WO2017099126A1 - 液晶ポリエステル組成物及び成形体 - Google Patents

液晶ポリエステル組成物及び成形体 Download PDF

Info

Publication number
WO2017099126A1
WO2017099126A1 PCT/JP2016/086390 JP2016086390W WO2017099126A1 WO 2017099126 A1 WO2017099126 A1 WO 2017099126A1 JP 2016086390 W JP2016086390 W JP 2016086390W WO 2017099126 A1 WO2017099126 A1 WO 2017099126A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polyester
mass
filler
parts
Prior art date
Application number
PCT/JP2016/086390
Other languages
English (en)
French (fr)
Inventor
慶倍 金
新利 胡
節幸 原
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2017555101A priority Critical patent/JP6779906B2/ja
Priority to CN201680071414.0A priority patent/CN108368329B/zh
Priority to US15/781,734 priority patent/US20180362848A1/en
Priority to KR1020187015947A priority patent/KR20180090808A/ko
Publication of WO2017099126A1 publication Critical patent/WO2017099126A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3809Polyesters; Polyester derivatives, e.g. polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K2019/521Inorganic solid particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/01Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of fibres, e.g. fibres after polymerisation of LC precursor

Definitions

  • the present invention relates to a liquid crystal polyester composition and a molded body.
  • This application claims priority based on Japanese Patent Application No. 2015-240453 for which it applied to Japan on December 9, 2015, and uses the content here.
  • a CPU socket for detachably mounting a CPU (Central Processing Unit) on an electronic circuit board is known.
  • a liquid crystal polyester resin excellent in heat resistance and the like is adopted as a material for forming the CPU socket.
  • the circuit scale of CPUs mounted on electronic circuit boards is also increasing.
  • the number of connection pins increases as the CPU becomes larger.
  • CPUs having about 700 to 1000 connection pins are known.
  • the CPU connection pins are arranged in a matrix, for example, on the bottom surface of the CPU. When the size of the CPU is constant, the pitch of these connection pins tends to decrease as the number of connection pins increases.
  • the CPU socket has a large number of pin insertion holes corresponding to each connection pin of the CPU, and forms a lattice. As the pitch of the connection pins is reduced, the pitch of the pin insertion holes is also reduced, and the resin separating the pin insertion holes, that is, the wall of the lattice is thinned. For this reason, in the CPU socket, as the number of pin insertion holes increases, stress such as reflow mounting or pin insertion is applied to the wall, and the stress is likely to cause destruction of the lattice (hereinafter, referred to as a crack).
  • liquid crystal polyester composition in which a fibrous filler is blended with a liquid crystalline polyester is known.
  • Patent Document 1 a glass fiber having an average fiber diameter of 3 ⁇ m or more and less than 10 ⁇ m and a glass fiber having an average fiber diameter of 10 ⁇ m or more and less than 20 ⁇ m are used in combination with 5 parts by weight or more and 200 parts by weight based on 100 parts by weight of a predetermined liquid crystal polyester resin.
  • a reinforced liquid crystal resin composition obtained by filling up to parts by weight is disclosed.
  • (A) the weight average fiber length excluding those having an average fiber diameter of 5 to 30 ⁇ m and a fiber length of 10 ⁇ m or less is 250 to 350 ⁇ m, and the ratio of fibers having a fiber length of 700 ⁇ m or more is within 5% by weight.
  • Patent Document 3 discloses (A) a liquid crystalline polymer having a p-hydroxybenzoic acid residue of 55 mol% or less and a melting point of 330 ° C.
  • a flat connector characterized by a structure in which the pitch interval between the portions is 1.5 mm or less and the thickness ratio between the outer frame portion and the lattice portion is 0.8 or less is described.
  • Patent Document 4 has 100 parts by mass of liquid crystalline polyester and a total of 65 parts by mass or more and 100 parts by mass or less of the fibrous filler and the plate-like filler, and the fibrous filler has a number average fiber diameter. 5 ⁇ m or more and 15 ⁇ m or less, the number average fiber length is longer than 200 ⁇ m and less than 400 ⁇ m, the mass ratio of the fibrous filler to the plate-like filler is 3 or more and 15 or less, and the dynamic temperature is 250.
  • a liquid crystal polyester composition having a temperature of from °C to 314 ° C. is described.
  • Patent Document 5 discloses a liquid crystal polyester composition
  • a liquid crystal polyester composition comprising a liquid crystal polyester, a plate-like filler having a volume average particle size of 14 ⁇ m or more, and a fibrous filler, the plate-like filler and the fibrous filler.
  • the total content is 45 to 55% by mass with respect to the total amount of the liquid crystalline polyester composition, and the mass ratio of the content (B) of the fibrous filler to the content (A) of the plate-like filler (B
  • a liquid crystal polyester composition in which / A) is more than 0.5 and 0.65 or less is described.
  • the liquid crystal polyester compositions described in the above-mentioned Patent Documents 1 to 5 are not necessarily sufficient in resistance to cracks after molding of molded articles such as CPU sockets, and improvements are demanded.
  • This invention is made
  • the present invention includes the following aspects [1] to [8].
  • [1] A liquid crystalline polyester, a fibrous filler having a number average fiber diameter of 15 ⁇ m or more and 25 ⁇ m or less, and a plate-like filler, The liquid-crystal polyester composition whose sum total content of the said fibrous filler and the said plate-shaped filler is 65 to 105 mass parts with respect to 100 mass parts of said liquid crystalline polyester.
  • the content of the fibrous filler is 5 to 26 parts by mass with respect to 100 parts by mass of the liquid crystalline polyester, and the content of the plate-like filler is 45 to 82 parts by mass.
  • the liquid crystal polyester composition according to [1].
  • liquid crystal polyester composition that gives a molded article having excellent crack resistance. Moreover, the manufacturing method of such a liquid crystal polyester composition and the molded object shape
  • FIG. 1A It is a schematic plan view which illustrates the connector which is one Embodiment of this invention. ( It is sectional drawing in the AA of FIG. 1A. It is the schematic which illustrates the connector which is one Embodiment of this invention, and is the enlarged view of the area
  • the liquid crystal polyester composition according to the first aspect of the present invention contains a liquid crystal polyester, a fibrous filler having a number average fiber diameter of 15 ⁇ m or more and 25 ⁇ m or less, and a plate-like filler, and the fibrous filler And the total content of the plate-like filler is 65 to 105 parts by mass with respect to 100 parts by mass of the liquid crystal polyester.
  • the liquid crystal polyester composition contains a fibrous filler having a number average fiber diameter of 15 ⁇ m or more and 25 ⁇ m or less, and the total content of the fibrous filler and the plate-like filler is within the specific range.
  • a molded article molded from the liquid crystal polyester composition is less likely to be deformed under high temperature conditions (for example, 200 to 250 ° C. which is the temperature during reflow heating).
  • molded from the liquid crystalline polyester composition of this invention can improve the tolerance with respect to a crack, and can suppress generation
  • the total content of the fibrous filler and the plate-like filler with respect to 100 parts by mass of the liquid crystalline polyester is preferably 70 parts by mass or more and 90 parts by mass or less, more preferably 75 parts by mass or more and 85 parts by mass or less, More preferably, it is 78 to 83 mass parts. Further, as another aspect, the total content of the fibrous filler and the plate-like filler with respect to 100 parts by mass of the liquid crystalline polyester may be 65 parts by mass or more and 100 parts by mass or less, and 67 parts by mass or more and 100 parts by mass. Or may be 67 parts by mass or more and 82 parts by mass or less.
  • the total content of the fibrous filler and the plate-like filler is not less than the above lower limit value, the occurrence of cracks in the molded article molded from the liquid crystal polyester composition tends to be further suppressed, and the above If it is less than or equal to the upper limit, the liquid crystal polyester composition tends to have sufficient fluidity.
  • the content of the fibrous filler with respect to 100 parts by mass of the liquid crystal polyester is 5 parts by mass or more and 26 parts by mass or less, and the content of the plate-like filler is 15 parts by mass or more and 82 parts by mass.
  • the content of the fibrous filler is preferably 7 parts by mass or more and 55 parts by mass or less, and the content of the plate-like filler is preferably 45 parts by mass or more and 82 parts by mass or less.
  • the liquid crystal polyester composition may be a mixture of a liquid crystal polyester, a fibrous filler, and a plate-like filler (that is, a mixture of powders). For example, it may be processed into a pellet.
  • the liquid crystal polyester according to the present invention will be described.
  • the liquid crystal polyester according to the liquid crystal polyester composition according to an embodiment of the present invention may be a liquid crystal polyester, a liquid crystal polyester amide, a liquid crystal polyester ether, or a liquid crystal polyester carbonate. It may be a liquid crystal polyesterimide.
  • the liquid crystalline polyester according to the present invention is preferably a wholly aromatic liquid crystalline polyester in which only an aromatic compound is polymerized as a raw material monomer.
  • Typical examples of the liquid crystal polyester according to the present invention include an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine, and an aromatic diamine. Selected from the group consisting of aromatic dicarboxylic acids and aromatic diols, aromatic hydroxyamines, and aromatic diamines. Those obtained by polymerizing at least one compound; and those obtained by polymerizing a polyester such as polyethylene terephthalate and an aromatic hydroxycarboxylic acid.
  • aromatic hydroxycarboxylic acid the aromatic dicarboxylic acid, the aromatic diol, the aromatic hydroxyamine, and the aromatic diamine are used independently of each other in part or in whole, and polymerizable derivatives of these compounds are used. May be.
  • Polymerizable derivatives of compounds having a carboxy group such as aromatic hydroxycarboxylic acid and aromatic dicarboxylic acid include those obtained by converting a carboxy group into an alkoxycarbonyl group or an aryloxycarbonyl group (ie, ester), carboxy Examples include those obtained by converting a group into a haloformyl group (namely, acid halide) and those obtained by converting a carboxy group into an acyloxycarbonyl group (namely, acid anhydride).
  • Polymerizable derivatives of compounds having a hydroxy group such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxyamines are those obtained by acylating a hydroxy group and converting it to an acyloxyl group (that is, acylated products) ).
  • Examples of the polymerizable derivative of a compound having an amino group such as an aromatic hydroxyamine and an aromatic diamine include those obtained by acylating an amino group and converting it to an acylamino group (that is, acylated products). .
  • the liquid crystalline polyester according to the present invention preferably has a repeating unit represented by the following formula (1) (hereinafter sometimes referred to as “repeating unit (1)”), and the repeating unit (1) and the following formula:
  • the repeating unit represented by (2) hereinafter sometimes referred to as “repeating unit (2)”
  • the repeating unit represented by the following formula (3) hereinafter referred to as “repeating unit (3)” More preferably).
  • Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group
  • Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the formula (4)
  • X and Y each independently represent an oxygen atom or an imino group (—NH—);
  • the hydrogen atom contained in the group represented by Ar 1 , Ar 2 or Ar 3 is independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms.
  • Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group; Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, or an alkylidene group having 1 to 10 carbon atoms;
  • the hydrogen atom contained in the group represented by Ar 4 or Ar 5 may be independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl group having 1 to 10 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, and n-hexyl group. 2-ethylhexyl group, n-octyl group, n-decyl group and the like.
  • Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 1-naphthyl group and 2-naphthyl group.
  • the alkyl group having 1 to 10 carbon atoms or the aryl group having 6 to 20 carbon atoms is substituted with the halogen atom, the alkyl group having 1 to 10 carbon atoms or the aryl group having 6 to 20 carbon atoms,
  • the number of groups substituting the atoms is preferably 2 or less, more preferably 1 for each group represented by Ar 1 , Ar 2 or Ar 3 , independently of each other.
  • alkylidene group having 1 to 10 carbon atoms examples include methylene group, ethylidene group, isopropylidene group, n-butylidene group and 2-ethylhexylidene group.
  • the hydrogen atom is substituted.
  • the number of groups to be formed is preferably 2 or less, more preferably 1 for each group represented by Ar 4 or Ar 5 , independently of each other.
  • the repeating unit (1) is a repeating unit derived from a predetermined aromatic hydroxycarboxylic acid.
  • a repeating unit derived from p-hydroxybenzoic acid ie, Ar 1 is a p-phenylene group
  • a repeating unit derived from 6-hydroxy-2-naphthoic acid ie, Ar 1 is 2 , 6-naphthylene group.
  • the repeating unit (2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid.
  • Ar 2 is a p-phenylene group (for example, a repeating unit derived from terephthalic acid), Ar 2 is an m-phenylene group (for example, a repeating unit derived from isophthalic acid) And Ar 2 is a 2,6-naphthylene group (for example, a repeating unit derived from 2,6-naphthalenedicarboxylic acid).
  • the repeating unit (3) is a repeating unit derived from a predetermined aromatic diol, aromatic hydroxylamine or aromatic diamine.
