WO2017145322A1 - 鋼板の製造方法及び鋼板の連続焼鈍装置 - Google Patents

鋼板の製造方法及び鋼板の連続焼鈍装置 Download PDF

Info

Publication number
WO2017145322A1
WO2017145322A1 PCT/JP2016/055601 JP2016055601W WO2017145322A1 WO 2017145322 A1 WO2017145322 A1 WO 2017145322A1 JP 2016055601 W JP2016055601 W JP 2016055601W WO 2017145322 A1 WO2017145322 A1 WO 2017145322A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
furnace
log
less
temperature
Prior art date
Application number
PCT/JP2016/055601
Other languages
English (en)
French (fr)
Inventor
貴幸 北澤
植田 浩平
裕之 川田
薫 平松
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to BR112018013937-8A priority Critical patent/BR112018013937A2/ja
Priority to EP16891479.4A priority patent/EP3421625A4/en
Priority to JP2018501497A priority patent/JP6673461B2/ja
Priority to PCT/JP2016/055601 priority patent/WO2017145322A1/ja
Priority to KR1020187021615A priority patent/KR102135839B1/ko
Priority to MX2018009259A priority patent/MX2018009259A/es
Priority to US16/068,009 priority patent/US20190024208A1/en
Priority to CN201680079282.6A priority patent/CN108474059B/zh
Publication of WO2017145322A1 publication Critical patent/WO2017145322A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated

Definitions

  • the present invention relates to a method for producing a steel sheet and a continuous annealing apparatus for a steel sheet, and in particular, a tensile strength of 780 MPa or more containing C of 0.050% by mass or more, Si of 0.10% by mass or more, and Mn of 1.20% by mass or more.
  • the present invention relates to a method for producing a high-strength steel sheet and a continuous annealing apparatus for a steel sheet suitable for the method for producing the steel sheet.
  • high-strength steel sheets for vehicle bodies and parts for the purpose of reducing vehicle weight and improving collision safety for the purpose of reducing fuel consumption and reducing CO 2 emissions.
  • high strength steel sheets having a tensile strength of 780 MPa or more or 980 MPa or more are also used.
  • material properties such as formability (workability) deteriorate.
  • these high-strength steel plates are required to be formed in large quantities and at low cost by press work as with mild steel plates and used as various members. For this reason, the above-mentioned high-strength steel sheet is required to have high ductility and good workability as well as high strength.
  • an alloy element such as Si or Mn is generally added to the steel.
  • Si or Mn when a steel sheet containing Si or Mn is annealed at a maximum temperature of 800 to 900 ° C., Si or Mn precipitates and concentrates on the surface layer of the steel sheet and oxidizes.
  • the Si—Mn oxide may be exposed.
  • problems such as deterioration of the plating property during the plating treatment and deterioration of the chemical conversion treatment property before coating occur.
  • Patent Document 1 discloses a direct flame reduction burner of a direct flame reduction furnace when heat-treating a high-strength steel sheet having a Si content of 0.4 to 2.0 mass%.
  • the steel sheet is reduced in a reducing atmosphere with an air ratio of 0.6 or more and less than 0.9, and the moisture pressure P H2O and the hydrogen partial pressure P H2 are reduced in an indirect heating furnace that performs hydrogen reduction after thinly controlling the Si oxide film.
  • Patent Document 3 when continuously annealing a cold-rolled steel sheet, the surface of the steel sheet is heated by heating the steel sheet using a direct fire burner having a steel sheet temperature of 550 ° C. or higher and an air ratio of 0.95 or higher. After oxidation, heat the steel plate using a direct fire burner with an air ratio of 0.89 or less until the steel plate temperature rises to 750 ° C or higher, and then perform soaking in a furnace with a dew point of -25 ° C or lower.
  • a technique for improving the chemical conversion processability has been proposed.
  • Patent Document 4 discloses that the dew point in the atmosphere is ⁇ 40 ° C. when the temperature in the heating furnace is 600 ° C. or higher and A ° C. or lower (650 ⁇ A ⁇ 780) in the heating process when continuous annealing is performed on the steel sheet.
  • the following technologies have been proposed to improve the chemical conversion treatment by setting the dew point in the atmosphere to -10 ° C or higher when the temperature in the heating furnace is higher than A ° C and lower than B ° C (800 ⁇ B ⁇ 900). ing.
  • Patent Documents 5 and 6 when performing continuous annealing consisting of a preheating step, a temperature raising step, and a recrystallization step on a steel sheet, the water vapor partial pressure ratio (P) with respect to the hydrogen partial pressure in the continuous annealing atmosphere in the preheating step is disclosed.
  • H2O / P H2 is controlled so as to satisfy the condition of the following formula (1) from the relationship with the preheating temperature Tp, and in the temperature rising process, the recrystallization temperature Tr is set to 650 ° C. to 900 ° C.
  • the ratio of water vapor partial pressure to hydrogen partial pressure (P H2O / P H2 ) satisfies the condition of the following formula (2) from the relationship with the recrystallization temperature Tr, and the temperature rising rate is 1 to 20 ° C./second.
  • the water vapor partial pressure ratio (P H2O / P H2 ) to the hydrogen partial pressure in the annealing atmosphere satisfies the condition of the following formula (3) from the relationship with the recrystallization temperature Tr, And holding time 40-600
  • Patent Document 7 discloses that a steel sheet containing Si, Mn, and Al at a specific ratio has a logarithmic ratio of the hydrogen partial pressure and the water vapor partial pressure of the atmospheric gas in the reduction furnace of ⁇ 1.39 ⁇ log (P method for manufacturing a galvanized steel sheet is controlled so as to satisfy the H2O / P H2) ⁇ -0.695 is disclosed.
  • Patent Documents 1 to 7 have the following problems. That is, Patent Documents 1 to 3 have a direct fire heating unit and control the air ratio of the direct fire burner.
  • Patent Documents 1 to 3 have a direct fire heating unit and control the air ratio of the direct fire burner.
  • an apparatus composed entirely of an indirect heating furnace without a direct fire heating part has become mainstream.
  • the method for controlling the air ratio of the direct fire burner cannot be applied.
  • Patent Documents 1 to 3 the method of oxidizing a steel plate with a direct-fired burner before reduction cannot secure a predetermined air ratio due to high-temperature deterioration of the burner equipment, fluctuation of the calorific value of the combustion gas, or the like. As a result, it is impossible to prevent the build-up (bump) from being formed on the hearth roll in the furnace due to the thick oxide film.
  • the oxide film generated in the direct-fired heating furnace is not preferable because it generates peeling from the steel sheet and adheres to the roll surface while the steel sheet is wound around the in-furnace roll.
  • Japanese Unexamined Patent Publication No. 2007-191745 Japanese Unexamined Patent Publication No. 2006-233333 Japanese Unexamined Patent Publication No. 2013-253322 Japanese Laid-Open Patent Publication No. 2012-074252 Japanese Laid-Open Patent Publication No. 2008-069445 Japanese Unexamined Patent Publication No. 2008-121045 Japanese Unexamined Patent Publication No. 2012-12683
  • the present invention has been made in view of the above-described situation, and by controlling the atmosphere during annealing in a continuous annealing furnace having no direct-fired heating unit, Si is oxidized inside the steel plate to Method for producing a high-strength steel sheet capable of suppressing the exposure of Si oxide on the surface and suppressing the progress of decarburization from the steel sheet, and a continuous annealing apparatus for a steel sheet suitable for the method for producing this high-strength steel sheet The purpose is to provide.
  • high strength indicates that the tensile strength is 780 MPa or more.
  • a method for producing a steel sheet according to one embodiment of the present invention is a method for producing a high-strength steel sheet having a tensile strength of 780 MPa or more, and has a chemical composition of mass%, C: 0.050 to 0.40%.
  • Si 0.10 to 2.50%, Mn: 1.20 to 3.50%, Cr: 0 to 0.80%, Ni: 0 to 5.00%, Cu: 0 to 3.00%, Nb: 0 to 0.10%, Mg: 0 to 0.010%, Ti: 0 to 0.10%, B: 0 to 0.010%, Mo: 0 to 0.5%, the balance being A steel plate made of Fe and impurities, the impurities being limited to P: 0.100% or less, S: 0.010% or less, Al: 1.200% or less, N: 0.0100% or less, 750 ° C.
  • the chemical composition is in mass%, Cr: 0.01 to 0.80%, Ni: 0.01 to 5.00%, Cu: 0 0.01 to 3.00%, Nb: 0.001 to 0.10%, Mg: 0.0001 to 0.010%, Ti: 0.001 to 0.10%, B: 0.0001 to 0.010 %, Mo: 0.01 to 0.5%, or one or more selected from Mo.
  • a steel sheet continuous annealing apparatus has a chemical composition of mass%, C: 0.050 to 0.40%, Si: 0.10 to 2.50%, Mn: 1.20 to 3.50%, Cr: 0 to 0.80%, Ni: 0 to 5.00%, Cu: 0 to 3.00%, Nb: 0 to 0.10%, Mg: 0 to 0 0.010%, Ti: 0 to 0.10%, B: 0 to 0.010%, Mo: 0 to 0.5%, with the balance being Fe and impurities.
  • furnace body average value of the log (P H2O / P H2 ) in the atmosphere in the furnace is adjusted to the range of the following formula (v), and when the temperature of the steel sheet exceeds 800 ° C., Furnace atmosphere adjusting means is provided for adjusting the furnace body average value of the log (P H2O / P H2 ) in the atmosphere within the range of the following formula (vi) and the dew point to less than ⁇ 10 ° C.
  • the internal oxidation and decarburization of Si are started in a furnace in which the hydrogen concentration in the atmosphere is less than 10% by volume.
  • the furnace body average value of the relational log (P H2O / P H2 ) composed of the moisture pressure P H2O and the hydrogen partial pressure P H2 in the atmosphere in the furnace in the temperature range above 800 ° C. and below 800 ° C. is less than ⁇ 0.07 Therefore, the occurrence of decarburization can be suppressed.
  • the furnace body average value of log (P H2O / P H2 ) exceeds ⁇ 1.36, so that Si can be oxidized inside the steel plate, and Si oxidation can be performed on the steel plate surface. An object can be prevented from being exposed.
  • the surface oxidation of the steel sheet is controlled by keeping the range ⁇ 3.01 ⁇ log (P H2O / P H2 ) ⁇ ⁇ 0.53 and the dew point less than ⁇ 10 ° C.
  • Prevention and promotion of internal oxidation Further, internal oxidation of Si can be generated and the progress of decarburization can be reliably suppressed.
  • a tensile strength of 780 MPa or more is ensured without causing deterioration in properties such as elongation and workability, and fatigue strength, plating properties, and chemical conversion treatment properties are ensured.
  • An excellent high-strength steel sheet can be produced.
  • the moisture pressure P H2O and the hydrogen partial pressure P H2 in the atmosphere in the furnace Furnace atmosphere adjustment means for setting the furnace body average value of a relational expression log (P H2O / P H2 ) consisting of: -1.36 ⁇ log (P H2O / P H2 ) ⁇ -0.07 Therefore, it can suppress that Si oxide is exposed to the surface of a steel plate by internal oxidation of Si, and can suppress decarburization.
  • the steel sheet continuous annealing apparatus having the above-described structure, it is possible to produce a high-strength steel sheet having a tensile strength of 780 MPa or more and further excellent in plating properties and chemical conversion properties.
  • the surface oxidation is prevented, the internal oxidation is promoted, and the decarburization is suppressed by setting within the range of ⁇ 3.01 ⁇ log (P H2O / P H2 ) ⁇ ⁇ 0.53. Is possible.
  • the manufacturing method of the high strength steel plate which can suppress progress of decarburization, and the continuous annealing apparatus of the steel plate suitable for the manufacturing method of this high strength steel plate can be provided.
  • the steel plate obtained by these manufacturing methods and a continuous annealing apparatus is high strength, and is excellent in plating property and chemical conversion property.
  • the manufacturing method of the steel plate which concerns on one Embodiment of this invention (it may be called the manufacturing method of the steel plate which concerns on this embodiment), and the continuous annealing apparatus (this embodiment) of the steel plate which concerns on one Embodiment of this invention Will be described with reference to the drawings.
  • the present invention is not limited to the following embodiments. In the present embodiment, for example, it is intended to produce a high-strength steel sheet having a tensile strength of 780 MPa or more, preferably 980 MPa or more, which is used for automobile applications.
  • the manufacturing method of the steel sheet according to the present embodiment is, in mass%, C: 0.050 to 0.40%, Si: 0.10 to 2.50%, Mn: 1.20 to 3.50%, Cr: 0 to 0.80%, Ni: 0 to 5.00%, Cu: 0 to 3.00%, Nb: 0 to 0.10%, Mg: 0 to 0.010%, Ti: 0 to 0.10 %, B: 0 to 0.010%, Mo: 0 to 0.5%, and a continuous annealing step of continuously annealing the steel sheet, the balance being Fe and impurities.
  • the steps other than the continuous annealing step are not particularly limited, and may be performed by a known method according to desired steel plate characteristics.
  • a casting process for casting a steel to obtain a slab a hot rolling process for hot rolling the slab to obtain a steel sheet, and cold rolling the steel sheet
  • the cold rolling process, pickling process, temper rolling process, and the like may be performed by a known method.
  • the continuous annealing process needs to be performed under the conditions described later.
  • C 0.050 mass% or more and 0.40 mass% or less
  • C is an element essential for forming a hard structure such as martensite, tempered martensite, bainite and retained austenite, and improving the strength of the steel sheet. is there.
  • C content shall be 0.050 mass% or more.
  • the C content is preferably 0.075% by mass or more.
  • the C content is set to 0.40 mass% or less. Preferably it is 0.30 mass% or less.
  • Si 0.10% by mass or more and 2.50% by mass or less
  • Si is an element that has the effect of ensuring the elongation of the steel sheet and improving the strength without significantly impairing the workability. Therefore, in order to sufficiently secure the workability and strength, the Si content is set to 0.10% by mass or more. In order to further improve workability and strength, the Si content is preferably 0.45% by mass or more. On the other hand, if the Si content is excessively increased, the toughness is lowered and the workability is deteriorated. Therefore, Si content shall be 2.50 mass% or less. Preferably it is 2.30 mass% or less.
  • Mn 1.20 mass% or more and 3.50 mass% or less
  • Mn is an element having the same effect as Si. Therefore, in order to ensure sufficient workability and strength, the Mn content is set to 1.20% by mass or more. In order to further improve workability and strength, the Mn content is preferably 1.50% by mass or more. On the other hand, if the Mn content is excessively increased, the weldability deteriorates. Therefore, the Mn content is 3.50% by mass or less. Preferably it is 3.30 mass% or less.
  • the high-strength steel sheet targeted in the present embodiment basically contains the chemical components described above, with the balance being Fe and impurities.
  • Cr, Ni, Cu, Nb, Mg, Ti, B, and Mo are within a range described later for the purpose of further increasing the strength or further improving the formability. You may make it contain.
  • content of Cr, Ni, Cu, Nb, Mg, Ti, B, and Mo is less than the minimum of content shown below, the effect of this invention is not impaired. Since Cr, Ni, Cu, Nb, Mg, Ti, B, and Mo are not essential for satisfying the required characteristics, the lower limit of the content is 0%.
  • An impurity means the component mixed by raw materials, such as an ore and a scrap, and other factors, when manufacturing steel materials industrially.
  • the amount of impurities is small, among P, S, Al, and N, among impurities, P: 0.100% by mass or less, S: 0.010% by mass or less, Al: 1.200% by mass
  • N 0.0100 mass% or less.
  • Cr 0.01% by mass or more and 0.80% by mass or less Cr is an element having an effect of suppressing the phase transformation at a high temperature and increasing the strength of the steel sheet.
  • the Cr content is preferably 0.01% by mass or more.
  • the Cr content exceeds 0.80% by mass, the hot workability is impaired and the productivity is lowered. Therefore, even when it contains, Cr content shall be 0.80 mass% or less. Preferably, it is 0.40 mass% or less.
  • Ni 0.01% by mass or more and 5.00% by mass or less
  • Ni is an element that has the effect of suppressing the phase transformation at high temperature and increasing the strength of the steel sheet.
  • the Ni content is preferably 0.01% by mass or more.
  • Ni content exceeds 5.00 mass%, weldability will be impaired. Therefore, even when it contains, Ni content shall be 5.00 mass% or less. Preferably, it is 2.00 mass% or less.
  • Cu 0.01% by mass or more and 3.00% by mass or less
  • Cu is an element that increases the strength of the steel sheet by being present in the steel as fine particles.
  • the Cu content is preferably 0.01% by mass or more.
  • Cu content exceeds 5.00 mass%, weldability will be impaired. Therefore, even when it contains, Cu content shall be 3.00 mass% or less. Preferably, it is 2.00 mass% or less.
  • Nb 0.001% by mass or more and 0.10% by mass or less Nb contributes to an increase in the strength of the steel sheet by precipitation strengthening, fine grain strengthening by suppressing the growth of ferrite crystal grains, and dislocation strengthening by suppressing recrystallization. It is an element.
  • the Nb content is preferably 0.001% by mass or more.
  • the Nb content exceeds 0.10% by mass, the amount of carbonitride deposited increases and the formability deteriorates. Therefore, even when it contains, Nb content shall be 0.10 mass% or less. Preferably, it is 0.05 mass% or less.
  • Mg 0.0001 mass% or more and 0.010 mass% or less
  • Mg is an element effective for improving the moldability.
  • the Mg content is preferably 0.0001% by mass or more.
  • Mg content exceeds 0.010% by mass, the ductility may be impaired. Therefore, even when it contains, Mg content shall be 0.010 mass% or less. Preferably, it is 0.005 mass% or less.
  • Ti 0.001% by mass or more and 0.10% by mass or less
  • Ti is an element that contributes to an increase in strength of a steel sheet by precipitation strengthening, fine grain strengthening by suppressing the growth of ferrite crystal grains, and dislocation strengthening by suppressing recrystallization. It is.
  • the Ti content is preferably 0.001% by mass or more.
  • Ti content exceeds 0.10% by mass, the amount of carbonitride deposited increases and the formability deteriorates. Therefore, even when it contains, Ti content shall be 0.10 mass% or less. Preferably, it is 0.05 mass% or less.
  • B 0.0001 mass% or more and 0.010 mass% or less B is an element that suppresses phase transformation at high temperature and is effective for increasing the strength of a steel sheet.
  • the B content is preferably 0.0001% by mass or more.
  • B content exceeds 0.010% by mass, hot workability is impaired and productivity is lowered. Therefore, even when it contains, B content shall be 0.010 mass% or less. Preferably, it is 0.005 mass% or less.
  • Mo 0.01% by mass or more and 0.5% by mass or less
  • Mo is an element that suppresses phase transformation at a high temperature and is effective for increasing the strength of a steel sheet.
  • the Mo content is preferably 0.01% by mass or more.
  • Mo content shall be 0.5 mass% or less. Preferably, it is 0.25 mass% or less.
  • the continuous annealing process will be described.
  • the steel sheet 1 charged in the steel sheet continuous annealing apparatus 10 is heated to, for example, 750 to 900 ° C., held in that temperature range for 0 to 300 seconds, and then cooled.
  • Si and Mn in the steel plate 1 may be precipitated and concentrated on the surface layer of the steel plate 1 and exposed to the surface of the steel plate 1 as Si oxide or Si—Mn oxide.
  • decarburization may generate
