JP2019094489A - 液晶ポリエステル樹脂組成物および成形体 - Google Patents

液晶ポリエステル樹脂組成物および成形体 Download PDF

Info

Publication number
JP2019094489A
JP2019094489A JP2018216377A JP2018216377A JP2019094489A JP 2019094489 A JP2019094489 A JP 2019094489A JP 2018216377 A JP2018216377 A JP 2018216377A JP 2018216377 A JP2018216377 A JP 2018216377A JP 2019094489 A JP2019094489 A JP 2019094489A
Authority
JP
Japan
Prior art keywords
polyester resin
crystal polyester
liquid crystal
group
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018216377A
Other languages
English (en)
Inventor
節幸 原
Sadayuki Hara
節幸 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2018216377A priority Critical patent/JP2019094489A/ja
Publication of JP2019094489A publication Critical patent/JP2019094489A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】リグラインド時における機械的強度の維持率が高い液晶ポリエステル樹脂組成物を提供する。【解決手段】液晶ポリエステル樹脂100質量部と、ガラス成分10質量部以上100質量部以下と、を含み、ガラス成分は、長さが30μm超のガラス繊維と、長さが4μm以上30μm以下のガラス製の微粉と、を含み、ガラス繊維の数平均繊維長が50μm以上200μm以下であり、微粉の含有割合が、ガラス成分の総数に対して50%以上95%以下である液晶ポリエステル樹脂組成物。【選択図】なし

Description

本発明は、液晶ポリエステル樹脂組成物および成形体に関するものである。
液晶ポリエステル樹脂は、溶融流動性に極めて優れ、構造によっては300℃以上の耐熱変形性を有する。液晶ポリエステル樹脂は、このような特性を活かして、電子部品をはじめ、OA、AV部品、耐熱食器等の用途で成形体に用いられている。
電子部品分野は、小型化・精密化が進んでおり、液晶ポリエステル樹脂を用いて得られる成形体の肉厚も非常に薄くなってきている。成形体の肉厚が薄くなることで、成形体の強度の低下や液晶ポリエステル樹脂の異方性の制御などが問題となってきている。これらの問題を解決するため、液晶ポリエステル樹脂に繊維状充填材を配合した液晶ポリエステル樹脂組成物が使用されている(例えば、特許文献1〜3)。
特開平6−240115号公報 特開2009−191088号公報 国際公開第2012/090410号
ところで、廃材を少なくするという環境保護の観点やコスト削減の観点から、射出成形時に発生するランナーやスプルー等の成形体を粉砕し、粉砕した成形体を原料として成形体の製造に再利用したり、粉砕した成形体の一部を成形体の製造に使用していない原料に混ぜて原料として成形体の製造に再利用したりするリサイクル方法が検討され始めている。
以下、本明細書では、成形体を粉砕して成形体の製造に用いる原料として再生させることを「リグラインド」と呼び、得られた粉砕物を「リグラインド材」と称する。これに対し、成形体の製造に使用していない原料のことを「バージン材」と称する。
リグラインド材は、一般にバージン材と比べて物性が低下することが知られている。リグラインド材はバージン材よりも熱履歴が多い。そのため、熱による樹脂の劣化がリグラインド材を用いた成形体の機械的強度を低下させると考えられている。また、リグラインド材は粉砕により製造される。そのため、充填材の物理的破壊がリグラインド材を用いた成形体の機械的強度を低下させると考えられている。
そこで、リグラインド材を有効に利用するため、リグラインド材を用いた成形体の機械的強度がバージン材を用いた成形体の機械的強度に対して低下しにくく、成形体に使用可能な範囲で維持できる液晶ポリエステル樹脂組成物(バージン材)が求められている。
特許文献1〜3に記載の樹脂組成物は、リグラインド時における機械的強度の維持率が必ずしも高くなかった。
なお、本明細書において、「機械的強度」とは引張強度およびIzod衝撃強度のことである。また、「機械的強度の維持率」とは、バージン材を用いた成形体の機械的強度の物性値に対するリグラインド材を用いた成形体の機械的強度の物性値を算出した値である。
本発明はこのような事情に鑑みてなされたものであって、リグラインド時における機械的強度の維持率が高い液晶ポリエステル樹脂組成物および成形体を提供することを目的とする。
上記の課題を解決するため、本発明の一態様は、液晶ポリエステル樹脂100質量部と、ガラス成分10質量部以上100質量部以下と、を含み、ガラス成分は、長さが30μm超のガラス繊維と、長さが4μm以上30μm以下のガラス製の微粉と、を含み、ガラス繊維の数平均繊維長が50μm以上200μm以下であり、微粉の含有割合が、ガラス成分の総数に対して50%以上95%以下である液晶ポリエステル樹脂組成物を提供する。
本発明の一態様においては、微粉は、長さが4μm以上20μm以下の第1微粉と、20μm超30μm以下の第2微粉と、からなり、第1微粉を、ガラス成分の総数に対して40%以上70%以下含む構成としてもよい。
本発明の一態様においては、微粉の含有割合が、ガラス成分の総数に対して50%以上85%以下である構成としてもよい。
本発明の一態様においては、微粉の直径が9μm以上12μm以下であり、微粉のアスペクト比(長さ/直径)が0.3以上3.5以下である構成としてもよい。
本発明の一態様においては、液晶ポリエステル樹脂が、下記式(1)〜(3)で表される繰返し単位を含有する構成としてもよい。
(1)−O−Ar−CO−
(2)−CO−Ar−CO−
(3)−X−Ar−Y−
[Arはフェニレン基、ナフチレン基またはビフェニリレン基を表す。
ArおよびArは、互いに独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(4)で表される基を表す。
XおよびYは、互いに独立に、酸素原子またはイミノ基(−NH−)を表す。
Ar、ArまたはArで表される上記基中の1個以上の水素原子は、互いに独立に、ハロゲン原子、炭素数1〜10のアルキル基または炭素数6〜20のアリール基で置換されていてもよい。]
(4)−Ar−Z−Ar
[ArおよびArは、互いに独立に、フェニレン基またはナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基または炭素数1〜10のアルキリデン基を表す。
ArまたはArで表される上記基中の1個以上の水素原子は、互いに独立に、ハロゲン原子、炭素数1〜10のアルキル基または炭素数6〜20のアリール基で置換されていてもよい。]
本発明の一態様においては、Arは1,4−フェニレン基であり、Arは1,4−フェニレン基および1,3−フェニレン基であり、Arはビフェニリレン基であり、XおよびYはそれぞれ酸素原子である構成としてもよい。
本発明の一態様においては、式(1)で表される繰返し単位と式(3)で表される繰返し単位とのモル比率(3)/(1)が0.2以上1.0以下であり、式(3)で表される繰返し単位と式(2)で表される繰返し単位とのモル比率(2)/(3)が0.9以上1.1以下である構成としてもよい。
本発明の一態様においては、式(2)で表される繰返し単位のモル比率y/xが0を超え1以下である構成としてもよい。
[xは、Arが1,4−フェニレン基である繰返し単位のモル含有量を表す。yは、Arが1,3−フェニレン基である繰返し単位のモル含有量を表す。]
本発明の一態様においては、液晶ポリエステル樹脂は、第1液晶ポリエステル樹脂と、第2液晶ポリエステル樹脂とを含み、α/βが0.1以上0.6以下である構成としてもよい。
[αは、第1液晶ポリエステル樹脂のモル比率y/xを表す。βは、第2液晶ポリエステル樹脂のモル比率y/xを表す。]
本発明の一態様は、上記の液晶ポリエステル樹脂組成物を形成材料とする成形体を提供する。
本発明の一態様によれば、リグラインド時における機械的強度の維持率が高い液晶ポリエステル樹脂組成物および成形体が提供される。
<液晶ポリエステル樹脂組成物>
本実施形態の液晶ポリエステル樹脂組成物は、液晶ポリエステル樹脂と、ガラス成分とを含む。
[液晶ポリエステル樹脂]
本実施形態に用いられる液晶ポリエステル樹脂の典型的な例としては、芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸とを縮重合(重縮合)させてなる重合体;複数種の芳香族ヒドロキシカルボン酸を重合させてなる重合体;芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、芳香族ジカルボン酸とを重合させてなる重合体;およびポリエチレンテレフタレート等のポリエステルと、芳香族ヒドロキシカルボン酸と、を重合させてなる重合体が挙げられる。
なかでも、芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸とを縮重合(重縮合)させてなる重合体が好ましい。
ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンは、互いに独立に、その一部または全部に代えて、その重合可能なエステル形成誘導体であってもよい。
芳香族ヒドロキシカルボン酸および芳香族ジカルボン酸のような、カルボキシ基を有する化合物の重合可能な誘導体の例としては、エステル、酸ハロゲン化物、および酸無水物が挙げられる。上述のエステルとしては、カルボキシ基をアルコキシカルボニル基またはアリールオキシカルボニル基に変換してなる化合物が挙げられる。上述の酸ハロゲン化物としては、カルボキシ基をハロホルミル基に変換してなる化合物が挙げられる。上述の酸無水物としては、カルボキシ基をアシルオキシカルボニル基に変換してなる化合物が挙げられる。
