WO2019088598A2 - 그라프트 공중합체의 제조방법 및 이로 제조된 그라프트 공중합체 - Google Patents

그라프트 공중합체의 제조방법 및 이로 제조된 그라프트 공중합체 Download PDF

Info

Publication number
WO2019088598A2
WO2019088598A2 PCT/KR2018/012847 KR2018012847W WO2019088598A2 WO 2019088598 A2 WO2019088598 A2 WO 2019088598A2 KR 2018012847 W KR2018012847 W KR 2018012847W WO 2019088598 A2 WO2019088598 A2 WO 2019088598A2
Authority
WO
WIPO (PCT)
Prior art keywords
graft copolymer
weight
copolymer
bulk polymerization
reaction solution
Prior art date
Application number
PCT/KR2018/012847
Other languages
English (en)
French (fr)
Other versions
WO2019088598A3 (ko
Inventor
서재범
이대우
박정태
김규선
장지욱
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18873748.0A priority Critical patent/EP3617241B1/en
Priority to CN201880035617.3A priority patent/CN110678493B/zh
Priority to JP2019561241A priority patent/JP7033151B2/ja
Priority to US16/621,681 priority patent/US11332568B2/en
Publication of WO2019088598A2 publication Critical patent/WO2019088598A2/ko
Publication of WO2019088598A3 publication Critical patent/WO2019088598A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/001Multistage polymerisation processes characterised by a change in reactor conditions without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • C08F255/06Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms on to ethene-propene-diene terpolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/21Rubbery or elastomeric properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/24Polymer with special particle form or size

Definitions

  • the present invention relates to a process for producing a graft copolymer and a graft copolymer prepared therefrom, and more particularly to a process for producing a graft copolymer which realizes a matte property and an excellent injection surface property, and a graft copolymer It is about coalescence.
  • ABS graft copolymer prepared by graft polymerization of an aromatic vinyl monomer and a vinyl cyan monomer to a conjugated diene polymer is excellent in strength, heat resistance and molding processability and is used in many fields.
  • the hydrogen of the methyl group adjacent to the remaining double bond in the molecule due to the conjugated diene polymer becomes a starting point of the oxidation reaction by the action of light or oxygen, and the main chain reacts to cause defects .
  • this not only causes whitening and cracking of the surface of the copolymer, but also causes various performance deterioration of thermoplastic resin molded articles containing the graft copolymer.
  • methods such as addition of an ultraviolet stabilizer, coating, and plating are usually employed, but this is not an essential improvement.
  • graft copolymers having been replaced with a rubber having an unsaturated bond instead of the conjugated diene-based polymer component which is a cause of deterioration in the graft copolymer have been developed.
  • One of them is an ethylene-propylene copolymer AES < / RTI > graft copolymer.
  • the AES graft copolymer is obtained by graft-polymerizing styrene, acrylonitrile, or the like with an ethylene-propylene copolymer or an ethylene-propylene-diene terpolymer as a rubber component without substantially containing an unsaturated bond in the main chain .
  • the AES copolymer has a remarkably good resistance to ultraviolet rays, oxygen and ozone, and is also known to be able to realize a non-glossy property.
  • the present invention provides a graft copolymer excellent in injection surface while realizing a non-glare property and a method for producing the graft copolymer.
  • a method for preparing a polymer electrolyte membrane comprising: preparing a reaction solution comprising a copolymer comprising a diene-based monomer unit and an alkene-based monomer unit, an aromatic vinyl monomer, a vinyl cyan monomer, and a reaction solvent; And introducing the reaction solution and subjecting the mixture to primary bulk polymerization at 100 to 110 ° C, wherein the copolymer contains 5 to 10% by weight of the diene-based monomer unit , And the graft copolymer has a rubber average particle diameter of 2 to 5 ⁇ ⁇ .
  • the present invention provides a graft copolymer produced by the above-mentioned production method and having a gloss of 22% or less based on ASTM 1003.
  • the graft copolymer of the present invention is capable of realizing the non-light-emitting property, and is excellent in the graft rate, and thus can have remarkably excellent injection surface characteristics.
  • the rubber average particle diameter of the graft copolymer can be defined as the particle diameter corresponding to 50% of the volume accumulation amount in the particle diameter distribution curve of the particles.
  • the rubber average particle diameter of the graft copolymer can be measured after dissolving a certain amount of the graft copolymer in a solvent. Specifically, 0.5 g of the graft copolymer is dissolved in 100 ml of methyl ethyl ketone, and then the measurement can be performed using a Coulter counter (trade name: LS230, manufactured by Beckman Coulter, Inc.).
  • the graft ratio can be calculated using the following equation after introducing a certain amount of the graft copolymer into a solvent, dissolving it using a vibrator, centrifuging it with a centrifuge, and drying to obtain an insoluble matter.
