WO2019103035A1 - 液晶ポリエステル樹脂組成物および成形体 - Google Patents
液晶ポリエステル樹脂組成物および成形体 Download PDFInfo
- Publication number
- WO2019103035A1 WO2019103035A1 PCT/JP2018/042974 JP2018042974W WO2019103035A1 WO 2019103035 A1 WO2019103035 A1 WO 2019103035A1 JP 2018042974 W JP2018042974 W JP 2018042974W WO 2019103035 A1 WO2019103035 A1 WO 2019103035A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyester resin
- liquid crystal
- crystal polyester
- group
- less
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/60—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/043—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K13/00—Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
- C08K13/04—Ingredients characterised by their shape and organic or inorganic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/346—Clay
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/40—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/16—Solid spheres
- C08K7/18—Solid spheres inorganic
- C08K7/20—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C08L67/03—Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/60—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
- C08G63/605—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2467/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2467/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/12—Polymer mixtures characterised by other features containing additives being liquid crystalline or anisotropic in the melt
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K2019/521—Inorganic solid particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Definitions
- the present invention relates to a liquid crystal polyester resin composition and a molded body.
- Priority is claimed on Japanese Patent Application No. 2017-227143, filed Nov. 27, 2017, the content of which is incorporated herein by reference.
- the liquid crystal polyester resin is extremely excellent in melt flowability, and depending on the structure, has heat deformation resistance of 300 ° C. or more. Liquid crystal polyester resins are used for molded articles in applications such as electronic parts, OA parts, AV parts, heat-resistant dishes and the like, taking advantage of such characteristics.
- liquid crystal polyester resin compositions in which a fibrous filler is blended with a liquid crystal polyester resin are used (for example, Patent Documents 1 to 3).
- the molded articles such as runners and sprues generated at the time of injection molding are crushed, and the crushed molded articles are reused as raw materials for manufacturing molded articles.
- a recycling method has begun to be studied in which a part of the ground compact is mixed with a raw material not used for producing a compact and reused as a raw material for producing a compact.
- the molded body is crushed and regenerated as a raw material used for producing the molded body, and the obtained pulverized material is called “regrind material”.
- the raw material which is not used for manufacture of a molded object is called a “virgin material.”
- Regrind materials are generally known to have lower physical properties than virgin materials. Regrind materials have more heat history than virgin materials. Therefore, it is considered that the deterioration of the resin due to heat reduces the mechanical strength of the molded product using the regrind material. Moreover, regrind material is manufactured by grinding. Therefore, it is believed that the physical failure of the filler reduces the mechanical strength of the regrind-formed compact. Therefore, in order to effectively use the regrind material, the mechanical strength of the molded product using the regrind material is unlikely to be reduced relative to the mechanical strength of the molded product using the virgin material, and the usable range for the molded product Liquid crystalline polyester resin compositions (virgin materials) that can be maintained by
- Patent Documents 1 to 3 do not necessarily have a high maintenance rate of mechanical strength at the time of regrind.
- mechanical strength refers to tensile strength and Izod impact strength.
- the maintenance rate of mechanical strength is the value which calculated the physical-property value of the mechanical strength of the molded object using the regrind material with respect to the physical property value of the mechanical strength of the molded object using a virgin material.
- This invention is made in view of such a situation, Comprising: It aims at providing the liquid crystalline polyester resin composition and molded object with a high maintenance factor of mechanical strength at the time of regrind.
- one mode of the present invention contains 100 mass parts of liquid crystalline polyester resin, 10 mass parts or more and 100 mass parts or less of glass component, and a glass component has a length of 30 ⁇ m or more And a glass-made fine powder having a length of 4 ⁇ m to 30 ⁇ m, the number average fiber length of the glass fiber is 50 ⁇ m to 200 ⁇ m, and the content ratio of the fine powder is 50 with respect to the total number of glass components.
- the liquid crystal polyester resin composition which is% or more and 95% or less is provided.
- the fine powder comprises a first fine powder having a length of 4 ⁇ m to 20 ⁇ m and a second fine powder of more than 20 ⁇ m and 30 ⁇ m or less, and the first fine powder corresponds to the total number of the glass components. And 40% or more and 70% or less.
- the content ratio of the fine powder may be 50% or more and 85% or less with respect to the total number of the glass components.
- the diameter of the fine powder may be 9 ⁇ m to 12 ⁇ m, and the aspect ratio (length / diameter) of the fine powder may be 0.3 to 3.5.
- the liquid crystal polyester resin may contain a repeating unit represented by the following formulas (1) to (3).
- Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group.
- Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following formula (4).
- X and Y each independently represent an oxygen atom or an imino group (-NH-).
- One or more hydrogen atoms in the above group represented by Ar 1 , Ar 2 or Ar 3 are each independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms It may be done.
- (4)-Ar 4- Z-Ar 5- [Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group. Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylidene group having 1 to 10 carbon atoms.
- One or more hydrogen atoms in the above group represented by Ar 4 or Ar 5 are each independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. It is also good. ]
- Ar 1 is a 1,4-phenylene group
- Ar 2 is a 1,4-phenylene group and a 1,3-phenylene group
- Ar 3 is a biphenylylene group
- X and Y are Each may be an oxygen atom.
- the molar ratio (3) / (1) of the repeating unit represented by the formula (1) to the repeating unit represented by the formula (3) is 0.2 or more and 1.0 or less
- the molar ratio (2) / (3) of the repeating unit represented by the formula (3) to the repeating unit represented by the formula (2) may be 0.9 or more and 1.1 or less.
- the molar ratio y / x of the repeating unit represented by the formula (2) may be more than 0 and 1 or less.
- X represents the molar content of repeating units where Ar 2 is a 1,4-phenylene group.
- y represents the molar content of repeating units in which Ar 2 is a 1,3-phenylene group.
- the liquid crystal polyester resin may include the first liquid crystal polyester resin and the second liquid crystal polyester resin, and ⁇ / ⁇ may be 0.1 or more and 0.6 or less.
- ⁇ represents a molar ratio y / x of the first liquid crystal polyester resin.
- ⁇ represents a molar ratio y / x of the second liquid crystal polyester resin.
- One aspect of the present invention provides a molded article using the above liquid crystal polyester resin composition as a forming material.
- the present invention includes the following aspects.
- the glass component includes glass fibers having a length of greater than 30 ⁇ m and glass powder having a length of 4 ⁇ m to 30 ⁇ m.
- the number average fiber length of the glass fiber is 50 ⁇ m or more and 200 ⁇ m or less,
- the liquid-crystal polyester resin composition whose content rate of the said fine powder is 50% or more and 95% or less with respect to the total of the said glass component.
- the fine powder is composed of a first fine powder having a length of 4 ⁇ m or more and 20 ⁇ m or less, and a second fine powder of more than 20 ⁇ m and 30 ⁇ m or less,
- the liquid-crystal polyester resin composition as described in [1] whose content rate of the said 1st fine powder is 40% or more and 70% or less with respect to the total of the said glass component.
- Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group.
- Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following formula (4).
- X and Y each independently represent an oxygen atom or an imino group (-NH-).
- At least one hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 is each independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms It may be done.
- (4)-Ar 4- Z-Ar 5- [Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group. Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylidene group having 1 to 10 carbon atoms.
- At least one hydrogen atom in the group represented by Ar 4 or Ar 5 is each independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. It is also good.
- the Ar 1 is a 1,4-phenylene group
- the Ar 2 is a 1,4-phenylene group and a 1,3-phenylene group
- the Ar 3 is a biphenylylene group
- the X and the Y Each is an oxygen atom
- the liquid-crystal polyester resin composition as described in [4].
- the molar ratio (3) / (1) of the repeating unit represented by the formula (1) to the repeating unit represented by the formula (3) is 0.2 or more and 1.0 or less
- the molar ratio (2) / (3) of the repeating unit represented by the formula (3) to the repeating unit represented by the formula (2) is 0.9 or more and 1.1 or less
- [4] or [4] The liquid-crystal polyester resin composition as described in 5].
- [7] The liquid crystal polyester resin composition according to any one of [4] to [6], wherein the molar ratio y / x of the repeating unit represented by the formula (2) is more than 0 and not more than 1.
- [X represents a molar content of a repeating unit in which Ar 2 is a 1,4-phenylene group.
- y represents the molar content of the repeating unit in which Ar 2 is a 1,3-phenylene group.
- [ ⁇ represents a molar ratio y / x of the first liquid crystal polyester resin.
- ⁇ represents a molar ratio y ′ / x ′ of the second liquid crystal polyester resin.
- a liquid crystal polyester resin composition and a molded article having a high maintenance rate of mechanical strength at the time of regrind are provided.
- the liquid crystal polyester resin composition of the present embodiment contains a liquid crystal polyester resin and a glass component.
- liquid crystal polyester resin As a typical example of the liquid crystal polyester resin according to the present embodiment, at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine and an aromatic diamine, an aromatic hydroxycarboxylic acid, and an aromatic A polymer obtained by condensation polymerization (polycondensation) with a dicarboxylic acid; a polymer obtained by polymerizing a plurality of aromatic hydroxycarboxylic acids; selected from the group consisting of an aromatic diol, an aromatic hydroxyamine and an aromatic diamine A polymer obtained by polymerizing at least one compound and an aromatic dicarboxylic acid; and a polymer obtained by polymerizing a polyester such as polyethylene terephthalate and an aromatic hydroxycarboxylic acid.
- condensation polymerization polycondensation of at least one compound selected from the group consisting of aromatic diols, aromatic hydroxyamines and aromatic diamines, aromatic hydroxycarboxylic acids and aromatic dicarboxylic acids.
- Polymers are preferred.
- aromatic hydroxycarboxylic acid, the aromatic dicarboxylic acid, the aromatic diol, the aromatic hydroxyamine and the aromatic diamine are, independently of one another, substituted for part or all of the polymerizable ester-forming derivatives thereof. May be
- Examples of polymerizable derivatives of compounds having a carboxy group include esters, acid halides, and acid anhydrides.
- Examples of the above-mentioned ester include compounds obtained by converting a carboxy group into an alkoxycarbonyl group or an aryloxycarbonyl group.
- Examples of the above-mentioned acid halides include compounds obtained by converting a carboxy group into a haloformyl group.
- Examples of the above-mentioned acid anhydride include compounds obtained by converting a carboxy group into an acyloxycarbonyl group.
- polymerizable derivatives of compounds having an amino group such as aromatic hydroxyamines and aromatic diamines
- examples of polymerizable derivatives of compounds having an amino group include compounds obtained by acylating an amino group and converting it to an acylamino group (that is, an acylated product of an amino group) Can be mentioned.
- an acylated product obtained by acylating an aromatic hydroxycarboxylic acid and an aromatic diol is preferable.
- the liquid crystal polyester resin which concerns on this embodiment has a repeating unit (Hereinafter, it may be mentioned "repeating unit (1).") Represented by following formula (1).
- the liquid crystal polyester resin is represented by a repeating unit (1), a repeating unit represented by the following formula (2) (hereinafter sometimes referred to as “repeating unit (2)”), and a formula (3) below. It is more preferable to have a repeating unit (hereinafter sometimes referred to as “repeating unit (3)").
- Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group.
- Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following formula (4).
- X and Y each independently represent an oxygen atom or an imino group (-NH-).
- At least one hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 is each independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms It may be done.
- Ar 4 and Ar 5 independently represent a phenylene group or a naphthylene group.
- Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylidene group having 1 to 10 carbon atoms.
- At least one hydrogen atom in the group represented by Ar 4 or Ar 5 is each independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. It is also good.
- halogen atom which can be substituted with a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom are mentioned.
- alkyl group having 1 to 10 carbon atoms which can be substituted with a hydrogen atom examples include methyl group, ethyl group, 1-propyl group, isopropyl group, 1-butyl group, isobutyl group, sec-butyl group, tert-butyl group Groups, 1-hexyl group, 2-ethylhexyl group, 1-octyl group, 1-decyl group and the like.
- aryl group having 6 to 20 carbon atoms which can be substituted with a hydrogen atom examples include monocyclic aromatic groups such as phenyl group, orthotolyl group, metatolyl group, paratolyl group and the like, 1-naphthyl group, 2- A fused aromatic group such as a naphthyl group etc. may be mentioned.
- the number of substituents is Ar 1 It is preferable that they are independently 1 or 2 for each group represented by Ar 2 , Ar 3 , Ar 4 or Ar 5 .
- the number of substituents is more preferably one for each group represented by Ar 1 , Ar 2 , Ar 3 , Ar 4 or Ar 5 .
- alkylidene group having 1 to 10 carbon atoms examples include a methylene group, an ethylidene group, an isopropylidene group, a 1-butylidene group and a 2-ethylhexylidene group.
- the repeating unit (1) is a repeating unit derived from a predetermined aromatic hydroxycarboxylic acid.
- derived from means that the chemical structure changes due to the polymerization of the raw material monomer and no other structural change occurs.
- aromatic hydroxycarboxylic acids examples include 4-hydroxybenzoic acid, metahydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 2-hydroxy-3-naphthoic acid, 1-hydroxy-5-naphthoic acid, and the like.
- -Hydroxy-4'-carboxydiphenyl ether and a part of hydrogen atoms in the aromatic ring of these aromatic hydroxycarboxylic acids are substituted by a substituent selected from the group consisting of an alkyl group, an aryl group and a halogen atom
- Aromatic hydroxycarboxylic acids are mentioned.
- the aromatic hydroxycarboxylic acid may be used alone or in combination of two or more in the production of a liquid crystalline polyester resin.
- repeating unit (1) a unit in which Ar 1 is a 1,4-phenylene group (for example, a repeating unit derived from 4-hydroxybenzoic acid), and a unit in which Ar 1 is a 2,6-naphthylene group (for example, And a repeating unit derived from 6-hydroxy-2-naphthoic acid) is preferable, and a unit which is a 1,4-phenylene group is more preferable.
- the repeating unit (2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid.
- aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, biphenyl-4,4'-dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, diphenylether-4,4'-dicarboxylic acid, diphenylthioether-4,4.
- the aromatic dicarboxylic acid may be used alone or in combination of two or more kinds in the production of a liquid crystal polyester resin.
- a unit in which Ar 2 is a 1,4-phenylene group for example, a repeating unit derived from terephthalic acid
- a unit in which Ar 2 is a 1,3-phenylene group for example, isophthalic acid
- Ar 2 is a 2,6-naphthylene group (eg, a repeating unit derived from 2,6-naphthalenedicarboxylic acid)
- Ar 2 is a diphenyl ether-4,4'-diyl group
- a unit for example, a repeating unit derived from diphenyl ether-4,4'-dicarboxylic acid
- a unit which is a 1,4-phenylene group and a unit which is a 1,3-phenylene group are more preferable.
- the repeating unit (3) is a repeating unit derived from a predetermined aromatic diol, aromatic hydroxyamine or aromatic diamine.
- the aromatic diol the aromatic hydroxyamine or the aromatic diamine, for example, 4,4′-dihydroxybiphenyl, hydroquinone, resorcinol, 4,4′-dihydroxydiphenyl ketone, 4,4′-dihydroxydiphenyl ether, bis (4- (4 Hydroxyphenyl) methane, 1,2-bis (4-hydroxyphenyl) ethane, 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxydiphenyl thioether, 2,6-dihydroxynaphthalene, 1,5-dihydroxynaphthalene
- the aromatic diol, the aromatic hydroxyamine or the aromatic diamine may be used alone or in combination of two or more in the production of the liquid crystalline polyester resin.
- a unit wherein Ar 3 is a 1,4-phenylene group for example, a repeating unit derived from hydroquinone, 4-aminophenol or 1,4-phenylenediamine
- Ar 3 is 4,4
- a unit which is a '-biphenylylene group eg, a repeating unit derived from 4,4'-dihydroxybiphenyl, 4-amino-4'-hydroxybiphenyl or 4,4'-diaminobiphenyl
- 4,4'-biphenylylene Units which are groups are more preferred.
- a unit in which X and Y are each an oxygen atom is preferable.
- a molded article obtained from the liquid crystal polyester resin composition of the present embodiment is required to have particularly good heat resistance and thermal stability, the number of substituents possessed by the repeating units (1) to (3) Is preferred.
- a molded article obtained from the liquid crystal polyester resin composition of the present embodiment is required to have particularly good heat resistance and thermal stability, it does not have a substituent (for example, an alkyl group) that is susceptible to heat. Is preferred.
- the heat resistance of the molded article refers to the property that the resin that is a forming material of the molded article is not easily softened under a high temperature environment.
- the heat resistance of the molded body can be clarified by measuring the load deflection temperature of the resin.
- the deflection temperature under load in this embodiment is measured under a load of 1.82 MPa in accordance with ASTM D648. It can be said that the heat resistance of the molded article is higher as the load deflection temperature of the resin measured in this manner is higher.
- the thermal stability of the molded article refers to the property that decomposition and deterioration of the resin are less likely to occur when the molded article is held at a temperature at which the resin is molded and processed (that is, the melting temperature).
- liquid crystal polyester resin particularly suitable for application to the present embodiment will be described in detail based on the above-mentioned examples of the repeating units, with regard to the combination of the repeating units.
- Ar 1 is a 1,4-phenylene group
- Ar 2 is a 1,4-phenylene group and a 1,3-phenylene group
- Ar 3 is a biphenylylene group
- X and Y are More preferably each is an oxygen atom.
- the content of the repeating unit (1) of the liquid crystal polyester resin is preferably 30 mol% or more, more preferably 30 mol% to 80 mol%, further preferably 30% by mol or more, with respect to the total amount of all the repeating units constituting the liquid crystal polyester resin.
- it is 30 mol% or more and 70 mol% or less, and particularly preferably 35 mol% or more and 65 mol% or less.
- the total amount of all repeating units constituting the liquid crystal polyester resin is obtained by dividing the mass of each repeating unit constituting the liquid crystal polyester resin by the formula weight of each repeating unit to obtain the equivalent amount (mol) of the substance amount of each repeating unit. It is the value which calculated
- the content of the repeating unit (1) of the liquid crystal polyester resin is 30 mol% or more, the heat resistance and the hardness of the molded product obtained from the liquid crystal polyester resin composition of the present embodiment can be easily improved. Moreover, melt viscosity can be made low as the content rate of repeating unit (1) is 80 mol% or less. Therefore, the temperature required for molding the liquid crystal polyester resin tends to be low.
- the content of the repeating unit (2) of the liquid crystal polyester resin is preferably 35 mol% or less, more preferably 10 mol% to 35 mol%, further preferably, based on the total amount of all repeating units constituting the liquid crystal polyester resin. Preferably, it is 15 mol% or more and 35 mol% or less, particularly preferably 17.5 mol% or more and 32.5 mol% or less.
- the content of the repeating unit (3) of the liquid crystal polyester resin is preferably 35 mol% or less, more preferably 10 mol% to 35 mol%, further preferably, based on the total amount of all repeating units constituting the liquid crystal polyester resin. Preferably, it is 15 mol% or more and 35 mol% or less, particularly preferably 17.5 mol% or more and 32.5 mol% or less. In one aspect, the total amount of repeating units (1), (2) and (3) of the liquid crystalline polyester resin does not exceed 100 mol%.
- the ratio of the content of the repeating unit (2) to the content of the repeating unit (3) is [content of repeating unit (2)] / [content of repeating unit (3)] ( When expressed by mol% / mol% (sometimes referred to as molar ratio (2) / (3)), preferably 0.9 or more and 1.1 or less, more preferably 0.95 or more and 1.05 or less, more preferably Is 0.98 or more and 1.02 or less.
- the ratio of the content of the repeating unit (3) to the content of the repeating unit (1) is [content of repeating unit (3)] / [content of repeating unit (1)] ( When expressed by mol% / mol% (sometimes referred to as molar ratio (3) / (1)), it is preferably 0.2 or more and 1.0 or less, more preferably 0.25 or more and 0.85 or less, more preferably Is 0.3 or more and 0.75 or less.
- the molar ratio y / x of the repeating unit (2) is preferably more than 0 and 1 or less, more preferably 0.1 or more and 0.9 or less, and more preferably 0.2 or more. More preferably, it is 8 or less.
- x represents the molar content of repeating units in which Ar 2 is a 1,4-phenylene group.
- y represents the molar content of repeating units in which Ar 2 is a 1,3-phenylene group.
- the liquid crystal polyester resin may have repeating units (1) to (3) independently of one another, or two or more kinds.
- the liquid crystalline polyester resin may have one or two or more repeating units other than the repeating units (1) to (3), but the content is preferably based on the total amount of all repeating units. It is 0 mol% or more and 10 mol% or less, more preferably 0 mol% or more and 5 mol% or less.
- liquid crystal polyester resin mixture in which a plurality of liquid crystal polyester resins are mixed. Thereby, the melt flowability of the liquid crystal polyester resin composition of the present embodiment can be further improved, and the warpage of the obtained molded article can be sufficiently suppressed.
- the liquid crystal polyester resin mixture a mixture of liquid crystal polyester resins having different flow start temperatures is assumed.
- the liquid crystal polyester resin according to the present embodiment may be a liquid crystal polyester resin mixture.
- the liquid crystal polyester resin according to the present embodiment may include a first liquid crystal polyester resin and a second liquid crystal polyester resin, and the flow start temperature of the first liquid crystal polyester resin is that of the second liquid crystal polyester resin. It is higher than the flow start temperature.
- the flow start temperature of the first liquid crystal polyester resin is preferably 300 ° C. or more and 400 ° C. or less, more preferably 310 ° C. or more and 360 ° C. or less, and still more preferably 315 ° C. or more and 345 ° C. or less.
- the flow start temperature of the second liquid crystal polyester resin is preferably 260 ° C. or more and 350 ° C. or less, more preferably 270 ° C. or more and 315 ° C. or less, and still more preferably 285 ° C. or more and 315 ° C. or less.
- the flowability that is, thin flowability
- the deflection temperature under load of the resulting molded article is sufficient. It tends to be higher.
- the content of the second liquid crystal polyester resin is preferably 10 to 150 parts by mass, more preferably 30 to 120 parts by mass with respect to 100 parts by mass of the first liquid crystal polyester resin. And 50 to 100 parts by mass.
- the content of the second liquid crystal polyester resin relative to the first liquid crystal polyester resin may be appropriately set so that the balance between the deflection temperature under load and the thin-walled fluidity of the liquid crystal polyester resin mixture is in a desired state.
- the liquid crystal polyester resin mixture may further contain a liquid crystal polyester resin other than the first liquid crystal polyester resin and the second liquid crystal polyester resin.
- the resin having the highest flow start temperature may be the first liquid crystal polyester resin
- the resin having the lowest flow start temperature may be the second liquid crystal polyester resin.
- a liquid crystal polyester resin mixture in which the total amount of the first liquid crystal polyester resin and the second liquid crystal polyester resin is 80% by mass to 100% by mass with respect to the total mass of the liquid crystal polyester resin mixture is preferable.
- ⁇ / ⁇ is preferably in the range of 0.1 to 0.6, and more preferably in the range of 0.3 to 0.6.
- ⁇ represents the molar ratio y / x of the first liquid crystal polyester resin.
- ⁇ represents a molar ratio y ′ / x ′ of the second liquid crystal polyester resin.
- x represents a molar content of a repeating unit in which Ar 2 is a 1,4-phenylene group in the first liquid crystal polyester resin.
