WO2023100796A1 - 液晶ポリエステル組成物及びその成形体 - Google Patents

液晶ポリエステル組成物及びその成形体 Download PDF

Info

Publication number
WO2023100796A1
WO2023100796A1 PCT/JP2022/043740 JP2022043740W WO2023100796A1 WO 2023100796 A1 WO2023100796 A1 WO 2023100796A1 JP 2022043740 W JP2022043740 W JP 2022043740W WO 2023100796 A1 WO2023100796 A1 WO 2023100796A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
liquid crystalline
crystalline polyester
polyester composition
Prior art date
Application number
PCT/JP2022/043740
Other languages
English (en)
French (fr)
Inventor
航 ▲高▼木
宏充 枌
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023100796A1 publication Critical patent/WO2023100796A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a liquid crystalline polyester composition and a molded article thereof.
  • This application claims priority based on Japanese Patent Application No. 2021-197070 filed in Japan on December 3, 2021, the content of which is incorporated herein.
  • Liquid crystalline polyester is known to have high chemical stability, heat resistance, fluidity and dimensional accuracy, and is used in various fields such as electrical, electronic, mechanical, optical equipment, automobiles, aircraft, and medical. .
  • liquid crystalline polyester is widely used as a molding material for connector parts and the like because of its good fluidity and high heat resistance for surface mounting.
  • Liquid crystalline polyesters are often used under high temperature conditions because of their excellent heat resistance. For this reason, for the purpose of preventing discoloration or imparting design properties, a grade of liquid crystalline polyester colored black is also being studied.
  • Patent Document 1 discloses a liquid crystalline polyester composition containing a liquid crystalline polyester and carbon black.
  • a composition in which the BET specific surface area of carbon black is 200 m 2 /g or more is adopted from the viewpoint of antistatic properties of the molded article.
  • the liquid crystalline polyester is one of the materials having both properties of low dielectric constant and low dielectric loss tangent among polymers.
  • High-frequency compatible components require high-performance and highly reliable electronic components that are adaptable to high-frequency regions, and the dielectric properties of materials used in transmission components are important.
  • the black-colored liquid crystal polyester composition as described in Patent Document 1 the effect of suppressing the dielectric constant increment and the dielectric loss tangent increment to such a requirement is insufficient.
  • the present invention has been made in view of such circumstances, and a liquid crystalline polyester composition that is colored black and has a small dielectric constant increment and dielectric loss tangent increment compared to a state that is not colored black, and It aims at providing the molded object.
  • the content of the carbon black is 0.015 parts by mass or more and 15 parts by mass or less with respect to the content of 100 parts by mass of the liquid crystal polyester.
  • a filler is contained, and the content of the filler is 1 part by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the content of the liquid crystal polyester, [1] to [4]
  • the liquid crystalline polyester composition according to any one of.
  • liquid crystalline polyester composition which is colored black and has a smaller dielectric constant increment and dielectric loss tangent increment than when it is not colored black, and a molded article thereof.
  • liquid crystal polyester composition contains liquid crystalline polyester and carbon black.
  • the liquid crystalline polyester composition of the present embodiment is colored black, and both the dielectric constant increment and the dielectric loss tangent increment are small compared to the state in which it is not colored black. “The state of not being colored black” refers to the state of the liquid crystal polyester composition of the present embodiment excluding the carbon black.
  • the liquid crystalline polyester composition of the present embodiment is particularly suitable as a molding material for electronic parts, and particularly suitable as a molding material for high-speed transmission connectors, high-speed transmission antennas, and the like.
  • the liquid crystalline polyester contained in the liquid crystalline polyester composition of the present embodiment is not particularly limited as long as it is a polyester exhibiting liquid crystallinity in a molten state. It is preferable that the liquid crystalline polyester melts at a temperature of 450° C. or less.
  • the liquid crystalline polyester in this embodiment may be a liquid crystalline polyester amide, a liquid crystalline polyester ether, a liquid crystalline polyester carbonate, a liquid crystalline polyester imide, or the like.
  • the flow initiation temperature of the liquid crystalline polyester in the present embodiment is preferably 250° C. or higher, more preferably 270° C. or higher, and even more preferably 280° C. or higher.
  • the flow initiation temperature of the liquid crystalline polyester in the present embodiment is preferably 400° C. or lower, more preferably 360° C. or lower, and even more preferably 340° C. or lower.
  • the flow initiation temperature of the liquid crystalline polyester in the present embodiment is preferably 250° C. or higher and 400° C. or lower, more preferably 270° C. or higher and 360° C. or lower, and even more preferably 280° C. or higher and 340° C. or lower.
  • the flow initiation temperature is also referred to as flow temperature or flow temperature, and is a temperature that serves as an indication of the molecular weight of liquid crystalline polyester (edited by Naoyuki Koide, "Liquid Crystal Polymer -Synthesis/Molding/Application-", Co., Ltd. CMC, June 5, 1987, p.95).
  • a capillary rheometer is used to melt the liquid crystalline polyester under a load of 9.8 MPa (100 kg/cm 2 ) while increasing the temperature at a rate of 4° C./min. , the temperature at which the viscosity is 4800 Pa ⁇ s when extruded from a nozzle with an inner diameter of 1 mm and a length of 10 mm.
  • the liquid crystalline polyester in the present embodiment is preferably a wholly aromatic liquid crystalline polyester using only an aromatic compound as a raw material monomer.
  • the liquid crystalline polyester is preferably a wholly aromatic liquid crystalline polyester having only repeating units derived from aromatic compounds.
  • derived means that the chemical structure of the functional group contributing to the polymerization is changed due to the polymerization of the raw material monomer, and other structural changes do not occur.
  • the origin here is a concept that includes the case of originating from a polymerizable derivative of the raw material monomer.
  • Typical examples of the liquid crystal polyester in the present embodiment include at least one compound selected from the group consisting of aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aromatic diols, aromatic hydroxylamines and aromatic diamines.
  • the aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aromatic diols, aromatic hydroxyamines and aromatic diamines are each independently used in place of part or all of their polymerizable derivatives.
  • Examples of polymerizable derivatives of compounds having a carboxyl group such as aromatic hydroxycarboxylic acids and aromatic dicarboxylic acids include esters in which the carboxyl group is converted to an alkoxycarbonyl group or an aryloxycarbonyl group; converted acid halides; and acid anhydrides obtained by converting a carboxyl group to an acyloxycarbonyl group.
  • Examples of polymerizable derivatives of compounds having a hydroxyl group such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxylamines include acylated products obtained by acylating a hydroxyl group to convert it to an acyloxyl group.
  • Examples of polymerizable derivatives of compounds having an amino group such as aromatic hydroxylamines and aromatic diamines include acylated products obtained by acylating an amino group to convert it to an acylamino group.
  • the number of repeating units means a value determined by the analytical method described in JP-A-2000-19168. Specifically, a liquid crystalline polyester is reacted with a lower alcohol (alcohol having 1 to 3 carbon atoms) in a supercritical state to depolymerize the liquid crystalline polyester to a monomer from which repeating units are derived, thereby obtaining a depolymerization product.
  • the number of each repeating unit can be calculated by quantifying the monomers from which each repeating unit is derived by liquid chromatography.
  • the liquid crystalline polyester in the present embodiment is preferably a liquid crystalline polyester having a repeating unit represented by the following formula (1) (hereinafter also referred to as “repeating unit (1)”), and the repeating unit (1) and the following formula Liquid crystal having a repeating unit represented by (2) (hereinafter also referred to as “repeating unit (2)”) and a repeating unit represented by the following formula (3) (hereinafter also referred to as “repeating unit (3)”) Polyester is more preferred.
  • Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group.
  • Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group, or a group represented by the following formula (4).
  • X and Y each independently represent an oxygen atom or an imino group (--NH--).
  • Each hydrogen atom in the above groups represented by Ar 1 , Ar 2 or Ar 3 may be independently substituted with a halogen atom, an alkyl group or an aryl group.
  • Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group.
  • Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylidene group.
  • Halogen atoms which can be substituted for one or more hydrogen atoms in the group represented by Ar 1 , Ar 2 or Ar 3 include fluorine, chlorine, bromine and iodine atoms.
  • Examples of the alkyl group capable of substituting one or more hydrogen atoms in the group represented by Ar 1 , Ar 2 or Ar 3 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-hexyl group, 2-ethylhexyl group, n-octyl group, n-decyl group and the like, and preferably has 1 to 10 carbon atoms.
  • the aryl group capable of substituting one or more hydrogen atoms in the group represented by Ar 1 , Ar 2 or Ar 3 includes a phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 1 -naphthyl group, 2-naphthyl group, and the like, and preferably have 6 to 20 carbon atoms.
  • the aryl group may be monocyclic or condensed.
  • the aryl group may also be a group in which a hydrogen atom on an aromatic ring is substituted with an alkyl group, such as a tolyl group.
  • the number of substitutions is preferably 1 or 2, more preferably 1. be.
  • the alkylidene group for Z in formula (4) includes a methylene group, an ethylidene group, an isopropylidene group, an n-butylidene group, a 2-ethylhexylidene group and the like, and the number of carbon atoms thereof is preferably 1 to 10. .
  • Repeating unit (1) is a repeating unit derived from an aromatic hydroxycarboxylic acid.
  • Repeating units (1) include repeating units in which Ar 1 is a 1,4-phenylene group (repeating units derived from p-hydroxybenzoic acid), and repeating units in which Ar 1 is a 2,6-naphthylene group (6- repeating units derived from hydroxy-2-naphthoic acid).
  • Repeating unit (2) is a repeating unit derived from an aromatic dicarboxylic acid. Repeating units (2) include repeating units in which Ar 2 is a 1,4-phenylene group (repeating units derived from terephthalic acid) and repeating units in which Ar 2 is a 1,3-phenylene group (repeating units derived from isophthalic acid).
  • repeating unit a repeating unit in which Ar 2 is a 2,6-naphthylene group (a repeating unit derived from 2,6-naphthalenedicarboxylic acid), a repeating unit in which Ar 2 is a diphenyl ether-4,4'-diyl group units (repeating units derived from diphenyl ether-4,4'-dicarboxylic acid).
  • Repeating unit (3) is a repeating unit derived from an aromatic diol, aromatic hydroxylamine or aromatic diamine.
  • Repeating units (3) include repeating units in which Ar 3 is a 1,4-phenylene group (repeating units derived from hydroquinone, p-aminophenol or p-phenylenediamine), and Ar 3 is a 4,4'-biphenylylene group. (repeating units derived from 4,4′-dihydroxybiphenyl, 4-amino-4′-hydroxybiphenyl or 4,4′-diaminobiphenyl).
  • the number of repeating units (1) is preferably 30% or more and 80% or less, more preferably 40% or more and 70% or less, more preferably 50% or more and 70% or less, relative to the total number (100%) of all repeating units. preferable.
  • the number of repeating units (2) is preferably 35% or less, more preferably 10% or more and 35% or less, even more preferably 15% or more and 30% or less, relative to the total number (100%) of all repeating units.
  • the number of repeating units (3) is preferably 35% or less, more preferably 10% or more and 35% or less, even more preferably 15% or more and 30% or less, relative to the total number (100%) of all repeating units.
  • the ratio of the number of repeating units (2) to the number of repeating units (3) is represented by [number of repeating units (2)]/[number of repeating units (3)] and is 0.9/1 to 1 /0.9 is preferred, 0.95/1 to 1/0.95 is more preferred, and 0.98/1 to 1/0.98 is even more preferred.
  • the liquid crystalline polyester in the present embodiment may each have two or more types of repeating units (1) to (3). Further, the liquid crystalline polyester may have repeating units other than the repeating units (1) to (3), but the number thereof is preferably 10% or less with respect to the total number (100%) of all repeating units. , 5% or less is more preferable.
  • the liquid crystalline polyester in the present embodiment preferably has, as the repeating unit (1), a repeating unit in which Ar 1 is a 1,4-phenylene group (a repeating unit derived from p-hydroxybenzoic acid).
  • the repeating unit (2) a repeating unit in which Ar 2 is a 1,4-phenylene group (a repeating unit derived from terephthalic acid), a repeating unit in which Ar 2 is a 1,3-phenylene group It is preferable to have each unit (a repeating unit derived from isophthalic acid), and it is more preferable to have both of these repeating units.
  • the liquid crystalline polyester in the present embodiment preferably has, as the repeating unit (3), a repeating unit in which X and Y are each oxygen atoms, i.e., a repeating unit derived from a predetermined aromatic diol, and the repeating unit As (3), it is more preferable to have only repeating units in which each of X and Y is an oxygen atom.