  • a predetermined amount of a graft copolymer was added to acetone and the graft copolymer was dissolved by vibrating with a vibrator (trade name: SI-600R, manufactured by Lab. Companion) for 24 hours, and the graft copolymer was dissolved by centrifuging at 14,000 rpm for 1 , And dried at 140 DEG C for 2 hours in a vacuum drier (trade name: DRV320DB, manufactured by ADVANTEC) to obtain an insoluble matter, which can be calculated using the following equation.
  • the Mooney viscosity (ML (1 + 4), 100 ° C) of the copolymer in the present invention can be measured according to ASTM D1646.
  • the weight-average molecular weight of the copolymer can be measured by gel permeation chromatography using tetrahydrofuran as an eluent and relative to a standard sample of polystyrene.
  • the glossiness can be measured according to ASTM 1003 after the graft copolymer is injected and made into a specimen of 3 mm.
  • a process for producing a graft copolymer according to an embodiment of the present invention comprises: (1) a step of mixing a copolymer comprising a diene-based monomer unit and an alkene-based monomer unit, an aromatic vinyl monomer, a vinyl cyan monomer, Preparing a reaction solution; And 2) introducing the reaction solution to perform primary bulk polymerization at 100 to 110 ⁇ , wherein the copolymer comprises 5 to 10% by weight of the diene-based monomer unit And the graft copolymer has an average rubber particle diameter of 2 to 5 mu m.
  • the method for producing a graft copolymer according to an embodiment of the present invention may further include 3) second bulk polymerization after the first bulk polymerization.
  • the method of producing a graft copolymer according to an embodiment of the present invention may further include 4) a step of recovering unreacted monomers and a reaction solvent after the second bulk polymerization.
  • reaction solution comprising a copolymer containing a dien-based monomer unit and an alkene-based monomer unit, an aromatic vinyl monomer, a vinyl cyan monomer and a reaction solvent is prepared.
  • the unit derived from the dienic monomer may be a unit derived from at least one member selected from the group consisting of dicyclopentadiene, ethylidene norbornene, and vinyl norbornene, and among these, a unit derived from ethylidene norbornene is preferable Do.
  • the diene-based monomer-derived units are included in an amount of 5 to 10% by weight, and preferably 5 to 8% by weight based on the total weight of the copolymer.
  • the alkene-based monomer-derived units are contained in an amount of 90 to 95% by weight, and preferably 92 to 95% by weight, based on the total weight of the copolymer.
  • the graft polymerization with the aromatic vinyl monomer and the vinyl cyan monomer is easy and economical. Further, the synergistic effect can be realized due to the combination of the first bulk polymerization temperature to be described later and the content of the unit derived from the dienic monomer, whereby the rubber average particle diameter of the graft copolymer can be suitably realized, Copolymer can be produced.
  • the diene-based monomer-derived units are contained within the above-mentioned range, the graft polymerization reaction can not sufficiently take place, so that the rubber grains of the graft copolymer are formed unevenly and the rubber average particle size becomes rather large, The connection between the aromatic vinyl-based monomer-derived unit and the vinyl cyan-based monomer-derived unit is loosened and the injection surface is not excellent.
  • the above-mentioned diene-based monomer-derived units are contained in excess of the above-mentioned range, there is a problem that the manufacturing cost remarkably increases.
  • the alkene-based monomer-derived unit may be an alkene-based monomer-derived unit having 2 to 4 carbon atoms.
  • the copolymer preferably contains two or more alkene-based monomer-derived units, and more preferably includes an ethylene-derived unit and a propylene-derived unit.
  • the ethylene-derived units may be contained in an amount of 52 to 73% by weight, 55 to 70% by weight, 58 to 67% by weight or 60 to 65% by weight based on the total weight of the copolymer, and 60 to 65% .
  • the propylene-derived unit may be contained in an amount of 20 to 40 wt%, 22 to 37 wt%, 25 to 35 wt%, or 27 to 32 wt% based on the total weight of the copolymer, and 27 to 32 wt% .
  • the copolymer may have a Mooney viscosity (ML (1 + 4), 100 ° C) of 30 to 80 or 50 to 80, preferably 50 to 80.
  • the copolymer may have a weight average molecular weight of 110,000 to 250,000 g / mol, 130,000 to 230,000 g / mol, 150,000 to 210,000 g / mol, or 170,000 to 190,000 g / mol, and preferably 170,000 to 190,000 g / mol .
  • the copolymer may be contained in an amount of 3 to 15% by weight, 5 to 12% by weight or 7 to 10% by weight based on the total weight of the reaction solution, and preferably 7 to 10% by weight of the copolymer.