  • Ar 3 is a p-phenylene group (for example, a repeating unit derived from hydroquinone, p-aminophenol or p-phenylenediamine), and Ar 3 is a 4,4′-biphenylylene group.
  • a repeating unit derived from 4,4′-dihydroxybiphenyl, 4-amino-4′-hydroxybiphenyl or 4,4′-diaminobiphenyl is preferred.
  • “derived from” means that the chemical structure changes due to polymerization.
  • the liquid crystalline polyester according to the present invention includes the repeating unit (1), the repeating unit (2) and the repeating unit (3), the total content of the repeating unit (1), the repeating unit (2) and the repeating unit (3).
  • the content of the repeating unit (1) is preferably 30 mol% or more, more preferably 30 mol% or more and 80 mol% or less, still more preferably 40 mol% or more and 70 mol% or less, more More preferably, it is 45 mol% or more and 65 mol% or less.
  • the content of the repeating unit (2) is preferably 35 mol when the total content of the repeating unit (1), the repeating unit (2) and the repeating unit (3) in the liquid crystal polyester is 100 mol%. % Or less, more preferably 10 mol% or more and 35 mol% or less, further preferably 15 mol% or more and 30 mol% or less, and still more preferably 17.5 mol% or more and 27.5 mol% or less.
  • the content of the repeating unit (3) is preferably 35 mol when the total content of the repeating unit (1), the repeating unit (2) and the repeating unit (3) in the liquid crystal polyester is 100 mol%. % Or less, more preferably 10 mol% or more and 35 mol% or less, further preferably 15 mol% or more and 30 mol% or less, and still more preferably 17.5 mol% or more and 27.5 mol% or less.
  • the liquid crystalline polyester is easily improved in melt fluidity, heat resistance, strength and rigidity.
  • the ratio between the content of the repeating unit (2) and the content of the repeating unit (3) is expressed as [content of repeating unit (2)] / [content of repeating unit (3)] (mol / mol). Then, it is preferably 0.9 / 1 to 1 / 0.9, more preferably 0.95 / 1 to 1 / 0.95, and still more preferably 0.98 / 1 to 1 / 0.98.
  • the liquid crystal polyester according to the present invention may have two or more repeating units (1) to (3) independently of each other.
  • the liquid crystalline polyester may have repeating units other than the repeating units (1) to (3), and the content thereof is when the total content of all repeating units constituting the liquid crystalline polyester is 100 mol%. , Preferably 0 mol% or more and 10 mol% or less, more preferably 0 mol% or more and 5 mol% or less.
  • the content of at least one repeating unit selected from the group consisting of repeating units (1) to (3) in the liquid crystal polyester according to the present invention is the total content of all the repeating units constituting the liquid crystal polyester.
  • the amount is 100 mol%, it is preferably 90 mol% or more and 100 mol% or less, more preferably 95 mol% or more and 100 mol% or less.
  • each of X and Y in the repeating unit (3) is an oxygen atom (that is, a repeating unit derived from an aromatic diol).
  • the repeating unit in which each of X and Y is an oxygen atom can be controlled to adjust the melt viscosity of the liquid crystal polyester.
  • a high molecular weight liquid crystal polyester having high heat resistance, strength and rigidity is produced with good operability.
  • the melt polymerization may be performed in the presence of a catalyst.
  • this catalyst include metal compounds such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate and antimony trioxide, such as 4- (dimethylamino) pyridine and 1-methylimidazole.
  • the flow starting temperature of the liquid crystalline polyester according to the present invention is preferably 270 ° C. to 400 ° C., more preferably 280 ° C. to 380 ° C.
  • the liquid crystal polyester composition has better flowability and heat resistance (for example, blister resistance when the molded body is a connector for an electronic component such as a CPU socket). ) Becomes better.
  • thermal degradation is further suppressed during melt molding when a molded body is produced from the liquid crystalline polyester.
  • flow start temperature is also called flow temperature or flow temperature, using a capillary rheometer while increasing the temperature at a rate of 4 ° C / min under a load of 9.8 MPa (100 kg / cm 2 ),
  • this is a temperature showing a viscosity of 4800 Pa ⁇ s (48000 poise), which is a measure of the molecular weight of liquid crystal polyester (Naoyuki Koide) , “Liquid Crystal Polymer—Synthesis / Molding / Application—”, CMC Co., Ltd., June 5, 1987, p. 95).
  • Liquid crystalline polyester may be used individually by 1 type, and may use 2 or more types together. When using 2 or more types together, the combination and ratio can be set arbitrarily.
  • the content of the liquid crystal polyester according to the present invention is preferably 48 to 61% by mass with respect to the total mass of the liquid crystal polyester composition.
  • the fibrous filler contained in the liquid crystal polyester composition according to one embodiment of the present invention has a number average fiber diameter of 15 ⁇ m or more and 25 ⁇ m or less, preferably 16 ⁇ m or more and 24 ⁇ m or less.
  • a fibrous filler may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the fibrous filler examples include glass fiber; carbon fiber such as pan-based carbon fiber and pitch-based carbon fiber; ceramic fiber such as silica fiber, alumina fiber and silica-alumina fiber; and metal fiber such as stainless steel fiber. It is done.
  • whiskers such as potassium titanate whisker, barium titanate whisker, wollastonite whisker, aluminum borate whisker, silicon nitride whisker and silicon carbide whisker can also be exemplified.
  • glass fiber, potassium titanate whisker, wollastonite whisker and aluminum borate whisker are preferable, and glass fiber is more preferable.
  • examples of the glass fiber include glass fibers produced by various methods such as a long fiber type chopped glass fiber and a short fiber type milled glass fiber, and two or more of them are used. May be used in combination.
  • the glass fiber may be treated with a surface treatment agent such as a coupling agent such as a silane coupling agent and a titanium coupling agent.
  • a surface treatment agent such as a coupling agent such as a silane coupling agent and a titanium coupling agent.
  • weakly alkaline glass fibers are preferred.
  • a glass fiber having a silicon oxide content of 50 to 80% by mass with respect to the total mass of the glass fiber is preferred, and a glass having a silicon oxide content of 65 to 77% by mass with respect to the total mass of the glass fiber. Fiber is more preferred.
  • the glass fiber may be coated or converged with a thermoplastic resin such as urethane resin, acrylic resin, ethylene / vinyl acetate copolymer, or thermosetting resin such as epoxy resin.
  • a thermoplastic resin such as urethane resin, acrylic resin, ethylene / vinyl acetate copolymer, or thermosetting resin such as epoxy resin.
  • fibrous organic fillers include polyester fibers and aramid fibers.
  • the weight average fiber length of the fibrous filler is preferably more than 300 ⁇ m and less than 600 ⁇ m, more preferably more than 300 ⁇ m and less than 600 ⁇ m, and further preferably more than 350 ⁇ m and less than 500 ⁇ m.
  • the weight average fiber length of the fibrous filler is in the above range, the occurrence of warpage before and after reflow tends to be further suppressed.
  • the “number average fiber diameter” and “weight average fiber length” of the fibrous filler can be measured by observing with a microscope such as a digital microscope. A specific method will be described below. 1 g of resin composition pellets are heated at 600 ° C. for 4 hours to be incinerated. After the ashing residue containing the fibrous filler is dispersed in the ethylene glycol solution and ultrasonic waves are applied for 3 minutes, a few drops of the dispersion are dropped on the slide glass. After loosening so that the fibrous filler does not overlap on the slide glass, a cover glass is placed.
  • the weight average fiber length is measured.
  • the weight average fiber length (L w ) can be calculated by the following equation, where N i is the number of fibers having a fiber length (L i ), density ( ⁇ i ), and fiber diameter (r i ). it can.
  • the liquid crystalline polyester composition of the present embodiment preferably contains 5 to 26 parts by mass of fibrous filler with respect to 100 parts by mass of the above-mentioned liquid crystalline polyester, and contains 6 to 25 parts by mass. It is more preferable to contain 7 parts by mass or more and 24 parts by mass or less, and it is particularly preferable to contain 9 parts by mass or more and 23 parts by mass or less.
  • the molded product molded from the liquid crystal polyester composition has a strength that hardly deforms under high temperature conditions. be able to. Moreover, by being below the said upper limit, the filling property of the said liquid crystalline polyester composition will become favorable, and also there exists a tendency for the intensity
  • the content of the fibrous filler is preferably 3 to 15% by mass with respect to the total mass of the liquid crystal polyester composition.
  • Plate-shaped filler examples include talc, mica, graphite, wollastonite, glass flake, barium sulfate and calcium carbonate. Mica may be muscovite, phlogopite, fluorine phlogopite, or tetrasilicon mica. Talc and mica are preferable, and mica is more preferable.
  • a plate-shaped filler may be used individually by 1 type, and may be used in combination of 2 or more type. The plate-like filler may be treated with the surface treatment agent.
  • the volume average particle size of the plate-like filler contained in the liquid crystal polyester composition of the present embodiment is preferably 15 ⁇ m or more and 40 ⁇ m or less, preferably 20 ⁇ m or more, from the viewpoint of improving resistance to cracks of a molded article formed from the liquid crystal polyester composition. 30 ⁇ m or less is more preferable, and 22 ⁇ m or more and 28 ⁇ m or less is particularly preferable.
  • molded from a liquid crystalline polyester composition to improve more that the volume average particle diameter of a plate-shaped filler is more than the said lower limit.
  • the volume average particle diameter of the plate-like filler can be determined by a laser diffraction method, and specifically can be measured by a laser diffraction method under the following conditions.
  • Measuring conditions Measuring device: Laser diffraction / scattering particle size distribution measuring device (HORIBA Co., Ltd .; LA-950V2) Particle refractive index: 1.53-0.1i Dispersion medium: water Dispersion medium refractive index: 1.33
  • the volume average particle diameter of the plate-like filler is that of the plate-like filler before being contained in the liquid crystal polyester composition. It can also be determined by measuring the volume average particle size.
  • the liquid crystal polyester composition of the present embodiment preferably contains 45 to 82 parts by mass of a plate-like filler with respect to 100 parts by mass of the above-mentioned liquid crystal polyester, and contains 48 to 81 parts by mass. It is more preferable that it is 49 parts by mass or more and 80 parts by mass or less. Moreover, 50 mass parts or more and 80 mass parts or less may be sufficient as another side surface.
  • the liquid crystalline polyester composition of the present invention further contains other components that do not fall under any of the fibrous filler, the plate-like filler, and the liquid crystalline polyester within a range that does not hinder the effects of the present invention. It may be.
  • the other components include particulate inorganic fillers (silica, alumina, titanium oxide, boron nitride, silicon carbide, calcium carbonate, etc.); mold release improvers such as fluororesins and metal soaps; dyes, pigments, etc. Conventional additives such as colorants; antioxidants; heat stabilizers; ultraviolet absorbers; antistatic agents; As the colorant, carbon black is preferable.
  • Examples of the other components include those having an external lubricant effect such as higher fatty acids, higher fatty acid esters, higher fatty acid metal salts, and fluorocarbon surfactants.
  • Examples of the other components include polyamides, polyesters other than liquid crystal polyester, polyphenylene sulfide, polyether ketone, polycarbonate, polyphenylene ether and modified products thereof, polysulfone, polyether sulfone, polyether imide, and other thermoplastic resins.
  • a thermosetting resin such as a phenol resin, an epoxy resin, or a polyimide resin may also be used.
  • the content of the other component is preferably 0 part by mass or more and 20 parts by mass or less when the content of the liquid crystal polyester of the present embodiment is 100 parts by mass.
  • the content of the other components is preferably 0 to 16% by mass with respect to the total mass of the liquid crystal polyester composition.
  • the liquid crystal polyester composition of the present invention can be produced by blending raw material components, and the blending method is not particularly limited. Examples thereof include a method in which the fibrous filler, the plate-like filler, the liquid crystal polyester, and, if desired, the other components are separately supplied to the melt-kneader. Further, these raw material components may be premixed using a mortar, Henschel mixer, ball mill, ribbon blender or the like and then supplied to the melt kneader. Moreover, the pellet produced by melt-kneading the said liquid crystalline polyester and the said fibrous filler, and the pellet produced by melt-kneading the said liquid crystalline polyester and the said plate-like filler are by a desired compounding ratio. You may mix.
  • the fibrous filler a material covered or converged with a thermoplastic resin such as urethane resin, acrylic resin, ethylene / vinyl acetate copolymer, or thermosetting resin such as epoxy resin may be used.
  • the liquid crystal polyester composition of the present invention blends the liquid crystal polyester, the fibrous filler, and the plate-like filler, creates a master batch pellet, and includes the fibrous filler during molding processing. It can also be obtained by dry blending with unpelled pellets. In this case, the content of the fibrous filler and the plate-like filler after dry blending only needs to be the predetermined content.
  • the second aspect of the present invention is a molded body obtained by molding the liquid crystal polyester composition of the first aspect of the present invention.
