WO2019106843A1 - 半導体装置の製造方法、半導体装置 - Google Patents
半導体装置の製造方法、半導体装置 Download PDFInfo
- Publication number
- WO2019106843A1 WO2019106843A1 PCT/JP2017/043345 JP2017043345W WO2019106843A1 WO 2019106843 A1 WO2019106843 A1 WO 2019106843A1 JP 2017043345 W JP2017043345 W JP 2017043345W WO 2019106843 A1 WO2019106843 A1 WO 2019106843A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- semiconductor device
- concentration
- transition
- growth
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims description 50
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 230000007704 transition Effects 0.000 claims abstract description 84
- 230000004888 barrier function Effects 0.000 claims abstract description 61
- 239000002994 raw material Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 239000012159 carrier gas Substances 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 230000005533 two-dimensional electron gas Effects 0.000 description 3
- 229910002704 AlGaN Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7782—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
- H01L29/7783—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02378—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02505—Layer structure consisting of more than two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02579—P-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/201—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
- H01L29/205—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02581—Transition metal or rare earth elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66446—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
- H01L29/66462—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
Definitions
- the present invention relates to a method of manufacturing a semiconductor device and a semiconductor device manufactured by the method.
- high electron mobility transistors HEMTs
- HEMTs high electron mobility transistors
- a barrier layer consisting of 1) may be provided.
- a high concentration of 2DEG can be generated by the polarization effect, sheet resistance can be lowered, and high output can be obtained.
- GaN is used for the channel layer, and AlGaN is often used for the barrier layer.
- a barrier layer made of InAlN or InAlGaN instead of AlGaN.
- InN in the mixed crystal, the difference in lattice constant with the channel layer which is the GaN layer is reduced, and the mixed crystal ratio of AlN can be increased. Thereby, the concentration of the two-dimensional electron gas can be improved.
- a composition such as In 0.17 Al 0.83 N is used to reduce the lattice mismatch with the GaN channel layer.
- damage such as surface roughening during annealing or chemical treatment in a wafer process due to the presence of In and the presence of a large amount of Al. Will occur.
- Patent Document 1 discloses a method of suppressing the impurity concentration of a GaN cap layer without damaging the InAlN barrier layer by dividing the GaN cap layer into a low temperature growth layer and a high temperature growth layer.
- the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a high quality semiconductor device manufacturing method and a semiconductor device.
- a method of manufacturing a semiconductor device includes: forming a barrier layer of InAlN or InAlGaN on a channel layer; forming a transition layer of InGaN on the barrier layer while increasing a growth temperature; Forming a cap layer of GaN on the transition layer.
- a semiconductor device comprises a substrate, a channel layer formed above the substrate, a barrier layer of InAlN or InAlGaN formed on the channel layer, and the barrier layer.
- the transition layer is formed on the barrier layer while raising the growth temperature, and then the cap layer is formed on the transition layer, so that a semiconductor device of high quality can be manufactured.
- FIG. 1 is a cross-sectional view of a semiconductor device in accordance with a first embodiment. It is a timing chart showing growth conditions of a barrier layer, a transition layer, and a cap layer. It is a figure which shows an atomic concentration profile. It is a figure which shows the example of the profile of C density
- FIG. 1 is a cross-sectional view of a semiconductor device.
- FIG. 1 is a cross-sectional view of the semiconductor device according to the first embodiment.
- the semiconductor device according to the first embodiment is a III-V nitride semiconductor epitaxial wafer.
- the group III-V nitride semiconductor epitaxial wafer is, for example, an epitaxial wafer for manufacturing a high electron mobility transistor (HEMT).
- HEMT high electron mobility transistor
- the nucleation layer 12 is grown, for example, to 50 nm by AlN by metal organic vapor phase epitaxial (MOCVD: Metal Organic Chemical Vapor Deposition) method.
- MOCVD Metal Organic Chemical Vapor Deposition
- a high-resistance layer 13 is grown on the nucleation layer 12 by supplying a dopant gas of Fe with GaN doped with Fe, for example, 1 ⁇ 10 18 cm ⁇ 3 .
