学組成が、質量%で、
     Ti:0.005~0.200%、
     B:0.0005~0.0100%、
     Cr:0.001~1.000%、
     Mo:0.001~1.000%、
     Ni:0.001~1.000%、
     Cu:0.001~1.000%、
     Sn:0.001~0.500%、
     Nb:0.001~0.200%、
     V:0.001~0.500%、
     W:0.001~0.500%、
     Ca:0.0001~0.0100%、
     Mg:0.0001~0.0100%、
     Bi:0.0001~0.0100%、
     Sb:0.0001~0.1000%、
     Zr:0.0001~0.0100%、及び
     REM:0.0001~0.1000%、
    からなる群から選択される1種以上を含有する、
    請求項1に記載の亜鉛めっき鋼板。
  3.  質量%で、C:0.10~0.40%、Si:0.10~3.00%、Mn:1.00~5.00%、sol.Al:0.001~1.500%、P:0.0010~0.0300%、S:0.0200%以下、N:0.0100%以下、O:0.0100%以下、Ti:0~0.200%、B:0~0.0100%、Cr:0~1.000%、Mo:0~1.000%、Ni:0~1.000%、Cu:0~1.000%、Sn:0~0.500%、Nb:0~0.200%、V:0~0.500%、W:0~0.500%、Ca:0~0.0100%、Mg:0~0.0100%、Bi:0~0.0100%、Sb:0~0.1000%、Zr:0~0.0100%、REM:0~0.1000%、及び残部:Fe及び不純物からなる化学組成を有する鋼板を、700~1000℃の焼鈍温度で1秒以上保持して焼鈍する焼鈍工程と、
     前記焼鈍工程後の前記鋼板の表面に亜鉛めっき層を形成する、めっき工程と、
    を有し、
     前記焼鈍工程では、
      前記焼鈍温度までの加熱過程において、400~650℃の第一温度域での平均加熱速度を2.0℃/秒以上とし、650℃~前記焼鈍温度までの第二温度域での平均加熱速度を0.5~5.0℃/秒とし、前記第二温度域において、雰囲気の(P(H2O)/P(H2))を0.05~2.00とし、
     前記めっき工程では、0.5℃/秒以上の平均冷却速度で440~550℃まで冷却し、前記鋼板を、Znを主体とし有効Al量が0.050~0.250質量%である、めっき浴に浸漬し、めっき浴から引き上げた後、400℃に達するまでの時間が10秒以内となるように冷却し、引き続いて400℃~350℃の平均冷却速度が1.0℃/秒以上、5.0℃/秒以下となるように350℃以下まで冷却する、
    亜鉛めっき鋼板の製造方法。
PCT/JP2023/002565 2022-02-25 2023-01-27 亜鉛めっき鋼板およびその製造方法 WO2023162573A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022027919 2022-02-25
JP2022-027919 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023162573A1 true WO2023162573A1 (ja) 2023-08-31

Family

ID=87765508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002565 WO2023162573A1 (ja) 2022-02-25 2023-01-27 亜鉛めっき鋼板およびその製造方法

Country Status (1)

Country Link
WO (1) WO2023162573A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047821A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 焼付硬化性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
WO2019116531A1 (ja) * 2017-12-15 2019-06-20 日本製鉄株式会社 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
WO2020213686A1 (ja) * 2019-04-19 2020-10-22 日本製鉄株式会社 めっき鋼板
WO2021224662A1 (en) * 2020-05-07 2021-11-11 Arcelormittal Annealing method of steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047821A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 焼付硬化性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
WO2019116531A1 (ja) * 2017-12-15 2019-06-20 日本製鉄株式会社 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
WO2020213686A1 (ja) * 2019-04-19 2020-10-22 日本製鉄株式会社 めっき鋼板
WO2021224662A1 (en) * 2020-05-07 2021-11-11 Arcelormittal Annealing method of steel

Similar Documents

Publication Publication Date Title
CN111492075B (zh) 钢板、热浸镀锌钢板和合金化热浸镀锌钢板
JP6264507B2 (ja) 高強度亜鉛めっき鋼板及びその製造方法
KR102252841B1 (ko) 고강도 아연 도금 강판 및 그 제조 방법
US9109275B2 (en) High-strength galvanized steel sheet and method of manufacturing the same
JP6777173B2 (ja) スポット溶接用高強度亜鉛めっき鋼板
KR102626001B1 (ko) 강판 및 그 제조 방법
EP2264206A1 (en) High-strength steel sheets which are extremely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both
JP6897882B2 (ja) 熱延鋼板およびその製造方法
CN114207169B (zh) 钢板及其制造方法
JP7235102B2 (ja) 鋼板及びその製造方法
JP7276618B2 (ja) 高強度冷延鋼板およびその製造方法
CN112513308A (zh) 高强度热轧镀覆钢板
WO2022071305A1 (ja) 鋼板
CN113272461A (zh) 钢板
WO2023162573A1 (ja) 亜鉛めっき鋼板およびその製造方法
JP7348573B2 (ja) 熱延鋼板
JP7481651B2 (ja) 鋼板
WO2023095870A1 (ja) 亜鉛めっき鋼板
WO2023149466A1 (ja) 鋼板
WO2024048133A1 (ja) 高強度鋼板およびその製造方法ならびに部材およびその製造方法
JP7260073B1 (ja) 高強度鋼板,高強度めっき鋼板及びそれらの製造方法,並びに部材
JP7311808B2 (ja) 鋼板及びその製造方法
WO2023068368A1 (ja) 鋼板
WO2022202023A1 (ja) 鋼板
CN117916398A (zh) 冷轧钢板及其制造方法以及焊接接头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759579

Country of ref document: EP

Kind code of ref document: A1