  • Holding for 0 second means that cooling is performed immediately when the temperature rises to a predetermined temperature of 750 to 900 ° C.
  • log (P H2O / P H2 ) which is a relational expression consisting of the moisture pressure P H2O in the atmosphere in the furnace and the hydrogen partial pressure P H2 as described later.
  • the temperature of the steel sheet 1 is over 700 ° C. and 800 ° C. or less at which Si internal oxidation and decarburization is started.
  • the furnace average value of log (P H2O / P H2 ), which is a relational expression consisting of the moisture pressure P H2O in the atmosphere and the hydrogen partial pressure P H2 is set to be more than ⁇ 1.36 and less than ⁇ 0.07.
  • log (P H2O / P H2 ) By setting log (P H2O / P H2 ) in the above range, Si can be oxidized inside the steel plate 1, and the exposure of Si oxide to the surface of the steel plate 1 can be suppressed, and decarburization can be performed. Occurrence can be suppressed. As a result, it is possible to produce a high-strength steel sheet that ensures tensile strength and fatigue strength and is further excellent in plating properties and chemical conversion treatment properties.
  • log is a common logarithm.
  • the furnace body average value of the above relational log (P H2O / P H2 ) is ⁇ 1.36 or less, sufficient internal oxidation of Si does not occur, and Si oxide is exposed on the surface of the steel plate 1. In addition, the plating property and the chemical conversion property are deteriorated.
  • the furnace body average value of the relational log (P H2O / P H2 ) is ⁇ 0.07 or more, decarburization proceeds and the strength of the steel sheet 1 may be reduced.
  • the moisture pressure P in the atmosphere in the furnace is within the temperature range of the steel sheet more than 700 ° C. and not more than 800 ° C.
  • the furnace average value of the relational log (P H2O / P H2 ) composed of H 2 O and the hydrogen partial pressure P H2 should be in the range of ⁇ 1.00 ⁇ log (P H2O / P H2 ) ⁇ ⁇ 0.67 Is preferred.
  • 700 ° C. for defining the log (P H2O / P H2) in the steel sheet temperature range of super 800 ° C. or less, only in the range of 750 ° C. from 700 ° C. is an internal oxide formation temperature range log (P H2 O / P a furnace body average of H2) -1.36 ⁇ log (P H2O / P H2) ⁇ - 0.07 and when is for the internal oxidation is uneven and insufficient case.
  • P H2O / P H2 By heating up the P H2O / P H2 at 800 ° C. or less of the area, the internal oxidation is sufficiently generated, and decarburized it becomes possible to suppress.
  • the lower limit of each log (P H2O / P H2 ) when the temperature of the steel sheet is 700 ° C. or lower and over 800 ° C. is achieved in actual production outside the range of 700 to 800 ° C.
  • a possible value is -3.01.
  • the annealing temperature of the steel sheet is set to 800 ° C. or lower, it is not necessary to consider log (P H2O / P H2 ) exceeding 800 ° C.
  • the average furnace body value of log (P H2O / P H2 ) is more than ⁇ 3.01 and less than ⁇ 0.07, that is, ⁇ 3.01 ⁇ log (P H2O / P H2 ) ⁇ 0.07.
  • the surface of the steel sheet 1 is oxidized, and later 700 ° C. to 800 ° C. or lower.
  • the furnace average value of log (P H2O / P H2 ) is set to less than ⁇ 0.07. Preferably it is less than -0.67.
  • the lower limit of each log (P H2O / P H2 ) when the temperature of the steel sheet is 700 ° C. or lower and over 800 ° C. is achieved in actual production outside the range of 700 to 800 ° C. A possible value is greater than -3.01.
  • the method for controlling log (P H2O / P H2 ) in each temperature range is not limited, but when using the steel sheet continuous annealing apparatus 10 according to the present embodiment, a furnace set to an atmosphere containing a predetermined H 2 gas. It can be controlled by introducing water vapor or humidified gas through the atmospheric gas introduction unit 15.
  • an atmospheric gas introduction section may be provided in each heating zone and soaking zone. In that case, you may introduce
  • the internal oxidation of Si is a phenomenon in which Si oxide is precipitated by the reaction between oxygen diffused in the steel sheet 1 and Si. This internal oxidation occurs at a depth of about 0.1 to 20 ⁇ m from the surface of the steel plate 1.
  • a region where the maximum length of the Si oxide having a length of 25 nm or more is 1.0 ⁇ 10 12 pieces / m 2 or more is defined as an internal oxide layer of Si, If the oxide layer depth is 0.1 ⁇ m or more, it can be determined that internal oxidation is sufficient.
  • the depth of the internal oxide layer of Si was determined by taking a specimen with the plate thickness cross section parallel to the rolling direction of the steel plate as the observation surface, polishing the observation surface, performing nital etching, and a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • Field Emission Scanning Electron Microscope sets three or more rectangular areas of 1.0 ⁇ m in the thickness direction of the steel sheet and 20 ⁇ m in the rolling direction at a magnification of 5000 times or more. In each, the number of Si oxides in the region is counted, and when 10 or more Si oxides are present, the region is used as an internal oxide layer of Si, and the maximum depth of the region in which 10 or more Si oxides are present. This average value is obtained by setting the Si internal oxide layer depth position.
  • This internal oxidation of Si occurs when the diffusion rate of oxygen into the steel plate 1 is faster than the diffusion rate of Si into the surface of the steel plate 1, and the oxygen concentration in the atmosphere is high. It tends to occur when the content is low. For this reason, it is preferable to adjust the log (P H2O / P H2 ) and dew point of the atmospheric gas in the furnace in the above temperature range according to the Si content of the steel sheet 1.
  • the Si oxide has been described.
  • Mn is an element that easily precipitates and concentrates on the surface layer together with Si during annealing, and is exposed to the steel sheet surface as a Si-Mn oxide. It is an element that may be deteriorated.
  • the method for manufacturing a steel sheet according to the present embodiment by controlling the atmosphere in the furnace at the time of annealing, not only the Si oxide but also the Si—Mn oxide is exposed on the surface of the steel sheet. It is possible to produce a high-strength steel sheet that can be suppressed and has excellent plating properties and chemical conversion properties.
  • the thickness of the decarburized layer is 70 ⁇ m or less, it can be determined that the progress of decarburization can be suppressed.
  • the area fraction S1 of the hard structure in the 1 ⁇ 4 thickness of the steel sheet is compared with the area fraction S2 of the hard structure in the surface layer portion of the steel sheet, and S2 / S1 is 0.40 or less.
  • the maximum depth position is the thickness of the decarburized layer.
  • the hard structure is a structure composed of one or more of martensite, tempered martensite, bainite and retained austenite.
  • the area ratio is determined by taking a sample with the cross section of the steel plate parallel to the rolling direction of the steel sheet as an observation surface, polishing the observation surface, performing nital etching, and using a field emission scanning electron microscope (FE-SEM) with a magnification of 500 to This is determined by observing three or more regions at a magnification of 3000 times. That is, in each observation region, a parallel line of 50 ⁇ m or more is drawn on the plate surface of the steel sheet, the total length L where the line overlaps the hard structure is obtained, the ratio L / L0 to the line length L0 is obtained, and the average of these The value may be the hard tissue area fraction S2 at the depth position.
  • FE-SEM field emission scanning electron microscope
  • the furnace average value of log (P H2O / P H2 ) in each temperature range can be measured as follows. First, using a known measuring device, the upper stage of the furnace body at each of a position where the temperature is 700 ° C. or lower, a position where the temperature is 700 ° C. or higher and 800 ° C. or lower and a position where the temperature is higher than 800 ° C. Measure the dew point and the hydrogen concentration at a total of 5 locations, including at least one location at the bottom and the bottom. And let the averaged value be the dew point and hydrogen concentration in the said temperature range. Based on the measured dew point, using Tetens equation to determine the water vapor pressure of the temperature range (P H2O).
  • the temperature of the steel plate in a furnace becomes equivalent to the temperature in a furnace. That is, for example, at a position in the furnace where the temperature is over 700 ° C. and 800 ° C. or less, the temperature of the steel sheet is also over 700 ° C. and 800 ° C. or less.
  • a high-strength steel sheet having a tensile strength of 780 MPa or more and having excellent plating properties and chemical conversion properties can be manufactured.
  • the steel sheet continuous annealing apparatus 10 for steel sheets according to this embodiment is suitable for performing the above-described continuous annealing process according to the present embodiment.
  • a steel plate continuous annealing apparatus 10 shown in FIG. 1 is an apparatus that anneals a steel plate 1 while traveling.
  • the steel plate 1 is inserted into the steel plate continuous annealing apparatus 10 from the lower left of FIG.
  • the steel plate continuous annealing apparatus 10 includes a first heating zone 11 that heats the steel plate to 700 ° C. or less, which is located upstream of the traveling direction of the steel plate 1, and a temperature of 700 ° C. or more and 800 ° C. or less that is located downstream of the first heating zone 11.
  • the first heating zone 11, the second heating zone 12, the third heating zone 13, and the soaking zone 14 are all indirect heating type atmospheric furnaces.
  • the inside of the furnace is controlled to an atmosphere having a predetermined hydrogen concentration.
  • the atmospheric gas introduction part 15 which supplies water vapor
  • Inner atmosphere adjusting means is provided.
  • the steel sheet 1 is heated at a temperature of more than 700 ° C. and not more than 800 ° C. by supplying water vapor or the like from the atmospheric gas introduction unit 15, the moisture pressure P H2O and the hydrogen partial pressure P H2 in the atmosphere in the furnace are used.
  • the furnace average value of the following relational expression log (P H2O / P H2 ) can be controlled within a range of ⁇ 1.36 ⁇ log (P H2O / P H2 ) ⁇ 0.07.
  • a furnace body average value of the first heating zone 11 log (P H2O / P H2 ) is -3.01 ⁇ log (P H2O / P H2) ⁇ - 0.07, ⁇ 3.01 ⁇ log (P H2O / P H2 ) ⁇ ⁇ 0.53 in the third heating zone 13 above 800 ° C., and in the soaking zone 14 the temperature is 800 ° C. or less.
  • ⁇ 3.01 ⁇ log (P H2O / P H2 ) ⁇ ⁇ 0.07, and in the case of over 800 ° C., ⁇ 3.01 ⁇ log (P H2O / P H2 ) ⁇ ⁇ 0.53 Can be controlled within range.
  • the atmosphere in the first heating zone 11, the third heating zone 13 or the soaking zone 14 is controlled.
  • a gas introduction part may be further provided.
  • a high-strength steel sheet having a predetermined strength and excellent in plating properties and chemical conversion properties can be manufactured.
  • the manufacturing method of the steel plate concerning this embodiment and the continuous annealing apparatus of the steel plate were demonstrated.
  • the present invention is not limited to these, and can be appropriately changed without departing from the technical idea of the present invention.
  • the composition of the steel sheet is not limited to that exemplified in the present embodiment, and may include other elements according to required characteristics.
  • it demonstrated that it was preferable to implement a continuous annealing process with the continuous annealing apparatus shown in FIG. 1 in the manufacturing method of the steel plate concerning this embodiment it is not limited to this. That is, in the range in which the steel sheet is heated so that the temperature of the steel sheet 1 during heating is more than 700 ° C.
  • a relational expression log (P (P) consisting of the moisture pressure P H2O and the hydrogen partial pressure P H2 in the furnace atmosphere.
  • the furnace body average value of H 2 O 2 / P H 2 ) is ⁇ 1.36 ⁇ log (P H 2 O / P H 2 ) ⁇ ⁇ 0.07, and in the range in which the steel plate is heated so that the temperature of the steel plate 1 is 700 ° C.
  • continuous annealing was performed with the conditions shown in Tables 2 to 8 (holding plate temperature, holding time) using a continuous annealing apparatus for steel sheets.
  • the upper limit of the maximum heating temperature was set to 900 ° C. as a value achievable in actual production.
  • the furnace body average value of the relational log (P H2O / P H2 ) composed of the moisture pressure P H2O and the hydrogen partial pressure P H2 in the atmosphere in the furnace at the time of heating and holding is as shown in Tables 2-8. did.
  • the hydrogen concentration in the atmosphere in the furnace was 1.0 to 5.0%, and the dew points when the steel plate temperature exceeded 800 ° C. were all less than ⁇ 10 ° C.
  • the Si internal oxide layer depth and the decarburized layer thickness were evaluated.
  • Si inner oxide layer depth position In the ferrite of the surface layer portion of the steel sheet, a region where 1.0 ⁇ 10 12 pieces / m 2 or more of Si oxide having a maximum length of 25 nm or more was defined as an Si internal oxide layer. Specifically, a sample is taken with a cross section of the steel plate parallel to the rolling direction of the steel sheet as an observation surface, the observation surface is polished, nital etched, and a field emission scanning electron microscope (FE-SEM: Field Emission Scanning Electron). Microscope) was observed at a magnification of 5000 times or more. Three rectangular regions of 1.0 ⁇ m in the thickness direction of the steel plate and 20 ⁇ m in the rolling direction were arbitrarily set.
  • the number of Si oxides in the region is counted, and when 10 or more Si oxides are present, the region is used as an internal oxide layer of Si, and 10 or more Si oxides are present.
  • the average value of the three maximum depths was taken as the Si internal oxide layer depth position.
  • the evaluation results are shown in Table 1. If the internal oxide layer depth was 0.1 ⁇ m or more, it was determined that internal oxidation was sufficient.
  • the hard structure is a structure composed of one or more of martensite, tempered martensite, bainite and retained austenite.
  • the area ratio is determined by taking a sample with the cross section of the steel plate parallel to the rolling direction of the steel sheet as an observation surface, polishing the observation surface, performing nital etching, and using a field emission scanning electron microscope (FE-SEM) with a magnification of 500 to It was determined by observing three areas at 3000 times. That is, in each observation region, a parallel line of 50 ⁇ m or more is drawn on the plate surface of the steel sheet, the total length L where the line overlaps the hard structure is obtained, the ratio L / L0 to the line length L0 is obtained, and the average of these The value was defined as the area fraction S2 of the hard tissue at the depth position.
  • the evaluation results are shown in Table 1. If the thickness of the decarburized layer was 70 ⁇ m or less, it was judged that the progress of decarburization could be suppressed.
  • the tensile strength is less than 780 MPa, and even if the tensile strength is 780 MPa or more, it is compared with the tensile strength of the test piece when the outside of the 80% range in the thickness direction is removed from the thickness center. In this case, it was designated as “POOR”.
  • the steel plate after continuous annealing was subjected to hot dip galvanizing treatment by a known method, and the appearance of the hot dip galvanized steel plate was visually evaluated, and a plating peeling test was conducted to evaluate plating adhesion. Specifically, the evaluation was as follows. "Visual inspection" About the external appearance of the surface of the hot dip galvanized steel sheet, five samples having a length of 1 m over the entire width were continuously collected from the steel sheet, and the occurrence of non-plating was visually judged according to the following criteria.
  • plating peeling test A plating peeling test was conducted in accordance with “Metal Material Bending Test Method” described in JISZ 2248, which evaluates plating adhesion during processing in which compressive stress is applied to a steel sheet. Specifically, as disclosed in the document “Hot-dip galvanized steel sheet manual, p53-55”, after performing a 60 ° V-shaped bending test using each steel plate, a tape was applied to the inside of the bent portion. Then, the tape was peeled off.
  • the plating adhesion was evaluated according to the following criteria from the peeling state of the plating layer peeled off with the tape.
  • the tape Nichiban's “Cello Tape” (registered trademark) was used.
  • GOOD Peel width less than 7.0 mm (practically acceptable)
  • POOR peeling width of 7.0 mm or more (practically unacceptable)
  • Test No. 1, no. 30, no. 59, no. 88, no. No. 117 has a steel plate temperature of 700 ° C. or lower during annealing, and neither Si internal oxidation nor decarburization occurs.
  • the average furnace body value of H2 ) is ⁇ 1.36 or less, and the internal oxidation of Si is insufficient.
  • the temperature of the steel sheet during heating and holding is 900 ° C.
  • the furnace body relationship log consisting of water pressure P H2 O and the hydrogen partial pressure P H2 Prefecture in the atmosphere in the furnace (P H2O / P H2)
  • the average value is -0.07 or more, and the decarburized thickness is excessively thick.
  • the average furnace body value of log (P H2O / P H2 ) exceeding 800 ° C. is ⁇ 0.54 or more, and the decarburized thickness is excessively thick.
  • the furnace body average value of any log (P H2O / P H2 ) with a steel plate temperature of 700 ° C. or less, more than 700 ° C. and less than 800 ° C. or more than 800 ° C. is out of the present invention, It was insufficient, the decarburized layer thickness was excessive, and the tensile strength and plating properties were inferior.
  • the furnace body average value of the relational log (P H2O / P H2 ) consisting of the partial pressure P H2 is in the range of ⁇ 1.36 ⁇ log (P H2O / P H2 ) ⁇ 0.07, and the temperature of the steel sheet is
  • the furnace average value of log (P H2O / P H2 ) below 700 ° C is ⁇ 3.01 ⁇ log (P H2O / P H2 ) ⁇ 0.07, and log (P H2O / P H2 ) above 800 ° C.
  • the test body No. was set to -3.01 ⁇ log (P H2O / P H2 ) ⁇ ⁇ 0.53. 6-18, no. 20-29, no. 35-47, no. 49-58, no.
  • the depth position of the internal oxide layer of Si is sufficiently deep, and the thickness of the decarburized layer is thin. From the above, according to the present invention, it is confirmed that Si can be oxidized inside the steel sheet to suppress the exposure of Si oxide on the surface of the steel sheet and to suppress the progress of decarburization from the steel sheet. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