- the layer thickness of the high resistance layer 13 is, for example, 300 nm.
- the growth conditions of the high resistance layer 13 can be, for example, a temperature of 1050 ° C., a pressure of 200 mbar, and hydrogen as a carrier gas.
- the high resistance layer 13 is provided to improve the withstand voltage and the pinch-off characteristic.
- the channel layer 14 is grown on the high resistance layer 13 with undoped GaN.
- the layer thickness of the channel layer 14 is, for example, 1 ⁇ m.
- the growth conditions can be, for example, a temperature of 1100 ° C., a pressure of 200 mbar, a V / III ratio of 500, and hydrogen as a carrier gas.
- the channel layer 14 is formed above the substrate 10.
- the spacer layer 15 is grown on the channel layer 14 with AlN.
- the layer thickness of the spacer layer 15 is, for example, 1 nm.
- the growth conditions can be, for example, a temperature of 1050 ° C., a pressure of 70 mbar, a V / III ratio of 2000, and hydrogen as a carrier gas.
- the barrier layer 16 is grown on the spacer layer 15 with InAlN.
- the material of the barrier layer 16 can be InAlN or InAlN.
- the barrier layer 16 functions as an electron supply layer.
- the layer thickness of the barrier layer 16 is, for example, 10 nm.
- the growth conditions can be, for example, a temperature of 750 ° C., a pressure of 70 mbar, a V / III ratio of 5000, and nitrogen as a carrier gas.
- the barrier layer 16 of InAlN or InAlGaN is formed on the channel layer 14 via the spacer layer 15.
- the transition layer 17 is formed of InGaN on the barrier layer 16. Further, the cap layer 18 is formed of GaN on the transition layer 17.
- the layer thickness of the transition layer 17 is, for example, 2 nm, and the layer thickness of the cap layer 18 is, for example, 2 nm.
- the growth conditions of the cap layer 18 can be, for example, a temperature of 1050 ° C., a pressure of 70 mbar, a V / III ratio of 500, and hydrogen as a carrier gas.
- an electrode is formed on the upper surface side of the wafer, and a plurality of semiconductor chips can be obtained by dicing the wafer.
- FIG. 2 is a timing chart showing growth conditions of the barrier layer 16, the transition layer 17 and the cap layer 18.
- FIG. 2 shows the growth temperature and the presence or absence of the supply of the Al raw material, the In raw material, and the Ga raw material when forming each layer.
- the thick solid line in the figure represents the supply of the material gas, and the broken line represents the supply stop.
- the carrier gas and the N source are always supplied.
- the temperature is gradually raised from the growth temperature of the barrier layer 16 to the growth temperature of the cap layer 18. That is, the transition layer 17 is formed of InGaN on the barrier layer 16 while raising the growth temperature. At this time, it is not necessary to raise the temperature linearly. For example, some InGaN may be grown while reaching the growth temperature of the cap layer 18 by raising the temperature as quickly as possible during the growth of the transition layer 17. Alternatively, the temperature may be raised stepwise during the growth of the transition layer 17. In any case, the growth temperature is raised during the growth of the transition layer 17. By raising the growth temperature during the growth of the transition layer 17, the concentration of In at the top of the transition layer 17 can be reduced.
- the portion containing a large amount of In can be thinned.
- the method for reducing the supply amount of In raw material is not particularly limited.
- the amount may be reduced stepwise, or in consideration of the decrease in the amount of In taken in with the temperature rise, the amount of decrease gradually You may
- the amount of In taken in decreases. Therefore, the amount of In incorporated into the transition layer 17 can be reduced without decreasing the supply amount of In raw material during the growth of the transition layer 17. As a method of greatly reducing the In uptake, the supply of In raw material can be reduced.
- composition profile in the depth direction of the transition layer 17 by controlling the temperature rising profile during growth of the transition layer 17 and the supply amount decrease profile of the In raw material.
- the temperature rising profile and the supply reduction rate profile of In raw material be linear.
