US20160293596A1 - Normally off iii-nitride transistor - Google Patents

Normally off iii-nitride transistor Download PDF

Info

Publication number
US20160293596A1
US20160293596A1 US14/673,844 US201514673844A US2016293596A1 US 20160293596 A1 US20160293596 A1 US 20160293596A1 US 201514673844 A US201514673844 A US 201514673844A US 2016293596 A1 US2016293596 A1 US 2016293596A1
Authority
US
United States
Prior art keywords
layer
gate
stressor
gan fet
nanometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/673,844
Inventor
Qhalid Fareed
Naveen Tipirneni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Priority to US14/673,844 priority Critical patent/US20160293596A1/en
Assigned to TEXAS INSTRUMENTS INCORPORATED reassignment TEXAS INSTRUMENTS INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FAREED, QHALID, TIPIRNENI, NAVEEN
Priority to EP16773915.0A priority patent/EP3278367A4/en
Priority to CN201680008415.0A priority patent/CN107210323B/en
Priority to PCT/US2016/024495 priority patent/WO2016160690A1/en
Priority to JP2017551696A priority patent/JP6835736B2/en
Publication of US20160293596A1 publication Critical patent/US20160293596A1/en
Priority to US15/988,618 priority patent/US11011515B2/en
Priority to JP2020179286A priority patent/JP7434679B2/en
Priority to US17/234,385 priority patent/US20210242200A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • H01L27/0883
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
    • H10D84/84Combinations of enhancement-mode IGFETs and depletion-mode IGFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • H01L21/30621Vapour phase etching
    • H01L29/2003
    • H01L29/205
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/015Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • H10D30/471High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
    • H10D30/475High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0163Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including enhancement-mode IGFETs and depletion-mode IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/05Manufacture or treatment characterised by using material-based technologies using Group III-V technology
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
    • H10D84/83138Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET] the IGFETs characterised by having different shapes or dimensions of their gate conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02241III-V semiconductor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/82Heterojunctions
    • H10D62/824Heterojunctions comprising only Group III-V materials heterojunctions, e.g. GaN/AlGaN heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • H10D62/8503Nitride Group III-V materials, e.g. AlN or GaN
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/512Disposition of the gate electrodes, e.g. buried gates
    • H10D64/513Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates

Definitions

  • This invention relates to the field of semiconductor devices. More particularly, this invention relates to III-N field effect transistors in semiconductor devices.
  • An enhancement mode gallium nitride field effect transistor includes a recessed gate extending into a stressor layer and barrier layer, and vertically separated from a low-doped gallium nitride (GaN) layer.
  • GaN gallium nitride
  • Forming the gate recess by etching to have a desired vertical separation from the low-doped GaN layer is problematic. Timed etching results in unacceptable variation in the separation from the low-doped GaN layer.
  • Forming the gate recess using etch-blocking layers produces defects in the barrier layer and/or the stressor layer.
  • a gate recess of the enhancement mode GaN FET extends through the cap layer and the stressor layer, but not through the barrier layer.
  • a gate dielectric layer is disposed in the gate recess and a gate is disposed on the gate dielectric layer.
  • the semiconductor device is formed by forming the barrier layer with a high temperature metal organic chemical vapor deposition (MOCVD) process, forming the stressor layer with a low temperature MOCVD process and forming the cap layer with a low temperature MOCVD process.
  • MOCVD metal organic chemical vapor deposition
  • the gate recess is formed by a two-step etch process including a first etch step to remove the cap layer, and a second etch step to remove the stressor layer.
  • FIG. 1 is a cross section of an example semiconductor device.
  • FIG. 2A through FIG. 21 are cross sections of the semiconductor device of FIG. 1 depicted in successive stages of an example fabrication sequence.
  • FIG. 3A and FIG. 3B are cross sections of the semiconductor device of FIG. 1 depicted in an alternate process sequence for forming the gate recess.
  • a gate recess of the enhancement mode GaN FET extends through the cap layer and the stressor layer, but not through the barrier layer.
  • a gate dielectric layer is disposed in the gate recess and a gate is disposed on the gate dielectric layer.
  • the semiconductor device may also include a depletion mode GaN FET with a planar gate over the cap layer and stressor layer.
  • a gate dielectric layer and the planar gate of the depletion mode GaN FET may be formed concurrently with the gate dielectric layer and the gate of the enhancement mode GaN FET.
  • the semiconductor device is formed by forming the barrier layer with a high temperature MOCVD process, forming the stressor layer with a low temperature MOCVD process and forming the cap layer with a low temperature MOCVD process.
  • the gate recess is formed by a two-step etch process including a first etch step to remove the cap layer, and a second etch step to remove the stressor layer.
  • the stressor layer may be oxidized by an anodic oxidation process in the gate recess to facilitate removal by the second etch step.
  • III-N material is understood to refer to semiconductor materials in which group III elements, that is, aluminum, gallium and indium, and possibly boron, provide a portion of the atoms in the semiconductor material and nitrogen atoms provide the remainder of the atoms in the semiconductor material.
  • group III elements that is, aluminum, gallium and indium, and possibly boron
  • nitrogen atoms provide the remainder of the atoms in the semiconductor material.
  • III-N semiconductor materials are gallium nitride, boron gallium nitride, aluminum gallium nitride, indium nitride, and indium aluminum gallium nitride. Terms such as aluminum gallium nitride describing elemental compositions of materials do not imply a particular stoichiometry of the elements.
  • GaN FET is understood to refer to a field effect transistor which includes III-N semiconductor materials.
  • FIG. 1 is a cross section of an example semiconductor device.
  • the semiconductor device 100 includes an enhancement mode GaN FET 102 and a depletion mode GaN FET 104 .
  • the semiconductor device 100 includes a substrate 106 which may be a wafer of silicon or other semiconductor material.
  • a buffer layer 108 of III-N material is disposed over the substrate 106 .
  • the buffer layer 108 may include for example, 100 to 300 nanometers of aluminum nitride on the substrate 106 and 1 to 7 microns of graded layers of Al x Ga 1—x N which is aluminum rich at a bottom surface, on the aluminum nitride, and gallium rich at a top surface of the buffer layer ( 108 ).
  • An electrical isolation layer ( 110 ) is disposed on the buffer layer ( 108 ).
  • the electrical isolation layer ( 110 ) may be, for example, 300 to 2000 nanometers of semi-insulating gallium nitride.
  • the electrical isolation layer ( 110 ) may be, for example, semi-insulating to provide a desired level of electrical isolation between layers below the electrical isolation layer ( 110 ) and layers above the electrical isolation layer ( 110 ).
  • the electrical isolation layer ( 110 ) may be doped with n-type or p-type dopants to reduce undesired effects of charge trapping on current density in the semiconductor device ( 100 ).
  • a low-doped layer ( 112 ) is disposed on the electrical isolation layer ( 110 ).
  • the low-doped layer ( 112 ) may be, for example, 25 to 1000 nanometers of gallium nitride.
  • the low-doped layer ( 112 ) may be formed so as to minimize crystal defects which may have an adverse effect on electron mobility.
  • the method of formation of the low-doped layer ( 112 ) may result in the low-doped layer ( 112 ) being doped with carbon, iron or other dopant species, for example with a net doping density less than 10 17 cm ⁇ 3 .
  • a barrier layer 114 is disposed over the low-doped layer 112 .
  • the barrier layer 114 may be primarily aluminum gallium nitride, with less than 1 atomic percent indium.
  • the barrier layer 114 may have a stoichiometry of Al 0.10 Ga 0.90 N to Al 0.30 Ga 0.70 N, and a thickness of 1 nanometers to 5 nanometers.
  • a minimum thickness of the barrier layer 114 may be selected to provide ease and reproducibility of fabrication; a maximum thickness may be selected to provide a desired off-state current in the enhancement mode GaN FET 102 , where increasing the thickness of the barrier layer 114 increases the off-state current.
  • the thickness may depend on a stoichiometry of the barrier layer 114 .
  • an instance of the barrier layer 114 with a stoichiometry of Al 0.10 Ga 0.90 N to Al 0.30 Ga 0.70 N may have a thickness of 1.5 nanometers to 2.0 nanometers.
  • a stressor layer 116 is disposed over the barrier layer 114 .
  • the stressor layer 116 is primarily indium aluminum nitride, with a stoichiometry of In 0.95 Al 0.84 N to In 0.30 Ga 0.70 N, and a thickness of 1 nanometers to 5 nanometers.
  • the stressor layer 116 may have a stoichiometry of In 0.16 Al 0.84 N to In 0.18 Al 0.82 N and a thickness of 3.5 nanometers to 4.5 nanometers, which may provide a desired balance between providing a desired charge density in a two-dimensional electron gas (2DEG), which decreases with indium content, and providing a desired etch selectivity to the underlying barrier layer 114 , which increases with indium content.
  • the stoichiometry of In 0.16 Al 0.84 N to In 0.18 Al 0.82 N may also provide a desired lattice match to the low-doped layer 112 .
  • a cap layer 118 is disposed over the stressor layer 116 .
  • the cap layer 118 has less than 1 atomic percent indium, and may be primarily aluminum gallium nitride.
  • a thickness of the cap layer is selected to prevent oxidation of the stressor layer 116 during subsequent fabrication steps.
  • An example cap layer 118 may have a stoichiometry of Al 0.05 Ga0.95N to Al 0.30 Ga 0.70 N, and a thickness of 4 nanometers to 20 nanometers. The cap layer 118 advantageously prevents oxidation of the indium in the stressor layer 116 .
  • a gate recess 120 extends through the cap layer 118 and the stressor layer 116 in the enhancement mode GaN FET 102 .
  • the gate recess 120 may extend completely through the stressor layer 116 and not extend into the barrier layer 114 , as depicted in FIG. 1 .
  • the gate recess 120 may extend partway into the barrier layer 114 , or may extend only partway through the stressor layer 116 and stop short of the barrier layer 114 .
  • An enhancement mode gate dielectric layer 122 is disposed in the gate recess 120 in the enhancement mode GaN FET 102 .
  • a depletion mode gate dielectric layer 124 is disposed over the cap layer in the depletion mode GaN FET 104 .
  • the enhancement mode gate dielectric layer 122 and the depletion mode gate dielectric layer 124 may be 5 nanometers to 50 nanometers thick and may include one or more layers of silicon dioxide, silicon nitride and/or aluminum oxide.
  • the enhancement mode gate dielectric layer 122 and the depletion mode gate dielectric layer 124 may have substantially equal thicknesses and compositions, possibly as a result of being formed concurrently.
  • the enhancement mode gate dielectric layer 122 and the depletion mode gate dielectric layer 124 may have different thicknesses and compositions, so as to separately optimize performance of the enhancement mode GaN FET 102 and the depletion mode GaN FET 104 .
  • a field plate dielectric layer 126 may optionally be disposed over the cap layer 118 and under the enhancement mode gate dielectric layer 122 adjacent to the gate recess 120 and under the depletion mode gate dielectric layer 124 adjacent to a gate area in the depletion mode GaN FET 104 .
  • the field plate dielectric layer 126 may include one or more layers of silicon dioxide and/or silicon nitride, and may be, for example, 10 nanometers to 100 nanometers thick. In an alternate version of the instant example, the field plate dielectric layer 126 may be disposed over the enhancement mode gate dielectric layer 122 and the depletion mode gate dielectric layer 124 .
  • An enhancement mode gate 128 is disposed over the enhancement mode gate dielectric layer 122 in the gate recess 120 .
  • the enhancement mode gate 128 may overlap the field plate dielectric layer 126 in the enhancement mode GaN FET 102 , as depicted in FIG. 1 .
  • a depletion mode gate 130 is disposed over the depletion mode gate dielectric layer 124 in the gate area of the depletion mode GaN FET 104 and may overlap the field plate dielectric layer 126 in the depletion mode GaN FET 104 , as depicted in FIG. 1 .
  • the enhancement mode gate 128 and the depletion mode gate 130 may have substantially equal compositions, possibly as a result of being formed concurrently.
  • Dielectric isolation structures 132 extend through the cap layer 118 , the stressor layer 116 and the barrier layer 114 and possibly through the low-doped layer ( 112 ), so as to laterally isolate the enhancement mode GaN FET ( 102 ) and the depletion mode GaN FET ( 104 ).
  • the dielectric isolation structures 132 may include, for example, silicon dioxide and/or silicon nitride.
  • a source contact 134 and a drain contact 136 provide electrical connections to a 2DEG in the enhancement mode GaN FET 102 .
  • a source contact 138 and a drain contact 140 provide electrical connections to a 2DEG in the depletion mode GaN FET 104 .
  • the barrier layer 114 advantageously provides a low carrier density in the 2DEG of the enhancement mode GaN FET 102 under the gate recess 120 , so as to provide a desired off-state current.
  • the stressor layer 116 advantageously provides a desired high carrier density in the 2DEG of the enhancement mode GaN FET 102 in the access regions between the gate recess 120 and the source contact 134 and the drain contact 136 , so as to provide a desired on-state current.
  • the configuration of the gate recess 120 extending through the stressor layer 116 advantageously contributes to the low carrier density in the 2DEG of the enhancement mode GaN FET 102 under the gate recess 120 .
  • the stressor layer 116 extending under the depletion mode gate 130 advantageously provides a desired on-state current in the depletion mode GaN FET 104 .
  • FIG. 2A through FIG. 21 are cross sections of the semiconductor device of FIG. 1 depicted in successive stages of an example fabrication sequence.
  • the buffer layer 108 is formed over the substrate 106 .
  • the electrical isolation layer ( 110 ) is formed over the buffer layer ( 108 ), and the low-doped layer ( 112 ) is formed over the electrical isolation layer ( 110 ).
  • the buffer layer 108 , the electrical isolation layer ( 110 ) and the low-doped layer ( 112 ) may be formed, for example, by a series of MOCVD processes.
  • the substrate 106 is a 150 millimeter substrate.
  • the substrate 106 is placed on a susceptor 142 , possibly of graphite, in an MOCVD chamber 144 .
  • the susceptor 142 is heated, for example by heating coils, to a temperature of 900° C. to 1100° C.
  • a carrier gas such as hydrogen (H 2 ) as indicated in FIG. 2A is flowed into the MOCVD chamber 144 at a flow rate of 80 standard liters per minute (slm) to 120 slm, and a nitrogen source such as ammonia (NH 3 ) as indicated in FIG.
  • TMA 1 trimethylaluminum
  • sccm standard cubic centimeters per minute
  • TMGa trimethylgallium
  • a pressure in the MOCVD chamber 144 is maintained at 50 ton to 200 ton.