  • the aromatic vinyl-based monomer may be at least one member selected from the group consisting of styrene,? -Methylstyrene,? -Ethylstyrene, p-methylstyrene and 2,4-dimethylstyrene. Of these, styrene is preferable.
  • the aromatic vinyl monomer may be contained in an amount of 40 to 65 wt%, 45 to 60 wt%, or 50 to 55 wt% based on the total weight of the reaction solution, preferably 50 to 55 wt% .
  • the vinyl cyan monomer may be at least one member selected from the group consisting of acrylonitrile, methacrylonitrile, ethacrylonitrile, phenyl acrylonitrile, and? -Chloroacrylonitrile, among which acrylonitrile is preferable Do.
  • the vinyl cyan monomer may be contained in an amount of 5 to 25% by weight, 8 to 20% by weight or 10 to 15% by weight based on the total weight of the reaction solution, preferably 10 to 15% by weight .
  • the reaction solvent may be at least one selected from the group consisting of toluene, ethylbenzene, xylene, and methyl ethyl ketone, and ethylbenzene is preferable.
  • the reaction solvent may be contained in a balance such that the sum of the components of the reaction solution is 100% by weight. Due to the reaction solvent, the reaction solution has an appropriate viscosity, massive polymerization to be described later can be easily performed, and unreacted monomers and the like in the final product can be reduced.
  • reaction solution is added and the first bulk polymerization is carried out at 100 to 110 ° C.
  • the primary bulk polymerization is a step for phase-switching the copolymer, the aromatic vinyl monomer and the vinyl cyan monomer.
  • the primary bulk polymerization is carried out in the above-mentioned range, there is an advantage that the phase transfer rate is improved.
  • a synergistic effect is realized due to the combination of the primary bulk polymerization temperature and the content of the units derived from dienic monomer in the copolymer, so that graft polymerization with aromatic vinyl monomers and vinyl cyan monomers can be facilitated.
  • a graft copolymer having an appropriate rubber average particle size and grafting ratio can be produced, and a graft copolymer having not only excellent matt surface property but also excellent injection surface can be produced.
  • the phase exchange rate is lowered.
  • the graft polymerization reaction rate is lowered and the rubber average particle diameter becomes too large and the injection surface is not excellent.
  • the primary bulk polymerization may be performed for 0.5 to 4 hours, 1.0 to 3.5 hours, 1.5 to 3.0 hours, or 1.5 to 2.5 hours, preferably 1.5 to 2.5 hours.
  • the normal exchange rate can be further increased.
  • the primary bulk polymerization may be carried out while stirring the reaction solution at 50 to 90 rpm, 55 to 85 rpm, 60 to 80 rpm or 65 to 75 rpm, with stirring at 65 to 75 rpm .
  • the matte property can be further improved.
  • an initiator and a molecular weight regulator may be further added.
  • the initiator may be a radical polymerization initiator having a one hour half life temperature of 90 to 110 ⁇ ⁇ .
  • the initiator may be selected from the group consisting of stearoyl peroxide, benzoyl peroxide, t-butyl peroxy-2-ethylhexanoate, t-butyl peroxy-isobutyrate, 1,1-di (t-butylperoxy) Trimethylcyclohexane, and t-butylperoxy-2-ethylhexanoate, among these.
  • the initiator may be added in an amount of 0.01 to 0.2 parts by weight, 0.02 to 0.1 part by weight, 0.02 to 0.08 part by weight or 0.02 to 0.06 part by weight based on 100 parts by weight of the reaction solution, and 0.02 to 0.06 part by weight of the initiator desirable.
  • 0.01 to 0.2 parts by weight 0.02 to 0.1 part by weight, 0.02 to 0.08 part by weight or 0.02 to 0.06 part by weight based on 100 parts by weight of the reaction solution, and 0.02 to 0.06 part by weight of the initiator desirable.
  • the molecular weight modifier may be at least one member selected from the group consisting of t-dodecylmercaptan and n-octylmercaptan, and t-dodecyl mercaptan is preferable.
  • the molecular weight modifier may be added in an amount of 0.02 to 0.9 part by weight, 0.02 to 0.8 part by weight, or 0.03 to 0.7 part by weight, based on 100 parts by weight of the reaction solution, and 0.03 to 0.7 part by weight thereof.
  • the primary bulk polymerization may be continuous bulk polymerization performed while continuously feeding the reaction solution, initiator and molecular weight regulator at a constant rate.
  • the second bulk polymerization may be performed at 130 to 150 ° C.
  • the second bulk polymerization is carried out in order to increase the polymerization conversion rate.
  • the polymerization conversion ratio can be further improved.
  • the second bulk polymerization may be performed in a reactor different from the reactor in the primary bulk polymerization.
  • the reactor in the first bulk polymerization and the reactor for the second bulk polymerization may be a continuous reactor connected in series.