- y represents a molar content of a repeating unit in which Ar 2 is a 1,3-phenylene group in the first liquid crystal polyester resin.
- x ′ represents the molar content of the repeating unit in which Ar 2 is a 1,4-phenylene group in the second liquid crystal polyester resin.
- y ′ represents the molar content of the repeating unit in which Ar 2 is a 1,3-phenylene group in the second liquid crystal polyester resin.
- the liquid crystal polyester resin of the present embodiment is preferably produced by the following acylation step and polymerization step.
- the acylation step is a step of obtaining an acylated product by acylating the phenolic hydroxy group of the raw material monomer with a fatty acid anhydride (such as acetic anhydride).
- a fatty acid anhydride such as acetic anhydride
- a liquid crystal polyester is obtained by polymerizing the acyl group of the acylated product obtained in the acylation step and the carboxy group of the acylated product of aromatic dicarboxylic acid and aromatic hydroxycarboxylic acid so as to cause transesterification. It is good to get resin.
- the acylation step and the polymerization step may be carried out in the presence of a heterocyclic organic base compound (sometimes referred to as an imidazole derivative) as represented below.
- a heterocyclic organic base compound sometimes referred to as an imidazole derivative
- R 1 to R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxymethyl group, a cyano group, or a cyanoalkyl having 1 to 4 carbon atoms in the alkyl group.
- the heterocyclic organic base compound of the above formula (5) is preferably an imidazole derivative in which R 1 is an alkyl group having 1 to 4 carbon atoms and R 2 to R 4 are each a hydrogen atom. This can further improve the reactivity of the acylation reaction in the acylation step and the transesterification reaction in the polymerization step. Moreover, the color tone of the molded object obtained using the liquid-crystal polyester resin composition of this embodiment can be made more favorable.
- heterocyclic organic base compounds one or both of 1-methylimidazole and 1-ethylimidazole are particularly preferable because they are easily available.
- the amount of the heterocyclic organic base compound used is 0.005, based on 100 parts by mass of the raw material monomers (i.e., aromatic dicarboxylic acid, aromatic diol and aromatic hydroxycarboxylic acid) of the liquid crystal polyester resin. It is preferable to adjust to 1 part by mass. From the viewpoint of the color tone and productivity of the molded product, it is more preferable that the content be 0.05 to 0.5 parts by mass with respect to 100 parts by mass of the raw material monomer.
- the heterocyclic organic base compound may be present at any time during the acylation reaction and the transesterification reaction, and the addition time thereof may be immediately before the initiation of the acylation reaction, or during the acylation reaction. Or between the acylation reaction and the transesterification reaction.
- the liquid crystal polyester resin thus obtained has very high melt flowability and is excellent in heat stability.
- the amount of fatty acid anhydride (e.g., acetic anhydride) to be used should be determined in consideration of the amounts of the raw material monomers, aromatic diol and aromatic hydroxycarboxylic acid. Specifically, the amount of fatty acid anhydride used is preferably 1.0 equivalent or more and 1.2 or less equivalent to the total of phenolic hydroxy groups contained in these raw material monomers, and 1.0 It is more preferable that the amount be equal to or more than twice and equal to or less than 1.15, more preferably equal to or more than 1.03 times and equal to or less than 1.12, and equal to or less than 1.05 times and equal to or less than 1.1 times Is particularly preferred.
- acetic anhydride e.g., acetic anhydride
- the amount of fatty acid anhydride used is 1.0-fold equivalent or more with respect to the total of phenolic hydroxy groups contained in the raw material monomer, the acylation reaction easily proceeds, and the raw material monomer unreacted in the subsequent polymerization step Is difficult to remain, and as a result, polymerization proceeds efficiently.
- the acylation reaction proceeds sufficiently, the raw material monomers which are not acylated sublime, and there is little possibility that the fractionator used at the time of polymerization is clogged.
- the amount of use of the fatty acid anhydride is 1.2 times equivalent or less, the obtained liquid crystal polyester resin is less likely to be colored.
- the acylation reaction in the above-mentioned acylation step is preferably performed in a temperature range of 130 ° C. to 180 ° C. for 30 minutes to 20 hours, and more preferably at 140 ° C. to 160 ° C. for 1 to 5 hours.
- the aromatic dicarboxylic acid used in the above-mentioned polymerization step may be present in the reaction system during the acylation step. That is, in the acylation step, the aromatic diol, the aromatic hydroxycarboxylic acid and the aromatic dicarboxylic acid may be present in the same reaction system. This is because any of the carboxy group and the optionally substituted substituent in the aromatic dicarboxylic acid is not affected at all by the fatty acid anhydride.
- the acylation step and the polymerization step may be sequentially performed, or the aromatic diol and the aromatic dicarboxylic acid may be used in the reactor.
- the aromatic dicarboxylic acid may be further charged into the reactor to carry out the polymerization step. From the viewpoint of simplifying the production process, the former method is preferred.
- the by-produced fatty acid for example, acetic acid etc.
- the unreacted fatty acid anhydride for example acetic anhydride etc.
- a batch apparatus may be used as a reactor, or a continuous apparatus may be used.
- the liquid crystal polyester resin that can be used in the present embodiment can be obtained by using any reaction device.
- a step for polymerizing the liquid crystal polyester resin obtained in this polymerization step may be carried out. For example, if the liquid crystalline polyester resin obtained in the polymerization step is cooled and then pulverized to prepare a powdered liquid crystalline polyester resin, and further, if this powder is heated, the high molecular weight of the liquid crystalline polyester resin Is possible.
- pelletized liquid crystalline polyester resin is prepared by granulating a powdery liquid crystalline polyester resin obtained by cooling and crushing, and then the pelletized liquid crystalline polyester resin is heated to obtain a high molecular weight of the liquid crystalline polyester resin. May be carried out. High molecular weight formation using these methods is referred to in the art as solid phase polymerization.
- Solid phase polymerization is particularly effective as a method of increasing the molecular weight of the liquid crystal polyester resin.
- By polymerizing the liquid crystalline polyester resin it becomes easy to obtain a liquid crystalline polyester resin having a suitable flow start temperature as described later.
- reaction condition of the solid phase polymerization a method of heat treating a resin in a solid state under an inert gas atmosphere or under reduced pressure for 1 to 20 hours is usually employed.
- the polymerization conditions relating to this solid phase polymerization can be optimized as appropriate after obtaining the flow start temperature of the resin obtained by the melt polymerization.
- a well-known dryer, a reactor, an inert oven, an electric furnace is mentioned, for example.
- the flow start temperature of the liquid crystalline polyester resin is preferably 270 ° C. or higher, more preferably 270 to 400 ° C., and still more preferably 280 to 380 ° C.
- the heat resistance of the molded product obtained from the liquid crystal polyester resin composition of the present embodiment can be further improved.
- the heat stability of the liquid crystal polyester resin is improved, and heat deterioration can be avoided.
- the flow start temperature is also called flow temperature or flow temperature
- the liquid crystal polyester resin is melted while raising the temperature at a rate of 4 ° C./min under a load of 9.8 MPa using a capillary rheometer, and the inner diameter
- the temperature at which a viscosity of 4800 Pa ⁇ s (48000 poise) is exhibited when extruded from a nozzle of 1 mm and a length of 10 mm which is a measure of the molecular weight of a liquid crystal polyester resin (for example, See Synthesis, Molding, and Applications—, pp. 95-105, CMC, published Jun. 5, 1987).
- the liquid crystal polyester resin of the above-mentioned suitable flow start temperature can be easily obtained by appropriately optimizing the repeating unit constituting the liquid crystal polyester resin. That is, when the linearity of the molecular chain of the liquid crystal polyester resin is improved, the flow start temperature tends to increase.
- repeating units derived from terephthalic acid improve the linearity of the liquid crystalline polyester resin molecular chain.
- the repeating unit derived from isophthalic acid improves the flexibility of the liquid crystal polyester resin molecular chain (reduces the linearity). Therefore, by controlling the copolymerization ratio of terephthalic acid and isophthalic acid, it is possible to obtain a liquid crystal polyester resin having a desired flow initiation temperature.
- the at least one liquid crystal polyester resin is preferably a polymer obtained by polymerizing a raw material monomer containing an aromatic hydroxycarboxylic acid in the presence of an imidazole compound.
- the liquid crystalline polyester resin thus obtained has very high fluidity at the time of melting, and is excellent in thermal stability.
- liquid crystal polyester resin according to the present embodiment, it is preferable to optimize the copolymerization ratio of terephthalic acid and isophthalic acid. Thereby, the linearity of the molecular chain of the liquid crystal polyester resin can be controlled as described above. As a result, a plurality of liquid crystal polyester resins having different flow start temperatures can be produced.
- the glass component contained in the liquid crystal polyester resin composition of the present embodiment may be referred to as glass fiber having a length of more than 30 ⁇ m and glass fine powder having a length of 4 to 30 ⁇ m (hereinafter simply referred to as “fine powder” And).
- the glass component may further include glass ultrafine powder (hereinafter, may be simply referred to as “fine powder”) having a length of less than 4 ⁇ m.
- the length of the glass component contained in the liquid crystal polyester resin composition of the present embodiment is the circumscribed rectangular major axis of the glass component in the binarized scanning electron microscope (SEM) image.
- the circumscribed rectangle major axis means the length of the long side when the glass component is surrounded by the circumscribed rectangle.
- the analysis method of the glass component using SEM is mentioned later.
- glass fiber is a glass component having a circumscribed rectangular major axis of greater than 30 ⁇ m in the above SEM image
- fine powder is a glass component having a circumscribed rectangular major axis of 4 to 30 ⁇ m in the above SEM image
- the number average fiber length of the glass fiber contained in the liquid crystal polyester resin composition of the present embodiment is 50 ⁇ m or more and 200 ⁇ m or less.
- the mechanical strength of the molded article of the virgin material can be sufficiently high.
- the number average fiber length of the glass fiber of the present embodiment is 200 ⁇ m or less, physical breakage of the glass fiber at the time of regrind hardly occurs. As a result, the reduction in mechanical strength due to the physical destruction of the glass fiber is suppressed. Therefore, the maintenance rate of mechanical strength at the time of regrind can be made sufficiently high.
- the number average fiber length of the glass fiber is preferably 70 ⁇ m or more, more preferably 80 ⁇ m or more, and still more preferably 100 ⁇ m or more. Moreover, it is preferable that it is 190 micrometers or less, and, as for the number average fiber length of the said glass fiber, it is more preferable that it is 180 micrometers or less. As one aspect, the number average fiber length of the glass fiber is preferably 70 ⁇ m or more and 190 ⁇ m or less, more preferably 80 ⁇ m or more and 190 ⁇ m or less, still more preferably 100 ⁇ m or more and 180 ⁇ m or less, and 104 ⁇ m or more and 172 ⁇ m It may be the following.
- the glass fiber contained in the liquid-crystal polyester resin composition of this embodiment is a substantially circular cross-sectional shape in radial direction. It can be confirmed by SEM that the cross-sectional shape in the radial direction of the glass fiber is substantially circular.
- the diameter of the glass fiber is preferably 5 ⁇ m or more and 17 ⁇ m or less, more preferably 6 ⁇ m or more and 15 ⁇ m or less, and still more preferably 9 ⁇ m or more and 12 ⁇ m or less.
- the diameter of the said glass fiber can be calculated
- the fine powder contained in the liquid crystal polyester resin composition of the present embodiment preferably has a substantially circular cross-sectional shape in the radial direction.
- the radial direction of the fine powder is the circumscribed rectangular minor axis direction of the fine powder in the binarized SEM image.
- the circumscribed rectangle minor axis means the length of the short side when the particle is surrounded by the circumscribed rectangle. It can be confirmed by SEM that the cross-sectional shape in the radial direction of the fine powder is substantially circular.
- the diameter of the fine powder is preferably 5 ⁇ m or more and 17 ⁇ m or less, more preferably 6 ⁇ m or more and 15 ⁇ m or less, and still more preferably 9 ⁇ m or more and 12 ⁇ m or less.
- the diameter of the fine powder can be determined by the measurement method described in ⁇ Measurement 2 of Glass Component in Liquid Crystal Polyester Resin Composition> described later.
- the aspect ratio (length / diameter) of the fine powder contained in the liquid crystal polyester resin composition of the present embodiment is preferably 0.3 or more, and more preferably 0.5 or more.
- the aspect ratio of the fine powder is preferably 3.5 or less, more preferably 3.3 or less.
- the aspect ratio (length / diameter) of the fine powder contained in the liquid crystal polyester resin composition of the present embodiment is preferably 0.3 or more and 3.5 or less.
- the fine powder contained in the liquid crystal polyester resin composition of the present embodiment has a length of 20 ⁇ m to 30 ⁇ m and a first fine powder having a length of 4 ⁇ m or more and 20 ⁇ m or less (hereinafter, may be simply referred to as “first fine powder”).
- the following 2nd fine powder (Hereafter, it may only be called "2nd fine powder.")
- the fine powder according to the present embodiment is a first fine powder which is a glass component having a circumscribed rectangle major axis of 4 ⁇ m to 20 ⁇ m in the SEM image, and a glass component having a circumscribed rectangular major axis of 20 ⁇ m to 30 ⁇ m or less in the SEM image And the second fine powder.
- the liquid crystal polyester resin composition of the present embodiment contains 10 parts by mass or more and 100 parts by mass or less of the glass component with respect to 100 parts by mass of the liquid crystal polyester.
- the content of the glass component is 10 parts by mass or more and 100 parts by mass or less, the moldability of the liquid crystal polyester resin composition and the mechanical strength of the molded body can be compatible.
- the liquid crystal polyester resin composition preferably contains 10 parts by mass to 70 parts by mass and more preferably 20 parts by mass to 60 parts by mass with respect to 100 parts by mass of the liquid crystal polyester.
- the liquid crystal polyester resin composition may contain 25 parts by mass or more and 66.7 parts by mass or less of a glass component with respect to 100 parts by mass of the liquid crystal polyester.
- the content of the glass component in the liquid crystal polyester resin composition of the present embodiment is preferably 5 to 40% by mass with respect to the total mass of the liquid crystal polyester resin composition.
- the content of the liquid crystal polyester resin in the liquid crystal polyester resin composition of the present embodiment is preferably 50 to 90% by mass with respect to the total mass of the liquid crystal polyester resin composition.
- the liquid crystal polyester resin composition of this embodiment contains 50% or more and 95% or less of fine powder with respect to the total number of glass components.
- liquid crystal polyester resin composition of the present embodiment when the content ratio of the fine powder to the total number of glass components is 50% or more, the influence of physical destruction of the glass components at the time of regrind can be reduced. Therefore, the maintenance rate of mechanical strength at the time of regrind can be made sufficiently high.
- liquid crystal polyester resin composition of the present embodiment when the content ratio of the fine powder to the total number of the glass components is 95% or less, the mechanical strength of the molded article of the virgin material can be sufficiently high.
- the content of the fine powder with respect to the total number of glass components is preferably 90% or less, and more preferably 85% or less.
- the content ratio of the fine powder to the total number of glass components is preferably 50% or more and 85% or less.
- the liquid crystal polyester resin composition of the present embodiment preferably contains 40% to 70% of the first fine powder based on the total number of glass components.
- the content of the first fine powder is 40% or more with respect to the total number of glass components, the influence of physical destruction of the glass components at the time of regrind can be reduced. Therefore, the maintenance rate of mechanical strength at the time of regrind can be made sufficiently high.
- the mechanical strength of the molded object of a virgin material can be made high enough as the content rate of a 1st fine powder is 70% or less with respect to the total of a glass component.
- the maintenance rate of mechanical strength at the time of regrind can be made high as the content rate of the 1st fine powder is 40% or more and 70% or less to the total of a glass constituent.
- the upper limit value and the lower limit value of the content ratio of the first fine powder can be combined with the upper limit value and the lower limit value of the content ratio of the fine powder in a possible range.
- the content ratio of the first fine powder in the glass component does not exceed the content ratio of the fine powder in the glass component.
- the content ratio of the second fine powder in the liquid crystal polyester resin composition of the present embodiment is preferably 40% or more and 70% or less with respect to the total number of glass components.
- a sample solution in which the glass component is dispersed in pure water is pipetted into a 5 mL sample cup, and diluted 5 times with pure water to obtain a sample solution.
- the particle shape image analyzer (“PITA3" manufactured by Seishin Enterprise Co., Ltd.) under the following conditions, the obtained sample solution is passed through a flow cell to image the glass components moving in the solution one by one.
- the point in time when the number of glass components integrated from the start of measurement reaches 5000 is taken as the end of measurement.
- the obtained image is binarized, the circumscribed rectangular major axis of the glass component in the processed image is measured, and the length of the glass component is taken as the length.
- an average value of the measurement values (the circumscribed rectangular major axis) is adopted for the glass fiber having a length of more than 30 ⁇ m in the image after the above-mentioned processing.
- the content ratio of the fine powder to the total number of glass components in this embodiment is obtained by dividing the number of fine powders having a length (the circumscribed rectangular major axis) of 4 ⁇ m to 30 ⁇ m by the total number of glass components in the image after the above-described treatment. It can be calculated.
- the ratio of the content of the first fine powder to the total number of glass components of the present embodiment is the total number of glass components (for example, the number of first fine powders having a length (outside rectangle major axis) of 4 ⁇ m to 20 ⁇ m in the image after the treatment described above) , 5000).
- the ratio of the content of the second fine powder to the total number of glass components of the present embodiment is the total number of glass components (for example, the number of second fine powders having a length (a circumscribed rectangle major diameter) of more than 20 ⁇ m and 30 ⁇ m or less) , 5000).
- the measuring method of the diameter of the glass fiber of this embodiment is demonstrated.
- the diameter of the glass fiber of the present embodiment is the diameter of 100 glass fibers randomly observed from the SEM image by observing the ashing residue containing the glass component described above at a magnification of 1000 times with the SEM image (ie, circumscribed rectangle Measure the length of the minor axis) and adopt the average value of 100 measured values.
- the measuring method of the diameter of the fine powder of this embodiment is demonstrated.
- the ashing residue containing the above-mentioned glass component is observed by SEM at a magnification of 1000 times.
- the obtained image is binarized, and the radial length (that is, the circumscribed rectangular minor axis) of 100 powders randomly selected in the processed image is measured, and the average of 100 measured values is measured. Let the value be the diameter of the fines.
- the aspect ratio of the fine powder of the present embodiment is such that the length direction substantially matching the diameter of the fine powder measured by the above-described method is the radial direction of the fine powder. It can be calculated by the height / diameter.
- the number average fiber length of the glass fibers contained in the liquid crystal polyester resin composition can be prepared by adjusting the conditions of melt kneading at the time of production of the liquid crystal polyester resin composition. For example, in order to reduce the number average fiber length of glass fibers contained in a liquid crystal polyester resin composition, increase the rotational speed of the screw used, lower the cylinder temperature, increase the melt viscosity of the molten resin, and Means of increasing the size is effective.
- the fine powder contained in the liquid crystal polyester resin composition of the present embodiment can be produced by pulverizing a commercially available glassy fibrous filler (hereinafter, may be referred to as a "fibril").
- the fine powder may be blended with the liquid crystal polyester resin so that the content ratio of the fine powder to the total number of glass components contained in the liquid crystal polyester resin composition is in the range of 50% to 95%.
- the content of the fine powder is controlled to be in the range of 50% to 95% with respect to the total number of glass components by appropriately changing the production conditions. It is also good.
- the fibrils according to this embodiment are not particularly limited, and examples thereof include fillers produced by various methods, such as chopped glass fibers of long fiber type and milled glass fibers of short fiber type. Among these, the fibrils are preferably milled glass fibers. The fibrils may be used alone or in combination of two or more.
- Examples of the type of the above-mentioned fibril include E-glass, A-glass, C-glass, D-glass, AR-glass, R-glass, S-glass, and mixtures thereof.
- E-glass is preferable because it is excellent in strength and easy to obtain.
- a weakly alkaline fiber is excellent in mechanical strength (tensile strength and Izod impact strength) and can be preferably used.
- glass fibers having a silicon oxide content of 50% by mass to 80% by mass with respect to the total mass of the glass fibers are preferably used, and glass fibers of 65% by mass to 77% by mass are more preferably used.
- the fibril may be a fiber treated with a coupling agent such as a silane coupling agent or a titanium coupling agent, if necessary.
- a coupling agent such as a silane coupling agent or a titanium coupling agent
- the raw fiber may be coated with a thermoplastic resin such as a urethane resin, an acrylic resin, or an ethylene / vinyl acetate copolymer, or a thermosetting resin such as an epoxy resin.
- a thermoplastic resin such as a urethane resin, an acrylic resin, or an ethylene / vinyl acetate copolymer, or a thermosetting resin such as an epoxy resin.
- the fibrils may also be treated with a focusing agent.
- the number average fiber length of the fibrils is preferably 20 ⁇ m or more and 6000 ⁇ m or less.
- the number average fiber length of the fibrils is 20 ⁇ m or more, the reinforcing effect on the obtained molded article is sufficiently high.
- the number average fiber length of the fibrils is 6000 ⁇ m or less, the number average fiber length of glass fibers contained in the liquid crystal polyester resin composition after melt-kneading can be easily adjusted to 200 ⁇ m or less.
- the number average fiber length of the fibrils to be subjected to the melt-kneading is more preferably 1000 ⁇ m or more, and still more preferably 2000 ⁇ m or more.
- the number average fiber length of the fibrils is more preferably 5,000 ⁇ m or less, and still more preferably 4500 ⁇ m or less.
- the number average fiber length of the fibrils to be subjected to melt-kneading is more preferably 1000 ⁇ m or more and 5000 ⁇ m or less, and still more preferably 2000 ⁇ m or more and 4500 ⁇ m or less.
- the fiber diameter (also referred to as a single fiber diameter) of the raw fiber to be subjected to the melt-kneading is preferably 5 ⁇ m or more and 17 ⁇ m or less.
- the fiber diameter of the fibrils is 5 ⁇ m or more, the reinforcing effect on the obtained molded article is sufficiently high.
- the fiber diameter of the fibrils is 17 ⁇ m or less, the melt flowability of the liquid crystal polyester resin composition is sufficiently high.
- the fiber diameter of the fibrils to be subjected to the melt-kneading is more preferably 6 ⁇ m or more. Further, the fiber diameter of the fibrils is more preferably 15 ⁇ m or less, and still more preferably 12 ⁇ m or less. As one aspect, the fiber diameter of the fibrils to be subjected to melt-kneading may be 6 ⁇ m or more and 15 ⁇ m or less, and may be 6 ⁇ m or more and 12 ⁇ m or less.
- the fiber diameter of the fibrils does not substantially change after melt-kneading.
- number average fiber length of fibrils means values measured by the method described in “7.8 Length of chopped strand” according to JIS R 3420, unless otherwise noted.
- fiber diameter of fibril means the value measured by “Method A” among the methods described in JIS R 3420 “7.6 Single fiber diameter” unless otherwise noted. Do.
- the liquid crystal polyester resin composition may contain at least one other component such as a filler other than the glass component of the present embodiment, an additive, and a resin other than the liquid crystal polyester resin, as long as the effects of the present invention are exhibited.