  • the nitrogen source, the aluminum precursor and the gallium precursor react at the existing surface of the semiconductor device 100 to form the barrier layer 114 over the low-doped layer 112 in the areas for the enhancement mode GaN FET 102 and the depletion mode GaN FET 104 .
  • Forming the barrier layer 114 at a temperature of 900° C. to 1100° C. advantageously provides fewer defects and hence higher reliability for the semiconductor device 100 compared to a barrier layer formed at a lower temperature.
  • substantially no indium precursor is flowed into the MOCVD chamber 144 while the barrier layer 114 is formed.
  • the barrier layer 114 may include a quaternary III-N material, that is, may include another element in addition to aluminum, gallium and nitrogen.
  • the barrier layer 114 may be formed in situ after the low-doped layer ( 112 ) to advantageously reduce defects in the semiconductor device ( 100 ).
  • the substrate 106 remains on the susceptor 142 in the MOCVD chamber 144 .
  • the susceptor 142 is heated to a temperature of 700° C. to 850° C.
  • a carrier gas, indicated in FIG. 2B as nitrogen (N 2 ) is flowed into the MOCVD chamber 144 at a flow rate of 60 slm to 100 slm, and a nitrogen source, indicated in FIG. 2B as ammonia (NH 3 ), is flowed into the MOCVD chamber 144 at a flow rate of 5 slm to 40 slm.
  • TMA 1 trimethylaluminum
  • TMIn trimethylindium
  • a pressure in the MOCVD chamber 144 is maintained at 100 torr to 400 torr.
  • the nitrogen source, the aluminum precursor and the indium precursor react at the existing surface of the semiconductor device 100 to form the stressor layer 116 over the barrier layer 114 in the areas for the enhancement mode GaN FET 102 and the depletion mode GaN FET 104 .
  • Forming the stressor layer 116 at a minimum temperature of 700° C. may advantageously enable a desired concentration of indium and uniform distribution of indium in the stressor layer 116 compared to forming at a lower temperature.
  • Forming the stressor layer 116 at a maximum temperature 850° C. may advantageously reduce indium diffusion into the barrier layer 114 compared to forming at a higher temperature.
  • substantially no aluminum precursor is flowed into the MOCVD chamber 144 while the stressor layer 116 is formed.
  • the stressor layer 116 may include a quaternary III-N material. Forming the stressor layer 116 in situ with the barrier layer 114 may advantageously reduce defects in the semiconductor device ( 100 ).
  • the substrate 106 remains on the susceptor 142 in the MOCVD chamber 144 .
  • the susceptor 142 is heated to a temperature of 750° C. to 900° C.
  • a carrier gas, indicated in FIG. 2C as hydrogen (H 2 ) is flowed into the MOCVD chamber 144 at a flow rate of 80 slm to 120 slm, and a nitrogen source, indicated in FIG. 2C as ammonia (NH 3 ), is flowed into the MOCVD chamber 144 at a flow rate of 5 slm to 35 slm.
  • TMA 1 trimethylaluminum
  • MOCVD chamber 144 is flowed into the MOCVD chamber 144 at a rate of 80 sccm to 130 sccm and a gallium precursor, indicated in FIG. 2C as trimethylgallium (TMGa), is flowed into the MOCVD chamber 144 at a rate of 40 sccm to 60 sccm.
  • a pressure in the MOCVD chamber 144 is maintained at 50 torr to 200 torr.
  • the nitrogen source, the aluminum precursor and the gallium precursor react at the existing surface of the semiconductor device 100 to form the cap layer 118 over the stressor layer 116 in the areas for the enhancement mode GaN FET 102 and the depletion mode GaN FET 104 .
  • Forming the cap layer 118 at a maximum temperature of 900° C. may advantageously reduce indium diffusion into the barrier layer 114 and the cap layer 118 compared to forming at a higher temperature.
  • substantially no indium precursor is flowed into the MOCVD chamber 144 while the cap layer 118 is formed.
  • the cap layer 118 may be formed in situ after the stressor layer ( 116 ) to advantageously reduce defects in the semiconductor device ( 100 ).
  • the field plate dielectric layer 126 is formed over the cap layer 118 .
  • the field plate dielectric layer 126 may be formed, for example, by forming a layer of dielectric material containing silicon dioxide and/or silicon nitride over the cap layer by a plasma enhanced chemical vapor deposition (PECVD) process.
  • PECVD plasma enhanced chemical vapor deposition
  • a field plate mask 146 is formed over the layer of dielectric material so as to expose gate areas for the enhancement mode GaN FET 102 and the depletion mode GaN FET 104 .
  • the layer of dielectric material is removed where exposed by the field plate mask 146 by an etch process such as a plasma etch process at over 100 torr, forming the field plate dielectric layer 126 with sloped sides as depicted in FIG. 2D .
  • a recess mask 148 is formed over the cap layer 118 to expose an area in the enhancement mode GaN FET 102 for the gate recess 120 .
  • the recess mask 148 may include photoresist and may be formed by a photolithographic process.
  • the recess mask 148 may further include an antireflection layer such as an organic bottom antireflection coating (BARC) and/or a hard mask layer such as silicon dioxide or silicon nitride.
  • BARC organic bottom antireflection coating
  • the recess mask 148 covers the area for the depletion mode GaN FET 104 .
  • a first etch process 150 such as a plasma etch process using chlorine radicals removes the cap layer 118 in the area exposed by the recess mask 148 to form a portion of the gate recess 120 .
  • the indium in the stressor layer 116 has a lower etch rate in the first etch process 150 than the cap layer 118 , so at least a portion of the stressor layer 116 remains in the area for the gate recess 120 after the first etch process 150 is completed.
  • the first etch process 150 may be, for example, an inductively-coupled plasma reactive ion etch (ICP-RIE) process using chlorine (Cl 2 ) gas sulfur hexafluoride (SF 6 ) gas, which has been demonstrated to desirably provide an etch selectivity of gallium aluminum nitride to indium aluminum nitride greater than 1.0.
  • ICP-RIE inductively-coupled plasma reactive ion etch
  • SF 6 sulfur hexafluoride
  • a second etch process 152 removes the stressor layer 116 in the gate recess 120 to form the complete gate recess 120 .
  • the second etch process 152 has a different chemistry than the first etch process 150 of FIG. 2E .
  • the barrier layer 114 has a lower etch rate in the second etch process 152 than the stressor layer 116 , so at least a portion, and possibly all, of the barrier layer 114 remains under the gate recess 120 after the second etch process 152 is completed.
  • the second etch process 152 may include, for example, a wet etch process using a 1 molar aqueous solution of 1,2 diaminoethane, which has been demonstrated to desirable provide an etch selectivity of indium aluminum nitride to gallium aluminum nitride eater than 1.0 at room temperature.
  • the first etch process 150 may provide a desirably rough surface on the exposed stressor layer 116 which may advantageously provide a more uniform initial etch rate for the second etch process 152 .
  • a remaining portion 154 of the stressor layer 116 in the gate recess 120 may be a transition layer 154 which includes elements of the underlying barrier layer 114 .
  • An oxidizing liquid 156 oxidizes the remaining portion 154 of the stressor layer 116 in the gate recess 120 .
  • the remaining portion 154 of the stressor layer 116 may be oxidized by an anodic oxidation process in which electrical current is passed through the oxidizing liquid 156 .
  • the oxidizing liquid 156 may be an aqueous solution of nitriloacetic acid and 0.3 molar potassium hydroxide (KOH) with a pH value of 8.5.
  • the electrical current may have a value of about 20 microamperes per square centimeter of exposed stressor layer 116 .
  • the oxidized remaining portion 154 may be subsequently removed, for example by a wet etch process using a dilute aqueous acidic solution, such as a dilute nitric acid solution or a citric acid solution.
  • the recess mask 148 is removed, possibly after the wet etch process 152 of FIG. 2F is completed, or possibly earlier.
  • a layer of gate dielectric material 158 is formed over the field plate dielectric layer 126 , extending into the gate recess 120 and overlying the barrier layer 114 at a bottom of the gate recess 120 .
  • the layer of gate dielectric material 158 extends over the cap layer 118 in the depletion mode GaN FET 104 .
  • the layer of gate dielectric material 158 may include one or more layers of silicon dioxide and/or silicon nitride, formed, for example, by PECVD processes.
  • a layer of gate material 160 is formed over the layer of gate dielectric material 158 .
  • the layer of gate material 160 may include, for example, gallium nitride or other III-N material, or may include polycrystalline silicon, referred to as polysilicon, or may include metal.
  • the layer of gate material 160 is formed in the areas for the gates of both the enhancement mode GaN FET 102 and the depletion mode GaN FET 104 .
  • the layer of gate material 160 of FIG. 2H is patterned to concurrently form the enhancement mode gate 128 and the depletion mode gate 130 .
  • the enhancement mode gate 128 and the depletion mode gate 130 may be formed by an etch process: forming an etch mask over the layer of gate material 160 which covers area for the enhancement mode gate 128 and the depletion mode gate 130 , and subsequently removing the layer of gate material 160 where exposed by the etch mask.
  • the enhancement mode gate 128 and the depletion mode gate 130 may be formed by a liftoff process: forming a liftoff mask of solvent-soluble organic material such as photoresist which exposes the layer of gate dielectric material 158 in the areas for the enhancement mode gate 128 and the depletion mode gate 130 , forming the layer of gate material 160 over the liftoff mask, and subsequently removing the liftoff mask and the overlying layer of gate material 160 , leaving the layer of gate material 160 in the areas exposed by the liftoff mask to provide the enhancement mode gate 128 and the depletion mode gate 130 .
  • Forming the enhancement mode gate 128 and the depletion mode gate 130 concurrently may advantageously reduce fabrication cost and complexity of the semiconductor device 100 .
  • the enhancement mode gate 128 and the depletion mode gate 130 may be formed separately, of materials with different work functions, to increase performance of both the enhancement mode GaN FET 102 and the depletion mode GaN FET 104 .
  • fabrication is continued to provide the structure of FIG. 1 .
  • FIG. 3A and FIG. 3B are cross sections of the semiconductor device of FIG. 1 depicted in an alternate process sequence for forming the gate recess.
  • the recess mask 148 is formed over the cap layer 118 .
  • the cap layer 118 is removed in the area exposed by the recess mask 148 to form a portion of the gate recess 120 , as described in reference to FIG. 2E .
  • An oxidizing liquid 162 for example an anodizing aqueous solution containing an aqueous solution of nitriloacetic acid and 0.3 molar KOH with a pH value of 8.5 with an electrical current of about 20 microamperes per square centimeter of exposed stressor layer 116 , oxidizes the stressor layer 116 where exposed by the cap layer 118 in the gate recess 120 to form an oxidized stressor layer 164 which includes indium oxide.
  • the barrier layer 114 may include a layer of gallium nitride (GaN) 1 nanometer to 3 nanometers thick immediately below the stressor layer 116 to prevent oxidation of the aluminum gallium nitride in the barrier layer 114 . At least a portion of the barrier layer 114 under the stressor layer 116 in the gate recess 120 is not oxidized.
  • a second etch process 166 removes the oxidized stressor layer 164 of FIG. 3A to form the gate recess 120 , while leaving at least a portion, and possibly all, of the barrier layer 114 under the gate recess 120 .
  • the second etch process 166 may include, for example, a dilute aqueous solution of nitric acid, phosphoric acid, and/or hydrochloric acid, or an aqueous solution of an organic acid such as citric acid.
  • the oxidation process described in reference to FIG. 3A and the second etch process of FIG. 3B may be repeated to completely remove the stressor layer 116 from the gate recess 120 .
  • the recess mask 148 is removed and fabrication is continued as described in reference to FIG. 2G .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Chemical Vapour Deposition (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Drying Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A semiconductor device containing an enhancement mode GaN FET on a III-N layer stack includes a low-doped GaN layer, a barrier layer including aluminum over the low-doped GaN layer, a stressor layer including indium over the barrier layer, and a cap layer including aluminum over the stressor layer. A gate recess extends through the cap layer and the stressor layer, but not through the barrier layer. The semiconductor device is formed by forming the barrier layer with a high temperature MOCVD process, forming the stressor layer with a low temperature MOCVD process and forming the cap layer with a low temperature MOCVD process. The gate recess is formed by a two-step etch process including a first etch step to remove the cap layer, and a second etch step to remove the stressor layer.