- the growth pressure of the transition layer 17 can be, for example, 70 mbar.
- the V / III ratio of the transition layer 17 is not uniform because the supply amount of the In raw material is decreased.
- the supply amount of the Ga source can be increased according to the decrease of the supply amount of the In source so that the V / III ratio does not become excessively high. That is, the transition layer 17 can be formed while increasing the supply amount of the Ga raw material.
- the layer thickness of the transition layer 17 needs to be larger than the layer thickness necessary for securing the flatness and smaller than the film thickness at which the adverse effect of the lattice mismatch appears.
- the film thickness of the transition layer 17 is desirably 0.5 nm or more and 3 nm or less.
- FIG. 3 shows atomic concentration profiles of In, Al and Ga in the barrier layer 16, the transition layer 17 and the cap layer 18 of a III-V nitride semiconductor epitaxial wafer manufactured by the method of manufacturing a semiconductor device of Embodiment 1.
- FIG. The composition of the transition layer 17 is represented by In x Ga 1-x N using x greater than 0 and less than 1. It can be seen that x in this equation has a smaller value as the position is closer to the cap layer 18. In FIG. 3, for convenience, the lines are drawn so as not to overlap.
- the film can be planarized by causing In to function as a surfactant. Therefore, although the initial stage of the growth of the transition layer 17 is low temperature growth, it can be grown flat. During the formation of the transition layer 17, the flatness of the transition layer 17 can be secured by raising the temperature while utilizing the effect of the In surfactant. Ensuring flatness has the effect of reducing gate leakage.
- FIGS. 4 and 5 are diagrams showing examples of profiles of C concentration in the barrier layer 16, the transition layer 17 and the cap layer 18 of the semiconductor device of the first embodiment. 4 and 5, the C concentration of the cap layer 18 is lower than the C concentration of the barrier layer 16. Further, in FIG. 5, the C concentration of the transition layer 17 is lower than the C concentration of the barrier layer 16. 4 and 5, the C concentration of the cap layer 18 is lower than the C concentration of the transition layer 17.
- the lower C concentration of the cap layer 18 than the C concentration of the barrier layer 16 and the lower C concentration of the transition layer 17 than the C concentration of the barrier layer 16 both lower the C concentration of the cap layer 18 It contributes to suppressing the current collapse. Even if one of the C concentration of the cap layer 18 being lower than the C concentration of the barrier layer 16 and the C concentration of the transition layer 17 being lower than the C concentration of the barrier layer 16 is satisfied, the above effects can be obtained. It is desirable to satisfy both.
- the profile of the C concentration may not necessarily be as shown in FIGS.
- the above effect can be obtained regardless of the magnitude relationship between the C concentration of the transition layer 17 and the cap layer 18.
- the C concentration of cap layer 18 is usually lower than the C concentration of transition layer 17. This is because the growth temperature of the cap layer 18 is higher than the growth temperature of the transition layer 17.
- the C concentration of the cap layer 18 can be lower than the C concentration of the barrier layer 16. Further, since the transition layer 17 is grown while raising the temperature, the C concentration of the transition layer 17 can be made lower than the C concentration of the barrier layer 16. This suppresses current collapse. In order to suppress current collapse, it is important to reduce the C concentration of the layer which is on the surface side of the barrier layer 16 and which is made of a material having a small band gap.
- the C concentration of the cap layer 18 formed of GaN is lower than the C concentration of the transition layer 17 formed of InGaN.
- the V / III ratio it is also possible to make the C concentration of the cap layer higher than that of the transition layer while using the manufacturing method of the present embodiment and Embodiment 2.
- the C concentration of the transition layer 17 does not have to be constant, and may decrease, for example, toward the surface side. In the method of manufacturing a semiconductor device according to the first embodiment, since the growth temperature of the transition layer 17 is increased, the C concentration of the transition layer 17 often decreases toward the surface side.
- the substrate 10 is not limited to SiC but may be Si or sapphire.
- the nucleation layer 12 formed of AlN is an example of a buffer layer for growing the upper GaN layer.