この鋼板の製造方法は、引張強度が780MPa以上の高強度鋼板の製造方法であって、所定の化学組成を有する鋼板を、750℃~900℃の温度範囲まで加熱して、前記温度範囲で0~300秒保持することによって連続焼鈍を行う連続焼鈍工程を有し、前記連続焼鈍工程では、前記温度範囲まで前記加熱を行う際、及び前記温度範囲での前記保持を行う際、炉内の雰囲気中の水素濃度を、10体積%未満とし、前記鋼板の温度が700℃以下であるときの、log(PH2O/PH2)の炉体平均値を、-3.01超-0.07未満とし、前記鋼板の温度が700℃超800℃以下であるときの、前記log(PH2O/PH2)の炉体平均値を-1.36超-0.07未満とし、前記鋼板の温度が800℃超であるときの、前記log(PH2O/PH2)の炉体平均値を-3.01超-0.53以下とし、かつ露点を-10℃未満とする。

Description

鋼板の製造方法及び鋼板の連続焼鈍装置
 本発明は、鋼板の製造方法及び鋼板の連続焼鈍装置に関し、特に、Cを0.050質量%以上、Siを0.10質量%以上、Mnを1.20質量%以上含有する引張強度780MPa以上の高強度鋼板の製造方法、及び、この鋼板の製造方法に適した鋼板の連続焼鈍装置に関する。
 近年、低燃費化やCO排出量削減を目的とした車体の軽量化および衝突安全性向上を目的として、自動車分野では、車体や部品などに高強度鋼板を使用するニーズが高まっている。最近では、引張強度が780MPa以上、あるいは、980MPa以上といった高強度鋼板も使用されている。
 しかしながら、鋼板を高強度化すると、一般的に成形性(加工性)等の材料特性が劣化する。一方で、これら高強度鋼板は、軟鋼板と同様にプレス加工によって大量かつ安価に成形され、各種部材として供されることが求められる。このため、上述の高強度鋼板には、高強度とともに、高い延性、及び、良好な加工性も求められる。
 ここで、引張強度が780MPa以上の高強度鋼板において、高い延性、及び、良好な加工性を付与するためには、一般に、SiやMnといった合金元素を鋼に添加することが行われている。
 ところが、SiやMnを含有する鋼板に対して、最高到達温度800~900℃の焼鈍を行った際には、SiやMnが鋼板の表層に析出・濃化して酸化し、表面にSi酸化物やSi-Mn酸化物が露出してしまうおそれがあった。このように鋼板の表面にSi酸化物やSi-Mn酸化物が露出した場合には、めっき処理時のめっき性劣化や、塗装前の化成処理性の低下といった問題が生じる。
 このような課題に対し、例えば特許文献1には、Si含有量が0.4~2.0質量%である高強度鋼板に対して、熱処理を行うに際して、直火還元炉の直火還元バーナーの空気比を0.6以上0.9未満とした還元雰囲気で鋼板を還元し、Si酸化膜を薄く制御した上で、水素還元を行う間接加熱炉で水分圧PH2Oと水素分圧PH2の対数log(PH2O/PH2)を-1.6以上-0.5以下とすることで、Si酸化物が鋼板表面に露出することを抑制して、鋼板のめっき性を向上させる技術が提案されている。
 また、特許文献2には、直火加熱炉と間接還元炉とを有する連続焼鈍ラインにおいて、還元炉での還元の前に、直火加熱によって鋼板を酸化させた上で、鋼板の最高到達温度をT(923K≦T≦1173K)とした場合に、炉内の雰囲気中の酸素分圧の対数logPO2を、-0.000.074×T+0.105×T-0.2×〔Si%〕+2.1×〔Si%〕-98.8≦logPO2≦-0.000.078×T+0.107×T-90.4の範囲で還元することで、成形性に優れた高強度合金化溶融亜鉛めっき鋼板を製造する方法が提案されている。
 さらに、特許文献3には、冷延鋼板を連続焼鈍する際に、昇温時に鋼板温度が550℃以上で空気比0.95以上の直火バーナーを用いて鋼板を加熱して鋼板の表面を酸化させ、その後、空気比0.89以下の直火バーナーを用いて鋼板を加熱して鋼板温度が750℃以上になるまで昇温した後、露点が-25℃以下の炉で均熱焼鈍することにより、化成処理性の向上を図った技術が提案されている。
 また、特許文献4には、鋼板に連続焼鈍を施す際に、加熱過程において、加熱炉内温度が600℃以上A℃以下(650≦A≦780)の場合に雰囲気中の露点を-40℃以下とし、加熱炉内温度がA℃超えB℃以下(800≦B≦900)の場合に雰囲気中の露点を-10℃以上とすることにより、化成処理性の向上を図った技術が提案されている。
 また、特許文献5、6には、鋼板に予熱工程と昇温工程と再結晶化工程とからなる連続焼鈍を行うに際し、予熱工程において、連続焼鈍雰囲気中の水素分圧に対する水蒸気分圧比(PH2O/PH2)が予熱温度Tpとの関係から下記(1)式の条件を満足するように制御すること、昇温工程において、再結晶化温度Trを650℃~900℃とし、焼鈍雰囲気中の水素分圧に対する水蒸気分圧比(PH2O/PH2)が再結晶化温度Trとの関係から下記(2)式の条件を満足し、かつ昇温速度が1~20℃/秒となるように制御すること、及び再結晶化工程において、焼鈍雰囲気の水素分圧に対する水蒸気分圧比(PH2O/PH2)が再結晶化温度Trとの関係から下記(3)式の条件を満足し、かつ保持時間を40~600秒とするように制御することによって、化成処理性の向上を図った技術が提案されている。
(1)式:log(PH2O/PH2)≦-2.8×10-6Tp+6.8×10-3Tp-4.8
(2)式:5.3×10-8×Tr+1.4×10-5×Tr-0.01≦PH2O/PH2≦6.4×10-7×Tr+1.7×10-4Tr-0.1
(3)式:PH2O/PH2<5.3×10-8×Tr+1.4×10-5×Tr-0.01
 また、特許文献7には、Si、MnおよびAlを特定の比率で含有する鋼板を、還元炉中の雰囲気ガスの水素分圧および水蒸気分圧の対数比が、-1.39≦log(PH2O/PH2)≦-0.695を満足するように制御する溶融亜鉛めっき鋼板の製造方法が開示されている。
 しかしながら、上述の特許文献1~7に記載された技術には以下の課題がある。
 すなわち、特許文献1~3は、直火加熱部を有し、直火バーナーの空気比を制御することを特徴としている。しかしながら、最近では、鋼板に対して焼鈍を施す連続焼鈍装置としては、直火加熱部を有さずに全て間接加熱炉によって構成されたものが主流となっている。このような直火加熱部を有さない連続焼鈍炉においては、特許文献1~3に記載されたように、直火バーナーの空気比を制御する方法は適用することができない。また、特許文献1~3のように、還元前に直火バーナーで鋼板を酸化させる方法では、バーナー設備の高温劣化や燃焼ガスの発熱量変動などに起因して所定の空気比を確保できなくなり、結果として厚く生成した酸化膜によって、炉内のハースロールにビルドアップ(隆起)が形成されることを防止しきれない。直火加熱炉で生成した酸化膜は、鋼板が炉内ロールに巻きついている間に鋼板から剥離しロール表面に付着することにより、鋼板に押し疵を発生させるので、好ましくない。
 また、特許文献4に記載された条件で炉内の雰囲気を制御した場合には、Siの酸化物が表面に露出することは抑制できるものの、露点を-10℃以上とする必要があるので、鋼板の脱炭が進行し、鋼板の引張強度や疲労強度が低下してしまうといった問題があった。特に、Cを多く含有する高強度鋼板においては、脱炭による強度低下は大きな問題となる。
 また、特許文献5及び6に記載された条件について、ガス中の水分量の外的変動や生産設備の劣化により、式(1)、式(3)のPH2O/PH2値や露点等の適正条件を担保することが難しいという問題もある。
 また、特許文献7では、横型の還元炉を用いて溶融亜鉛めっき鋼板を製造するに際し、炉内の雰囲気ガス中の水素濃度を10%以上とすることが示唆されている。しかしながら、雰囲気ガス中の水素濃度を10%以上とするには、特別な設備を必要とするため、適用には大きな設備投資が必要となる。 
日本国特開2007-191745号公報 日本国特開2006-233333号公報 日本国特開2013-253322号公報 日本国特開2012-072452号公報 日本国特開2008-069445号公報 日本国特開2008-121045号公報 日本国特開2012-12683号公報
 本発明は、前述した状況に鑑みてなされたものであって、直火加熱部を有さない連続焼鈍炉において焼鈍時の雰囲気を制御することにより、Siを鋼板の内部で酸化させて鋼板の表面にSi酸化物が露出することを抑制し、かつ、鋼板からの脱炭の進行を抑制可能な高強度鋼板の製造方法、及び、この高強度鋼板の製造方法に適した鋼板の連続焼鈍装置を提供することを目的とする。本発明において、高強度とは、引張強度が780MPa以上であることを示す。
 上記課題を解決するために、本発明者らが鋭意研究した結果、以下のような知見を得た。
 (a)焼鈍の加熱時において、鋼板温度が700℃から750℃の範囲で、Siの内部酸化、及び、脱炭が開始される。
 (b)700℃~800℃、特に、700℃から750℃の範囲において、炉内の雰囲気中の水分圧PH2Oと水素分圧PH2とからなる関係式log(PH2O/PH2)を適正範囲に調整することで、Siを内部酸化させるとともに脱炭を抑制可能である。
 (c)さらに、700℃以下あるいは、800℃超で鋼板を加熱する範囲においても、log(PH2O/PH2)を適正範囲に調整することで、鋼板の表面の酸酸化を防ぐこと、または内部酸化を促進し、かつ、脱炭を抑制することが可能である。
 (d)800℃超で鋼板を加熱する際の、炉内雰囲気の露点を-10℃未満とすることで、脱炭を抑制し、強度の低下を防ぐことができる。
 本発明は、上述した知見に基づいてなされた。その要旨を以下に示す。
 (1)本発明の一態様に係る鋼板の製造方法は、引張強度が780MPa以上の高強度鋼板の製造方法であって、化学組成として、質量%で、C:0.050~0.40%、Si:0.10~2.50%、Mn:1.20~3.50%、Cr:0~0.80%、Ni:0~5.00%、Cu:0~3.00%、Nb:0~0.10%、Mg:0~0.010%、Ti:0~0.10%、B:0~0.010%、Mo:0~0.5%を含有し、残部がFe及び不純物からなり、前記不純物として、P:0.100%以下、S:0.010%以下、Al:1.200%以下、N:0.0100%以下、に制限した鋼板を、750℃~900℃の温度範囲まで加熱して、前記温度範囲で0~300秒保持することによって連続焼鈍を行う連続焼鈍工程を有し、前記連続焼鈍工程では、前記温度範囲まで前記加熱を行う際、及び前記温度範囲での前記保持を行う際、炉内の雰囲気中の水素濃度を、10体積%未満とし、前記鋼板の温度が700℃以下であるときの、前記炉内の雰囲気中の水分圧PH2Oと水素分圧PH2とからなる関係式であるlog(PH2O/PH2)の炉体平均値を、下記式(i)の範囲とし、前記鋼板の温度が700℃超800℃以下であるときの、前記炉内の雰囲気中の前記log(PH2O/PH2)の炉体平均値を下記式(ii)の範囲とし、前記鋼板の温度が800℃超であるときの、前記炉内の雰囲気中の前記log(PH2O/PH2)の炉体平均値を下記式(iii)の範囲とし、かつ露点を-10℃未満とする。
   -3.01<log(PH2O/PH2)<-0.07  (i)
   -1.36<log(PH2O/PH2)<-0.07  (ii)
   -3.01<log(PH2O/PH2)≦-0.53  (iii)
 (2)上記(1)に記載の鋼板の製造方法は、前記化学組成が、質量%で、Cr:0.01~0.80%、Ni:0.01~5.00%、Cu:0.01~3.00%、Nb:0.001~0.10%、Mg:0.0001~0.010%、Ti:0.001~0.10%、B:0.0001~0.010%、Mo:0.01~0.5%、から選択される1種または2種以上を含有してもよい。
 (3)上記(1)または(2)に記載の鋼板の製造方法は、前記鋼板の温度が700℃超800℃以下であるときの、前記炉内の雰囲気中の前記log(PH2O/PH2)の炉体平均値を下記式(vii)の範囲としてもよい。
   -1.00<log(PH2O/PH2)<-0.67  (vii)
 (4)本発明の別の態様に係る鋼板の連続焼鈍装置は、化学組成として、質量%で、C:0.050~0.40%、Si:0.10~2.50%、Mn:1.20~3.50%、Cr:0~0.80%、Ni:0~5.00%、Cu:0~3.00%、Nb:0~0.10%、Mg:0~0.010%、Ti:0~0.10%、B:0~0.010%、Mo:0~0.5%を含有し、残部がFe及び不純物からなり、前記不純物として、P:0.100%以下、S:0.010%以下Al:1.200%以下、N:0.0100%以下、に制限した鋼板に連続焼鈍を実施する鋼板の連続焼鈍装置であって、炉内の雰囲気中の水素濃度を、10体積%未満とし、前記鋼板の温度が700℃以下の場合に、炉内の雰囲気中の水分圧PH2Oと水素分圧PH2とからなる関係式であるlog(PH2O/PH2)の炉体平均値を下記式(iv)の範囲に調整し、前記鋼板の温度が700℃超800℃以下の場合に、前記炉内の雰囲気中の前記log(PH2O/PH2)の炉体平均値を下記式(v)の範囲に調整し、前記鋼板の温度が800℃超の場合に、前記炉内の雰囲気中の前記log(PH2O/PH2)の炉体平均値を下記式(vi)の範囲かつ露点を-10℃未満に調整する炉内雰囲気調整手段を備える。
   -3.01<log(PH2O/PH2)<-0.07  (iv)
   -1.36<log(PH2O/PH2)<-0.07  (v)
   -3.01<log(PH2O/PH2)≦-0.53  (vi)
 上述の構成とされた、本発明の上記態様に係る鋼板の製造方法によれば、雰囲気中の水素濃度を10体積%未満とした炉内において、Siの内部酸化及び脱炭が開始される700℃超800℃以下の温度範囲において、炉内の雰囲気中の水分圧PH2Oと水素分圧PH2とからなる関係式log(PH2O/PH2)の炉体平均値を-0.07未満としているので、脱炭の発生を抑制することができる。また、上述の鋼板の温度範囲において、log(PH2O/PH2)の炉体平均値を-1.36超としているので、Siを鋼板の内部で酸化させることができ、鋼板表面にSi酸化物が露出することを抑制できる。また、700℃以下の温度範囲については、log(PH2O/PH2)の炉体平均値を、-3.01<log(PH2O/PH2)<-0.07の範囲内に、800℃超で鋼板を加熱する範囲においては、-3.01<log(PH2O/PH2)≦-0.53の範囲内とするとともに露点を-10℃未満とすることで鋼板の表面酸化の防止や内部酸化の促進を可能とする。また、Siの内部酸化を発生させ、かつ、脱炭の進行を確実に抑制することができる。
 本発明の上記態様に係る鋼板の製造方法によれば、伸びや加工性などの特性を従来よりも劣化させることなく、780MPa以上の引張強度が確保され疲労強度、めっき性、及び化成処理性に優れた高強度鋼板を製造することが可能となる。
 また、上述の構成の鋼板の連続焼鈍装置によれば、加熱時の鋼板の温度が700℃超800℃以下の温度範囲において、炉内の雰囲気中の水分圧PH2Oと水素分圧PH2とからなる関係式log(PH2O/PH2)の炉体平均値を、-1.36<log(PH2O/PH2)<-0.07の範囲内とする炉内雰囲気調整手段を備えているので、Siの内部酸化によりSi酸化物が鋼板の表面に露出することを抑制できるととともに、脱炭を抑制することができる。よって、上述の構成の鋼板の連続焼鈍装置を用いることで、引張強度が780MPa以上で、さらにめっき性、化成処理性に優れた高強度鋼板を製造することが可能となる。また、700℃以下の温度範囲については、log(PH2O/PH2)の炉体平均値を、-3.01<log(PH2O/PH2)<-0.07の範囲内に、800℃超で鋼板を加熱する範囲においては、-3.01<log(PH2O/PH2)≦-0.53の範囲内とすることで表面酸化の防止、内部酸化の促進、脱炭の抑制を可能とする。