- the content of the other components in the liquid crystal polyester resin composition of this embodiment is preferably 5 to 40% by mass with respect to the total mass of the liquid crystal polyester resin composition.
- the filler other than the glass component of the embodiment may be a fibrous filler, may be a plate-like filler, or may be a spherical or other granular filler other than fibrous and plate-like It is also good.
- the filler may be an inorganic filler or an organic filler.
- fibrous fillers examples include carbon fibers such as bread-based carbon fibers and pitch-based carbon fibers; ceramic fibers such as silica fibers, alumina fibers and silica-alumina fibers; and metal fibers such as stainless steel fibers It can be mentioned.
- whiskers such as potassium titanate whisker, barium titanate whisker, wollastonite whisker, aluminum borate whisker, silicon nitride whisker, silicon carbide whisker and the like can also be mentioned.
- fibrous fillers that are organic fillers include polyester fibers, aramid fibers, and cellulose fibers.
- plate fillers which are inorganic fillers include talc, mica, graphite, wollastonite, glass flakes, barium sulfate and calcium carbonate.
- Mica may be muscovite, phlogopite, fluorophlogite, or tetrasilicon mica.
- particulate fillers that are inorganic fillers include silica, alumina, titanium oxide, glass beads, glass balloons, boron nitride, silicon carbide and calcium carbonate.
- additive As an example of an additive, the additive normally used for resin composition is mentioned.
- additives include stabilizers, ultraviolet absorbers, plasticizers, flame retardants, flame retardant aids, antistatic agents, surfactants, colorants, lubricants, and mold release agents.
- stabilizer examples include hindered phenols, hydroquinones, phosphites, and substituted products thereof.
- ultraviolet absorber examples include resorcinol, salicylate, benzotriazole, benzophenone and the like.
- colorant examples include materials containing dyes such as nitrocine and pigments such as cadmium sulfide, phthalocyanine and carbon black.
- the lubricant includes, for example, stearic acid, montanic acid, their esters, half esters thereof with polyhydric alcohols, stearyl alcohol, stearamide, polyethylene wax and the like.
- the moldability of the liquid crystal polyester resin composition of the present embodiment can be improved by further adding a mold release agent.
- a mold release agent for example, montanic acid, a salt thereof, an ester thereof, a half ester thereof with a polyhydric alcohol, stearyl alcohol, stearamide, polyethylene wax and the like can be mentioned, with preference given to a fatty acid ester of pentaerythritol.
- the compounding amount of the release agent is preferably 0.1 parts by mass or more and 0.5 parts by mass or less, more preferably 0.2 parts by mass or more and 0.4 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester resin. It is.
- the compounding amount of the release agent is in the range of 0.1 parts by mass to 0.5 parts by mass, contamination of the mold to be used and swelling of the molded article tend not to occur easily, and the mold release effect It is easy to obtain.
- resins other than liquid crystal polyesters include thermoplastic resins other than liquid crystal polyesters such as polypropylene, polyamide, polyesters other than liquid crystal polyester, polysulfone, polyethersulfone, polyphenylene sulfide, polyether ketone, polycarbonate, polyphenylene ether, polyetherimide, etc. And thermosetting resins such as phenol resin, epoxy resin, polyimide resin, and cyanate resin.
- the content of the resin other than the liquid crystal polyester is usually 0 to 20 parts by mass with respect to 100 parts by mass of the liquid crystal polyester.
- the liquid crystalline polyester resin composition is preferably prepared by melt-kneading the liquid crystalline polyester resin, the glass component and optionally other components with an extruder and extruding in the form of pellets.
- the glass component to be used may be previously prepared so that the content ratio of the fine powder is in the range of 50% to 95% with respect to the total number of glass components.
- the fibrous filler is broken at the time of production of the liquid crystalline polyester resin composition, whereby the total amount of glass components contained in the liquid crystalline polyester resin composition is reduced.
- the content ratio of the fine powder may be controlled to be in the range of 50% to 95%.
- the extruder preferably has a cylinder, at least one screw disposed in the cylinder, and at least one supply port provided in the cylinder, and at least one vent provided in the cylinder. It is more preferable to have
- liquid crystal polyester resin composition of the present embodiment extremely large energy is required to break the fine powder. From this, it is known that fine powder is less likely to be physically broken compared to glass fiber. Therefore, in the regrind material to which the liquid crystal polyester resin composition of the present embodiment is applied, it is expected that the fine powder does not change even in melting in the screw at the time of injection molding.
- liquid crystal polyester resin composition having the above-described configuration, a liquid crystal polyester resin composition having a high mechanical strength maintenance rate at the time of regrind can be obtained.
- the molded object of this embodiment uses the liquid crystal polyester resin composition mentioned above as a forming material.
- a melt molding method is preferable.
- examples thereof include an injection molding method, an extrusion molding method such as a T-die method and an inflation method, a compression molding method, a blow molding method, a vacuum molding method and a press molding. Among them, injection molding is preferred.
- Examples of products and parts which are molded articles of liquid crystalline polyester resin composition include bobbins such as an optical pickup bobbin and a transformer bobbin; relay parts such as a relay case, a relay base, a relay sprue, and a relay armature; RIMM, DDR, CPU Connectors such as sockets, S / O, DIMM, Board to Board connectors, FPC connectors, card connectors, etc .; reflectors such as lamp reflectors and LED reflectors; holders such as lamp holders and heater holders; diaphragms such as speaker diaphragms; Separation claws such as separation claws for printers, separation claws for printers, camera module parts, switch parts, motor parts, sensor parts, hard disk drive parts, tableware such as ovenware, vehicle parts, aircraft parts, and semiconductor elements Sealing member, and a sealing member of the sealing member such as a coil.
- bobbins such as an optical pickup bobbin and a transformer bobbin
- relay parts such as a
- copiers such as separation claws and heater holders, printing machine related parts; impellers, fan gears, gears, bearings, motor parts, mechanical parts such as cases; automotive mechanical parts, fuel relations Exhaust and intake pipes, exhaust gas, coolant, oil temperature sensors, thermostat base for air conditioners, motor insulators for air conditioners, brush holders for radiator motors, wiper motor related parts, duplexers, starter switches, starter relays , Wire harness for transmission, air conditioner panel switch board, coil for fuel related electromagnetic valve, connector for fuse, ECU connector, horn terminal, electrical component insulating plate, lamp socket, lamp reflector, lamp housing, Parts related to automobiles and vehicles such as pistons, solenoid bobbins, engine oil filters, igniter cases etc.
- Cooking appliances such as microwave cooking pots and heat resistant dishes; materials for insulation or sound insulation such as floorings and walls, beams or columns Support materials such as roof materials, construction materials such as roof materials or materials for civil engineering and construction; parts for aircrafts, space machines, space equipments; radiation facilities members such as nuclear reactors; marine facilities members; cleaning jigs; optical equipment parts; Pipes, nozzles, filters, membranes, medical equipment parts and materials, sensors parts, sanitary equipment, sports equipment, leisure equipment and the like.
- the tensile strength of a molded object is measured according to ASTM D638 using an ASTM No. 4 test piece produced by an injection molding machine using a liquid crystal polyester resin composition.
- the Izod impact strength of the molded product is obtained by dividing a test specimen of 127 mm in length, 12.7 mm in width, and 6.4 mm in thickness prepared by an injection molding machine using a liquid crystal polyester resin composition into two equal parts in the longitudinal direction. The test pieces are used and measured in accordance with ASTM D256.
- the liquid crystal polyester resin composition of the present embodiment is Liquid crystalline polyester resin, glass component, and optionally other components
- the liquid crystalline polyester resin comprises a repeating unit derived from 4-hydroxybenzoic acid, a repeating unit derived from 4,4'-dihydroxybiphenyl, a repeating unit derived from terephthalic acid, and a repeating unit derived from isophthalic acid.
- the glass component includes glass fibers having a length of more than 30 ⁇ m and glass fine particles having a length of 4 to 30 ⁇ m;
- the fine powder is composed of a first fine powder having a length of 4 ⁇ m or more and 20 ⁇ m or less and a second fine powder having a length of more than 20 ⁇ m and 30 ⁇ m or less;
- the number average fiber length of the glass fiber is 50 ⁇ m to 200 ⁇ m, preferably 70 ⁇ m to 190 ⁇ m, more preferably 80 ⁇ m to 190 ⁇ m, still more preferably 100 ⁇ m to 180 ⁇ m, particularly preferably 104 ⁇ m to 172 ⁇ m;
- the diameter of the fine powder is 9 ⁇ m or more and 12 ⁇ m or less;
- the content of the liquid crystal polyester resin is 50 to 90% by mass with respect to the total mass of the liquid crystal polyester resin composition;
- the content of the glass component is 10 parts by mass or more and 100 parts by mass or less, preferably 10 parts by mass or more and 70
- the content ratio of the fine powder is 50% to 95%, preferably 50% to 85%, more preferably 51% to 83%, based on the total number of the glass components;
- the content ratio of the first fine powder is 40% or more and 70% or less with respect to the total number of the glass components.
- a liquid crystal polyester resin composition is mentioned.
- the liquid crystal polyester resin composition of the present embodiment is When the Izod impact strength retention rate is determined under the conditions described in the examples described below, the Izod impact strength retention rate is 80% or more, and when the tensile strength retention rate is determined under the conditions described in the below-described examples And a liquid crystal polyester resin composition having a tensile strength retention rate of 90% or more.
- sample solution in which the glass component was dispersed was pipetted into a 5 mL sample cup, and diluted 5-fold with pure water to obtain a sample solution.
- sample solution obtained was passed through a flow cell using a particle shape image analyzer ("PITA-3" manufactured by Seishin Enterprise Co., Ltd.) under the following conditions, and glass components moving in the solution were imaged one by one. .
- PITA-3 particle shape image analyzer
- Glass component length The obtained image was binarized, the circumscribed rectangle major axis of the glass component in the image after processing was measured, and the length of each glass component was taken as the length.
- the content ratio of fine powder to the total number of glass components is calculated by dividing the number of fine particles having a length of 4 ⁇ m to 30 ⁇ m by the total number of glass components (that is, 5000 in the above example). did.
- the number of the first fine powder having a length of 4 ⁇ m or more and 20 ⁇ m or less is divided by the total number of glass components (that is, 5,000 in the above example). The content rate was calculated.
- ⁇ Measurement 2 of Glass Component in Liquid Crystalline Polyester Resin Composition> (Diameter of fine powder)
- the ashed residue obtained in the above ⁇ Measurement 1> was observed at a magnification of 1000 using a SEM (“S-4700” manufactured by Hitachi, Ltd.).
- the obtained image is binarized, and the radial length (that is, the circumscribed rectangular minor axis) of 100 powders randomly selected in the processed image is measured, and the average of 100 measured values is measured. The value was taken as the diameter of the fine powder.
- the number average fiber length of glass fiber was calculated using the measured value of the glass fiber whose length in the image after the process mentioned above is more than 30 micrometers.
- the resulting solid is crushed to a particle size of 0.1 to 1 mm with a grinder, then heated from room temperature to 250 ° C. in one hour under a nitrogen atmosphere, and heated from 250 ° C. to 296 ° C. for 5 hours
- Solid phase polymerization was carried out by holding at 296 ° C. for 3 hours. After solid phase polymerization, the resultant was cooled to obtain a powdery liquid crystalline polyester resin (A-1).
- the flow start temperature of the obtained liquid crystal polyester resin (A-1) was 328 ° C.
- the obtained solid is pulverized to a particle size of 0.1 to 1 mm with a pulverizer, then heated from room temperature to 220 ° C. in one hour under a nitrogen atmosphere, and taken from 220 ° C. to 241 ° C. for 0.5 hour
- Solid-phase polymerization was carried out by raising the temperature and maintaining the temperature at 241 ° C. for 10 hours. After solid phase polymerization, the resultant was cooled to obtain a powdery liquid crystalline polyester resin (A-2).
- the flow start temperature of the obtained liquid crystal polyester resin (A-2) was 292 ° C.
- each filler represents the shape of the cross section in the radial direction of each filler.
- Filler A PF20E-001 (manufactured by Nitto Boseki Co., Ltd., substantially circular, diameter 10 ⁇ m, number average fiber length 20 ⁇ m)
- Filler B PF50E-001 (manufactured by Nitto Boseki Co., Ltd., substantially circular, diameter 10 ⁇ m, number average fiber length 50 ⁇ m)
- Filler C PF80E-401 (manufactured by Nitto Boseki Co., Ltd., substantially circular, diameter 10 ⁇ m, number average fiber length 80 ⁇ m)
- Filler D EFH 75-01 (manufactured by Central Glass Co., Ltd., substantially circular, diameter 11 ⁇ m, number average fiber length 75 ⁇ m)
- Filler E EFH 100-01 (manufactured by Central Glass Co., Ltd., substantially circular, diameter 11 ⁇ m, number average fiber length 100 ⁇ m)
- Filler F EFH150-01 (manufactured by Central Glass Co., Ltd
- Examples 1 to 6 Comparative Examples 1 to 6
- a glass component was prepared in advance by mixing glass fibers having a length of more than 30 ⁇ m, fine powder, and extremely fine powder.
- the liquid crystal polyester resin, the glass component and the release agent are melt-kneaded at a cylinder temperature of 340 ° C. using a twin-screw extruder (“PCM-30HS” manufactured by Ikegai Iron Works Co., Ltd.) in the proportions shown in Table 1 and Table 2.
- PCM-30HS twin-screw extruder
- the liquid crystal polyester resin composition was produced by using a water ring vacuum pump ("SW-25" manufactured by Shinko Seiki Co., Ltd.) while degassing with a vacuum vent provided in a twin-screw extruder. In the following evaluation, this was made into a virgin material, and the physical property value of this virgin material was made into the physical property value of the initial stage.
- Comparative Example 7 Production of a liquid crystal polyester resin composition was examined in the same manner as in Comparative Example 1 except that 122 parts by mass of the glass component was blended with 100 parts by mass of the liquid crystal polyester resin. However, the viscosity during melt-kneading was too high to produce.
- the retention rate of mechanical strength of the molded product of the liquid crystal polyester resin composition was evaluated by determining the retention rate of tensile strength and the retention rate of Izod impact strength.
- the tensile strength of the liquid crystal polyester resin composition is determined using an injection molding machine ("PNX40-5A" manufactured by Nissei Resin Industry Co., Ltd.) under molding conditions of 350 ° C. molding temperature, 130 ° C. mold temperature, and 75 mm / sec injection speed. It measured based on ASTMD638 using the produced ASTM No. 4 test piece.
- PNX40-5A manufactured by Nissei Resin Industry Co., Ltd.
- the tensile strength of the virgin material and the regrind material was determined respectively, and the result of calculating the tensile strength of the regrind material with respect to the tensile strength of the virgin material was taken as the retention ratio of the tensile strength.
- the Izod impact strength of the virgin material and the regrind material was determined, and the Izod impact strength of the regrind material was calculated relative to the Izod impact strength of the virgin material as the Izod impact strength retention ratio.
- the mechanical strength retention rate of the molded product of the liquid crystal polyester resin composition was evaluated based on the following criteria.
- B Those not satisfying the condition of “A” above
- a length of 127 mm and a width of 12.7 mm produced using an injection molding machine (“PNX40-5A” manufactured by Nissei Resin Co., Ltd.) at a molding temperature of 350 ° C., a mold temperature of 130 ° C. and an injection speed of 75 mm / sec.
- a test piece having a thickness of 6.4 mm was used, and the load was measured at a temperature increase rate of 2 ° C./min at a load of 1.82 MPa according to ASTM D648.
- the load deflection temperature of the virgin material and the regrind material was respectively determined, and the load deflection temperature of the regrind material with respect to the load deflection temperature of the virgin material was calculated.
- liquid crystal polyester resin compositions of Examples 1 to 6 to which the present invention was applied had high retention rates of mechanical strength.
- the content ratio of the fine powder to the total number of glass components contained in the liquid crystal polyester resin composition is in the range of 50% to 95%, the influence of physical destruction of the glass components at the time of regrind can be reduced. It is considered possible.
- liquid crystal polyester resin compositions of Examples 1 to 6 were able to increase the maintenance rate of mechanical strength at the time of regrind.
- liquid crystal polyester resin compositions of Examples 1 to 6 also had a high maintenance rate of deflection temperature under load. From this, it can be said that the liquid crystal polyester resin compositions of Examples 1 to 6 are excellent in heat resistance at the time of regrind.
- the liquid crystal polyester resin compositions of Comparative Examples 1 to 6 had a high maintenance rate of deflection temperature under load as in Examples 1 to 6. From this, it can be said that the heat resistance at the time of regrind is excellent. However, the liquid crystal polyester resin compositions of Comparative Examples 1 to 6 had low mechanical strength retention rates.