- the high resistance layer 13 is Fe-doped GaN, but C-doped GaN may be used as the high resistance layer, or the high resistance layer itself may not be provided.
- the material of the barrier layer 16 can be InAlN or InAlN. When InAlGaN is used, Ga is supplied during the formation of the barrier layer 16 of FIG.
- the barrier layer 16, the transition layer 17 and the cap layer 18 are grown in succession, they need not always be grown in succession.
- a growth interruption period may be provided in order to shift to the growth conditions of each layer, or to stabilize the gas flow after carrier gas switching.
- trimethylaluminum, trimethylgallium, and ammonia can be used as the Al source, Ga source, and N source, respectively.
- nitrogen as a carrier gas when growing the barrier layer 16 of InAlN
- hydrogen as a carrier gas when growing layers other than the barrier layer 16
- the structure and growth conditions that are not related to the semiconductor device manufacturing method of the first embodiment and the features of the semiconductor device do not have to be as described above.
- the growth pressure of the barrier layer 16 is desirably 100 mbar or less. This is because when the growth pressure is higher than 100 mbar, the Al source reacts in the gas phase and normal growth can not be achieved. On the other hand, it is desirable that the growth pressure of the barrier layer 16 be 25 mbar or more, because if the growth pressure is too low, the amount of C concentration incorporated will be too large.
- FIG. 6 is a timing chart showing a sequence from the formation of the barrier layer 16 to the formation of the cap layer 18 according to the second embodiment.
- the pressure in the furnace is increased and then the transition layer 17 is formed.
- the period from time t2 to time t3 after the growth of the barrier layer 16 is a growth interruption period.
- the pressure in the furnace is increased, and the growth pressure during growth of the transition layer 17 and the growth of the cap layer 18 is made larger than the growth pressure during growth of the barrier layer 16. That is, the pressure in the furnace is increased.
- the C concentration of the transition layer 17 and the cap layer 18 can be further reduced compared to the first embodiment.
- the pressure can be increased because InGaN is used for the transition layer 17. If a material containing Al such as InAlGaN is used for the transition layer 17, the Al raw material reacts in the gas phase, and normal growth can not be performed.
- the inventors have found an optimal structure and fabrication method that solves many problems that are obstacles in suppressing gate leakage and current collapse.
- the growth pressure during the growth of the transition layer 17 and the growth of the cap layer 18 is preferably 150 mbar or more. Thereby, the C concentration can be sufficiently lowered so that current collapse does not occur. On the other hand, if the growth pressure is too high, even if the Al source is not used, a gas phase reaction occurs and normal growth can not be achieved. Therefore, it is desirable that the growth pressure during the growth of the transition layer 17 and the growth of the cap layer 18 be 400 mbar or less.
- the C concentration of the cap layer 18 is preferably 5 ⁇ 10 16 [cm ⁇ 3 ] or less, and the C concentration of the transition layer 17 is 1 ⁇ 10 17 [cm ⁇ 3 ] It is preferable that it is the following.
- a growth interruption period may also be provided after the growth of the transition layer 17.
- the structure or growth conditions that are not related to the effects of the present invention may not be as described in the embodiments.
- FIG. 7 is a cross-sectional view of a semiconductor device in which an electrode is formed on a wafer formed by the method of Embodiment 1 or 2.
- the gate electrode 20, the source electrode 22, and the drain electrode 24 are provided on the cap layer 18.