Description

    FIELD OF THE INVENTION
  • This invention relates to the field of semiconductor devices. More particularly, this invention relates to III-N field effect transistors in semiconductor devices.
  • BACKGROUND OF THE INVENTION
  • An enhancement mode gallium nitride field effect transistor (GaN FET) includes a recessed gate extending into a stressor layer and barrier layer, and vertically separated from a low-doped gallium nitride (GaN) layer. Forming the gate recess by etching to have a desired vertical separation from the low-doped GaN layer is problematic. Timed etching results in unacceptable variation in the separation from the low-doped GaN layer. Forming the gate recess using etch-blocking layers produces defects in the barrier layer and/or the stressor layer.
  • SUMMARY OF THE INVENTION
  • The following presents a simplified summary in order to provide a basic understanding of one or more aspects of the invention. This summary is not an extensive overview of the invention, and is neither intended to identify key or critical elements of the invention, nor to delineate the scope thereof. Rather, the primary purpose of the summary is to present some concepts of the invention in a simplified form as a prelude to a more detailed description that is presented later.
  • A semiconductor device containing an enhancement mode GaN FET on a III-N layer stack including a low-doped GaN layer, a barrier layer including aluminum disposed over the low-doped GaN layer, a stressor layer including indium disposed over the barrier layer, and a cap layer including aluminum disposed over the stressor layer. A gate recess of the enhancement mode GaN FET extends through the cap layer and the stressor layer, but not through the barrier layer. A gate dielectric layer is disposed in the gate recess and a gate is disposed on the gate dielectric layer.
  • The semiconductor device is formed by forming the barrier layer with a high temperature metal organic chemical vapor deposition (MOCVD) process, forming the stressor layer with a low temperature MOCVD process and forming the cap layer with a low temperature MOCVD process. The gate recess is formed by a two-step etch process including a first etch step to remove the cap layer, and a second etch step to remove the stressor layer.
  • DESCRIPTION OF THE VIEWS OF THE DRAWING
  • FIG. 1 is a cross section of an example semiconductor device.
  • FIG. 2A through FIG. 21 are cross sections of the semiconductor device of FIG. 1 depicted in successive stages of an example fabrication sequence.
  • FIG. 3A and FIG. 3B are cross sections of the semiconductor device of FIG. 1 depicted in an alternate process sequence for forming the gate recess.
  • DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS
  • The present invention is described with reference to the attached figures. The figures are not drawn to scale and they are provided merely to illustrate the invention. Several aspects of the invention are described below with reference to example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide an understanding of the invention. One skilled in the relevant art, however, will readily recognize that the invention can be practiced without one or more of the specific details or with other methods. In other instances, well-known structures or operations are not shown in detail to avoid obscuring the invention. The present invention is not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with the present invention.
  • A semiconductor device containing an enhancement mode GaN FET on a III-N layer stack including a low-doped GaN layer, a barrier layer including aluminum disposed over the low-doped GaN layer, a stressor layer including indium disposed over the barrier layer, and a cap layer including aluminum disposed over the stressor layer. A gate recess of the enhancement mode GaN FET extends through the cap layer and the stressor layer, but not through the barrier layer. A gate dielectric layer is disposed in the gate recess and a gate is disposed on the gate dielectric layer.
  • The semiconductor device may also include a depletion mode GaN FET with a planar gate over the cap layer and stressor layer. A gate dielectric layer and the planar gate of the depletion mode GaN FET may be formed concurrently with the gate dielectric layer and the gate of the enhancement mode GaN FET.
  • The semiconductor device is formed by forming the barrier layer with a high temperature MOCVD process, forming the stressor layer with a low temperature MOCVD process and forming the cap layer with a low temperature MOCVD process. The gate recess is formed by a two-step etch process including a first etch step to remove the cap layer, and a second etch step to remove the stressor layer. The stressor layer may be oxidized by an anodic oxidation process in the gate recess to facilitate removal by the second etch step.
  • For the purposes of this description, the term “III-N material” is understood to refer to semiconductor materials in which group III elements, that is, aluminum, gallium and indium, and possibly boron, provide a portion of the atoms in the semiconductor material and nitrogen atoms provide the remainder of the atoms in the semiconductor material. Examples of III-N semiconductor materials are gallium nitride, boron gallium nitride, aluminum gallium nitride, indium nitride, and indium aluminum gallium nitride. Terms such as aluminum gallium nitride describing elemental compositions of materials do not imply a particular stoichiometry of the elements. For the purposes of this description, the term GaN FET is understood to refer to a field effect transistor which includes III-N semiconductor materials.
  • FIG. 1 is a cross section of an example semiconductor device. The semiconductor device 100 includes an enhancement mode GaN FET 102 and a depletion mode GaN FET 104. The semiconductor device 100 includes a substrate 106 which may be a wafer of silicon or other semiconductor material. A buffer layer 108 of III-N material is disposed over the substrate 106. The buffer layer 108 may include for example, 100 to 300 nanometers of aluminum nitride on the substrate 106 and 1 to 7 microns of graded layers of AlxGa1—xN which is aluminum rich at a bottom surface, on the aluminum nitride, and gallium rich at a top surface of the buffer layer (108). An electrical isolation layer (110) is disposed on the buffer layer (108). The electrical isolation layer (110) may be, for example, 300 to 2000 nanometers of semi-insulating gallium nitride. The electrical isolation layer (110) may be, for example, semi-insulating to provide a desired level of electrical isolation between layers below the electrical isolation layer (110) and layers above the electrical isolation layer (110). Alternatively, the electrical isolation layer (110) may be doped with n-type or p-type dopants to reduce undesired effects of charge trapping on current density in the semiconductor device (100). A low-doped layer (112) is disposed on the electrical isolation layer (110). The low-doped layer (112) may be, for example, 25 to 1000 nanometers of gallium nitride. The low-doped layer (112) may be formed so as to minimize crystal defects which may have an adverse effect on electron mobility. The method of formation of the low-doped layer (112) may result in the low-doped layer (112) being doped with carbon, iron or other dopant species, for example with a net doping density less than 10 17 cm−3.
  • A barrier layer 114 is disposed over the low-doped layer 112. The barrier layer 114 may be primarily aluminum gallium nitride, with less than 1 atomic percent indium. The barrier layer 114 may have a stoichiometry of Al0.10Ga0.90N to Al0.30Ga0.70N, and a thickness of 1 nanometers to 5 nanometers. A minimum thickness of the barrier layer 114 may be selected to provide ease and reproducibility of fabrication; a maximum thickness may be selected to provide a desired off-state current in the enhancement mode GaN FET 102, where increasing the thickness of the barrier layer 114 increases the off-state current. The thickness may depend on a stoichiometry of the barrier layer 114. For example, an instance of the barrier layer 114 with a stoichiometry of Al0.10Ga0.90N to Al0.30Ga0.70N may have a thickness of 1.5 nanometers to 2.0 nanometers.
  • A stressor layer 116 is disposed over the barrier layer 114. The stressor layer 116 is primarily indium aluminum nitride, with a stoichiometry of In0.95Al0.84N to In0.30Ga0.70N, and a thickness of 1 nanometers to 5 nanometers. In one version of the instant example, the stressor layer 116 may have a stoichiometry of In0.16Al0.84N to In0.18Al0.82N and a thickness of 3.5 nanometers to 4.5 nanometers, which may provide a desired balance between providing a desired charge density in a two-dimensional electron gas (2DEG), which decreases with indium content, and providing a desired etch selectivity to the underlying barrier layer 114, which increases with indium content. The stoichiometry of In0.16Al0.84N to In0.18 Al0.82N may also provide a desired lattice match to the low-doped layer 112.
  • A cap layer 118 is disposed over the stressor layer 116. The cap layer 118 has less than 1 atomic percent indium, and may be primarily aluminum gallium nitride. A thickness of the cap layer is selected to prevent oxidation of the stressor layer 116 during subsequent fabrication steps. An example cap layer 118 may have a stoichiometry of Al0.05Ga0.95N to Al0.30Ga0.70N, and a thickness of 4 nanometers to 20 nanometers. The cap layer 118 advantageously prevents oxidation of the indium in the stressor layer 116.