- the present invention is extremely useful industrially because it can provide a liquid crystal polyester resin composition and a molded body having a high maintenance rate of mechanical strength at the time of regrind.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
液晶ポリエステル樹脂100質量部と、ガラス成分10質量部以上100質量部以下と、を含み、このガラス成分は、長さが30μm超のガラス繊維と、長さが4μm以上30μm以下のガラス製の微粉と、を含み、このガラス繊維の数平均繊維長が50μm以上200μm以下であり、この微粉の含有割合が、このガラス成分の総数に対して50%以上95%以下である液晶ポリエステル樹脂組成物。
Description
本発明は、液晶ポリエステル樹脂組成物および成形体に関するものである。
本願は、2017年11月27日に、日本に出願された特願2017-227143号に基づき優先権を主張し、その内容をここに援用する。
本願は、2017年11月27日に、日本に出願された特願2017-227143号に基づき優先権を主張し、その内容をここに援用する。
液晶ポリエステル樹脂は、溶融流動性に極めて優れ、構造によっては300℃以上の耐熱変形性を有する。液晶ポリエステル樹脂は、このような特性を活かして、電子部品をはじめ、OA、AV部品、耐熱食器等の用途で成形体に用いられている。
電子部品分野は、小型化・精密化が進んでおり、液晶ポリエステル樹脂を用いて得られる成形体の肉厚も非常に薄くなってきている。成形体の肉厚が薄くなることで、成形体の強度の低下や液晶ポリエステル樹脂の異方性の制御等が問題となってきている。これらの問題を解決するため、液晶ポリエステル樹脂に繊維状充填材を配合した液晶ポリエステル樹脂組成物が使用されている(例えば、特許文献1~3)。
ところで、廃材を少なくするという環境保護の観点やコスト削減の観点から、射出成形時に発生するランナーやスプルー等の成形体を粉砕し、粉砕した成形体を原料として成形体の製造に再利用したり、粉砕した成形体の一部を成形体の製造に使用していない原料に混ぜて原料として成形体の製造に再利用したりするリサイクル方法が検討され始めている。
以下、本明細書では、成形体を粉砕して成形体の製造に用いる原料として再生させることを「リグラインド」と呼び、得られた粉砕物を「リグラインド材」と称する。これに対し、成形体の製造に使用していない原料のことを「バージン材」と称する。
リグラインド材は、一般にバージン材と比べて物性が低下することが知られている。リグラインド材はバージン材よりも熱履歴が多い。そのため、熱による樹脂の劣化がリグラインド材を用いた成形体の機械的強度を低下させると考えられている。また、リグラインド材は粉砕により製造される。そのため、充填材の物理的破壊がリグラインド材を用いた成形体の機械的強度を低下させると考えられている。
そこで、リグラインド材を有効に利用するため、リグラインド材を用いた成形体の機械的強度がバージン材を用いた成形体の機械的強度に対して低下しにくく、成形体に使用可能な範囲で維持できる液晶ポリエステル樹脂組成物(バージン材)が求められている。
そこで、リグラインド材を有効に利用するため、リグラインド材を用いた成形体の機械的強度がバージン材を用いた成形体の機械的強度に対して低下しにくく、成形体に使用可能な範囲で維持できる液晶ポリエステル樹脂組成物(バージン材)が求められている。
特許文献1~3に記載の樹脂組成物は、リグラインド時における機械的強度の維持率が必ずしも高くない。
なお、本明細書において、「機械的強度」とは引張強度およびIzod衝撃強度のことである。また、「機械的強度の維持率」とは、バージン材を用いた成形体の機械的強度の物性値に対するリグラインド材を用いた成形体の機械的強度の物性値を算出した値である。
本発明はこのような事情に鑑みてなされたものであって、リグラインド時における機械的強度の維持率が高い液晶ポリエステル樹脂組成物および成形体を提供することを目的とする。
上記の課題を解決するため、本発明の一態様は、液晶ポリエステル樹脂100質量部と、ガラス成分10質量部以上100質量部以下と、を含み、ガラス成分は、長さが30μm超のガラス繊維と、長さが4μm以上30μm以下のガラス製の微粉と、を含み、前記ガラス繊維の数平均繊維長が50μm以上200μm以下であり、前記微粉の含有割合が、ガラス成分の総数に対して50%以上95%以下である液晶ポリエステル樹脂組成物を提供する。
本発明の一態様においては、前記微粉は、長さが4μm以上20μm以下の第1微粉と、20μm超30μm以下の第2微粉と、からなり、第1微粉を、前記ガラス成分の総数に対して40%以上70%以下含む構成としてもよい。
本発明の一態様においては、前記微粉の含有割合が、前記ガラス成分の総数に対して50%以上85%以下である構成としてもよい。
本発明の一態様においては、前記微粉の直径が9μm以上12μm以下であり、前記微粉のアスペクト比(長さ/直径)が0.3以上3.5以下である構成としてもよい。
本発明の一態様においては、前記液晶ポリエステル樹脂が、下記式(1)~(3)で表される繰返し単位を含有する構成としてもよい。
(1)-O-Ar1-CO-
(2)-CO-Ar2-CO-
(3)-X-Ar3-Y-
[Ar1はフェニレン基、ナフチレン基またはビフェニリレン基を表す。
Ar2およびAr3は、互いに独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(4)で表される基を表す。
XおよびYは、互いに独立に、酸素原子またはイミノ基(-NH-)を表す。
Ar1、Ar2またはAr3で表される上記基中の1個以上の水素原子は、互いに独立に、ハロゲン原子、炭素数1~10のアルキル基または炭素数6~20のアリール基で置換されていてもよい。]
(4)-Ar4-Z-Ar5-
[Ar4およびAr5は、互いに独立に、フェニレン基またはナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基または炭素数1~10のアルキリデン基を表す。
Ar4またはAr5で表される上記基中の1個以上の水素原子は、互いに独立に、ハロゲン原子、炭素数1~10のアルキル基または炭素数6~20のアリール基で置換されていてもよい。]
(1)-O-Ar1-CO-
(2)-CO-Ar2-CO-
(3)-X-Ar3-Y-
[Ar1はフェニレン基、ナフチレン基またはビフェニリレン基を表す。
Ar2およびAr3は、互いに独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(4)で表される基を表す。
XおよびYは、互いに独立に、酸素原子またはイミノ基(-NH-)を表す。
Ar1、Ar2またはAr3で表される上記基中の1個以上の水素原子は、互いに独立に、ハロゲン原子、炭素数1~10のアルキル基または炭素数6~20のアリール基で置換されていてもよい。]
(4)-Ar4-Z-Ar5-
[Ar4およびAr5は、互いに独立に、フェニレン基またはナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基または炭素数1~10のアルキリデン基を表す。
Ar4またはAr5で表される上記基中の1個以上の水素原子は、互いに独立に、ハロゲン原子、炭素数1~10のアルキル基または炭素数6~20のアリール基で置換されていてもよい。]
本発明の一態様においては、Ar1は1,4-フェニレン基であり、Ar2は1,4-フェニレン基および1,3-フェニレン基であり、Ar3はビフェニリレン基であり、XおよびYはそれぞれ酸素原子である構成としてもよい。
本発明の一態様においては、式(1)で表される繰返し単位と式(3)で表される繰返し単位とのモル比率(3)/(1)が0.2以上1.0以下であり、式(3)で表される繰返し単位と式(2)で表される繰返し単位とのモル比率(2)/(3)が0.9以上1.1以下である構成としてもよい。
本発明の一態様においては、式(2)で表される繰返し単位のモル比率y/xが0を超え1以下である構成としてもよい。
[xは、Ar2が1,4-フェニレン基である繰返し単位のモル含有量を表す。yは、Ar2が1,3-フェニレン基である繰返し単位のモル含有量を表す。]
[xは、Ar2が1,4-フェニレン基である繰返し単位のモル含有量を表す。yは、Ar2が1,3-フェニレン基である繰返し単位のモル含有量を表す。]
本発明の一態様においては、液晶ポリエステル樹脂は、第1液晶ポリエステル樹脂と、第2液晶ポリエステル樹脂とを含み、α/βが0.1以上0.6以下である構成としてもよい。
[αは、第1液晶ポリエステル樹脂のモル比率y/xを表す。βは、第2液晶ポリエステル樹脂のモル比率y/xを表す。]
[αは、第1液晶ポリエステル樹脂のモル比率y/xを表す。βは、第2液晶ポリエステル樹脂のモル比率y/xを表す。]
本発明の一態様は、上記の液晶ポリエステル樹脂組成物を形成材料とする成形体を提供する。
すなわち、本発明は以下の態様を含む。
[1] 液晶ポリエステル樹脂100質量部と、
ガラス成分10質量部以上100質量部以下と、を含み、
前記ガラス成分は、長さが30μm超のガラス繊維と、長さが4μm以上30μm以下のガラス製の微粉と、を含み、
前記ガラス繊維の数平均繊維長が50μm以上200μm以下であり、
前記微粉の含有割合が、前記ガラス成分の総数に対して50%以上95%以下である液晶ポリエステル樹脂組成物。
[2] 前記微粉は、長さが4μm以上20μm以下の第1微粉と、20μm超30μm以下の第2微粉と、から構成されており、
前記第1微粉の含有割合が、前記ガラス成分の総数に対して40%以上70%以下である[1]に記載の液晶ポリエステル樹脂組成物。
[3] 前記微粉の含有割合が、前記ガラス成分の総数に対して50%以上85%以下である[1]または[2]に記載の液晶ポリエステル樹脂組成物。
[4] 前記液晶ポリエステル樹脂が、下記式(1)~(3)で表される繰返し単位を含有する[1]~[3]のいずれか1つに記載の液晶ポリエステル樹脂組成物。
(1)-O-Ar1-CO-
(2)-CO-Ar2-CO-
(3)-X-Ar3-Y-
[Ar1はフェニレン基、ナフチレン基またはビフェニリレン基を表す。
Ar2およびAr3は、互いに独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(4)で表される基を表す。
XおよびYは、互いに独立に、酸素原子またはイミノ基(-NH-)を表す。
Ar1、Ar2またはAr3で表される前記基中の少なくとも1個の水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基または炭素数6~20のアリール基で置換されていてもよい。]
(4)-Ar4-Z-Ar5-
[Ar4およびAr5は、互いに独立に、フェニレン基またはナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基または炭素数1~10のアルキリデン基を表す。
Ar4またはAr5で表される前記基中の少なくとも1個の水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基または炭素数6~20のアリール基で置換されていてもよい。]
[5] 前記Ar1は1,4-フェニレン基であり、前記Ar2は1,4-フェニレン基および1,3-フェニレン基であり、前記Ar3はビフェニリレン基であり、前記Xおよび前記Yはそれぞれ酸素原子である[4]に記載の液晶ポリエステル樹脂組成物。
[6] 前記式(1)で表される繰返し単位と前記式(3)で表される繰返し単位とのモル比率(3)/(1)が0.2以上1.0以下であり、
前記式(3)で表される繰返し単位と前記式(2)で表される繰返し単位とのモル比率(2)/(3)が0.9以上1.1以下である[4]または[5]に記載の液晶ポリエステル樹脂組成物。
[7] 前記式(2)で表される繰返し単位のモル比率y/xが0を超え1以下である[4]~[6]のいずれか1つに記載の液晶ポリエステル樹脂組成物。
[xは、前記Ar2が1,4-フェニレン基である繰返し単位のモル含有量を表す。
yは、前記Ar2が1,3-フェニレン基である繰返し単位のモル含有量を表す。]
[8] 前記液晶ポリエステル樹脂は、第1液晶ポリエステル樹脂と、第2液晶ポリエステル樹脂とを含み、α/βが0.1以上0.6以下である[7]に記載の液晶ポリエステル樹脂組成物。
[αは、前記第1液晶ポリエステル樹脂のモル比率y/xを表す。
βは、前記第2液晶ポリエステル樹脂のモル比率y’/x’を表す。]
[9] [1]~[8]のいずれか1つに記載の液晶ポリエステル樹脂組成物から形成される成形体。
[1] 液晶ポリエステル樹脂100質量部と、
ガラス成分10質量部以上100質量部以下と、を含み、
前記ガラス成分は、長さが30μm超のガラス繊維と、長さが4μm以上30μm以下のガラス製の微粉と、を含み、
前記ガラス繊維の数平均繊維長が50μm以上200μm以下であり、
前記微粉の含有割合が、前記ガラス成分の総数に対して50%以上95%以下である液晶ポリエステル樹脂組成物。
[2] 前記微粉は、長さが4μm以上20μm以下の第1微粉と、20μm超30μm以下の第2微粉と、から構成されており、
前記第1微粉の含有割合が、前記ガラス成分の総数に対して40%以上70%以下である[1]に記載の液晶ポリエステル樹脂組成物。
[3] 前記微粉の含有割合が、前記ガラス成分の総数に対して50%以上85%以下である[1]または[2]に記載の液晶ポリエステル樹脂組成物。
[4] 前記液晶ポリエステル樹脂が、下記式(1)~(3)で表される繰返し単位を含有する[1]~[3]のいずれか1つに記載の液晶ポリエステル樹脂組成物。
(1)-O-Ar1-CO-
(2)-CO-Ar2-CO-
(3)-X-Ar3-Y-
[Ar1はフェニレン基、ナフチレン基またはビフェニリレン基を表す。
Ar2およびAr3は、互いに独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(4)で表される基を表す。
XおよびYは、互いに独立に、酸素原子またはイミノ基(-NH-)を表す。
Ar1、Ar2またはAr3で表される前記基中の少なくとも1個の水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基または炭素数6~20のアリール基で置換されていてもよい。]
(4)-Ar4-Z-Ar5-
[Ar4およびAr5は、互いに独立に、フェニレン基またはナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基または炭素数1~10のアルキリデン基を表す。
Ar4またはAr5で表される前記基中の少なくとも1個の水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基または炭素数6~20のアリール基で置換されていてもよい。]
[5] 前記Ar1は1,4-フェニレン基であり、前記Ar2は1,4-フェニレン基および1,3-フェニレン基であり、前記Ar3はビフェニリレン基であり、前記Xおよび前記Yはそれぞれ酸素原子である[4]に記載の液晶ポリエステル樹脂組成物。
[6] 前記式(1)で表される繰返し単位と前記式(3)で表される繰返し単位とのモル比率(3)/(1)が0.2以上1.0以下であり、
前記式(3)で表される繰返し単位と前記式(2)で表される繰返し単位とのモル比率(2)/(3)が0.9以上1.1以下である[4]または[5]に記載の液晶ポリエステル樹脂組成物。
[7] 前記式(2)で表される繰返し単位のモル比率y/xが0を超え1以下である[4]~[6]のいずれか1つに記載の液晶ポリエステル樹脂組成物。
[xは、前記Ar2が1,4-フェニレン基である繰返し単位のモル含有量を表す。
yは、前記Ar2が1,3-フェニレン基である繰返し単位のモル含有量を表す。]
[8] 前記液晶ポリエステル樹脂は、第1液晶ポリエステル樹脂と、第2液晶ポリエステル樹脂とを含み、α/βが0.1以上0.6以下である[7]に記載の液晶ポリエステル樹脂組成物。
[αは、前記第1液晶ポリエステル樹脂のモル比率y/xを表す。
βは、前記第2液晶ポリエステル樹脂のモル比率y’/x’を表す。]
[9] [1]~[8]のいずれか1つに記載の液晶ポリエステル樹脂組成物から形成される成形体。
本発明の一態様によれば、リグラインド時における機械的強度の維持率が高い液晶ポリエステル樹脂組成物および成形体が提供される。
<液晶ポリエステル樹脂組成物>
本実施形態の液晶ポリエステル樹脂組成物は、液晶ポリエステル樹脂と、ガラス成分とを含む。
本実施形態の液晶ポリエステル樹脂組成物は、液晶ポリエステル樹脂と、ガラス成分とを含む。
[液晶ポリエステル樹脂]
本実施形態に係る液晶ポリエステル樹脂の典型的な例としては、芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸とを縮重合(重縮合)させてなる重合体;複数種の芳香族ヒドロキシカルボン酸を重合させてなる重合体;芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、芳香族ジカルボン酸とを重合させてなる重合体;およびポリエチレンテレフタレート等のポリエステルと、芳香族ヒドロキシカルボン酸と、を重合させてなる重合体が挙げられる。
本実施形態に係る液晶ポリエステル樹脂の典型的な例としては、芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸とを縮重合(重縮合)させてなる重合体;複数種の芳香族ヒドロキシカルボン酸を重合させてなる重合体;芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、芳香族ジカルボン酸とを重合させてなる重合体;およびポリエチレンテレフタレート等のポリエステルと、芳香族ヒドロキシカルボン酸と、を重合させてなる重合体が挙げられる。
なかでも、芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸とを縮重合(重縮合)させてなる重合体が好ましい。
ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンは、互いに独立に、その一部または全部に代えて、その重合可能なエステル形成誘導体であってもよい。
芳香族ヒドロキシカルボン酸および芳香族ジカルボン酸のような、カルボキシ基を有する化合物の重合可能な誘導体の例としては、エステル、酸ハロゲン化物、および酸無水物が挙げられる。上述のエステルとしては、カルボキシ基をアルコキシカルボニル基またはアリールオキシカルボニル基に変換してなる化合物が挙げられる。上述の酸ハロゲン化物としては、カルボキシ基をハロホルミル基に変換してなる化合物が挙げられる。上述の酸無水物としては、カルボキシ基をアシルオキシカルボニル基に変換してなる化合物が挙げられる。
芳香族ヒドロキシアミンおよび芳香族ジアミンのような、アミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなる化合物(すなわち、アミノ基のアシル化物)が挙げられる。
例示した重合可能な誘導体の例の中でも、液晶ポリエステル樹脂の原料モノマーとしては、芳香族ヒドロキシカルボン酸および芳香族ジオールをアシル化して得られるアシル化物が好ましい。
本実施形態に係る液晶ポリエステル樹脂は、下記式(1)で表される繰返し単位(以下、「繰返し単位(1)」ということがある。)を有することが好ましい。また、液晶ポリエステル樹脂は、繰返し単位(1)と、下記式(2)で表される繰返し単位(以下、「繰返し単位(2)」ということがある。)と、下記式(3)で表される繰返し単位(以下、「繰返し単位(3)」ということがある。)と、を有することがより好ましい。
(1)-O-Ar1-CO-
(2)-CO-Ar2-CO-
(3)-X-Ar3-Y-
(2)-CO-Ar2-CO-
(3)-X-Ar3-Y-
[式(1)~式(3)中、Ar1は、フェニレン基、ナフチレン基またはビフェニリレン基を表す。
Ar2およびAr3は、互いに独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(4)で表される基を表す。XおよびYは、互いに独立に、酸素原子またはイミノ基(-NH-)を表す。
Ar1、Ar2またはAr3で表される前記基中の少なくとも1個の水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基または炭素数6~20のアリール基で置換されていてもよい。]
Ar2およびAr3は、互いに独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(4)で表される基を表す。XおよびYは、互いに独立に、酸素原子またはイミノ基(-NH-)を表す。
Ar1、Ar2またはAr3で表される前記基中の少なくとも1個の水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基または炭素数6~20のアリール基で置換されていてもよい。]
(4)-Ar4-Z-Ar5-
[式(4)中、Ar4およびAr5は、互いに独立に、フェニレン基またはナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基または炭素数1~10のアルキリデン基を表す。
Ar4またはAr5で表される前記基中の少なくとも1個の水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基または炭素数6~20のアリール基で置換されていてもよい。]
Ar4またはAr5で表される前記基中の少なくとも1個の水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基または炭素数6~20のアリール基で置換されていてもよい。]
水素原子と置換可能な前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。
水素原子と置換可能な前記炭素数1~10のアルキル基の例としては、メチル基、エチル基、1-プロピル基、イソプロピル基、1-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、1-ヘキシル基、2-エチルヘキシル基、1-オクチル基および1-デシル基等が挙げられる。
水素原子と置換可能な前記炭素数6~20のアリール基の例としては、フェニル基、オルトトリル基、メタトリル基、パラトリル基等のような単環式芳香族基や、1-ナフチル基、2-ナフチル基等のような縮環式芳香族基が挙げられる。
Ar1、Ar2、Ar3、Ar4またはAr5で表される前記基において、少なくとも1個の水素原子が、上述した置換基で置換されている場合、前記置換基の数は、Ar1、Ar2、Ar3、Ar4またはAr5で表される基毎に、それぞれ独立に、1個または2個であることが好ましい。また、前記置換基の数は、Ar1、Ar2、Ar3、Ar4またはAr5で表される基毎に、1個であることがより好ましい。
前記炭素数1~10のアルキリデン基の例としては、メチレン基、エチリデン基、イソプロピリデン基、1-ブチリデン基および2-エチルヘキシリデン基等が挙げられる。
繰返し単位(1)は、所定の芳香族ヒドロキシカルボン酸に由来する繰返し単位である。
なお、本明細書において「由来」とは、原料モノマーが重合するために化学構造が変化し、その他の構造変化を生じないことを意味する。
前記芳香族ヒドロキシカルボン酸としては、例えば、4-ヒドロキシ安息香酸、メタヒドロキシ安息香酸、2-ヒドロキシ-6-ナフトエ酸、2-ヒドロキシ-3-ナフトエ酸、1-ヒドロキシ-5-ナフトエ酸、4-ヒドロキシ-4’-カルボキシジフェニルエーテルや、これらの芳香族ヒドロキシカルボン酸の芳香環にある水素原子の一部が、アルキル基、アリール基およびハロゲン原子からなる群より選ばれる置換基で置換されてなる芳香族ヒドロキシカルボン酸が挙げられる。
前記芳香族ヒドロキシカルボン酸は、液晶ポリエステル樹脂の製造において、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
繰返し単位(1)としては、Ar1が1,4-フェニレン基である単位(例えば、4-ヒドロキシ安息香酸に由来する繰返し単位)、およびAr1が2,6-ナフチレン基である単位(例えば、6-ヒドロキシ-2-ナフトエ酸に由来する繰返し単位)が好ましく、1,4-フェニレン基である単位がより好ましい。
繰返し単位(2)は、所定の芳香族ジカルボン酸に由来する繰返し単位である。
前記芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、ビフェニル-4,4’-ジカルボン酸、2,6-ナフタレンジカルボン酸、ジフェニルエーテル-4,4’-ジカルボン酸、ジフェニルチオエーテル-4,4’-ジカルボン酸や、これらの芳香族ジカルボン酸の芳香環にある水素原子の一部が、アルキル基、アリール基およびハロゲン原子からなる群より選ばれる置換基で置換されてなる芳香族ジカルボン酸が挙げられる。
前記芳香族ジカルボン酸は、液晶ポリエステル樹脂の製造において、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
繰返し単位(2)としては、Ar2が1,4-フェニレン基である単位(例えば、テレフタル酸に由来する繰返し単位)、Ar2が1,3-フェニレン基である単位(例えば、イソフタル酸に由来する繰返し単位)、Ar2が2,6-ナフチレン基である単位(例えば、2,6-ナフタレンジカルボン酸に由来する繰返し単位)、およびAr2がジフェニルエーテル-4,4’-ジイル基である単位(例えば、ジフェニルエーテル-4,4’-ジカルボン酸に由来する繰返し単位)が好ましく、1,4-フェニレン基である単位および1,3-フェニレン基である単位がより好ましい。
繰返し単位(3)は、所定の芳香族ジオール、芳香族ヒドロキシアミンまたは芳香族ジアミンに由来する繰返し単位である。