- the band gap of the barrier layer 16 is larger than the band gap of the channel layer 14, and a two-dimensional electron gas is generated in the channel layer 14 by applying a voltage to the electrode. Thereby, a high electron mobility transistor can be configured.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Junction Field-Effect Transistors (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
図1は、実施の形態1に係る半導体装置の断面図である。実施の形態1に係る半導体装置はIII-V族窒化物半導体エピタキシャルウェハである。このIII-V族窒化物半導体エピタキシャルウェハは、例えば高電子移動度トランジスタ(HEMT:high electron mobility transistor)を製造するためのエピタキシャルウェハである。
実施の形態2に係る半導体装置の製造方法と半導体装置は、実施の形態1との共通点が多いので、実施の形態1との相違点を中心に説明する。図6は、実施の形態2に係るバリア層16の形成からキャップ層18の形成までのシーケンスを示すタイミングチャートである。バリア層16の成長後、炉内圧力を増大させてから遷移層17を形成する。バリア層16の成長後の時刻t2からt3までの期間は成長中断期間である。この成長中断期間中に炉内圧力を上昇させ、遷移層17成長時とキャップ層18成長時の成長圧力を、バリア層16成長時の成長圧力よりも大きくする。つまり、炉内圧力を増大させる。
Claims (16)
- チャネル層の上にInAlNまたはInAlGaNでバリア層を形成することと、
成長温度を上げながら前記バリア層の上にInGaNで遷移層を形成することと、
前記遷移層の上にGaNでキャップ層を形成することと、を備えたことを特徴とする半導体装置の製造方法。 - In原料の供給量を減らしながら前記遷移層を形成することを特徴とする請求項1に記載の半導体装置の製造方法。
- 前記バリア層の成長後、炉内圧力を増大させてから前記遷移層を形成することを特徴とする請求項1または2に記載の半導体装置の製造方法。
- N原料の供給量を減らしながら前記遷移層を形成することを特徴とする請求項1から3のいずれか1項に記載の半導体装置の製造方法。
- Ga原料の供給量を増やしながら前記遷移層を形成することを特徴とする請求項1から4のいずれか1項に記載の半導体装置の製造方法。
- 前記バリア層の成長圧力は25mbar以上、100mbar以下であることを特徴とする請求項1から5のいずれか1項に記載の半導体装置の製造方法。
- 前記キャップ層の成長圧力は150mbar以上、400mbar以下であることを特徴とする請求項1から6のいずれか1項に記載の半導体装置の製造方法。
- 前記遷移層の成長圧力は150mbar以上、400mbar以下であることを特徴とする請求項1から7のいずれか1項に記載の半導体装置の製造方法。
- 基板と、
前記基板の上方に形成されたチャネル層と、
前記チャネル層の上に形成された、InAlNまたはInAlGaNのバリア層と、
前記バリア層の上に形成されたInGaNの遷移層と、
前記遷移層の上にGaNで形成されたキャップ層と、を備え、
前記遷移層の組成は、0より大きく1より小さいxを用いてInxGa1-xNで表され、前記xは前記キャップ層に近い位置ほど小さい値となることを特徴とする半導体装置。 - 前記バリア層のC濃度よりも前記キャップ層のC濃度が低いことを特徴とする請求項9に記載の半導体装置。
- 前記バリア層のC濃度よりも前記遷移層のC濃度が低いことを特徴とする請求項9または10に記載の半導体装置。
- 前記遷移層のC濃度よりも前記キャップ層のC濃度が低いことを特徴とする請求項10または11に記載の半導体装置。
- 前記キャップ層のC濃度は5×1016[cm-3]以下であることを特徴とする請求項9から12のいずれか1項に記載の半導体装置。
- 前記遷移層のC濃度は1×1017[cm-3]以下であることを特徴とする請求項9から13のいずれか1項に記載の半導体装置。
- 前記遷移層の膜厚は0.5nm以上かつ3nm以下であることを特徴とする請求項9から14のいずれか1項に記載の半導体装置。
- 前記キャップ層の上に設けられたゲート電極と、
前記キャップ層の上に設けられたソース電極と、
前記キャップ層の上に設けられたドレイン電極と、を備え、
前記バリア層のバンドギャップは前記チャネル層のバンドギャップより大きく、
高電子移動度トランジスタを構成することを特徴とする請求項9から15のいずれか1項に記載の半導体装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207014639A KR102293962B1 (ko) | 2017-12-01 | 2017-12-01 | 반도체 장치의 제조 방법, 반도체 장치 |
CN201780097248.6A CN111406306B (zh) | 2017-12-01 | 2017-12-01 | 半导体装置的制造方法、半导体装置 |
JP2019556526A JP6841344B2 (ja) | 2017-12-01 | 2017-12-01 | 半導体装置の製造方法、半導体装置 |
DE112017008243.9T DE112017008243T5 (de) | 2017-12-01 | 2017-12-01 | Verfahren zum Herstellen einer Halbleitervorrichtung und Halbleitervorrichtung |
PCT/JP2017/043345 WO2019106843A1 (ja) | 2017-12-01 | 2017-12-01 | 半導体装置の製造方法、半導体装置 |