  • the liquid crystalline polyester in the present embodiment is preferably a liquid crystalline polyester having a repeating unit (1), a repeating unit (2) and a repeating unit (3), and a repeating unit derived from p-hydroxybenzoic acid and terephthalic acid. It is particularly preferred that the liquid crystalline polyester has a repeating unit derived from, a repeating unit derived from isophthalic acid, and a repeating unit derived from an aromatic diol.
  • liquid crystalline polyester in the present embodiment may be used singly or in combination of two or more.
  • the content of the liquid crystalline polyester in the liquid crystalline polyester composition of the present embodiment is preferably 40% by mass or more, more preferably 45% by mass or more, and even more preferably 50% by mass or more with respect to 100% by mass of the total amount of the composition. . Further, the content of the liquid crystal polyester in the liquid crystal polyester composition of the present embodiment is preferably 80% by mass or less, more preferably 75% by mass or less, and 70% by mass or less with respect to 100% by mass of the total amount of the composition. More preferred. For example, the content of the liquid crystalline polyester in the liquid crystalline polyester composition of the present embodiment is preferably 40% by mass or more and 80% by mass or less with respect to 100% by mass of the total amount of the composition, and 45% by mass or more and 75% by mass or less. More preferably, 50% by mass or more and 70% by mass or less is even more preferable.
  • the liquid crystalline polyester can be produced by melt-polymerizing raw material monomers corresponding to structural units constituting the liquid crystalline polyester. For example, it can be produced according to the method described in Japanese Patent No. 6439027.
  • the carbon black contained in the liquid crystal polyester composition of the present embodiment has an average particle size of primary particles of carbon black of 50 nm or more and less than 70 nm, and a BET specific surface area of carbon black of less than 40 m 2 /g. It is a feature.
  • the black coloring of the liquid crystalline polyester composition of the present embodiment is achieved by containing carbon black in the liquid crystalline polyester composition.
  • the particle size of carbon black in the present embodiment means the primary particle size, and is calculated by measuring a small spherical component (a component that has a contour of microcrystals and cannot be separated) that constitutes the carbon black aggregate with an electron microscope. Mean diameter. This primary particle size is determined by the Carbon Black Yearbook No. 2 published by the Carbon Black Association. 48 (1998) p. 114 can be obtained. More specifically, carbon black is observed at a magnification of 20,000 using a transmission electron microscope, the diameter of 1,000 arbitrary primary particles of carbon black is measured, and the number average value is calculated.
  • the average particle size of the primary particles of carbon black in the present embodiment is 50 nm or more and less than 70 nm, preferably 55 nm or more and less than 70 nm, and more preferably 60 nm or more and less than 70 nm. If the average particle size of the primary particles of the carbon black is less than the upper limit of the above range, the relative dielectric constant of the molded article can be kept low, and a molded article with a high degree of blackness can be easily obtained. On the other hand, when the average particle size of the primary particles of carbon black is at least the lower limit of the above range, the dielectric loss tangent of the molded product can be easily kept low.
  • the BET specific surface area of carbon black in the present embodiment refers to the nitrogen adsorption specific surface area.
  • the nitrogen adsorption specific surface area is measured by first removing gas and the like adhering to the sample surface, adsorbing nitrogen onto the sample at liquid nitrogen temperature, and calculating the specific surface area from the amount of adsorption. More specifically, in accordance with JIS K6217-2: 2001, using a BET specific surface area measuring device (eg AccuSorb 2100E manufactured by Micromeritics), nitrogen gas is adsorbed under liquid nitrogen temperature, the adsorption amount is measured, and BET (Brunauer-Emmett-Teller method).
  • the BET specific surface area of carbon black in the present embodiment is less than 40 m 2 /g, preferably 35 m 2 /g or less, more preferably 30 m 2 /g or less. If the BET specific surface area of the carbon black is less than the upper limit of the above range, the dielectric loss tangent of the molded product can be easily kept low.
  • the lower limit of the BET specific surface area of carbon black in the present embodiment may be, for example, 10 m 2 /g or more, 15 m 2 /g or more, or 20 m 2 /g or more. If the BET specific surface area of carbon black is at least the lower limit of the above range, the amount of carbon black used can be reduced.
  • the BET specific surface area of carbon black in the present embodiment is less than 40 m 2 /g, preferably 10 m 2 /g or more and less than 40 m 2 /g, and 15 m 2 / g or more and less than 35 m 2 /g. is more preferably 20 m 2 /g or more and less than 30 m 2 /g.
  • the DBP oil absorption of carbon black in the present embodiment can be determined by the method described in JIS K6217-4:2001 using a dibutyl phthalate absorbometer.
  • the DBP oil absorption of carbon black in the present embodiment is preferably 80 mL/100 g or more and 120 mL/100 g or less, more preferably 80 mL/100 g or more and 110 mL/100 g or less, and 80 mL/100 g or more and 100 mL/ It is more preferably 100 g or less, and particularly preferably more than 80 mL/100 g and 90 mL/100 g or less.
  • the dielectric loss tangent of the molded article can be easily kept low.
  • the relative dielectric constant of the molded body can be easily kept low.
  • Examples of carbon black in the present embodiment include furnace black, lamp black, channel black, thermal black, ketjen black, and naphthalene black.
  • carbon black may be used singly or in combination of two or more. Furnace black is preferable among the above carbon blacks in the present embodiment.
  • the content of carbon black in the liquid crystal polyester composition of the present embodiment is preferably 0.01% by mass or more and 10% by mass or less, and 0.02% by mass or more and 8% by mass with respect to 100% by mass of the total amount of the composition. is preferably 0.4% by mass or more and 5% by mass or less, more preferably 0.6% by mass or more and 2% by mass or less, particularly preferably 0.6% by mass or more and 1.4% by mass or less; 8% by mass or more and 1.2% by mass or less is particularly preferable.
  • the content of carbon black in the liquid crystal polyester composition of the present embodiment is preferably 0.015 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester content, and 0.03 parts by mass or more and 12 parts by mass. parts by mass or less, more preferably 0.5 to 8 parts by mass, still more preferably 0.8 to 6 parts by mass, particularly preferably 1 to 4 parts by mass, 1 to 2 parts by mass 0.5 parts by mass or less is particularly preferred.
  • the content of carbon black in the liquid crystal polyester composition of the present embodiment is preferably 0.01 parts by mass or more and 10 parts by mass or less with respect to the total amount of 100 parts by mass of the composition excluding carbon black, and 0.02 mass parts 8 parts by mass or less is preferable, 0.4 parts by mass or more and 5 parts by mass or less is more preferable, 0.6 parts by mass or more and 2 parts by mass or less is more preferable, and 0.6 parts by mass or more and 1.4 parts by mass or less is It is particularly preferable, and 0.8 parts by mass or more and 1.2 parts by mass or less is particularly preferable.
  • the content of carbon black in the liquid crystal polyester composition is at least the lower limit of the preferred range, the desired degree of blackness is easily obtained, and both the dielectric constant increment and the dielectric loss tangent increment are kept low. A polyester composition is easily obtained. On the other hand, when it is at most the upper limit of the preferred range, it becomes easier to maintain the insulating properties of the molded article and the fluidity of the composition.
  • composition excluding carbon black refers to a composition excluding carbon black from the liquid crystal polyester composition of the present embodiment.
  • the liquid crystalline polyester composition of Example 1 described later the liquid crystalline polyester (1), the liquid crystalline polyester (2), the glass fiber (1), the plate-like inorganic filler (1), and the release agent (1)
  • the liquid crystal polyester composition of the present embodiment may contain other components (optional components) as necessary.
  • Optional components include fillers, resins other than liquid crystalline polyester, conductivity imparting agents other than carbon black, release agents, flame retardants, crystal nucleating agents, ultraviolet absorbers, antioxidants, damping agents, antibacterial agents, and insect repellents. agents, deodorants, anti-coloring agents, heat stabilizers, antistatic agents, plasticizers, lubricants, dyes, foaming agents, foam control agents, viscosity modifiers, surfactants and the like.
  • the liquid crystal polyester composition of the present embodiment preferably contains a release agent in addition to the liquid crystal polyester and carbon black described above.
  • a release agent as the optional component, moldability can be improved.
  • the release agent include montanic acid and salts thereof, esters thereof, half esters thereof, stearyl alcohol, stearamide, polyethylene wax, and the like, preferably a fatty acid ester of pentaerythritol.
  • the content of the release agent in the liquid crystal polyester composition of the embodiment is preferably 0.1 parts by mass or more and 0.7 parts by mass or less, more preferably 0.15 parts by mass, relative to 100 parts by mass of the liquid crystal polyester. It is more than 0.4 mass part or less. When the content of the release agent is within the above range, contamination of the mold and blistering of the molded product are less likely to occur, and an excellent release effect is likely to be obtained.
  • the liquid crystal polyester composition of the present embodiment preferably further contains a filler.
  • a filler By further containing a filler, the mechanical strength and heat resistance of the molded article can be enhanced.
  • the filler may be an inorganic filler or an organic filler, and can be appropriately selected and used according to the application, required properties, and the like.
  • the inorganic filler for example, one or more of fibrous fillers, hollow fillers, plate-like fillers, and granular fillers can be used.
  • fibrous fillers in inorganic fillers include glass fibers; carbon fibers such as bread-based carbon fibers and pitch-based carbon fibers; ceramic fibers such as silica fibers, alumina fibers and silica-alumina fibers; metal fibers such as stainless steel fibers; whiskers such as potassium acid whiskers, barium titanate whiskers, wollastonite whiskers, aluminum borate whiskers, silicon nitride whiskers, and silicon carbide whiskers.
  • glass fibers, ceramic fibers, and whiskers are preferred, and glass fibers, silica fibers, alumina fibers, silica-alumina fibers, and wollastonite whiskers are particularly preferred.
  • the number average fiber length of the fibrous filler may be, for example, 30 ⁇ m or more and 5000 ⁇ m or less, or 50 ⁇ m or more and 3500 ⁇ m or less, from the viewpoint of imparting mechanical strength to the molded article and fluidity of the composition. It may be 70 ⁇ m or more and 2000 ⁇ m or less.
  • the fiber diameter (single fiber diameter) of the fibrous filler may be, for example, 5 ⁇ m or more and 20 ⁇ m or less, or 6 ⁇ m or more and 17 ⁇ m or less, from the viewpoint of imparting mechanical strength to the molded article and fluidity of the composition. 7 ⁇ m or more and 15 ⁇ m or less.
  • hollow filler a filling material having a cavity inside particles, which is generally called a balloon, is used.
  • hollow fillers include fillers made of inorganic materials such as alumina, silica and glass; and fillers made of organic materials such as urea resin and phenol resin.
  • hollow fillers made of inorganic materials are preferable, and specific examples include glass balloons, silica balloons, and alumina balloons, and among these, glass balloons are preferable.
  • the median diameter (D 50 ) of the hollow filler is preferably 1 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, and even more preferably 10 ⁇ m or more and 30 ⁇ m or less. This median diameter (D 50 ) means a value measured by dispersing the hollow filler in water and using a laser diffraction/scattering particle size distribution analyzer.
  • Talc mica, graphite, glass flakes, barium sulfate, and calcium carbonate are examples of plate-like fillers in inorganic fillers.
  • the mica may be muscovite, phlogopite, fluorine phlogopite, or tetrasilicon mica.
  • the volume average particle size of talc is preferably 10 ⁇ m or more and 20 ⁇ m or less, more preferably 12 ⁇ m or more and 18 ⁇ m or less, and even more preferably 14 ⁇ m or more and 18 ⁇ m or less.
  • the volume average particle size of talc can be measured by a laser diffraction/scattering method.
  • a laser diffraction/scattering particle size distribution measuring device for example, LA-950V2 manufactured by HORIBA Co., Ltd.
  • talc is dispersed in water, and the volume average particle size is measured under the following measurement conditions. can be calculated.
  • Granular fillers in inorganic fillers include silica, alumina, titanium oxide, glass beads, boron nitride, silicon carbide, and calcium carbonate.
  • organic filler for example, one or more of a fibrous filler, a plate-like filler, and a granular filler can be used.
  • fibrous fillers in organic fillers include polyester fibers, aramid fibers, and cellulose fibers.
  • Particulate fillers in organic fillers include fillers composed of insoluble and infusible polymers such as homopolymers of p-hydroxybenzoic acid.
  • the filler may be used singly or in combination of two or more.
  • inorganic fillers are preferably used in terms of imparting mechanical strength, and at least one inorganic filler selected from the group consisting of fibrous fillers, hollow fillers and plate-like fillers is more preferable.
  • At least one inorganic filler selected from the group consisting of a fibrous filler and a plate-like filler is more preferably used, and a combination of a fibrous inorganic filler and a plate-like inorganic filler is particularly preferred used for
  • the mixing ratio of the fibrous inorganic filler and the plate-like inorganic filler is expressed as "plate-like inorganic filler/fibrous inorganic filler”.
  • the mass ratio is preferably from 1 to 10, more preferably from 1 to 10, even more preferably from 1 to 7, and particularly preferably from 1 to 5.
  • the content of the filler in the liquid crystalline polyester composition is preferably 1% by mass or more with respect to 100% by mass of the total amount of the composition, and 10% by mass. % or more is more preferable, and 20% by mass or more is even more preferable. Further, the content of the filler in the liquid crystal polyester composition of the present embodiment is preferably 70% by mass or less, more preferably 60% by mass or less, and 50% by mass or less with respect to 100% by mass of the total amount of the composition. More preferred.
  • the content of the filler in the liquid crystal polyester composition of the present embodiment is preferably 1% by mass or more and 70% by mass or less with respect to 100% by mass of the total amount of the composition, and 10% by mass or more and 60% by mass or less. It is more preferably 20% by mass or more and 50% by mass or less.
  • the content of the filler in the liquid crystalline polyester composition is preferably 1 part by mass or more with respect to 100 parts by mass of the content of the liquid crystalline polyester. It is more preferably at least 25 parts by mass, and even more preferably at least 25 parts by mass. Further, the content of the filler in the liquid crystal polyester composition of the present embodiment is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and 100 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester content. is more preferred.
  • the content of the filler in the liquid crystal polyester composition of the present embodiment is preferably 1 part by mass or more and 200 parts by mass or less, and 10 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester content. is more preferable, and 25 parts by mass or more and 100 parts by mass or less is even more preferable.
  • the content of the filler in the liquid crystalline polyester composition is at least the lower limit of the preferred range, the mechanical strength and heat resistance of the molded article can be easily improved.
  • the content of the filler in the liquid crystalline polyester composition is equal to or less than the upper limit of the preferable range, the fluidity of the composition is easily maintained.
  • resins other than liquid crystal polyester include polyolefin resins such as polyethylene, polypropylene, polybutadiene, and polymethylpentene; vinyl resins such as vinyl chloride, vinylidene chloride, vinyl acetate, and polyvinyl alcohol; polystyrene, acrylonitrile-styrene resin (AS resin); Polystyrene resins such as acrylonitrile-butadiene-styrene resin (ABS resin); polyamide 6 (nylon 6), polyamide 66 (nylon 66), polyamide 11 (nylon 11), polyamide 12 (nylon 12), polyamide 46 (nylon 46) , polyamide 610 (nylon 610), polytetramethylene terephthalamide (nylon 4T), polyhexamethylene terephthalamide (nylon 6T), polymetaxylylene adipamide (nylon MXD6), polynonamethylene terephthalamide (nylon 9T),
  • the liquid crystalline polyester composition of the present embodiment described above contains liquid crystalline polyester and carbon black having an average primary particle diameter of 50 nm or more and less than 70 nm and a BET specific surface area of less than 40 m 2 /g. Since such a specific carbon black is employed, according to the liquid crystal polyester composition of the present embodiment, the molded article produced is colored black, and compared with the state not colored black, the dielectric constant increases and dielectric loss tangent increment are both small.
  • the liquid crystal polyester composition of this embodiment has the following aspects.
  • the liquid crystalline polyester composition according to any one of [1] to [6] above,
  • the liquid crystal polyester comprises a repeating unit (1) represented by the following formula (1), a repeating unit (2) represented by the following formula (2), and a repeating unit (3) represented by the following formula (3) ) and a liquid crystalline polyester composition.
  • Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group.
  • Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group, or a group represented by the following formula (4).
  • X and Y each independently represent an oxygen atom or an imino group (--NH--).
  • Each hydrogen atom in the above groups represented by Ar 1 , Ar 2 or Ar 3 may be independently substituted with a halogen atom, an alkyl group or an aryl group.
  • Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group.
  • Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylidene group.
  • the liquid crystalline polyester has a repeating unit derived from p-hydroxybenzoic acid, a repeating unit derived from terephthalic acid, a repeating unit derived from isophthalic acid, and a repeating unit derived from an aromatic diol.
  • the relative dielectric constant increment is less than 0.18, preferably 0.17 or less, more preferably 0.16 or less, and still more preferably 0.15 or less;
  • the liquid crystalline polyester composition, wherein the dielectric loss tangent increment is 0.0008 or less, preferably 0.0006 or less, more preferably 0.0005 or less, and still more preferably 0.0003 or less.
  • Measurement conditions Measurement method: Capacitance method (device: impedance analyzer (manufactured by Agilent, model: E4991A)) Electrode model: 16453A Measurement environment: 23°C, 50% RH Applied voltage: 1V
  • the content of the liquid crystalline polyester in the liquid crystalline polyester composition is preferably 40% by mass or more and 80% by mass or less, more preferably 45% by mass or more, relative to 100% by mass of the total amount of the liquid crystalline polyester composition.
  • One embodiment of the molded article is a molded article containing the liquid crystal polyester composition of the embodiment described above.
  • One embodiment of the molded article is a molded article produced using the liquid crystal polyester composition of the embodiment described above.
  • One embodiment of the molded article may be a molded article made of the liquid crystal polyester composition of the embodiment described above.
  • the molded article of the present embodiment can be obtained by a known molding method using, for example, pellets of a liquid crystal polyester composition as a molding material.
  • a melt molding method is preferable, and examples thereof include an injection molding method, an extrusion molding method such as a T-die method and an inflation method, a compression molding method, a blow molding method, a vacuum molding method, and a press molding method.
  • the injection molding method is preferable.
  • Pellets of the liquid crystalline polyester composition are obtained by feeding the liquid crystalline polyester composition from a feeder using a twin-screw extruder (eg, "PCM-30" manufactured by Ikegai Co., Ltd.), melt-kneading with a screw, and extruding. Can be manufactured by cutting strands.
  • a twin-screw extruder eg, "PCM-30" manufactured by Ikegai Co., Ltd.
  • the pellets of the liquid crystalline polyester composition described above are molded by an injection molding method as a molding material
  • the pellets of the liquid crystalline polyester composition are melted using a known injection molding machine, and the pellets of the molten liquid crystalline polyester composition are formed.
  • Known injection molding machines include, for example, TR450EH3 manufactured by Sodick Co., Ltd., hydraulic horizontal molding machine PS40E5ASE manufactured by Nissei Plastic Industry Co., Ltd., and the like.
  • the temperature conditions for injection molding are appropriately determined depending on the type of liquid crystalline polyester, and it is preferable to set the cylinder temperature of the injection molding machine to a temperature 10 to 80° C. higher than the flow initiation temperature of the liquid crystalline polyester to be used.
  • the temperature of the mold is preferably set in the range of room temperature (25° C.) to 180° C. in terms of cooling rate and productivity.
  • the number of screw rotations, back pressure, injection speed, holding pressure, holding pressure time, etc. may be adjusted as appropriate.
  • the molded article of the present embodiment is generally applicable to all uses to which liquid crystalline polyester can be applied. Due to the properties of low dielectric constant, low dielectric loss tangent, and excellent molding stability, the molded body of the present embodiment is suitable for use in high-performance and highly reliable electronic parts that are particularly applicable to high-frequency regions. For example, it can be used as a high-speed transmission connector and a high-speed transmission antenna.
  • the molded body of the present embodiment includes sensors, LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable condenser cases, optical pickups, oscillators, various terminal boards, transformers, etc. , plugs, printed circuit boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, semiconductors, liquid crystal displays, FDD carriages, FDD chassis, motor brush holders, parabolic antennas, computer parts, microwave oven parts, It can also be applied to applications such as audio/speech equipment parts, lighting parts, air conditioner parts, office computer related parts, telephone/fax related parts, and copier related parts.
  • the dielectric constant is Both the increment and the dielectric loss tangent increment are small, and the desired dielectric properties can be exhibited.
  • the flow initiation temperature of the liquid crystalline polyester was measured as follows. Using a flow tester (manufactured by Shimadzu Corporation, "CFT-500EX”), about 2 g of liquid crystalline polyester was filled into a cylinder fitted with a die having a nozzle with an inner diameter of 1 mm and a length of 10 mm. Next, under a load of 9.8 MPa, while increasing the temperature at a rate of 4 ° C./min, the liquid crystalline polyester is melted and extruded from a nozzle, the temperature at which the viscosity is 4800 Pa s is measured, and the flow of the liquid crystalline polyester is measured. was taken as the starting temperature.
  • volume average particle size of talc [Measurement of volume average particle size of talc]
  • the volume average particles of talc were measured as follows.
  • a laser diffraction/scattering particle size distribution analyzer (LA-950V2, manufactured by HORIBA Co., Ltd.) was used as a measurement device, and talc was dispersed in water under the following measurement conditions by a laser diffraction/scattering method. A volume average particle size was calculated.
  • liquid crystalline polyester (1) and liquid crystalline polyester (2) were prepared respectively.
  • CB (2) MA220 manufactured by Mitsubishi Chemical Corporation, average primary particle diameter of 55 nm, BET specific surface area of 36 m 2 /g, DBP oil absorption of 93 mL/100 g
  • CB (3) Asahi Carbon Co., Ltd., #Asahi 55G, primary particle average particle size 66 nm, BET specific surface area 25 m 2 /g, DBP oil absorption 87 mL/100 g
  • CB (4) VULCAN XTP50 manufactured by Cabot Specialty Chemicals, Inc., average primary particle diameter of 50 nm, BET specific surface area of 55 m 2 /g, DBP oil absorption of 139 mL/100 g
  • CB(5) PC100H manufactured by Black Diamond Material Science, average primary particle diameter 60 nm, BET specific surface area 40 m 2 /g, DBP oil absorption 72 mL/100 g
  • CB (6) Cabot Specialty Chemicals, Inc., SPHERON SO-LP, primary particle average particle diameter 70 nm, BET specific surface area 40 m 2 /g, DBP oil absorption 121 mL/100 g
  • CB (7) LAMP BLACK 101 manufactured by Orion Engineered Carbons Co., Ltd., average primary particle diameter of 95 nm, BET specific surface area of 29 m 2 /g, DBP oil absorption of 140 mL/100 g
  • CB(8) #960B manufactured by Mitsubishi Chemical Corporation, average primary particle diameter 16 nm, BET specific surface area 260 m 2 /g, DBP oil absorption 64 mL/100 g
  • CB (9) #45LB manufactured by Mitsubishi Chemical Corporation, average primary particle diameter of 24 nm, BET specific surface area of 120 m 2 /g, DBP oil absorption of 53 mL/100 g
  • ⁇ Filling material> Glass fiber (1): EFH50-01S manufactured by Central Glass Co., Ltd., number average fiber length 70 ⁇ m, fiber diameter 10 ⁇ m
  • Examples 1-3, Comparative Examples 1-6 The liquid crystalline polyester, filler, release agent and carbon black shown in Table 1 were dry-blended in the parts by mass shown in Table 1. After that, it is melt-kneaded with a twin-screw extruder (manufactured by Ikegai Co., Ltd., "PCM-30") at a screw rotation speed of 150 rpm, and discharged into strands through a circular nozzle (discharge port) with a diameter of 3 mm. , After passing through a water bath with a water temperature of 30 ° C.
  • PCM-30 twin-screw extruder
  • Measurement conditions Measurement method: Capacitance method (device: impedance analyzer (manufactured by Agilent, model: E4991A)) Electrode model: 16453A Measurement environment: 23°C, 50% RH Applied voltage: 1V
  • Example 1 to 3 and Comparative Examples 1 to 6 a composition containing the same amount of liquid crystalline polyester, filler, and release agent and containing no carbon black was injected at a cylinder temperature of 350 ° C. and a mold temperature of 130 ° C.
  • Ten control specimens of 64 mm ⁇ 64 mm ⁇ 1.0 mmt were obtained by injection molding at a speed of 75 mm/sec.
  • the dielectric properties of 10 obtained control test pieces were measured under the same measurement conditions as above, and the average value of the measured values was taken as the dielectric property value of the control test piece.
  • the difference in dielectric constant between the test piece and the control test piece that is, "relative dielectric constant of the test piece - dielectric constant of the control test piece" was obtained as a dielectric constant increment.
  • test pieces produced using the liquid crystalline polyester compositions of Examples 1 to 3 to which the present invention was applied were colored black, and It was confirmed that both the dielectric constant increment and the dielectric loss tangent increment were kept small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、液晶ポリエステルと、特定のカーボンブラックと、を含有する液晶ポリエステル組成物であって、前記カーボンブラックの一次粒子の平均粒子径が、50nm以上70nm未満であり、前記カーボンブラックのBET比表面積が、40m/g未満である液晶ポリエステル組成物に関する。

Description

液晶ポリエステル組成物及びその成形体
 本発明は、液晶ポリエステル組成物及びその成形体に関する。
 本願は、2021年12月3日に、日本に出願された特願2021-197070号に基づき優先権を主張し、その内容をここに援用する。
 液晶ポリエステルは、化学的安定性、耐熱性、流動性及び寸法精度が高いことが知られており、電気、電子、機械、光学機器、自動車、航空機、医療等の様々な分野で利用されている。例えば、液晶ポリエステルは、その良好な流動性、及び表面実装に対して高い耐熱性を有することから、コネクタ部品等の成形材料に広く用いられている。
 また、液晶ポリエステルは、耐熱性に優れることから、高温条件下で用いられることが多い。このため、変色防止、又は意匠性付与の目的で、黒色に着色されたグレードの液晶ポリエステルも検討されている。
 例えば、特許文献1には、液晶ポリエステルと、カーボンブラックと、を含有する液晶ポリエステル組成物が開示されている。この特許文献1においては、成形体の帯電防止の点から、カーボンブラックのBET比表面積が200m/g以上である組成物が採用されている。
特開2006-45298号公報
 さらに、液晶ポリエステルは、高分子の中でも比誘電率及び誘電正接が低いという特性を併せ持った材料の一つである。
 ところで、近年では、伝送情報量の増加や高速化に対応するため、高周波信号の利用が検討されている。高周波対応部品では、高周波領域に適応可能な高性能かつ信頼性の高い電子部品が要求され、そこで使用される伝送部品における材料の誘電特性が重要となる。そして、かかる要求に対応可能な比誘電率及び誘電正接の低さを付与し得る成形材料が求められる。
 しかしながら、前記特許文献1に記載されるような黒色に着色された液晶ポリエステル組成物においては、かかる要求に対して誘電率増分および誘電正接増分を低く抑える効果が不充分である。
 本発明は、このような事情に鑑みてなされたものであって、黒色に着色され、黒色に着色されていない状態と比較して誘電率増分および誘電正接増分が共に小さい液晶ポリエステル組成物、及びその成形体を提供することを目的とする。
 上記の課題を解決するため、本発明は以下の態様を包含する。
[1] 液晶ポリエステルと、カーボンブラックと、を含有する液晶ポリエステル組成物であって、前記カーボンブラックの一次粒子の平均粒子径が、50nm以上70nm未満であり、前記カーボンブラックのBET比表面積が、40m/g未満であることを特徴とする、液晶ポリエステル組成物。
[2] 前記カーボンブラックのDBP吸油量が、80mL/100g以上、120mL/100g以下である、[1]に記載の液晶ポリエステル組成物。
[3] 前記カーボンブラックの一次粒子の平均粒子径が、55nm以上70nm未満である、[1]又は[2]に記載の液晶ポリエステル組成物。
[4] 前記カーボンブラックの含有量が、前記液晶ポリエステルの含有量100質量部に対して、0.015質量部以上15質量部以下である、[1]~[3]のいずれか一項に記載の液晶ポリエステル組成物。
[5] さらに、充填材を含有し、前記充填材の含有量が、前記液晶ポリエステルの含有量100質量部に対して、1質量部以上200質量部以下である、[1]~[4]のいずれか一項に記載の液晶ポリエステル組成物。
[6] 前記充填材が、繊維状充填材、中空充填材及び板状充填材からなる群より選択される少なくとも一種の無機充填材である、[5]に記載の液晶ポリエステル組成物。
[7] [1]~[6]のいずれか一項に記載の液晶ポリエステル組成物を含む、成形体。
 本発明によれば、黒色に着色され、黒色に着色されていない状態と比較して誘電率増分および誘電正接増分が共に小さい液晶ポリエステル組成物、及びその成形体を提供することができる。
(液晶ポリエステル組成物)
 液晶ポリエステル組成物の一実施形態は、液晶ポリエステルとカーボンブラックとを含有する。本実施形態の液晶ポリエステル組成物は、黒色に着色され、黒色に着色されていない状態と比較して誘電率増分および誘電正接増分が共に小さい。「黒色に着色されていない状態」とは、本実施形態の液晶ポリエステル組成物から前記カーボンブラックを除いた組成物の状態を指す。本実施形態の液晶ポリエステル組成物は、なかでも電子部品用の成形材料として好適であり、高速伝送コネクタ、高速伝送アンテナ等のための成形材料として特に好適である。
<液晶ポリエステル>
 本実施形態の液晶ポリエステル組成物が含有する液晶ポリエステルは、溶融状態で液晶性を示すポリエステルであれば、特に限定されない。液晶ポリエステルは、450℃以下の温度で溶融するものであることが好ましい。本実施形態における液晶ポリエステルは、液晶ポリエステルアミド、液晶ポリエステルエーテル、液晶ポリエステルカーボネート、液晶ポリエステルイミド等であってもよい。
 本実施形態における液晶ポリエステルの流動開始温度は、250℃以上であることが好ましく、270℃以上がより好ましく、280℃以上がさらに好ましい。
 また、本実施形態における液晶ポリエステルの流動開始温度は、400℃以下であることが好ましく、360℃以下がより好ましく、340℃以下がさらに好ましい。
 例えば、本実施形態における液晶ポリエステルの流動開始温度は、250℃以上400℃以下であることが好ましく、270℃以上360℃以下がより好ましく、280℃以上340℃以下がさらに好ましい。
 本明細書において、流動開始温度は、フロー温度又は流動温度とも呼ばれ、液晶ポリエステルの分子量の目安となる温度である(小出直之編、「液晶ポリマー-合成・成形・応用-」、株式会社シーエムシー、1987年6月5日、p.95参照)。
 流動開始温度の測定方法として、具体的には、毛細管レオメーターを用いて、液晶ポリエステルを、9.8MPa(100kg/cm)の荷重下、4℃/minの速度で昇温しながら溶融させ、内径1mm及び長さ10mmのノズルから押し出すときに、4800Pa・sの粘度を示す温度である。
 本実施形態における液晶ポリエステルは、原料モノマーとして芳香族化合物のみを用いてなる全芳香族液晶ポリエステルであることが好ましい。
 液晶ポリエステルは、芳香族化合物に由来する繰返し単位のみを有する全芳香族液晶ポリエステルであることが好ましい。
 なお、本明細書において「由来」とは、原料モノマーが重合するために、重合に寄与する官能基の化学構造が変化し、その他の構造変化を生じないことを意味する。ここでの由来は、原料モノマーの重合可能な誘導体を由来とする場合も包含する概念である。
 本実施形態における液晶ポリエステルの典型的な例としては、芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合(重縮合)させてなる重合体;複数種の芳香族ヒドロキシカルボン酸を重合させてなる重合体;芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合させてなる重合体;ポリエチレンテレフタレートなどのポリエステルと芳香族ヒドロキシカルボン酸とを重合させてなる重合体が挙げられる。
 ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンは、それぞれ独立に、その一部又は全部に代えて、重合可能なそれらの誘導体が用いられてもよい。
 芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸のようなカルボキシル基を有する化合物の重合可能な誘導体の例としては、カルボキシル基をアルコキシカルボニル基又はアリールオキシカルボニル基に変換したエステル;カルボキシル基をハロホルミル基に変換した酸ハロゲン化物;カルボキシル基をアシルオキシカルボニル基に変換した酸無水物等が挙げられる。
 芳香族ヒドロキシカルボン酸、芳香族ジオール及び芳香族ヒドロキシアミンのようなヒドロキシル基を有する化合物の重合可能な誘導体の例としては、ヒドロキシル基をアシル化してアシルオキシル基に変換したアシル化物等が挙げられる。
 芳香族ヒドロキシアミン及び芳香族ジアミンのようなアミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換したアシル化物等が挙げられる。
 本明細書において、繰返し単位の数(繰返し単位の重合度)は、特開2000-19168号公報に記載の分析方法によって求められる値を意味する。
 具体的には、液晶ポリエステルを超臨界状態の低級アルコール(炭素数1~3のアルコール)と反応させて、前記液晶ポリエステルをその繰返し単位を誘導するモノマーまで解重合し、解重合生成物として得られる各繰返し単位を誘導するモノマーを液体クロマトグラフィーによって定量することで、各繰返し単位の数を算出することができる。
 本実施形態における液晶ポリエステルは、下記式(1)で表される繰返し単位(以下「繰返し単位(1)」ともいう)を有する液晶ポリエステルであることが好ましく、繰返し単位(1)と、下記式(2)で表される繰返し単位(以下「繰返し単位(2)」ともいう)と、下記式(3)で表される繰返し単位(以下「繰返し単位(3)」ともいう)とを有する液晶ポリエステルであることがより好ましい。
 (1)-O-Ar-CO-
 (2)-CO-Ar-CO-
 (3)-X-Ar-Y-
 [式中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表す。Ar及びArは、それぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は下記式(4)で表される基を表す。X及びYは、それぞれ独立に、酸素原子又はイミノ基(-NH-)を表す。Ar、Ar又はArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。]
 (4)-Ar-Z-Ar
 [式中、Ar及びArは、それぞれ独立に、フェニレン基又はナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基を表す。]
 Ar、Ar又はArで表される前記基中の1個以上の水素原子と置換可能なハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 Ar、Ar又はArで表される前記基中の1個以上の水素原子と置換可能なアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基、n-デシル基等が挙げられ、その炭素数は、1~10が好ましい。
 Ar、Ar又はArで表される前記基中の1個以上の水素原子と置換可能なアリール基としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基、2-ナフチル基等が挙げられ、その炭素数は、6~20が好ましい。アリール基は、単環であってもよく、縮環であってもよい。また、アリール基は、トリル基のように、芳香環の水素原子がアルキル基で置換された基でもよい。
 Ar、Ar又はArで表される前記基中の水素原子が上述した基で置換されている場合、その置換数は、好ましくは1個又は2個であり、より好ましくは1個である。
 式(4)中のZにおけるアルキリデン基としては、メチレン基、エチリデン基、イソプロピリデン基、n-ブチリデン基、2-エチルヘキシリデン基等が挙げられ、その炭素数は、1~10が好ましい。
 繰返し単位(1)は、芳香族ヒドロキシカルボン酸に由来する繰返し単位である。繰返し単位(1)としては、Arが1,4-フェニレン基である繰返し単位(p-ヒドロキシ安息香酸に由来する繰返し単位)、Arが2,6-ナフチレン基である繰返し単位(6-ヒドロキシ-2-ナフトエ酸に由来する繰返し単位)が挙げられる。
 繰返し単位(2)は、芳香族ジカルボン酸に由来する繰返し単位である。繰返し単位(2)としては、Arが1,4-フェニレン基である繰返し単位(テレフタル酸に由来する繰返し単位)、Arが1,3-フェニレン基である繰返し単位(イソフタル酸に由来する繰返し単位)、Arが2,6-ナフチレン基である繰返し単位(2,6-ナフタレンジカルボン酸に由来する繰返し単位)、Arがジフェニルエ-テル-4,4’-ジイル基である繰返し単位(ジフェニルエ-テル-4,4’-ジカルボン酸に由来する繰返し単位)が挙げられる。
 繰返し単位(3)は、芳香族ジオール、芳香族ヒドロキシルアミン又は芳香族ジアミンに由来する繰返し単位である。繰返し単位(3)としては、Arが1,4-フェニレン基である繰返し単位(ヒドロキノン、p-アミノフェノール又はp-フェニレンジアミンに由来する繰返し単位)、Arが4,4’-ビフェニリレン基である繰返し単位(4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニル又は4,4’-ジアミノビフェニルに由来する繰返し単位)が挙げられる。
 繰返し単位(1)の数は、全繰返し単位の合計数(100%)に対して、30%以上80%以下が好ましく、40%以上70%以下がより好ましく、50%以上70%以下がさらに好ましい。
 繰返し単位(2)の数は、全繰返し単位の合計数(100%)に対して、35%以下が好ましく、10%以上35%以下がより好ましく、15%以上30%以下がさらに好ましい。
 繰返し単位(3)の数は、全繰返し単位の合計数(100%)に対して、35%以下が好ましく、10%以上35%以下がより好ましく、15%以上30%以下がさらに好ましい。
 繰返し単位(2)の数と繰返し単位(3)の数との割合は、[繰返し単位(2)の数]/[繰返し単位(3)の数]で表して、0.9/1~1/0.9が好ましく、0.95/1~1/0.95がより好ましく、0.98/1~1/0.98がさらに好ましい。
 なお、本実施形態における液晶ポリエステルは、繰返し単位(1)~(3)を、それぞれ2種以上有してもよい。また、液晶ポリエステルは、繰返し単位(1)~(3)以外の繰返し単位を有してもよいが、その数は、全繰返し単位の合計数(100%)に対して、10%以下が好ましく、5%以下がより好ましい。
 本実施形態における液晶ポリエステルは、繰返し単位(1)として、Arが1,4-フェニレン基である繰返し単位(p-ヒドロキシ安息香酸に由来する繰返し単位)を有することが好ましい。
 本実施形態における液晶ポリエステルは、繰返し単位(2)として、Arが1,4-フェニレン基である繰返し単位(テレフタル酸に由来する繰返し単位)、Arが1,3-フェニレン基である繰返し単位(イソフタル酸に由来する繰返し単位)をそれぞれ有することが好ましく、これらの両方の繰返し単位を有することがより好ましい。
 本実施形態における液晶ポリエステルは、繰返し単位(3)として、X及びYがそれぞれ酸素原子である繰返し単位を有すること、すなわち、所定の芳香族ジオールに由来する繰返し単位を有することが好ましく、繰返し単位(3)として、X及びYがそれぞれ酸素原子である繰返し単位のみを有することがより好ましい。
 本実施形態における液晶ポリエステルは、繰返し単位(1)と繰返し単位(2)と繰返し単位(3)とを有する液晶ポリエステルであることが好ましく、p-ヒドロキシ安息香酸に由来する繰返し単位と、テレフタル酸に由来する繰返し単位と、イソフタル酸に由来する繰返し単位と、芳香族ジオールに由来する繰返し単位と、を有する液晶ポリエステルであることが特に好ましい。
 本実施形態における液晶ポリエステルは、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 本実施形態の液晶ポリエステル組成物中の液晶ポリエステルの含有量は、該組成物全量100質量%に対して、40質量%以上が好ましく、45質量%以上がより好ましく、50質量%以上がさらに好ましい。
 また、本実施形態の液晶ポリエステル組成物中の液晶ポリエステルの含有量は、該組成物全量100質量%に対して、80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下がさらに好ましい。
 例えば、本実施形態の液晶ポリエステル組成物中の液晶ポリエステルの含有量は、該組成物全量100質量%に対して、40質量%以上80質量%以下が好ましく、45質量%以上75質量%以下がより好ましく、50質量%以上70質量%以下がさらに好ましい。
[液晶ポリエステルの製造方法]
 液晶ポリエステルは、それを構成する構造単位に対応する原料モノマーを溶融重合させて、製造することができる。例えば、特許第6439027号に記載の方法に従って製造することができる。
<カーボンブラック>
 本実施形態の液晶ポリエステル組成物が含有するカーボンブラックは、カーボンブラックの一次粒子の平均粒子径が50nm以上70nm未満であり、かつ、カーボンブラックのBET比表面積が40m/g未満であることが特徴である。
 本実施形態の液晶ポリエステル組成物が黒色に着色されていることは、液晶ポリエステル組成物がカーボンブラックを含有することで達成される。
[カーボンブラックの粒子径]
 本実施形態におけるカーボンブラックの粒子径とは、一次粒子径を意味し、カーボンブラック凝集体を構成する小さな球状成分(微結晶による輪郭を有し、分離できない成分)を電子顕微鏡により測定し算出した平均直径をいう。この一次粒子径は、カーボンブラック協会発行のCarbon Black年鑑No.48(1998)p.114に記載の方法で求めることができる。
 より具体的には、透過型電子顕微鏡を用いて、カーボンブラックを倍率20000倍で観察し、任意のカーボンブラックの一次粒子1000個の直径を測定し、その数平均値を求めることにより算出できる。
 本実施形態におけるカーボンブラックの一次粒子の平均粒子径は、50nm以上70nm未満であり、55nm以上70nm未満であることが好ましく、60nm以上70nm未満であることがより好ましい。
 カーボンブラックの一次粒子の平均粒子径が、前記範囲の上限値未満であれば、成形体の比誘電率を低く抑えられやすく、黒色度が高い成形体が得られやすい。一方、カーボンブラックの一次粒子の平均粒子径が前記範囲の下限値以上であれば、成形体の誘電正接を低く抑えられやすい。
[カーボンブラックのBET比表面積]
 本実施形態におけるカーボンブラックのBET比表面積とは、窒素吸着比表面積をいう。この窒素吸着比表面積の測定は、試料表面に付着したガスなどを事前に取り除き、この試料に、液体窒素温度で窒素を吸着して、この吸着量から比表面積を算出することにより行う。
 より具体的には、JIS K6217-2:2001に従い、BET比表面積測定器(例えばMicromeritics社製のAccuSorb 2100E)を用いて、液体窒素温度下で窒素ガスを吸着させ、吸着量を測定し、BET法(Brunauer-Emmett-Teller法)で算出した値を採用する。
 本実施形態におけるカーボンブラックのBET比表面積は、40m/g未満であり、35m/g以下であることが好ましく、30m/g以下であることがより好ましい。カーボンブラックのBET比表面積が、前記範囲の上限値未満であれば、成形体の誘電正接を低く抑えられやすい。
 本実施形態におけるカーボンブラックのBET比表面積の下限は、例えば10m/g以上であでもよく、15m/g以上でもよく、20m/g以上でもよい。カーボンブラックのBET比表面積が、前記範囲の下限値以上であれば、カーボンブラックの使用量を低減できる。
 例えば、本実施形態におけるカーボンブラックのBET比表面積は、40m/g未満であり、10m/g以上40m/g未満であることが好ましく、15m/g以上35m/g未満であることがより好ましく、20m/g以上30m/g未満であることがさらに好ましい。
[カーボンブラックのジブチルフタレート(DBP)の吸油量]
 本実施形態におけるカーボンブラックのDBP吸油量は、ジブチルフタレートアブソーブドメーターによって、JIS K6217-4:2001に記載の方法で求めることができる。
 本実施形態におけるカーボンブラックのDBP吸油量は、80mL/100g以上、120mL/100g以下であることが好ましく、80mL/100g以上、110mL/100g以下であることがより好ましく、80mL/100g以上、100mL/100g以下であることがさらに好ましく、80mL/100g超え、90mL/100g以下であることが特に好ましい。
 カーボンブラックのDBP吸油量が、前記の好ましい範囲の下限値以上であると、成形体の誘電正接を低く抑えられやすい。一方、前記の好ましい範囲の上限値以下であると、成形体の比誘電率を低く抑えられやすい。
 本実施形態におけるカーボンブラックとしては、例えば、ファーネスブラック、ランプブラック、チャネルブラック、サーマルブラック、ケッチェンブラック、ナフタレンブラックが挙げられる。
 本実施形態の液晶ポリエステル組成物において、カーボンブラックは、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 本実施形態におけるカーボンブラックとしては、上記の中でも、ファーネスブラックが好ましい。
 本実施形態の液晶ポリエステル組成物中のカーボンブラックの含有量は、該組成物全量100質量%に対して、0.01質量%以上10質量%以下が好ましく、0.02質量%以上8質量%以下が好ましく、0.4質量%以上5質量%以下がより好ましく、0.6質量%以上2質量%以下がさらに好ましく、0.6質量%以上1.4質量%以下がとりわけ好ましく、0.8質量%以上1.2質量%以下が特に好ましい。
 本実施形態の液晶ポリエステル組成物中のカーボンブラックの含有量は、液晶ポリエステルの含有量100質量部に対して、0.015質量部以上15質量部以下が好ましく、0.03質量部以上12質量部以下が好ましく、0.5質量部以上8質量部以下がより好ましく、0.8質量部以上6質量部以下がさらに好ましく、1質量部以上4質量部以下がとりわけ好ましく、1質量部以上2.5質量部以下が特に好ましい。
 本実施形態の液晶ポリエステル組成物中のカーボンブラックの含有量は、カーボンブラックを除いた組成物の総量100質量部に対して、0.01質量部以上10質量部以下が好ましく、0.02質量部以上8質量部以下が好ましく、0.4質量部以上5質量部以下がより好ましく、0.6質量部以上2質量部以下がさらに好ましく、0.6質量部以上1.4質量部以下がとりわけ好ましく、0.8質量部以上1.2質量部以下が特に好ましい。
 液晶ポリエステル組成物中のカーボンブラックの含有量が、前記の好ましい範囲の下限値以上であると、所望の黒色度が得られやすく、また、誘電率増分および誘電正接増分が共に低く抑えられた液晶ポリエステル組成物を容易に得られる。一方、前記の好ましい範囲の上限値以下であると、成形体の絶縁性、及び組成物の流動性を維持しやすくなる。
 本明細書において、「カーボンブラックを除いた組成物」とは、本実施形態における液晶ポリエステル組成物からカーボンブラックを除いた組成物をいう。後述の実施例1の液晶ポリエステル組成物の場合、液晶ポリエステル(1)と、液晶ポリエステル(2)と、ガラス繊維(1)と、板状無機充填材(1)と、離型剤(1)とを含有している組成物をいう。すなわち、後述の実施例1の液晶ポリエステル組成物の場合、「カーボンブラックを除いた組成物」とは、実施例1に記載の組成物からCB(1)を除いた組成物をいう。
<任意成分>
 本実施形態の液晶ポリエステル組成物は、上述した液晶ポリエステル及びカーボンブラックに加え、必要に応じてその他成分(任意成分)を含有してもよい。
 任意成分としては、充填材、液晶ポリエステル以外の樹脂、カーボンブラック以外の導電性付与剤、離型剤、難燃剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、帯電防止剤、可塑剤、滑剤、染料、発泡剤、制泡剤、粘度調整剤、界面活性剤等が挙げられる。
 ≪離型剤≫
 本実施形態の液晶ポリエステル組成物においては、上述した液晶ポリエステル及びカーボンブラックに加え、さらに、離型剤を含有することが好ましい。本実施形態の液晶ポリエステル組成物が、上記任意成分として、離型剤を含有することで、成形加工性を向上可能である。離型剤として、例えば、モンタン酸およびその塩、そのエステル、そのハーフエステルの他、ステアリルアルコールや、ステアラミド、ポリエチレンワックスなどが挙げられ、好ましくはペンタエリスリトールの脂肪酸エステルである。
 実施形態の液晶ポリエステル組成物における離型剤の含有量は、液晶ポリエステル100質量部に対して、好ましくは0.1質量部以上0.7質量部以下であり、より好ましくは0.15質量部以上0.4質量部以下である。離型剤の含有量が前記の範囲にあると、金型汚染や成形品のブリスターなどが起こりにくく、また優れた離型効果が得られやすい。
 ≪充填材≫
 本実施形態の液晶ポリエステル組成物においては、上述した液晶ポリエステル及びカーボンブラックに加え、さらに、充填材を含有することが好ましい。充填材をさらに含有することで、成形体の機械強度、耐熱性を高められる。
 充填材は、無機充填材でもよいし有機充填材でもよく、用途、要求特性等に応じて適宜選択して用いることができる。
・無機充填材
 無機充填材には、例えば、繊維状充填材、中空充填材、板状充填材、粒状充填材のいずれか1種以上を用いることができる。
 無機充填材における繊維状充填材としては、ガラス繊維;パン系炭素繊維、ピッチ系炭素繊維等の炭素繊維;シリカ繊維、アルミナ繊維、シリカアルミナ繊維等のセラミック繊維;ステンレス繊維等の金属繊維;チタン酸カリウムウイスカー、チタン酸バリウムウイスカー、ウォラストナイトウイスカー、ホウ酸アルミニウムウイスカー、窒化ケイ素ウイスカー、炭化ケイ素ウイスカー等のウイスカーが挙げられる。これらの中でも、ガラス繊維、セラミック繊維、ウイスカーが好ましく、ガラス繊維、シリカ繊維、アルミナ繊維、シリカアルミナ繊維、ウォラストナイトウイスカーが特に好ましい。
 繊維状充填材の数平均繊維長は、成形体への機械強度付与、組成物の流動性の点から、一例としては、30μm以上5000μm以下であってよく、50μm以上3500μm以下であってよく、70μm以上2000μm以下であってよい。
 繊維状充填材の繊維径(単繊維径)は、成形体への機械強度付与、組成物の流動性の点から、一例としては、5μm以上20μm以下であってよく、6μm以上17μm以下であってよく、7μm以上15μm以下であってよい。
 中空フィラーには、一般的にバルーンと呼ばれる粒子内部に空洞を有する充填材を用いる。中空充填材としては、例えば、アルミナ、シリカ、ガラス等の無機材料からなる充填材;尿素樹脂、フェノール樹脂等の有機材料からなる充填材が挙げられる。これらの中でも、無機材料からなる中空充填材が好ましく、具体的には、ガラスバルーン、シリカバルーン、アルミナバルーンが挙げられ、その中でもガラスバルーンが好ましい。
 中空充填材のメジアン径(D50)は、1μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、10μm以上30μm以下がさらに好ましい。このメジアン径(D50)は、中空充填材を水に分散させて、レーザー回折/散乱式粒度分布測定装置を用いて測定した値を意味する。
 無機充填材における板状充填材としては、タルク、マイカ、グラファイト、ガラスフレーク、硫酸バリウム、炭酸カルシウムが挙げられる。マイカは、白雲母であってもよいし、金雲母であってもよいし、フッ素金雲母であってもよいし、四ケイ素雲母であってもよい。
 タルクの体積平均粒子径は、10μm以上20μm以下が好ましく、12μm以上18以下がより好ましく、14μm以上18以下がさらに好ましい。
 タルクの体積平均粒子径はレーザー回折/散乱法により測定方法することができる。測定装置として、レーザー回折/散乱式粒子径分布測定装置(例えば、HORIBA株式会社製、LA-950V2)を用い、タルクを水に分散させた状態で、以下の測定条件にて、体積平均粒子径を算出することができる。
(測定条件)
 粒子屈折率:1.57-0.1i
 分散媒:水
 分散媒屈折率:1.33
 無機充填材における粒状充填材としては、シリカ、アルミナ、酸化チタン、ガラスビーズ、窒化ホウ素、炭化ケイ素、炭酸カルシウムが挙げられる。
・有機充填材
 有機充填材には、例えば、繊維状充填材、板状充填材、粒状充填材のいずれか1種以上を用いることができる。
 有機充填材における繊維状充填材としては、ポリエステル繊維、アラミド繊維、セルロース繊維などが挙げられる。
 有機充填材における粒状充填材としては、p-ヒドロキシ安息香酸のホモポリマーなどの不溶不融の高分子からなる充填材が挙げられる。
 本実施形態の液晶ポリエステル組成物において、充填材は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 充填材としては、機械強度付与の点から、無機充填材が好適に用いられ、繊維状充填材、中空充填材及び板状充填材からなる群より選択される少なくとも一種の無機充填材がより好適に用いられ、繊維状充填材及び板状充填材からなる群より選択される少なくとも一種の無機充填材がさらに好適に用いられ、繊維状無機充填材と板状無機充填材とを組み合わせて特に好適に用いられる。
 繊維状無機充填材と板状無機充填材との組合せにおいて、繊維状無機充填材と板状無機充填材との混合比率は、「板状無機充填材/繊維状無機充填材」で表される質量比で、1以上10以下が好ましく、1を超え10以下がより好ましく、1を超え7以下がさらに好ましく、1を超え5以下が特に好ましい。
 本実施形態の液晶ポリエステル組成物が充填材をさらに含有する場合、液晶ポリエステル組成物中の充填材の含有量は、該組成物全量100質量%に対して、1質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましい。
 また、本実施形態の液晶ポリエステル組成物中の充填材の含有量は、該組成物全量100質量%に対して、70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下がさらに好ましい。
 例えば、本実施形態の液晶ポリエステル組成物中の充填材の含有量は、該組成物全量100質量%に対して、1質量%以上70質量%以下が好ましく、10質量%以上60質量%以下がより好ましく、20質量%以上50質量%以下がさらに好ましい。
 本実施形態の液晶ポリエステル組成物が充填材をさらに含有する場合、液晶ポリエステル組成物中の充填材の含有量は、液晶ポリエステルの含有量100質量部に対して、1質量部以上が好ましく、10質量部以上がより好ましく、25質量部以上がさらに好ましい。
 また、本実施形態の液晶ポリエステル組成物中の充填材の含有量は、液晶ポリエステルの含有量100質量部に対して、200質量部以下が好ましく、150質量部以下がより好ましく、100質量部以下がさらに好ましい。
 例えば、本実施形態の液晶ポリエステル組成物中の充填材の含有量は、液晶ポリエステルの含有量100質量部に対して、1質量部以上200質量部以下が好ましく、10質量部以上150質量部以下がより好ましく、25質量部以上100質量部以下がさらに好ましい。
 液晶ポリエステル組成物中の充填材の含有量が、前記の好ましい範囲の下限値以上であると、成形体の機械強度、耐熱性を高められやすい。一方、液晶ポリエステル組成物中の充填材の含有量が、前記の好ましい範囲の上限値以下であると、組成物の流動性を維持しやすい。
 ≪液晶ポリエステル以外の樹脂≫
 液晶ポリエステル以外の樹脂としては、ポリエチレン、ポリプロピレン、ポリブタジエン、ポリメチルペンテン等のポリオレフィン樹脂;塩化ビニル、塩化ビニリデン、酢酸ビニル、ポリビニルアルコール等のビニル系樹脂;ポリスチレン、アクリロニトリル-スチレン樹脂(AS樹脂)、アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)等のポリスチレン系樹脂;ポリアミド6(ナイロン6)、ポリアミド66(ナイロン66)、ポリアミド11(ナイロン11)、ポリアミド12(ナイロン12)、ポリアミド46(ナイロン46)、ポリアミド610(ナイロン610)、ポリテトラメチレンテレフタルアミド(ナイロン4T)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリメタキシリレンアジパミド(ナイロンMXD6)、ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリデカメチレンテレフタルアミド(ナイロン10T)等のポリアミド系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等のポリエステル系樹脂;変性ポリスルホン、ポリエーテルスルホン、ポリスルホン、ポリフェニルスルホン等のポリスルホン系樹脂;直鎖型ポリフェニレンスルフィド、架橋型ポリフェニレンスルフィド、半架橋型ポリフェニレンスルフィド等のポリフェニレンスルフィド系樹脂;ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン等のポリエーテルケトン系樹脂;熱可塑性ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリイミド系樹脂;ポリカーボネート;
 ポリフェニレンエーテル;フッ素樹脂などが挙げられる。
 以上説明した本実施形態の液晶ポリエステル組成物は、液晶ポリエステルと、一次粒子の平均粒子径が50nm以上70nm未満であり、BET比表面積が40m/g未満であるカーボンブラックと、を含有する。このような特定のカーボンブラックを採用するため、本実施形態の液晶ポリエステル組成物によれば、作製される成形体は、黒色に着色され、黒色に着色されていない状態と比較して誘電率増分および誘電正接増分が共に小さい。
 本実施形態の液晶ポリエステル組成物は、以下の側面を有する。
[8] 上記の[1]~[6]のいずれか一項に記載の液晶ポリエステル組成物であって、
 前記液晶ポリエステルは、下記式(1)で表される繰返し単位(1)と、下記式(2)で表される繰返し単位(2)と、下記式(3)で表される繰返し単位(3)と、を有する液晶ポリエステルである、液晶ポリエステル組成物。
 (1)-O-Ar-CO-
 (2)-CO-Ar-CO-
 (3)-X-Ar-Y-
 [式中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表す。Ar及びArは、それぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は下記式(4)で表される基を表す。X及びYは、それぞれ独立に、酸素原子又はイミノ基(-NH-)を表す。Ar、Ar又はArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。]
 (4)-Ar-Z-Ar
 [式中、Ar及びArは、それぞれ独立に、フェニレン基又はナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基を表す。]
[9] 前記液晶ポリエステルは、p-ヒドロキシ安息香酸に由来する繰返し単位と、テレフタル酸に由来する繰返し単位と、イソフタル酸に由来する繰返し単位と、芳香族ジオールに由来する繰返し単位と、を有する液晶ポリエステルである、[8]に記載の液晶ポリエステル組成物。
[10] [1]~[6]、[8]又は[9]に記載の液晶ポリエステル組成物を、射出成形機に投入し、シリンダー温度350℃、金型温度130℃、射出速度75mm/secの条件で射出成形して得られた64mm×64mm×1.0mmtの試験片10枚に対し、下記測定条件にて測定して平均値を算出した、1GHzにおける比誘電率及び誘電正接の値と、
 前記液晶ポリエステル組成物におけるカーボンブラックが含まれていない組成物をシリンダー温度350℃、金型温度130℃、射出速度75mm/secの条件で射出成形して得られた64mm×64mm×1.0mmtの対照試験片10枚について下記測定条件にて測定して平均値を算出した、1GHzにおける比誘電率及び誘電正接の値との、
 前記比誘電率の値の差を比誘電率増分とし、前記誘電正接の値の差を誘電正接増分とした場合に、
 前記比誘電率増分が、0.18未満であり、好ましくは0.17以下であり、より好ましくは0.16以下であり、さらに好ましくは0.15以下であり、
 前記誘電正接増分が、0.0008以下であり、好ましくは0.0006以下であり、より好ましくは0.0005以下であり、さらに好ましくは0.0003以下である、液晶ポリエステル組成物。
・測定条件
 測定方法:容量法(装置:インピーダンスアナライザー(Agilent社製、型式:E4991A))
 電極型式:16453A
 測定環境:23℃、50%RH
 印加電圧:1V
[11] 前記液晶ポリエステル組成物中の液晶ポリエステルの含有量が、該液晶ポリエステル組成物全量100質量%に対して、好ましくは40質量%以上80質量%以下であり、より好ましくは45質量%以上75質量%以下であり、さらに好ましくは50質量%以上70質量%以下である、前記[1]~[6]、[8]又は[9]に記載の液晶ポリエステル組成物。
(成形体)
 成形体の一実施形態は、上述した実施形態の液晶ポリエステル組成物を含む成形体である。
 成形体の一実施形態は、上述した実施形態の液晶ポリエステル組成物を用いて作製された成形体である。
 成形体の一実施形態は、上述した実施形態の液晶ポリエステル組成物からなる成形体であってよい。
 本実施形態の成形体は、例えば、液晶ポリエステル組成物のペレットを成形材料として、公知の成形方法により得ることができる。
 ここでの成形方法としては、溶融成形法が好ましく、例えば、射出成形法、Tダイ法やインフレーション法などの押出成形法、圧縮成形法、ブロー成形法、真空成形法、プレス成形法が挙げられ、中でも射出成形法が好ましい。
 液晶ポリエステル組成物のペレットは、二軸押出機(例えば、株式会社池貝製、「PCM-30」等)を用いて、フィーダーから液晶ポリエステル組成物をフィードし、スクリュウで溶融混練し、吐出されたストランドをカットすることで製造することができる。
 例えば、上述した液晶ポリエステル組成物のペレットを成形材料として射出成形法により成形する場合、公知の射出成形機を用いて、液晶ポリエステル組成物のペレットを溶融させ、溶融した液晶ポリエステル組成物のペレットを、金型内に射出することにより成形することができる。
 公知の射出成形機としては、例えば、株式会社ソディック製のTR450EH3、日精樹脂工業株式会社製の油圧式横型成形機PS40E5ASE型などが挙げられる。
 射出成形の温度条件は、液晶ポリエステルの種類に応じて適宜決定され、射出成形機のシリンダー温度を、用いる液晶ポリエステルの流動開始温度より10~80℃高い温度に設定することが好ましい。
 金型の温度は、冷却速度と生産性の点から、室温(25℃)から180℃の範囲に設定することが好ましい。
 その他射出条件としては、スクリュウ回転数、背圧、射出速度、保圧、保圧時間などを適宜調節すればよい。
 本実施形態の成形体は、一般に、液晶ポリエステルを適用し得るあらゆる用途に適用可能である。低比誘電率、低誘電正接、及び成形安定性に優れる性質によれば、本実施形態の成形体は、特に高周波領域に適応可能な高性能かつ信頼性の高い電子部品の用途に好適であり、例えば、高速伝送コネクタ、高速伝送アンテナとして利用することができる。
 また、本実施形態の成形体は、上述の他、センサー、LEDランプ、コネクタ、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサ、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、半導体、液晶ディスプレイ、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品、電子レンジ部品、音響・音声機器部品、照明部品、エアコン部品、オフィスコンピューター関連部品、電話・FAX関連部品、および複写機関連部品などの用途にも適用可能である。
 以上説明した本実施形態の成形体は、上述した実施形態の液晶ポリエステル組成物を用いて作製された成形体であるため、黒色に着色され、黒色に着色されていない状態と比較して誘電率増分および誘電正接増分が共に小さく、所望の誘電特性を発揮できる。
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
[液晶ポリエステルの流動開始温度の測定]
 本実施例では、液晶ポリエステルの流動開始温度を以下のようにして測定した。
 フローテスター(株式会社島津製作所製、「CFT-500EX型」)を用いて、液晶ポリエステル約2gを、内径1mm及び長さ10mmのノズルを有するダイを取り付けたシリンダーに充填した。次に、9.8MPaの荷重下、4℃/minの速度で昇温しながら、液晶ポリエステルを溶融させ、ノズルから押し出し、4800Pa・sの粘度を示す温度を測定し、これを液晶ポリエステルの流動開始温度とした。
[タルクの体積平均粒子径の測定]
 本実施例では、タルクの体積平均粒子を以下のようにして測定した。
 測定装置として、レーザー回折/散乱式粒子径分布測定装置(HORIBA株式会社製、LA-950V2)を用い、タルクを水に分散させた状態で、以下の測定条件にて、レーザー回折/散乱法により体積平均粒子径を算出した。
(測定条件)
 粒子屈折率:1.57-0.1i
 分散媒:水
 分散媒屈折率:1.33
<液晶ポリエステル>
 液晶ポリエステルとして、液晶ポリエステル(1)及び液晶ポリエステル(2)をそれぞれ製造することにより準備した。
 [製造例1:液晶ポリエステル(1)の製造]
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸994.5g(7.2モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)、テレフタル酸239.2g(1.44モル)、イソフタル酸159.5g(0.96モル)及び無水酢酸1347.6g(13.2モル)を入れ、反応器内のガスを窒素ガスで置換した後、1-メチルイミダゾール0.2gを加え、窒素ガス気流下で撹拌しながら、室温から150℃まで30分間かけて昇温し、150℃で30分間還流させた。
 次いで、1-メチルイミダゾール0.9gを加え、副生した酢酸及び未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分間かけて昇温し、トルクの上昇が認められた時点で、反応器から内容物を取り出して、室温まで冷却し、固形物であるプレポリマーを得た。
 得られた固形物を、粉砕機で粒径0.1~1mmに粉砕した後、窒素雰囲気下、室温から220℃まで1時間かけて昇温し、220℃から240℃まで30分間かけて昇温し、240℃で10時間保持することにより、固相重合を行った。
 得られた固相重合物を室温まで冷却して、粉末状の液晶ポリエステル(1)を得た。得られた液晶ポリエステル(1)の流動開始温度は286℃であった。
 [製造例2:液晶ポリエステル(2)の製造]
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸994.5g(7.2モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)、テレフタル酸299.0g(1.8モル)、イソフタル酸99.7g(0.6モル)及び無水酢酸1347.6g(13.2モル)を仕込み、触媒として1-メチルイミダゾール0.2gを添加し、反応器内を十分に窒素ガスで置換した。その後、窒素ガス気流下で撹拌しながら、室温から150℃まで30分間かけて昇温し、同温度を保持して30分間還流させた。
 次いで、1-メチルイミダゾール0.9gを加え、副生酢酸及び未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分間かけて昇温し、320℃で30分間保持した後、内容物を取り出し、これを室温まで冷却した。
 得られた固形物を、粉砕機で粒径0.1~1mmに粉砕した後、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から285℃まで5時間かけて昇温し、285℃で3時間保持することにより、固相重合を行った。
 得られた固相重合物を室温まで冷却して、粉末状の液晶ポリエステル(2)を得た。得られた液晶ポリエステル(2)の流動開始温度は327℃であった。
<カーボンブラック>
 CB(1):オリオン・エンジニアドカーボンズ株式会社製、NEROX 1000、一次粒子の平均粒子径50nm、BET比表面積36m/g、DBP吸油量101mL/100g
 CB(2):三菱ケミカル株式会社製、MA220、一次粒子の平均粒子径55nm、BET比表面積36m/g、DBP吸油量93mL/100g
 CB(3):旭カーボン株式会社製、#旭55G、一次粒子の平均粒子径66nm、BET比表面積25m/g、DBP吸油量87mL/100g
 CB(4):キャボット・スペシャルティ・ケミカルズ・インク製、VULCAN XTP50、一次粒子の平均粒子径50nm、BET比表面積55m/g、DBP吸油量139mL/100g
 CB(5):Black Diamond Material Science株式会社製、PC100H、一次粒子の平均粒子径60nm、BET比表面積40m/g、DBP吸油量72mL/100g
 CB(6):キャボット・スペシャルティ・ケミカルズ・インク製、SPHERON SO-LP、一次粒子の平均粒子径70nm、BET比表面積40m/g、DBP吸油量121mL/100g
 CB(7):オリオン・エンジニアドカーボンズ株式会社製、LAMP BLACK 101、一次粒子の平均粒子径95nm、BET比表面積29m/g、DBP吸油量140mL/100g
 CB(8):三菱ケミカル株式会社製、#960B、一次粒子の平均粒子径16nm、BET比表面積260m/g、DBP吸油量64mL/100g
 CB(9):三菱ケミカル株式会社製、#45LB、一次粒子の平均粒子径24nm、BET比表面積120m/g、DBP吸油量53mL/100g
<充填材>
 ガラス繊維(1):セントラル硝子株式会社製、EFH50-01S、数平均繊維長70μm、繊維径10μm
 板状無機充填材(1):日本タルク株式会社製、X-50、体積平均粒子径16.9μm
<離型剤>
 離型剤(1):エメリーオレオケミカルズジャパン株式会社製、ロキシオールVPG-2571(ジペンタエリスリトールヘキサステアレート)
<液晶ポリエステル組成物の製造>
 (実施例1~3、比較例1~6)
 表1に示す液晶ポリエステル、充填材、離型剤及びカーボンブラックを、表1に示す質量部でドライブレンドした。
 その後、二軸押出機(株式会社池貝製、「PCM-30」)にて、スクリュウ回転数150rpmの条件で溶融混練し、直径3mmの円形ノズル(吐出口)を経由してストランド状に吐出し、水温30℃の水浴に1.5秒間くぐらせた後、引き取り速度40m/分で引き取り、ローラーを経て、回転刃を60m/分に調整したストランドカッター(田辺プラスチックス機械株式会社製)にてペレタイズして、各例の液晶ポリエステル組成物をペレット状で得た。
<評価>
 各例の液晶ポリエステル組成物について、比誘電率増分、及び誘電正接増分を求めることにより誘電特性を評価した。
[比誘電率増分、誘電正接増分の測定]
 各例の液晶ポリエステル組成物について、射出成形機(日精樹脂工業株式会社製、「PNX40-5A」)に投入し、シリンダー温度350℃、金型温度130℃、射出速度75mm/secの条件で射出成形して、64mm×64mm×1.0mmtの試験片10枚を得た。
 得られた試験片10枚に対し、下記測定条件にて、1GHzにおける比誘電率及び誘電正接を測定し、それらの平均値を試験片の誘電特性値とした。
・測定条件
 測定方法:容量法(装置:インピーダンスアナライザー(Agilent社製、型式:E4991A))
 電極型式:16453A
 測定環境:23℃、50%RH
 印加電圧:1V
 実施例1~3及び比較例1~6において、液晶ポリエステル、充填材、離型剤を同一量含み、カーボンブラックが含まれていない組成物を、シリンダー温度350℃、金型温度130℃、射出速度75mm/secの条件で射出成形して、64mm×64mm×1.0mmtの対照試験片10枚を得た。
 得られた対照試験片10枚に対し、それらの誘電特性を上記と同一の測定条件で測定し、それらの平均値を対照試験片の誘電特性値とした。
 試験片と対照試験片との比誘電率の差である“試験片の比誘電率-対照試験片の比誘電率”を比誘電率増分として求めた。試験片と対照試験片との誘電正接の差である“試験片の誘電正接-対照試験片の誘電正接”を誘電正接増分として求めた。これらの結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、実施例と比較例との対比より、本発明を適用した実施例1~3の液晶ポリエステル組成物を用いて作製された試験片においては、黒色に着色され、かつ、誘電率増分および誘電正接増分が共に小さく抑えられていることが確認された。
 各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。

Claims (7)

  1.  液晶ポリエステルと、カーボンブラックと、を含有する液晶ポリエステル組成物であって、
     前記カーボンブラックの一次粒子の平均粒子径が、50nm以上70nm未満であり、
     前記カーボンブラックのBET比表面積が、40m/g未満である、液晶ポリエステル組成物。
  2.  前記カーボンブラックのDBP吸油量が、80mL/100g以上、120mL/100g以下である、請求項1に記載の液晶ポリエステル組成物。
  3.  前記カーボンブラックの一次粒子の平均粒子径が、55nm以上70nm未満である、請求項1又は2に記載の液晶ポリエステル組成物。
  4.  前記カーボンブラックの含有量が、前記液晶ポリエステルの含有量100質量部に対して、0.015質量部以上15質量部以下である、請求項1又は2に記載の液晶ポリエステル組成物。
  5.  さらに、充填材を含有し、
     前記充填材の含有量が、前記液晶ポリエステルの含有量100質量部に対して、1質量部以上200質量部以下である、請求項1又は2に記載の液晶ポリエステル組成物。
  6.  前記充填材が、繊維状充填材、中空充填材及び板状充填材からなる群より選択される少なくとも一種の無機充填材である、請求項5に記載の液晶ポリエステル組成物。
  7.  請求項1又は2に記載の液晶ポリエステル組成物を含む成形体。
PCT/JP2022/043740 2021-12-03 2022-11-28 液晶ポリエステル組成物及びその成形体 WO2023100796A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021197070 2021-12-03
JP2021-197070 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023100796A1 true WO2023100796A1 (ja) 2023-06-08

Family

ID=86612172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043740 WO2023100796A1 (ja) 2021-12-03 2022-11-28 液晶ポリエステル組成物及びその成形体

Country Status (2)

Country Link
TW (1) TW202337997A (ja)
WO (1) WO2023100796A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042745A1 (ja) * 2002-11-06 2004-05-21 Matsushita Electric Industrial Co., Ltd. Ptc材料およびその製造方法並びにこのptc材料を用いた回路保護部品およびその製造方法
JP2011089111A (ja) * 2009-09-25 2011-05-06 Toray Ind Inc 二軸配向ポリアリーレンスルフィドフィルム
WO2013121682A1 (ja) * 2012-02-15 2013-08-22 株式会社村田製作所 複合誘電体材料及びそれを使用した誘導体アンテナ
WO2017150336A1 (ja) * 2016-02-29 2017-09-08 ポリプラスチックス株式会社 液晶ポリマー粒子を含有する樹脂組成物、それを用いた成形体、及びそれらの製造方法
JP2019064036A (ja) * 2017-09-29 2019-04-25 ポリプラスチックス株式会社 発泡成形品の製造方法
JP2019077048A (ja) * 2017-10-20 2019-05-23 ポリプラスチックス株式会社 複合成形品
JP2020116862A (ja) * 2019-01-25 2020-08-06 ポリプラスチックス株式会社 複合成形品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042745A1 (ja) * 2002-11-06 2004-05-21 Matsushita Electric Industrial Co., Ltd. Ptc材料およびその製造方法並びにこのptc材料を用いた回路保護部品およびその製造方法
JP2011089111A (ja) * 2009-09-25 2011-05-06 Toray Ind Inc 二軸配向ポリアリーレンスルフィドフィルム
WO2013121682A1 (ja) * 2012-02-15 2013-08-22 株式会社村田製作所 複合誘電体材料及びそれを使用した誘導体アンテナ
WO2017150336A1 (ja) * 2016-02-29 2017-09-08 ポリプラスチックス株式会社 液晶ポリマー粒子を含有する樹脂組成物、それを用いた成形体、及びそれらの製造方法
JP2019064036A (ja) * 2017-09-29 2019-04-25 ポリプラスチックス株式会社 発泡成形品の製造方法
JP2019077048A (ja) * 2017-10-20 2019-05-23 ポリプラスチックス株式会社 複合成形品
JP2020116862A (ja) * 2019-01-25 2020-08-06 ポリプラスチックス株式会社 複合成形品

Also Published As

Publication number Publication date
TW202337997A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
EP2774952B1 (en) Wholly aromatic liquid crystal polyester resin compound and product having antistatic properties
JP5050989B2 (ja) 絶縁性樹脂組成物およびその用途
US20120135228A1 (en) Liquid crystalline polyester composition
CN111225954A (zh) 液晶聚酯树脂组合物和注射成型体
JP2016504470A (ja) 機械的物性が改善された複合材及びこれを含有する成形品
EP3738737B1 (en) Pellet of liquid crystal polyester resin composition and method for producing pellet of liquid crystal polyester resin composition
JP2009001639A (ja) 耐熱性に優れた樹脂組成物及びその製造方法
JP2018168320A (ja) 液晶ポリエステル組成物および成形体
TW201041956A (en) Thermoplastic resin composition, method for producing the same, and molded article obtained from the same
EP3738996B1 (en) Pellet mixture and injection molded product
JP2015059178A (ja) 液晶性ポリエステル樹脂組成物及びそれからなる成形品
CN111655795A (zh) 树脂组合物
JP2007161835A (ja) 誘電性樹脂組成物およびそれから得られる成形品
JP2012201689A (ja) 液晶ポリエステル組成物の製造方法及び成形体の製造方法
WO2021029109A1 (ja) 樹脂組成物及び成形体
KR20140080115A (ko) 열전도성이 우수하고, 열전도도의 이방성이 감소된 전기 전도성 열가소성 수지 조성물
WO2023100796A1 (ja) 液晶ポリエステル組成物及びその成形体
WO2021029271A1 (ja) 液晶ポリエステル樹脂ペレット、及び液晶ポリエステル樹脂成形体、並びに液晶ポリエステル樹脂成形体の製造方法
JP2007106854A (ja) 熱伝導性樹脂組成物
JP6741835B1 (ja) 液晶ポリエステル樹脂ペレット、及び液晶ポリエステル樹脂成形体
CN115135722A (zh) 聚芳硫醚树脂组合物
JP4962222B2 (ja) 電気絶縁性を有する熱伝導性樹脂組成物およびその用途
KR20170100469A (ko) 열전도성이 우수하고, 열전도도의 이방성이 감소된 전기 전도성 열가소성 수지 조성물
TW202340372A (zh) 樹脂組成物及成形體
JP2016084441A (ja) 熱伝導性樹脂組成物およびそれからなる成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901229

Country of ref document: EP

Kind code of ref document: A1