  • the liquid crystal polyester composition is suitable for producing a molded article having excellent fluidity during molding and high mechanical strength.
  • the method for producing the molded body may be a known method such as an injection molding method.
  • the molded body of this embodiment is preferably a connector. Even if the connector obtained by molding the liquid crystal polyester composition is thin, the connector is highly resistant to cracks.
  • the connector is preferably a CPU socket.
  • FIG. 1A is a schematic plan view illustrating a connector molded from the liquid crystal polyester composition
  • FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A
  • FIG. 2 is an enlarged view of region B in FIG. 1A.
  • the connector 100 shown here is a CPU socket, has a square plate shape in plan view, and has a square opening 101 at the center.
  • the outer peripheral portion and the inner peripheral portion of the connector 100 are formed so that the back surface protrudes, and constitute an outer frame portion 102 and an inner frame portion 103, respectively.
  • 794 pin insertion holes 104 having a square horizontal cross section are provided in a matrix.
  • the part which divides pin insertion hole 104, ie, the minimum thickness part 201 is a grid
  • the dimensions of the connector 100 in the field of view of FIG. 1A can be arbitrarily set according to the purpose.
  • the outer dimension is 42 mm ⁇ 42 mm
  • the dimension of the opening 101 is 14 mm ⁇ 14 mm.
  • the thickness of the connector 100 in the field of view of FIG. 1B is 4 mm in the outer frame portion 102 and the inner frame portion 103, and the region sandwiched between them (that is, the thickness of the minimum thickness portion 201 in the enlarged view of FIG. 2). 3) is 3 mm.
  • the cross-sectional dimension of the pin insertion hole 104 in FIG. 1A or 1B is 0.7 mm ⁇ 0.7 mm, and the pitch P shown in the enlarged view of FIG.
  • the shortest distance is 1 mm.
  • the width (the wall thickness of the lattice, that is, the shortest distance between adjacent pin insertion holes 104) W of the minimum thickness portion 201 shown in the enlarged view of FIG. 2 is 0.2 mm.
  • the dimension shown here is an example and the number of the pin insertion holes 104 can be arbitrarily set according to the purpose.
  • the outer dimension of the connector may be 40 mm ⁇ 40 mm to 100 mm ⁇ 100 mm as one side surface, and the dimension of the opening may be 10 mm ⁇ 10 mm to 40 mm ⁇ 40 mm.
  • the thickness of the connector may be 2 to 6 mm for the outer frame portion and the inner frame portion, and the region sandwiched between them (that is, the thickness of the minimum thickness portion) may be 2 to 5 mm.
  • the cross-sectional dimension of the pin insertion hole in the connector may be 0.2 to 0.5 mm, the pitch P may be 0.8 to 1.5 mm, and the width of the minimum thickness portion is 0.1 to 0 It may be 4 mm.
  • the molding temperature is preferably 300 to 400 ° C.
  • the injection speed is 100 to 300 mm / second
  • the injection peak pressure is 50 to 150 MPa.
  • one aspect of the method for producing a molded body of the present invention is: A step of obtaining a liquid crystal polyester composition by melt-kneading liquid crystal polyester, a fibrous filler having a number average fiber diameter of 15 ⁇ m or more and 25 ⁇ m or less, a plate-like filler, and optionally other components, and the obtained Injection molding the liquid crystalline polyester composition under conditions of a molding temperature of 300 to 400 ° C., an injection speed of 100 to 300 mm / sec, and an injection peak pressure of 50 to 150 MPa
  • the liquid crystal polyester composition is a liquid crystal polyester composition in which the total amount of the fibrous filler and the plate filler is 65 parts by mass or more and 105 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester.
  • the step of obtaining the liquid crystal polyester composition includes pellets prepared by melt-kneading the liquid crystal polyester and the fibrous filler, and pellets prepared by melt-kneading the liquid crystal polyester and the plate-like filler. And the step of obtaining the liquid crystal polyester composition by mixing.
  • the molded body molded from the liquid crystal polyester composition of the present invention is less likely to be deformed under high temperature conditions. For this reason, the molded object shape
  • liquid crystal polyester composition of the present invention is: Contains liquid crystalline polyester, fibrous filler, platy filler, and optionally other ingredients;
  • the liquid crystal polyester is repeating units derived from p-hydroxybenzoic acid; At least one repeating unit selected from the group consisting of repeating units derived from terephthalic acid and repeating units derived from isophthalic acid;
  • a liquid crystalline polyester comprising a repeating unit derived from 4,4′-dihydroxybiphenyl;
  • the fibrous filler has a number average fiber diameter of 15 ⁇ m or more and 25 ⁇ m or less, preferably 16 ⁇ m or more and 24 ⁇ m or less, more preferably 17 ⁇ m to 23 ⁇ m;
  • the plate-like filler is at least one selected from the group consisting of talc and mica, and has a volume average particle size of 15 ⁇ m to 40 ⁇ m, preferably 20 ⁇ m to 30 ⁇ m, more preferably 22 ⁇ m to 28 ⁇ m.
  • the content of the fibrous filler is 5 parts by mass to 26 parts by mass, preferably 6 parts by mass to 25 parts by mass, more preferably 7 parts by mass to 24 parts by mass with respect to 100 parts by mass of the liquid crystalline polyester. Particularly preferably from 9 parts by weight to 23 parts by weight;
  • the content of the plate-like filler is 45 to 82 parts by mass, preferably 48 to 81 parts by mass, and more preferably 49 to 80 parts by mass with respect to 100 parts by mass of the liquid crystalline polyester.
  • the total content of the fibrous filler and the plate-like filler is 65 parts by mass or more and 105 parts by mass or less, preferably 70 parts by mass or more and 90 parts by mass or less, more preferably 75 parts by mass or more and 85 parts by mass or less, and still more preferably 78 parts by mass or more and 83 parts by mass with respect to 100 parts by mass of the liquid crystalline polyester.
  • the fibrous filler is a liquid crystalline polyester composition having a weight average fiber length of more than 300 ⁇ m and less than 600 ⁇ m, preferably more than 350 ⁇ m and not more than 500 ⁇ m, or may be 308 to 633 ⁇ m.
  • Example 1 A twin-screw extruder (Ikegai Iron Works Co., Ltd.) having the liquid crystal polyester 1 obtained in Production Example 1 described above, glass fiber 2 having a number average fiber diameter of 17 ⁇ m, and talc 1 in the ratio [parts by mass] shown in Table 1.
  • Manufactured, PCM-30HS, screw rotation: same direction, L / D 44), and melt-kneaded at 340 ° C. and pelletized.
  • the obtained pellets were injection-molded under the molding conditions of a cylinder temperature of 370 ° C. and a mold temperature of 130 ° C. using an injection molding machine (“ROBOSHOT S-2000i 30B” manufactured by FANUC CORPORATION). A model CPU socket molding was obtained.
  • ROBOSHOT S-2000i 30B manufactured by FANUC CORPORATION
  • Example 2 In the same manner as in Example 1, except that the liquid crystal polyester 1 obtained in Production Example 1 above, the glass fiber 1 having a number average fiber diameter of 23 ⁇ m, and talc 2 were used in the ratios shown in Table 1, 1021 A pin-compatible model CPU socket molding was obtained.
  • the cracks of the model CPU socket molded bodies of Examples 1-2 and Comparative Examples 1-5 obtained by the above method were measured by the following method. First, five injection molded bodies (model CPU sockets corresponding to 1021 pins) of Examples 1 and 2 and Comparative Examples 1 to 5 obtained by the above method were prepared, and an oven (DN63H manufactured by Yamato Scientific Co., Ltd.) was prepared. Used and heated at 260 ° C. for 4 minutes and 40 seconds to add thermal history to the five shaped bodies. This temperature condition is a temperature condition that assumes a reflow process when an electronic device is manufactured using a CPU socket.
  • the molded body was allowed to cool to room temperature and then heated using a 15 ⁇ zoom stereo microscope (ZMM-45T2 manufactured by Sigma Koki Co., Ltd.), and 5 samples of the molded body after heating (Examples 1-2 and Comparative Example 4). 5) or 3 samples (Comparative Examples 1 to 3) were observed, the number of cracks generated on the wall surface of the CPU socket was measured, and the average of the measured values was taken as the number of CPU cracks.
  • a reactor equipped with a stirrer, a torque meter, a nitrogen gas inlet tube, a thermometer and a reflux condenser 994.5 g (7.2 mol) of p-hydroxybenzoic acid, 4,4′- 446.9 g (2.4 mol) of dihydroxybiphenyl, 299.1 g (1.8 mol) of terephthalic acid, 99.7 g (0.6 mol) of isophthalic acid, 1347.6 g (13.2 mol) of acetic anhydride and 1- 0.2 g of methylimidazole was charged, and the inside of the reactor was sufficiently replaced with nitrogen gas.
  • the obtained liquid crystal polyester 2 had a flow start temperature of 312 ° C.
  • the obtained solid is pulverized to a particle size of 0.1 to 1 mm with a pulverizer, then heated from room temperature to 250 ° C. over 1 hour in a nitrogen atmosphere, and then heated from 250 ° C. to 295 ° C. over 5 hours.
  • the solid phase polymerization was carried out by maintaining at 295 ° C. for 3 hours. After solid phase polymerization, the mixture was cooled to obtain powdered liquid crystal polyester 3.
  • the obtained liquid crystal polyester 3 had a flow start temperature of 330 ° C.
  • the obtained solid is pulverized to a particle size of 0.1 to 1 mm with a pulverizer, then heated from room temperature to 250 ° C. over 1 hour in a nitrogen atmosphere, and heated from 250 ° C. to 320 ° C. over 5 hours.
  • the solid phase polymerization was carried out by holding at 320 ° C. for 3 hours. After solid phase polymerization, the mixture was cooled to obtain powdered liquid crystal polyester 4.
  • the obtained liquid crystal polyester 4 had a flow start temperature of 362 ° C.
  • LCP2 Liquid crystalline polyester 2
  • LCP3 Liquid crystalline polyester 3
  • LCP4 Liquid crystalline polyester 4
  • B1 Chopped strand glass fiber, “CS3J-260S” manufactured by Nittobo Co., Ltd., number average fiber diameter 10 ⁇ m.
  • B2 Chopped strand glass fiber, “CS03 TAFT-692” manufactured by Nippon Electric Glass Co., Ltd., number average fiber diameter 23 ⁇ m.
  • B3 Chopped strand glass fiber, “ECS03T-747N” manufactured by Nippon Electric Glass Co., Ltd., number average fiber diameter 17 ⁇ m.
  • C1 Mica, manufactured by Yamaguchi Mica Co., Ltd., “YM-25S”, volume average particle size 25 ⁇ m
  • C2 Mica, manufactured by Yamaguchi Mica Co., Ltd., “AB-25S”, volume average particle size 25 ⁇ m.
  • D1 Talc, manufactured by Nippon Talc Co., Ltd., “Rose K”, volume average particle size 17 ⁇ m.
  • D2 Talc, manufactured by Fuji Talc Kogyo Co., Ltd., “NK-64”, volume average particle size 23 ⁇ m
  • the pellets obtained in Examples 3 to 15 and Comparative Examples 6 to 12 were measured for physical properties and tested in the following manner.
  • (1) Molding of CPU socket CPU socket was injection-molded on the following molding conditions from the obtained liquid crystal polyester composition pellets.
  • the shape of the molded CPU socket is as follows. Has a lattice structure inside the outer frame, has an inner frame inside the lattice part, has an opening inside the inner frame, has an outer dimension of 72 mm ⁇ 72 mm, and an outer frame thickness of 4 .5 mm, inner frame thickness is 3.0 mm, inner frame inner dimension is 28 mm ⁇ 28 mm, pitch at the lattice portion is 1.0 mm, pin insertion hole dimension is 0.6 ⁇ 0.6 mm, pin hole Planar connector with several 2556 pins
  • Molding machine FANUC ROBOSHOT S-2000i30B Cylinder temperature: 360-360-350-340 ° C (when liquid crystalline polyesters 2 and 3 are used) 370-370-360-350 ° C (when liquid crystalline polyester 4 is used) Mold temperature: 100 ° C Injection speed: 300mm / sec Holding pressure: 20 MPa Weighing: 53mm Suckback: 5mm Screw rotation speed: 100rpm Screw back pressure: 1MPa Gate: 4-point fan gate
  • Warpage evaluation Five CPU sockets obtained by the above method were prepared. About each, using the flatness measurement module (Cores Co., Ltd., Core9030c), with respect to the bottom face of the CPU socket formed above, the amount of warpage was measured at intervals of 2 mm along the outer frame portion and the inner frame portion. . For the measurement of the warpage amount, an average value of the obtained warpage amounts (5 data for each CPU socket) was calculated using the least square plane method, and this average value was used as the warpage amount before reflow. Furthermore, for the same CPU socket, reflow was performed in which the temperature was raised from 25 ° C. to 250 ° C., held at 250 ° C. for 1 minute, and then lowered to 50 ° C.
  • the warped CPU socket was warped in the same manner as described above.
  • the amount was measured, and the average value of the amount of warpage was calculated. This average value was taken as the amount of warpage after reflow.
  • the amount of warping by the least square plane method means that the least square plane is obtained by calculation from three-dimensional measurement data measured along the outer frame portion and the inner frame portion by the flatness measurement module, and the reference plane is defined as a warpage amount of 0. This means the maximum value of warpage from the reference plane.
  • Example 14 Although the number of cracks was sufficiently small, the fibrous filler content was more than 26 parts by mass, and the plate-like filler content was less than 45 parts by mass. Became larger.
  • Example 15 although the number of cracks was sufficiently small, the amount of warpage before and after reflow increased because the content of the fibrous filler exceeded 26 parts by mass.
  • Example 5 the composition was the same as in Example 7. However, since the weight average fiber length of the fibrous filler exceeded 600 ⁇ m, the amount of warpage before and after reflow was larger than that in Example 7.
  • Example 9 has the same composition as that of Example 8, since the weight average fiber length of the fibrous filler exceeded 600 ⁇ m, the warpage amount before and after reflow was larger than that of Example 8.
  • this invention can provide the liquid crystalline polyester composition which can improve the tolerance with respect to the crack in the said molded object, and the molded object shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Connector Housings Or Holding Contact Members (AREA)