芳香族ヒドロキシアミンおよび芳香族ジアミンのような、アミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなる化合物(アシル化物)が挙げられる。
例示した重合可能な誘導体の例の中でも、液晶ポリエステル樹脂の原料モノマーとしては、芳香族ヒドロキシカルボン酸および芳香族ジオールをアシル化して得られるアシル化物が好ましい。
本実施形態に用いられる液晶ポリエステル樹脂は、下記式(1)で表される繰返し単位(以下、「繰返し単位(1)」ということがある。)を有することが好ましい。また、液晶ポリエステル樹脂は、繰返し単位(1)と、下記式(2)で表される繰返し単位(以下、「繰返し単位(2)」ということがある。)と、下記式(3)で表される繰返し単位(以下、「繰返し単位(3)」ということがある。)と、を有することがより好ましい。
(1)−O−Ar−CO−
(2)−CO−Ar−CO−
(3)−X−Ar−Y−
[式(1)〜式(3)中、Arは、フェニレン基、ナフチレン基またはビフェニリレン基を表す。
ArおよびArは、互いに独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(4)で表される基を表す。XおよびYは、互いに独立に、酸素原子またはイミノ基(−NH−)を表す。
Ar、ArまたはArで表される前記基中の1個以上の水素原子は、互いに独立に、ハロゲン原子、炭素数1〜10のアルキル基または炭素数6〜20のアリール基で置換されていてもよい。]
(4)−Ar−Z−Ar
[式(4)中、ArおよびArは、互いに独立に、フェニレン基またはナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基または炭素数1〜10のアルキリデン基を表す。
ArまたはArで表される前記基中の1個以上の水素原子は、互いに独立に、ハロゲン原子、炭素数1〜10のアルキル基または炭素数6〜20のアリール基で置換されていてもよい。]
水素原子と置換可能な前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。
水素原子と置換可能な前記炭素数1〜10のアルキル基の例としては、メチル基、エチル基、1−プロピル基、イソプロピル基、1−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、1−ヘキシル基、2−エチルヘキシル基、1−オクチル基および1−デシル基等が挙げられる。
水素原子と置換可能な前記炭素数6〜20のアリール基の例としては、フェニル基、オルトトリル基、メタトリル基、パラトリル基等のような単環式芳香族基や、1−ナフチル基、2−ナフチル基等のような縮環式芳香族基が挙げられる。
Ar、Ar、Ar、ArまたはArで表される前記基において、1個以上の水素原子が、上述した置換基で置換されている場合、当該置換基の数は、Ar、Ar、Ar、ArまたはArで表される基毎に、互いに独立に、1個または2個であることが好ましい。また、当該置換基の数は、Ar、Ar、Ar、ArまたはArで表される基毎に、1個であることがより好ましい。
前記炭素数1〜10のアルキリデン基の例としては、メチレン基、エチリデン基、イソプロピリデン基、1−ブチリデン基および2−エチルヘキシリデン基等が挙げられる。
繰返し単位(1)は、所定の芳香族ヒドロキシカルボン酸に由来する繰返し単位である。
なお、本明細書において「由来」とは、原料モノマーが重合するために化学構造が変化し、その他の構造変化を生じないことを意味する。
前記芳香族ヒドロキシカルボン酸としては、例えば、4−ヒドロキシ安息香酸、メタヒドロキシ安息香酸、2−ヒドロキシ−6−ナフトエ酸、2−ヒドロキシ−3−ナフトエ酸、1−ヒドロキシ−5−ナフトエ酸、4−ヒドロキシ−4’−カルボキシジフェニルエーテルや、これらの芳香族ヒドロキシカルボン酸の芳香環にある水素原子の一部が、アルキル基、アリール基およびハロゲン原子からなる群より選ばれる置換基で置換されてなる芳香族ヒドロキシカルボン酸が挙げられる。
前記芳香族ヒドロキシカルボン酸は、液晶ポリエステル樹脂の製造において、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
繰返し単位(1)としては、Arが1,4−フェニレン基である単位(4−ヒドロキシ安息香酸に由来する繰返し単位)、およびArが2,6−ナフチレン基である単位(6−ヒドロキシ−2−ナフトエ酸に由来する繰返し単位)が好ましく、1,4−フェニレン基である単位がより好ましい。
繰返し単位(2)は、所定の芳香族ジカルボン酸に由来する繰返し単位である。
前記芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、ビフェニル−4,4’−ジカルボン酸、2,6−ナフタレンジカルボン酸、ジフェニルエーテル−4,4’−ジカルボン酸、ジフェニルチオエーテル−4,4’−ジカルボン酸や、これらの芳香族ジカルボン酸の芳香環にある水素原子の一部が、アルキル基、アリール基およびハロゲン原子からなる群より選ばれる置換基で置換されてなる芳香族ジカルボン酸が挙げられる。
前記芳香族ジカルボン酸は、液晶ポリエステル樹脂の製造において、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
繰返し単位(2)としては、Arが1,4−フェニレン基である単位(例えば、テレフタル酸に由来する繰返し単位)、Arが1,3−フェニレン基である単位(例えば、イソフタル酸に由来する繰返し単位)、Arが2,6−ナフチレン基である単位(例えば、2,6−ナフタレンジカルボン酸に由来する繰返し単位)、およびArがジフェニルエーテル−4,4’−ジイル基である単位(例えば、ジフェニルエーテル−4,4’−ジカルボン酸に由来する繰返し単位)が好ましく、1,4−フェニレン基である単位および1,3−フェニレン基である単位がより好ましい。
繰返し単位(3)は、所定の芳香族ジオール、芳香族ヒドロキシアミンまたは芳香族ジアミンに由来する繰返し単位である。
芳香族ジオール、芳香族ヒドロキシアミンまたは芳香族ジアミンとしては、例えば、4,4’−ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、4,4’−ジヒドロキシジフェニルケトン、4,4’−ジヒドロキシジフェニルエーテル、ビス(4−ヒドロキシフェニル)メタン、1,2−ビス(4−ヒドロキシフェニル)エタン、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルチオエーテル、2,6−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、4−アミノフェノール、1,4−フェニレンジアミン、4−アミノ−4’−ヒドロキシビフェニル、4,4’−ジアミノビフェニルが挙げられる。
前記芳香族ジオール、芳香族ヒドロキシアミンまたは芳香族ジアミンは、液晶ポリエステル樹脂の製造において、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
繰返し単位(3)としては、Arが1,4−フェニレン基である単位(例えば、ヒドロキノン、4−アミノフェノールまたは1,4−フェニレンジアミンに由来する繰返し単位)、およびArが4,4’−ビフェニリレン基である単位(例えば、4,4’−ジヒドロキシビフェニル、4−アミノ−4’−ヒドロキシビフェニルまたは4,4’−ジアミノビフェニルに由来する繰返し単位)が好ましく、4,4’−ビフェニリレン基である単位がより好ましい。
繰返し単位(3)としては、XおよびYがそれぞれ酸素原子である単位が好ましい。
なお、本実施形態の液晶ポリエステル樹脂組成物から得られる成形体が、特に良好な耐熱性や熱安定性が要求される場合には、繰返し単位(1)〜(3)が有する置換基の数は少ない方が好ましい。また、本実施形態の液晶ポリエステル樹脂組成物から得られる成形体が、特に良好な耐熱性や熱安定性が要求される場合には、熱に弱い置換基(例えば、アルキル基)は有しないことが好ましい。
本実施形態において成形体の耐熱性とは、高温環境下において成形体の形成材料である樹脂が軟化しにくい性質をいう。本実施形態において、成形体の耐熱性は、樹脂の荷重たわみ温度を測定することにより明らかにすることができる。本実施形態における荷重たわみ温度は、ASTM D648に準拠し、1.82MPaの荷重下にて測定される。このようにして測定される樹脂の荷重たわみ温度が高いほど、成形体の耐熱性が高いといえる。
また、本実施形態において成形体の熱安定性とは、樹脂を成形加工する温度(溶融温度)で成形体を保持した際に、樹脂の分解や劣化が生じにくい性質をいう。
次に、本実施形態に適用するうえで特に好適な液晶ポリエステル樹脂に関し、その構造単位の組合せについて、上述の構造単位の例示をもとに詳述する。
本実施形態に用いる好ましい液晶ポリエステル樹脂の具体例としては、例えば下記のモノマーに由来する構成単位(繰返し単位)からなる樹脂が挙げられる。
(a)4−ヒドロキシ安息香酸/2−ヒドロキシ−6−ナフトエ酸共重合体
(b)4−ヒドロキシ安息香酸/テレフタル酸/4,4’−ジヒドロキシビフェニル共重合体
(c)4−ヒドロキシ安息香酸/テレフタル酸/イソフタル酸/4,4’−ジヒドロキシビフェニル共重合体
(d)4−ヒドロキシ安息香酸/テレフタル酸/イソフタル酸/4,4’−ジヒドロキシビフェニル/ハイドロキノン共重合体
(e)4−ヒドロキシ安息香酸/テレフタル酸/ハイドロキノン共重合体
(f)2−ヒドロキシ−6−ナフトエ酸/テレフタル酸/ハイドロキノン共重合体
(g)4−ヒドロキシ安息香酸/2−ヒドロキシ−6−ナフトエ酸/テレフタル酸/4,4’−ジヒドロキシビフェニル共重合体
(h)2−ヒドロキシ−6−ナフトエ酸/テレフタル酸/4,4’−ジヒドロキシビフェニル共重合体
(i)4−ヒドロキシ安息香酸/2−ヒドロキシ−6−ナフトエ酸/テレフタル酸/ハイドロキノン共重合体
(j)4−ヒドロキシ安息香酸/2−ヒドロキシ−6−ナフトエ酸/テレフタル酸/ハイドロキノン/4,4’−ジヒドロキシビフェニル共重合体
(k)4−ヒドロキシ安息香酸/2,6−ナフタレンジカルボン酸/4,4’−ジヒドロキシビフェニル共重合体
(l)4−ヒドロキシ安息香酸/テレフタル酸/2,6−ナフタレンジカルボン酸/ハイドロキノン共重合体
(m)4−ヒドロキシ安息香酸/2,6−ナフタレンジカルボン酸/ハイドロキノン共重合体
(n)4−ヒドロキシ安息香酸/2−ヒドロキシ−6−ナフトエ酸/2,6−ナフタレンジカルボン酸/ハイドロキノン共重合体
(o)4−ヒドロキシ安息香酸/テレフタル酸/2,6−ナフタレンジカルボン酸/ハイドロキノン/4,4’−ジヒドロキシビフェニル共重合体
(p)4−ヒドロキシ安息香酸/テレフタル酸/4−アミノフェノール共重合体
(q)2−ヒドロキシ−6−ナフトエ酸/テレフタル酸/4−アミノフェノール共重合体
(r)4−ヒドロキシ安息香酸/2−ヒドロキシ−6−ナフトエ酸/テレフタル酸/4−アミノフェノール共重合体
(s)4−ヒドロキシ安息香酸/テレフタル酸/4,4’−ジヒドロキシビフェニル /4−アミノフェノール共重合体
(t)4−ヒドロキシ安息香酸/テレフタル酸/エチレングリコール共重合体
(u)4−ヒドロキシ安息香酸/テレフタル酸/4,4’−ジヒドロキシビフェニル/エチレングリコール共重合体
(v)4−ヒドロキシ安息香酸/2−ヒドロキシ−6−ナフトエ酸/テレフタル酸/エチレングリコール共重合体
(w)4−ヒドロキシ安息香酸/2−ヒドロキシ−6−ナフトエ酸/テレフタル酸/4,4’−ジヒドロキシビフェニル/エチレングリコール共重合体
(x)4−ヒドロキシ安息香酸/テレフタル酸/2,6−ナフタレンジカルボン酸/4,4‘−ジヒドロキシビフェニル共重合体。
前記の例示の中でも、(b)、(c)が好ましく、(c)がより好ましい。すなわち、前記Arは1,4−フェニレン基であり、前記Arは1,4−フェニレン基および1,3−フェニレン基であり、前記Arはビフェニリレン基であり、前記Xおよび前記Yはそれぞれ酸素原子であることがより好ましい。
液晶ポリエステル樹脂の繰返し単位(1)の含有率は、液晶ポリエステル樹脂を構成する全繰返し単位の合計量に対して、好ましくは30モル%以上、より好ましくは30モル%以上80モル%以下、さらに好ましくは30モル%以上70モル%以下、とりわけ好ましくは35モル%以上65モル%以下である。液晶ポリエステル樹脂を構成する全繰返し単位の合計量は、液晶ポリエステル樹脂を構成する各繰返し単位の質量をその各繰返し単位の式量で割ることにより、各繰返し単位の物質量相当量(モル)を求め、それらを合計した値である。
液晶ポリエステル樹脂の繰返し単位(1)の含有率が30モル%以上であると、本実施形態の液晶ポリエステル樹脂組成物を用いて得られる成形体の耐熱性と硬度が向上し易い。また、繰返し単位(1)の含有率が80モル%以下であると、溶融粘度を低くすることができる。そのため、液晶ポリエステル樹脂の成形に必要な温度が低くなりやすい。
液晶ポリエステル樹脂の繰返し単位(2)の含有率は、液晶ポリエステル樹脂を構成する全繰返し単位の合計量に対して、好ましくは35モル%以下、より好ましくは10モル%以上35モル%以下、さらに好ましくは15モル%以上35モル%以下、とりわけ好ましくは17.5モル%以上32.5モル%以下である。
液晶ポリエステル樹脂の繰返し単位(3)の含有率は、液晶ポリエステル樹脂を構成する全繰返し単位の合計量に対して、好ましくは35モル%以下、より好ましくは10モル%以上35モル%以下、さらに好ましくは15モル%以上35モル%以下、とりわけ好ましくは17.5モル%以上32.5モル%以下である。
液晶ポリエステル樹脂においては、繰返し単位(2)の含有率と繰返し単位(3)の含有率との割合は、[繰返し単位(2)の含有率]/[繰返し単位(3)の含有率](モル/モル)で表して、好ましくは0.9以上1.1以下、より好ましくは0.95以上1.05以下、さらに好ましくは0.98以上1.02以下である。
液晶ポリエステル樹脂においては、繰返し単位(3)の含有率と繰返し単位(1)の含有率との割合は、[繰返し単位(3)の含有率]/[繰返し単位(1)の含有率](モル/モル)で表して、好ましくは0.2以上1.0以下、より好ましくは0.25以上0.85以下、さらに好ましくは0.3以上0.75以下である。
液晶ポリエステル樹脂においては、繰返し単位(2)のモル比率y/xが0を超え1以下であることが好ましく、0.1以上0.9以下であることがより好ましく、0.2以上0.8以下であることがさらに好ましい。
xは、Arが1,4−フェニレン基である繰返し単位のモル含有量を表す。
yは、Arが1,3−フェニレン基である繰返し単位のモル含有量を表す。
なお、前記液晶ポリエステル樹脂は、繰返し単位(1)〜(3)を、互いに独立に、1種のみ有してもよいし、2種以上有してもよい。また、液晶ポリエステル樹脂は、繰返し単位(1)〜(3)以外の繰返し単位を1種または2種以上有してもよいが、その含有率は、全繰返し単位の合計量に対して、好ましく10モル%以下、より好ましくは5モル%以下である。
[液晶ポリエステル樹脂混合物]
本実施形態では、複数種の液晶ポリエステル樹脂が混合された液晶ポリエステル樹脂混合物を使用することも可能である。これにより、本実施形態の液晶ポリエステル樹脂組成物の溶融流動性を一層良好にして、得られる成形体の反りを十分抑制できる。
ここで、液晶ポリエステル樹脂混合物として、流動開始温度が互いに異なる液晶ポリエステル樹脂の混合物を想定する。液晶ポリエステル樹脂混合物において、流動開始温度が高い方を第1液晶ポリエステル樹脂とし、流動開始温度が低い方を第2液晶ポリエステル樹脂とする。
上記第1液晶ポリエステル樹脂の流動開始温度は、300℃以上が好ましく、310℃以上がより好ましく、315℃以上がさらに好ましい。また、上記第1液晶ポリエステル樹脂の流動開始温度は、400℃以下が好ましく、360℃以下がより好ましく、345℃以下がさらに好ましい。上記上限値および下限値は任意に組み合わせることができる。
上記第1液晶ポリエステル樹脂の流動開始温度が上記の範囲内であると、樹脂の溶融流動性と、得られる成形体の耐熱性とを両立できる傾向がある。
一方、上記第2液晶ポリエステル樹脂の流動開始温度は、260℃以上が好ましく、270℃以上がより好ましく、285℃以上がさらに好ましい。また、上記第2液晶ポリエステル樹脂の流動開始温度は、350℃以下が好ましく、320℃以下がより好ましく、315℃以下がさらに好ましい。上記上限値および下限値は任意に組み合わせることができる。
上記第2液晶ポリエステル樹脂の流動開始温度が上記の範囲内であると、金型の薄肉部の流動性(薄肉流動性)が良好になりやすく、得られる成形体の荷重たわみ温度が十分高くなる傾向がある。
また、液晶ポリエステル樹脂混合物において、上記第1液晶ポリエステル樹脂100質量部に対して、上記第2液晶ポリエステル樹脂の含有量が10〜150質量部であることが好ましく、30〜120質量部がより好ましく、50〜100質量部であることがさらに好ましい。
上記第1液晶ポリエステル樹脂に対する上記第2液晶ポリエステル樹脂の含有量は、液晶ポリエステル樹脂混合物の荷重たわみ温度と薄肉流動性のバランスが所望の状態となるように、適宜設定するとよい。
液晶ポリエステル樹脂混合物は、前記第1液晶ポリエステル樹脂および前記第2液晶ポリエステル樹脂以外の液晶ポリエステル樹脂を含有することもできる。その場合、前記樹脂混合物において、流動開始温度が最も高い樹脂を前記第1液晶ポリエステル樹脂とし、流動開始温度が最も低い樹脂を前記第2液晶ポリエステル樹脂とすればよい。実質的に第1液晶ポリエステル樹脂と第2液晶ポリエステル樹脂からなる液晶ポリエステル樹脂混合物が好適である。
液晶ポリエステル樹脂混合物において、α/βが0.1以上0.6以下の範囲であることが好ましく、0.3以上0.6以下の範囲であることがより好ましい。
αは、第1液晶ポリエステル樹脂のモル比率y/xを表す。
βは、第2液晶ポリエステル樹脂のモル比率y/xを表す。
xは、Arが1,4−フェニレン基である繰返し単位のモル含有量を表す。
yは、Arが1,3−フェニレン基である繰返し単位のモル含有量を表す。
[液晶ポリエステル樹脂の製造方法]
次に、本実施形態に係る液晶ポリエステル樹脂の製造方法の一例について説明する。
本実施形態の液晶ポリエステル樹脂は、以下のアシル化工程および重合工程によって製造することが好ましい。
アシル化工程とは、原料のモノマーが有するフェノール性のヒドロキシ基を脂肪酸無水物(例えば無水酢酸等)によってアシル化することにより、アシル化物を得る工程である。
重合工程では、アシル化工程で得られたアシル化物のアシル基と、芳香族ジカルボン酸および芳香族ヒドロキシカルボン酸のアシル化物のカルボキシ基とを、エステル交換を起こすように重合することにより、液晶ポリエステル樹脂を得るとよい。
前記アシル化工程および重合工程は、下に表されたような複素環状有機塩基化合物の存在下に行ってもよい。
Figure 2019094489
上記式(5)において、R〜Rは、それぞれ独立に、水素原子、炭素数1〜4のアルキル基、ヒドロキシメチル基、シアノ基、アルキル基の炭素数が1〜4であるシアノアルキル基、アルコキシ基の炭素数が1〜4であるシアノアルコキシ基、カルボキシ基、アミノ基、炭素数1〜4のアミノアルキル基、炭素数1〜4のアミノアルコキシ基、フェニル基、ベンジル基、フェニルプロピル基またはフォルミル基を表している。
上記式(5)の複素環状有機塩基化合物としては、Rが炭素数1〜4のアルキル基であり、R〜Rがそれぞれ水素原子であるイミダゾール誘導体であることが好ましい。
これにより、前記アシル化工程におけるアシル化反応や前記重合工程におけるエステル交換反応の反応性をより向上できる。また、本実施形態の液晶ポリエステル樹脂組成物を用いて得られる成形体の色調をより良好にすることができる。
複素環状有機塩基化合物の中でも、入手が容易であることから、1−メチルイミダゾールと1−エチルイミダゾールとのいずれか一方または両方が特に好ましい。
また、複素環状有機塩基化合物の使用量は、液晶ポリエステル樹脂の原料モノマー(すなわち、芳香族ジカルボン酸、芳香族ジオールおよび芳香族ヒドロキシカルボン酸)の総量を100質量部としたときに、0.005〜1質量部となるようにすることが好ましい。また、成形体の色調や生産性の観点からは、原料モノマー100質量部に対して0.05〜0.5質量部とすることが、より好ましい。
前記複素環状有機塩基化合物は、アシル化反応およびエステル交換反応の際の一時期に存在していればよく、その添加時期は、アシル化反応開始の直前であってもよいし、アシル化反応の途中であってもよいし、アシル化反応とエステル交換反応の間であってもよい。このようにして得られる液晶ポリエステル樹脂は、溶融流動性が非常に高く、かつ、熱安定性に優れる。
脂肪酸無水物(例えば無水酢酸等)の使用量は、原料モノマーである芳香族ジオールおよび芳香族ヒドロキシカルボン酸の使用量を考慮して決定すべきである。具体的には、これら原料モノマーに含まれるフェノール性ヒドロキシ基の合計に対して、1.0倍当量以上1.2倍当量以下とすることが好ましく、1.0倍当量以上1.15倍当量以下とすることがより好ましく、1.03倍当量以上1.12倍当量以下とすることがさらに好ましく、1.05倍当量以上1.1倍当量以下とすることが特に好ましい。
原料モノマーに含まれるフェノール性ヒドロキシ基の合計に対して、脂肪酸無水物の使用量が1.0倍当量以上であると、アシル化反応が進行しやすく、後の重合工程において未反応の原料モノマーが残存しにくく、結果として重合が効率よく進行する。また、このようにアシル化反応が十分進行すると、アシル化されていない原料モノマーが昇華して、重合時に使用する分留器が閉塞する可能性が少ない。一方、前記脂肪酸無水物の使用量が1.2倍当量以下であると、得られる液晶ポリエステル樹脂が着色しにくい。
上述のアシル化工程におけるアシル化反応は、130℃〜180℃の温度範囲で30分〜20時間行うことが好ましく、140℃〜160℃で1〜5時間行うことがより好ましい。
上述の重合工程で使用する芳香族ジカルボン酸は、アシル化工程の際に反応系中に存在させておいてもよい。すなわち、アシル化工程において、芳香族ジオール、芳香族ヒドロキシカルボン酸および芳香族ジカルボン酸を、同一の反応系中に存在させておいてもよい。これは、芳香族ジカルボン酸にあるカルボキシ基および任意に置換されてもよい置換基は、いずれも、脂肪酸無水物によって何ら影響を受けないからである。
従って、芳香族ジオール、芳香族ヒドロキシカルボン酸および芳香族ジカルボン酸を反応器に仕込んだ後でアシル化工程および重合工程を順次行う方法でもよいし、芳香族ジオールおよび芳香族ジカルボン酸を反応器に仕込んでアシル化工程を行った後で芳香族ジカルボン酸をさらに反応器に仕込んで重合工程を行う方法でもよい。製造工程を簡便化するという観点からは、前者の方法が好ましい。
上述の重合工程におけるエステル交換反応は、昇温速度0.1〜50℃/分で130℃から400℃まで昇温しながら行うことが好ましく、昇温速度0.3〜5℃/分で150℃から350℃まで昇温しながら行うことがさらに好ましい。
また、重合工程のエステル交換反応を行う際には、平衡をずらすために、副生する脂肪酸(例えば酢酸等)および未反応の脂肪酸無水物(例えば無水酢酸等)を、蒸発させて系外に留去させることが好ましい。このとき、留出する脂肪酸の一部を環流させて反応器に戻すことにより、脂肪酸と同伴して蒸発または昇華する原料モノマー等を凝縮または逆昇華させて反応器に戻すこともできる。
アシル化工程のアシル化反応および重合工程のエステル交換反応では、反応器として、回分装置を用いてもよいし、連続装置を用いてもよい。いずれの反応装置を用いても、本実施形態に使用することが可能な液晶ポリエステル樹脂を得られる。
上述した重合工程の後に、この重合工程で得られた液晶ポリエステル樹脂を高分子量化するための工程を行ってもよい。例えば、重合工程で得られた液晶ポリエステル樹脂を冷却した後で粉砕することによって粉体状の液晶ポリエステル樹脂を作製し、さらに、この粉体を加熱することとすれば、液晶ポリエステル樹脂の高分子量化が可能である。
また、冷却および粉砕で得た粉体状液晶ポリエステル樹脂を造粒することによってペレット状の液晶ポリエステル樹脂を作製し、その後でこのペレット状液晶ポリエステル樹脂を加熱することにより、液晶ポリエステル樹脂の高分子量化を行ってもよい。これらの方法を用いた高分子量化は、当該技術分野では、固相重合と称されている。
固相重合は、液晶ポリエステル樹脂を高分子量化する方法としては、特に有効である。
液晶ポリエステル樹脂を高分子量化することにより、後述するような好適な流動開始温度を有する液晶ポリエステル樹脂を得ることが容易になる。
前記固相重合の反応条件としては、固体状態の樹脂を不活性気体雰囲気下または減圧下に、1〜20時間熱処理する方法が通常採用される。この固相重合に係る重合条件は、前記溶融重合で得られた樹脂の流動開始温度を求めてから適宜最適化することができる。なお、該熱処理に使用される装置としては、例えば、既知の乾燥機、反応機、イナートオーブン、電気炉が挙げられる。
液晶ポリエステル樹脂の流動開始温度は、好ましくは270℃以上、より好ましくは270〜400℃、さらに好ましくは280〜380℃である。前記流動開始温度が、このような範囲である液晶ポリエステル樹脂を使用すると、本実施形態の液晶ポリエステル樹脂組成物を用いて得られる成形体の耐熱性をより良好にすることができる。また、前記液晶ポリエステル樹脂組成物から成形体を得る際の溶融成形において、液晶ポリエステル樹脂の熱安定性が向上し、熱劣化を回避することができる。
なお、流動開始温度は、フロー温度または流動温度とも呼ばれ、毛細管レオメーターを用いて、9.8MPaの荷重下、4℃/分の速度で昇温しながら、液晶ポリエステル樹脂を溶融させ、内径1mmおよび長さ10mmのノズルから押し出すときに、4800Pa・s(48000ポイズ)の粘度を示すときの温度であり、液晶ポリエステル樹脂の分子量の目安である(例えば、小出直之編、「液晶ポリマー−合成・成形・応用−」、95−105頁、シーエムシー、1987年6月5日発行を参照)。
上述の好適な流動開始温度の液晶ポリエステル樹脂は、前記液晶ポリエステル樹脂を構成する構造単位を適宜最適化することで容易に得ることが可能である。すなわち、液晶ポリエステル樹脂の分子鎖の直線性を向上させるようにすると、その流動開始温度が上がる傾向がある。
例えば、テレフタル酸に由来する構造単位は液晶ポリエステル樹脂分子鎖の直線性を向上させる。一方、イソフタル酸に由来する構造単位は液晶ポリエステル樹脂分子鎖の屈曲性を向上させる(直線性を低下させる)。そのため、このテレフタル酸とイソフタル酸の共重合比をコントロールすることにより、所望の流動開始温度の液晶ポリエステル樹脂を得ることができる。
上述した液晶ポリエステル樹脂混合物を使用する場合、少なくとも1種の液晶ポリエステル樹脂は、芳香族ヒドロキシカルボン酸を含む原料モノマーをイミダゾール化合物の存在下に重合させて得られた重合体であることが好ましい。このようにして得られる液晶ポリエステル樹脂は、溶融時の流動性が非常に高く、かつ、熱安定性に優れる。
また、本実施形態に用いられる液晶ポリエステル樹脂においては、テレフタル酸およびイソフタル酸の共重合比を最適化することが好ましい。これにより、上述のように液晶ポリエステル樹脂の分子鎖の直線性をコントロールできる。その結果、流動開始温度が互いに異なる複数種の液晶ポリエステル樹脂を各々製造できる。
[ガラス成分]
本実施形態の液晶ポリエステル樹脂組成物に含まれるガラス成分は、長さが30μm超のガラス繊維と、長さが4μm以上30μm以下のガラス製の微粉(以下、単に「微粉」と称することがある。)と、長さが4μm未満のガラス製の極微粉(以下、単に「極微粉」と称することがある。)と、から構成される。
本実施形態の液晶ポリエステル樹脂組成物に含まれるガラス成分の長さは、二値化処理された走査型電子顕微鏡(SEM)画像におけるガラス成分の外接矩形長径である。外接矩形長径とは、粒子を外接する長方形で囲んだ時の長辺の長さを意味する。SEMを用いたガラス成分の分析方法については後述する。
(ガラス繊維)
本実施形態の液晶ポリエステル樹脂組成物に含まれるガラス繊維の数平均繊維長が50μm以上200μm以下である。
ガラス繊維の数平均繊維長が50μm以上であると、バージン材の成形体の機械的強度を十分高くすることができる。また、本実施形態のガラス繊維の数平均繊維長が200μm以下であると、リグラインド時におけるガラス繊維の物理的破壊が起こりにくい。その結果、ガラス繊維の物理的破壊に起因する機械的強度の低下が抑えられる。したがって、リグラインド時における機械的強度の維持率を十分高くすることができる。
上記ガラス繊維の数平均繊維長は、70μm以上であることが好ましく、80μm以上であることがより好ましく、100μm以上であることがさらに好ましい。また、上記ガラス繊維の数平均繊維長は、190μm以下であることが好ましく、180μm以下であることがより好ましい。
本実施形態の液晶ポリエステル樹脂組成物に含まれるガラス繊維は、径方向での断面形状が略円形であることが好ましい。上記ガラス成分の径方向での断面形状が略円形であることは、SEMによって確認することができる。上記ガラス繊維の直径は、5μm以上17μm以下であることが好ましく、6μm以上15μm以下であることがより好ましく、9μm以上12μm以下であることがさらに好ましい。
(微粉)
本実施形態の液晶ポリエステル樹脂組成物に含まれる微粉は、径方向での断面形状が略円形であることが好ましい。本明細書において、微粉の径方向は、二値化処理されたSEM画像における微粉の外接矩形短径方向である。外接矩形短径とは、粒子を外接する長方形で囲んだ時の短辺の長さを意味する。上記微粉の径方向での断面形状が略円形であることは、SEMによって確認することができる。上記微粉の直径が5μm以上17μm以下であることが好ましく、6μm以上15μm以下であることがより好ましく、9μm以上12μm以下であることがさらに好ましい。
本実施形態の液晶ポリエステル樹脂組成物に含まれる微粉のアスペクト比(長さ/直径)が0.3以上であることが好ましく、0.5以上であることがより好ましい。また、微粉のアスペクト比が3.5以下であることが好ましく、3.3以下であることがより好ましい。
一つの側面として、本実施形態の液晶ポリエステル樹脂組成物に含まれる微粉のアスペクト比(長さ/直径)が0.3以上3.5以下であることが好ましい。
本実施形態の液晶ポリエステル樹脂組成物に含まれる微粉は、長さが4μm以上20μm以下の第1微粉(以下、単に「第1微粉」と称することがある。)と、長さが20μm超30μm以下の第2微粉(以下、単に「第2微粉」と称することがある。)と、から構成される。
(含有比)
本実施形態の液晶ポリエステル樹脂組成物は、液晶ポリエステル100質量部に対して、ガラス成分を10質量部以上100質量部以下含む。ガラス成分の含有量が10質量部以上100質量部以下であると、液晶ポリエステル樹脂組成物の成形しやすさと、成形体の機械的強度とが両立できる。
前記液晶ポリエステル樹脂組成物は、液晶ポリエステル100質量部に対して、ガラス成分を10質量部以上70質量部以下含むことが好ましく、20質量部以上60質量部以下を含むことがより好ましい。
本実施形態の液晶ポリエステル樹脂組成物は、ガラス成分の総数に対して、微粉を50%以上95%以下含む。
本実施形態の液晶ポリエステル樹脂組成物において、ガラス成分の総数に対する微粉の含有割合が50%以上であると、リグラインド時におけるガラス成分の物理的破壊の影響を少なくすることができる。したがって、リグラインド時における機械的強度の維持率を十分高くすることができる。
また、本実施形態の液晶ポリエステル樹脂組成物において、ガラス成分の総数に対する微粉の含有割合が95%以下であると、バージン材の成形体の機械的強度を十分高くすることができる。
本実施形態の液晶ポリエステル樹脂組成物において、ガラス成分の総数に対する微粉の含有割合は、90%以下であることが好ましく、85%以下であることがより好ましい。
一つの側面として、ガラス成分の総数に対する微粉の含有割合は、50%以上85%以下であることが好ましい。
本実施形態の液晶ポリエステル樹脂組成物は、ガラス成分の総数に対して第1微粉を40%以上70%以下含むことが好ましい。
第1微粉の含有割合がガラス成分の総数に対して40%以上であると、リグラインド時におけるガラス成分の物理的破壊の影響を少なくすることができる。したがって、リグラインド時における機械的強度の維持率を十分高くすることができる。
また、第1微粉の含有割合がガラス成分の総数に対して70%以下であると、バージン材の成形体の機械的強度を十分高くすることができる。
したがって、第1微粉の含有割合がガラス成分の総数に対して40%以上70%以下であると、リグラインド時における機械的強度の維持率を高くすることができる。
本実施形態の液晶ポリエステル樹脂組成物において、第1微粉の含有割合の上限値および下限値は、微粉の含有割合の上限値および下限値と可能な範囲で組み合わせることができる。
(ガラス成分の分析方法)
ガラス成分の長さの測定方法について説明する。まず、本実施形態の液晶ポリエステル樹脂組成物からなるペレット5gをマッフル炉(ヤマト科学株式会社製、「FP410」)にて空気雰囲気下において600℃で4時間加熱して樹脂を除去し、ガラス成分を含む灰化残渣を得る。灰化したサンプル0.3gを50mLの純水に投入し、分散性を良くするために界面活性剤として、0.5体積%のmicro−90(シグマ アルドリッチ
ジャパン合同会社製)水溶液を加え、混合液を得る。得られた混合液について超音波を5分間かけて、灰化したサンプルを純水中に均一に分散させ、試料液を得る。
次に、このガラス成分を純水中に分散させた試料液を、ピペットで5mLサンプルカップに入れ、純水にて5倍希釈し、サンプル液を得る。下記条件下で粒子形状画像解析装置(株式会社セイシン企業製の「PITA3」)を用い、得られたサンプル液をフローセルに通過させて、液中を移動するガラス成分を1個ずつ撮像する。なお、上述した測定方法においては、測定開始時点から積算したガラス成分の個数が5000個に達した時点を測定終了時点とする。
[条件]
測定本数:5000個
分散溶媒:水
分散条件:キャリア液1およびキャリア液2としてmicro−90 0.5体積%水溶液を用いる。
サンプル液速度:2.08μL/秒
キャリア液1速度:333.33μL/秒
キャリア液2速度:333.33μL/秒
観察倍率:対物10倍
得られた画像を二値化処理し、処理後の画像におけるガラス成分の外接矩形長径を測定し、5000個の測定値の平均値を、ガラス成分の長さとする。
本実施形態のガラス繊維の数平均繊維長は、長さが30μm超であるガラス繊維の測定値の平均値を採用する。
本実施形態のガラス成分の総数に対する微粉の含有割合は、上述した処理後の画像において長さが4μm以上30μm以下である微粉の本数をガラス成分の総数で除することにより算出した。
本実施形態のガラス成分の総数に対する第1微粉の含有割合は、上述した処理後の画像において長さが4μm以上20μm以下である第1微粉の本数をガラス成分の総数で除することにより算出した。
本本実施形態のガラス繊維の直径の測定方法について説明する。本実施形態のガラス繊維の直径は、上述のガラス成分を含む灰化残渣をSEMで倍率1000倍にて観察し、SEM画像から無作為に選んだ100個のガラス繊維の直径をそれぞれ測定し、100個の測定値の平均値を採用する。
本実施形態の微粉の直径の測定方法について説明する。まず、上述のガラス成分を含む灰化残渣をSEMで倍率1000倍にて観察する。得られた画像を二値化処理し、処理後の画像において無作為に選んだ100個の微粉の径方向の長さ(すなわち、外接矩形短径)を測定し、100個の測定値の平均値を、微粉の直径とする。
本実施形態の微粉のアスペクト比は、上記粒子形状画像解析装置で得られた画像において、上述した方法で測定したガラス成分の直径とほぼ一致する長さ方向を微粉の径方向とし、この微粉について長さ/直径を算出した値を採用する。
[ガラス成分の調製方法]
液晶ポリエステル樹脂組成物の製造時における溶融混練の条件を調節することにより、液晶ポリエステル樹脂組成物に含まれるガラス繊維の数平均繊維長を調製することができる。例えば、液晶ポリエステル樹脂組成物に含まれるガラス繊維の数平均繊維長を小さくする場合には、用いるスクリュウの回転速度をあげることや、シリンダー温度を下げ、溶融樹脂の溶融粘度を大きくし、せん断力を大きくする手段などが有効である。
本実施形態の液晶ポリエステル樹脂組成物に含まれる微粉は、市販されているガラス製の繊維状充填材(以下、「原繊維」と称することがある。)を粉砕することにより作製できる。本実施形態では、液晶ポリエステル樹脂組成物中に含まれるガラス成分の総数に対する微粉の含有割合が50%以上95%以下の範囲となるように、微粉を液晶ポリエステル樹脂に配合してもよい。また、後述する液晶ポリエステル樹脂組成物の製造方法において、製造条件を適宜変更することにより、微粉の含有割合がガラス成分の総数に対して50%以上95%以下の範囲となるように制御してもよい。
本実施形態に用いられる原繊維は、特に限定されないが、長繊維タイプのチョップドガラス繊維、短繊維タイプのミルドガラス繊維など、種々の方法で製造されたフィラーが挙げられる。なかでも上記原繊維は、ミルドガラス繊維が好ましい。上記原繊維は、1種を単独で使用してもよく、2種以上を併用して使用することもできる。
上記原繊維の種類としては、E−ガラス、A−ガラス、C−ガラス、D−ガラス、AR−ガラス、R−ガラス、Sガラスまたはこれらの混合物などが挙げられる。中でもE−ガラスは強度に優れ、かつ入手がしやすい点から好ましい。
上記原繊維としては、弱アルカリ性の繊維が機械的強度(引張強度およびIzod衝撃強度)の点で優れており、好ましく使用できる。特に酸化ケイ素含有量が上記ガラス繊維の総質量に対して50質量%以上80質量%以下のガラス繊維が好ましく用いられ、65質量%以上77質量%以下のガラス繊維がより好ましく用いられる。
上記原繊維は、必要に応じてシラン系カップリング剤またはチタン系カップリング剤などのカップリング剤で処理された繊維でもよい。
上記原繊維は、ウレタン樹脂、アクリル樹脂、エチレン/酢酸ビニル共重合体などの熱可塑性樹脂や、エポキシ樹脂などの熱硬化性樹脂で被覆されていてもよい。また、上記原繊維は、収束剤で処理されていてもよい。
上記原繊維の数平均繊維長は、20μm以上6000μm以下であることが好ましい。
原繊維の数平均繊維長が20μm以上である場合、得られる成形体に対する補強効果が十分高い。また、原繊維の数平均繊維長が6000μm以下である場合、溶融混練後の液晶ポリエステル樹脂組成物に含まれるガラス繊維の数平均繊維長を200μm以下に調整しやすい。
溶融混練に供する原繊維の数平均繊維長は、1000μm以上であることがより好ましく、2000μm以上であることがさらに好ましい。原繊維の数平均繊維長は、5000μm以下であることがより好ましく、4500μm以下であることがさらに好ましい。
溶融混練に供する原繊維の繊維径(単繊維径)は、5μm以上17μm以下であることが好ましい。原繊維の繊維径が5μm以上である場合、得られる成形体に対する補強効果が十分高い。また、原繊維の繊維径が17μm以下である場合、液晶ポリエステル樹脂組成物の溶融流動性が十分高い。
溶融混練に供する原繊維の繊維径は、6μm以上であることがより好ましい。また、原繊維の繊維径は、15μm以下であることがより好ましく、12μm以下であることがさらに好ましい。
原繊維の繊維径については、溶融混練後も実質的に変化しない。
(原繊維の数平均繊維長および繊維径の測定方法)
本明細書において「原繊維の数平均繊維長」とは、特に断りのない限り、JIS R3420「7.8 チョップドストランドの長さ」に記載の方法で測定された値を意味する。
また、本明細書において「原繊維の繊維径」とは、特に断りのない限り、JIS R3420「7.6 単繊維直径」に記載の方法のうち、「A法」で測定された値を意味する。
[他の成分]
液晶ポリエステル組成物は、本発明の効果を奏する範囲で、本実施形態のガラス成分以外の充填材、添加剤、液晶ポリエステル樹脂以外の樹脂等の他の成分を1種以上含んでもよい。
充填材は、繊維状充填材であってもよいし、板状充填材であってもよいし、繊維状および板状以外で、球状その他の粒状充填材であってもよい。また、充填材は、無機充填材であってもよいし、有機充填材であってもよい。
無機充填材である繊維状充填材の例としては、パン系炭素繊維、ピッチ系炭素繊維等の炭素繊維;シリカ繊維、アルミナ繊維、シリカアルミナ繊維等のセラミック繊維;およびステンレス繊維等の金属繊維が挙げられる。また、チタン酸カリウムウイスカー、チタン酸バリウムウイスカー、ウォラストナイトウイスカー、ホウ酸アルミニウムウイスカー、窒化ケイ素ウイスカー、炭化ケイ素ウイスカー等のウイスカーも挙げられる。
有機充填材である繊維状充填材の例としては、ポリエステル繊維、アラミド繊維、およびセルロース繊維が挙げられる。
無機充填材である板状充填材の例としては、タルク、マイカ、グラファイト、ウォラストナイト、ガラスフレーク、硫酸バリウムおよび炭酸カルシウムが挙げられる。マイカは、白雲母であってもよいし、金雲母であってもよいし、フッ素金雲母であってもよいし、四ケイ素雲母であってもよい。
無機充填材である粒状充填材の例としては、シリカ、アルミナ、酸化チタン、ガラスビーズ、ガラスバルーン、窒化ホウ素、炭化ケイ素および炭酸カルシウムが挙げられる。
添加剤の例としては、通常、樹脂組成物に用いられる添加剤が挙げられる。このような添加剤としては、例えば安定剤、紫外線吸収剤、可塑剤、難燃剤、難燃助剤、帯電防止剤、界面活性剤、着色剤、滑剤、離型剤などが挙げられる。
安定剤としては、例えば、ヒンダードフェノール、ヒドロキノン、ホスファイト類およびこれらの置換体などが挙げられる。
紫外線吸収剤としては、例えば、レゾルシノール、サリシレート、ベンゾトリアゾール、ベンゾフェノンなどが挙げられる。
着色剤としては、ニトロシンなどの染料、および硫化カドミウム、フタロシアニン、カーボンブラックなどの顔料を含む材料が挙げられる。
滑剤としては、例えば、ステアリン酸、モンタン酸、それらのエステル、それらの多価アルコールとのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなどが挙げられる。
本実施形態の液晶ポリエステル樹脂組成物は、さらに離型剤を添加することで、成形加工性を向上させることが可能である。離型剤としては、例えば、モンタン酸、その塩、そのエステル、その多価アルコールとのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなどが挙げられ、好ましくはペンタエリスリトールの脂肪酸エステルが挙げられる。
離型剤の配合量は、液晶ポリエステル樹脂100質量部に対して、好ましくは0.1質量部以上0.5質量部以下であり、より好ましくは0.2質量部以上0.4質量部以下である。離型剤の配合量が0.1質量部以上0.5質量部以下の範囲にあると、使用する金型への汚染や成形体のふくれなどが起こりにくい傾向があり、また離型効果が得られやすい。
液晶ポリエステル以外の樹脂の例としては、ポリプロピレン、ポリアミド、液晶ポリエステル以外のポリエステル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルイミド等の液晶ポリエステル以外の熱可塑性樹脂;およびフェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シアネート樹脂等の熱硬化性樹脂が挙げられる。液晶ポリエステル以外の樹脂の含有量は、液晶ポリエステル100質量部に対して、通常0〜20質量部である。
<液晶ポリエステル樹脂組成物の製造方法>
液晶ポリエステル樹脂組成物は、液晶ポリエステル樹脂、ガラス成分および必要に応じて用いられる他の成分を、押出機を用いて溶融混練し、ペレット状に押し出すことにより調製することが好ましい。
用いるガラス成分は、予め微粉の含有割合がガラス成分の総数に対して50%以上95%以下の範囲となるように調製されていてもよい。また、市販されているガラス製の繊維状充填材を原料として用い、この繊維状充填材が液晶ポリエステル樹脂組成物の製造時に破断されることで、液晶ポリエステル樹脂組成物に含まれるガラス成分の総数に対する微粉の含有割合が50%以上95%以下の範囲となるように制御してもよい。
押出機は、シリンダーと、シリンダー内に配置された1本以上のスクリュウと、シリンダーに設けられた1箇所以上の供給口とを有することが好ましく、さらにシリンダーに設けられた1箇所以上のベント部を有することがより好ましい。
本実施形態の液晶ポリエステル樹脂組成物では、微粉を破断するためには、きわめて大きなエネルギーが必要である。このことから、微粉はガラス繊維と比べて物理的破壊が起こりにくいことが知られている。したがって、本実施形態の液晶ポリエステル樹脂組成物を適用したリグラインド材では、射出成形時のスクリュウ内での溶融においても微粉が変化しないと予想される。
以上のような構成の液晶ポリエステル樹脂組成物によれば、リグラインド時における機械的強度の維持率が高い液晶ポリエステル樹脂組成物が得られる。
<成形体>
本実施形態の成形体は、上述した液晶ポリエステル樹脂組成物を形成材料とする。
本実施形態の液晶ポリエステル組成物の成形法としては、溶融成形法が好ましい。その例としては、射出成形法、Tダイ法やインフレーション法等の押出成形法、圧縮成形法、ブロー成形法、真空成形法およびプレス成形が挙げられる。なかでも射出成形法が好ましい。
液晶ポリエステル組成物の成形体である製品・部品の例としては、光ピックアップボビン、トランスボビン等のボビン;リレーケース、リレーベース、リレースプルー、リレーアーマチャー等のリレー部品;RIMM、DDR、CPUソケット、S/O、DIMM、Board to Boardコネクター、FPCコネクター、カードコネクター等のコネクター;ランプリフレクター、LEDリフレクター等のリフレクター;ランプホルダー、ヒーターホルダー等のホルダー;スピーカー振動板等の振動板;コピー機用分離爪、プリンター用分離爪等の分離爪;カメラモジュール部品;スイッチ部品;モーター部品;センサー部品;ハードディスクドライブ部品;オーブンウェア等の食器;車両部品;航空機部品;および半導体素子用封止部材、コイル用封止部材等の封止部材が挙げられる。
また、これら以外の例としては、分離爪、ヒーターホルダー等の複写機、印刷機関連部品;インペラー、ファン歯車、ギヤ、軸受け、モーター部品、ケース等の機械部品;自動車用機構部品、燃料関係・排気系・吸気系各種パイプ、排気ガス、冷却水、油温系各種センサー、エアコン用サーモスタットベース、エアコン用モーターインシュレーター、ラジエーターモーター用ブラッシュホルダー、ワイパーモーター関係部品、デュストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、エアコンパネルスィッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、ECUコネクター、ホーンターミナル、電装部品絶縁板、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケースなどの自動車・車両関連部品;マイクロ波調理用鍋、耐熱食器等の調理用器具;床材、壁材等の断熱もしくは防音用材料、梁もしくは柱等の支持材料、屋根材等の建築資材または土木建築用材料;航空機、宇宙機、宇宙機器用部品;原子炉等の放射線施設部材;海洋施設部材;洗浄用治具;光学機器部品;バルブ類;パイプ類;ノズル類;フィルター類;膜;医療用機器部品および医療用材料;センサー類部品;サニタリー備品;スポーツ用品;レジャー用品等が挙げられる。
[成形体の機械的強度の評価方法]
成形体の機械的強度は、引張強度およびIzod衝撃強度を測定することにより評価される。
成形体の引張強度は、液晶ポリエステル樹脂組成物を用いて射出成形機により作製したASTM4号試験片を使用し、ASTM D638に準拠し測定される。
成形体のIzod衝撃強度は、液晶ポリエステル樹脂組成物を用いて射出成形機により作製した長さ127mm、幅12.7mm、厚さ6.4mmの試験片を長尺方向に2等分し、得られた試験片を使用し、ASTM D256に準拠し測定される。
以上のような構成の成形体によれば、上述した液晶ポリエステル樹脂組成物を用いているので、リグラインド時における機械的強度の維持率が高い成形体が得られる。
以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。各測定は以下のようにして行った。
<液晶ポリエステル樹脂の流動開始温度>
フローテスター(株式会社島津製作所の「CFT−500EX型」)を用いて、液晶ポリエステル約2gを、内径1mmおよび長さ10mmのノズルを有するダイを取り付けたシリンダーに充填し、9.8MPaの荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、ノズルから押し出し、4800Pa・sの粘度を示す温度を測定した。
<液晶ポリエステル樹脂組成物中のガラス成分の測定1>
まず、本実施例の液晶ポリエステル樹脂組成物からなるペレット5gをマッフル炉(ヤマト科学株式会社製、「FP410」)にて空気雰囲気下において600℃で4時間加熱して樹脂を除去し、ガラス成分を含む灰化残渣を得た。灰化したサンプル0.3gを50mLの純水に投入し、分散性を良くするために界面活性剤として、0.5体積%のmicro−90(シグマ アルドリッチ ジャパン合同会社製)水溶液を加え、混合物を得る。得られた混合物について超音波を5分間かけて、灰化したサンプルを純水中に均一に分散させ、試料液を得た。
次に、このガラス成分を分散させた試料液を、ピペットで5mLサンプルカップに入れ、純水にて5倍希釈し、サンプル液を得た。下記条件下で粒子形状画像解析装置(株式会社セイシン企業製の「PITA−3」)を用い、得られたサンプル液をフローセルに通過させて、液中を移動するガラス成分を1個ずつ撮像した。
[条件]
測定本数:5000個
分散溶媒:水
分散条件:キャリア液1およびキャリア液2としてmicro−90 0.5体積%水溶液を用いた。
サンプル液速度:2.08μl/秒
キャリア液1速度:333.33μl/秒
キャリア液2速度:333.33μl/秒
観察倍率:対物10倍
(ガラス成分の長さ)
得られた画像を二値化処理し、処理後の画像におけるガラス成分の外接矩形長径を測定し、5000個の測定値の平均値を、ガラス成分の長さとした。
(ガラス成分の総数に対する微粉の含有割合)
上述した処理後の画像において長さが4μm以上30μm以下である微粉の本数をガラス成分の総数で除することによりガラス成分の総数に対する微粉の含有割合を算出した。
(ガラス成分の総数に対する第1微粉の含有割合)
上述した処理後の画像において長さが4μm以上20μm以下である第1微粉の本数をガラス成分の総数で除することによりガラス成分の総数に対する第1微粉の含有割合を算出した。
<液晶ポリエステル樹脂組成物中のガラス成分の測定2>(微粉の直径)
上述の<測定1>で得られた灰化残渣をSEM(株式会社日立製作所製の「S−4700」)を用いて、倍率1000倍で観察した。得られた画像を二値化処理し、処理後の画像において無作為に選んだ100個の微粉の径方向の長さ(すなわち、外接矩形短径)を測定し、100個の測定値の平均値を、微粉の直径とした。
(微粉のアスペクト比)
上述の<測定1>で得られた画像において、<測定2>で得られたガラス成分の直径とほぼ一致する長さ方向を微粉の径方向とし、この微粉について長さ/直径を算出した値を採用した。
(長さが30μm超のガラス繊維の数平均繊維長)
上述した処理後の画像における長さが30μm超のガラス繊維の測定値を用いて、ガラス繊維の数平均繊維長を算出した。
<(A)液晶ポリエステル樹脂の製造>
[製造例1(液晶ポリエステル樹脂(A−1))]
攪拌装置、トルクメータ、窒素ガス導入管、温度計および還流冷却器を備えた反応機に、4−ヒドロキシ安息香酸994.5g(7.2モル)、4,4’−ジヒドロキシビフェニル446.9g(2.4モル)、テレフタル酸299.0g(1.8モル)、イソフタル酸99.7g(0.6モル)および無水酢酸1347.6g(13.2モル)を仕込み、触媒として1−メチルイミダゾール0.2gを添加し、反応器内を十分に窒素ガスで置換した。
その後、窒素ガス気流下で攪拌しながら、室温から150℃まで30分かけて昇温し、同温度を保持して30分間還流させた。
次いで、1−メチルイミダゾール2.4gを加えた。その後、副生酢酸と未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、320℃で30分保持した。保持後、内容物を取り出し、室温まで冷却した。
得られた固形物を、粉砕機で粒径0.1〜1mmに粉砕後、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から296℃まで5時間かけて昇温し、296℃で3時間保持するにより、固相重合を行った。固相重合後、冷却して、粉末状の液晶ポリエステル樹脂(A−1)を得た。得られた液晶ポリエステル樹脂(A−1)の流動開始温度は328℃であった。
[製造例2(液晶ポリエステル樹脂(A−2))]
攪拌装置、トルクメータ、窒素ガス導入管、温度計および還流冷却器を備えた反応器に、4−ヒドロキシ安息香酸994.5g(7.2モル)、4,4’−ジヒドロキシビフェニル446.9g(2.4モル)、テレフタル酸239.2g(1.44モル)、イソフタル酸159.5g(0.96モル)および無水酢酸1347.6g(13.2モル)を仕込み、触媒として1−メチルイミダゾール0.2gを添加し、反応器内を十分に窒素ガスで置換した。
その後、窒素ガス気流下で攪拌しながら、室温から150℃まで30分かけて昇温し、同温度を保持して1時間還流させた。
次いで、1−メチルイミダゾール0.9gを加え、副生酢酸と未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、320℃で30分保持した。保持後、内容物を取り出し、これを室温まで冷却した。
得られた固形物を、粉砕機で粒径0.1〜1mmに粉砕後、窒素雰囲気下、室温から220℃まで1時間かけて昇温し、220℃から241℃まで0.5時間かけて昇温し、241℃で10時間保持することにより、固相重合を行った。固相重合後、冷却して、粉末状の液晶ポリエステル樹脂(A−2)を得た。得られた液晶ポリエステル樹脂(A−2)の流動開始温度は292℃であった。
また、以下の実施例においては、ガラス成分として下記の市販品を用いた。ただし、下記の数平均繊維長は、メーカー公称値であり、微粉を考慮しない値である。なお、各充填材で記載されている形状は、各充填材の径方向における断面の形状を表す。
充填材A:PF20E−001(日東紡績株式会社製、略円形状、直径10μm、数平均繊維長20μm)
充填材B:PF50E−001(日東紡績株式会社製、略円形状、直径10μm、数平均繊維長50μm)
充填材C:PF80E−401(日東紡績株式会社製、略円形状、直径10μm、数平均繊維長80μm)
充填材D:EFH75−01(セントラル硝子株式会社製、略円形状、直径11μm、数平均繊維長75μm)
充填材E:EFH100−01(セントラル硝子株式会社製、略円形状、直径11μm、数平均繊維長100μm)
充填材F:EFH150−01(セントラル硝子株式会社製、略円形状、直径11μm、数平均繊維長150μm)
充填材G:SS10−404(日東紡績株式会社製、略円形状、直径11μm、数平均繊維長300μm)
充填材H:CS3J260S(日東紡績株式会社製、略円形状、直径11μm、数平均繊維長3mm)
また、以下の実施例においては、以下の原料を用いた。
離型剤:ロキシオールVPG861(エメリーオレオケミカルズジャパン株式会社製、ペンタエリスリトールとステアリン酸とのフルエステル(テトラステアレート)および部分エステルの混合物、5%重量減少温度310℃)
<液晶ポリエステル樹脂組成物(バージン材)の製造>
[実施例1〜6、比較例1〜7]
予め、長さが30μm超のガラス繊維と、微粉と、極微粉とを混合してガラス成分を調製した。液晶ポリエステル樹脂、ガラス成分および離型剤を、表1および表2に示す割合で二軸押出機(池貝鉄工株式会社製、「PCM−30HS」)を用いて、シリンダー温度340℃で溶融混練し、ペレット状の液晶ポリエステル樹脂組成物を得た。なお、液晶ポリエステル樹脂組成物の製造は、水封式真空ポンプ(神港精機株式会社製、「SW−25」)を用い、二軸押出機に備えた真空ベントで脱気しながら行った。以下の評価ではこれをバージン材とし、このバージン材の物性値を初期の物性値とした。
[比較例7]
液晶ポリエステル樹脂100質量部に対して、ガラス成分を122質量部配合した以外は比較例1と同様に液晶ポリエステル樹脂組成物の製造を検討した。しかし、溶融混練時の粘度が上昇しすぎて製造することができなかった。
<リグラインド材の製造>
実施例1〜6、比較例1〜7のペレット状の液晶ポリエステル樹脂組成物を用い、後述の引張試験片を作製する際に発生したランナーやスプルーを、粒断機(株式会社ハーモ製、「SPCII750H」)により粉砕し、リグラインド材を得た。以下の評価では、このリグラインド材の物性値をリグラインド後の物性値とした。
実施例1〜6、比較例1〜7のバージン材およびリグラインド材を130℃で4時間、熱風乾燥した後、以下の方法により評価した。結果を表3および表4に示す。
<機械的強度の維持率>
液晶ポリエステル樹脂組成物の成形体の機械的強度の維持率は、引張強度の維持率およびIzod衝撃強度の維持率を求めることにより評価した。
[引張強度]
液晶ポリエステル樹脂組成物の引張強度は、射出成形機(日精樹脂工業株式会社製「PNX40−5A」)を用い、成形温度350℃、金型温度130℃、射出速度75mm/秒の成形条件にて作製したASTM4号試験片を使用し、ASTM D638に準拠し測定した。
バージン材およびリグラインド材の引張強度をそれぞれ求め、バージン材の引張強度に対するリグラインド材の引張強度を算出した結果を引張強度の維持率とした。
[Izod衝撃強度]
射出成形機(日精樹脂工業株式会社製「PNX40−5A」)により、成形温度350℃、金型温度130℃、射出速度75mm/秒の成形条件にて作製した長さ127mm、幅12.7mm、厚さ6.4mmの試験片を長尺方向に2等分し、得られた試験片を使用し、ASTM D256に準拠して測定した。
バージン材およびリグラインド材のIzod衝撃強度をそれぞれ求め、バージン材のIzod衝撃強度に対するリグラインド材のIzod衝撃強度を算出した結果をIzod衝撃強度の維持率とした。
引張強度の維持率およびIzod衝撃強度の維持率の結果から、下記の基準で液晶ポリエステル樹脂組成物の成形体の機械的強度の維持率を評価した。
○:引張強度の維持率が90%以上、かつIzod衝撃強度の維持率が80%以上のもの
×:上記「○」の条件を満たさないもの
<耐熱性>
液晶ポリエステル樹脂組成物の耐熱性は、荷重たわみ温度の維持率を求めることにより評価した。
[荷重たわみ温度]
射出成形機(日精樹脂工業株式会社製「PNX40−5A」)により、成形温度350℃、金型温度130℃、射出速度75mm/秒の成形条件にて作製した長さ127mm、幅12.7mm、厚さ6.4mmの試験片を使用し、ASTM D648に準拠し、1.82MPaの荷重、昇温速度2℃/分で測定した。
バージン材およびリグラインド材の荷重たわみ温度をそれぞれ求め、バージン材の荷重たわみ温度に対するリグラインド材の荷重たわみ温度を算出した結果を荷重たわみ温度の維持率とした。
Figure 2019094489
Figure 2019094489
Figure 2019094489
Figure 2019094489
表3および表4に示すように、本発明を適用した実施例1〜6の液晶ポリエステル樹脂組成物は、機械的強度の維持率が高かった。
これは、ガラス繊維の数平均繊維長が50μm以上200μm以下の範囲内であったため、ガラス繊維の物理的破壊が起こりにくかったと考えられる。その結果、ガラス繊維の物理的破壊に起因する機械的強度の低下が抑えられたと考えられる。
また、液晶ポリエステル樹脂組成物に含まれるガラス成分の総数に対する微粉の含有割合が50%以上95%以下の範囲内であったため、リグラインド時におけるガラス成分の物理的破壊の影響を少なくすることができたと考えられる。
以上のことから、実施例1〜6の液晶ポリエステル樹脂組成物は、リグラインド時における機械的強度の維持率を高くすることができたと考えられる。
また、実施例1〜6の液晶ポリエステル樹脂組成物は、荷重たわみ温度の維持率も高かった。このことから、実施例1〜6の液晶ポリエステル樹脂組成物は、リグラインド時における耐熱性に優れるといえる。
一方、比較例1〜7の液晶ポリエステル樹脂組成物は、実施例1〜6と同様に荷重たわみ温度の維持率が高かった。このことから、リグラインド時における耐熱性に優れるといえる。しかし、比較例1〜7の液晶ポリエステル樹脂組成物は、機械的強度の維持率が低かった。
以上の結果により、本発明が有用であることが確かめられた。

Claims (10)

  1. 液晶ポリエステル樹脂100質量部と、
    ガラス成分10質量部以上100質量部以下と、を含み、
    前記ガラス成分は、長さが30μm超のガラス繊維と、長さが4μm以上30μm以下のガラス製の微粉と、を含み、
    前記ガラス繊維の数平均繊維長が50μm以上200μm以下であり、
    前記微粉の含有割合が、前記ガラス成分の総数に対して50%以上95%以下である液晶ポリエステル樹脂組成物。
  2. 前記微粉は、長さが4μm以上20μm以下の第1微粉と、20μm超30μm以下の第2微粉と、からなり、
    前記第1微粉を、前記ガラス成分の総数に対して40%以上70%以下含む請求項1に記載の液晶ポリエステル樹脂組成物。
  3. 前記微粉の含有割合が、前記ガラス成分の総数に対して50%以上85%以下である請求項1または2に記載の液晶ポリエステル樹脂組成物。
  4. 前記微粉の直径が9μm以上12μm以下であり、前記微粉のアスペクト比が0.3以上3.5以下である請求項1〜3のいずれか1項に記載の液晶ポリエステル樹脂組成物。
  5. 前記液晶ポリエステル樹脂が、下記式(1)〜(3)で表される繰返し単位を含有する請求項1〜4のいずれか1項に記載の液晶ポリエステル樹脂組成物。
    (1)−O−Ar−CO−
    (2)−CO−Ar−CO−
    (3)−X−Ar−Y−
    [Arはフェニレン基、ナフチレン基またはビフェニリレン基を表す。
    ArおよびArは、互いに独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(4)で表される基を表す。
    XおよびYは、互いに独立に、酸素原子またはイミノ基(−NH−)を表す。
    Ar、ArまたはArで表される前記基中の1個以上の水素原子は、互いに独立に、ハロゲン原子、炭素数1〜10のアルキル基または炭素数6〜20のアリール基で置換されていてもよい。]
    (4)−Ar−Z−Ar
    [ArおよびArは、互いに独立に、フェニレン基またはナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基または炭素数1〜10のアルキリデン基を表す。
    ArまたはArで表される前記基中の1個以上の水素原子は、互いに独立に、ハロゲン原子、炭素数1〜10のアルキル基または炭素数6〜20のアリール基で置換されていてもよい。]
  6. 前記Arは1,4−フェニレン基であり、前記Arは1,4−フェニレン基および1,3−フェニレン基であり、前記Arはビフェニリレン基であり、前記Xおよび前記Yはそれぞれ酸素原子である請求項5に記載の液晶ポリエステル樹脂組成物。
  7. 前記式(1)で表される繰返し単位と前記式(3)で表される繰返し単位とのモル比率(3)/(1)が0.2以上1.0以下であり、
    前記式(3)で表される繰返し単位と前記式(2)で表される繰返し単位とのモル比率(2)/(3)が0.9以上1.1以下である請求項5または6に記載の液晶ポリエステル樹脂組成物。
  8. 前記式(2)で表される繰返し単位のモル比率y/xが0を超え1以下である請求項5〜7のいずれか1項に記載の液晶ポリエステル樹脂組成物。
    [xは、前記Arが1,4−フェニレン基である繰返し単位のモル含有量を表す。
    yは、前記Arが1,3−フェニレン基である繰返し単位のモル含有量を表す。]
  9. 前記液晶ポリエステル樹脂は、第1液晶ポリエステル樹脂と、第2液晶ポリエステル樹脂とを含み、α/βが0.1以上0.6以下である請求項8に記載の液晶ポリエステル樹脂組成物。
    [αは、前記第1液晶ポリエステル樹脂のモル比率y/xを表す。
    βは、前記第2液晶ポリエステル樹脂のモル比率y/xを表す。]
  10. 請求項1〜9のいずれか1項に記載の液晶ポリエステル樹脂組成物を形成材料とする成形体。
JP2018216377A 2018-11-19 2018-11-19 液晶ポリエステル樹脂組成物および成形体 Pending JP2019094489A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018216377A JP2019094489A (ja) 2018-11-19 2018-11-19 液晶ポリエステル樹脂組成物および成形体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018216377A JP2019094489A (ja) 2018-11-19 2018-11-19 液晶ポリエステル樹脂組成物および成形体

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017227143A Division JP6439027B1 (ja) 2017-11-27 2017-11-27 液晶ポリエステル樹脂組成物および成形体

Publications (1)

Publication Number Publication Date
JP2019094489A true JP2019094489A (ja) 2019-06-20

Family

ID=66972694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018216377A Pending JP2019094489A (ja) 2018-11-19 2018-11-19 液晶ポリエステル樹脂組成物および成形体

Country Status (1)

Country Link
JP (1) JP2019094489A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258184B2 (en) 2019-08-21 2022-02-22 Ticona Llc Antenna system including a polymer composition having a low dissipation factor
US11555113B2 (en) 2019-09-10 2023-01-17 Ticona Llc Liquid crystalline polymer composition
WO2023045821A1 (zh) * 2021-09-24 2023-03-30 珠海万通特种工程塑料有限公司 一种液晶聚酯及其制备方法和应用
US11637365B2 (en) 2019-08-21 2023-04-25 Ticona Llc Polymer composition for use in an antenna system
US11646760B2 (en) 2019-09-23 2023-05-09 Ticona Llc RF filter for use at 5G frequencies
US11721888B2 (en) 2019-11-11 2023-08-08 Ticona Llc Antenna cover including a polymer composition having a low dielectric constant and dissipation factor
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258184B2 (en) 2019-08-21 2022-02-22 Ticona Llc Antenna system including a polymer composition having a low dissipation factor
US11637365B2 (en) 2019-08-21 2023-04-25 Ticona Llc Polymer composition for use in an antenna system
US11705641B2 (en) 2019-08-21 2023-07-18 Ticoan Llc Antenna system including a polymer composition having a low dissipation factor
US11555113B2 (en) 2019-09-10 2023-01-17 Ticona Llc Liquid crystalline polymer composition
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring
US11646760B2 (en) 2019-09-23 2023-05-09 Ticona Llc RF filter for use at 5G frequencies
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies
US11721888B2 (en) 2019-11-11 2023-08-08 Ticona Llc Antenna cover including a polymer composition having a low dielectric constant and dissipation factor
WO2023045821A1 (zh) * 2021-09-24 2023-03-30 珠海万通特种工程塑料有限公司 一种液晶聚酯及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP6439027B1 (ja) 液晶ポリエステル樹脂組成物および成形体
JP6473796B1 (ja) 液晶ポリエステル樹脂組成物および成形体
JP2019094489A (ja) 液晶ポリエステル樹脂組成物および成形体
JP2019094497A (ja) 液晶ポリエステル樹脂組成物および成形体
TWI772452B (zh) 液晶聚酯樹脂組成物及成形體
WO2012137271A1 (ja) 液晶性ポリエステル樹脂組成物およびそれを用いた金属複合成形品
JP5556223B2 (ja) 液晶高分子組成物、その製造方法及び成形体
JP5197553B2 (ja) 液晶性樹脂組成物及びその成形体
JP2015189896A (ja) 液晶性樹脂組成物およびその成形品
JP2018104527A (ja) 液晶ポリエステル樹脂組成物およびそれからなる成形品
JP5407988B2 (ja) 液晶性樹脂組成物及びその成形体
WO2022153945A1 (ja) 液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法及び射出成形体の製造方法
JPH06240115A (ja) ガラス繊維強化液晶性樹脂組成物
WO2022113845A1 (ja) ペレット、ペレットの製造方法及び射出成形体の製造方法