  • A gate recess 120 extends through the cap layer 118 and the stressor layer 116 in the enhancement mode GaN FET 102. The gate recess 120 may extend completely through the stressor layer 116 and not extend into the barrier layer 114, as depicted in FIG. 1. Alternatively, the gate recess 120 may extend partway into the barrier layer 114, or may extend only partway through the stressor layer 116 and stop short of the barrier layer 114.
  • An enhancement mode gate dielectric layer 122 is disposed in the gate recess 120 in the enhancement mode GaN FET 102. A depletion mode gate dielectric layer 124 is disposed over the cap layer in the depletion mode GaN FET 104. The enhancement mode gate dielectric layer 122 and the depletion mode gate dielectric layer 124 may be 5 nanometers to 50 nanometers thick and may include one or more layers of silicon dioxide, silicon nitride and/or aluminum oxide. In one version of the instant example, the enhancement mode gate dielectric layer 122 and the depletion mode gate dielectric layer 124 may have substantially equal thicknesses and compositions, possibly as a result of being formed concurrently. In an alternate version, the enhancement mode gate dielectric layer 122 and the depletion mode gate dielectric layer 124 may have different thicknesses and compositions, so as to separately optimize performance of the enhancement mode GaN FET 102 and the depletion mode GaN FET 104.
  • A field plate dielectric layer 126 may optionally be disposed over the cap layer 118 and under the enhancement mode gate dielectric layer 122 adjacent to the gate recess 120 and under the depletion mode gate dielectric layer 124 adjacent to a gate area in the depletion mode GaN FET 104. The field plate dielectric layer 126 may include one or more layers of silicon dioxide and/or silicon nitride, and may be, for example, 10 nanometers to 100 nanometers thick. In an alternate version of the instant example, the field plate dielectric layer 126 may be disposed over the enhancement mode gate dielectric layer 122 and the depletion mode gate dielectric layer 124.
  • An enhancement mode gate 128 is disposed over the enhancement mode gate dielectric layer 122 in the gate recess 120. The enhancement mode gate 128 may overlap the field plate dielectric layer 126 in the enhancement mode GaN FET 102, as depicted in FIG. 1. A depletion mode gate 130 is disposed over the depletion mode gate dielectric layer 124 in the gate area of the depletion mode GaN FET 104 and may overlap the field plate dielectric layer 126 in the depletion mode GaN FET 104, as depicted in FIG. 1. The enhancement mode gate 128 and the depletion mode gate 130 may have substantially equal compositions, possibly as a result of being formed concurrently.
  • Dielectric isolation structures 132 extend through the cap layer 118, the stressor layer 116 and the barrier layer 114 and possibly through the low-doped layer (112), so as to laterally isolate the enhancement mode GaN FET (102) and the depletion mode GaN FET (104). The dielectric isolation structures 132 may include, for example, silicon dioxide and/or silicon nitride.
  • A source contact 134 and a drain contact 136 provide electrical connections to a 2DEG in the enhancement mode GaN FET 102. A source contact 138 and a drain contact 140 provide electrical connections to a 2DEG in the depletion mode GaN FET 104.
  • During operation of the semiconductor device 100, the barrier layer 114 advantageously provides a low carrier density in the 2DEG of the enhancement mode GaN FET 102 under the gate recess 120, so as to provide a desired off-state current. The stressor layer 116 advantageously provides a desired high carrier density in the 2DEG of the enhancement mode GaN FET 102 in the access regions between the gate recess 120 and the source contact 134 and the drain contact 136, so as to provide a desired on-state current. The configuration of the gate recess 120 extending through the stressor layer 116 advantageously contributes to the low carrier density in the 2DEG of the enhancement mode GaN FET 102 under the gate recess 120. The stressor layer 116 extending under the depletion mode gate 130 advantageously provides a desired on-state current in the depletion mode GaN FET 104.
  • FIG. 2A through FIG. 21 are cross sections of the semiconductor device of FIG. 1 depicted in successive stages of an example fabrication sequence. Referring to FIG. 2A, the buffer layer 108 is formed over the substrate 106. The electrical isolation layer (110) is formed over the buffer layer (108), and the low-doped layer (112) is formed over the electrical isolation layer (110). The buffer layer 108, the electrical isolation layer (110) and the low-doped layer (112) may be formed, for example, by a series of MOCVD processes.
  • In the instant example, process parameters will be described for a case wherein the substrate 106 is a 150 millimeter substrate. The substrate 106 is placed on a susceptor 142, possibly of graphite, in an MOCVD chamber 144. The susceptor 142 is heated, for example by heating coils, to a temperature of 900° C. to 1100° C. A carrier gas such as hydrogen (H2) as indicated in FIG. 2A is flowed into the MOCVD chamber 144 at a flow rate of 80 standard liters per minute (slm) to 120 slm, and a nitrogen source such as ammonia (NH3) as indicated in FIG. 2A is flowed into the MOCVD chamber 144 at a flow rate of 5 slm to 30 slm. An aluminum precursor such as trimethylaluminum (TMA1) as indicated in FIG. 2A, or triethylaluminum, is flowed into the MOCVD chamber 144 at a rate of 80 standard cubic centimeters per minute (sccm) to 130 sccm and a gallium precursor such as trimethylgallium (TMGa) as indicated in FIG. 2A, or triethylgallium, is flowed into the MOCVD chamber 144 at a rate of 40 sccm to 60 sccm. A pressure in the MOCVD chamber 144 is maintained at 50 ton to 200 ton. The nitrogen source, the aluminum precursor and the gallium precursor react at the existing surface of the semiconductor device 100 to form the barrier layer 114 over the low-doped layer 112 in the areas for the enhancement mode GaN FET 102 and the depletion mode GaN FET 104. Forming the barrier layer 114 at a temperature of 900° C. to 1100° C. advantageously provides fewer defects and hence higher reliability for the semiconductor device 100 compared to a barrier layer formed at a lower temperature. In the instant example, substantially no indium precursor is flowed into the MOCVD chamber 144 while the barrier layer 114 is formed. In an alternate version of the instant example, the barrier layer 114 may include a quaternary III-N material, that is, may include another element in addition to aluminum, gallium and nitrogen. The barrier layer 114 may be formed in situ after the low-doped layer (112) to advantageously reduce defects in the semiconductor device (100).
  • Referring to FIG. 2B, the substrate 106 remains on the susceptor 142 in the MOCVD chamber 144. The susceptor 142 is heated to a temperature of 700° C. to 850° C. A carrier gas, indicated in FIG. 2B as nitrogen (N2), is flowed into the MOCVD chamber 144 at a flow rate of 60 slm to 100 slm, and a nitrogen source, indicated in FIG. 2B as ammonia (NH3), is flowed into the MOCVD chamber 144 at a flow rate of 5 slm to 40 slm. An aluminum precursor, indicated in FIG. 2B as trimethylaluminum (TMA1), is flowed into the MOCVD chamber 144 at a rate of 80 sccm to 130 sccm and an indium precursor such as trimethylindium (TMIn) as indicated in FIG. 2B, or triethylindium, is flowed into the MOCVD chamber 144 at a rate of 100 sccm to 300 sccm. A pressure in the MOCVD chamber 144 is maintained at 100 torr to 400 torr. The nitrogen source, the aluminum precursor and the indium precursor react at the existing surface of the semiconductor device 100 to form the stressor layer 116 over the barrier layer 114 in the areas for the enhancement mode GaN FET 102 and the depletion mode GaN FET 104. Forming the stressor layer 116 at a minimum temperature of 700° C. may advantageously enable a desired concentration of indium and uniform distribution of indium in the stressor layer 116 compared to forming at a lower temperature. Forming the stressor layer 116 at a maximum temperature 850° C. may advantageously reduce indium diffusion into the barrier layer 114 compared to forming at a higher temperature. In the instant example, substantially no aluminum precursor is flowed into the MOCVD chamber 144 while the stressor layer 116 is formed. In an alternate version of the instant example, the stressor layer 116 may include a quaternary III-N material. Forming the stressor layer 116 in situ with the barrier layer 114 may advantageously reduce defects in the semiconductor device (100).
  • Referring to FIG. 2C, the substrate 106 remains on the susceptor 142 in the MOCVD chamber 144. The susceptor 142 is heated to a temperature of 750° C. to 900° C. A carrier gas, indicated in FIG. 2C as hydrogen (H2), is flowed into the MOCVD chamber 144 at a flow rate of 80 slm to 120 slm, and a nitrogen source, indicated in FIG. 2C as ammonia (NH3), is flowed into the MOCVD chamber 144 at a flow rate of 5 slm to 35 slm. An aluminum precursor, indicated in FIG. 2C as trimethylaluminum (TMA1), is flowed into the MOCVD chamber 144 at a rate of 80 sccm to 130 sccm and a gallium precursor, indicated in FIG. 2C as trimethylgallium (TMGa), is flowed into the MOCVD chamber 144 at a rate of 40 sccm to 60 sccm. A pressure in the MOCVD chamber 144 is maintained at 50 torr to 200 torr. The nitrogen source, the aluminum precursor and the gallium precursor react at the existing surface of the semiconductor device 100 to form the cap layer 118 over the stressor layer 116 in the areas for the enhancement mode GaN FET 102 and the depletion mode GaN FET 104. Forming the cap layer 118 at a maximum temperature of 900° C. may advantageously reduce indium diffusion into the barrier layer 114 and the cap layer 118 compared to forming at a higher temperature. In the instant example, substantially no indium precursor is flowed into the MOCVD chamber 144 while the cap layer 118 is formed. The cap layer 118 may be formed in situ after the stressor layer (116) to advantageously reduce defects in the semiconductor device (100).