Abstract

液晶ポリエステルと、数平均繊維径が15μm以上25μm以下である繊維状充填材と、板状充填材とを含有し、この繊維状充填材とこの板状充填材の合計含有量が、この液晶ポリエステル100質量部に対し、65質量部以上105質量部以下である液晶ポリエステル組成物。

Description

液晶ポリエステル組成物及び成形体
 本発明は、液晶ポリエステル組成物及び成形体に関する。
 本願は、2015年12月9日に、日本に出願された特願2015-240453号に基づき優先権を主張し、その内容をここに援用する。
 電子部品用コネクタとしては、例えば、CPU(中央処理装置)を電子回路基板に着脱自在に実装するためのCPUソケットが知られている。そしてCPUソケットの形成材料には、耐熱性等に優れた液晶ポリエステル樹脂が採用されている。
 エレクトロニクス機器の高性能化等に伴って、電子回路基板に実装するCPUも、回路規模が増大している。一般に、CPUが大規模化するほど、接続ピンの数が増大する。近年では、700~1000本程度の接続ピンを有するCPUが知られている。CPUの接続ピンは、そのCPUの底面に、例えば行列状に配置される。CPUの大きさが一定の場合、これら接続ピンのピッチは、接続ピンの数が多いほど、小さくなる傾向にある。
 CPUソケットは、CPUの各接続ピンに対応させて多数のピン挿入穴を有しており、格子を形成している。そして、接続ピンのピッチが小さくなるほど、ピン挿入穴のピッチも小さくなり、ピン挿入穴同士を区切る樹脂、すなわち格子の壁は薄くなる。このため、CPUソケットでは、ピン挿入穴が多いほど、リフロー実装やピン挿入等の応力が壁に加わり、この応力により格子の破壊(以下、クラックと称することがある)が生じ易くなる。
 このように、CPUソケット等の電子部品用コネクタには、成形後のクラックに対する耐性を向上させることが求められる。
 従来、成形体の機械強度を向上させるため、液晶性ポリエステルに繊維状充填材を配合した液晶ポリエステル組成物が知られている。
 例えば特許文献1には、所定の液晶ポリエステル樹脂100重量部に対して平均繊維径が3μm以上10μm未満のガラス繊維と平均繊維径が10μm以上20μm未満のガラス繊維を併用して5重量部以上200重量部以下充填して得られる強化液晶樹脂組成物が開示されている。
 特許文献2には、(A)平均繊維径が5~30μm、繊維長10μm以下のものを除外した重量平均繊維長が250~350μmであり、且つ繊維長700μm以上のものの割合が5重量%以内である繊維状充填剤と(B)平均粒子径が0.5~200μmである板状充填剤を配合してなり、組成物中の(A)、(B)成分の総充填量が40~60重量%であり、(A)成分の重量分率が10~20重量%、(B)成分の重量分率が30~40重量%である液晶性ポリマー組成物から成形され、成形品のXY軸面、YZ軸面、XZ軸面の何れの軸面に対しても対称性がない非対称電子部品が記載されている。
 特許文献3には、(A)p-ヒドロキシ安息香酸残基が55モル%以下であり、融点が330℃以上の液晶性ポリマー、(B)板状の無機充填剤及び(C)重量平均繊維長が250~600μmの繊維状充填剤からなり、(B)成分が組成物全体に対し25~35重量%、(C)成分が組成物全体に対し10~25重量%、且つ(B)成分と(C)成分の合計が組成物全体に対し40~50重量%である複合樹脂組成物から形成され、外枠の内部に格子構造を有し、更に格子構造の内部に開口部を有する格子部のピッチ間隔が1、5mm以下、外枠部と格子部の厚みの比率が0.8以下の構造に特徴がある平面状コネクタが記載されている。
 特許文献4には、液晶ポリエステル100質量部と、繊維状充填材及び板状充填材の合計65質量部以上100質量部以下と、を有し、前記繊維状充填材は、数平均繊維径が5μm以上15μm以下であって数平均繊維長が200μmより長く400μm未満であり、前記板状充填材に対する前記繊維状充填材の質量比が、3以上15以下であり、且つ、動開始温度が250℃以上314℃未満である液晶ポリエステル組成物が記載されている。
 特許文献5には、液晶ポリエステルと、体積平均粒径14μm以上の板状充填材と、繊維状充填材とを含む液晶ポリエステル組成物であって、前記板状充填材及び前記繊維状充填材の合計含有量が、液晶ポリエステル組成物全量に対して、45~55質量%であり、前記板状充填材の含有量(A)に対する前記繊維状充填材の含有量(B)の質量割合(B/A)が、0.5を超え0.65以下である液晶ポリエステル組成物が記載されている。
特開平3-243648号公報 国際公開第2008-023839号公報 国際公開第2009-141996号公報 特開2013-194165号公報 特開2012-107221号公報
 上述の特許文献1~5に記載された液晶ポリエステル組成物は、CPUソケット等の成形体の成形後のクラックに対する耐性は必ずしも十分ではなく、改善が求められている。
本発明はこのような事情に鑑みてなされたものであって、耐クラック性に優れた成形体を与える液晶ポリエステル組成物を提供することを目的とする。また、このような液晶ポリエステル組成物の製造方法、及び前記液晶ポリエステル組成物から成形される成形体を提供することをあわせて目的とする。
 本発明は、以下の[1]~[8]の態様を含む。
[1]液晶ポリエステルと、数平均繊維径が15μm以上25μm以下である繊維状充填材と、板状充填材とを含有し、
前記繊維状充填材と前記板状充填材の合計含有量が、前記液晶ポリエステル100質量部に対し、65質量部以上105質量部以下である
液晶ポリエステル組成物。
[2]前記液晶ポリエステル100質量部に対し、前記繊維状充填材の含有量が5質量部以上26質量部以下であり、前記板状充填材の含有量が45質量部以上82質量部以下である、[1]に記載の液晶ポリエステル組成物。
[3]前記繊維状充填材の重量平均繊維長が300μm超、600μm以下である[1]又は[2]に記載の液晶ポリエステル組成物。
[4]前記板状充填材の体積平均粒径が15μm以上40μm以下である[1]~[3]のいずれか1つに記載の液晶ポリエステル組成物。
[5]前記板状充填材がマイカである[1]~[4]のいずれか1つに記載の液晶ポリエステル組成物。
[6][1]~[5]のいずれか1つに記載の液晶ポリエステル組成物から成形される成形体。
[7]前記成形体がコネクタである[6]に記載の成形体。
[8]前記コネクタがCPUソケットである[7]に記載の成形体。
 本発明によれば、耐クラック性に優れた成形体を与える液晶ポリエステル組成物を提供することができる。また、このような液晶ポリエステル組成物の製造方法、及び前記液晶ポリエステル組成物から成形される成形体を提供することができる。
本発明の一実施形態であるコネクタを例示する概略平面図である。( 図1AのA-A線における断面図である。 本発明の一実施形態であるコネクタを例示する概略図であり、図1Aにおける領域Bの拡大図である。
<液晶ポリエステル組成物>
本発明の第1の態様である液晶ポリエステル組成物は、液晶ポリエステルと、数平均繊維径が15μm以上25μm以下である繊維状充填材と、板状充填材とを含有し、前記繊維状充填材と前記板状充填材の合計含有量が、前記液晶ポリエステル100質量部に対し、65質量部以上105質量部以下である液晶ポリエステル組成物である。
 かかる液晶ポリエステル組成物は、数平均繊維径が15μm以上25μm以下である繊維状充填材を含有し、さらに、前記繊維状充填材と板状充填材との合計含有量が、上記特定の範囲であることにより、前記液晶ポリエステル組成物から成形される成形体は、高温条件下(例えばリフロー加熱時の温度である200~250℃)での変形が生じにくい。このため、本発明の液晶ポリエステル組成物から成形される成形体は、クラックに対する耐性が向上し、クラックの発生を抑制できる。
 液晶ポリエステル100質量部に対する、繊維状充填材と板状充填材との合計含有量は、好ましくは70質量部以上90質量部以下であり、より好ましくは75質量部以上85質量部以下であり、さらに好ましくは78質量部以上83質量部以下である。また、別の側面として、液晶ポリエステル100質量部に対する、繊維状充填材と板状充填材の合計含有量は、65質量部以上100質量部以下であってもよく、67質量部以上100質量部以下であってもよく、67質量部以上82質量部以下であってもよい。 繊維状充填材と板状充填材との合計の含有量が上記下限値以上であると、液晶ポリエステル組成物から成形される成形体のクラックの発生がより抑制される傾向があり、また、上記上限値以下であると、液晶ポリエステル組成物の流動性が十分なものとなる傾向がある。
 本実施形態における液晶ポリエステル組成物において、液晶ポリエステル100質量部に対する繊維状充填材の含有量は5質量部以上26質量部以下であり、板状充填材の含有量は15質量部以上82質量部以下であることが好ましく、繊維状充填材の含有量は7質量部以上55質量部以下であり、板状充填材の含有量は45質量部以上82質量部以下であることが好ましい。
 かかる範囲の繊維状充填材及び板状充填材を含有することによって、リフロー処理前後で反りが少ない成形体を得ることができる。
 液晶ポリエステル組成物は、液晶ポリエステルと、繊維状充填材と、板状充填材とを混ぜ合わせたもの(すなわち、粉末同士を混合したもの)であってもよく、各成分を溶融混練して、例えばペレット状に加工したものであってもよい。
≪液晶ポリエステル≫
 本発明に係る液晶ポリエステルについて説明する。
 本発明の一実施形態である液晶ポリエステル組成物に係る液晶ポリエステルは、液晶ポリエステルであってもよいし、液晶ポリエステルアミドであってもよいし、液晶ポリエステルエーテルであってもよいし、液晶ポリエステルカーボネートであってもよいし、液晶ポリエステルイミドであってもよい。本発明に係る液晶ポリエステルは、原料モノマーとして芳香族化合物のみが重合している全芳香族液晶ポリエステルであることが好ましい。
 本発明に係る液晶ポリエステルの典型的な例としては、芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1つの化合物と、を重合(重縮合)させてなるもの;複数種の芳香族ヒドロキシカルボン酸を重合させてなるもの;芳香族ジカルボン酸と芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物とを重合させてなるもの;及びポリエチレンテレフタレート等のポリエステルと、芳香族ヒドロキシカルボン酸と、を重合させてなるものが挙げられる。ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンは、互いに独立に、一部又は全部に代えて、これらの化合物の重合可能な誘導体が用いられてもよい。
 芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸のようなカルボキシ基を有する化合物の重合可能な誘導体としては、カルボキシ基をアルコキシカルボニル基又はアリールオキシカルボニル基に変換してなるもの(すなわち、エステル)、カルボキシ基をハロホルミル基に変換してなるもの(すなわち、酸ハロゲン化物)、及びカルボキシ基をアシルオキシカルボニル基に変換してなるもの(すなわち、酸無水物)を例示することができる。芳香族ヒドロキシカルボン酸、芳香族ジオール及び芳香族ヒドロキシアミンのようなヒドロキシ基を有する化合物の重合可能な誘導体としては、ヒドロキシ基をアシル化してアシルオキシル基に変換してなるもの(すなわち、アシル化物)を例示することができる。芳香族ヒドロキシアミン及び芳香族ジアミンのようなアミノ基を有する化合物の重合可能な誘導体としては、アミノ基をアシル化してアシルアミノ基に変換してなるもの(すなわち、アシル化物)を例示することができる。
 本発明に係る液晶ポリエステルは、下記式(1)で表される繰返し単位(以下、「繰返し単位(1)」ということがある。)を有することが好ましく、繰返し単位(1)と、下記式(2)で表される繰返し単位(以下、「繰返し単位(2)」ということがある)と、下記式(3)で表される繰返し単位(以下、「繰返し単位(3)」ということがある)と、を有することがより好ましい。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-X-Ar-Y-
[Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表し;
Ar及びArは、互いに独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は式(4)で表される基を表し;
 X及びYは、互いに独立に、酸素原子又はイミノ基(-NH-)を表し;
 Ar、Ar又はArで表される前記基に含まれる水素原子は、互いに独立に、ハロゲン原子、炭素数1~10のアルキル基又は炭素数6~20のアリール基で置換されていてもよい。]
(4)-Ar-Z-Ar
[式(4)中、Ar及びArは、互いに独立に、フェニレン基又はナフチレン基を表し; 
Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又は炭素数1~10のアルキリデン基を表し;