US16/756,109 US11444172B2 (en) | 2017-12-01 | 2017-12-01 | Method for producing semiconductor device and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/043345 WO2019106843A1 (ja) | 2017-12-01 | 2017-12-01 | 半導体装置の製造方法、半導体装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019106843A1 true WO2019106843A1 (ja) | 2019-06-06 |
Family
ID=66665520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/043345 WO2019106843A1 (ja) | 2017-12-01 | 2017-12-01 | 半導体装置の製造方法、半導体装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11444172B2 (ja) |
JP (1) | JP6841344B2 (ja) |
KR (1) | KR102293962B1 (ja) |
CN (1) | CN111406306B (ja) |
DE (1) | DE112017008243T5 (ja) |
WO (1) | WO2019106843A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111962018A (zh) * | 2019-09-20 | 2020-11-20 | 深圳市晶相技术有限公司 | 一种半导体外延结构及其应用与制造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI671801B (zh) * | 2018-08-01 | 2019-09-11 | 環球晶圓股份有限公司 | 磊晶結構 |
JP7439536B2 (ja) * | 2020-01-28 | 2024-02-28 | 富士通株式会社 | 半導体装置 |
TWI767425B (zh) * | 2020-11-27 | 2022-06-11 | 合晶科技股份有限公司 | 氮化物磊晶片及其製造方法 |
TWI795022B (zh) * | 2021-10-12 | 2023-03-01 | 世界先進積體電路股份有限公司 | 高電子遷移率電晶體 |
US12002857B2 (en) | 2021-11-30 | 2024-06-04 | Vanguard International Semiconductor Corporation | High electron mobility transistor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1154794A (ja) * | 1997-07-29 | 1999-02-26 | Toshiba Corp | 化合物半導体素子及びその製造方法 |
JP2007214257A (ja) * | 2006-02-08 | 2007-08-23 | Rohm Co Ltd | 半導体発光素子およびその製造方法 |
JP2011238931A (ja) * | 2010-05-11 | 2011-11-24 | Iqe Rf Llc | エンハンスメントモード電界効果デバイスおよびそれを製造する方法 |
JP2014239159A (ja) * | 2013-06-07 | 2014-12-18 | 住友電気工業株式会社 | 半導体装置およびその製造方法 |
JP2017183696A (ja) * | 2016-03-28 | 2017-10-05 | エヌエックスピー ユーエスエイ インコーポレイテッドNXP USA,Inc. | 抵抗率増強領域を有する半導体デバイスおよびその製造方法 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07273125A (ja) * | 1994-03-29 | 1995-10-20 | Fujitsu Ltd | 半導体装置の製造方法 |
JPH0856044A (ja) * | 1994-08-10 | 1996-02-27 | Nippon Telegr & Teleph Corp <Ntt> | 半導体レーザ装置 |
JPH09186363A (ja) | 1995-12-27 | 1997-07-15 | Toshiba Corp | 半導体発光素子及びその製造方法 |
US7612390B2 (en) * | 2004-02-05 | 2009-11-03 | Cree, Inc. | Heterojunction transistors including energy barriers |
US7456443B2 (en) * | 2004-11-23 | 2008-11-25 | Cree, Inc. | Transistors having buried n-type and p-type regions beneath the source region |
KR101058031B1 (ko) * | 2005-02-01 | 2011-08-19 | 독립행정법인 산업기술종합연구소 | 고밀도 기록 매체 형성 방법, 패턴 형성 방법 및 그 기록매체 |
JP2007165431A (ja) * | 2005-12-12 | 2007-06-28 | Nippon Telegr & Teleph Corp <Ntt> | 電界効果型トランジスタおよびその製造方法 |
WO2008121980A1 (en) * | 2007-03-29 | 2008-10-09 | The Regents Of The University Of California | N-face high electron mobility transistors with low buffer leakage and low parasitic resistance |
KR100994116B1 (ko) * | 2008-08-20 | 2010-11-15 | 삼성모바일디스플레이주식회사 | 유기 발광 소자 |
JP5136437B2 (ja) * | 2009-01-23 | 2013-02-06 | 住友電気工業株式会社 | 窒化物系半導体光素子を作製する方法 |
US20100270591A1 (en) * | 2009-04-27 | 2010-10-28 | University Of Seoul Industry Cooperation Foundation | High-electron mobility transistor |
CN103003931B (zh) * | 2010-07-29 | 2016-01-13 | 日本碍子株式会社 | 半导体元件用外延基板、半导体元件、pn接合二极管元件以及半导体元件用外延基板的制造方法 |
CN101976667B (zh) * | 2010-09-06 | 2012-07-18 | 清华大学 | 一种高性能cmos器件 |
JP5914999B2 (ja) | 2011-06-08 | 2016-05-11 | 住友電気工業株式会社 | 半導体装置の製造方法 |
US20120315742A1 (en) | 2011-06-08 | 2012-12-13 | Sumitomo Electric Industries, Ltd. | Method for forming nitride semiconductor device |
US20130207078A1 (en) * | 2012-01-18 | 2013-08-15 | Kopin Corporation | InGaN-Based Double Heterostructure Field Effect Transistor and Method of Forming the Same |
US8975666B2 (en) * | 2012-08-22 | 2015-03-10 | United Microelectronics Corp. | MOS transistor and process thereof |
US20140167058A1 (en) * | 2012-08-28 | 2014-06-19 | Iqe, Kc, Llc | Compositionally graded nitride-based high electron mobility transistor |
US9076854B2 (en) * | 2013-08-26 | 2015-07-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device |
JP6283250B2 (ja) * | 2014-04-09 | 2018-02-21 | サンケン電気株式会社 | 半導体基板及び半導体素子 |
US9337278B1 (en) * | 2015-02-25 | 2016-05-10 | Triquint Semiconductor, Inc. | Gallium nitride on high thermal conductivity material device and method |
US20160293596A1 (en) * | 2015-03-30 | 2016-10-06 | Texas Instruments Incorporated | Normally off iii-nitride transistor |
JP6540461B2 (ja) * | 2015-10-30 | 2019-07-10 | 富士通株式会社 | 半導体装置及び半導体装置の製造方法 |
JP2017139390A (ja) * | 2016-02-04 | 2017-08-10 | 富士通株式会社 | 半導体装置、電源装置及び増幅器 |
US10396274B2 (en) * | 2016-03-08 | 2019-08-27 | Tohoku University | Spin electronics element and method of manufacturing thereof |
CN105895526B (zh) * | 2016-04-26 | 2019-02-01 | 中国科学院微电子研究所 | 一种GaN基功率电子器件及其制备方法 |
CN107785243B (zh) * | 2016-08-26 | 2023-06-20 | 住友电工光电子器件创新株式会社 | 形成氮化物半导体层的工艺 |
JP7019942B2 (ja) * | 2016-09-28 | 2022-02-16 | 富士通株式会社 | 化合物半導体基板及びその製造方法、化合物半導体装置及びその製造方法、電源装置、高出力増幅器 |
US11101379B2 (en) * | 2016-11-16 | 2021-08-24 | Theregenis Of The University Of California | Structure for increasing mobility in a high electron mobility transistor |
US10290713B2 (en) * | 2017-07-31 | 2019-05-14 | Qorvo Us, Inc. | Field-effect transistor |
-
2017
- 2017-12-01 KR KR1020207014639A patent/KR102293962B1/ko active IP Right Grant
- 2017-12-01 CN CN201780097248.6A patent/CN111406306B/zh active Active
- 2017-12-01 US US16/756,109 patent/US11444172B2/en active Active
- 2017-12-01 WO PCT/JP2017/043345 patent/WO2019106843A1/ja active Application Filing
- 2017-12-01 JP JP2019556526A patent/JP6841344B2/ja active Active
- 2017-12-01 DE DE112017008243.9T patent/DE112017008243T5/de not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1154794A (ja) * | 1997-07-29 | 1999-02-26 | Toshiba Corp | 化合物半導体素子及びその製造方法 |
JP2007214257A (ja) * | 2006-02-08 | 2007-08-23 | Rohm Co Ltd | 半導体発光素子およびその製造方法 |
JP2011238931A (ja) * | 2010-05-11 | 2011-11-24 | Iqe Rf Llc | エンハンスメントモード電界効果デバイスおよびそれを製造する方法 |
JP2014239159A (ja) * | 2013-06-07 | 2014-12-18 | 住友電気工業株式会社 | 半導体装置およびその製造方法 |
JP2017183696A (ja) * | 2016-03-28 | 2017-10-05 | エヌエックスピー ユーエスエイ インコーポレイテッドNXP USA,Inc. | 抵抗率増強領域を有する半導体デバイスおよびその製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111962018A (zh) * | 2019-09-20 | 2020-11-20 | 深圳市晶相技术有限公司 | 一种半导体外延结构及其应用与制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111406306B (zh) | 2024-03-12 |
JP6841344B2 (ja) | 2021-03-10 |
US11444172B2 (en) | 2022-09-13 |
DE112017008243T5 (de) | 2020-08-13 |
JPWO2019106843A1 (ja) | 2020-10-08 |
KR20200066726A (ko) | 2020-06-10 |
KR102293962B1 (ko) | 2021-08-25 |
US20200243668A1 (en) | 2020-07-30 |
CN111406306A (zh) | 2020-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6841344B2 (ja) | 半導体装置の製造方法、半導体装置 | |
US9419125B1 (en) | Doped barrier layers in epitaxial group III nitrides | |
TWI469343B (zh) | 化合物半導體裝置及其製造方法 | |
JP6392498B2 (ja) | 化合物半導体装置及びその製造方法 | |
US9431526B2 (en) | Heterostructure with carrier concentration enhanced by single crystal REO induced strains | |
JP2014239159A (ja) | 半導体装置およびその製造方法 | |
JP6615075B2 (ja) | 半導体デバイス用基板、半導体デバイス、及び、半導体デバイス用基板の製造方法 | |
US9793363B1 (en) | GaN semiconductor device comprising carbon and iron | |
CN108231556B (zh) | Iii-v族氮化物半导体外延片的制造方法 | |
JP4468744B2 (ja) | 窒化物半導体薄膜の作製方法 | |
KR102077674B1 (ko) | 질화물 반도체 소자 및 그 제조 방법 | |
KR102111459B1 (ko) | 질화물 반도체 소자 및 그 제조 방법 | |
JP2007123824A (ja) | Iii族窒化物系化合物半導体を用いた電子装置 | |
CN110047924B (zh) | 利用GaN基窄阱多量子阱结构的高阻缓冲层及制备方法 | |
JP2006032524A (ja) | 窒化物半導体ヘテロ構造電界効果トランジスタ構造とその作製法 | |
US20160211358A1 (en) | Semiconductor device | |
KR102067597B1 (ko) | 질화물 반도체 소자 및 그 제조 방법 | |
JP7120334B2 (ja) | 半導体装置および半導体装置の製造方法 | |
KR102111458B1 (ko) | 질화물 반도체 소자 및 그 제조 방법 | |
JP7201571B2 (ja) | 窒化物半導体基板および窒化物半導体装置 | |
WO2022180659A1 (ja) | Iii族窒化物半導体エピタキシャルウエハの製造方法 | |
KR102080744B1 (ko) | 질화물 반도체 소자 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17933593 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019556526 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207014639 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17933593 Country of ref document: EP Kind code of ref document: A1 |