芳香族ジオール、芳香族ヒドロキシアミンまたは芳香族ジアミンとしては、例えば、4,4’-ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェニル)メタン、1,2-ビス(4-ヒドロキシフェニル)エタン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルチオエーテル、2,6-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、4-アミノフェノール、1,4-フェニレンジアミン、4-アミノ-4’-ヒドロキシビフェニル、4,4’-ジアミノビフェニルが挙げられる。
前記芳香族ジオール、芳香族ヒドロキシアミンまたは芳香族ジアミンは、液晶ポリエステル樹脂の製造において、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
繰返し単位(3)としては、Ar3が1,4-フェニレン基である単位(例えば、ヒドロキノン、4-アミノフェノールまたは1,4-フェニレンジアミンに由来する繰返し単位)、およびAr3が4,4’-ビフェニリレン基である単位(例えば、4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニルまたは4,4’-ジアミノビフェニルに由来する繰返し単位)が好ましく、4,4’-ビフェニリレン基である単位がより好ましい。
繰返し単位(3)としては、XおよびYがそれぞれ酸素原子である単位が好ましい。
なお、本実施形態の液晶ポリエステル樹脂組成物から得られる成形体が、特に良好な耐熱性や熱安定性が要求される場合には、繰返し単位(1)~(3)が有する置換基の数は少ない方が好ましい。また、本実施形態の液晶ポリエステル樹脂組成物から得られる成形体が、特に良好な耐熱性や熱安定性が要求される場合には、熱に弱い置換基(例えば、アルキル基)は有しないことが好ましい。
本実施形態において成形体の耐熱性とは、高温環境下において成形体の形成材料である樹脂が軟化しにくい性質をいう。本実施形態において、成形体の耐熱性は、樹脂の荷重たわみ温度を測定することにより明らかにすることができる。本実施形態における荷重たわみ温度は、ASTM D648に準拠し、1.82MPaの荷重下にて測定される。このようにして測定される樹脂の荷重たわみ温度が高いほど、成形体の耐熱性が高いといえる。
また、本実施形態において成形体の熱安定性とは、樹脂を成形加工する温度(すなわち、溶融温度)で成形体を保持した際に、樹脂の分解や劣化が生じにくい性質をいう。
次に、本実施形態に適用するうえで特に好適な液晶ポリエステル樹脂に関し、その繰返し単位の組合せについて、上述の繰返し単位の例示をもとに詳述する。
本実施形態に係る好ましい液晶ポリエステル樹脂の具体例としては、例えば下記のモノマーに由来する繰返し単位からなる樹脂が挙げられる。
(a)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸共重合体
(b)4-ヒドロキシ安息香酸/テレフタル酸/4,4’-ジヒドロキシビフェニル共重合体
(c)4-ヒドロキシ安息香酸/テレフタル酸/イソフタル酸/4,4’-ジヒドロキシビフェニル共重合体
(d)4-ヒドロキシ安息香酸/テレフタル酸/イソフタル酸/4,4’-ジヒドロキシビフェニル/ハイドロキノン共重合体
(e)4-ヒドロキシ安息香酸/テレフタル酸/ハイドロキノン共重合体
(f)2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/ハイドロキノン共重合体
(g)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/4,4’-ジヒドロキシビフェニル共重合体
(h)2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/4,4’-ジヒドロキシビフェニル共重合体
(i)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/ハイドロキノン共重合体
(j)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/ハイドロキノン/4,4’-ジヒドロキシビフェニル共重合体
(k)4-ヒドロキシ安息香酸/2,6-ナフタレンジカルボン酸/4,4’-ジヒドロキシビフェニル共重合体
(l)4-ヒドロキシ安息香酸/テレフタル酸/2,6-ナフタレンジカルボン酸/ハイドロキノン共重合体
(m)4-ヒドロキシ安息香酸/2,6-ナフタレンジカルボン酸/ハイドロキノン共重合体
(n)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/2,6-ナフタレンジカルボン酸/ハイドロキノン共重合体
(o)4-ヒドロキシ安息香酸/テレフタル酸/2,6-ナフタレンジカルボン酸/ハイドロキノン/4,4’-ジヒドロキシビフェニル共重合体
(p)4-ヒドロキシ安息香酸/テレフタル酸/4-アミノフェノール共重合体(q)2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/4-アミノフェノール共重合体
(r)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/4-アミノフェノール共重合体
(s)4-ヒドロキシ安息香酸/テレフタル酸/4,4’-ジヒドロキシビフェニル /4-アミノフェノール共重合体
(t)4-ヒドロキシ安息香酸/テレフタル酸/エチレングリコール共重合体
(u)4-ヒドロキシ安息香酸/テレフタル酸/4,4’-ジヒドロキシビフェニル/エチレングリコール共重合体
(v)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/エチレングリコール共重合体
(w)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/4,4’-ジヒドロキシビフェニル/エチレングリコール共重合体
(x)4-ヒドロキシ安息香酸/テレフタル酸/2,6-ナフタレンジカルボン酸/4,4‘-ジヒドロキシビフェニル共重合体
(a)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸共重合体
(b)4-ヒドロキシ安息香酸/テレフタル酸/4,4’-ジヒドロキシビフェニル共重合体
(c)4-ヒドロキシ安息香酸/テレフタル酸/イソフタル酸/4,4’-ジヒドロキシビフェニル共重合体
(d)4-ヒドロキシ安息香酸/テレフタル酸/イソフタル酸/4,4’-ジヒドロキシビフェニル/ハイドロキノン共重合体
(e)4-ヒドロキシ安息香酸/テレフタル酸/ハイドロキノン共重合体
(f)2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/ハイドロキノン共重合体
(g)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/4,4’-ジヒドロキシビフェニル共重合体
(h)2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/4,4’-ジヒドロキシビフェニル共重合体
(i)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/ハイドロキノン共重合体
(j)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/ハイドロキノン/4,4’-ジヒドロキシビフェニル共重合体
(k)4-ヒドロキシ安息香酸/2,6-ナフタレンジカルボン酸/4,4’-ジヒドロキシビフェニル共重合体
(l)4-ヒドロキシ安息香酸/テレフタル酸/2,6-ナフタレンジカルボン酸/ハイドロキノン共重合体
(m)4-ヒドロキシ安息香酸/2,6-ナフタレンジカルボン酸/ハイドロキノン共重合体
(n)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/2,6-ナフタレンジカルボン酸/ハイドロキノン共重合体
(o)4-ヒドロキシ安息香酸/テレフタル酸/2,6-ナフタレンジカルボン酸/ハイドロキノン/4,4’-ジヒドロキシビフェニル共重合体
(p)4-ヒドロキシ安息香酸/テレフタル酸/4-アミノフェノール共重合体(q)2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/4-アミノフェノール共重合体
(r)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/4-アミノフェノール共重合体
(s)4-ヒドロキシ安息香酸/テレフタル酸/4,4’-ジヒドロキシビフェニル /4-アミノフェノール共重合体
(t)4-ヒドロキシ安息香酸/テレフタル酸/エチレングリコール共重合体
(u)4-ヒドロキシ安息香酸/テレフタル酸/4,4’-ジヒドロキシビフェニル/エチレングリコール共重合体
(v)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/エチレングリコール共重合体
(w)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/4,4’-ジヒドロキシビフェニル/エチレングリコール共重合体
(x)4-ヒドロキシ安息香酸/テレフタル酸/2,6-ナフタレンジカルボン酸/4,4‘-ジヒドロキシビフェニル共重合体
前記の例示の中でも、(b)、(c)が好ましく、(c)がより好ましい。すなわち、前記Ar1は1,4-フェニレン基であり、前記Ar2は1,4-フェニレン基および1,3-フェニレン基であり、前記Ar3はビフェニリレン基であり、前記Xおよび前記Yはそれぞれ酸素原子であることがより好ましい。
液晶ポリエステル樹脂の繰返し単位(1)の含有率は、液晶ポリエステル樹脂を構成する全繰返し単位の合計量に対して、好ましくは30モル%以上、より好ましくは30モル%以上80モル%以下、さらに好ましくは30モル%以上70モル%以下、とりわけ好ましくは35モル%以上65モル%以下である。液晶ポリエステル樹脂を構成する全繰返し単位の合計量は、液晶ポリエステル樹脂を構成する各繰返し単位の質量をその各繰返し単位の式量で割ることにより、各繰返し単位の物質量相当量(モル)を求め、それらを合計した値である。
液晶ポリエステル樹脂の繰返し単位(1)の含有率が30モル%以上であると、本実施形態の液晶ポリエステル樹脂組成物から得られる成形体の耐熱性と硬度が向上し易い。また、繰返し単位(1)の含有率が80モル%以下であると、溶融粘度を低くすることができる。そのため、液晶ポリエステル樹脂の成形に必要な温度が低くなりやすい。
液晶ポリエステル樹脂の繰返し単位(2)の含有率は、液晶ポリエステル樹脂を構成する全繰返し単位の合計量に対して、好ましくは35モル%以下、より好ましくは10モル%以上35モル%以下、さらに好ましくは15モル%以上35モル%以下、とりわけ好ましくは17.5モル%以上32.5モル%以下である。
液晶ポリエステル樹脂の繰返し単位(3)の含有率は、液晶ポリエステル樹脂を構成する全繰返し単位の合計量に対して、好ましくは35モル%以下、より好ましくは10モル%以上35モル%以下、さらに好ましくは15モル%以上35モル%以下、とりわけ好ましくは17.5モル%以上32.5モル%以下である。
1つの側面として、液晶ポリエステル樹脂の繰返し単位(1)、(2)および(3)の合計量は100モル%を超えない。
1つの側面として、液晶ポリエステル樹脂の繰返し単位(1)、(2)および(3)の合計量は100モル%を超えない。
液晶ポリエステル樹脂においては、繰返し単位(2)の含有率と繰返し単位(3)の含有率との割合は、[繰返し単位(2)の含有率]/[繰返し単位(3)の含有率](モル%/モル%)(モル比率(2)/(3)ということがある)で表して、好ましくは0.9以上1.1以下、より好ましくは0.95以上1.05以下、さらに好ましくは0.98以上1.02以下である。
液晶ポリエステル樹脂においては、繰返し単位(3)の含有率と繰返し単位(1)の含有率との割合は、[繰返し単位(3)の含有率]/[繰返し単位(1)の含有率](モル%/モル%)(モル比率(3)/(1)ということがある)で表して、好ましくは0.2以上1.0以下、より好ましくは0.25以上0.85以下、さらに好ましくは0.3以上0.75以下である。
液晶ポリエステル樹脂においては、繰返し単位(2)のモル比率y/xが0を超え1以下であることが好ましく、0.1以上0.9以下であることがより好ましく、0.2以上0.8以下であることがさらに好ましい。
xは、Ar2が1,4-フェニレン基である繰返し単位のモル含有量を表す。
yは、Ar2が1,3-フェニレン基である繰返し単位のモル含有量を表す。
xは、Ar2が1,4-フェニレン基である繰返し単位のモル含有量を表す。
yは、Ar2が1,3-フェニレン基である繰返し単位のモル含有量を表す。
なお、前記液晶ポリエステル樹脂は、繰返し単位(1)~(3)を、互いに独立に、1種のみ有してもよいし、2種以上有してもよい。また、液晶ポリエステル樹脂は、繰返し単位(1)~(3)以外の繰返し単位を1種または2種以上有してもよいが、その含有率は、全繰返し単位の合計量に対して、好ましく0モル%以上10モル%以下、より好ましくは0モル%以上5モル%以下である。
[液晶ポリエステル樹脂混合物]
本実施形態では、複数種の液晶ポリエステル樹脂が混合された液晶ポリエステル樹脂混合物を使用することも可能である。これにより、本実施形態の液晶ポリエステル樹脂組成物の溶融流動性を一層良好にして、得られる成形体の反りを十分抑制できる。
ここで、液晶ポリエステル樹脂混合物として、流動開始温度が互いに異なる液晶ポリエステル樹脂の混合物を想定する。液晶ポリエステル樹脂混合物において、流動開始温度が高い方を第1液晶ポリエステル樹脂とし、流動開始温度が低い方を第2液晶ポリエステル樹脂とする。
1つの側面として、本実施形態に係る液晶ポリエステル樹脂は、液晶ポリエステル樹脂混合物であってもよい。
別の側面として、本実施形態に係る液晶ポリエステル樹脂は、第1液晶ポリエステル樹脂と第2液晶ポリエステル樹脂とを含んでもよく、前記第1液晶ポリエステル樹脂の流動開始温度は前記第2液晶ポリエステル樹脂の流動開始温度よりも高い。
本実施形態では、複数種の液晶ポリエステル樹脂が混合された液晶ポリエステル樹脂混合物を使用することも可能である。これにより、本実施形態の液晶ポリエステル樹脂組成物の溶融流動性を一層良好にして、得られる成形体の反りを十分抑制できる。
ここで、液晶ポリエステル樹脂混合物として、流動開始温度が互いに異なる液晶ポリエステル樹脂の混合物を想定する。液晶ポリエステル樹脂混合物において、流動開始温度が高い方を第1液晶ポリエステル樹脂とし、流動開始温度が低い方を第2液晶ポリエステル樹脂とする。
1つの側面として、本実施形態に係る液晶ポリエステル樹脂は、液晶ポリエステル樹脂混合物であってもよい。
別の側面として、本実施形態に係る液晶ポリエステル樹脂は、第1液晶ポリエステル樹脂と第2液晶ポリエステル樹脂とを含んでもよく、前記第1液晶ポリエステル樹脂の流動開始温度は前記第2液晶ポリエステル樹脂の流動開始温度よりも高い。
上記第1液晶ポリエステル樹脂の流動開始温度は、300℃以上が好ましく、310℃以上がより好ましく、315℃以上がさらに好ましい。また、上記第1液晶ポリエステル樹脂の流動開始温度は、400℃以下が好ましく、360℃以下がより好ましく、345℃以下がさらに好ましい。上記上限値および下限値は任意に組み合わせることができる。
1つの側面として、上記第1液晶ポリエステル樹脂の流動開始温度は、300℃以上400℃以下が好ましく、310℃以上360℃以下がより好ましく、315℃以上345℃以下がさらに好ましい。
1つの側面として、上記第1液晶ポリエステル樹脂の流動開始温度は、300℃以上400℃以下が好ましく、310℃以上360℃以下がより好ましく、315℃以上345℃以下がさらに好ましい。
上記第1液晶ポリエステル樹脂の流動開始温度が上記の範囲内であると、樹脂の溶融流動性と、得られる成形体の耐熱性とを両立できる傾向がある。
一方、上記第2液晶ポリエステル樹脂の流動開始温度は、260℃以上が好ましく、270℃以上がより好ましく、285℃以上がさらに好ましい。また、上記第2液晶ポリエステル樹脂の流動開始温度は、350℃以下が好ましく、320℃以下がより好ましく、315℃以下がさらに好ましい。上記上限値および下限値は任意に組み合わせることができる。
1つの側面として、上記第2液晶ポリエステル樹脂の流動開始温度は、260℃以上350℃以下が好ましく、270℃以上315℃以下がより好ましく、285℃以上315℃以下がさらに好ましい。
1つの側面として、上記第2液晶ポリエステル樹脂の流動開始温度は、260℃以上350℃以下が好ましく、270℃以上315℃以下がより好ましく、285℃以上315℃以下がさらに好ましい。
上記第2液晶ポリエステル樹脂の流動開始温度が上記の範囲内であると、金型の薄肉部の流動性(すなわち、薄肉流動性)が良好になりやすく、得られる成形体の荷重たわみ温度が十分高くなる傾向がある。
また、液晶ポリエステル樹脂混合物において、上記第1液晶ポリエステル樹脂100質量部に対して、上記第2液晶ポリエステル樹脂の含有量が10~150質量部であることが好ましく、30~120質量部がより好ましく、50~100質量部であることがさらに好ましい。
上記第1液晶ポリエステル樹脂に対する上記第2液晶ポリエステル樹脂の含有量は、液晶ポリエステル樹脂混合物の荷重たわみ温度と薄肉流動性のバランスが所望の状態となるように、適宜設定するとよい。
液晶ポリエステル樹脂混合物は、前記第1液晶ポリエステル樹脂および前記第2液晶ポリエステル樹脂以外の液晶ポリエステル樹脂をさらに含有することもできる。その場合、前記樹脂混合物において、流動開始温度が最も高い樹脂を前記第1液晶ポリエステル樹脂とし、流動開始温度が最も低い樹脂を前記第2液晶ポリエステル樹脂とすればよい。
第1液晶ポリエステル樹脂と第2液晶ポリエステル樹脂の合計量が、液晶ポリエステル樹脂混合物の総質量に対し、80質量%以上100質量%以下である液晶ポリエステル樹脂混合物が好適である。
第1液晶ポリエステル樹脂と第2液晶ポリエステル樹脂の合計量が、液晶ポリエステル樹脂混合物の総質量に対し、80質量%以上100質量%以下である液晶ポリエステル樹脂混合物が好適である。
液晶ポリエステル樹脂混合物において、α/βが0.1以上0.6以下の範囲であることが好ましく、0.3以上0.6以下の範囲であることがより好ましい。
αは、第1液晶ポリエステル樹脂のモル比率y/xを表す。
βは、第2液晶ポリエステル樹脂のモル比率y’/x’を表す。
xは、第1液晶ポリエステル樹脂において、Ar2が1,4-フェニレン基である繰返し単位のモル含有量を表す。
yは、第1液晶ポリエステル樹脂において、Ar2が1,3-フェニレン基である繰返し単位のモル含有量を表す。
x’は、第2液晶ポリエステル樹脂において、Ar2が1,4-フェニレン基である繰返し単位のモル含有量を表す。
y’は、第2液晶ポリエステル樹脂において、Ar2が1,3-フェニレン基である繰返し単位のモル含有量を表す。
αは、第1液晶ポリエステル樹脂のモル比率y/xを表す。
βは、第2液晶ポリエステル樹脂のモル比率y’/x’を表す。
xは、第1液晶ポリエステル樹脂において、Ar2が1,4-フェニレン基である繰返し単位のモル含有量を表す。
yは、第1液晶ポリエステル樹脂において、Ar2が1,3-フェニレン基である繰返し単位のモル含有量を表す。
x’は、第2液晶ポリエステル樹脂において、Ar2が1,4-フェニレン基である繰返し単位のモル含有量を表す。
y’は、第2液晶ポリエステル樹脂において、Ar2が1,3-フェニレン基である繰返し単位のモル含有量を表す。
[液晶ポリエステル樹脂の製造方法]
次に、本実施形態に係る液晶ポリエステル樹脂の製造方法の一例について説明する。
次に、本実施形態に係る液晶ポリエステル樹脂の製造方法の一例について説明する。
本実施形態の液晶ポリエステル樹脂は、以下のアシル化工程および重合工程によって製造することが好ましい。
アシル化工程とは、原料のモノマーが有するフェノール性のヒドロキシ基を脂肪酸無水物(例えば無水酢酸等)によってアシル化することにより、アシル化物を得る工程である。
重合工程では、アシル化工程で得られたアシル化物のアシル基と、芳香族ジカルボン酸および芳香族ヒドロキシカルボン酸のアシル化物のカルボキシ基とを、エステル交換を起こすように重合することにより、液晶ポリエステル樹脂を得るとよい。
前記アシル化工程および重合工程は、下に表されたような複素環状有機塩基化合物(イミダゾール誘導体と称する場合がある)の存在下に行ってもよい。
上記式(5)において、R1~R4は、それぞれ独立に、水素原子、炭素数1~4のアルキル基、ヒドロキシメチル基、シアノ基、アルキル基の炭素数が1~4であるシアノアルキル基、アルコキシ基の炭素数が1~4であるシアノアルコキシ基、カルボキシ基、アミノ基、炭素数1~4のアミノアルキル基、炭素数1~4のアミノアルコキシ基、フェニル基、ベンジル基、フェニルプロピル基またはフォルミル基を表している。
上記式(5)の複素環状有機塩基化合物としては、R1が炭素数1~4のアルキル基であり、R2~R4がそれぞれ水素原子であるイミダゾール誘導体であることが好ましい。
これにより、前記アシル化工程におけるアシル化反応や前記重合工程におけるエステル交換反応の反応性をより向上できる。また、本実施形態の液晶ポリエステル樹脂組成物を用いて得られる成形体の色調をより良好にすることができる。
これにより、前記アシル化工程におけるアシル化反応や前記重合工程におけるエステル交換反応の反応性をより向上できる。また、本実施形態の液晶ポリエステル樹脂組成物を用いて得られる成形体の色調をより良好にすることができる。
複素環状有機塩基化合物の中でも、入手が容易であることから、1-メチルイミダゾールと1-エチルイミダゾールとのいずれか一方または両方が特に好ましい。
また、複素環状有機塩基化合物の使用量は、液晶ポリエステル樹脂の原料モノマー(すなわち、芳香族ジカルボン酸、芳香族ジオールおよび芳香族ヒドロキシカルボン酸)の総量を100質量部としたときに、0.005~1質量部となるようにすることが好ましい。また、成形体の色調や生産性の観点からは、原料モノマー100質量部に対して0.05~0.5質量部とすることが、より好ましい。
前記複素環状有機塩基化合物は、アシル化反応およびエステル交換反応の際の一時期に存在していればよく、その添加時期は、アシル化反応開始の直前であってもよいし、アシル化反応の途中であってもよいし、アシル化反応とエステル交換反応の間であってもよい。このようにして得られる液晶ポリエステル樹脂は、溶融流動性が非常に高く、かつ、熱安定性に優れる。
脂肪酸無水物(例えば無水酢酸等)の使用量は、原料モノマーである芳香族ジオールおよび芳香族ヒドロキシカルボン酸の使用量を考慮して決定すべきである。具体的には、脂肪酸無水物の使用量は、これら原料モノマーに含まれるフェノール性ヒドロキシ基の合計に対して、1.0倍当量以上1.2倍当量以下とすることが好ましく、1.0倍当量以上1.15倍当量以下とすることがより好ましく、1.03倍当量以上1.12倍当量以下とすることがさらに好ましく、1.05倍当量以上1.1倍当量以下とすることが特に好ましい。
原料モノマーに含まれるフェノール性ヒドロキシ基の合計に対して、脂肪酸無水物の使用量が1.0倍当量以上であると、アシル化反応が進行しやすく、後の重合工程において未反応の原料モノマーが残存しにくく、結果として重合が効率よく進行する。また、このようにアシル化反応が十分進行すると、アシル化されていない原料モノマーが昇華して、重合時に使用する分留器が閉塞する可能性が少ない。一方、前記脂肪酸無水物の使用量が1.2倍当量以下であると、得られる液晶ポリエステル樹脂が着色しにくい。
上述のアシル化工程におけるアシル化反応は、130℃~180℃の温度範囲で30分間~20時間行うことが好ましく、140℃~160℃で1~5時間行うことがより好ましい。
上述の重合工程で使用する芳香族ジカルボン酸は、アシル化工程の際に反応系中に存在させておいてもよい。すなわち、アシル化工程において、芳香族ジオール、芳香族ヒドロキシカルボン酸および芳香族ジカルボン酸を、同一の反応系中に存在させておいてもよい。これは、芳香族ジカルボン酸にあるカルボキシ基および任意に置換されてもよい置換基は、いずれも、脂肪酸無水物によって何ら影響を受けないからである。
従って、芳香族ジオール、芳香族ヒドロキシカルボン酸および芳香族ジカルボン酸を反応器に仕込んだ後でアシル化工程および重合工程を順次行う方法でもよいし、芳香族ジオールおよび芳香族ジカルボン酸を反応器に仕込んでアシル化工程を行った後で芳香族ジカルボン酸をさらに反応器に仕込んで重合工程を行う方法でもよい。製造工程を簡便化するという観点からは、前者の方法が好ましい。
上述の重合工程におけるエステル交換反応は、昇温速度0.1~50℃/分で130℃から400℃まで昇温しながら行うことが好ましく、昇温速度0.3~5℃/分で150℃から350℃まで昇温しながら行うことがさらに好ましい。
また、重合工程のエステル交換反応を行う際には、平衡をずらすために、副生する脂肪酸(例えば酢酸等)および未反応の脂肪酸無水物(例えば無水酢酸等)を、蒸発させて系外に留去させることが好ましい。このとき、留出する脂肪酸の一部を環流させて反応器に戻すことにより、脂肪酸と同伴して蒸発または昇華する原料モノマー等を凝縮または逆昇華させて反応器に戻すこともできる。
アシル化工程のアシル化反応および重合工程のエステル交換反応では、反応器として、回分装置を用いてもよいし、連続装置を用いてもよい。いずれの反応装置を用いても、本実施形態に使用することが可能な液晶ポリエステル樹脂を得られる。
上述した重合工程の後に、この重合工程で得られた液晶ポリエステル樹脂を高分子量化するための工程を行ってもよい。例えば、重合工程で得られた液晶ポリエステル樹脂を冷却した後で粉砕することによって粉体状の液晶ポリエステル樹脂を作製し、さらに、この粉体を加熱することとすれば、液晶ポリエステル樹脂の高分子量化が可能である。
また、冷却および粉砕で得た粉体状液晶ポリエステル樹脂を造粒することによってペレット状の液晶ポリエステル樹脂を作製し、その後でこのペレット状液晶ポリエステル樹脂を加熱することにより、液晶ポリエステル樹脂の高分子量化を行ってもよい。これらの方法を用いた高分子量化は、前記技術分野では、固相重合と称されている。
固相重合は、液晶ポリエステル樹脂を高分子量化する方法としては、特に有効である。
液晶ポリエステル樹脂を高分子量化することにより、後述するような好適な流動開始温度を有する液晶ポリエステル樹脂を得ることが容易になる。
液晶ポリエステル樹脂を高分子量化することにより、後述するような好適な流動開始温度を有する液晶ポリエステル樹脂を得ることが容易になる。
前記固相重合の反応条件としては、固体状態の樹脂を不活性気体雰囲気下または減圧下に、1~20時間熱処理する方法が通常採用される。この固相重合に係る重合条件は、前記溶融重合で得られた樹脂の流動開始温度を求めてから適宜最適化することができる。なお、前記熱処理に使用される装置としては、例えば、既知の乾燥機、反応機、イナートオーブン、電気炉が挙げられる。
液晶ポリエステル樹脂の流動開始温度は、好ましくは270℃以上、より好ましくは270~400℃、さらに好ましくは280~380℃である。前記流動開始温度が、このような範囲である液晶ポリエステル樹脂を使用すると、本実施形態の液晶ポリエステル樹脂組成物から得られる成形体の耐熱性をより良好にすることができる。また、前記液晶ポリエステル樹脂組成物から成形体を得る際の溶融成形において、液晶ポリエステル樹脂の熱安定性が向上し、熱劣化を回避することができる。
なお、流動開始温度は、フロー温度または流動温度とも呼ばれ、毛細管レオメーターを用いて、9.8MPaの荷重下、4℃/分の速度で昇温しながら、液晶ポリエステル樹脂を溶融させ、内径1mmおよび長さ10mmのノズルから押し出すときに、4800Pa・s(48000ポイズ)の粘度を示すときの温度であり、液晶ポリエステル樹脂の分子量の目安である(例えば、小出直之編、「液晶ポリマー-合成・成形・応用-」、95-105頁、シーエムシー、1987年6月5日発行を参照)。
上述の好適な流動開始温度の液晶ポリエステル樹脂は、前記液晶ポリエステル樹脂を構成する繰返し単位を適宜最適化することで容易に得ることが可能である。すなわち、液晶ポリエステル樹脂の分子鎖の直線性を向上させるようにすると、その流動開始温度が上がる傾向がある。
例えば、テレフタル酸に由来する繰返し単位は液晶ポリエステル樹脂分子鎖の直線性を向上させる。一方、イソフタル酸に由来する繰返し単位は液晶ポリエステル樹脂分子鎖の屈曲性を向上させる(直線性を低下させる)。そのため、このテレフタル酸とイソフタル酸の共重合比をコントロールすることにより、所望の流動開始温度の液晶ポリエステル樹脂を得ることができる。
上述した液晶ポリエステル樹脂混合物を使用する場合、少なくとも1種の液晶ポリエステル樹脂は、芳香族ヒドロキシカルボン酸を含む原料モノマーをイミダゾール化合物の存在下に重合させて得られた重合体であることが好ましい。このようにして得られる液晶ポリエステル樹脂は、溶融時の流動性が非常に高く、かつ、熱安定性に優れる。
また、本実施形態に係る液晶ポリエステル樹脂においては、テレフタル酸およびイソフタル酸の共重合比を最適化することが好ましい。これにより、上述のように液晶ポリエステル樹脂の分子鎖の直線性をコントロールできる。その結果、流動開始温度が互いに異なる複数種の液晶ポリエステル樹脂を各々製造できる。
[ガラス成分]
本実施形態の液晶ポリエステル樹脂組成物に含まれるガラス成分は、長さが30μm超のガラス繊維と、長さが4μm以上30μm以下のガラス製の微粉(以下、単に「微粉」と称することがある。)と、を含む。
1つの側面として、前記ガラス成分は、さらに長さが4μm未満のガラス製の極微粉(以下、単に「極微粉」と称することがある。)を含んでもよい。
本実施形態の液晶ポリエステル樹脂組成物に含まれるガラス成分は、長さが30μm超のガラス繊維と、長さが4μm以上30μm以下のガラス製の微粉(以下、単に「微粉」と称することがある。)と、を含む。
1つの側面として、前記ガラス成分は、さらに長さが4μm未満のガラス製の極微粉(以下、単に「極微粉」と称することがある。)を含んでもよい。
本実施形態の液晶ポリエステル樹脂組成物に含まれるガラス成分の長さは、二値化処理された走査型電子顕微鏡(SEM)画像におけるガラス成分の外接矩形長径である。外接矩形長径とは、ガラス成分を外接する長方形で囲んだ時の長辺の長さを意味する。SEMを用いたガラス成分の分析方法については後述する。
1つの側面として、ガラス繊維とは上記SEM画像において外接矩形長径が30μm超のガラス成分であり、微粉とは上記SEM画像において外接矩形長径が4μm以上30μm以下のガラス成分であり、極微粉とは上記SEM画像において外接矩形長径が4μm未満のガラス成分である。
1つの側面として、ガラス繊維とは上記SEM画像において外接矩形長径が30μm超のガラス成分であり、微粉とは上記SEM画像において外接矩形長径が4μm以上30μm以下のガラス成分であり、極微粉とは上記SEM画像において外接矩形長径が4μm未満のガラス成分である。
(ガラス繊維)
本実施形態の液晶ポリエステル樹脂組成物に含まれるガラス繊維の数平均繊維長は、50μm以上200μm以下である。
本実施形態の液晶ポリエステル樹脂組成物に含まれるガラス繊維の数平均繊維長は、50μm以上200μm以下である。
ガラス繊維の数平均繊維長が50μm以上であると、バージン材の成形体の機械的強度を十分高くすることができる。また、本実施形態のガラス繊維の数平均繊維長が200μm以下であると、リグラインド時におけるガラス繊維の物理的破壊が起こりにくい。その結果、ガラス繊維の物理的破壊に起因する機械的強度の低下が抑えられる。したがって、リグラインド時における機械的強度の維持率を十分高くすることができる。
上記ガラス繊維の数平均繊維長は、70μm以上であることが好ましく、80μm以上であることがより好ましく、100μm以上であることがさらに好ましい。また、上記ガラス繊維の数平均繊維長は、190μm以下であることが好ましく、180μm以下であることがより好ましい。
1つの側面として、上記ガラス繊維の数平均繊維長は、70μm以上190μm以下であることが好ましく、80μm以上190μm以下であることがより好ましく、100μm以上180μm以下であることがさらに好ましく、104μm以上172μm以下であってもよい。
1つの側面として、上記ガラス繊維の数平均繊維長は、70μm以上190μm以下であることが好ましく、80μm以上190μm以下であることがより好ましく、100μm以上180μm以下であることがさらに好ましく、104μm以上172μm以下であってもよい。
本実施形態の液晶ポリエステル樹脂組成物に含まれるガラス繊維は、径方向での断面形状が略円形であることが好ましい。上記ガラス繊維の径方向での断面形状が略円形であることは、SEMによって確認することができる。上記ガラス繊維の直径は、5μm以上17μm以下であることが好ましく、6μm以上15μm以下であることがより好ましく、9μm以上12μm以下であることがさらに好ましい。
上記ガラス繊維の直径は、後述するガラス繊維の直径の測定方法により求めることができる。
上記ガラス繊維の直径は、後述するガラス繊維の直径の測定方法により求めることができる。
(微粉)
本実施形態の液晶ポリエステル樹脂組成物に含まれる微粉は、径方向での断面形状が略円形であることが好ましい。本明細書において、微粉の径方向は、二値化処理されたSEM画像における微粉の外接矩形短径方向である。外接矩形短径とは、粒子を外接する長方形で囲んだ時の短辺の長さを意味する。上記微粉の径方向での断面形状が略円形であることは、SEMによって確認することができる。上記微粉の直径が5μm以上17μm以下であることが好ましく、6μm以上15μm以下であることがより好ましく、9μm以上12μm以下であることがさらに好ましい。
上記微粉の直径は、後述の<液晶ポリエステル樹脂組成物中のガラス成分の測定2>に記載する測定方法により求めることができる。
本実施形態の液晶ポリエステル樹脂組成物に含まれる微粉は、径方向での断面形状が略円形であることが好ましい。本明細書において、微粉の径方向は、二値化処理されたSEM画像における微粉の外接矩形短径方向である。外接矩形短径とは、粒子を外接する長方形で囲んだ時の短辺の長さを意味する。上記微粉の径方向での断面形状が略円形であることは、SEMによって確認することができる。上記微粉の直径が5μm以上17μm以下であることが好ましく、6μm以上15μm以下であることがより好ましく、9μm以上12μm以下であることがさらに好ましい。
上記微粉の直径は、後述の<液晶ポリエステル樹脂組成物中のガラス成分の測定2>に記載する測定方法により求めることができる。
本実施形態の液晶ポリエステル樹脂組成物に含まれる微粉のアスペクト比(長さ/直径)が0.3以上であることが好ましく、0.5以上であることがより好ましい。また、微粉のアスペクト比が3.5以下であることが好ましく、3.3以下であることがより好ましい。
1つの側面として、本実施形態の液晶ポリエステル樹脂組成物に含まれる微粉のアスペクト比(長さ/直径)が0.3以上3.5以下であることが好ましい。
1つの側面として、本実施形態の液晶ポリエステル樹脂組成物に含まれる微粉のアスペクト比(長さ/直径)が0.3以上3.5以下であることが好ましい。
本実施形態の液晶ポリエステル樹脂組成物に含まれる微粉は、長さが4μm以上20μm以下の第1微粉(以下、単に「第1微粉」と称することがある。)と、長さが20μm超30μm以下の第2微粉(以下、単に「第2微粉」と称することがある。)と、から構成される。 1つの側面として、本実施形態に係る微粉は、上記SEM画像において外接矩形長径が4μm以上20μm以下のガラス成分である第1微粉と、上記SEM画像において外接矩形長径が20μm超30μm以下のガラス成分である第2微粉とから構成される。
(含有比)
本実施形態の液晶ポリエステル樹脂組成物は、液晶ポリエステル100質量部に対して、ガラス成分を10質量部以上100質量部以下含む。ガラス成分の含有量が10質量部以上100質量部以下であると、液晶ポリエステル樹脂組成物の成形しやすさと、成形体の機械的強度とが両立できる。
本実施形態の液晶ポリエステル樹脂組成物は、液晶ポリエステル100質量部に対して、ガラス成分を10質量部以上100質量部以下含む。ガラス成分の含有量が10質量部以上100質量部以下であると、液晶ポリエステル樹脂組成物の成形しやすさと、成形体の機械的強度とが両立できる。
前記液晶ポリエステル樹脂組成物は、液晶ポリエステル100質量部に対して、ガラス成分を10質量部以上70質量部以下含むことが好ましく、20質量部以上60質量部以下を含むことがより好ましい。
別の側面として、前記液晶ポリエステル樹脂組成物は、液晶ポリエステル100質量部に対して、ガラス成分を、25質量部以上66.7質量部以下含んでもよい。
1つの側面として、本実施形態の液晶ポリエステル樹脂組成物におけるガラス成分の含有量は、前記液晶ポリエステル樹脂組成物の総質量に対して、5~40質量%が好ましい。
本実施形態の液晶ポリエステル樹脂組成物における液晶ポリエステル樹脂の含有量は、前記液晶ポリエステル樹脂組成物の総質量に対して、50~90質量%が好ましい。
別の側面として、前記液晶ポリエステル樹脂組成物は、液晶ポリエステル100質量部に対して、ガラス成分を、25質量部以上66.7質量部以下含んでもよい。
1つの側面として、本実施形態の液晶ポリエステル樹脂組成物におけるガラス成分の含有量は、前記液晶ポリエステル樹脂組成物の総質量に対して、5~40質量%が好ましい。
本実施形態の液晶ポリエステル樹脂組成物における液晶ポリエステル樹脂の含有量は、前記液晶ポリエステル樹脂組成物の総質量に対して、50~90質量%が好ましい。
本実施形態の液晶ポリエステル樹脂組成物は、ガラス成分の総数に対して、微粉を50%以上95%以下含む。
本実施形態の液晶ポリエステル樹脂組成物において、ガラス成分の総数に対する微粉の含有割合が50%以上であると、リグラインド時におけるガラス成分の物理的破壊の影響を少なくすることができる。したがって、リグラインド時における機械的強度の維持率を十分高くすることができる。
また、本実施形態の液晶ポリエステル樹脂組成物において、ガラス成分の総数に対する微粉の含有割合が95%以下であると、バージン材の成形体の機械的強度を十分高くすることができる。
本実施形態の液晶ポリエステル樹脂組成物において、ガラス成分の総数に対する微粉の含有割合は、90%以下であることが好ましく、85%以下であることがより好ましい。
1つの側面として、ガラス成分の総数に対する微粉の含有割合は、50%以上85%以下であることが好ましい。
本実施形態の液晶ポリエステル樹脂組成物は、ガラス成分の総数に対して第1微粉を40%以上70%以下含むことが好ましい。
第1微粉の含有割合がガラス成分の総数に対して40%以上であると、リグラインド時におけるガラス成分の物理的破壊の影響を少なくすることができる。したがって、リグラインド時における機械的強度の維持率を十分高くすることができる。
また、第1微粉の含有割合がガラス成分の総数に対して70%以下であると、バージン材の成形体の機械的強度を十分高くすることができる。
したがって、第1微粉の含有割合がガラス成分の総数に対して40%以上70%以下であると、リグラインド時における機械的強度の維持率を高くすることができる。
本実施形態の液晶ポリエステル樹脂組成物において、第1微粉の含有割合の上限値および下限値は、微粉の含有割合の上限値および下限値と可能な範囲で組み合わせることができる。
1つの側面として、上記ガラス成分中の第1微粉の含有割合は、ガラス成分中の上記微粉の含有割合を超えない。
1つの側面として、本実施形態の液晶ポリエステル樹脂組成物における、第2微粉の含有割合は、ガラス成分の総数に対して、40%以上70%以下であることが好ましい。
1つの側面として、上記ガラス成分中の第1微粉の含有割合は、ガラス成分中の上記微粉の含有割合を超えない。
1つの側面として、本実施形態の液晶ポリエステル樹脂組成物における、第2微粉の含有割合は、ガラス成分の総数に対して、40%以上70%以下であることが好ましい。
(ガラス成分の分析方法)
ガラス成分の長さの測定方法について説明する。まず、本実施形態の液晶ポリエステル樹脂組成物からなるペレット5gをマッフル炉(ヤマト科学株式会社製、「FP410」)にて空気雰囲気下において600℃で4時間加熱して樹脂を除去し、ガラス成分を含む灰化残渣を得る。灰化したサンプル0.3gを50mLの純水に投入し、分散性を良くするために界面活性剤として、0.5体積%のmicro-90(シグマ アルドリッチジャパン合同会社製)水溶液を加え、混合液を得る。得られた混合液について超音波を5分間かけて、灰化したサンプルを純水中に均一に分散させ、試料液を得る。
ガラス成分の長さの測定方法について説明する。まず、本実施形態の液晶ポリエステル樹脂組成物からなるペレット5gをマッフル炉(ヤマト科学株式会社製、「FP410」)にて空気雰囲気下において600℃で4時間加熱して樹脂を除去し、ガラス成分を含む灰化残渣を得る。灰化したサンプル0.3gを50mLの純水に投入し、分散性を良くするために界面活性剤として、0.5体積%のmicro-90(シグマ アルドリッチジャパン合同会社製)水溶液を加え、混合液を得る。得られた混合液について超音波を5分間かけて、灰化したサンプルを純水中に均一に分散させ、試料液を得る。
次に、このガラス成分を純水中に分散させた試料液を、ピペットで5mLサンプルカップに入れ、純水にて5倍希釈し、サンプル液を得る。下記条件下で粒子形状画像解析装置(株式会社セイシン企業製の「PITA3」)を用い、得られたサンプル液をフローセルに通過させて、液中を移動するガラス成分を1個ずつ撮像する。なお、上述した測定方法においては、測定開始時点から積算したガラス成分の個数が5000個に達した時点を測定終了時点とする。
[条件]
測定本数:5000個
分散溶媒:水
分散条件:キャリア液1およびキャリア液2としてmicro-90 0.5体積%水溶液を用いる。
サンプル液速度:2.08μL/秒
キャリア液1速度:333.33μL/秒
キャリア液2速度:333.33μL/秒
観察倍率:対物10倍
測定本数:5000個
分散溶媒:水
分散条件:キャリア液1およびキャリア液2としてmicro-90 0.5体積%水溶液を用いる。
サンプル液速度:2.08μL/秒
キャリア液1速度:333.33μL/秒
キャリア液2速度:333.33μL/秒
観察倍率:対物10倍
得られた画像を二値化処理し、処理後の画像におけるガラス成分の外接矩形長径を測定し、ガラス成分の長さとする。
本実施形態のガラス繊維の数平均繊維長としては、上述した処理後の画像における長さが30μm超であるガラス繊維について、それら測定値(外接矩形長径)の平均値を採用する。
本実施形態のガラス成分の総数に対する微粉の含有割合は、上述した処理後の画像において、長さ(外接矩形長径)が4μm以上30μm以下である微粉の本数をガラス成分の総数で除することにより算出できる。
本実施形態のガラス成分の総数に対する第1微粉の含有割合は、上述した処理後の画像において長さ(外接矩形長径)が4μm以上20μm以下である第1微粉の本数をガラス成分の総数(例えば、5000個)で除することにより算出できる。 本実施形態のガラス成分の総数に対する第2微粉の含有割合は、上述した処理後の画像において長さ(外接矩形長径)が20μm超30μm以下である第2微粉の本数をガラス成分の総数(例えば、5000個)で除することにより算出できる。
本実施形態のガラス繊維の直径の測定方法について説明する。本実施形態のガラス繊維の直径は、上述のガラス成分を含む灰化残渣をSEMで倍率1000倍にて観察し、SEM画像から無作為に選んだ100個のガラス繊維の直径(すなわち、外接矩形短径の長さ)をそれぞれ測定し、100個の測定値の平均値を採用する。
本実施形態の微粉の直径の測定方法について説明する。まず、上述のガラス成分を含む灰化残渣をSEMで倍率1000倍にて観察する。得られた画像を二値化処理し、処理後の画像において無作為に選んだ100個の微粉の径方向の長さ(すなわち、外接矩形短径)を測定し、100個の測定値の平均値を、微粉の直径とする。
本実施形態の微粉のアスペクト比は、上記粒子形状画像解析装置で得られた画像において、上述した方法で測定した微粉の直径とほぼ一致する長さ方向を微粉の径方向とし、この微粉について長さ/直径にて算出することができる。
[ガラス成分の調製方法]
液晶ポリエステル樹脂組成物の製造時における溶融混練の条件を調節することにより、液晶ポリエステル樹脂組成物に含まれるガラス繊維の数平均繊維長を調製することができる。例えば、液晶ポリエステル樹脂組成物に含まれるガラス繊維の数平均繊維長を小さくする場合には、用いるスクリュウの回転速度をあげることや、シリンダー温度を下げ、溶融樹脂の溶融粘度を大きくし、せん断力を大きくする手段等が有効である。
液晶ポリエステル樹脂組成物の製造時における溶融混練の条件を調節することにより、液晶ポリエステル樹脂組成物に含まれるガラス繊維の数平均繊維長を調製することができる。例えば、液晶ポリエステル樹脂組成物に含まれるガラス繊維の数平均繊維長を小さくする場合には、用いるスクリュウの回転速度をあげることや、シリンダー温度を下げ、溶融樹脂の溶融粘度を大きくし、せん断力を大きくする手段等が有効である。
本実施形態の液晶ポリエステル樹脂組成物に含まれる微粉は、市販されているガラス製の繊維状充填材(以下、「原繊維」と称することがある。)を粉砕することにより作製できる。本実施形態では、液晶ポリエステル樹脂組成物中に含まれるガラス成分の総数に対する微粉の含有割合が50%以上95%以下の範囲となるように、微粉を液晶ポリエステル樹脂に配合してもよい。また、後述する液晶ポリエステル樹脂組成物の製造方法において、製造条件を適宜変更することにより、微粉の含有割合がガラス成分の総数に対して50%以上95%以下の範囲となるように制御してもよい。
本実施形態に係る原繊維は、特に限定されないが、長繊維タイプのチョップドガラス繊維、短繊維タイプのミルドガラス繊維等、種々の方法で製造されたフィラーが挙げられる。なかでも上記原繊維は、ミルドガラス繊維が好ましい。上記原繊維は、1種を単独で使用してもよく、2種以上を併用して使用することもできる。
上記原繊維の種類としては、E-ガラス、A-ガラス、C-ガラス、D-ガラス、AR-ガラス、R-ガラス、Sガラスまたはこれらの混合物等が挙げられる。中でもE-ガラスは強度に優れ、かつ入手がしやすい点から好ましい。
上記原繊維としては、弱アルカリ性の繊維が機械的強度(引張強度およびIzod衝撃強度)の点で優れており、好ましく使用できる。特に酸化ケイ素含有量が上記ガラス繊維の総質量に対して50質量%以上80質量%以下のガラス繊維が好ましく用いられ、65質量%以上77質量%以下のガラス繊維がより好ましく用いられる。
上記原繊維は、必要に応じてシラン系カップリング剤またはチタン系カップリング剤等のカップリング剤で処理された繊維でもよい。
上記原繊維は、ウレタン樹脂、アクリル樹脂、エチレン/酢酸ビニル共重合体等の熱可塑性樹脂や、エポキシ樹脂等の熱硬化性樹脂で被覆されていてもよい。また、上記原繊維は、収束剤で処理されていてもよい。
上記原繊維の数平均繊維長は、20μm以上6000μm以下であることが好ましい。
原繊維の数平均繊維長が20μm以上である場合、得られる成形体に対する補強効果が十分高い。また、原繊維の数平均繊維長が6000μm以下である場合、溶融混練後の液晶ポリエステル樹脂組成物に含まれるガラス繊維の数平均繊維長を200μm以下に調整しやすい。
原繊維の数平均繊維長が20μm以上である場合、得られる成形体に対する補強効果が十分高い。また、原繊維の数平均繊維長が6000μm以下である場合、溶融混練後の液晶ポリエステル樹脂組成物に含まれるガラス繊維の数平均繊維長を200μm以下に調整しやすい。
溶融混練に供する原繊維の数平均繊維長は、1000μm以上であることがより好ましく、2000μm以上であることがさらに好ましい。原繊維の数平均繊維長は、5000μm以下であることがより好ましく、4500μm以下であることがさらに好ましい。
1つの側面として、溶融混練に供する原繊維の数平均繊維長は、1000μm以上5000μm以下であることがより好ましく、2000μm以上4500μm以下であることがさらに好ましい。
1つの側面として、溶融混練に供する原繊維の数平均繊維長は、1000μm以上5000μm以下であることがより好ましく、2000μm以上4500μm以下であることがさらに好ましい。
溶融混練に供する原繊維の繊維径(単繊維径ともいう)は、5μm以上17μm以下であることが好ましい。原繊維の繊維径が5μm以上である場合、得られる成形体に対する補強効果が十分高い。また、原繊維の繊維径が17μm以下である場合、液晶ポリエステル樹脂組成物の溶融流動性が十分高い。
溶融混練に供する原繊維の繊維径は、6μm以上であることがより好ましい。また、原繊維の繊維径は、15μm以下であることがより好ましく、12μm以下であることがさらに好ましい。
1つの側面として、溶融混練に供する原繊維の繊維径は、6μm以上15μm以下であってもよく、6μm以上12μm以下であってもよい。
1つの側面として、溶融混練に供する原繊維の繊維径は、6μm以上15μm以下であってもよく、6μm以上12μm以下であってもよい。
原繊維の繊維径については、溶融混練後も実質的に変化しない。
(原繊維の数平均繊維長および繊維径の測定方法)
本明細書において「原繊維の数平均繊維長」とは、特に断りのない限り、JIS R3420「7.8 チョップドストランドの長さ」に記載の方法で測定された値を意味する。
また、本明細書において「原繊維の繊維径」とは、特に断りのない限り、JIS R3420「7.6 単繊維直径」に記載の方法のうち、「A法」で測定された値を意味する。
本明細書において「原繊維の数平均繊維長」とは、特に断りのない限り、JIS R3420「7.8 チョップドストランドの長さ」に記載の方法で測定された値を意味する。
また、本明細書において「原繊維の繊維径」とは、特に断りのない限り、JIS R3420「7.6 単繊維直径」に記載の方法のうち、「A法」で測定された値を意味する。
[他の成分]
液晶ポリエステル樹脂組成物は、本発明の効果を奏する範囲で、本実施形態のガラス成分以外の充填材、添加剤、液晶ポリエステル樹脂以外の樹脂等の他の成分を少なくとも1種含んでもよい。
1つの側面として、本実施形態の液晶ポリエステル樹脂組成物における他の成分の含有量は、液晶ポリエステル樹脂組成物の総質量に対して、5~40質量%であることが好ましい。
液晶ポリエステル樹脂組成物は、本発明の効果を奏する範囲で、本実施形態のガラス成分以外の充填材、添加剤、液晶ポリエステル樹脂以外の樹脂等の他の成分を少なくとも1種含んでもよい。
1つの側面として、本実施形態の液晶ポリエステル樹脂組成物における他の成分の含有量は、液晶ポリエステル樹脂組成物の総質量に対して、5~40質量%であることが好ましい。
実施形態のガラス成分以外の充填材は、繊維状充填材であってもよいし、板状充填材であってもよいし、繊維状および板状以外で、球状その他の粒状充填材であってもよい。また、前記充填材は、無機充填材であってもよいし、有機充填材であってもよい。
無機充填材である繊維状充填材の例としては、パン系炭素繊維、ピッチ系炭素繊維等の炭素繊維;シリカ繊維、アルミナ繊維、シリカアルミナ繊維等のセラミック繊維;およびステンレス繊維等の金属繊維が挙げられる。また、チタン酸カリウムウイスカー、チタン酸バリウムウイスカー、ウォラストナイトウイスカー、ホウ酸アルミニウムウイスカー、窒化ケイ素ウイスカー、炭化ケイ素ウイスカー等のウイスカーも挙げられる。
有機充填材である繊維状充填材の例としては、ポリエステル繊維、アラミド繊維、およびセルロース繊維が挙げられる。
無機充填材である板状充填材の例としては、タルク、マイカ、グラファイト、ウォラストナイト、ガラスフレーク、硫酸バリウムおよび炭酸カルシウムが挙げられる。マイカは、白雲母であってもよいし、金雲母であってもよいし、フッ素金雲母であってもよいし、四ケイ素雲母であってもよい。
無機充填材である粒状充填材の例としては、シリカ、アルミナ、酸化チタン、ガラスビーズ、ガラスバルーン、窒化ホウ素、炭化ケイ素および炭酸カルシウムが挙げられる。
添加剤の例としては、通常、樹脂組成物に用いられる添加剤が挙げられる。このような添加剤としては、例えば安定剤、紫外線吸収剤、可塑剤、難燃剤、難燃助剤、帯電防止剤、界面活性剤、着色剤、滑剤、離型剤等が挙げられる。
安定剤としては、例えば、ヒンダードフェノール、ヒドロキノン、ホスファイト類およびこれらの置換体等が挙げられる。
紫外線吸収剤としては、例えば、レゾルシノール、サリシレート、ベンゾトリアゾール、ベンゾフェノン等が挙げられる。
着色剤としては、ニトロシン等の染料、および硫化カドミウム、フタロシアニン、カーボンブラック等の顔料を含む材料が挙げられる。
滑剤としては、例えば、ステアリン酸、モンタン酸、それらのエステル、それらの多価アルコールとのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックス等が挙げられる。
本実施形態の液晶ポリエステル樹脂組成物は、さらに離型剤を添加することで、成形加工性を向上させることが可能である。離型剤としては、例えば、モンタン酸、その塩、そのエステル、その多価アルコールとのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックス等が挙げられ、好ましくはペンタエリスリトールの脂肪酸エステルが挙げられる。
離型剤の配合量は、液晶ポリエステル樹脂100質量部に対して、好ましくは0.1質量部以上0.5質量部以下であり、より好ましくは0.2質量部以上0.4質量部以下である。離型剤の配合量が0.1質量部以上0.5質量部以下の範囲にあると、使用する金型への汚染や成形体のふくれ等が起こりにくい傾向があり、また離型効果が得られやすい。
液晶ポリエステル以外の樹脂の例としては、ポリプロピレン、ポリアミド、液晶ポリエステル以外のポリエステル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルイミド等の液晶ポリエステル以外の熱可塑性樹脂;およびフェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シアネート樹脂等の熱硬化性樹脂が挙げられる。液晶ポリエステル以外の樹脂の含有量は、液晶ポリエステル100質量部に対して、通常0~20質量部である。
<液晶ポリエステル樹脂組成物の製造方法>
液晶ポリエステル樹脂組成物は、液晶ポリエステル樹脂、ガラス成分および所望により他の成分を、押出機により溶融混練し、ペレット状に押し出すことにより調製することが好ましい。
液晶ポリエステル樹脂組成物は、液晶ポリエステル樹脂、ガラス成分および所望により他の成分を、押出機により溶融混練し、ペレット状に押し出すことにより調製することが好ましい。
用いるガラス成分は、予め微粉の含有割合がガラス成分の総数に対して50%以上95%以下の範囲となるように調製されていてもよい。また、市販されているガラス製の繊維状充填材を原料として、この繊維状充填材が液晶ポリエステル樹脂組成物の製造時に破断されることで、液晶ポリエステル樹脂組成物に含まれるガラス成分の総数に対する微粉の含有割合が50%以上95%以下の範囲となるように制御してもよい。
押出機は、シリンダーと、シリンダー内に配置された少なくとも1本のスクリュウと、シリンダーに設けられた少なくとも1箇所の供給口とを有することが好ましく、さらにシリンダーに設けられた少なくとも1箇所のベント部を有することがより好ましい。
本実施形態の液晶ポリエステル樹脂組成物では、微粉を破断するためには、きわめて大きなエネルギーが必要である。このことから、微粉はガラス繊維と比べて物理的破壊が起こりにくいことが知られている。したがって、本実施形態の液晶ポリエステル樹脂組成物を適用したリグラインド材では、射出成形時のスクリュウ内での溶融においても微粉が変化しないと予想される。
以上のような構成の液晶ポリエステル樹脂組成物によれば、リグラインド時における機械的強度の維持率が高い液晶ポリエステル樹脂組成物が得られる。
<成形体>
本実施形態の成形体は、上述した液晶ポリエステル樹脂組成物を形成材料とする。
本実施形態の成形体は、上述した液晶ポリエステル樹脂組成物を形成材料とする。
本実施形態の液晶ポリエステル樹脂組成物の成形法としては、溶融成形法が好ましい。その例としては、射出成形法、Tダイ法やインフレーション法等の押出成形法、圧縮成形法、ブロー成形法、真空成形法およびプレス成形が挙げられる。なかでも射出成形法が好ましい。
液晶ポリエステル樹脂組成物の成形体である製品・部品の例としては、光ピックアップボビン、トランスボビン等のボビン;リレーケース、リレーベース、リレースプルー、リレーアーマチャー等のリレー部品;RIMM、DDR、CPUソケット、S/O、DIMM、Board to Boardコネクター、FPCコネクター、カードコネクター等のコネクター;ランプリフレクター、LEDリフレクター等のリフレクター;ランプホルダー、ヒーターホルダー等のホルダー;スピーカー振動板等の振動板;コピー機用分離爪、プリンター用分離爪等の分離爪;カメラモジュール部品;スイッチ部品;モーター部品;センサー部品;ハードディスクドライブ部品;オーブンウェア等の食器;車両部品;航空機部品;および半導体素子用封止部材、コイル用封止部材等の封止部材が挙げられる。
また、これら以外の例としては、分離爪、ヒーターホルダー等の複写機、印刷機関連部品;インペラー、ファン歯車、ギヤ、軸受け、モーター部品、ケース等の機械部品;自動車用機構部品、燃料関係・排気系・吸気系各種パイプ、排気ガス、冷却水、油温系各種センサー、エアコン用サーモスタットベース、エアコン用モーターインシュレーター、ラジエーターモーター用ブラッシュホルダー、ワイパーモーター関係部品、デュストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、エアコンパネルスィッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、ECUコネクター、ホーンターミナル、電装部品絶縁板、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース等の自動車・車両関連部品;マイクロ波調理用鍋、耐熱食器等の調理用器具;床材、壁材等の断熱もしくは防音用材料、梁もしくは柱等の支持材料、屋根材等の建築資材または土木建築用材料;航空機、宇宙機、宇宙機器用部品;原子炉等の放射線施設部材;海洋施設部材;洗浄用治具;光学機器部品;バルブ類;パイプ類;ノズル類;フィルター類;膜;医療用機器部品および医療用材料;センサー類部品;サニタリー備品;スポーツ用品;レジャー用品等が挙げられる。
[成形体の機械的強度の評価方法]
成形体の機械的強度は、引張強度およびIzod衝撃強度を測定することにより評価される。
成形体の機械的強度は、引張強度およびIzod衝撃強度を測定することにより評価される。
成形体の引張強度は、液晶ポリエステル樹脂組成物を用いて射出成形機により作製したASTM4号試験片を使用し、ASTM D638に準拠し測定される。
成形体のIzod衝撃強度は、液晶ポリエステル樹脂組成物を用いて射出成形機により作製した長さ127mm、幅12.7mm、厚さ6.4mmの試験片を長尺方向に2等分し、得られた試験片を使用し、ASTM D256に準拠し測定される。
以上のような構成の成形体によれば、上述した液晶ポリエステル樹脂組成物を用いているので、リグラインド時における機械的強度の維持率が高い成形体が得られる。
1つの側面として、本実施形態の液晶ポリエステル樹脂組成物は、
液晶ポリエステル樹脂と、ガラス成分と、所望により他の成分と、を含み、
前記液晶ポリエステル樹脂は、4-ヒドロキシ安息香酸に由来する繰返し単位と、4,4’-ジヒドロキシビフェニルに由来する繰返し単位と、テレフタル酸に由来する繰返し単位と、イソフタル酸に由来する繰返し単位とを含む液晶ポリエステルであり;
前記ガラス成分は、長さが30μm超のガラス繊維と、長さが4μm以上30μm以下のガラス製の微粉と、を含み;
前記微粉は、長さが4μm以上20μm以下の第1微粉と、長さが20μm超30μm以下の第2微粉とから構成されており;
前記ガラス繊維の数平均繊維長は、50μm以上200μm以下であり、好ましくは70μm以上190μm以下、より好ましくは80μm以上190μm以下、さらに好ましくは100μm以上180μm以下、特に好ましくは104μm以上172μm以下であり;
前記微粉の直径は、9μm以上12μm以下であり;
前記液晶ポリエステル樹脂の含有量は、前記液晶ポリエステル樹脂組成物の総質量に対して、50~90質量%であり;
前記ガラス成分の含有量は、前記液晶ポリエステル樹脂100質量部に対して、10質量部以上100質量部以下であり、好ましくは10質量部以上70質量部以下、より好ましくは20質量部以上60質量部以下、特に好ましくは25質量部以上66.7質量部以下であり;
前記微粉の含有割合は、前記ガラス成分の総数に対して、50%以上95%以下であり、好ましくは50%以上85%以下、より好ましくは51%以上83%以下であり;
前記第1微粉の含有割合は、前記ガラス成分の総数に対して、40%以上70%以下である、
液晶ポリエステル樹脂組成物が挙げられる。
別の側面として、本実施形態の液晶ポリエステル樹脂組成物は、
後述の実施例に記載の条件でIzod衝撃強度維持率を求めたとき、前記Izod衝撃強度維持率が80%以上であり、かつ
後述の実施例に記載の条件で引張強度維持率を求めたとき、前記引張強度維持率が90%以上である、液晶ポリエステル樹脂組成物が挙げられる。
液晶ポリエステル樹脂と、ガラス成分と、所望により他の成分と、を含み、
前記液晶ポリエステル樹脂は、4-ヒドロキシ安息香酸に由来する繰返し単位と、4,4’-ジヒドロキシビフェニルに由来する繰返し単位と、テレフタル酸に由来する繰返し単位と、イソフタル酸に由来する繰返し単位とを含む液晶ポリエステルであり;
前記ガラス成分は、長さが30μm超のガラス繊維と、長さが4μm以上30μm以下のガラス製の微粉と、を含み;
前記微粉は、長さが4μm以上20μm以下の第1微粉と、長さが20μm超30μm以下の第2微粉とから構成されており;
前記ガラス繊維の数平均繊維長は、50μm以上200μm以下であり、好ましくは70μm以上190μm以下、より好ましくは80μm以上190μm以下、さらに好ましくは100μm以上180μm以下、特に好ましくは104μm以上172μm以下であり;
前記微粉の直径は、9μm以上12μm以下であり;
前記液晶ポリエステル樹脂の含有量は、前記液晶ポリエステル樹脂組成物の総質量に対して、50~90質量%であり;
前記ガラス成分の含有量は、前記液晶ポリエステル樹脂100質量部に対して、10質量部以上100質量部以下であり、好ましくは10質量部以上70質量部以下、より好ましくは20質量部以上60質量部以下、特に好ましくは25質量部以上66.7質量部以下であり;
前記微粉の含有割合は、前記ガラス成分の総数に対して、50%以上95%以下であり、好ましくは50%以上85%以下、より好ましくは51%以上83%以下であり;
前記第1微粉の含有割合は、前記ガラス成分の総数に対して、40%以上70%以下である、
液晶ポリエステル樹脂組成物が挙げられる。
別の側面として、本実施形態の液晶ポリエステル樹脂組成物は、
後述の実施例に記載の条件でIzod衝撃強度維持率を求めたとき、前記Izod衝撃強度維持率が80%以上であり、かつ
後述の実施例に記載の条件で引張強度維持率を求めたとき、前記引張強度維持率が90%以上である、液晶ポリエステル樹脂組成物が挙げられる。
以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。各測定は以下のようにして行った。
<液晶ポリエステル樹脂の流動開始温度>
フローテスター(株式会社島津製作所の「CFT-500EX型」)を用いて、液晶ポリエステル約2gを、内径1mmおよび長さ10mmのノズルを有するダイを取り付けたシリンダーに充填し、9.8MPaの荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、ノズルから押し出し、4800Pa・sの粘度を示す温度を測定した。
フローテスター(株式会社島津製作所の「CFT-500EX型」)を用いて、液晶ポリエステル約2gを、内径1mmおよび長さ10mmのノズルを有するダイを取り付けたシリンダーに充填し、9.8MPaの荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、ノズルから押し出し、4800Pa・sの粘度を示す温度を測定した。
<液晶ポリエステル樹脂組成物中のガラス成分の測定1>
まず、本実施例の液晶ポリエステル樹脂組成物からなるペレット5gをマッフル炉(ヤマト科学株式会社製、「FP410」)にて空気雰囲気下において600℃で4時間加熱して樹脂を除去し、ガラス成分を含む灰化残渣を得た。灰化したサンプル0.3gを50mLの純水に投入し、分散性を良くするために界面活性剤として、0.5体積%のmicro-90(シグマ アルドリッチ ジャパン合同会社製)水溶液を加え、混合物を得る。得られた混合物について超音波を5分間かけて、灰化したサンプルを純水中に均一に分散させ、試料液を得た。
まず、本実施例の液晶ポリエステル樹脂組成物からなるペレット5gをマッフル炉(ヤマト科学株式会社製、「FP410」)にて空気雰囲気下において600℃で4時間加熱して樹脂を除去し、ガラス成分を含む灰化残渣を得た。灰化したサンプル0.3gを50mLの純水に投入し、分散性を良くするために界面活性剤として、0.5体積%のmicro-90(シグマ アルドリッチ ジャパン合同会社製)水溶液を加え、混合物を得る。得られた混合物について超音波を5分間かけて、灰化したサンプルを純水中に均一に分散させ、試料液を得た。
次に、このガラス成分を分散させた試料液を、ピペットで5mLサンプルカップに入れ、純水にて5倍希釈し、サンプル液を得た。下記条件下で粒子形状画像解析装置(株式会社セイシン企業製の「PITA-3」)を用い、得られたサンプル液をフローセルに通過させて、液中を移動するガラス成分を1個ずつ撮像した。
[条件]
測定本数:5000個
分散溶媒:水
分散条件:キャリア液1およびキャリア液2としてmicro-90 0.5体積%水溶液を用いた。
サンプル液速度:2.08μl/秒
キャリア液1速度:333.33μl/秒
キャリア液2速度:333.33μl/秒
観察倍率:対物10倍
測定本数:5000個
分散溶媒:水
分散条件:キャリア液1およびキャリア液2としてmicro-90 0.5体積%水溶液を用いた。
サンプル液速度:2.08μl/秒
キャリア液1速度:333.33μl/秒
キャリア液2速度:333.33μl/秒
観察倍率:対物10倍
(ガラス成分の長さ)
得られた画像を二値化処理し、処理後の画像におけるガラス成分の外接矩形長径を測定し、各ガラス成分の長さとした。
得られた画像を二値化処理し、処理後の画像におけるガラス成分の外接矩形長径を測定し、各ガラス成分の長さとした。
(ガラス成分の総数に対する微粉の含有割合)
上述した処理後の画像において、長さが4μm以上30μm以下である微粉の本数をガラス成分の総数(すなわち、上記例では5000個)で除することによりガラス成分の総数に対する微粉の含有割合を算出した。
上述した処理後の画像において、長さが4μm以上30μm以下である微粉の本数をガラス成分の総数(すなわち、上記例では5000個)で除することによりガラス成分の総数に対する微粉の含有割合を算出した。
(ガラス成分の総数に対する第1微粉の含有割合)
上述した処理後の画像において、長さが4μm以上20μm以下である第1微粉の本数をガラス成分の総数(すなわち、上記例では5000個)で除することによりガラス成分の総数に対する第1微粉の含有割合を算出した。
上述した処理後の画像において、長さが4μm以上20μm以下である第1微粉の本数をガラス成分の総数(すなわち、上記例では5000個)で除することによりガラス成分の総数に対する第1微粉の含有割合を算出した。
<液晶ポリエステル樹脂組成物中のガラス成分の測定2>
(微粉の直径)
上述の<測定1>で得られた灰化残渣をSEM(株式会社日立製作所製の「S-4700」)を用いて、倍率1000倍で観察した。得られた画像を二値化処理し、処理後の画像において無作為に選んだ100個の微粉の径方向の長さ(すなわち、外接矩形短径)を測定し、100個の測定値の平均値を、微粉の直径とした。
(微粉の直径)
上述の<測定1>で得られた灰化残渣をSEM(株式会社日立製作所製の「S-4700」)を用いて、倍率1000倍で観察した。得られた画像を二値化処理し、処理後の画像において無作為に選んだ100個の微粉の径方向の長さ(すなわち、外接矩形短径)を測定し、100個の測定値の平均値を、微粉の直径とした。
(長さが30μm超のガラス繊維の数平均繊維長)
上述した処理後の画像における長さが30μm超のガラス繊維の測定値を用いて、ガラス繊維の数平均繊維長を算出した。
上述した処理後の画像における長さが30μm超のガラス繊維の測定値を用いて、ガラス繊維の数平均繊維長を算出した。
<(A)液晶ポリエステル樹脂の製造>
[製造例1(液晶ポリエステル樹脂(A-1))]
攪拌装置、トルクメータ、窒素ガス導入管、温度計および還流冷却器を備えた反応機に、4-ヒドロキシ安息香酸994.5g(7.2モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)、テレフタル酸299.0g(1.8モル)、イソフタル酸99.7g(0.6モル)および無水酢酸1347.6g(13.2モル)を仕込み、触媒として1-メチルイミダゾール0.2gを添加し、反応器内を十分に窒素ガスで置換した。
[製造例1(液晶ポリエステル樹脂(A-1))]
攪拌装置、トルクメータ、窒素ガス導入管、温度計および還流冷却器を備えた反応機に、4-ヒドロキシ安息香酸994.5g(7.2モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)、テレフタル酸299.0g(1.8モル)、イソフタル酸99.7g(0.6モル)および無水酢酸1347.6g(13.2モル)を仕込み、触媒として1-メチルイミダゾール0.2gを添加し、反応器内を十分に窒素ガスで置換した。
その後、窒素ガス気流下で攪拌しながら、室温から150℃まで30分間かけて昇温し、同温度を保持して30分間還流させた。
次いで、1-メチルイミダゾール2.4gを加えた。その後、副生酢酸と未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、320℃で30分間保持した。保持後、内容物を取り出し、室温まで冷却した。
得られた固形物を、粉砕機で粒径0.1~1mmに粉砕後、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から296℃まで5時間かけて昇温し、296℃で3時間保持するにより、固相重合を行った。固相重合後、冷却して、粉末状の液晶ポリエステル樹脂(A-1)を得た。得られた液晶ポリエステル樹脂(A-1)の流動開始温度は328℃であった。
[製造例2(液晶ポリエステル樹脂(A-2))]
攪拌装置、トルクメータ、窒素ガス導入管、温度計および還流冷却器を備えた反応器に、4-ヒドロキシ安息香酸994.5g(7.2モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)、テレフタル酸239.2g(1.44モル)、イソフタル酸159.5g(0.96モル)および無水酢酸1347.6g(13.2モル)を仕込み、触媒として1-メチルイミダゾール0.2gを添加し、反応器内を十分に窒素ガスで置換した。
攪拌装置、トルクメータ、窒素ガス導入管、温度計および還流冷却器を備えた反応器に、4-ヒドロキシ安息香酸994.5g(7.2モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)、テレフタル酸239.2g(1.44モル)、イソフタル酸159.5g(0.96モル)および無水酢酸1347.6g(13.2モル)を仕込み、触媒として1-メチルイミダゾール0.2gを添加し、反応器内を十分に窒素ガスで置換した。
その後、窒素ガス気流下で攪拌しながら、室温から150℃まで30分間かけて昇温し、同温度を保持して1時間還流させた。
次いで、1-メチルイミダゾール0.9gを加え、副生酢酸と未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、320℃で30分間保持した。保持後、内容物を取り出し、これを室温まで冷却した。
得られた固形物を、粉砕機で粒径0.1~1mmに粉砕後、窒素雰囲気下、室温から220℃まで1時間かけて昇温し、220℃から241℃まで0.5時間かけて昇温し、241℃で10時間保持することにより、固相重合を行った。固相重合後、冷却して、粉末状の液晶ポリエステル樹脂(A-2)を得た。得られた液晶ポリエステル樹脂(A-2)の流動開始温度は292℃であった。
また、以下の実施例においては、ガラス成分として下記の市販品を用いた。ただし、下記の数平均繊維長は、メーカー公称値であり、微粉を考慮しない値である。なお、各充填材で記載されている形状は、各充填材の径方向における断面の形状を表す。
充填材A:PF20E-001(日東紡績株式会社製、略円形状、直径10μm、数平均繊維長20μm)
充填材B:PF50E-001(日東紡績株式会社製、略円形状、直径10μm、数平均繊維長50μm)
充填材C:PF80E-401(日東紡績株式会社製、略円形状、直径10μm、数平均繊維長80μm)
充填材D:EFH75-01(セントラル硝子株式会社製、略円形状、直径11μm、数平均繊維長75μm)
充填材E:EFH100-01(セントラル硝子株式会社製、略円形状、直径11μm、数平均繊維長100μm)
充填材F:EFH150-01(セントラル硝子株式会社製、略円形状、直径11μm、数平均繊維長150μm)
充填材G:SS10-404(日東紡績株式会社製、略円形状、直径11μm、数平均繊維長300μm)
充填材H:CS3J260S(日東紡績株式会社製、略円形状、直径11μm、数平均繊維長3mm)
充填材A:PF20E-001(日東紡績株式会社製、略円形状、直径10μm、数平均繊維長20μm)
充填材B:PF50E-001(日東紡績株式会社製、略円形状、直径10μm、数平均繊維長50μm)
充填材C:PF80E-401(日東紡績株式会社製、略円形状、直径10μm、数平均繊維長80μm)
充填材D:EFH75-01(セントラル硝子株式会社製、略円形状、直径11μm、数平均繊維長75μm)
充填材E:EFH100-01(セントラル硝子株式会社製、略円形状、直径11μm、数平均繊維長100μm)
充填材F:EFH150-01(セントラル硝子株式会社製、略円形状、直径11μm、数平均繊維長150μm)
充填材G:SS10-404(日東紡績株式会社製、略円形状、直径11μm、数平均繊維長300μm)
充填材H:CS3J260S(日東紡績株式会社製、略円形状、直径11μm、数平均繊維長3mm)
また、以下の実施例においては、以下の原料を用いた。
離型剤:ロキシオールVPG861(エメリーオレオケミカルズジャパン株式会社製、ペンタエリスリトールとステアリン酸とのフルエステル(テトラステアレート)および部分エステルの混合物、5%重量減少温度310℃)
離型剤:ロキシオールVPG861(エメリーオレオケミカルズジャパン株式会社製、ペンタエリスリトールとステアリン酸とのフルエステル(テトラステアレート)および部分エステルの混合物、5%重量減少温度310℃)
<液晶ポリエステル樹脂組成物(バージン材)の製造>
[実施例1~6、比較例1~6]
予め、長さが30μm超のガラス繊維と、微粉と、極微粉とを混合してガラス成分を調製した。液晶ポリエステル樹脂、ガラス成分および離型剤を、表1および表2に示す割合で二軸押出機(池貝鉄工株式会社製、「PCM-30HS」)を用いて、シリンダー温度340℃で溶融混練し、ペレット状の液晶ポリエステル樹脂組成物を得た。なお、液晶ポリエステル樹脂組成物の製造は、水封式真空ポンプ(神港精機株式会社製、「SW-25」)を用い、二軸押出機に備えた真空ベントで脱気しながら行った。以下の評価ではこれをバージン材とし、このバージン材の物性値を初期の物性値とした。
[実施例1~6、比較例1~6]
予め、長さが30μm超のガラス繊維と、微粉と、極微粉とを混合してガラス成分を調製した。液晶ポリエステル樹脂、ガラス成分および離型剤を、表1および表2に示す割合で二軸押出機(池貝鉄工株式会社製、「PCM-30HS」)を用いて、シリンダー温度340℃で溶融混練し、ペレット状の液晶ポリエステル樹脂組成物を得た。なお、液晶ポリエステル樹脂組成物の製造は、水封式真空ポンプ(神港精機株式会社製、「SW-25」)を用い、二軸押出機に備えた真空ベントで脱気しながら行った。以下の評価ではこれをバージン材とし、このバージン材の物性値を初期の物性値とした。
[比較例7]
液晶ポリエステル樹脂100質量部に対して、ガラス成分を122質量部配合した以外は比較例1と同様に液晶ポリエステル樹脂組成物の製造を検討した。しかし、溶融混練時の粘度が上昇しすぎて製造することができなかった。
液晶ポリエステル樹脂100質量部に対して、ガラス成分を122質量部配合した以外は比較例1と同様に液晶ポリエステル樹脂組成物の製造を検討した。しかし、溶融混練時の粘度が上昇しすぎて製造することができなかった。
<リグラインド材の製造>
実施例1~6、比較例1~6のペレット状の液晶ポリエステル樹脂組成物を用い、後述の引張試験片を作製する際に発生したランナーやスプルーを、粒断機(株式会社ハーモ製、「SPCII750H」)により粉砕し、リグラインド材を得た。以下の評価では、このリグラインド材の物性値をリグラインド後の物性値とした。
実施例1~6、比較例1~6のペレット状の液晶ポリエステル樹脂組成物を用い、後述の引張試験片を作製する際に発生したランナーやスプルーを、粒断機(株式会社ハーモ製、「SPCII750H」)により粉砕し、リグラインド材を得た。以下の評価では、このリグラインド材の物性値をリグラインド後の物性値とした。
実施例1~6、比較例1~6のバージン材およびリグラインド材を130℃で4時間、熱風乾燥した後、以下の方法により評価した。結果を表3および表4に示す。
<機械的強度の維持率>
液晶ポリエステル樹脂組成物の成形体の機械的強度の維持率は、引張強度の維持率およびIzod衝撃強度の維持率を求めることにより評価した。
液晶ポリエステル樹脂組成物の成形体の機械的強度の維持率は、引張強度の維持率およびIzod衝撃強度の維持率を求めることにより評価した。
[引張強度]
液晶ポリエステル樹脂組成物の引張強度は、射出成形機(日精樹脂工業株式会社製「PNX40-5A」)を用い、成形温度350℃、金型温度130℃、射出速度75mm/秒の成形条件にて作製したASTM4号試験片を使用し、ASTM D638に準拠し測定した。
液晶ポリエステル樹脂組成物の引張強度は、射出成形機(日精樹脂工業株式会社製「PNX40-5A」)を用い、成形温度350℃、金型温度130℃、射出速度75mm/秒の成形条件にて作製したASTM4号試験片を使用し、ASTM D638に準拠し測定した。
バージン材およびリグラインド材の引張強度をそれぞれ求め、バージン材の引張強度に対するリグラインド材の引張強度を算出した結果を引張強度の維持率とした。
[Izod衝撃強度]
射出成形機(日精樹脂工業株式会社製「PNX40-5A」)により、成形温度350℃、金型温度130℃、射出速度75mm/秒の成形条件にて作製した長さ127mm、幅12.7mm、厚さ6.4mmの試験片を長尺方向に2等分し、得られた試験片を使用し、ASTM D256に準拠して測定した。
射出成形機(日精樹脂工業株式会社製「PNX40-5A」)により、成形温度350℃、金型温度130℃、射出速度75mm/秒の成形条件にて作製した長さ127mm、幅12.7mm、厚さ6.4mmの試験片を長尺方向に2等分し、得られた試験片を使用し、ASTM D256に準拠して測定した。
バージン材およびリグラインド材のIzod衝撃強度をそれぞれ求め、バージン材のIzod衝撃強度に対するリグラインド材のIzod衝撃強度を算出した結果をIzod衝撃強度の維持率とした。
引張強度の維持率およびIzod衝強度の維持率の結果から、下記の基準で液晶ポリエステル樹脂組成物の成形体の機械的強度の維持率を評価した。
A:引張強度の維持率が90%以上、かつIzod衝撃強度の維持率が80%以上のもの
B:上記「A」の条件を満たさないもの
A:引張強度の維持率が90%以上、かつIzod衝撃強度の維持率が80%以上のもの
B:上記「A」の条件を満たさないもの
<耐熱性>
液晶ポリエステル樹脂組成物の耐熱性は、荷重たわみ温度の維持率を求めることにより評価した。
液晶ポリエステル樹脂組成物の耐熱性は、荷重たわみ温度の維持率を求めることにより評価した。
[荷重たわみ温度]
射出成形機(日精樹脂工業株式会社製「PNX40-5A」)により、成形温度350℃、金型温度130℃、射出速度75mm/秒の成形条件にて作製した長さ127mm、幅12.7mm、厚さ6.4mmの試験片を使用し、ASTM D648に準拠し、1.82MPaの荷重、昇温速度2℃/分で測定した。
射出成形機(日精樹脂工業株式会社製「PNX40-5A」)により、成形温度350℃、金型温度130℃、射出速度75mm/秒の成形条件にて作製した長さ127mm、幅12.7mm、厚さ6.4mmの試験片を使用し、ASTM D648に準拠し、1.82MPaの荷重、昇温速度2℃/分で測定した。
バージン材およびリグラインド材の荷重たわみ温度をそれぞれ求め、バージン材の荷重たわみ温度に対するリグラインド材の荷重たわみ温度を算出した結果を荷重たわみ温度の維持率とした。
表3および表4に示すように、本発明を適用した実施例1~6の液晶ポリエステル樹脂組成物は、機械的強度の維持率が高かった。
これは、ガラス繊維の数平均繊維長が50μm以上200μm以下の範囲内であったため、ガラス繊維の物理的破壊が起こりにくかったと考えられる。その結果、ガラス繊維の物理的破壊に起因する機械的強度の低下が抑えられたと考えられる。
また、液晶ポリエステル樹脂組成物に含まれるガラス成分の総数に対する微粉の含有割合が50%以上95%以下の範囲内であったため、リグラインド時におけるガラス成分の物理的破壊の影響を少なくすることができたと考えられる。
以上のことから、実施例1~6の液晶ポリエステル樹脂組成物は、リグラインド時における機械的強度の維持率を高くすることができたと考えられる。
また、実施例1~6の液晶ポリエステル樹脂組成物は、荷重たわみ温度の維持率も高かった。このことから、実施例1~6の液晶ポリエステル樹脂組成物は、リグラインド時における耐熱性に優れるといえる。
一方、比較例1~6の液晶ポリエステル樹脂組成物は、実施例1~6と同様に荷重たわみ温度の維持率が高かった。このことから、リグラインド時における耐熱性に優れるといえる。しかし、比較例1~6の液晶ポリエステル樹脂組成物は、機械的強度の維持率が低かった。
以上の結果により、本発明が有用であることが確かめられた。
本発明は、リグラインド時における機械的強度の維持率が高い液晶ポリエステル樹脂組成物および成形体が提供できるので、産業上極めて有用である。
Claims (9)
- 液晶ポリエステル樹脂100質量部と、
ガラス成分10質量部以上100質量部以下と、を含み、
前記ガラス成分は、長さが30μm超のガラス繊維と、長さが4μm以上30μm以下のガラス製の微粉と、を含み、
前記ガラス繊維の数平均繊維長が50μm以上200μm以下であり、
前記微粉の含有割合が、前記ガラス成分の総数に対して50%以上95%以下である液晶ポリエステル樹脂組成物。 - 前記微粉は、長さが4μm以上20μm以下の第1微粉と、20μm超30μm以下の第2微粉と、から構成されており、
前記第1微粉の含有割合が、前記ガラス成分の総数に対して40%以上70%以下である請求項1に記載の液晶ポリエステル樹脂組成物。 - 前記微粉の含有割合が、前記ガラス成分の総数に対して50%以上85%以下である請求項1または2に記載の液晶ポリエステル樹脂組成物。
- 前記液晶ポリエステル樹脂が、下記式(1)~(3)で表される繰返し単位を含有する請求項1~3のいずれか1項に記載の液晶ポリエステル樹脂組成物。
(1)-O-Ar1-CO-
(2)-CO-Ar2-CO-
(3)-X-Ar3-Y-
[Ar1はフェニレン基、ナフチレン基またはビフェニリレン基を表す。
Ar2およびAr3は、互いに独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(4)で表される基を表す。
XおよびYは、互いに独立に、酸素原子またはイミノ基(-NH-)を表す。
Ar1、Ar2またはAr3で表される前記基中の少なくとも1個の水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基または炭素数6~20のアリール基で置換されていてもよい。]
(4)-Ar4-Z-Ar5-
[Ar4およびAr5は、互いに独立に、フェニレン基またはナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基または炭素数1~10のアルキリデン基を表す。
Ar4またはAr5で表される前記基中の少なくとも1個の水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基または炭素数6~20のアリール基で置換されていてもよい。] - 前記Ar1は1,4-フェニレン基であり、前記Ar2は1,4-フェニレン基および1,3-フェニレン基であり、前記Ar3はビフェニリレン基であり、前記Xおよび前記Yはそれぞれ酸素原子である請求項4に記載の液晶ポリエステル樹脂組成物。
- 前記式(1)で表される繰返し単位と前記式(3)で表される繰返し単位とのモル比率(3)/(1)が0.2以上1.0以下であり、
前記式(3)で表される繰返し単位と前記式(2)で表される繰返し単位とのモル比率(2)/(3)が0.9以上1.1以下である請求項4または5に記載の液晶ポリエステル樹脂組成物。 - 前記式(2)で表される繰返し単位のモル比率y/xが0を超え1以下である請求項4~6のいずれか1項に記載の液晶ポリエステル樹脂組成物。
[xは、前記Ar2が1,4-フェニレン基である繰返し単位のモル含有量を表す。
yは、前記Ar2が1,3-フェニレン基である繰返し単位のモル含有量を表す。] - 前記液晶ポリエステル樹脂は、第1液晶ポリエステル樹脂と、第2液晶ポリエステル樹脂とを含み、α/βが0.1以上0.6以下である請求項7に記載の液晶ポリエステル樹脂組成物。
[αは、前記第1液晶ポリエステル樹脂のモル比率y/xを表す。
βは、前記第2液晶ポリエステル樹脂のモル比率y’/x’を表す。] - 請求項1~8のいずれか1項に記載の液晶ポリエステル樹脂組成物から形成される成形体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/764,621 US11584850B2 (en) | 2017-11-27 | 2018-11-21 | Liquid crystal polyester resin composition and molded body |
CN201880072727.7A CN111315821B (zh) | 2017-11-27 | 2018-11-21 | 液晶聚酯树脂组合物以及成型体 |
KR1020207012084A KR102558079B1 (ko) | 2017-11-27 | 2018-11-21 | 액정 폴리에스테르 수지 조성물 및 성형체 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017227143A JP6439027B1 (ja) | 2017-11-27 | 2017-11-27 | 液晶ポリエステル樹脂組成物および成形体 |
JP2017-227143 | 2017-11-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019103035A1 true WO2019103035A1 (ja) | 2019-05-31 |
Family
ID=64668540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/042974 WO2019103035A1 (ja) | 2017-11-27 | 2018-11-21 | 液晶ポリエステル樹脂組成物および成形体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11584850B2 (ja) |
JP (1) | JP6439027B1 (ja) |
KR (1) | KR102558079B1 (ja) |
CN (1) | CN111315821B (ja) |
TW (1) | TWI762742B (ja) |
WO (1) | WO2019103035A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111647282A (zh) * | 2020-04-22 | 2020-09-11 | 深圳市信维通信股份有限公司 | 振膜材料及其制备方法和应用 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6774329B2 (ja) * | 2016-12-28 | 2020-10-21 | 住友化学株式会社 | 液晶ポリエステル樹脂組成物 |
JP6473796B1 (ja) | 2017-11-27 | 2019-02-20 | 住友化学株式会社 | 液晶ポリエステル樹脂組成物および成形体 |
JP6439027B1 (ja) | 2017-11-27 | 2018-12-19 | 住友化学株式会社 | 液晶ポリエステル樹脂組成物および成形体 |
JP7438711B2 (ja) * | 2019-02-05 | 2024-02-27 | 住友化学株式会社 | 樹脂組成物 |
CN113710738A (zh) | 2019-03-20 | 2021-11-26 | 提克纳有限责任公司 | 用于相机模块的致动器组件 |
CN113993937B (zh) | 2019-03-20 | 2024-09-27 | 提克纳有限责任公司 | 用于相机模块的聚合物组合物 |
US11637365B2 (en) | 2019-08-21 | 2023-04-25 | Ticona Llc | Polymer composition for use in an antenna system |
US11258184B2 (en) | 2019-08-21 | 2022-02-22 | Ticona Llc | Antenna system including a polymer composition having a low dissipation factor |
US11912817B2 (en) | 2019-09-10 | 2024-02-27 | Ticona Llc | Polymer composition for laser direct structuring |
US11555113B2 (en) | 2019-09-10 | 2023-01-17 | Ticona Llc | Liquid crystalline polymer composition |
US11646760B2 (en) | 2019-09-23 | 2023-05-09 | Ticona Llc | RF filter for use at 5G frequencies |
US11917753B2 (en) | 2019-09-23 | 2024-02-27 | Ticona Llc | Circuit board for use at 5G frequencies |
US11721888B2 (en) | 2019-11-11 | 2023-08-08 | Ticona Llc | Antenna cover including a polymer composition having a low dielectric constant and dissipation factor |
WO2023100796A1 (ja) | 2021-12-03 | 2023-06-08 | 住友化学株式会社 | 液晶ポリエステル組成物及びその成形体 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09176377A (ja) * | 1995-12-27 | 1997-07-08 | Polyplastics Co | 液晶性ポリマー組成物および成形体 |
JP2009231269A (ja) * | 2008-02-25 | 2009-10-08 | Sumitomo Chemical Co Ltd | 反射板及び発光装置 |
JP2012056250A (ja) * | 2010-09-10 | 2012-03-22 | Polyplastics Co | 原料組成又は製造条件決定方法 |
JP2012193343A (ja) * | 2011-02-28 | 2012-10-11 | Sumitomo Chemical Co Ltd | 液晶ポリエステル組成物 |
JP2015040249A (ja) * | 2013-08-21 | 2015-03-02 | 上野製薬株式会社 | 液晶ポリマー組成物 |
JP2017057258A (ja) * | 2015-09-15 | 2017-03-23 | 上野製薬株式会社 | 液晶ポリマー組成物 |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0768409B2 (ja) | 1988-09-14 | 1995-07-26 | 日本石油化学株式会社 | ガラス繊維強化熱可塑性樹脂組成物 |
JPH083034B2 (ja) * | 1990-03-14 | 1996-01-17 | 住友化学工業株式会社 | 全芳香族ポリエステル樹脂組成物およびオーブンウエア |
US5492946A (en) * | 1990-06-04 | 1996-02-20 | Amoco Corporation | Liquid crystalline polymer blends and molded articles therefrom |
JP2531307B2 (ja) | 1991-01-08 | 1996-09-04 | 住友化学工業株式会社 | 全芳香族ポリエステル樹脂組成物およびオ―ブンウエア |
JP3269212B2 (ja) | 1992-09-29 | 2002-03-25 | 東レ株式会社 | ガラス繊維強化液晶性樹脂組成物 |
JP3353450B2 (ja) | 1994-05-10 | 2002-12-03 | 東レ株式会社 | ガラス繊維強化液晶ポリエステル樹脂組成物 |
US5840798A (en) * | 1997-06-06 | 1998-11-24 | General Electric Company | Glass filled polyester molding composition |
JP2000026743A (ja) * | 1998-07-15 | 2000-01-25 | Toray Ind Inc | 液晶性樹脂組成物 |
JP4118425B2 (ja) | 1998-12-18 | 2008-07-16 | ポリプラスチックス株式会社 | コネクター用液晶性ポリマー組成物およびコネクター |
JP2000273320A (ja) * | 1999-03-19 | 2000-10-03 | Polyplastics Co | 光ピックアップ用液晶性ポリマー組成物および光ピックアップ |
JP2001288342A (ja) | 2000-04-04 | 2001-10-16 | Sumitomo Chem Co Ltd | 液晶ポリエステル樹脂組成物、その製造方法およびその成形体 |
JP4498900B2 (ja) * | 2004-11-29 | 2010-07-07 | ポリプラスチックス株式会社 | 信号読取装置用樹脂成形部品及びその成形方法 |
JP5456225B2 (ja) * | 2006-07-03 | 2014-03-26 | Jx日鉱日石エネルギー株式会社 | 全芳香族液晶ポリエステル組成物およびそれを用いた光ピックアップレンズホルダー |
JP5332188B2 (ja) | 2007-02-26 | 2013-11-06 | 住友化学株式会社 | 樹脂成形体及びその製造方法 |
JP5088160B2 (ja) | 2008-02-12 | 2012-12-05 | 東レ株式会社 | 液晶性樹脂組成物および成形品 |
WO2012090410A1 (ja) | 2010-12-28 | 2012-07-05 | 東レ株式会社 | 液晶性ポリエステル樹脂組成物及びその製造方法とそれからなる成形品 |
JP5721217B2 (ja) | 2011-03-16 | 2015-05-20 | 住友化学株式会社 | 液晶ポリエステル樹脂組成物および成形体 |
JP2012206296A (ja) * | 2011-03-29 | 2012-10-25 | Sumitomo Chemical Co Ltd | 液晶ポリエステル組成物の製造方法 |
JP5875262B2 (ja) | 2011-06-29 | 2016-03-02 | キヤノン株式会社 | 表示制御装置 |
JP5806063B2 (ja) | 2011-09-29 | 2015-11-10 | 住友化学株式会社 | 液晶ポリエステル組成物及びコネクタ |
JP5914935B2 (ja) | 2012-03-21 | 2016-05-11 | 住友化学株式会社 | 液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法及び成形体 |
KR101627243B1 (ko) | 2012-09-27 | 2016-06-03 | 포리프라스틱 가부시키가이샤 | 복합 수지 조성물 및 당해 복합 수지 조성물로 성형되는 평면상 커넥터 |
JP6181587B2 (ja) * | 2014-03-26 | 2017-08-16 | 上野製薬株式会社 | 液晶ポリエステルブレンド |
JP6840455B2 (ja) * | 2015-09-09 | 2021-03-10 | 上野製薬株式会社 | 液晶ポリマー組成物 |
TWI761313B (zh) | 2015-09-25 | 2022-04-21 | 日商住友化學股份有限公司 | 液晶聚酯組成物、成形體及連接器 |
WO2017099115A1 (ja) * | 2015-12-09 | 2017-06-15 | 住友化学株式会社 | 液晶ポリエステル組成物及び成形体 |
WO2017099126A1 (ja) * | 2015-12-09 | 2017-06-15 | 住友化学株式会社 | 液晶ポリエステル組成物及び成形体 |
EP3608366B1 (en) * | 2017-04-06 | 2024-03-06 | Toray Industries, Inc. | Thermoplastic polyester resin composition and molded article |
EP3647367B1 (en) * | 2017-06-29 | 2023-11-15 | Toray Industries, Inc. | Thermoplastic polyester resin composition and molded article thereof |
JP6439027B1 (ja) | 2017-11-27 | 2018-12-19 | 住友化学株式会社 | 液晶ポリエステル樹脂組成物および成形体 |
JP2019052323A (ja) * | 2018-12-27 | 2019-04-04 | 日東紡績株式会社 | ガラス繊維強化樹脂成形品 |
JP6745008B1 (ja) * | 2019-05-17 | 2020-08-19 | 住友化学株式会社 | 液晶ポリエステル樹脂組成物のペレット |
WO2021020208A1 (ja) * | 2019-07-31 | 2021-02-04 | 東レ株式会社 | 熱可塑性ポリエステル樹脂、熱可塑ポリエステル樹脂組成物、および成形品 |
WO2021060455A1 (ja) * | 2019-09-27 | 2021-04-01 | 富士フイルム株式会社 | 液晶ポリマーフィルム及び高速通信用基板 |
-
2017
- 2017-11-27 JP JP2017227143A patent/JP6439027B1/ja active Active
-
2018
- 2018-11-21 WO PCT/JP2018/042974 patent/WO2019103035A1/ja active Application Filing
- 2018-11-21 CN CN201880072727.7A patent/CN111315821B/zh active Active
- 2018-11-21 KR KR1020207012084A patent/KR102558079B1/ko active IP Right Grant
- 2018-11-21 US US16/764,621 patent/US11584850B2/en active Active
- 2018-11-23 TW TW107141874A patent/TWI762742B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09176377A (ja) * | 1995-12-27 | 1997-07-08 | Polyplastics Co | 液晶性ポリマー組成物および成形体 |
JP2009231269A (ja) * | 2008-02-25 | 2009-10-08 | Sumitomo Chemical Co Ltd | 反射板及び発光装置 |
JP2012056250A (ja) * | 2010-09-10 | 2012-03-22 | Polyplastics Co | 原料組成又は製造条件決定方法 |
JP2012193343A (ja) * | 2011-02-28 | 2012-10-11 | Sumitomo Chemical Co Ltd | 液晶ポリエステル組成物 |
JP2015040249A (ja) * | 2013-08-21 | 2015-03-02 | 上野製薬株式会社 | 液晶ポリマー組成物 |
JP2017057258A (ja) * | 2015-09-15 | 2017-03-23 | 上野製薬株式会社 | 液晶ポリマー組成物 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111647282A (zh) * | 2020-04-22 | 2020-09-11 | 深圳市信维通信股份有限公司 | 振膜材料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
TW201930459A (zh) | 2019-08-01 |
KR20200083464A (ko) | 2020-07-08 |
JP2019094465A (ja) | 2019-06-20 |
CN111315821B (zh) | 2022-09-23 |
CN111315821A (zh) | 2020-06-19 |
US11584850B2 (en) | 2023-02-21 |
KR102558079B1 (ko) | 2023-07-20 |
JP6439027B1 (ja) | 2018-12-19 |
US20200399465A1 (en) | 2020-12-24 |
TWI762742B (zh) | 2022-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6439027B1 (ja) | 液晶ポリエステル樹脂組成物および成形体 | |
KR102597732B1 (ko) | 액정 폴리에스테르 수지 조성물 및 성형체 | |
JP2019094489A (ja) | 液晶ポリエステル樹脂組成物および成形体 | |
JP2019094497A (ja) | 液晶ポリエステル樹脂組成物および成形体 | |
TWI772452B (zh) | 液晶聚酯樹脂組成物及成形體 | |
JP5556223B2 (ja) | 液晶高分子組成物、その製造方法及び成形体 | |
KR102695568B1 (ko) | 수지 조성물 | |
JP5197553B2 (ja) | 液晶性樹脂組成物及びその成形体 | |
JP2015189896A (ja) | 液晶性樹脂組成物およびその成形品 | |
JP5407988B2 (ja) | 液晶性樹脂組成物及びその成形体 | |
WO2022153945A1 (ja) | 液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法及び射出成形体の製造方法 | |
WO2022113845A1 (ja) | ペレット、ペレットの製造方法及び射出成形体の製造方法 | |
JP4691931B2 (ja) | 色光合成光学系部品 | |
WO2023136196A1 (ja) | 液晶ポリエステル組成物、及び成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18880804 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18880804 Country of ref document: EP Kind code of ref document: A1 |