 Ar又はArで表される前記基に含まれる水素原子は、互いに独立に、ハロゲン原子、炭素数1~10のアルキル基又は炭素数6~20のアリール基で置換されていてもよい。]
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 前記炭素数1~10のアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基及びn-デシル基等が挙げられる。
 前記炭素数6~20のアリール基の例としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基及び2-ナフチル基等が挙げられる。
 Ar、Ar又はArで表される基に含まれる水素原子が前記ハロゲン原子、前記炭素数1~10のアルキル基又は前記炭素数6~20のアリール基で置換されている場合、水素原子を置換する基の数は、Ar、Ar又はArで表される基毎に、互いに独立に、好ましくは2個以下であり、より好ましくは1個である。
 前記炭素数1~10のアルキリデン基の例としては、メチレン基、エチリデン基、イソプロピリデン基、n-ブチリデン基及び2-エチルヘキシリデン基等が挙げられる。
 Ar又はArで表される基に含まれる水素原子が前記ハロゲン原子、前記炭素数1~10のアルキル基又は前記炭素数6~20のアリール基で置換されている場合、水素原子を置換する基の数は、Ar又はArで表される基毎に、互いに独立に、好ましくは2個以下であり、より好ましくは1個である。
 繰返し単位(1)は、所定の芳香族ヒドロキシカルボン酸に由来する繰返し単位である。繰返し単位(1)として、p-ヒドロキシ安息香酸に由来する繰返し単位(すなわち、Arがp-フェニレン基)、又は6-ヒドロキシ-2-ナフトエ酸に由来する繰返し単位(すなわち、Arが2,6-ナフチレン基)が好ましい。
 繰返し単位(2)は、所定の芳香族ジカルボン酸に由来する繰返し単位である。繰返し単位(2)としては、Arがp-フェニレン基であるもの(例えば、テレフタル酸に由来する繰返し単位)、Arがm-フェニレン基であるもの(例えば、イソフタル酸に由来する繰返し単位)、Arが2,6-ナフチレン基であるもの(例えば、2,6-ナフタレンジカルボン酸に由来する繰返し単位)が好ましい。
 繰返し単位(3)は、所定の芳香族ジオール、芳香族ヒドロキシルアミン又は芳香族ジアミンに由来する繰返し単位である。繰返し単位(3)としては、Arがp-フェニレン基であるもの(例えば、ヒドロキノン、p-アミノフェノール又はp-フェニレンジアミンに由来する繰返し単位)、及びArが4,4’-ビフェニリレン基であるもの(例えば、4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニル又は4,4’-ジアミノビフェニルに由来する繰返し単位)が好ましい。
 本明細書において「由来」とは 重合するために化学構造が変化することを意味する。
 本発明に係る液晶ポリエステルが、繰返し単位(1)、繰返し単位(2)及び繰返し単位(3)を含む場合、繰返し単位(1)、繰返し単位(2)及び繰返し単位(3)の合計含有量を100モル%としたとき、繰返し単位(1)の含有量は、好ましくは30モル%以上、より好ましくは30モル%以上80モル%以下、さらに好ましくは40モル%以上70モル%以下、よりさらに好ましくは45モル%以上65モル%以下である。
 同様に、繰返し単位(2)の含有量は、液晶ポリエステル中の繰返し単位(1)、繰返し単位(2)及び繰返し単位(3)の合計含有量を100モル%としたとき、好ましくは35モル%以下、より好ましくは10モル%以上35モル%以下、さらに好ましくは15モル%以上30モル%以下、よりさらに好ましくは17.5モル%以上27.5モル%以下である。
 同様に、繰返し単位(3)の含有量は、液晶ポリエステル中の繰返し単位(1)、繰返し単位(2)及び繰返し単位(3)の合計含有量を100モル%としたとき、好ましくは35モル%以下、より好ましくは10モル%以上35モル%以下、さらに好ましくは15モル%以上30モル%以下、よりさらに好ましくは17.5モル%以上27.5モル%以下である。
 繰返し単位(1)の含有量が上記の範囲であると液晶ポリエステルは、溶融流動性や耐熱性や強度・剛性が向上し易くなる。
 繰返し単位(2)の含有量と繰返し単位(3)の含有量との割合は、[繰返し単位(2)の含有量]/[繰返し単位(3)の含有量](モル/モル)で表したとき、好ましくは0.9/1~1/0.9、より好ましくは0.95/1~1/0.95、さらに好ましくは0.98/1~1/0.98である。
 なお、本発明に係る液晶ポリエステルは、繰返し単位(1)~(3)を、互いに独立に、2種以上有してもよい。前記液晶ポリエステルは、繰返し単位(1)~(3)以外の繰返し単位を有してもよく、その含有量は、前記液晶ポリエステルを構成する全繰返し単位の合計含有量を100モル%としたとき、好ましくは0モル%以上10モル%以下、より好ましくは0モル%以上5モル%以下である。
別の側面として、本発明に係る液晶ポリエステルにおける繰返し単位(1)~(3)からなる群から選択される少なくとも1つの繰り返し単位の含有量は、前記液晶ポリエステルを構成する全繰返し単位の合計含有量を100モル%としたとき、好ましくは90モル%以上100モル%以下、より好ましくは95モル%以上100モル%以下である。
 本発明に係る液晶ポリエステルの溶融粘度を下げるためには、繰返し単位(3)のX及びYのそれぞれが酸素原子であること(すなわち、芳香族ジオールに由来する繰返し単位であること)が好ましい。X及びYのそれぞれが酸素原子である繰返し単位(3)の含有量が増えることにより、前記液晶ポリエステルの溶融粘度が下がるため、必要に応じてX及びYのそれぞれが酸素原子である繰返し単位(3)の含有量を制御し、液晶ポリエステルの溶融粘度を調整することができる。
 本発明に係る液晶ポリエステルの製造方法の1つの側面として、耐熱性や強度・剛性の高い高分子量の液晶ポリエステルを操作性良く製造することから、前記液晶ポリエステルを構成する繰返し単位に対応する原料モノマーを溶融重合させ、得られた重合物(以下、プレポリマーということがある)を固相重合させることにより、製造することが好ましい。前記溶融重合は、触媒の存在下に行ってもよい。この触媒の例として、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム及び三酸化アンチモンのような金属化合物、4-(ジメチルアミノ)ピリジン及び1-メチルイミダゾールのような含窒素複素環式化合物等が挙げられ、中でも、含窒素複素環式化合物が好ましい。
 本発明に係る液晶ポリエステルの流動開始温度は、270℃~400℃であることが好ましく、280℃~380℃であることがより好ましい。流動開始温度がこのような範囲である場合、液晶ポリエステル組成物の流動性がより良好になると共に、耐熱性(例えば、成形体がCPUソケット等の電子部品用コネクタである場合には耐ブリスター性)がより良好となる。また、前記液晶ポリエステルから成形体を製造する際の溶融成形時に、熱劣化がより抑制される。
 なお、「流動開始温度」は、フロー温度又は流動温度とも呼ばれ、毛細管レオメーターを用いて、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、内径1mm及び長さ10mmのノズルから押し出すときに、4800Pa・s(48000ポイズ)の粘度を示す温度であり、液晶ポリエステルの分子量の目安となるものである(小出直之編、「液晶ポリマー-合成・成形・応用-」、株式会社シーエムシー、1987年6月5日、p.95参照)。
 液晶ポリエステルは一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組合せ及び比率は、任意に設定できる。
 本発明に係る液晶ポリエステルの含有量は、液晶ポリエステル組成物の総質量に対して、48~61質量%であることが好ましい。
≪繊維状充填材≫
 本発明の一実施形態である液晶ポリエステル組成物に含まれる繊維状充填材は、数平均繊維径が15μm以上25μm以下であり、好ましくは16μm以上24μm以下である。繊維状充填材は、一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
 液晶ポリエステル組成物中の繊維状充填材の数平均繊維径がこのような大きさであることによって、得られる液晶ポリエステル組成物から成形される成形体におけるクラックを抑制できる。
 前記繊維状充填材としては、ガラス繊維;パン系炭素繊維及びピッチ系炭素繊維のような炭素繊維;シリカ繊維、アルミナ繊維及びシリカアルミナ繊維のようなセラミック繊維;ステンレス繊維のような金属繊維が挙げられる。また、チタン酸カリウムウィスカー、チタン酸バリウムウィスカー、ウォラストナイトウィスカー、ホウ酸アルミニウムウィスカー、窒化ケイ素ウィスカー及び炭化ケイ素ウィスカーのようなウィスカーも例示することができる。
 中でも、ガラス繊維、チタン酸カリウムウィスカー、ウォラストナイトウィスカー及びホウ酸アルミニウムウィスカーが好ましく、ガラス繊維がより好ましい。
 ガラス繊維としては、より具体的には、長繊維タイプのチョップドガラス繊維、及び、短繊維タイプのミルドガラス繊維等、種々の方法で製造されたガラス繊維が挙げられ、これらのうちの2種以上を併用してもよい。
 前記ガラス繊維は、シラン系カップリング剤及びチタン系カップリング剤のようなカップリング剤などの表面処理剤で処理されていてもよい。
 機械的強度の点で、弱アルカリ性のガラス繊維が好ましい。酸化ケイ素含有率が、ガラス繊維の総質量に対して、50~80質量%であるガラス繊維が好ましく、酸化ケイ素含有率が、ガラス繊維の総質量に対して、65~77質量%であるガラス繊維がより好ましい。
 前記ガラス繊維は、ウレタン樹脂、アクリル樹脂、エチレン/酢酸ビニル共重合体などの熱可塑性樹脂や、エポキシ樹脂などの熱硬化性樹脂で被覆もしくは収束されていてもよい。
繊維状有機充填材としては、ポリエステル繊維及びアラミド繊維を例示することができる。
 繊維状充填材の重量平均繊維長は300μm超、600μm以下であることが好ましく、300μm超、600μm未満であることがより好ましく、350μm超、500μm以下であることがさらに好ましい。
 繊維状充填材の重量平均繊維長が上記の範囲であると、リフロー前後の反りの発生がより抑制される傾向がある。
 繊維状充填材の「数平均繊維径」及び「重量平均繊維長」は、デジタルマイクロスコープ等の顕微鏡で観察することにより測定できる。具体的な方法を以下に説明する。
樹脂組成物ペレット1gを600℃で4時間加熱し灰化する。繊維状充填材を含む灰化残渣をエチレングリコール溶液に分散させて、超音波を3分間かけた後、スライドガラス上に分散液を数滴落とす。スライドガラス上で繊維状充填材が重なり合わないようにほぐした後、カバーガラスを載せる。ビデオマイクロスコープ(キーエンス(株)製、VHX-600)により、繊維状充填材の輪郭にピントが合うよう調整して、繊維状充填材500本を拡大倍数100倍にて、数平均繊維径と重量平均繊維長を測定する。
なお、重量平均繊維長(L)は、繊維長(L)、密度(ρ)、繊維径(r)を有する繊維の本数をNとしたとき、下式により算出することができる。
=Σ(N×π×r ×L ×ρ)/Σ(N×π×r ×L×ρ
 本実施形態の液晶ポリエステル組成物は、上述の液晶ポリエステル100質量部に対し、繊維状充填材を5質量部以上26質量部以下含有していることが好ましく、6質量部以上25質量部以下含有していることがより好ましく、7質量部以上24質量部以下含有していることがさらに好ましく、9質量部以上23質量部以下含有していることが特に好ましい。
 本実施形態の液晶ポリエステル組成物において、繊維状充填材の含有量が上記下限値以上であることにより、前記液晶ポリエステル組成物から成形される成形体は高温条件下で変形が生じにくい強度を有することができる。また、上記上限値以下であることにより、前記液晶ポリエステル組成物の充填性が良好なものとなり、さらに前記成形体にウエルドが発生した際の強度も良好となる傾向がある。
本発明の液晶ポリエステル組成物中、繊維状充填材の含有量は、前記液晶ポリエステル組成物の総質量に対して、3~15質量%であることが好ましい。
≪板状充填材≫
 本発明に係る板状充填材としては、タルク、マイカ、グラファイト、ウォラストナイト、ガラスフレーク、硫酸バリウム及び炭酸カルシウム等が挙げられる。マイカは、白雲母であってもよいし、金雲母であってもよいし、フッ素金雲母であってもよいし、四ケイ素雲母であってもよい。好ましくは、タルク及びマイカであり、より好ましくはマイカである。板状充填材は、一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
 前記板状充填材は、前記表面処理剤で処理されていてもよい。
 本実施形態の液晶ポリエステル組成物に含まれる板状充填材の体積平均粒径は、液晶ポリエステル組成物から成形される成形体のクラックに対する耐性を向上させる観点から、15μm以上40μm以下が好ましく20μm以上30μm以下がより好ましく、22μm以上28μm以下が特に好ましい。