  • Referring to FIG. 2D, the field plate dielectric layer 126 is formed over the cap layer 118. The field plate dielectric layer 126 may be formed, for example, by forming a layer of dielectric material containing silicon dioxide and/or silicon nitride over the cap layer by a plasma enhanced chemical vapor deposition (PECVD) process. A field plate mask 146 is formed over the layer of dielectric material so as to expose gate areas for the enhancement mode GaN FET 102 and the depletion mode GaN FET 104. The layer of dielectric material is removed where exposed by the field plate mask 146 by an etch process such as a plasma etch process at over 100 torr, forming the field plate dielectric layer 126 with sloped sides as depicted in FIG. 2D.
  • Referring to FIG. 2E, a recess mask 148 is formed over the cap layer 118 to expose an area in the enhancement mode GaN FET 102 for the gate recess 120. The recess mask 148 may include photoresist and may be formed by a photolithographic process. The recess mask 148 may further include an antireflection layer such as an organic bottom antireflection coating (BARC) and/or a hard mask layer such as silicon dioxide or silicon nitride. The recess mask 148 covers the area for the depletion mode GaN FET 104.
  • A first etch process 150 such as a plasma etch process using chlorine radicals removes the cap layer 118 in the area exposed by the recess mask 148 to form a portion of the gate recess 120. The indium in the stressor layer 116 has a lower etch rate in the first etch process 150 than the cap layer 118, so at least a portion of the stressor layer 116 remains in the area for the gate recess 120 after the first etch process 150 is completed. The first etch process 150 may be, for example, an inductively-coupled plasma reactive ion etch (ICP-RIE) process using chlorine (Cl2) gas sulfur hexafluoride (SF6) gas, which has been demonstrated to desirably provide an etch selectivity of gallium aluminum nitride to indium aluminum nitride greater than 1.0. Forming the cap layer 118 at a maximum temperature of 900° C., in combination with the indium content in the stressor layer 116, may advantageously increase the etch selectivity for the first etch process 150 so as to reduce the amount, if any, of the stressor layer 116 removed by the first etch process 150.
  • Referring to FIG. 2F, a second etch process 152 removes the stressor layer 116 in the gate recess 120 to form the complete gate recess 120. The second etch process 152 has a different chemistry than the first etch process 150 of FIG. 2E. The barrier layer 114 has a lower etch rate in the second etch process 152 than the stressor layer 116, so at least a portion, and possibly all, of the barrier layer 114 remains under the gate recess 120 after the second etch process 152 is completed. The second etch process 152 may include, for example, a wet etch process using a 1 molar aqueous solution of 1,2 diaminoethane, which has been demonstrated to desirable provide an etch selectivity of indium aluminum nitride to gallium aluminum nitride eater than 1.0 at room temperature. The first etch process 150 may provide a desirably rough surface on the exposed stressor layer 116 which may advantageously provide a more uniform initial etch rate for the second etch process 152.
  • Referring to FIG. 2G, there may be a remaining portion 154 of the stressor layer 116 in the gate recess 120, possibly a transition layer 154 which includes elements of the underlying barrier layer 114. An oxidizing liquid 156 oxidizes the remaining portion 154 of the stressor layer 116 in the gate recess 120. The remaining portion 154 of the stressor layer 116 may be oxidized by an anodic oxidation process in which electrical current is passed through the oxidizing liquid 156. For example, the oxidizing liquid 156 may be an aqueous solution of nitriloacetic acid and 0.3 molar potassium hydroxide (KOH) with a pH value of 8.5. The electrical current may have a value of about 20 microamperes per square centimeter of exposed stressor layer 116. The oxidized remaining portion 154 may be subsequently removed, for example by a wet etch process using a dilute aqueous acidic solution, such as a dilute nitric acid solution or a citric acid solution. The recess mask 148 is removed, possibly after the wet etch process 152 of FIG. 2F is completed, or possibly earlier.
  • Referring to FIG. 2H, a layer of gate dielectric material 158 is formed over the field plate dielectric layer 126, extending into the gate recess 120 and overlying the barrier layer 114 at a bottom of the gate recess 120. In the instant example, the layer of gate dielectric material 158 extends over the cap layer 118 in the depletion mode GaN FET 104. The layer of gate dielectric material 158 may include one or more layers of silicon dioxide and/or silicon nitride, formed, for example, by PECVD processes. A layer of gate material 160 is formed over the layer of gate dielectric material 158. The layer of gate material 160 may include, for example, gallium nitride or other III-N material, or may include polycrystalline silicon, referred to as polysilicon, or may include metal. In the instant example, the layer of gate material 160 is formed in the areas for the gates of both the enhancement mode GaN FET 102 and the depletion mode GaN FET 104.
  • Referring to FIG. 2I, the layer of gate material 160 of FIG. 2H is patterned to concurrently form the enhancement mode gate 128 and the depletion mode gate 130. The enhancement mode gate 128 and the depletion mode gate 130 may be formed by an etch process: forming an etch mask over the layer of gate material 160 which covers area for the enhancement mode gate 128 and the depletion mode gate 130, and subsequently removing the layer of gate material 160 where exposed by the etch mask. Alternatively, the enhancement mode gate 128 and the depletion mode gate 130 may be formed by a liftoff process: forming a liftoff mask of solvent-soluble organic material such as photoresist which exposes the layer of gate dielectric material 158 in the areas for the enhancement mode gate 128 and the depletion mode gate 130, forming the layer of gate material 160 over the liftoff mask, and subsequently removing the liftoff mask and the overlying layer of gate material 160, leaving the layer of gate material 160 in the areas exposed by the liftoff mask to provide the enhancement mode gate 128 and the depletion mode gate 130. Forming the enhancement mode gate 128 and the depletion mode gate 130 concurrently may advantageously reduce fabrication cost and complexity of the semiconductor device 100. In an alternate version of the instant example, the enhancement mode gate 128 and the depletion mode gate 130 may be formed separately, of materials with different work functions, to increase performance of both the enhancement mode GaN FET 102 and the depletion mode GaN FET 104. After forming the enhancement mode GaN FET 102 and the depletion mode GaN FET 104, fabrication is continued to provide the structure of FIG. 1.
  • FIG. 3A and FIG. 3B are cross sections of the semiconductor device of FIG. 1 depicted in an alternate process sequence for forming the gate recess. Referring to FIG. 3A, the recess mask 148 is formed over the cap layer 118. The cap layer 118 is removed in the area exposed by the recess mask 148 to form a portion of the gate recess 120, as described in reference to FIG. 2E. An oxidizing liquid 162, for example an anodizing aqueous solution containing an aqueous solution of nitriloacetic acid and 0.3 molar KOH with a pH value of 8.5 with an electrical current of about 20 microamperes per square centimeter of exposed stressor layer 116, oxidizes the stressor layer 116 where exposed by the cap layer 118 in the gate recess 120 to form an oxidized stressor layer 164 which includes indium oxide. In the instant example, the barrier layer 114 may include a layer of gallium nitride (GaN) 1 nanometer to 3 nanometers thick immediately below the stressor layer 116 to prevent oxidation of the aluminum gallium nitride in the barrier layer 114. At least a portion of the barrier layer 114 under the stressor layer 116 in the gate recess 120 is not oxidized.
  • Referring to FIG. 3B, a second etch process 166 removes the oxidized stressor layer 164 of FIG. 3A to form the gate recess 120, while leaving at least a portion, and possibly all, of the barrier layer 114 under the gate recess 120. The second etch process 166 may include, for example, a dilute aqueous solution of nitric acid, phosphoric acid, and/or hydrochloric acid, or an aqueous solution of an organic acid such as citric acid. The oxidation process described in reference to FIG. 3A and the second etch process of FIG. 3B may be repeated to completely remove the stressor layer 116 from the gate recess 120. The recess mask 148 is removed and fabrication is continued as described in reference to FIG. 2G.
  • While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only and not limitation. Numerous changes to the disclosed embodiments can be made in accordance with the disclosure herein without departing from the spirit or scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above described embodiments. Rather, the scope of the invention should be defined in accordance with the following claims and their equivalents.