 すなわち、本発明の上記態様によれば、焼鈍時の雰囲気を制御することにより、Siを鋼板の内部で酸化させて鋼板の表面にSi酸化物が露出することを抑制し、かつ、鋼板からの脱炭の進行を抑制可能な高強度鋼板の製造方法、及び、この高強度鋼板の製造方法に適した鋼板の連続焼鈍装置を提供することができる。また、これらの製造方法及び連続焼鈍装置によって得られた鋼板は、高強度であり、めっき性、及び化成処理性に優れる。
本発明の一実施形態に係る鋼板の製造方法に用いられる、鋼板の連続焼鈍装置を示す概略説明図である。
 以下に、本発明の一実施形態に係る鋼板の製造方法(本実施形態に係る鋼板の製造方法という場合がある)、及び、本発明の一実施形態に係る鋼板の連続焼鈍装置(本実施形態に係る鋼板の連続焼鈍装置と言う場合がある)について、図面を参照して説明する。ただし、本発明は、以下の実施形態に限定されるものではない。
 本実施形態においては、例えば自動車用途等に用いられる、引張強度が780MPa以上、好ましくは980MPa以上の高強度鋼板の製造を対象としている。
 本実施形態に係る鋼板の製造方法は、質量%で、C:0.050~0.40%、Si:0.10~2.50%、Mn:1.20~3.50%、Cr:0~0.80%、Ni:0~5.00%、Cu:0~3.00%、Nb:0~0.10%、Mg:0~0.010%、Ti:0~0.10%、B:0~0.010%、Mo:0~0.5%を含有し、残部がFe及び不純物からなる鋼板に連続焼鈍を行う連続焼鈍工程を有する。
 ここで、連続焼鈍工程以外の工程については、特に限定されず、所望の鋼板特性に応じて公知の方法で行えばよい。例えば、一般に必要に応じて行われる上記以外の工程として、鋼を鋳造して鋳片を得る鋳造工程、前記鋳片を熱間圧延して鋼板を得る熱間圧延工程、前記鋼板を冷間圧延する冷間圧延工程、酸洗工程、調質圧延工程等を公知の方法で行ってもよい。しかしながら、連続焼鈍工程については、後述する条件で行う必要がある。
 まず、本実施形態において製造の対象とする鋼板(高強度鋼板)の化学組成を限定した理由について説明する。
 C:0.050質量%以上、0.40質量%以下
 Cは、マルテンサイト、焼戻マルテンサイト、ベイナイト及び残留オーステナイト等の硬質組織を形成し、鋼板の強度を向上させるために必須の元素である。そこで、連続焼鈍工程を経た鋼板の引張強度を780MPa以上とするために、C含有量を0.050質量%以上とする。強度を十分に高めるため、C含有量は0.075質量%以上が好ましい。一方、過度にC含有量を高めると鋼板の溶接性が劣化するので、C含有量は0.40質量%以下とする。好ましくは0.30質量%以下である。
 Si:0.10質量%以上、2.50質量%以下
 Siは、鋼板の伸びを確保して、加工性を大きく阻害することなく強度を向上させる作用効果を有する元素である。そこで、加工性と強度とを十分に確保するために、Si含有量を0.10質量%以上とする。加工性と強度とをさらに向上させるため、Si含有量を0.45質量%以上とすることが好ましい。一方、過度にSi含有量を高めると靭性が低下し、却って加工性が劣化する。そのため、Si含有量を2.50質量%以下とする。好ましくは2.30質量%以下である。
 Mn:1.20質量%以上、3.50質量%以下
 Mnは、Siと同等の作用効果を有する元素である。そこで、加工性と強度とを十分に確保するために、Mn含有量を1.20質量%以上とする。加工性と強度とをより向上させるため、Mn含有量を1.50質量%以上とすることが好ましい。一方、過度にMn含有量を高めると溶接性が劣化する。そのため、Mn含有量を3.50質量%以下とする。好ましくは3.30質量%以下である。
 本実施形態で対象とする高強度鋼板は、上記の化学成分を含有し、残部がFe及び不純物からなることを基本とする。しかしながら、要求特性を満たすために必須ではないが、更なる高強度化、または成形性の更なる向上を目的として、Cr、Ni、Cu、Nb、Mg、Ti、B、Moを後述する範囲で含有させてもよい。また、Cr、Ni、Cu、Nb、Mg、Ti、B、Moの含有量が、下記に示した含有量の下限未満であっても、本発明の効果を損なわない。Cr、Ni、Cu、Nb、Mg、Ti、B、Moはいずれも要求特性を満たすために必須ではないので、その含有量の下限は0%である。
 不純物とは、鋼材を工業的に製造する際に、鉱石、スクラップ等の原料、その他の要因により混入する成分を意味する。前記不純物は少ない方が好ましいが、不純物のうち、P、S、Al、Nについては、特に、P:0.100質量%以下、S:0.010質量%以下、Al:1.200質量%以下、N:0.0100質量%以下に制限することが好ましい。
 Cr:0.01質量%以上、0.80質量%以下
 Crは、高温での相変態を抑制し、鋼板を高強度化する効果を有する元素である。この効果を得る場合、Cr含有量を0.01質量%以上とすることが好ましい。一方、Cr含有量が0.80質量%を超えると、熱間での加工性が損なわれ生産性が低下する。そのため、含有させる場合でも、Cr含有量を0.80質量%以下とする。好ましくは、0.40質量%以下である。
 Ni:0.01質量%以上、5.00質量%以下
 Niは、高温での相変態を抑制し、鋼板を高強度化する効果を有する元素である。この効果を得る場合、Ni含有量を0.01質量%以上とすることが好ましい。一方、Ni含有量が5.00質量%を超えると、溶接性が損なわれる。そのため、含有させる場合でも、Ni含有量を5.00質量%以下とする。好ましくは、2.00質量%以下である。
 Cu:0.01質量%以上、3.00質量%以下
 Cuは、微細な粒子として鋼中に存在することにより鋼板の強度を高める元素である。この効果を得る場合、Cu含有量を0.01質量%以上とすることが好ましい。一方、Cu含有量が5.00質量%を超えると、溶接性が損なわれる。そのため、含有させる場合でも、Cu含有量を3.00質量%以下とする。好ましくは、2.00質量%以下である。
 Nb:0.001質量%以上、0.10質量%以下
 Nbは、析出強化、フェライト結晶粒の成長抑制による細粒強化及び再結晶の抑制を通じた転位強化にて、鋼板の強度上昇に寄与する元素である。この効果を得る場合、Nb含有量を0.001質量%以上とすることが好ましい。一方、Nb含有量が0.10質量%を超えると、炭窒化物の析出量が多くなって成形性が劣化する。そのため、含有させる場合でも、Nb含有量を0.10質量%以下とする。好ましくは、0.05質量%以下である。
 Mg:0.0001質量%以上、0.010質量%以下
 Mgは、成形性の改善に有効な元素である。この効果を得る場合、Mg含有量を0.0001質量%以上とすることが好ましい。一方、Mg含有量が0.010質量%を超えると、却って延性が損なわれるおそれがある。そのため、含有させる場合でも、Mg含有量を0.010質量%以下とする。好ましくは、0.005質量%以下である。
 Ti:0.001質量%以上、0.10質量%以下
 Tiは、析出強化、フェライト結晶粒の成長抑制による細粒強化及び再結晶の抑制を通じた転位強化によって、鋼板の強度上昇に寄与する元素である。この効果を得る場合、Ti含有量を0.001質量%以上とすることが好ましい。一方、Ti含有量が0.10質量%を超えると、炭窒化物の析出量が多くなって成形性が劣化する。そのため、含有させる場合でも、Ti含有量を0.10質量%以下とする。好ましくは、0.05質量%以下である。
 B:0.0001質量%以上、0.010質量%以下
 Bは、高温での相変態を抑制し、鋼板の高強度化に有効な元素である。この効果を得る場合、B含有量を0.0001質量%以上とすることが好ましい。一方、B含有量が0.010質量%を超えると、熱間での加工性が損なわれ生産性が低下する。そのため、含有させる場合でも、B含有量を0.010質量%以下とする。好ましくは、0.005質量%以下である。
 Mo:0.01質量%以上、0.5質量%以下
 Moは、高温での相変態を抑制し、鋼板の高強度化に有効な元素である。この効果を得る場合、Mo含有量を0.01質量%以上とすることが好ましい。一方、Mo含有量が0.5質量%を超えると、熱間での加工性が損なわれ生産性が低下する。そのため、含有させる場合でも、Mo含有量を0.5質量%以下とする。好ましくは、0.25質量%以下である。
 次に連続焼鈍工程について説明する。
 連続焼鈍工程においては、図1のように鋼板の連続焼鈍装置10に装入された鋼板1を例えば750~900℃に加熱し、その温度域で0~300秒保持し、その後冷却する。
 このとき、炉内の雰囲気を制御しないと鋼板1中のSi、Mnが鋼板1の表層に析出・濃化し、Si酸化物やSi-Mn酸化物として鋼板1の表面に露出することがある。また、焼鈍により、脱炭が発生して鋼板1の強度が低下することがある。0秒保持とは、昇温し、750~900℃の所定の温度となった時点で、ただちに冷却を行うことを意味する。
 本実施形態に係る鋼板の製造方法における連続焼鈍工程では、後述するように炉内の雰囲気中の水分圧PH2Oと水素分圧PH2とからなる関係式であるlog(PH2O/PH2)の炉体平均値を制御することで、鋼板1の表面への酸化物の形成を抑制することができる。上記の制御を行う場合、後述する本実施形態に係る鋼板の連続焼鈍装置を用いることが好ましい。
<鋼板の温度が700℃超800℃以下であるときの、log(PH2O/PH2)の炉体平均値>
 本実施形態に係る鋼板の製造方法における連続焼鈍工程では、鋼板1の温度がSiの内部酸化及び脱炭が開始される700℃超800℃以下であるときの、連続焼鈍装置10の炉内の雰囲気中の水分圧PH2Oと水素分圧PH2とからなる関係式であるlog(PH2O/PH2)の炉体平均値を-1.36超、-0.07未満とする。log(PH2O/PH2)を上記の範囲とすることで、Siを鋼板1の内部で酸化させることができ、鋼板1の表面にSi酸化物が露出することを抑制できるとともに、脱炭の発生を抑制することができる。その結果、引張強度、疲労強度が確保され、さらにめっき性、化成処理性に優れた高強度鋼板を製造することが可能となる。ここで、logは、常用対数である。
 上述の関係式log(PH2O/PH2)の炉体平均値が-1.36以下の場合には、Siの内部酸化が十分に発生せず、Si酸化物が鋼板1の表面に露出し、めっき性、化成処理性が劣化する。一方、上述の関係式log(PH2O/PH2)の炉体平均値が-0.07以上となる場合には、脱炭が進行し、鋼板1の強度が低下するおそれがある。
 Si酸化物の表面への露出をより抑制するとともに鋼板からの脱炭をより少なくするためには、鋼板の温度が700℃超800℃以下の温度範囲において、炉内の雰囲気中の水分圧PH2Oと水素分圧PH2とからなる関係式log(PH2O/PH2)の炉体平均値を-1.00≦log(PH2O/PH2)≦-0.67の範囲内とすることが好ましい。
 ここで、700℃超800℃以下の鋼板温度範囲でlog(PH2O/PH2)を規定しているのは、内部酸化生成温度域である700℃から750℃の範囲のみでlog(PH2O/PH2)の炉体平均値を-1.36<log(PH2O/PH2)<-0.07とした場合には、内部酸化が不均一かつ不十分なケースがあるためである。上記PH2O/PH2で800℃以下の領域まで加熱することで、内部酸化を十分に生成させ、かつ脱炭も抑制することが可能となる。
<鋼板の温度が800℃超であるときの、log(PH2O/PH2)の炉体平均値>
 本実施形態に係る鋼板の製造方法において、鋼板の温度が800℃超の場合(加熱時及び保持時を含む)、log(PH2O/PH2)の炉体平均値を、-3.01<log(PH2O/PH2)≦-0.53の範囲内となるように制御する。log(PH2O/PH2)を上記の範囲とすることで内部酸化を十分に満足し、かつ、脱炭の抑制が可能となる。
 800℃超の温度域において、log(PH2O/PH2)の炉体平均値が-0.53超となる場合には、脱炭が進行し、鋼板1の強度が低下するおそれがある。脱炭をより少なくするためには、800℃超の温度範囲におけるlog(PH2O/PH2)の炉体平均値を-0.67未満とすることが好ましい。また、脱炭をより少なくするためには、800℃超の温度域における、log(PH2O/PH2)の炉体平均値を、700℃超800℃以下のlog(PH2O/PH2)の炉体平均値よりも低くすることも好ましい。
 一方、鋼板の温度が700℃以下の場合、及び800℃超の場合の、各log(PH2O/PH2)の下限値については、700~800℃の範囲外において、実製造の上で達成可能な値として、-3.01とする。
 鋼板の焼鈍温度を800℃以下とする場合には、800℃超のlog(PH2O/PH2)を考慮する必要はない。
<鋼板の温度が700℃以下であるときの、log(PH2O/PH2)の炉体平均値>
 鋼板の温度が700℃以下の場合、log(PH2O/PH2)の炉体平均値を-3.01超、-0.07未満、すなわち、-3.01<log(PH2O/PH2)<-0.07となるように制御する。
 700℃以下の温度域においても、log(PH2O/PH2)の炉体平均値が-0.07以上となる場合には、鋼板1の表面が酸化し、後の700℃超800℃以下において、内部酸化を促進することができなくなる。そのため、log(PH2O/PH2)の炉体平均値を-0.07未満とする。好ましくは-0.67未満である。
 一方、鋼板の温度が700℃以下の場合、及び800℃超の場合の、各log(PH2O/PH2)の下限値については、700~800℃の範囲外において、実製造の上で達成可能な値として、-3.01超とする。
 各温度範囲におけるlog(PH2O/PH2)を制御する方法は限定されないが、本実施形態に係る鋼板の連続焼鈍装置10を用いる場合には、所定のHガスを含む雰囲気に設定した炉内に、雰囲気ガス導入部15により、水蒸気や加湿ガスを導入することで、制御できる。また、各温度域におけるlog(PH2O/PH2)をより細かく制御する場合には、各加熱帯及び均熱帯にそれぞれ雰囲気ガス導入部を設けてもよい。その場合、それぞれの雰囲気ガス導入部からは、異なる組成の雰囲気ガスや水蒸気を導入してもよい。
 ここで、Siの内部酸化とは、鋼板1内に拡散した酸素とSiとが反応することでSi酸化物を析出する現象である。この内部酸化は、鋼板1の表面から深さ0.1~20μm程度の位置で発生する。
 本実施形態においては、鋼板の表層部のフェライトにおいて、最大長さが25nm以上のSi酸化物が1.0×1012個/m以上存在する領域をSiの内部酸化層と定義し、内部酸化層深さが0.1μm以上であれば、内部酸化が十分であると判断できる。Siの内部酸化層深さ位置は、鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨、ナイタールエッチングし、電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)により、倍率5000倍以上で、鋼板の厚さ方向に1.0μm、圧延方向に20μmの矩形の領域を、3箇所以上設定する。それぞれにおいて、領域内のSi酸化物の個数をカウントし、Si酸化物が10個以上存在した場合に、その領域をSiの内部酸化層とし、Si酸化物が10個以上存在した領域の最大深さの平均値をSiの内部酸化層深さ位置とすることで得られる。
 このSiの内部酸化は、酸素の鋼板1内部への拡散速度がSiの鋼板1表面への拡散速度よりも速い場合に発生するものであり、雰囲気の酸素濃度が高く、鋼板1中のSiの含有量が少ない場合に起こりやすくなる。このため、鋼板1のSi含有量に応じて、上述の温度範囲における炉内の雰囲気ガスのlog(PH2O/PH2)及び露点を調整することが好ましい。