 板状充填材の体積平均粒径が上記下限値以上であると、液晶ポリエステル組成物から成形される成形体の耐クラック性がより向上する傾向がある。また、板状充填材の体積平均粒径が上記上限値以下であると、リフロー前後の反りの発生がより抑制される傾向がある。
板状充填材の体積平均粒径は、レーザー回折法により求めることができ、具体的には下記条件のレーザー回折法により測定することができる。
 測定条件
 測定装置:レーザー回折/散乱式粒径分布測定装置(HORIBA(株)製;LA-950V2)
 粒子屈折率:1.53-0.1i
 分散媒:水
 分散媒屈折率:1.33
 なお、板状充填材の体積平均粒径は、後述の溶融混練によって実質上変化しないため、板状充填材の体積平均粒径は、液晶ポリエステル組成物に含有される前の板状充填材の体積平均粒径を測定することによっても求めることができる。
 本実施形態の液晶ポリエステル組成物は、上述の液晶ポリエステル100質量部に対し、板状充填材を45質量部以上82質量部以下含有していることが好ましく、48質量部以上81質量部以下含有していることがより好ましく、49質量部以上80質量部以下含有していることがよりさらに好ましい。また、別の側面として、50質量部以上80質量部以下であってもよい。
(任意成分)
 本発明の液晶ポリエステル組成物は、本発明の効果を妨げない範囲内において、前記繊維状充填材、前記板状充填材、及び前記液晶ポリエステルのいずれにも該当しない、他の成分をさらに含有していてもよい。
 前記他の成分の例としては、粒状無機充填材(シリカ、アルミナ、酸化チタン、窒化ホウ素、炭化ケイ素、炭酸カルシウムなど);フッ素樹脂、金属石鹸類等の離型改良剤;染料、顔料等の着色剤;酸化防止剤;熱安定剤;紫外線吸収剤;帯電防止剤;界面活性剤等の、通常の添加剤が挙げられる。前記着色剤としては、カーボンブラックが好ましい。
 また、前記他の成分の例としては、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸金属塩、フルオロカーボン系界面活性剤等の外部滑剤効果を有するものも挙げられる。
 また、前記他の成分の例としては、ポリアミド、液晶ポリエステル以外のポリエステル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリフェニレンエーテル及びその変性物、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルイミド等の熱可塑性樹脂;フェノール樹脂、エポキシ樹脂、ポリイミド樹脂等の熱硬化性樹脂も挙げられる。
前記他の成分の含有量は、本実施形態の液晶ポリエステルの含有量を100質量部としたとき、0質量部以上20質量部以下が好ましい。
別の側面として、本発明の液晶ポリエステル組成物が他の成分を含む場合、前記他の成分の含有量は、前記液晶ポリエステル組成物の総質量に対して0~16質量%が好ましい。
 本発明の液晶ポリエステル組成物は、原料成分を配合することで製造でき、その配合方法は、特に限定されない。例えば、前記繊維状充填材、前記板状充填材、及び前記液晶ポリエステル、並びに所望により前記他の成分を各々別々に溶融混練機に供給する方法が挙げられる。また、これら原料成分を乳鉢、ヘンシェルミキサー、ボールミル、リボンブレンダー等を用いて予備混合してから、溶融混練機に供給してもよい。また、前記液晶ポリエステルと前記繊維状充填材とを溶融混練することによって作製したペレットと、前記液晶ポリエステルと前記板状充填材とを溶融混練することによって作製したペレットとを、所望の配合比で混合してもよい。前記繊維状充填材として、ウレタン樹脂、アクリル樹脂、エチレン/酢酸ビニル共重合体などの熱可塑性樹脂や、エポキシ樹脂などの熱硬化性樹脂で被覆もしくは収束されたものを用いてもよい。
 また、本発明の液晶ポリエステル組成物は、前記液晶ポリエステルと前記繊維状充填材と前記板状充填材とをブレンドし、マスターバッチペレットを作成し、これを成形加工時に前記繊維状充填材が含まれていないペレットとドライブレンドして得ることもできる。この場合には、ドライブレンド後の繊維状充填材と板状充填材との含有量が上記所定の含有量となっていればよい。
<成形体>
 本発明の第2の態様は、前記本発明の第1の態様の液晶ポリエステル組成物を、成形して得られる成形体である。
 前記液晶ポリエステル組成物は、成形時の流動性に優れ、機械的強度が高い成形体の製造に好適である。成形体の製造方法は、射出成形法等、公知の方法でよい。
 本実施形態の成形体はコネクタであることが好ましい。前記液晶ポリエステル組成物を成形して得られるコネクタは、肉厚が薄くても、クラックに対する耐性が高い。
 また、コネクタとしては、CPUソケットであることが好ましい。
 図1Aは、前記液晶ポリエステル組成物から成形されたコネクタを例示する概略平面図であり、図1Bは図1AのA-A線における断面図である。また、図2は、図1Aにおける領域Bの拡大図である。
 ここに示すコネクタ100は、CPUソケットであり、平面視にて正方形の板状であり、中央部に正方形の開口部101を有する。コネクタ100の外周部及び内周部は、裏面が突出して形成されており、それぞれ外枠部102及び内枠部103を構成している。また、外枠部102及び内枠部103で挟まれた領域には、水平断面が正方形であるピン挿入穴104が、行列状に794個設けられている。このように、ピン挿入穴104同士を区切る部分、すなわち最小肉厚部201は、全体として格子状になっている。
 図1Aの視野におけるコネクタ100の寸法は、目的に応じて任意に設定できるが、例えば、外形寸法が42mm×42mmであり、開口部101の寸法は14mm×14mmである。
 また、図1Bの視野におけるコネクタ100の厚さは、外枠部102及び内枠部103では4mmであり、これらに挟まれた領域(すなわち、図2の拡大図における最小肉厚部201の厚さ)では3mmである。
 図1A又は図1Bにおけるピン挿入穴104の断面寸法は0.7mm×0.7mmであり、図2の拡大図に示すピッチP(ピン挿入穴104の断面における幅と隣接するピン挿入穴104どうしの最短距離との和)は1mmである。
 また、図2の拡大図に示す最小肉厚部201の幅(格子の壁厚さ、すなわち隣接するピン挿入穴104どうしの最短距離)Wは、0.2mmである。なお、ここに示す寸法は一例であり、ピン挿入穴104の数も目的に応じて任意に設定できる。
 例えば、コネクタは、1つの側面として、外形寸法が40mm×40mm~100mm×100mmであってもよく、開口部の寸法が10mm×10mm~40mm×40mmであってもよい。コネクタの厚さは、外枠部及び内枠部が2~6mmであってもよく、これらに挟まれた領域(すなわち、最小肉厚部の厚さ)が2~5mmであってもよい。コネクタにおけるピン挿入穴の断面寸法は0.2~0.5mmであってもよく、ピッチPが0.8~1.5mmであってもよく、最小肉厚部の幅が0.1~0.4mmであってもよい。
 コネクタ100を射出成形法で製造する場合、その条件は、例えば、成形温度を300~400℃、射出速度を100~300mm/秒、射出ピーク圧力を50~150MPaとするとよい。
 すなわち、本発明の成形体の製造方法の1つの側面は、
液晶ポリエステルと、数平均繊維径が15μm以上25μm以下の繊維状充填材と、板状充填材と、所望により他の成分とを、溶融混練して液晶ポリエステル組成物を得る工程、及び
前記得られた液晶ポリエステル組成物を、成形温度300~400℃、射出速度100~300mm/秒、及び射出ピーク圧力50~150MPaの条件下で、射出成形する工程、を含み、
前記液晶ポリエステル組成物が、前記繊維状充填材と前記板状充填材の合計量が、前記液晶ポリエステル100質量部に対し、65質量部以上105質量部以下である液晶ポリエステル組成物であることを特徴とする、
成形体の製造方法である。
前記液晶ポリエステル組成物を得る工程は、前記液晶ポリエステルと前記繊維状充填材とを溶融混練することによって作製したペレットと、前記液晶ポリエステルと前記板状充填材とを溶融混練することによって作製したペレットとを混合することにより前記液晶ポリエステル組成物を得る工程であってもよい。
 本発明の液晶ポリエステル組成物から成形される成形体は、高温条件下での変形が生じにくい。このため、本発明の液晶ポリエステルから成形される成形体は、クラックに対する耐性が向上し、クラックの発生が抑制できる。
 このため、前記液晶ポリエステル組成物を成形して得られるコネクタは、図2に示す最小肉厚部Wの部分においてもクラックが生じにくい。
 上述の通り、本発明の液晶ポリエステル組成物を成形して得られる成形体ではクラックの発生を抑制できる。このため、本発明の液晶ポリエステル組成物によれば、前記コネクタ又はCPUソケット以外の成形体であって、その一部に薄肉部を有する成形体であっても好適に成形することができる。
本発明の液晶ポリエステル組成物の別の側面は、
液晶ポリエステルと、繊維状充填材と、板状充填材と、所望により他の成分とを含有し;
 前記液晶ポリエステルは、
p-ヒドロキシ安息香酸に由来する繰返し単位と、
テレフタル酸に由来する繰返し単位及びイソフタル酸に由来する繰返し単位からなる群から選択される少なくとも1つの繰り返し単位と、
4,4’-ジヒドロキシビフェニルに由来する繰返し単位と、を含む液晶ポリエステルであり;
 前記繊維状充填材の数平均繊維径は、15μm以上25μm以下、好ましくは16μm以上24μm以下、さらに好ましくは17μm~23μmであり;
前記板状充填材は、タルク及びマイカからなる群から選択される少なくとも1つであり、かつ
体積平均粒径が15μm以上40μm以下、好ましくは20μm以上30μm以下、より好ましくは22μm以上28μm以下であり;
前記繊維状充填材の含有量は、前記液晶ポリエステル100質量部に対し、5質量部以上26質量部以下、好ましくは6質量部以上25質量部以下、より好ましくは7質量部以上24質量部以下、特に好ましくは9質量部以上23質量部以下であり;
前記板状充填材の含有量は、前記液晶ポリエステル100質量部に対し、45質量部以上82質量部以下、好ましくは48質量部以上81質量部以下、より好ましくは49質量部以上80質量部以下、特に好ましくは50質量部以上80質量部以下であり;
前記繊維状充填材と前記板状充填材の合計含有量は、
前記液晶ポリエステル100質量部に対し、65質量部以上105質量部以下、好ましくは70質量部以上90質量部以下、より好ましくは75質量部以上85質量部以下、さらに好ましくは78質量部以上83質量部以下であり又は、67質量部以上100質量部以下であってもよく;
前記繊維状充填材の重量平均繊維長は300μm超600μm未満、好ましくは350μm超500μm以下であり、又は308~633μmであってもよい
液晶ポリエステル組成物である。
 以下、実施例により本発明をより具体的に説明する。
<製造例1>
液晶ポリエステル1の製造方法 
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸994.5g(7.2モル)、テレフタル酸299.1g(1.8モル)、イソフタル酸99.7g(0.6モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)、無水酢酸1347.6g(13.2モル)及び1-メチルイミダゾール0.2gを入れ、窒素ガス気流下、攪拌しながら、室温から150℃まで30分間かけて昇温し、150℃で1時間還流させた。次いで、1-メチルイミダゾールを0.9g添加し、副生酢酸及び未反応の無水酢酸を留去しながら、320℃まで2時間50分かけて昇温し、320℃でトルクの上昇が認められるまで保持した後、反応器から内容物を取り出し、これを室温まで冷却した。得られた固形物を、粉砕機で粉砕して、粉末状のプレポリマーを得た。次いで、このプレポリマーを、窒素ガス雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から285℃まで5時間かけて昇温して、285℃で3時間保持することにより、固相重合させた後、冷却して、粉末状の液晶ポリエステル1を得た。この液晶ポリエステルの流動開始温度は327℃であった。
 なお、本明細書において室温とは20~25℃である。
<実施例1>
 上記製造例1で得た液晶ポリエステル1と、数平均繊維径が17μmのガラス繊維2と、タルク1とを、表1に示す割合[質量部]で、2軸押出機(池貝鉄工(株)製、PCM-30HS、スクリュー回転:同方向、L/D=44)を用いて、340℃で溶融混練し、ペレット化した。
 得られたペレットを、射出成形機(ファナック(株)社製「ROBOSHOT S-2000i 30B」)を用いて、シリンダー温度370℃、金型温度130℃の成形条件で射出成形し、1021ピン対応のモデルCPUソケット成形体を得た。
<実施例2>
 上記製造例1で得た液晶ポリエステル1と、数平均繊維径が23μmのガラス繊維1と、タルク2とを、表1に示す割合で用いたこと以外は実施例1と同様の方法で、1021ピン対応のモデルCPUソケット成形体を得た。
<比較例1~5>
 上記製造例1で得た液晶ポリエステル1と、数平均繊維径が11μmのガラス繊維3と、比較例1~4はタルク1、比較例5はタルク2とを、表2に示す割合[質量部]で用いたこと以外は実施例1と同様の方法で、1021ピン対応のモデルCPUソケット成形体を得た。