Claims (20)

What is claimed is:
1. A semiconductor device, comprising:
a low-doped layer of III-N material;
a barrier layer of III-N material disposed over the low-doped layer, the barrier layer having less than 1 atomic percent indium;
a stressor layer of primarily indium aluminum nitride over the barrier layer, the stressor layer having a stoichiometry of In0.05Al0.95N to In0.30Al0.70N, and a thickness of 1 nanometers to 5 nanometers;
a cap layer of III-N material disposed over the stressor layer;
a gate recess extending through the cap layer and the stressor layer in an enhancement mode gallium nitride field effect transistor (GaN FET), wherein the gate recess does not extend through the barrier layer;
a gate dielectric layer disposed over the barrier layer in the gate recess; and
a gate of the enhancement mode GaN FET disposed over the gate dielectric layer in the gate recess.
2. The semiconductor device of claim 1, wherein the barrier layer has a stoichiometry of Al0.10Ga0.90N to Al0.30Ga0.70N, and a thickness of 1 nanometers to 5 nanometers.
3. The semiconductor device of claim 1, wherein the stressor layer has a stoichiometry of In0.16Al0.84N to In0.18Al0.82N and a thickness of 3.5 nanometers to 4.5 nanometers.
4. The semiconductor device of claim 1, wherein the cap layer has a stoichiometry of Al0.05Ga0.95N to Al0.30Ga0.70N, and a thickness of 4 nanometers to 20 nanometers.
5. A semiconductor device, comprising:
a low-doped layer of III-N material;
a barrier layer of III-N material disposed over the low-doped layer, the barrier layer having less than 1 atomic percent indium;
a stressor layer of primarily indium aluminum nitride over the barrier layer, the stressor layer having a stoichiometry of In0.05Al0.95N to In0.30Al0.70N, and a thickness of 1 nanometers to 5 nanometers;
a cap layer of III-N material disposed over the stressor layer;
a gate recess extending through the cap layer and the stressor layer in an enhancement mode GaN FET, wherein the gate recess does not extend through the barrier layer;
a gate dielectric layer of the enhancement mode GaN FET disposed over the barrier layer in the gate recess;
a gate of the enhancement mode GaN FET disposed over the gate dielectric layer in the gate recess;
a gate dielectric layer of a depletion mode GaN FET disposed over the cap layer, the stressor layer and the barrier layer; and
a gate of the depletion mode GaN FET disposed over the gate dielectric layer of the depletion mode GaN FET.
6. The semiconductor device of claim 5, wherein the barrier layer has a stoichiometry of Al0.10Ga0.90N to Al0.30Ga0.70N, and a thickness of 1 nanometers to 5 nanometers.
7. The semiconductor device of claim 5, wherein the stressor layer has a stoichiometry of In0.16Al0.84N to In0.18Al0.82N and a thickness of 3.5 nanometers to 4.5 nanometers.
8. The semiconductor device of claim 5, wherein the cap layer has a stoichiometry of Al0.05Ga0.95N to Al0.30Ga0.70N, and a thickness of 4 nanometers to 20 nanometers.
9. The semiconductor device of claim 5, wherein:
the gate dielectric layer of the enhancement mode GaN FET and the gate dielectric layer of the depletion mode GaN FET have substantially equal thicknesses and compositions; and
the gate of the enhancement mode GaN FET and the gate of the depletion mode GaN FET have substantially equal compositions.
10. A method of forming a semiconductor device, comprising the steps:
forming a low-doped layer of III-N material over a substrate, in an area for an enhancement mode GaN FET;
forming a barrier layer of III-N material by a metal-organic chemical vapor deposition (MOCVD) process over the low-doped layer, the barrier layer having less than 1 atomic percent indium;
forming a stressor layer of III-N material by an MOCVD process over the barrier layer, the stressor layer having a stoichiometry of In0.05Al0.95N to In0.30Al0.70N, and a thickness of 1 nanometers to 5 nanometers;
forming a cap layer of III-N material by an MOCVD process over the stressor layer;
forming a recess mask over the cap layer which exposes an area for a gate recess in the area for the enhancement mode GaN FET;
removing the cap layer in the area exposed by the recess mask by a first etch process to form a portion of a gate recess of the enhancement mode GaN FET, the first etch process leaving at least a portion of the stressor layer under the area exposed by the recess mask;
removing the stressor layer in the area exposed by the recess mask by a second etch process to form the gate recess, the second etch process having a different chemistry than the first etch process, the second etch process leaving at least a portion of the barrier layer under the gate recess;
forming a gate dielectric layer over the barrier layer in the gate recess; and
forming a gate of the enhancement mode GaN FET over the gate dielectric layer in the gate recess.
11. The method of claim 10, wherein the substrate is a 150 millimeter wafer, and forming the barrier layer comprises:
placing the substrate on a susceptor in an MOCVD chamber;
heating the susceptor to a temperature of 900° C. to 1100 ° C.;
flowing hydrogen gas into the MOCVD chamber at a flow rate of 80 standard liters per minute (slm) to 120 slm;
flowing a nitrogen source into the MOCVD chamber at a flow rate of 5 slm to 30 slm;
flowing an aluminum precursor into the MOCVD chamber at a rate of 80 standard cubic centimeters per minute (sccm) to 130 sccm;
flowing a gallium precursor into the MOCVD chamber at a rate of 40 sccm to 160 sccm; and
maintaining a pressure in the MOCVD chamber at 50 torr to 200 ton.
12. The method of claim 10, wherein the substrate is a 150 millimeter wafer, and forming the stressor layer comprises:
placing the substrate on a susceptor in an MOCVD chamber;
heating the susceptor to a temperature of 700° C. to 850° C.;
flowing nitrogen gas into the MOCVD chamber at a flow rate of 60 slm to 100 slm;
flowing a nitrogen source into the MOCVD chamber at a flow rate 5 slm to 40 slm;
flowing an aluminum precursor into the MOCVD chamber at a rate of 80 sccm to 130 sccm;
flowing a indium precursor into the MOCVD chamber at a rate 100 sccm to 300 sccm; and
maintaining a pressure in the MOCVD chamber at 100 torr to 400 torr.
13. The method of claim 10, wherein the substrate is a 150 millimeter wafer, and forming the cap layer comprises:
placing the substrate on a susceptor in an MOCVD chamber;
heating the susceptor to a temperature of 750° C. to 900° C.;
flowing nitrogen gas into the MOCVD chamber at a flow rate of 80 slm to 120 slm;
flowing a nitrogen source into the MOCVD chamber at a flow rate of 5 slm to 35 slm;
flowing an aluminum precursor into the MOCVD chamber at a rate of 80 sccm to 130 sccm;
flowing a gallium precursor into the MOCVD chamber at a rate of 40 sccm to 60 sccm; and
maintaining a pressure in the MOCVD chamber at 50 torr to 200 torr.
14. The method of claim 10, wherein the barrier layer, the stressor layer and the cap layer are formed in one MOCVD chamber.
15. The method of claim 10, wherein the first etch process comprises a plasma etch process with chlorine radicals.
16. The method of claim 10, wherein the second etch process comprises a wet etch process with an aqueous solution of 1,2 diaminoethane.
17. The method of claim 10, comprising oxidizing the stressor layer in the area exposed by the recess mask to form an oxidized stressor layer, after removing the cap layer in the area exposed by the recess mask, wherein the second etch process removes the oxidized stressor layer.
18. The method of claim 10, comprising oxidizing a remaining portion of the stressor layer left in the area exposed by the recess mask after the step of removing the stressor layer by the first etch process.
19. The method of claim 10, wherein the gate dielectric layer extends over the cap layer, the stressor layer and the barrier layer in an area for a gate of a depletion mode GaN FET of the semiconductor device.
20. The method of claim 19, wherein forming the gate of the enhancement mode GaN FET comprises:
forming a layer of gate material over the gate dielectric layer in the gate recess and in the area for the gate of the depletion mode GaN FET; and
forming the gate of the enhancement mode GaN FET concurrently with the gate of the depletion mode GaN FET from the layer of gate material.
US14/673,844 2015-03-30 2015-03-30 Normally off iii-nitride transistor Abandoned US20160293596A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US14/673,844 US20160293596A1 (en) 2015-03-30 2015-03-30 Normally off iii-nitride transistor
EP16773915.0A EP3278367A4 (en) 2015-03-30 2016-03-28 Normally off iii-nitride transistor
CN201680008415.0A CN107210323B (en) 2015-03-30 2016-03-28 Normally-off group III nitride transistor
PCT/US2016/024495 WO2016160690A1 (en) 2015-03-30 2016-03-28 Normally off iii-nitride transistor
JP2017551696A JP6835736B2 (en) 2015-03-30 2016-03-28 Normally Off III-Nitride Transistor
US15/988,618 US11011515B2 (en) 2015-03-30 2018-05-24 Normally off III nitride transistor
JP2020179286A JP7434679B2 (en) 2015-03-30 2020-10-27 Normally Off III-Nitride Transistor
US17/234,385 US20210242200A1 (en) 2015-03-30 2021-04-19 Normally off iii nitride transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/673,844 US20160293596A1 (en) 2015-03-30 2015-03-30 Normally off iii-nitride transistor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/988,618 Division US11011515B2 (en) 2015-03-30 2018-05-24 Normally off III nitride transistor

Publications (1)

Publication Number Publication Date
US20160293596A1 true US20160293596A1 (en) 2016-10-06

Family

ID=57005255

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/673,844 Abandoned US20160293596A1 (en) 2015-03-30 2015-03-30 Normally off iii-nitride transistor
US15/988,618 Active US11011515B2 (en) 2015-03-30 2018-05-24 Normally off III nitride transistor
US17/234,385 Pending US20210242200A1 (en) 2015-03-30 2021-04-19 Normally off iii nitride transistor

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/988,618 Active US11011515B2 (en) 2015-03-30 2018-05-24 Normally off III nitride transistor
US17/234,385 Pending US20210242200A1 (en) 2015-03-30 2021-04-19 Normally off iii nitride transistor

Country Status (5)

Country Link
US (3) US20160293596A1 (en)
EP (1) EP3278367A4 (en)
JP (2) JP6835736B2 (en)
CN (1) CN107210323B (en)
WO (1) WO2016160690A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160359032A1 (en) * 2015-06-03 2016-12-08 Fujitsu Limited Compound semiconductor device and manufacturing method thereof
US10103239B1 (en) * 2017-12-28 2018-10-16 Vanguard International Semiconductor Corporation High electron mobility transistor structure
US20190181240A1 (en) * 2015-12-28 2019-06-13 Texas Instruments Incorporated Methods for transistor epitaxial stack fabrication
US10879382B1 (en) 2019-06-26 2020-12-29 Northrop Grumman Systems Corporation Enhancement mode saddle gate device
CN113707708A (en) * 2021-07-26 2021-11-26 西安电子科技大学 Junction accumulation layer enhanced AlGaN/GaN high electron mobility transistor and manufacturing method thereof
US11251294B2 (en) * 2020-03-24 2022-02-15 Infineon Technologies Austria Ag High voltage blocking III-V semiconductor device
US11631741B2 (en) * 2016-02-03 2023-04-18 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device
US11705511B2 (en) 2016-08-22 2023-07-18 The Hong Kong University Of Science And Technology Metal-insulator-semiconductor transistors with gate-dielectric/semiconductor interfacial protection layer
US11742390B2 (en) 2020-10-30 2023-08-29 Texas Instruments Incorporated Electronic device with gallium nitride transistors and method of making same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160293596A1 (en) * 2015-03-30 2016-10-06 Texas Instruments Incorporated Normally off iii-nitride transistor
WO2019106843A1 (en) * 2017-12-01 2019-06-06 三菱電機株式会社 Method for producing semiconductor device and semiconductor device
US11664417B2 (en) * 2018-09-13 2023-05-30 Intel Corporation III-N metal-insulator-semiconductor field effect transistors with multiple gate dielectric materials
US11757027B2 (en) * 2018-12-13 2023-09-12 Intel Corporation E-D mode 2DEG FET with gate spacer to locally tune VT and improve breakdown
CN111384166A (en) * 2018-12-29 2020-07-07 苏州捷芯威半导体有限公司 Semiconductor device and semiconductor device manufacturing method
CN109742143A (en) * 2018-12-29 2019-05-10 苏州汉骅半导体有限公司 Integrated enhanced and depleted HEMT and method of making the same
CN115172367A (en) * 2022-07-07 2022-10-11 广东中科半导体微纳制造技术研究院 GaN-based HEMT structure with multiple threshold voltages, and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090058532A1 (en) * 2007-08-31 2009-03-05 Fujitsu Limited Nitride semiconductor device, doherty amplifier and drain voltage controlled amplifier
US20100117118A1 (en) * 2008-08-07 2010-05-13 Dabiran Amir M High electron mobility heterojunction device
US20130099284A1 (en) * 2011-10-20 2013-04-25 Triquint Semiconductor, Inc. Group iii-nitride metal-insulator-semiconductor heterostructure field-effect transistors
US20130292690A1 (en) * 2012-05-02 2013-11-07 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US20130313561A1 (en) * 2012-05-25 2013-11-28 Triquint Semiconductor, Inc. Group iii-nitride transistor with charge-inducing layer