 上記では、Si酸化物について説明したが、Mnも焼鈍時においてSiとともに表層に析出・濃化しやすい元素であり、Si-Mn酸化物として鋼板表面に露出することで、めっき性、化成処理性を劣化させてしまうおそれがある元素である。しかしながら、本実施形態に係る鋼板の製造方法によれば、焼鈍の加熱時の炉内雰囲気を制御することで、Si酸化物だけでなく、Si-Mn酸化物が鋼板の表面に露出することを抑制でき、めっき性、化成処理性に優れた高強度鋼板を製造することが可能となる。
 また、本実施形態において、脱炭層厚さが70μm以下であれば、脱炭の進行を抑制できていると判断できる。本実施形態では、鋼板の板厚の1/4厚における硬質組織の面積分率S1と、鋼板の表層部における硬質組織の面積分率S2とを比較し、S2/S1が0.40以下となる最大深さ位置を脱炭層の厚さとした。硬質組織とは、マルテンサイト、焼戻マルテンサイト、ベイナイト及び残留オーステナイトのうちの1つ以上からなる組織である。面積率は、鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨、ナイタールエッチングし、電界放射型走査型電子顕微鏡(FE-SEM)により、倍率500~3000倍で3箇所以上の領域を観察して求める。すなわち、各観察領域において、鋼板の板面に50μm以上の平行な線を引き、線が硬質組織と重なる総長さLを求め、線の長さL0との比L/L0を求め、これらの平均値を、当該深さ位置における硬質組織の面積分率S2とすればよい。
 各温度範囲におけるlog(PH2O/PH2)の炉体平均値は、以下のようにして測定することができる。
 まず、公知の測定装置を用いて、炉内の700℃以下になっている位置、700℃超800℃以下になっている位置、800℃超になっている位置のそれぞれにおいて、炉体の上段、中断、下段の最低1ヶ所ずつを含む計5か所において、露点、及び水素濃度を測定する。そして、平均した値を、当該温度域での露点、及び水素濃度とする。そして、測定した露点に基づいて、Tetens式を用いて、当該温度域の水蒸気圧(PH2O)を求める。
 なお、炉内における鋼板の温度は、炉内の温度と同等となる。すなわち、例えば炉内の700℃超800℃以下になっている位置では鋼板の温度も700℃超800℃以下となる。
 本実施形態に係る鋼板の製造方法によればめっき性及び化成処理性に優れた、引張強度780MPa以上の高強度鋼板が製造できる。
 次に、本実施形態に係る鋼板の連続焼鈍装置10について、図を参照して説明する。本実施形態に係る鋼板の連続焼鈍装置10は、上述した本実施形態に係る連続焼鈍工程を実施するのに適している。
 図1に示す鋼板の連続焼鈍装置10は、鋼板1を走行させながら焼鈍する装置であり、鋼板1は、図1の左下から鋼板の連続焼鈍装置10に装入される。鋼板の連続焼鈍装置10は、鋼板1の走行方向上流側に位置する700℃以下まで鋼板を加熱する第1加熱帯11、この第1加熱帯11の下流側に位置する700℃超800℃以下まで鋼板を加熱する第2加熱帯12、第2加熱帯12の下流側に位置する800℃超の温度域に鋼板を加熱する第3加熱帯13、及び第3加熱帯13の後段側に位置する均熱帯14を備えている。この連続焼鈍装置10においては、第1加熱帯11、第2加熱帯12、第3加熱帯13、及び均熱帯14は、いずれも間接加熱方式の雰囲気炉である。炉内は、所定の水素濃度を有する雰囲気に制御されている。
 そして、本実施形態に係る鋼板の連続焼鈍装置10の第2加熱帯12には、鋼板1の走行方向上流側に向けて、水蒸気または加湿ガスを炉内に供給する雰囲気ガス導入部15(炉内雰囲気調整手段)が設けられている。
 この雰囲気ガス導入部15からの水蒸気等の供給によって、鋼板1の温度が700℃超800℃以下で鋼板を加熱する際、炉内の雰囲気中の水分圧PH2Oと水素分圧PH2とからなる関係式log(PH2O/PH2)の炉体平均値を-1.36<log(PH2O/PH2)<-0.07の範囲内に制御できる。
 また、雰囲気ガス導入部15からの水蒸気等の供給によって、第1加熱帯11ではlog(PH2O/PH2)の炉体平均値が-3.01<log(PH2O/PH2)<-0.07、第3加熱帯13の800℃超の範囲においては、-3.01<log(PH2O/PH2)≦-0.53、均熱帯14においては、その温度が800℃以下の場合には、-3.01<log(PH2O/PH2)≦-0.07、800℃超の場合には、-3.01<log(PH2O/PH2)≦-0.53の範囲内に制御できる。第1加熱帯11、第3加熱帯13または均熱帯14のlog(PH2O/PH2)をより精度良く制御するため、第1加熱帯11、第3加熱帯13または均熱帯14に、雰囲気ガス導入部をさらに設けても構わない
 また、雰囲気ガス導入部からの水蒸気等の供給によって、鋼板の温度が800℃超であるときの、炉内の雰囲気の露点や炉内の炉内の雰囲気中の水素濃度も制御することができる。
 本実施形態に係る鋼板の連続焼鈍装置10を用いて連続焼鈍を行えば、所定の強度を備え、めっき性及び化成処理性に優れた高強度鋼板が製造できる。
 以上、本実施形態に係る鋼板の製造方法、及び、鋼板の連続焼鈍装置について説明した。しかしながら、本発明はこれらに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、鋼板の組成は、本実施形態に例示されたものに限定されることはなく、その他の元素を要求特性に応じて含有させたものであってもよい。
 また、本実施形態に係る鋼板の製造方法では、図1に示す連続焼鈍装置によって連続焼鈍工程を実施することが好ましいとして説明したが、これに限定されることはない。すなわち、加熱時の鋼板1の温度が700℃超800℃以下となるよう鋼板を加熱する範囲において、炉内の雰囲気中の水分圧PH2Oと水素分圧PH2とからなる関係式log(PH2O/PH2)の炉体平均値を、-1.36≦log(PH2O/PH2)≦-0.07、鋼板1の温度が700℃以下となるよう鋼板を加熱する範囲において、-3.01<log(PH2O/PH2)<-0.07、800℃超で鋼板を加熱する範囲においては、-3.01<log(PH2O/PH2)≦-0.53、最高加熱温度による保熱帯においては、上記加熱時の温度における制御に準じた範囲内にlog(PH2O/PH2)を制御することのできる炉内雰囲気調整手段を備えた他の連続焼鈍炉を用いてもよい。
 本発明の効果を確認すべく実施した実験結果について説明する。
 上述の実施形態において説明した鋼板の連続焼鈍装置を用いて、公知の方法で製造した、板厚1.2mmの冷延鋼板に対して、連続焼鈍を実施した。焼鈍に供した鋼板の組成は、表1に示す通りであった。
Figure JPOXMLDOC01-appb-T000001
 連続焼鈍工程では、鋼板の連続焼鈍装置により、表2~8に示す条件(保持板温、保持時間)で連続焼鈍を実施した。最高加熱温度の上限は実製造の上で達成可能な値として900℃とした。また、加熱、保持時における炉内の雰囲気中の水分圧PH2Oと水素分圧PH2とからなる関係式log(PH2O/PH2)の炉体平均値を表2~8に示す条件とした。炉内の雰囲気中の水素濃度は、1.0~5.0%であり、鋼板温度が800℃超であるときの露点は、いずれも-10℃未満であった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 上述のようにして焼鈍した鋼板に関して、Siの内部酸化層深さ及び脱炭層厚さを評価した。
(Siの内部酸化層深さ位置)
 鋼板の表層部のフェライトにおいて、最大長さが25nm以上のSi酸化物が1.0×1012個/m以上存在する領域をSiの内部酸化層と定義した。
 具体的には、鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨、ナイタールエッチングし、電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)により、倍率5000倍以上で観察した。鋼板の厚さ方向に1.0μm、圧延方向に20μmの矩形の領域を、3箇所任意に設定した。その3箇所それぞれにおいて、領域内のSi酸化物の個数をカウントし、Si酸化物が10個以上存在した場合に、その領域をSiの内部酸化層とし、Si酸化物が10個以上存在した領域の最大深さの3箇所の平均値をSiの内部酸化層深さ位置とした。評価結果を表1に示す。内部酸化層深さが0.1μm以上であれば、内部酸化が十分であると判断した。
(脱炭層厚さ)
 鋼板の板厚の1/4厚における硬質組織の面積分率S1と、鋼板の表層部における硬質組織の面積分率S2とを比較し、S2/S1が0.40以下となる最大深さ位置を脱炭層の厚さとした。硬質組織とは、マルテンサイト、焼戻マルテンサイト、ベイナイト及び残留オーステナイトのうちの1つ以上からなる組織である。面積率は、鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨、ナイタールエッチングし、電界放射型走査型電子顕微鏡(FE-SEM)により、倍率500~3000倍で3箇所の領域を観察して求めた。すなわち、各観察領域において、鋼板の板面に50μm以上の平行な線を引き、線が硬質組織と重なる総長さLを求め、線の長さL0との比L/L0を求め、これらの平均値を、当該深さ位置における硬質組織の面積分率S2とした。評価結果を表1に示す。脱炭層厚さが70μm以下であれば、脱炭の進行を抑制できていると判断した。
 さらに、これらの鋼板について、化成処理性、めっき性、及び引張強度の評価を行った。
(化成処理性)
 まず、連続焼鈍後の鋼板を70mm×150mmの試験片に切断し、これに日本パーカライジング社製の脱脂剤(商品名:ファインクリーナーE2083)の18g/l水溶液を、40℃で120秒間スプレーし、水洗することで脱脂を行った。次に、脱脂した冷延鋼板を日本パーカライジング社製の表面調整剤(商品名:プレパレンXG)の0.5g/l水溶液に常温で60秒間浸漬した。その後、日本パーカライジング社製のりん酸亜鉛処理剤(商品名:パルボンドL3065)に120秒間浸漬し、水洗、乾燥することで、化成処理を施した。その後、化成処理を施した試験片の長さ方向に沿って3か所(中央部および両端部)を、走査型電子顕微鏡(SEM)を使って1000倍の倍率で観察し、りん酸亜鉛被膜の結晶粒の付着度合いを観察した。
 化成処理被膜のりん酸亜鉛結晶が緻密に付着していた場合は「GOOD」、りん酸亜鉛結晶が疎で、隣り合う結晶間に僅かな隙間(りん酸亜鉛被膜が付着していない、一般に「スケ」と呼ばれる部分)が見られる場合を「FAIR」、明らかに化成処理被膜が被覆されていない箇所が見られる場合を「POOR」と評価した。
(引張強度)
 連続焼鈍後の鋼板から、圧延方向に直角方向にJIS Z2201に記載の5号試験片を切り出し、JIS Z2241に準拠して、常温で引張試験を行うことにより引張強度及び伸びを求めた。
 そして、引張強度が780MPa以上であって、かつ板厚中心から厚み方向で8割の範囲外を削りとったときの試験片の引張強度と比較して引張強度の低下が1.0%未満であった場合を「GOOD」とした。一方、引張強度が780MPa未満であった場合、及び、引張強度が780MPa以上であっても、板厚中心から厚み方向で8割の範囲外を削りとったときの試験片の引張強度と比較して1.0%以上低下していた場合を「POOR」とした。
(めっき性)
 連続焼鈍後の鋼板に、公知の方法で溶融亜鉛めっき処理を施し、溶融亜鉛めっき処理された鋼板について、目視にて外観を評価するとともに、めっき剥離試験を行ってめっき密着性を評価した。具体的には以下のように評価した。
「外観検査」
 溶融亜鉛めっき鋼板の表面の外観について、該鋼板から全幅に亘る長さ1mのサンプルを5枚連続で採取し、目視で不めっきの発生状況を以下の基準で判断した。
GOOD:直径0.5mm以上の不めっきは観察されなかった(実用上許容しうる外観)
POOR:直径0.5mm以上の不めっきが観察された(外観上の許容範囲を逸脱)
「めっき剥離試験」
 鋼板に圧縮応力が加わる加工時におけるめっき密着性を評価する、JISZ 2248に記載の「金属材料曲げ試験方法」に従い、めっき剥離試験を行った。具体的には、文献「溶融亜鉛めっき鋼鈑マニュアル,p53-55」に開示されているように、各鋼板を用いて60°V字曲げ試験を行った後、曲げ部の内側にテープを貼り、そのテープを引き剥がした。そして、テープとともに剥離しためっき層の剥離状況からめっき密着性を以下の基準で評価した。テープには、ニチバン製「セロテープ」(登録商標)を用いた。
GOOD:剥離幅が7.0mm未満(実用上許容し得る)
POOR:剥離幅が7.0mm以上(実用上許容不可)
 試験No.1、No.30、No.59、No.88、No.117は、焼鈍時の鋼板温度が700℃以下であり、Siの内部酸化及び脱炭がともに発生していない。試験No.19、No.48、No.77、No.106、No.135では、加熱時の鋼板温度が700℃超800℃以下で鋼板を加熱する範囲において、炉内の雰囲気中の水分圧PH2Oと水素分圧PH2とからなる関係式log(PH2O/PH2)の炉体平均値が-1.36以下であり、Siの内部酸化が不十分である。
 試験No.2、No.31、No.60、No.89、No.118では、加熱保持時の前記鋼板の温度が900℃であるが、炉内の雰囲気中の水分圧PH2Oと水素分圧PH2とからなる関係式log(PH2O/PH2)の炉体平均値が-0.07以上であり、脱炭厚さが過剰に厚くなっている。
 試験No.3~5、No.32~34、No.61~63、No.90~92、No.119~121では、800℃超のlog(PH2O/PH2)の炉体平均値が-0.54以上であり、脱炭厚さが過剰に厚くなっている。
 また、試験No.146~148、No.150、No.151、No.153~155、No.157、No.158、No.160~162、No.164、No.165、No.167~No.169、No.171、No.172、No.172~176、No.178、No.179、No.181~186では、鋼板温度が700℃以下、700℃超800℃以下、800℃超のいずれかのlog(PH2O/PH2)の炉体平均値が本発明を外れており、内部酸化が不十分であったり、脱炭層厚さが過剰であったり、引張強度やめっき性に劣っていた。
 これに対して、加熱保持時の前記鋼板の温度を750~900℃で鋼板を加熱する連続焼鈍工程において、鋼板の700℃超800℃以下での炉内の雰囲気中の水分圧PH2Oと水素分圧PH2とからなる関係式log(PH2O/PH2)の炉体平均値を-1.36<log(PH2O/PH2)<-0.07の範囲内とし、鋼板の温度が700℃以下のlog(PH2O/PH2)の炉体平均値を-3.01<log(PH2O/PH2)<-0.07、800℃超でのlog(PH2O/PH2)の炉体平均値を-3.01<log(PH2O/PH2)≦-0.53とした試験No.6~18、No.20~29、No.35~47、No.49~58、No.64~76、No.78~87、No.93~105、No.107~116、No.122~134、No.136~145、No.149、No.152、No.156、No.159、No.163、No.166、No.170、No.173、No.177、No.180は、Siの内部酸化層の深さ位置が十分に深く、かつ、脱炭層厚さが薄くなっている。
 以上のことから、本発明によれば、Siを鋼板の内部で酸化させて鋼板の表面にSi酸化物が露出することを抑制し、かつ、鋼板からの脱炭の進行を抑制できることが確認された。
 焼鈍時の雰囲気を制御することにより、Siを鋼板の内部で酸化させて鋼板の表面にSi酸化物が露出することを抑制し、かつ、鋼板からの脱炭の進行を抑制可能な高強度鋼板の製造方法、及び、この高強度鋼板の製造方法に適した鋼板の連続焼鈍装置を提供することができる。
 1  鋼板
 10  鋼板の連続焼鈍装置
 11  第1加熱帯
 12  第2加熱帯
 13  第3加熱帯
 14  均熱帯
 15  雰囲気ガス導入部(炉内雰囲気調整手段)

Claims (4)

  1.  引張強度が780MPa以上の高強度鋼板の製造方法であって、
     化学組成として、質量%で、C:0.050~0.40%、Si:0.10~2.50%、Mn:1.20~3.50%、Cr:0~0.80%、Ni:0~5.00%、Cu:0~3.00%、Nb:0~0.10%、Mg:0~0.010%、Ti:0~0.10%、B:0~0.010%、Mo:0~0.5%を含有し、残部がFe及び不純物からなり、前記不純物として、P:0.100%以下、S:0.010%以下、Al:1.200%以下、N:0.0100%以下、に制限した鋼板を、750℃~900℃の温度範囲まで加熱して、前記温度範囲で0~300秒保持することによって連続焼鈍を行う連続焼鈍工程を有し、
     前記連続焼鈍工程では、前記温度範囲まで前記加熱を行う際、及び前記温度範囲での前記保持を行う際、
     炉内の雰囲気中の水素濃度を、10体積%未満とし、
     前記鋼板の温度が700℃以下であるときの、前記炉内の雰囲気中の水分圧PH2Oと水素分圧PH2とからなる関係式であるlog(PH2O/PH2)の炉体平均値を、下記式(i)の範囲とし、
     前記鋼板の温度が700℃超800℃以下であるときの、前記炉内の雰囲気中の前記log(PH2O/PH2)の炉体平均値を下記式(ii)の範囲とし、
     前記鋼板の温度が800℃超であるときの、前記炉内の雰囲気中の前記log(PH2O/PH2)の炉体平均値を下記式(iii)の範囲とし、かつ露点を-10℃未満とする、
    ことを特徴とする鋼板の製造方法。
       -3.01<log(PH2O/PH2)<-0.07  (i)
       -1.36<log(PH2O/PH2)<-0.07  (ii)
       -3.01<log(PH2O/PH2)≦-0.53  (iii)
  2.  前記化学組成が、質量%で
     Cr:0.01~0.80%、
     Ni:0.01~5.00%、
     Cu:0.01~3.00%、
     Nb:0.001~0.10%、
     Mg:0.0001~0.010%、
     Ti:0.001~0.10%、
     B:0.0001~0.010%、
     Mo:0.01~0.5%、
    から選択される1種または2種以上を含有する
    ことを特徴とする請求項1に記載の鋼板の製造方法。
  3.  前記鋼板の温度が700℃超800℃以下であるときの、前記炉内の雰囲気中の前記log(PH2O/PH2)の炉体平均値を下記式(vii)の範囲とすることを特徴とする請求項1または2に記載の鋼板の製造方法。
       -1.00<log(PH2O/PH2)<-0.67  (vii)
  4.  化学組成として、質量%で、C:0.050~0.40%、Si:0.10~2.50%、Mn:1.20~3.50%、Cr:0~0.80%、Ni:0~5.00%、Cu:0~3.00%、Nb:0~0.10%、Mg:0~0.010%、Ti:0~0.10%、B:0~0.010%、Mo:0~0.5%を含有し、残部がFe及び不純物からなり、前記不純物として、P:0.100%以下、S:0.010%以下、Al:1.200%以下、N:0.0100%以下、に制限した鋼板に連続焼鈍を実施する鋼板の連続焼鈍装置であって、
     炉内の雰囲気中の水素濃度を、10体積%未満とし、前記鋼板の温度が700℃以下の場合に、炉内の雰囲気中の水分圧PH2Oと水素分圧PH2とからなる関係式であるlog(PH2O/PH2)の炉体平均値を下記式(iv)の範囲に調整し、前記鋼板の温度が700℃超800℃以下の場合に、前記炉内の雰囲気中の前記log(PH2O/PH2)の炉体平均値を下記式(v)の範囲に調整し、前記鋼板の温度が800℃超の場合に、前記炉内の雰囲気中の前記log(PH2O/PH2)の炉体平均値を下記式(vi)の範囲かつ露点を-10℃未満に調整する炉内雰囲気調整手段を備える
    ことを特徴とする鋼板の連続焼鈍装置。
       -3.01<log(PH2O/PH2)<-0.07  (iv)
       -1.36<log(PH2O/PH2)<-0.07  (v)
       -3.01<log(PH2O/PH2)≦-0.53  (vi)
PCT/JP2016/055601 2016-02-25 2016-02-25 鋼板の製造方法及び鋼板の連続焼鈍装置 WO2017145322A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112018013937-8A BR112018013937A2 (ja) 2016-02-25 2016-02-25 A manufacturing method of a steel plate, and a continuation annealing device of a steel plate
EP16891479.4A EP3421625A4 (en) 2016-02-25 2016-02-25 METHOD FOR PRODUCING STEEL PLATE AND DEVICE FOR PERMANENTLY GLOWING STEEL PLATE
JP2018501497A JP6673461B2 (ja) 2016-02-25 2016-02-25 鋼板の製造方法及び鋼板の連続焼鈍装置
PCT/JP2016/055601 WO2017145322A1 (ja) 2016-02-25 2016-02-25 鋼板の製造方法及び鋼板の連続焼鈍装置
KR1020187021615A KR102135839B1 (ko) 2016-02-25 2016-02-25 강판의 제조 방법 및 강판의 연속 어닐링 장치
MX2018009259A MX2018009259A (es) 2016-02-25 2016-02-25 Metodo para la fabricacion de laminas de acero y dispositivo para recocido continuo de la lamina de acero.
US16/068,009 US20190024208A1 (en) 2016-02-25 2016-02-25 Method for manufacturing steel sheet and device for continuous annealing steel sheet
CN201680079282.6A CN108474059B (zh) 2016-02-25 2016-02-25 钢板的制造方法及钢板的连续退火装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055601 WO2017145322A1 (ja) 2016-02-25 2016-02-25 鋼板の製造方法及び鋼板の連続焼鈍装置

Publications (1)

Publication Number Publication Date
WO2017145322A1 true WO2017145322A1 (ja) 2017-08-31

Family

ID=59684850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055601 WO2017145322A1 (ja) 2016-02-25 2016-02-25 鋼板の製造方法及び鋼板の連続焼鈍装置

Country Status (8)

Country Link
US (1) US20190024208A1 (ja)
EP (1) EP3421625A4 (ja)
JP (1) JP6673461B2 (ja)
KR (1) KR102135839B1 (ja)
CN (1) CN108474059B (ja)
BR (1) BR112018013937A2 (ja)
MX (1) MX2018009259A (ja)
WO (1) WO2017145322A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014131A1 (ja) * 2020-07-14 2022-01-20 Jfeスチール株式会社 連続焼鈍装置及び連続溶融亜鉛めっき装置、並びに鋼板の製造方法
WO2022196733A1 (ja) * 2021-03-17 2022-09-22 日本製鉄株式会社 鋼板、鋼部材及び被覆鋼部材
WO2023286440A1 (ja) * 2021-07-14 2023-01-19 Jfeスチール株式会社 連続焼鈍装置及び連続溶融亜鉛めっき装置、並びに鋼板の製造方法
WO2023106411A1 (ja) * 2021-12-09 2023-06-15 日本製鉄株式会社 鋼板およびめっき鋼板

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3725904B1 (en) * 2017-12-15 2024-03-06 Nippon Steel Corporation Steel sheet, hot-dip zinc-coated steel sheet, and alloyed hot-dip zinc-coated steel sheet
JP6916129B2 (ja) * 2018-03-02 2021-08-11 株式会社神戸製鋼所 ホットスタンプ用亜鉛めっき鋼板およびその製造方法
CA3182757A1 (en) * 2020-06-12 2021-12-16 Arcelormittal Cold rolled and heat-treated steel sheet and a method of manufacturing thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111675A (ja) * 2009-11-30 2011-06-09 Nippon Steel Corp 耐水素脆化特性に優れた引張最大強度900MPa以上の高強度鋼板および高強度冷延鋼板の製造方法、高強度亜鉛めっき鋼板の製造方法
JP2011111673A (ja) * 2009-11-30 2011-06-09 Nippon Steel Corp 機械切断特性に優れた引張最大強度900MPa以上の高強度冷延鋼板及びその製造方法、並びに、高強度亜鉛めっき鋼板及びその製造方法
WO2013018739A1 (ja) * 2011-07-29 2013-02-07 新日鐵住金株式会社 曲げ性に優れた高強度亜鉛めっき鋼板およびその製造方法
JP2013142198A (ja) * 2012-01-13 2013-07-22 Nippon Steel & Sumitomo Metal Corp めっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法
WO2015037242A1 (ja) * 2013-09-12 2015-03-19 Jfeスチール株式会社 外観性とめっき密着性に優れる溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法
WO2015037241A1 (ja) * 2013-09-12 2015-03-19 Jfeスチール株式会社 外観性とめっき密着性に優れる溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160514A (en) * 1978-06-09 1979-12-19 Nippon Steel Corp Decarburization and annealing method for directional electromagnetic steel plate
US6635313B2 (en) * 2001-11-15 2003-10-21 Isg Technologies, Inc. Method for coating a steel alloy
JP4192051B2 (ja) * 2003-08-19 2008-12-03 新日本製鐵株式会社 高強度合金化溶融亜鉛めっき鋼板の製造方法と製造設備
JP4741376B2 (ja) 2005-01-31 2011-08-03 新日本製鐵株式会社 外観が良好な高強度合金化溶融亜鉛めっき鋼板及びその製造方法と製造設備
JP4912684B2 (ja) 2006-01-18 2012-04-11 新日本製鐵株式会社 高強度溶融亜鉛めっき鋼板およびその製造装置ならびに高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5130701B2 (ja) 2006-08-18 2013-01-30 新日鐵住金株式会社 化成処理性に優れた高張力鋼板
JP5020600B2 (ja) 2006-11-09 2012-09-05 新日本製鐵株式会社 化成処理性に優れた高張力鋼板
WO2009119751A1 (ja) * 2008-03-27 2009-10-01 新日本製鐵株式会社 成形性と溶接性に優れた高強度冷延鋼板、高強度亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、及びそれらの製造方法
PL2264206T3 (pl) * 2008-04-10 2015-04-30 Nippon Steel & Sumitomo Metal Corp Blachy stalowe, o wysokiej wytrzymałości, wykazujące bardzo dobrą równowagę pomiędzy obrabialnością zadziorów oraz ciągliwością oraz doskonałą odporność na zmęczenie, blachy stalowe cynkowane oraz procesy ich wytwarzania
JP5402357B2 (ja) 2008-07-30 2014-01-29 Jfeスチール株式会社 化成処理性に優れた高Si冷延鋼板の製造方法
JP5779847B2 (ja) * 2009-07-29 2015-09-16 Jfeスチール株式会社 化成処理性に優れた高強度冷延鋼板の製造方法
JP2012012683A (ja) 2010-07-02 2012-01-19 Sumitomo Metal Ind Ltd 溶融亜鉛めっき鋼板の製造方法
JP5760361B2 (ja) 2010-09-29 2015-08-12 Jfeスチール株式会社 高強度鋼板およびその製造方法
DE102011051731B4 (de) * 2011-07-11 2013-01-24 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts
TWI465581B (zh) * 2011-09-30 2014-12-21 Nippon Steel & Sumitomo Metal Corp A steel sheet having a melt-plated galvanized layer having excellent plating wetting property and plating adhesion and a method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111675A (ja) * 2009-11-30 2011-06-09 Nippon Steel Corp 耐水素脆化特性に優れた引張最大強度900MPa以上の高強度鋼板および高強度冷延鋼板の製造方法、高強度亜鉛めっき鋼板の製造方法
JP2011111673A (ja) * 2009-11-30 2011-06-09 Nippon Steel Corp 機械切断特性に優れた引張最大強度900MPa以上の高強度冷延鋼板及びその製造方法、並びに、高強度亜鉛めっき鋼板及びその製造方法
WO2013018739A1 (ja) * 2011-07-29 2013-02-07 新日鐵住金株式会社 曲げ性に優れた高強度亜鉛めっき鋼板およびその製造方法
JP2013142198A (ja) * 2012-01-13 2013-07-22 Nippon Steel & Sumitomo Metal Corp めっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法
WO2015037242A1 (ja) * 2013-09-12 2015-03-19 Jfeスチール株式会社 外観性とめっき密着性に優れる溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法
WO2015037241A1 (ja) * 2013-09-12 2015-03-19 Jfeスチール株式会社 外観性とめっき密着性に優れる溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014131A1 (ja) * 2020-07-14 2022-01-20 Jfeスチール株式会社 連続焼鈍装置及び連続溶融亜鉛めっき装置、並びに鋼板の製造方法
JPWO2022014131A1 (ja) * 2020-07-14 2022-01-20
JP7259974B2 (ja) 2020-07-14 2023-04-18 Jfeスチール株式会社 連続焼鈍装置及び連続溶融亜鉛めっき装置、並びに鋼板の製造方法
WO2022196733A1 (ja) * 2021-03-17 2022-09-22 日本製鉄株式会社 鋼板、鋼部材及び被覆鋼部材
WO2023286440A1 (ja) * 2021-07-14 2023-01-19 Jfeスチール株式会社 連続焼鈍装置及び連続溶融亜鉛めっき装置、並びに鋼板の製造方法
JPWO2023286440A1 (ja) * 2021-07-14 2023-01-19
JP7388570B2 (ja) 2021-07-14 2023-11-29 Jfeスチール株式会社 連続焼鈍装置及び連続溶融亜鉛めっき装置、並びに鋼板の製造方法
WO2023106411A1 (ja) * 2021-12-09 2023-06-15 日本製鉄株式会社 鋼板およびめっき鋼板

Also Published As

Publication number Publication date
US20190024208A1 (en) 2019-01-24
KR20180096781A (ko) 2018-08-29
BR112018013937A2 (ja) 2018-12-11
CN108474059B (zh) 2020-03-17
JP6673461B2 (ja) 2020-03-25
JPWO2017145322A1 (ja) 2018-10-18
CN108474059A (zh) 2018-08-31
EP3421625A1 (en) 2019-01-02
EP3421625A4 (en) 2019-07-31
MX2018009259A (es) 2018-11-09
KR102135839B1 (ko) 2020-07-21

Similar Documents

Publication Publication Date Title
WO2017145322A1 (ja) 鋼板の製造方法及び鋼板の連続焼鈍装置
US10138530B2 (en) Method for producing high-strength galvannealed steel sheets
JP6249113B2 (ja) 高降伏比型高強度亜鉛めっき鋼板及びその製造方法
JP5513216B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JP5982905B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP5966528B2 (ja) めっき密着性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5552863B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5888267B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
JP5552859B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2017131055A1 (ja) 高降伏比型高強度亜鉛めっき鋼板及びその製造方法
WO2020136988A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5593771B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP5552864B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5552862B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2007191745A (ja) 高強度溶融亜鉛めっき鋼板およびその製造装置ならびに高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5593770B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
TWI582244B (zh) 鋼板之製造方法及鋼板之連續退火裝置
JP7188659B1 (ja) 鋼板、部材およびそれらの製造方法
KR102606996B1 (ko) 굽힘 가공성이 우수한 고강도 강판 및 그 제조방법
JP5990892B2 (ja) 化成処理性に優れた高Si冷延鋼板の製造方法
WO2024053663A1 (ja) めっき鋼板
JP5552861B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5552860B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2023554116A (ja) 幅方向に沿って優れたスポット溶接性が均等に実現される高強度溶融亜鉛めっき鋼板及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501497

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187021615

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187021615

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/009259

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016891479

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016891479

Country of ref document: EP

Effective date: 20180925

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018013937

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018013937

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180706