(成形体のクラックの測定)
 上記の方法で得た実施例1~2、比較例1~5のモデルCPUソケット成形体のクラックを、以下の方法で測定した。
 まず、上記の方法で得た実施例1~2、比較例1~5の射出成形体(1021ピン対応のモデルCPUソケット)を5つ用意し、オーブン(ヤマト科学(株)製、DN63H)を使用して260℃で4分40秒間加熱して、5つの成形体に熱履歴を加えた。この温度条件は、CPUソケットを用いて電子機器を製造する際のリフロー工程を想定した温度条件である。
 成形体を室温まで放冷後、15倍のズーム式実体顕微鏡(シグマ光機(株)製、ZMM-45T2)を用いて、加熱後の成形体5サンプル(実施例1~2、比較例4~5)または3サンプル(比較例1~3)を観察し、CPUソケットの壁面に生じたクラック数を計測し、計測値を平均した値をCPUクラック数とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
表1~2中、各材料の詳細は下記の通りである。
ガラス繊維1;CS03TAFT692、オーウェンスコーニング製(数平均繊維径23μm、繊維長3mmチョップドストランド)
ガラス繊維2;ECS03T-747N、日本電気硝子製(株)(数平均繊維径17μm、繊維長3mmチョップドストランド)
ガラス繊維3;CS3J-260S、日東紡(株)製(数平均繊維径11μm、繊維長3mmチョップドストランド)
タルク1;ローズK、日本タルク(株)(体積平均粒径17μm)
タルク2;NK-64、富士タルク工業(株)製(体積平均粒径23μm)
 表1に示す結果から、実施例1~2で得られたCPUソケットは、クラックが全く発生せず、良好な成形体となった。
 対して、表2に示す結果から、比較例1~5で得られたCPUソケットは、クラックが多く発生した。
<製造例2>
液晶ポリエステル2の製造方法
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸994.5g(7.2モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)、テレフタル酸299.1g(1.8モル)、イソフタル酸99.7g(0.6モル)、無水酢酸1347.6g(13.2モル)及び1-メチルイミダゾール0.2gを仕込み、反応器内を十分に窒素ガスで置換した。
 その後、窒素ガス気流下で攪拌しながら、室温から150℃まで30分間かけて昇温し、同温度を保持して30分間還流させた。
 次いで、1-メチルイミダゾール2.4gを加え、副生酢酸と未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、320℃で30分間保持した後、内容物を取り出し、これを室温まで冷却した。
 得られた固形物を、粉砕機で粒径0.1~1mmに粉砕後、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から295℃まで5時間かけて昇温し、295℃で3時間保持するにより、固相重合を行った。固相重合後、冷却して、粉末状の液晶ポリエステル2を得た。得られた液晶ポリエステル2の流動開始温度は312℃であった。
<製造例3>
液晶ポリエステル3の製造方法
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸994.5g(7.2モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)、テレフタル酸299.0g(1.8モル)、イソフタル酸99.7g(0.6モル)及び無水酢酸1347.6g(13.2モル)を仕込み、反応器内を十分に窒素ガスで置換した。
 その後、窒素ガス気流下で攪拌しながら、室温から150℃まで30分間かけて昇温し、同温度を保持して30分間還流させた。
 次いで、副生酢酸と未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、320℃で30分間保持した後、内容物を取り出し、これを室温まで冷却した。
 得られた固形物を、粉砕機で粒径0.1~1mmに粉砕後、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から295℃まで5時間かけて昇温し、295℃で3時間保持するにより、固相重合を行った。固相重合後、冷却して、粉末状の液晶ポリエステル3を得た。得られた液晶ポリエステル3の流動開始温度は330℃であった。
<製造例4>
液晶ポリエステル4の製造方法
  攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸996.8g(6.0モル)、4,4’-ジヒドロキシビフェニル372.4g(2.0モル)、テレフタル酸298.9g(1.8モル)、イソフタル酸33.3g(0.20モル)及び無水酢酸1153g(11.0モル)を仕込み、反応器内を十分に窒素ガスで置換した。
 その後、窒素ガス気流下で攪拌しながら、室温から150℃まで15分間かけて昇温し、同温度を保持して180分間還流させた。
 次いで、副生酢酸と未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、320℃で30分間保持した後、内容物を取り出し、これを室温まで冷却した。
 得られた固形物を、粉砕機で粒径0.1~1mmに粉砕後、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から320℃まで5時間かけて昇温し、320℃で3時間保持することにより、固相重合を行った。固相重合後、冷却して、粉末状の液晶ポリエステル4を得た。得られた液晶ポリエステル4の流動開始温度は362℃であった。
<液晶ポリエステル組成物の製造>
[実施例3~15、比較例6~12]
(液晶ポリエステル組成物の製造)
 シリンダー温度を340℃とした二軸押出機(池貝鉄工(株)製「PCM-30型」)に、その原料供給口から、表3、4に示す量比で、液晶ポリエステル2、3及び4のいずれか一つ又は2つを合計で100質量部添加して、さらに(B)繊維状充填材及び(C)板状充填材を下表3、4に示す割合で原料供給口から液晶ポリエステルと共に供給し、スクリュウ回転数150rpmの条件で溶融混練して、直径3mmの円形ノズル(吐出口)を経由してストランド状に吐出し、水温30℃の水浴に1.5秒間くぐらせた後、引き取り速度40m/minで引き取りローラーを経て回転刃を60m/minに調整されたストランドカッター(田辺プラスチック機械(株)製)にてペレタイズし、液晶ポリエステル組成物のペレットを得た。 
 表3、表4中、各記号は以下の材料を意味する。
[液晶ポリエステル]
LCP2:上記液晶ポリエステル2
LCP3:上記液晶ポリエステル3
LCP4:上記液晶ポリエステル4
 [繊維状充填材]
B1:チョップドストランドガラス繊維、日東紡績(株)製「CS3J-260S」、数平均繊維径10μm。
B2:チョップドストランドガラス繊維、日本電気硝子(株)製「CS03TAFT-692」、数平均繊維径23μm。
B3:チョップドストランドガラス繊維、日本電気硝子(株)製「ECS03T-747N」、数平均繊維径17μm。
[板状充填材]
C1:マイカ、ヤマグチマイカ(株)製、「YM-25S」、体積平均粒径25μm
C2:マイカ、ヤマグチマイカ(株)製、「AB-25S」、体積平均粒径25μm。
D1:タルク、日本タルク(株)製、「ローズK」、体積平均粒径17μm。
D2:タルク、富士タルク工業(株)製、「NK-64」、体積平均粒径23μm
実施例3~15、比較例6~12で得られたペレットについて、物性の測定及び試験は次の方法で行った。
(1)CPUソケットの成形
 得られた液晶ポリエステル組成物のペレットから、下記成形条件で、CPUソケットを射出成形した。
 なお、成形したCPUソケットの形状は、以下のとおりである。
 外枠の内側に格子構造を有し、格子部の内側に内枠を有し、内枠の内側に開口部を有し、外枠の外寸が72mm×72mm、外枠の厚さが4.5mm、内枠の厚さが3.0mm、内枠の内寸が28mm×28mmであり、格子部におけるピッチが1.0mm、ピン挿入穴の寸法が0.6×0.6mm、ピン孔数2556ピンである平面状コネクタ
[成形条件]
成形機:FANUC ROBOSHOT S-2000i30B
シリンダー温度 :
360-360-350-340℃(液晶性ポリエステル2、3を使用した場合)
370-370-360-350℃(液晶性ポリエステル4を使用した場合)
金型温度:100℃
射出速度:300mm/ sec
保圧力:20MPa
計量:53mm
サックバック:5mm
スクリュー回転数:100rpm
スクリュー背圧:1MPa
ゲート:4点ファンゲート
(2)クラック評価
ビデオマイクロスコープ(キーエンス(株)製、VR-3000)を使用して、上記で成形したCPUソケットの壁面に生じたクラック数を計測した。計測した値をリフロー前クラック数とした。
次いで、ホットプレート(CORNING(株)製、PC-400D)を使用して、同じCPUソケットを250℃で3分間加熱した。この温度条件は、CPUソケットを用いて電子機器を製造する際のリフロー工程を想定した温度条件である。
CPUソケットを室温まで放冷後、ビデオマイクロスコープ(キーエンス(株)製、VR-3000)を用いて、加熱後のCPUソケットを観察し、クラック数を計測し、計測した値をリフロー後クラック数とした。リフロー後クラックとリフロー前クラック数の差をCPUソケットクラック数とした。
 本実施例においては、CPUソケットクラック数が35個以下のものを良好と評価した。
(3)反り評価
 上記の方法で得たCPUソケットを5つ用意した。それぞれについて、平坦度測定モジュール(コアーズ(株)製、Core9030c)を用いて、上記で成形したCPUソケットの底面に対し、外枠部と内枠部に沿って2mmの間隔で反り量を測定した。反り量の測定には、最少二乗平面法を用い、得られた反り量(各CPUソケットについて5データ)の平均値を算出し、この平均値をリフロー前反り量とした。さらに、同じCPUソケットについて、25℃から250℃まで昇温し、250℃で1分間保持、次いで、50℃まで降温するというリフローを実施し、リフロー後のCPUソケットについて、前記と同様にして反り量を測定し、反り量の平均値を算出した。この平均値をリフロー後反り量とした。
本実施例においては、リフロー前反り量が0.35mm以下のものを良好なもの、リフロー後反り量が0.45mm以下のものを良好なものと評価した。
最小二乗平面法による反り量とは、平坦度測定モジュールにより外枠部と内枠部に沿って測定した三次元の測定データから、最小二乗平面を計算により求め、その基準面を反り量0としたときの、その基準面からの反りの最大値を意味する。
(4)最小充填圧の測定
 CPUソケットを成形する際に充填時の圧力において、良好な成形品を得るのに必要な最小充填の充填圧力を測定した。
(5)耐ブリスター性評価
送風定温恒温器(ヤマト科学(株)製、DN-63H)を用いて、温度を320℃に設定して、上記で成形したCPUソケット5枚を3分間放置し、CPUソケット表面に膨れの有無を確認した。1個以上の0.1mm以上の膨れが、CPUソケット表面に存在した場合に、膨れ発生とした。次いで、送風定温恒温器の温度を10℃ずつ下げて、5枚のCPUソケットの各表面の膨れの有無を確認し、膨れが存在しない温度を耐ブリスター温度とした。
(6)重量平均繊維長の測定
 得られた液晶ポリエステル樹脂組成物のペレット1gを600℃で4時間加熱し灰化した。灰化残渣をエチレングリコール溶液に分散させて、超音波を3分間かけた後、ビデオマイクロスコープ(キーエンス(株)製、VHX-600)を用いてガラス繊維の500本を拡大倍数100倍にて測定し、重量平均繊維長を測定した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記結果に示した通り、実施例3~15は、クラックの発生数が少なく、耐クラック性に優れていた。これに対して、比較例6~12は、クラック個数が多く、耐クラック性が低かった。
 実施例14は、クラック個数は十分に少ないものの、繊維状充填材の含有量が26質量部を超え、また、板状充填材の含有量が45質量部未満であるため、リフロー前後の反り量が大きくなった。また、実施例15は、クラック個数は十分に少ないものの、繊維状充填材の含有量が26質量部を超えるため、リフロー前後の反り量が大きくなった。
 実施例5は実施例7と同様の組成ではあるが、繊維状充填材の重量平均繊維長が600μmを超えるため、実施例7に比べてリフロー前後の反り量が大きくなった。また、実施例9は実施例8と同様の組成ではあるが、繊維状充填材の重量平均繊維長が600μmを超えるため、実施例8に比べてリフロー前後の反り量が大きくなった。
本発明は、成形体に成形したときに、前記成形体におけるクラックに対する耐性を向上させることができる液晶ポリエステル組成物、及び前記液晶ポリエステル組成物から成形される成形体を提供できるので、産業上有用である。
 100;コネクタ、101;開口部、102;外枠部、103;内枠部、104;ピン挿入穴、201;最小肉厚部、P;ピン挿入穴のピッチ、W;最小肉厚部の幅(格子の壁の厚さ)