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194676A (en) * 1987-10-06 1989-04-13 Nec Corp Semiconductor device and manufacture thereof
US7456443B2 (en) * 2004-11-23 2008-11-25 Cree, Inc. Transistors having buried n-type and p-type regions beneath the source region
US7429534B2 (en) 2005-02-22 2008-09-30 Sensor Electronic Technology, Inc. Etching a nitride-based heterostructure
JP5051980B2 (en) 2005-03-31 2012-10-17 住友電工デバイス・イノベーション株式会社 Semiconductor device
JP2007115887A (en) * 2005-10-20 2007-05-10 Rohm Co Ltd Nitride semiconductor device and manufacturing method thereof
US8581260B2 (en) * 2007-02-22 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a memory
US7915643B2 (en) * 2007-09-17 2011-03-29 Transphorm Inc. Enhancement mode gallium nitride power devices
US8680580B2 (en) * 2007-11-19 2014-03-25 Renesas Electronics Corporation Field effect transistor and process for manufacturing same
EP2430652B1 (en) * 2009-05-12 2019-11-20 The Board of Trustees of the University of Illionis Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
US20110241020A1 (en) * 2010-03-31 2011-10-06 Triquint Semiconductor, Inc. High electron mobility transistor with recessed barrier layer
US8816395B2 (en) * 2010-05-02 2014-08-26 Visic Technologies Ltd. Field effect power transistors
US8809987B2 (en) * 2010-07-06 2014-08-19 The Hong Kong University Of Science And Technology Normally-off III-nitride metal-2DEG tunnel junction field-effect transistors
US20120292663A1 (en) * 2011-05-19 2012-11-22 National Central University Structure and Method for Monolithically Fabrication Sb-Based E/D Mode MISFETs
JP2013077635A (en) * 2011-09-29 2013-04-25 Sumitomo Electric Ind Ltd Semiconductor device and manufacturing method of the same
KR20130063833A (en) 2011-12-07 2013-06-17 삼성전기주식회사 Monolithic semiconductor device and manufacturing method thereof
WO2013155108A1 (en) * 2012-04-09 2013-10-17 Transphorm Inc. N-polar iii-nitride transistors
US8933461B2 (en) * 2012-08-09 2015-01-13 Texas Instruments Incorporated III-nitride enhancement mode transistors with tunable and high gate-source voltage rating
US8884334B2 (en) * 2012-11-09 2014-11-11 Taiwan Semiconductor Manufacturing Co., Ltd. Composite layer stacking for enhancement mode transistor
JP6486828B2 (en) 2012-11-16 2019-03-20 マサチューセッツ インスティテュート オブ テクノロジー Etching technology for semiconductor structure and recess formation
US9093301B2 (en) * 2013-03-08 2015-07-28 Texas Instruments Incorporated Driver for normally on III-nitride transistors to get normally-off functionality
US9553183B2 (en) * 2013-06-19 2017-01-24 Infineon Technologies Austria Ag Gate stack for normally-off compound semiconductor transistor
JP2015046444A (en) * 2013-08-27 2015-03-12 ルネサスエレクトロニクス株式会社 Semiconductor device
KR102320790B1 (en) * 2014-07-25 2021-11-03 서울바이오시스 주식회사 Uv light emitting diode and method of fabricating the same
JP6337726B2 (en) * 2014-09-29 2018-06-06 株式会社デンソー Semiconductor device and manufacturing method thereof
US10468406B2 (en) 2014-10-08 2019-11-05 Northrop Grumman Systems Corporation Integrated enhancement mode and depletion mode device structure and method of making the same
US20160293596A1 (en) * 2015-03-30 2016-10-06 Texas Instruments Incorporated Normally off iii-nitride transistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090058532A1 (en) * 2007-08-31 2009-03-05 Fujitsu Limited Nitride semiconductor device, doherty amplifier and drain voltage controlled amplifier
US20100117118A1 (en) * 2008-08-07 2010-05-13 Dabiran Amir M High electron mobility heterojunction device
US20130099284A1 (en) * 2011-10-20 2013-04-25 Triquint Semiconductor, Inc. Group iii-nitride metal-insulator-semiconductor heterostructure field-effect transistors
US20130292690A1 (en) * 2012-05-02 2013-11-07 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US20130313561A1 (en) * 2012-05-25 2013-11-28 Triquint Semiconductor, Inc. Group iii-nitride transistor with charge-inducing layer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10600901B2 (en) * 2015-06-03 2020-03-24 Fujitsu Limited Compound semiconductor device and manufacturing method thereof
US20160359032A1 (en) * 2015-06-03 2016-12-08 Fujitsu Limited Compound semiconductor device and manufacturing method thereof
US20190181240A1 (en) * 2015-12-28 2019-06-13 Texas Instruments Incorporated Methods for transistor epitaxial stack fabrication
US12087820B2 (en) 2016-02-03 2024-09-10 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device having a plurality of III-V semiconductor layers
US11631741B2 (en) * 2016-02-03 2023-04-18 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device
US11705511B2 (en) 2016-08-22 2023-07-18 The Hong Kong University Of Science And Technology Metal-insulator-semiconductor transistors with gate-dielectric/semiconductor interfacial protection layer
US10103239B1 (en) * 2017-12-28 2018-10-16 Vanguard International Semiconductor Corporation High electron mobility transistor structure
US10879382B1 (en) 2019-06-26 2020-12-29 Northrop Grumman Systems Corporation Enhancement mode saddle gate device
US11251294B2 (en) * 2020-03-24 2022-02-15 Infineon Technologies Austria Ag High voltage blocking III-V semiconductor device
US11923448B2 (en) 2020-03-24 2024-03-05 Infineon Technologies Austria Ag High voltage blocking III-V semiconductor device
US11742390B2 (en) 2020-10-30 2023-08-29 Texas Instruments Incorporated Electronic device with gallium nitride transistors and method of making same
US12142639B2 (en) 2020-10-30 2024-11-12 Texas Instruments Incorporated Electronic device with gallium nitride transistors and method of making same
CN113707708A (en) * 2021-07-26 2021-11-26 西安电子科技大学 Junction accumulation layer enhanced AlGaN/GaN high electron mobility transistor and manufacturing method thereof

Also Published As

Publication number Publication date
CN107210323B (en) 2022-03-08
JP7434679B2 (en) 2024-02-21
EP3278367A1 (en) 2018-02-07
WO2016160690A1 (en) 2016-10-06
EP3278367A4 (en) 2018-03-14
US20180277535A1 (en) 2018-09-27
JP2018517280A (en) 2018-06-28
JP6835736B2 (en) 2021-02-24
CN107210323A (en) 2017-09-26
JP2021044556A (en) 2021-03-18
US20210242200A1 (en) 2021-08-05
US11011515B2 (en) 2021-05-18

Similar Documents

Publication Publication Date Title
US20210242200A1 (en) Normally off iii nitride transistor
CN104009074B (en) High electron mobility transistor and method of manufacturing the same
EP3226304B1 (en) Semiconductor devices with an enhanced resistivity region and methods of fabrication therefor
US7906417B2 (en) Compound semiconductor device with T-shaped gate electrode and its manufacture
US10096690B2 (en) Circuit structure, transistor and semiconductor device
CN103094335B (en) High electron mobility transistor and forming method thereof
KR101168824B1 (en) Methods for manufacturing enhancement-mode hemts with self-aligned field plate
CN103545360B (en) HEMT and forming method thereof
US20110042719A1 (en) Semiconductor device and method of manufacturing a semiconductor device
CN106711038A (en) Method for manufacturing an HEMT transistor and HEMT transistor with improved electron mobility
CN102034859A (en) Compound semiconductor device and method of manufacturing the same
WO2010050021A1 (en) Compound semiconductor device and method for manufacturing the same
US20170117398A1 (en) METHOD FOR FORMATION OF VERTICAL CYLINDRICAL GaN QUANTUM WELL TRANSISTOR
CN103187441A (en) High electron mobility transistor and method of forming the same
WO2022204913A1 (en) Iii nitride semiconductor devices on patterned substrates
CN103050511B (en) Semiconductor structure and the method forming semiconductor structure
JP6609926B2 (en) Compound semiconductor device and manufacturing method thereof
CN111415987A (en) Gallium nitride device structure combining secondary epitaxy and self-alignment process and preparation method thereof
US9184240B2 (en) Method of producing semiconductor wafer, and semiconductor wafer
WO2022205469A1 (en) Iii nitride semiconductor wafers
KR20220083619A (en) High electron mobility transistor and fabricating method thereof
Hussain Study of Digital Algan Alloy Based Heterostructures Using Aln/GaN Short Period Superlattice
US20240154012A1 (en) Semiconductor device and method for manufacturing the same
Jeong et al. P-GaN/AlGAN/GaN E-mode HEMT
CN107046053A (en) Semiconductor structure and its manufacture method

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEXAS INSTRUMENTS INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FAREED, QHALID;TIPIRNENI, NAVEEN;SIGNING DATES FROM 20150410 TO 20150415;REEL/FRAME:035570/0419

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION