TWI795022B - 高電子遷移率電晶體 - Google Patents

高電子遷移率電晶體 Download PDF

Info

Publication number
TWI795022B
TWI795022B TW110137701A TW110137701A TWI795022B TW I795022 B TWI795022 B TW I795022B TW 110137701 A TW110137701 A TW 110137701A TW 110137701 A TW110137701 A TW 110137701A TW I795022 B TWI795022 B TW I795022B
Authority
TW
Taiwan
Prior art keywords
layer
electrode
compound semiconductor
electron mobility
high electron
Prior art date
Application number
TW110137701A
Other languages
English (en)
Other versions
TW202316672A (zh
Inventor
林鑫成
黃嘉慶
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW110137701A priority Critical patent/TWI795022B/zh
Application granted granted Critical
Publication of TWI795022B publication Critical patent/TWI795022B/zh
Publication of TW202316672A publication Critical patent/TW202316672A/zh

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

一種高電子遷移率電晶體,包括基底、化合物半導體疊層、蓋層、閘極電極、源極電極、汲極電極以及埋藏電極及/或導電結構。基底具有主動區,化合物半導體疊層包括緩衝層、高電阻層、通道層及阻障層,依序設置於基底上,蓋層設置於化合物半導體疊層上,閘極電極設置於蓋層上,且沿第一方向延伸,源極電極和汲極電極設置於化合物半導體疊層上,分別位於閘極電極的兩側且沿第二方向排列,其中第一方向與第二方向垂直,埋藏電極及/或導電結構穿過化合物半導體疊層,圍繞或置於主動區內,並且具有固定電位或接地。

Description

高電子遷移率電晶體
本揭露係關於半導體裝置的領域,特別是關於一種高電子遷移率電晶體。
在半導體技術中,III-V族的半導體化合物可用於形成各種積體電路裝置,例如:高功率場效電晶體、高頻電晶體或高電子遷移率電晶體(high electron mobility transistor,HEMT)。HEMT是屬於具有二維電子氣(two dimensional electron gas,2-DEG)的一種電晶體,其2-DEG會鄰近於能隙不同的兩種材料之間的接合面(亦即,異質接合面)。由於HEMT並非使用摻雜區域作為電晶體的載子通道,而是使用2-DEG作為電晶體的載子通道,因此相較於習知的金氧半場效電晶體(MOSFET),HEMT具有多種吸引人的特性,例如:高電子遷移率和以高頻率傳輸信號之能力。
雖然高電子遷移率電晶體具有多項優勢,但是習知的HEMT在大電流和高電壓的應用上仍有許多需要克服的問題。
有鑑於此,有必要提出一種改良的高電子遷移率電晶體,以改善習知HEMT所存在之缺失。
根據本揭露的一實施例,提供一種高電子遷移率電晶體,包括基底、化合物半導體疊層、蓋層、閘極電極、源極電極、汲極電極及埋藏電極。基底具有主動區,化合物半導體疊層包含緩衝層、高電阻層、通道層及阻障層,依序設置於基底上,閘極電極設置於蓋層上,且沿第一方向延伸,源極電極和汲極電極設置於化合物半導體疊層上,分別位於閘極電極的兩側且沿第二方向排列,其中第一方向與第二方向垂直,埋藏電極穿過化合物半導體疊層,設置於主動區,並且具有固定電位或接地,其中源極電極包括沿第一方向排列的第一部份和第二部份,埋藏電極位於第一部份和第二部份之間,並且埋藏電極與第一部份和第二部份隔開。
根據本揭露的一實施例,提供一種高電子遷移率電晶體,包括基底、化合物半導體疊層及導電結構。基底具有主動區,主動區包括複數個重複單元;化合物半導體疊層包括緩衝層、高電阻層、通道層及阻障層,依序設置於基底上;導電結構穿過化合物半導體疊層,圍繞主動區,並且具有固定電位或接地,其中至少一個重複單元包括蓋層設置於化合物半導體疊層上;閘極電極設置於蓋層上,沿第一方向延伸;以及源極電極和汲極電極設置於化合物半導體疊層上,分別位於閘極電極的兩側且沿第二方向排列,其中第一方向與第二方向垂直。
為讓本揭露之特徵明顯易懂,下文特舉出實施例,並配合所附圖式,作詳細說明如下。
100:高電子遷移率電晶體
100A:主動區
100B:週邊區
100U:重複單元
101:核心基材
102:基板
103:第一絕緣材料層
104:絕緣層
105:半導體材料層
106:半導體層
107:第二絕緣材料層
109:複合材料層
110:基底
111:半導體層
112:緩衝層
114:高電阻層
116:通道層
118:阻障層
120:化合物半導體疊層
121:蓋層
122-1、122-2:閘極電極
122P:閘極電極的接觸墊
132:源極電極
132a、132b:源極部份
132P:源極電極的接觸墊
132V:導通孔
135:源極金屬圖案
136:汲極電極
136P:汲極電極的接觸墊
138:介電層
140:導電結構
142:埋藏電極
142V:導通孔
144:金屬導線層
150:二維電子氣區域
160:互連結構
d1:距離
d2:距離
為了使下文更容易被理解,在閱讀本揭露時可同時參考圖式及其詳細文字說明。透過本文中之具體實施例並參考相對應的圖式,俾以詳細解說本揭露之 具體實施例,並用以闡述本揭露之具體實施例之作用原理。此外,為了清楚起見,圖式中的各特徵可能未按照實際的比例繪製,因此某些圖式中的部分特徵的尺寸可能被刻意放大或縮小。
第1圖是根據本揭露一實施例所繪示的高電子遷移率電晶體(HEMT)的俯視圖。
第2A圖是根據本揭露另一實施例所繪示的HEMT的重複單元之俯視圖。
第2B圖是根據本揭露又另一實施例所繪示的HEMT的重複單元之俯視圖。
第3圖是根據本揭露一實施例所繪示的HEMT的剖面示意圖,其係沿著第1圖的線A-A’繪製。
第4圖是根據本揭露一實施例所繪示的HEMT之基底的剖面示意圖。
第5圖是根據本揭露另一實施例所繪示的HEMT之基底的剖面示意圖。
第6圖是根據本揭露一實施例所繪示的HEMT的剖面示意圖,其係沿著第1圖的線B-B’繪製。
第7圖是根據本揭露另一實施例所繪示的HEMT的剖面示意圖,其係沿著第1圖的線B-B’繪製。
本揭露提供了數個不同的實施例,可用於實現本揭露的不同特徵。為簡化說明起見,本揭露也同時描述了特定構件與佈置的範例。提供這些實施例的目的僅在於示意,而非予以任何限制。舉例而言,下文中針對「第一特徵形成在第二特徵上或上方」的敘述,其可以是指「第一特徵與第二特徵直接接觸」,也可以是指「第一特徵與第二特徵間另存在有其他特徵」,致使第一特徵與第二特徵並不直接接觸。此外,本揭露中的各種實施例可能使用重複的參考符號和/或文字註記。使用這些重複的參考符號與註記是為了使敘述更簡潔和明 確,而非用以指示不同的實施例及/或配置之間的關聯性。
另外,針對本揭露中所提及的空間相關的敘述詞彙,例如:「在...之下」,「低」,「下」,「上方」,「之上」,「下」,「頂」,「底」和類似詞彙時,為便於敘述,其用法均在於描述圖式中一個元件或特徵與另一個(或多個)元件或特徵的相對關係。除了圖式中所顯示的擺向外,這些空間相關詞彙也用來描述半導體裝置在使用中以及操作時的可能擺向。隨著半導體裝置的擺向的不同(旋轉90度或其它方位),用以描述其擺向的空間相關敘述亦應透過類似的方式予以解釋。
雖然本揭露使用第一、第二、第三等等用詞,以敘述種種元件、部件、區域、層、及/或區塊(section),但應了解此等元件、部件、區域、層、及/或區塊不應被此等用詞所限制。此等用詞僅是用以區分某一元件、部件、區域、層、及/或區塊與另一個元件、部件、區域、層、及/或區塊,其本身並不意含及代表該元件有任何之前的序數,也不代表某一元件與另一元件的排列順序、或是製造方法上的順序。因此,在不背離本揭露之具體實施例之範疇下,下列所討論之第一元件、部件、區域、層、或區塊亦可以第二元件、部件、區域、層、或區塊之詞稱之。
本揭露中所提及的「約」或「實質上」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」或「實質上」的情況下,仍可隱含「約」或「實質上」之含義。
在本揭露中,「三五族半導體(group III-V semiconductor)」係指包含至少一第三族(group III)元素與至少一第五族(group V)元素的化合物半導體。其中,第三族元素可以是硼(B)、鋁(Al)、鎵(Ga)或銦(In),而第五族元素可以是氮(N)、 磷(P)、砷(As)或銻(Sb)。進一步而言,「三五族半導體」可以是二元化合物半導體、三元化合物半導體或四元化合物半導體,包括:氮化鎵(GaN)、磷化銦(InP)、砷化鋁(AlAs)、砷化鎵(GaAs)、氮化鋁鎵(AlGaN)、氮化銦鋁鎵(InAlGaN)、氮化銦鎵(InGaN)、氮化鋁(AlN)、磷化鎵銦(GaInP)、砷化鋁鎵(AlGaAs)、砷化鋁銦(InAlAs)、砷化鎵銦(InGaAs)、氮化鋁(AlN)、磷化鎵銦(GaInP)、砷化鋁鎵(AlGaAs)、砷化鋁銦(InAlAs)、砷化鎵銦(InGaAs)、其類似物或上述化合物的組合,但不限於此。此外,端視需求,三五族半導體內亦可包括摻質,而為具有特定導電型的三五族半導體,例如n型或p型三五族半導體。在下文中,三五族半導體又可稱為III-V族半導體。
雖然下文係藉由具體實施例以描述本揭露的發明,然而本揭露的發明原理亦可應用至其他的實施例。此外,為了不致使本發明之精神晦澀難懂,特定的細節會被予以省略,該些被省略的細節係屬於所屬技術領域中具有通常知識者的知識範圍。
本揭露係關於一種高電子遷移率電晶體(HEMT),其可以作為電壓轉換器應用之功率切換電晶體。相較於矽功率電晶體,由於III-V族半導體HEMT(III-V HEMT)具有較寬的能帶間隙,因此具有低導通電阻(on-state resistance)與低切換損失之特徵。
第1圖是根據本揭露一實施例所繪示的高電子遷移率電晶體的平面示意圖。如第1圖所示,根據本揭露一實施例,高電子遷移率電晶體(HEMT)100,例如增強型HEMT,可分為主動區(active area)100A和圍繞主動區100A的週邊區(peripheral area)100B,其中導電結構140不在主動區100A,且與主動區100A內的源極電極132、閘極電極122-1、122-2和汲極電極136隔開,並且導電結構140經由互連結構電性連接至源極電極132。雖然第1圖中繪示的導電結構140為連續的環狀物,在其他實施例中,導電結構140也可以是不連續的環狀物圍繞主動區。另外, 導電結構140可以與密封環(seal ring)結構(未標於圖示)一起設置在圍繞主動區100A的週邊區(peripheral area)100B內。
根據本揭露一實施例,主動區100A包含複數個重複單元(repeat unit)100U,在各重複單元100U內可包含依序沿著某方向(例如y方向)排列的源極電極132、閘極電極122-1、汲極電極136、及閘極電極122-2。其中,源極電極132包含多個源極部份,例如源極部份132a、132b,這些源極部份132a、132b係沿著另一方向(例如x方向)排列且互相隔開,因此對於沿著x方向延伸的多個源極部份132a、132b而言,這些源極部份132a、132b可以構成源極指狀電極(source finger electrode)的其中一個分支電極(finger),並且源極電極132位於閘極電極122-1的一側。各汲極電極136則可以構成汲極指狀電極(drain finger electrode)的其中一個分支電極,且位於閘極電極122-1的另一側。此外,在一實施例中。汲極電極136還設置於兩個閘極電極122-1和122-2之間,此實施例可稱為共用汲極(common drain)的布局方式。同時,在第1圖的布局方式中,源極電極132放置在兩個閘極電極122-1、122-2的外側,並且源極電極132也放置在主動區100A的上下兩側。另外,如第1圖所示,在一實施例中,由各源極電極132構成的源極指狀電極連接至一源極電極的接觸墊(pad)132P,由各閘極電極122-1、122-2構成的閘極指狀電極連接至一閘極電極的接觸墊122P,源極電極的接觸墊132P和閘極電極的接觸墊122P可放置在主動區100A的同一側(例如左側),且源極電極的接觸墊132P可放置在閘極電極的接觸墊122P的外側,而由各汲極電極136構成的汲極指狀電極則連接至一汲極電極的接觸墊136P,汲極電極的接觸墊136P放置在主動區100A的另一側(例如右側)。上述源極電極的接觸墊132P、閘極電極的接觸墊122P和汲極電極的接觸墊136P的數量和布局方式僅為舉例說明,本揭露的實施例不限於此。
根據本揭露之實施例,主動區100A的至少一個重複單元100U包含埋藏電極(buried through electrode)142,且埋藏電極142設置於源極電極132的相鄰源 極部份132a和132b之間,並且埋藏電極142與源極電極132的這些源極部份132a、132b也互相隔開。一個重複單元100U內可包含一個或多個埋藏電極142。此外,在一實施例中,主動區100A的每個重複單元100U內皆可設置一個或多個埋藏電極142。在另一實施例中,主動區100A的一些重複單元100U內可設置一個或多個埋藏電極142,而其他的重複單元100U內則不設置埋藏電極142,例如埋藏電極142可間隔一個或多個重複單元100U設置,因此對於兩相鄰的重複單元100U,可能只有其中一者會設置埋藏電極142,但不限定於此。主動區100A內的埋藏電極142的數量及設置方式可以依據HEMT的電性需求來決定。
第2A圖是根據本揭露另一實施例所繪示的HEMT的重複單元之平面示意圖。第2A圖與第1圖的差異在於第2A圖的重複單元100U的布局方式為共用源極(common source),其中源極電極132設置於兩個閘極電極122-1和122-2之間。同時,在第2A圖的重複單元100U之布局方式中,汲極電極136放置在兩個閘極電極122-1、122-2的外側,並且汲極電極136也放置在主動區100A的上下兩側。
第2B圖是根據本揭露又另一實施例所繪示的HEMT的重複單元之平面示意圖。第2B圖與第1圖的差異在於第2B圖的重複單元100U中的源極電極132無斷開,亦即源極電極132沿著x方向具有連續的電極圖案,從俯視方向觀看,一個或多個埋藏電極142設置在源極電極132的投影區域中,例如多個埋藏電極142可沿著x方向互相隔開地排列在源極電極132的投影區域中。在一實施例中,埋藏電極142的頂面可以與源極電極132的頂面在同一平面上。在其他實施例中,埋藏電極142的頂面可以低於源極電極132的頂面,並且埋藏電極142的頂面最低會與源極電極132的底面接觸,使得埋藏電極142電性連接至源極電極132。
第3圖是根據本揭露一實施例所繪示的HEMT的剖面示意圖,其係沿著第1圖的線A-A’繪製。如第3圖所示,根據本揭露一實施例,高電子遷移率電晶體100包含基底110,半導體層111設置在基底110上,半導體層111可以作為晶 種層,例如含矽晶種層,因此藉由設置半導體層111,可以使得化合物半導體疊層120成長於晶種層之上。此外,半導體層111具有適當的導電性,因此並非為電絕緣。根據本揭露一些實施例,半導體層111的材料包括矽、氮化鎵、陶瓷、碳化矽、氮化鋁、氧化鋁或前述組合。化合物半導體疊層120設置在半導體層111上,其中化合物半導體疊層120包含緩衝層(buffer layer)112、高電阻層(high resistance layer)114、通道層(channel)116和阻障層(barrier layer)118由下到上依序設置在半導體層111及基底110上。化合物半導體疊層120的各層可由III-V族半導體磊晶成長形成,根據本揭露一實施例,緩衝層112可以包括超晶格(super lattice)結構,例如是包括複數個成對設置的III-V族二元半導體/III-V族三元半導體,例如氮化鋁(AlN)、氮化鋁鎵(AlGaN)或前述之組合,高電阻層114的成份例如是摻雜碳的氮化鎵(C:GaN),且高電阻層114的電阻率高於緩衝層112的電阻率。
通道層116可包含一層或多層III-V族半導體層,III-V族半導體層的成份可以是GaN、AlGaN、InGaN或InAlGaN,但不限定於此。此外,通道層116可以是未經摻雜的或者被摻雜的一層或多層III-V族半導體層,被摻雜的通道層116例如是p型的III-V族半導體層,對p型的III-V族半導體層而言,其摻質可以是碳(C)、鐵(Fe)、鎂(Mg)或鋅(Zn),但不限定於此。阻障層118可包含一層或多層III-V族半導體層,且其組成會不同於通道層116的III-V族半導體。舉例來說,阻障層118可包含AlN、AlzGaN或其組合。根據一實施例,通道層116可以是未經摻雜的GaN層,而阻障層118可以是本質上為n型的AlGaN層。
此外,在阻障層118上還設置圖案化的蓋層(cap layer)121,以空乏二維電子氣(2-DEG)區域,達成HEMT的常關(normally-off)狀態。在一實施例中,蓋層121例如是p型蓋層或n型蓋層。蓋層121可以是被摻雜的一層或多層III-V族半導體層,其成份可以是GaN、AlGaN、InGaN或InAlGaN,其摻質可以是C、Fe、Mg或Zn,但不限定於此。根據一實施例,蓋層121可以是p型的GaN層。閘極電極122-1 設置於蓋層121上,且沿第一方向(例如x方向)延伸。源極電極132和汲極電極136設置於化合物半導體疊層120上,分別位於閘極電極122-1的兩側,且沿第二方向(例如y方向)排列,上述第一方向與第二方向垂直,並且源極電極132和汲極電極136可穿過阻障層118到達通道層116的頂面,或者到達通道層116的一深度位置。另外,根據本揭露一實施例,如第3圖所示,汲極電極136和閘極電極122-1的距離d2可大於源極電極132和閘極電極122-1的距離d1,這是因為汲極電極136通常會被施加高電壓,所以汲極電極136和閘極電極122-1之間的距離d2會大於源極電極132和閘極電極122-1之間的距離d1。
由於通道層116和阻障層118間具有不連續的能隙,藉由將通道層116和阻障層118互相堆疊設置,電子會因壓電效應而被聚集於通道層116和阻障層118之間的異質接面,因而產生高電子遷移率的薄層,亦即二維電子氣(2-DEG)區域150。針對常關型(normally off)元件而言,當不施加電壓至閘極電極122-1時,被蓋層121所覆蓋的區域不會形成2-DEG(如第3圖所示),可視為是2-DEG截斷區域,此時源極電極132和汲極電極136之間不會導通。當施加正電壓至閘極電極122-1時,被蓋層121所覆蓋的區域會形成2-DEG,使得源極電極132和汲極電極136之間產生連續的2-DEG區域150,而讓源極電極132和汲極電極136之間導通。
根據一實施例,源極電極132和汲極電極136可以是單層或多層的結構,且其組成可以包括歐姆接觸金屬。其中,歐姆接觸金屬係指可以和半導體層(例如通道層116)產生歐姆接觸(ohmic contact)的金屬、合金或其堆疊層,例如是Ti、Ti/Al、Ti/Al/Ti/TiN、Ti/Al/Ti/Au、Ti/Al/Ni/Au或Ti/Al/Mo/Au,但不限定於此。閘極電極122-1、122-2可以是單層或多層的結構,例如是包含第一導電層和第二導電層的雙層結構。其中,第一導電層可以直接接觸蓋層121,且其組成包括蕭特基接觸金屬。其中,蕭特基接觸金屬係指可以和半導體層(例如蓋層121)產生蕭特基接觸(Schottky contact)的金屬、合金或其堆疊層,例如是TiN、W、Pt 或Ni,但不限定於此。第二導電層的組成可以包括Ti、Al、Au、Mo,但不限定於此。根據一實施例,第一導電層還可以包含耐火性金屬的金屬氮化物,且耐火性金屬可選自由鈦、鋯、鉿、釩、鈮、鉭、鉻、鉬、鎢、錳、鎝、錸、釕、鋨、銠及銥所構成之群組。
根據本揭露一實施例,導電結構140穿過化合物半導體疊層120而直接接觸半導體層111,例如導電結構140可接觸半導體層111的頂面,或者到達半導體層111的一深度位置,或者貫穿半導體層111。根據本揭露一實施例,導電結構140可以經由在化合物半導體疊層120中蝕刻出溝槽,露出半導體層111,並且在溝槽中填充導電材料而形成。因此,導電結構140可以與半導體層111電性連接,並且根據本揭露的一些實施例,可依照實際需求提供固定電位,例如0V或1V給導電結構140,使得與導電結構140電性連接的半導體層111也具有固定電位。於一較佳實施例中,導電結構140與半導體層111為接地,如此可以避免HEMT 100產生背面閘極(back-gating)效應。導電結構140的導電材料可以是金屬、合金或多晶矽,金屬或合金材料例如是Au、Ni、Pt、Pd、Ir、Ti、Cr、W、Al、Cu、TiN、TaN或前述之組合。此外,導電結構140還可以包含絕緣襯層(insulating lining layer)(未繪示)沉積在前述溝槽的內壁上,以將導電結構140中的導電材料隔離於化合物半導體疊層120,並且還可以增加導電材料的附著性,絕緣襯層的材料例如是氮化矽、氧化矽、氮氧化矽或前述之組合。其中,為了使導電結構140電連接至半導體層111,導電材料和半導體層111之間可以未設置絕緣襯層。
第4圖是根據本揭露一實施例所繪示的HEMT之基底的剖面示意圖。如第4圖所示,根據本揭露一實施例,HEMT 100的基底110可以包含核心基材101,以及包裹核心基材101的頂面、底面和側面的複合材料層109。核心基材101的材料可以是與後續形成在基底110上的化合物半導體疊層120的熱膨脹係數匹配的材料,例如陶瓷、碳化矽、氮化鋁或藍寶石,並且核心基材101可以選用硬 度較大的材料,以提供基底110足夠的機械強度。根據本揭露一實施例,複合材料層109可包含第一絕緣材料層103、半導體材料層105、和第二絕緣材料層107,其中半導體材料層105夾設於第一絕緣材料層103和第二絕緣材料層107之間。第一絕緣材料層103可以是氧化物,例如氧化矽;第二絕緣材料層107可以是氮化物、氧化物、氮氧化物或前述之組合,例如第二絕緣材料層107可由氮化矽、氧化矽和氮化矽組成;半導體材料層105可以是矽層或多晶矽層。
第5圖是根據本揭露另一實施例所繪示的HEMT之基底的剖面示意圖。如第5圖所示,根據本揭露一實施例,HEMT 100的基底110可以是絕緣體上覆矽(silicon-on-insulator,SOI)基底,其包含基板102、絕緣層104和半導體層106。基板102可以是支撐晶圓(handle wafer),絕緣層104可以是氧化物層,例如氧化矽,且可以經由熱氧化或沉積方式形成絕緣層104在基板102上。半導體層106可以是由元件晶圓(device wafer)而被轉移至基板102上,舉例而言,可以經由鍵合(bonding)方式將元件晶圓靠近半導體層106的一側鍵結至絕緣層104上,並將元件晶圓減薄,以形成半導體層106。在一實施例中,HEMT 100的半導體層111也可由SOI基底的半導體層106提供。
第6圖是根據本揭露一實施例所繪示的HEMT的剖面示意圖,其係沿著第1圖的線B-B’繪製。如第6圖所示,根據本揭露一實施例,HEMT 100包含埋藏電極142設置在源極電極132的相鄰源極部份之間,並且埋藏電極142穿過化合物半導體疊層120直接接觸半導體層111,例如埋藏電極142可接觸半導體層111的頂面,或者到達半導體層111的一深度位置,或者貫穿半導體層111。根據本揭露一實施例,埋藏電極142可以經由在化合物半導體疊層120中蝕刻出貫穿孔洞(through via hole),露出半導體層111,並且在貫穿孔洞中填充導電材料而形成。因此,埋藏電極142可以與半導體層111電性連接,並且根據本揭露一實施例,可依照實際需求提供固定電位,例如0V或1V給埋藏電極142,使得與埋藏電極142 電性連接的半導體層111也具有固定電位。於一較佳實施例中,埋藏電極142和半導體層111為接地,經由設置在主動區100A內的埋藏電極142,可以讓HEMT 100的主動區100A內的半導體層111全部都具有固定電位或穩定地接地。
根據本揭露一實施例,埋藏電極142的導電材料可以與導電結構140相同,並且埋藏電極142和導電結構140可以由相同的蝕刻和沉積製程一起形成,例如可以在化合物半導體疊層120上形成硬遮罩(未繪示),硬遮罩的開口暴露出預定形成導電結構140和埋藏電極142的區域,經由同一道蝕刻製程,在化合物半導體疊層120中蝕刻出導電結構140的溝槽和埋藏電極142的貫穿孔洞,然後經由同一道沉積製程,於前述溝槽和貫穿孔洞中沉積導電材料,同時形成導電結構140和埋藏電極142。
此外,根據本揭露一實施例,如第6圖所示,埋藏電極142經由互連結構160與源極電極132電性連接而具有固定電位或接地,互連結構160包含形成在介電層138中的導通孔(via)132V和142V,以及形成在介電層138上的金屬導線層144,其中導通孔132V連接至源極電極132,導通孔142V則連接至埋藏電極142,金屬導線層144連接至導通孔132V和142V。另外,雖然第6圖中未繪示,圍繞主動區100A的導電結構140也可以經由互連結構160與源極電極132電性連接而具有固定電位或電性接地,例如導電結構140可以經由介電層138中的其他導通孔和介電層138上的金屬導線層144,電性連接至位於主動區100A的任一源極電極132或源極電極的接觸墊132P。
第7圖是根據本揭露另一實施例所繪示的HEMT的剖面示意圖,其係沿著第1圖的線B-B’繪製。第7圖與第6圖的差異在於第7圖的HEMT 100的源極電極132的多個源極部份上另設置了源極金屬圖案135,埋藏電極142位於源極金屬圖案135正下方,並且埋藏電極142直接接觸源極金屬圖案135而電性連接至源極電極132。在此實施例中,埋藏電極142經由源極金屬圖案135與源極電極132電性 連接而具有固定電位或電性接地。根據本揭露一實施例,源極金屬圖案135與源極電極132之間可以額外設置導通孔,使得源極金屬圖案135可以透過導通孔而電性連接源極電極132的那些源極部份。
根據本揭露的實施例,圍繞主動區100A的導電結構140與基底110上的半導體層111電性連接並且具有固定電位或接地,如此可以避免高電子遷移率電晶體100的半導體層111產生背面閘極(back-gating)效應,使得HEMT 100的動態導通電阻(dynamic on-state resistance,dynamic Ron)在高電壓和大電流應用時,相較於低電壓和小電流之應用,不至於大幅提昇,因此提昇了HEMT 100的操作穩定性。
此外,在主動區100A內的埋藏電極142也直接接觸和電性連接基底110上的半導體層111並且具有固定電位或接地,以進一步提昇HEMT 100的主動區100A內的半導體層111的接地效果或穩定電位的效果,特別是針對元件尺寸變大時,主動區100A的尺寸也會變大,而設置於主動區100A內的埋藏電極142可以讓半導體層111全部具有固定電位或穩定地電性接地,讓本揭露的HEMT在大電流和高電壓的應用時,相較於未具有圍繞主動區的導電結構的HEMT可以大幅地降低動態導通電阻,例如在電壓400伏特(V)和電流1安培(A)時,本揭露的實施例的動態導通電阻(dynamic Ron)相較於未具有圍繞主動區的導電結構的HEMT降低了至少約13%,而在電壓400伏特(V)和電流4安培(A)時,本揭露的實施例的動態導通電阻相較於未具有圍繞主動區的導電結構的HEMT更大幅地降低至少約57%,以提昇高電子遷移率電晶體的電性效能。
根據本揭露的實施例,圍繞主動區的導電結構與基底上的半導體層電性連接並且具有固定電位或接地,可以降低高電子遷移率電晶體在高電壓和大電流應用時的動態導通電阻(dynamic Ron)。此外,在主動區內的埋藏電極直接接觸基底上的半導體層並且具有固定電位或接地,可以進一步提昇高電子遷移 率電晶體的主動區內的半導體層的接地效果或穩定電位的效果,特別是針對元件尺寸變大時,讓本揭露的高電子遷移率電晶體在大電流和高電壓的應用時,相較於未具有圍繞主動區的導電結構的HEMT可以大幅地降低動態導通電阻,以提昇高電子遷移率電晶體的電性效能。
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
100:高電子遷移率電晶體
100A:主動區
100B:週邊區
100U:重複單元
122-1、122-2:閘極電極
122P:閘極電極的接觸墊
132:源極電極
132a、132b:源極部份
132P:源極電極的接觸墊
136:汲極電極
136P:汲極電極的接觸墊
140:導電結構
142:埋藏電極

Claims (12)

  1. 一種高電子遷移率電晶體,包括:一基底,具有一主動區;一化合物半導體疊層,包括一緩衝層、一高電阻層、一通道層及一阻障層,依序設置於該基底上;一蓋層,設置於該化合物半導體疊層上;一閘極電極,設置於該蓋層上,且沿一第一方向延伸;一源極電極和一汲極電極,設置於該化合物半導體疊層上,分別位於該閘極電極的兩側且沿一第二方向排列,其中該第一方向與該第二方向垂直;以及一埋藏電極,穿過該化合物半導體疊層,設置於該主動區,並且具有一固定電位或接地,其中該源極電極包括沿該第一方向排列的一第一部份和一第二部份,該埋藏電極位於該第一部份和該第二部份之間,並且該埋藏電極與該第一部份和該第二部份隔開。
  2. 如請求項1所述的高電子遷移率電晶體,更包括一半導體層,設置於該基底與該化合物半導體疊層之間,其中該半導體層的材料包括矽、氮化鎵、陶瓷、碳化矽、氮化鋁、氧化鋁或前述組合。
  3. 如請求項2所述的高電子遷移率電晶體,還包括一導電結構穿過該化合物半導體疊層,且圍繞該主動區,其中該導電結構具有一固定電位或接地。
  4. 如請求項3所述的高電子遷移率電晶體,其中該埋藏電極與該半導體層電性連接,或該導電結構與該半導體層電性連接。
  5. 如請求項1所述的高電子遷移率電晶體,其中該埋藏電極經由一互連結構電性連接至該源極電極。
  6. 如請求項1所述的高電子遷移率電晶體,還包括一源極金屬圖案設置於該源極電極的該第一部份和該第二部份上,該埋藏電極位於該源極金屬圖案正下方,且該埋藏電極經由該源極金屬圖案而電性連接至該源極電極。
  7. 一種高電子遷移率電晶體,包括:一基底,具有一主動區,該主動區包括複數個重複單元;一化合物半導體疊層,包括一緩衝層、一高電阻層、一通道層及一阻障層,依序設置於該基底上;以及一導電結構,穿過該化合物半導體疊層,圍繞該主動區,並且具有一固定電位或接地,其中至少一個該重複單元包括:一蓋層,設置於該化合物半導體疊層上;一閘極電極,設置於該蓋層上,沿一第一方向延伸;以及一源極電極和一汲極電極,設置於該化合物半導體疊層上,分別位於該閘極電極的兩側且沿一第二方向排列,其中該第一方向與該第二方向垂直,其中該導電結構與該源極電極隔開,並且該導電結構經由一互連結構電性連接至該源極電極。
  8. 如請求項7所述的高電子遷移率電晶體,還包括一埋藏電極,穿過該化合物半導體疊層,且設置於該主動區,並且具有一固定電位或接地。
  9. 如請求項7所述的高電子遷移率電晶體,更包括一半導體層,設置於該基底與該化合物半導體疊層之間,其中該半導體層的材料包括矽、氮化鎵、陶瓷、碳化矽、氮化鋁、氧化鋁或前述組合。
  10. 如請求項8所述的高電子遷移率電晶體,其中該源極電極包括沿著該第一方向排列的一第一部份和一第二部份,該埋藏電極位於該第一部份和該第二部份之間,並且該埋藏電極與該第一部份和該第二部份隔開。
  11. 如請求項10所述的高電子遷移率電晶體,其中該埋藏電極經由一互連結構電性連接至該源極電極。
  12. 如請求項10所述的高電子遷移率電晶體,還包括一源極金屬圖案設置在該源極電極的該第一部份和該第二部份上,該埋藏電極位於該源極金屬圖案正下方,且該埋藏電極直接接觸該源極金屬圖案而電性連接至該源極電極。
TW110137701A 2021-10-12 2021-10-12 高電子遷移率電晶體 TWI795022B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110137701A TWI795022B (zh) 2021-10-12 2021-10-12 高電子遷移率電晶體

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110137701A TWI795022B (zh) 2021-10-12 2021-10-12 高電子遷移率電晶體

Publications (2)

Publication Number Publication Date
TWI795022B true TWI795022B (zh) 2023-03-01
TW202316672A TW202316672A (zh) 2023-04-16

Family

ID=86692139

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110137701A TWI795022B (zh) 2021-10-12 2021-10-12 高電子遷移率電晶體

Country Status (1)

Country Link
TW (1) TWI795022B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060255403A1 (en) * 2005-04-28 2006-11-16 Sanyo Electric Co., Ltd. Compound semiconductor switch circuit device
TW201824536A (zh) * 2016-09-15 2018-07-01 三墾電氣股份有限公司 半導體裝置用基板、半導體裝置及半導體裝置用基板的製造方法
CN108767008A (zh) * 2018-04-17 2018-11-06 厦门市三安集成电路有限公司 一种具有高阻GaN缓冲层的HEMT及其制备方法
US20200243668A1 (en) * 2017-12-01 2020-07-30 Mitsubishi Electric Corporation Method for producing semiconductor device and semiconductor device
TW202046504A (zh) * 2019-06-04 2020-12-16 世界先進積體電路股份有限公司 半導體裝置及其製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060255403A1 (en) * 2005-04-28 2006-11-16 Sanyo Electric Co., Ltd. Compound semiconductor switch circuit device
TW201824536A (zh) * 2016-09-15 2018-07-01 三墾電氣股份有限公司 半導體裝置用基板、半導體裝置及半導體裝置用基板的製造方法
US20200243668A1 (en) * 2017-12-01 2020-07-30 Mitsubishi Electric Corporation Method for producing semiconductor device and semiconductor device
CN108767008A (zh) * 2018-04-17 2018-11-06 厦门市三安集成电路有限公司 一种具有高阻GaN缓冲层的HEMT及其制备方法
TW202046504A (zh) * 2019-06-04 2020-12-16 世界先進積體電路股份有限公司 半導體裝置及其製造方法

Also Published As

Publication number Publication date
TW202316672A (zh) 2023-04-16

Similar Documents

Publication Publication Date Title
CN112490286B (zh) 半导体装置及其制作方法
CN112490285B (zh) 半导体装置及其制作方法
US20120280281A1 (en) Gallium nitride or other group iii/v-based schottky diodes with improved operating characteristics
US11201234B1 (en) High electron mobility transistor
EP4033541A1 (en) High electron mobility transistor and method for forming the same
US20230377952A1 (en) Gallium Nitride Device with Field Plate Structure and Method of Manufacturing the Same
TWI775276B (zh) 高電子遷移率電晶體及其製作方法
TWI768985B (zh) 半導體結構及高電子遷移率電晶體
TWI795022B (zh) 高電子遷移率電晶體
TWI740554B (zh) 高電子遷移率電晶體
US20210265477A1 (en) III-Nitride Transistor With A Cap Layer For RF Operation
CN111613666B (zh) 半导体组件及其制造方法
CN117616581A (zh) 氮化物基半导体装置及其制造方法
CN117981087A (zh) 降低漏电流的氮化镓半导体装置及其制造方法
CN113451403A (zh) 高电子迁移率晶体管及其制作方法
CN113871476A (zh) 高电子迁移率晶体管及高压半导体装置
US12002857B2 (en) High electron mobility transistor
US20230170389A1 (en) High electron mobility transistor
TWI794599B (zh) 高電子遷移率電晶體及其製作方法
CN115985894A (zh) 高电子迁移率晶体管
WO2023197088A1 (zh) 半导体元件及其制作方法
TWI831494B (zh) 高電子遷移率電晶體
TWI790655B (zh) 半導體結構及高電子遷移率電晶體
CN115812253B (zh) 氮化物基半导体器件及其制造方法
EP4266374A1 (en) High-electron mobility transistor and method for fabricating the same