Claims (8)

  1. 液晶ポリエステルと、数平均繊維径が15μm以上25μm以下である繊維状充填材と、板状充填材とを含有し、前記繊維状充填材と前記板状充填材の合計含有量が、前記液晶ポリエステル100質量部に対し、65質量部以上105質量部以下である液晶ポリエステル組成物。
  2. 前記液晶ポリエステル100質量部に対し、前記繊維状充填材の含有量が5質量部以上26質量部以下であり、前記板状充填材の含有量が45質量部以上82質量部以下である、請求項1に記載の液晶ポリエステル組成物。
  3. 前記繊維状充填材の重量平均繊維長が300μm超、600μm以下である請求項1又は2に記載の液晶ポリエステル組成物。
  4. 前記板状充填材の体積平均粒径が15μm以上40μm以下である請求項1~3のいずれか1項に記載の液晶ポリエステル組成物。
  5. 前記板状充填材がマイカである請求項1~4のいずれか1項に記載の液晶ポリエステル組成物。
  6.  請求項1~5のいずれか1項に記載の液晶ポリエステル組成物から成形される成形体。
  7.  前記成形体がコネクタである請求項6に記載の成形体。
  8.  前記コネクタがCPUソケットである請求項6に記載の成形体。
PCT/JP2016/086390 2015-12-09 2016-12-07 液晶ポリエステル組成物及び成形体 WO2017099126A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017555101A JP6779906B2 (ja) 2015-12-09 2016-12-07 液晶ポリエステル組成物及び成形体
CN201680071414.0A CN108368329B (zh) 2015-12-09 2016-12-07 液晶聚酯组合物和成形体
US15/781,734 US20180362848A1 (en) 2015-12-09 2016-12-07 Liquid crystal polyester composition and molded article
KR1020187015947A KR20180090808A (ko) 2015-12-09 2016-12-07 액정 폴리에스테르 조성물 및 성형체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015240453 2015-12-09
JP2015-240453 2015-12-09

Publications (1)

Publication Number Publication Date
WO2017099126A1 true WO2017099126A1 (ja) 2017-06-15

Family

ID=59014150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086390 WO2017099126A1 (ja) 2015-12-09 2016-12-07 液晶ポリエステル組成物及び成形体

Country Status (6)

Country Link
US (1) US20180362848A1 (ja)
JP (1) JP6779906B2 (ja)
KR (1) KR20180090808A (ja)
CN (1) CN108368329B (ja)
TW (1) TWI716509B (ja)
WO (1) WO2017099126A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145517A1 (ja) * 2022-01-26 2023-08-03 ポリプラスチックス株式会社 平面状コネクター用液晶性樹脂組成物及びそれを用いた平面状コネクター

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3453744B1 (en) * 2016-05-02 2023-08-16 Sumitomo Chemical Company, Limited Resin composition
JP6774329B2 (ja) * 2016-12-28 2020-10-21 住友化学株式会社 液晶ポリエステル樹脂組成物
JP6439027B1 (ja) * 2017-11-27 2018-12-19 住友化学株式会社 液晶ポリエステル樹脂組成物および成形体
JP7019110B1 (ja) * 2020-05-13 2022-02-14 ポリプラスチックス株式会社 表面実装リレー用液晶性樹脂組成物及びそれを用いた表面実装リレー
CN112126244B (zh) * 2020-09-09 2022-06-07 金发科技股份有限公司 一种液晶聚合物组合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254717A (ja) * 2006-02-27 2007-10-04 Toray Ind Inc 液晶性樹脂組成物およびそれからなる成形品
JP2011122148A (ja) * 2009-11-16 2011-06-23 Sumitomo Chemical Co Ltd コネクタ用液晶ポリエステル組成物およびこれを用いたコネクタ
JP2013194165A (ja) * 2012-03-21 2013-09-30 Sumitomo Chemical Co Ltd 液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法及び成形体
JP2015021063A (ja) * 2013-07-19 2015-02-02 東レ株式会社 液晶ポリエステル樹脂組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2855752B2 (ja) 1990-02-20 1999-02-10 東レ株式会社 強化液晶樹脂組成物
JP4118425B2 (ja) * 1998-12-18 2008-07-16 ポリプラスチックス株式会社 コネクター用液晶性ポリマー組成物およびコネクター
TWI472574B (zh) * 2006-08-24 2015-02-11 Polyplastics Co 非對稱電子零件
JP5384023B2 (ja) * 2007-04-23 2014-01-08 上野製薬株式会社 液晶ポリマー組成物およびそれからなる成形品
JP5165492B2 (ja) 2008-05-23 2013-03-21 ポリプラスチックス株式会社 平面状コネクター
JP5504923B2 (ja) * 2010-01-29 2014-05-28 住友化学株式会社 液晶ポリエステル組成物の製造方法及びコネクター
JP5935288B2 (ja) * 2010-10-29 2016-06-15 住友化学株式会社 液晶ポリエステル組成物
JP5903732B2 (ja) * 2012-02-28 2016-04-13 住友化学株式会社 液晶ポリエステル組成物及び成形体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254717A (ja) * 2006-02-27 2007-10-04 Toray Ind Inc 液晶性樹脂組成物およびそれからなる成形品
JP2011122148A (ja) * 2009-11-16 2011-06-23 Sumitomo Chemical Co Ltd コネクタ用液晶ポリエステル組成物およびこれを用いたコネクタ
JP2013194165A (ja) * 2012-03-21 2013-09-30 Sumitomo Chemical Co Ltd 液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法及び成形体
JP2015021063A (ja) * 2013-07-19 2015-02-02 東レ株式会社 液晶ポリエステル樹脂組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145517A1 (ja) * 2022-01-26 2023-08-03 ポリプラスチックス株式会社 平面状コネクター用液晶性樹脂組成物及びそれを用いた平面状コネクター

Also Published As

Publication number Publication date
JP6779906B2 (ja) 2020-11-04
US20180362848A1 (en) 2018-12-20
TW201726898A (zh) 2017-08-01
JPWO2017099126A1 (ja) 2018-10-11
KR20180090808A (ko) 2018-08-13
CN108368329A (zh) 2018-08-03
TWI716509B (zh) 2021-01-21
CN108368329B (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
JP6851979B2 (ja) 液晶ポリエステル組成物及び成形体
WO2017099126A1 (ja) 液晶ポリエステル組成物及び成形体
JP6500140B2 (ja) 液晶ポリエステル組成物
TWI762742B (zh) 液晶聚酯樹脂組成物及成形體
JP5914935B2 (ja) 液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法及び成形体
JP5633338B2 (ja) 液晶ポリエステル組成物
TWI773853B (zh) 液晶聚酯樹脂組成物及成形體
JP6797124B2 (ja) 液晶ポリエステル組成物、成形体及びコネクター
JP5935288B2 (ja) 液晶ポリエステル組成物
US20130082206A1 (en) Liquid crystal polyester composition
WO2018038093A1 (ja) 液晶ポリエステル組成物およびこれを用いた樹脂成形体
TWI725770B (zh) 液晶聚酯樹脂組成物之顆粒及液晶聚酯樹脂組成物之顆粒之製造方法
US20120235090A1 (en) Method of producing liquid crystal polyester composition
JP2018168320A (ja) 液晶ポリエステル組成物および成形体
JP2018109096A (ja) 液晶ポリエステル樹脂組成物
JP7256759B2 (ja) 樹脂組成物
JP2017216236A (ja) アクチュエータ
JP6861497B2 (ja) 液晶ポリエステル樹脂組成物
EP4393996A1 (en) Liquid crystal polyester pellet composition and injection molded article
WO2021044991A1 (ja) 液晶ポリエステル組成物及び成形体
EP4393997A1 (en) Liquid crystal polyester pellet composition and injection molded article
JP2012072371A (ja) 液晶ポリエステル組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873019

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555101

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187015947

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16873019

Country of ref document: EP

Kind code of ref document: A1