  • the reactor for secondary bulk polymerization may be a continuous reactor in which three or more reactors are connected in series.
  • the second bulk polymerization may be performed at a temperature of 130 to 150 ° C stepwise, and the reaction solution may be transferred to another reactor to change the polymerization temperature, followed by bulk polymerization.
  • step of secondary bulk polymerization may be carried out while continuously feeding the reaction solution.
  • the second bulk polymerization may be performed while stirring the reaction solution at 30 to 70 rpm, 35 to 65 rpm, 40 to 60 rpm or 45 to 55 rpm, with stirring at 45 to 55 rpm desirable.
  • the matte property can be further improved.
  • a molecular weight regulator may be further added.
  • the kind of the molecular weight modifier is as described above.
  • the molecular weight modifier may be added in an amount of 0.02 to 0.9 part by weight, 0.02 to 0.8 part by weight, or 0.03 to 0.7 part by weight, based on 100 parts by weight of the reaction solution, and 0.03 to 0.7 part by weight thereof.
  • the step of recovering the unreacted monomer and the reaction solvent may be further performed.
  • the step of recovering the unreacted monomer and the reaction solvent may be performed in a devolatilization tank.
  • the devolatilizer is equipped with a heat exchanger and is operated at a temperature of from 220 to 250 ° C and a pressure of less than 25 torr at a temperature of from 225 to 245 ° C and a pressure of less than 20 torr or at a temperature of from 230 to 240 ° C and less than 16 torr It is preferable that the degree of vacuum is maintained at a temperature of 230 to 240 DEG C and a pressure of less than 16 torr.
  • the graft copolymer prepared according to the process for producing a graft copolymer according to an embodiment of the present invention has an average rubber particle diameter of 2 to 5 ⁇ , preferably 2.5 to 4.5 ⁇ , more preferably 3 to 4.2 ⁇ Lt; / RTI >
  • the graft ratio of the graft copolymer prepared according to the method of the present invention may be 35 to 60% or 40 to 55%, preferably 40 to 55%.
  • the graft copolymer prepared according to the method for producing a graft copolymer according to an embodiment of the present invention has a glossiness of 22% or less based on ASTM 1003.
  • the graft copolymer may have a gloss according to ASTM 1003 of 16% or less, or 12% or less, and preferably 12% or less. When the above-described range is satisfied, the non-glossy property can be realized. When the glossiness exceeds 22%, the graft copolymer can not achieve the non-gloss property.
  • the graft copolymer may have excellent injection surface and excellent impact strength.
  • the polymerization solution was charged into a first reactor set at an internal temperature shown in Table 2 at a constant rate for 2 hours and subjected to primary polymerization while stirring at the rate shown in Table 2.
  • the first polymer was introduced into a second reactor set at an internal temperature shown in Table 2 at a constant rate for 1.5 hours and then subjected to secondary polymerization while stirring at the rate shown in Table 2.
  • 0.03 part by weight of t-dodecylmercaptan as a molecular weight regulator was added to the second reactor in a batch, and the secondary polymer was fed into the third reactor set at the internal temperature set forth in Table 2 at a constant rate for 1.5 hours, followeded by tertiary polymerization with stirring.
  • the third polymer was put into a fourth reactor set at the internal temperature shown in Table 2 at a constant rate for 1.5 hours, and the fourth polymerization was carried out while stirring at the rate shown in Table 2, and the polymerization was terminated. Thereafter, unreacted monomer and reaction solvent were recovered and removed in a devolatilization tank at 230 ° C and 15 torr to prepare a pelletized graft copolymer.
  • Example 1 105 70 130 50 140 50 150 50 Example 2 105 70 130 50 140 50 150 50 Example 3 105 70 130 50 140 50 150 50 Example 4 110 70 130 50 140 50 150 50 Example 5 105 70 130 50 140 50 150 50 Example 6 105 70 130 50 140 50 150 50 Example 7 100 70 130 50 140 50 150 50 Comparative Example 1 105 70 130 50 140 50 150 50 Comparative Example 2 105 70 130 50 140 50 150 50 Comparative Example 3 120 70 130 50 140 50 150 50 Comparative Example 4 105 70 130 50 140 50 150 50 Comparative Example 5 105 70 130 50 140 50 150 50 Comparative Example 6 105 150 130 50 140 50 150 50 Comparative Example 7 95 70 130 50 140 50 150 50 Comparative Example 8 115 70 130 50 140 50 150 50
  • Rubber average particle diameter ( ⁇ ⁇ ) 0.5 g of the graft copolymer was dissolved in 100 ml of methyl ethyl ketone, and the rubber average particle diameter was measured using a Coulter counter (trade name: LS230, manufactured by Beckman Coulter).
  • Graft rate A predetermined amount of the graft copolymer was added to acetone and vibrated with a vibrator for 24 hours to dissolve the free graft copolymer.
  • the solution in which the graft copolymer was dissolved by using a centrifuge was centrifuged at 14,000 rpm for 1 hour.
  • the centrifuged material was dried at 140 DEG C for 2 hours using a vacuum drier, and an insoluble matter was obtained.
  • Injection surface The graft copolymer was injected five times and the surface of the injection molded article was visually distinguished. (?: Excellent,?: Medium, and X: poor)
  • the graft copolymers of Examples 1 to 7 had an average rubber particle diameter of 2.1 to 4.2 ⁇ ⁇ and a glossiness of 22% or less, thereby realizing a matte property.
  • the injection surface was also excellent because the graft ratio was 39 to 58%.
  • Example 1 even when the graft copolymer was prepared using ethylene-propylene-diene terpolymer, the lower the content of ethylidene norbornene in the ethylene-propylene-diene terpolymer, And the graft rate is lowered.
  • the average particle diameter of the rubber was 6.2 ⁇ ⁇ , so that the matte properties could be realized, but the injection surface was not excellent because the graft rate was low.
  • Example 1 even when a graft copolymer was prepared using an ethylene-propylene-diene monomer polymer, the Mooney viscosity of the ethylene-propylene-diene terpolymer It was confirmed that the average particle diameter of the rubber increases. Specifically, referring to Example 1 and Example 3, it was confirmed that Example 3 using an ethylene-propylene-diene terpolymer having a high Mooney viscosity had a larger rubber average particle diameter and a lower gloss, and thus had better matt properties . Further, referring to Example 5 and Comparative Example 2, it was confirmed that Example 5 using an ethylene-propylene-diene terpolymer having a high Mooney viscosity had a larger rubber average particle diameter and a markedly lower gloss, .
  • Example 1 Example 6, and Comparative Example 5 it was confirmed that the higher the content of the molecular weight modifier, the larger the rubber average particle diameter and the lower the gloss.
  • Comparative Example 5 since the molecular weight modifier was added in an excess amount, a graft copolymer having an average rubber particle diameter of 6.3 ⁇ m was produced, and the average particle diameter of the rubber was too large, so that it was confirmed that the injection surface was not excellent.
  • Example 1 and Comparative Example 6 all other conditions were the same, and the stirring speed in the first reactor was twice or more as high as in Comparative Example 6, but the gloss was remarkably increased, .
  • Comparative Example 7 In Comparative Example 7 in which the temperature of the first reactor was low, the injection surface and the impact strength were not excellent. In Comparative Example 8, the average temperature of the rubber in the first reactor was large, .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 디엔계 단량체 유래 단위 및 알켄계 단량체 유래 단위를 포함하는 공중합체, 방향족 비닐계 단량체, 비닐 시안계 단량체 및 반응용매를 포함하는 반응용액을 준비하는 단계; 및 상기 반응용액을 투입하여 100 내지 110 ℃에서 1차 괴상 중합하는 단계를 포함하는 그라프트 공중합체의 제조방법에 있어서, 상기 공중합체는 상기 디엔계 단량체 유래 단위를 5 내지 10 중량%로 포함하고, 상기 그라프트 공중합체는 고무 평균 입경이 2 내지 5 ㎛인 그라프트 공중합체의 제조방법 및 이로 제조된 그라프트 공중합체에 관한 것이다.

Description

그라프트 공중합체의 제조방법 및 이로 제조된 그라프트 공중합체
[관련출원과의 상호인용]
본 발명은 2017.11.01에 출원된 한국 특허 출원 제10-2017-0144958호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 그라프트 공중합체의 제조방법 및 이로 제조된 그라프트 공중합체에 관한 것으로서, 보다 상세하게는 무광 특성 및 우수한 사출 표면 특성을 구현하는 그라프트 공중합체의 제조방법 및 이로 제조된 그라프트 공중합체에 관한 것이다.
공액 디엔계 중합체에 방향족 비닐계 단량체와 비닐 시안계 단량체를 그라프트 중합하여 제조한 ABS 그라프트 공중합체는 강도, 내열성, 성형 가공성이 우수하여 많은 분야에 사용되고 있다. 그러나, 이러한 ABS 그라프트 공중합체는 공액 디엔계 중합체에 기인하는 분자 내의 잔존 이중 결합에 인접한 메틸기의 수소가 빛이나 산소의 작용에 의해 산화반응의 개시점으로 되어 주쇄가 반응을 일으켜 내후성이 떨어지는 결점이 있다. 특히 이것은 공중합체 표면의 백화나 크랙(crack)을 발생시킬 뿐만 아니라 그라프트 공중합체를 포함하는 열가소성 수지 성형품의 여러 가지 성능을 저하시키는 원인이 된다. 그라프트 공중합체의 우수한 성질을 유지하면서 내후성을 가미하여 물성이 균형 잡힌 공중합체로 제조하기 위해서, 통상 자외선 안정제의 첨가, 도장, 도금 등의 방법이 취해지는데, 이는 본질적인 개선은 아니다.
따라서, 그라프트 공중합체에서 열화의 원인인 공액 디엔계 중합체 성분을 사용하지 않고, 대신 불포화 결합을 갖는 고무로 교환한 여러 그라프트 공중합체가 개발되었는데, 그 중의 하나가 에틸렌-프로필렌계 공중합체를 사용하여 제조된 AES 그라프트 공중합체이다. AES 그라프트 공중합체는 주쇄에 실질적으로 불포화 결합을 포함하지 않고, 에틸렌-프로필렌 공중합체 또는 에틸렌-프로필렌-디엔계 테르 폴리머를 고무 성분으로 하고, 이에 스티렌 및 아크릴로니트릴 등을 그라프트 중합하여 수득되는 그라프트 공중합체이다. 공역 디엔계 고무를 이용한 ABS 공중합체와 비교하면, 상기 AES 공중합체는 자외선, 산소 및 오존에 대한 저항성이 현저히 좋고, 무광 특성도 구현할 수 있는 것으로 알려져 있다.
그러나 에틸렌-프로필렌계 고무와 에틸렌-프로필렌-디엔계 삼합체 부타디엔계 고무에 비해 반응 활성 부분이 거의 없기 때문에, 스티렌과 아크릴로니트릴을 그라프트 중합시키는데 어려움이 있으며, 단순히 고무상 중합체와 SAN 공중합체와의 혼합물이 되는 경우가 많다. 따라서, 수득된 AES 그라프트 공중합체를 사출 성형한 경우, 표면에 얼룩이 보이고 충격 강도 저하 등의 결점이 있으며 심한 경우 사출면이 벗겨지는 박리 현상도 나타나게 된다.
이에 따라서, AES 그라프트 공중합체의 특성을 개선시키는 연구가 지속되고 있다.
본 발명은 무광 특성을 구현하면서, 사출 표면이 우수한 그라프트 공중합체 및 이의 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위하여 본 발명은 디엔계 단량체 유래 단위 및 알켄계 단량체 유래 단위를 포함하는 공중합체, 방향족 비닐계 단량체, 비닐 시안계 단량체 및 반응용매를 포함하는 반응용액을 준비하는 단계; 및 상기 반응용액을 투입하여 100 내지 110 ℃에서 1차 괴상 중합하는 단계를 포함하는 그라프트 공중합체의 제조방법에 있어서, 상기 공중합체는 상기 디엔계 단량체 유래 단위를 5 내지 10 중량%로 포함하고, 상기 그라프트 공중합체는 고무 평균 입경이 2 내지 5 ㎛인 그라프트 공중합체의 제조방법을 제공한다.
또한, 본 발명은 상기 제조방법으로 제조되고, ASTM 1003에 의거한 광택도가 22% 이하인 그라프트 공중합체를 제공한다.
본 발명의 그라프트 공중합체는 무광 특성을 구현할 수 있으면서, 그라프트율이 우수하여 사출 표면 특성이 현저하게 우수할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 그라프트 공중합체의 고무 평균 입경은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50 %에 해당하는 입경으로 정의할 수 있다.
본 발명에서 그라프트 공중합체의 고무 평균 입경은 그라프트 공중합체 일정량을 용매에 용해시킨 후, 측정할 수 있다. 구체적으로는 그라프트 공중합체 0.5 g을 메틸에틸케톤 100 ㎖에 용해시킨 후, 쿨터 카운터(상품명: LS230, 제조사: 벡크만 쿨터사)를 이용하여 측정할 수 있다.
본 발명에서 그라프트율은 그라프트 공중합체 일정 양을 용매에 투입하고 진동기를 이용하여 용해시키고, 원심 분리기로 원심 분리하고, 건조하여 불용분을 수득한 후, 하기 식을 이용하여 산출할 수 있다.
상세하게는 그라프트 공중합체 일정량을 아세톤에 투입하고 진동기(상품명: SI-600R, 제조사: Lab. companion)로 24 시간 동안 진동시켜 유리된 그라프트 공중합체를 용해시키고, 원심 분리기로 14,000 rpm으로 1시간 동안 원심분리하고, 진공 건조기(상품명: DRV320DB, 제조사: ADVANTEC)로 140 ℃, 2 시간 동안 건조시켜 불용분을 수득한 후, 하기 식을 이용하여 산출할 수 있다.
그라프트율(%)=(Y-(XХR))/ (XХR) Х 100
Y: 불용분 중량
X: 불용분 수득시 투입된 그라프트 공중합체의 중량
R: 불용분 수득시 투입된 그라프트 공중합체 내 공중합체의 분율
본 발명에서 공중합체의 무니 점도(ML(1+4), 100 ℃)는 ASTM D1646에 의거하여 측정할 수 있다.
본 발명에서 공중합체의 중량평균분자량은 용출액으로 테트라하이드로퓨란을 이용하고, 겔 투과 크로마토그래피를 통해 표준 시료인 폴리스티렌에 대한 상대 값으로 측정할 수 있다.
본 발명에서 광택도는 그라프트 공중합체를 사출하여 3 ㎜의 시편으로 제조한 후, ASTM 1003에 의거하여 측정할 수 있다.
1. 그라프트 공중합체의 제조방법
본 발명의 일실시예에 따른 그라프트 공중합체의 제조방법은 1) 디엔계 단량체 유래 단위 및 알켄계 단량체 유래 단위를 포함하는 공중합체, 방향족 비닐계 단량체, 비닐 시안계 단량체 및 반응용매를 포함하는 반응용액을 준비하는 단계; 및 2) 상기 반응용액을 투입하여 100 내지 110 ℃에서 1차 괴상 중합하는 단계를 포함하는 그라프트 공중합체의 제조방법에 있어서, 상기 공중합체는 상기 디엔계 단량체 유래 단위를 5 내지 10 중량%로 포함하고, 상기 그라프트 공중합체는 고무 평균 입경이 2 내지 5 ㎛이다.
본 발명의 일실시예에 따른 그라프트 공중합체의 제조방법은 상기 1차 괴상 중합하는 단계 이후에, 3) 2차 괴상 중합하는 단계를 더 포함할 수 있다.
본 발명의 일실시예에 따른 그라프트 공중합체의 제조방법은 상기 2차 괴상 중합하는 단계 이후에 4) 미반응 단량체와 반응용매를 회수하는 단계를 더 포함할 수 있다.
이하, 본 발명의 일실시예에 따른 그라프트 공중합체의 제조방법에 대하여 각 단계별로 상세하게 설명한다.
1) 반응용액을 준비하는 단계
먼저, 디엔계 단량체 유래 단위 및 알켄계 단량체 유래 단위를 포함하는 공중합체, 방향족 비닐계 단량체, 비닐 시안계 단량체 및 반응용매를 포함하는 반응용액을 준비한다.
상기 디엔계 단량체 유래 단위는 디사이클로펜타디엔, 에틸리덴 노보렌, 및 비닐 노보렌으로 이루어진 군에서 선택되는 1종 이상으로부터 유래된 단위일 수 있고, 이 중 에틸리덴 노보렌으로부터 유래된 단위가 바람직하다.
상기 디엔계 단량체 유래 단위는 상기 공중합체의 총 중량에 대하여, 5 내지 10 중량%로 포함되고, 5 내지 8 중량%로 포함되는 것이 바람직하다.
상기 알켄계 단량체 유래 단위는 상기 공중합체의 총 중량에 대하여, 90 내지 95 중량%로 포함되고, 92 내지 95 중량%로 포함되는 것이 바람직하다.
상술한 범위를 만족하면, 방향족 비닐계 단량체 및 비닐 시안계 단량체와의 그라프트 중합이 용이하고, 경제적일 수 있다. 또한, 후술할 1차 괴상 중합 온도와 디엔계 단량체 유래 단위의 함량의 조합으로 인해 상승 효과가 구현되어, 그라프트 공중합체의 고무 평균 입경을 적절하게 구현할 수 있으면서, 무광 특성 및 사출 표면이 우수한 그라프트 공중합체를 제조할 수 있다.
상기 디엔계 단량체 유래 단위가 상술한 범위 미만으로 포함되면, 그라프트 중합 반응이 충분히 일어날 수 없으므로, 상기 그라프트 공중합체의 고무 입자가 불균일하게 형성되어 고무 평균 입경은 오히려 커지고, 공중합체 유래 단위와 방향족 비닐계 단량체 유래 단위와 비닐 시안계 단량체 유래 단위와의 연결이 느슨해져 사출 표면이 우수하지 못하게 된다. 상기 디엔계 단량체 유래 단위가 상술한 범위를 초과하여 포함되면, 제조원가가 현저하게 상승하는 문제가 있다.
상기 알켄계 단량체 유래 단위는 탄소수 2 내지 4의 알켄계 단량체 유래 단위일 수 있다.
상기 공중합체는 알켄계 단량체 유래 단위를 2종 이상 포함하는 것이 바람직하고, 에틸렌 유래 단위와 프로필렌 유래 단위를 포함하는 것이 보다 바람직하다.
상기 에틸렌 유래 단위는 상기 공중합체의 총 중량에 대하여, 52 내지 73 중량%, 55 내지 70 중량%, 58 내지 67 중량% 또는 60 내지 65 중량%로 포함될 수 있고, 이 중 60 내지 65 중량%로 포함되는 것이 바람직하다.
상술한 범위를 만족하면, 최종 생산품인 그라프트 공중합체의 물성 밸런스가 우수해진다.
상기 프로필렌 유래 단위는 상기 공중합체의 총 중량에 대하여, 20 내지 40 중량%, 22 내지 37 중량%, 25 내지 35 중량% 또는 27 내지 32 중량%로 포함될 수 있고, 이 중 27 내지 32 중량%로 포함되는 것이 바람직하다.
상술한 범위를 만족하면, 최종 생산품인 그라프트 공중합체의 물성 밸런스가 우수해진다.
상기 공중합체는 무니 점도(ML(1+4), 100℃)가 30 내지 80 또는 50 내지 80일 수 있고, 이 중 50 내지 80인 것이 바람직하다.
상술한 범위를 만족하면, 후술할 1차 괴상 중합 온도와 공중합체 내 디엔계 단량체 유래 단위의 함량과의 조합으로 인해 상승 효과가 구현되어, 적절한 공중합체 유래 단위의 평균 입자를 구현하면서, 무광 특성 및 사출 표면이 우수한 그라프트 공중합체를 제조할 수 있다.
상기 공중합체는 중량평균분자량이 110,000 내지 250,000 g/mol, 130,000 내지 230,000 g/mol, 150,000 내지 210,000 g/mol 또는 170,000 내지 190,000 g/mol 일 수 있고, 이 중 170,000 내지 190,000 g/mol이 바람직하다.
상술한 범위를 만족하면, 충격강도 등의 기계적 특성이 우수하고, 적절한 점도를 구현할 수 있으므로, 공정 운전이 용이해질 수 있다.
상기 공중합체는 상기 반응용액의 총 중량에 대하여, 3 내지 15 중량%, 5 내지 12 중량% 또는 7 내지 10 중량%로 포함될 수 있고, 이 중 7 내지 10 중량%로 포함되는 것이 바람직하다.
상술한 범위를 만족하면, 우수한 내후성을 구현하면서, 무광 특성을 구현할 수 있고, 사출 표면이 우수한 그라프트 공중합체를 제조할 수 있다.
상기 방향족 비닐계 단량체는 스티렌, α-메틸 스티렌, α-에틸 스티렌, p-메틸 스티렌 및 2,4-디메틸 스티렌으로 이루어진 군으로부터 선택되는 1종 이상일 수 있고, 이 중 스티렌이 바람직하다.
상기 방향족 비닐계 단량체는 상기 반응용액의 총 중량에 대하여, 40 내지 65 중량%, 45 내지 60 중량% 또는 50 내지 55 중량%로 포함될 수 있고, 이 중 50 내지 55 중량%로 포함되는 것이 바람직하다.
상술한 범위를 만족하면, 우수한 내후성을 구현하면서, 무광 특성을 구현할 수 있고, 사출 표면이 우수한 그라프트 공중합체를 제조할 수 있다.
상기 비닐 시안계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴 및 α-클로로아크릴로니트릴로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 아크릴로니트릴이 바람직하다.
상기 비닐 시안계 단량체는 상기 반응용액의 총 중량에 대하여, 5 내지 25 중량%, 8 내지 20 중량% 또는 10 내지 15 중량%로 포함될 수 있고, 이 중 10 내지 15 중량%로 포함되는 것이 바람직하다.
상술한 범위를 만족하면, 우수한 내후성을 구현하면서, 무광 특성을 구현할 수 있고, 사출 표면이 우수한 그라프트 공중합체를 제조할 수 있다.
상기 반응용매는 톨루엔, 에틸벤젠, 자이렌 및 메틸에틸케톤으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 에틸벤젠이 바람직하다.
상기 반응용매는 상기 반응용액의 구성 요소들의 합이 100 중량%가 되도록 잔량으로 포함될 수 있다. 상기 반응용매로 인해 반응용액이 적절한 점도를 가지며, 후술할 괴상 중합이 용이하게 수행될 수 있고, 최종 생산품 내 미반응 단량체 등의 감소될 수 있다.
2) 1차 괴상 중합하는 단계
이어서, 상기 반응용액을 투입하여 100 내지 110 ℃에서 1차 괴상 중합한다.
상기 1차 괴상 중합하는 단계는 상기 공중합체, 방향족 비닐계 단량체 및 비닐 시안계 단량체가 상전환하는 단계로서, 상술한 범위로 1차 괴상 중합을 수행하면, 상전환율이 개선되는 이점이 있다. 또한, 상기 1차 괴상 중합 온도와 공중합체 내 디엔계 단량체 유래 단위의 함량의 조합으로 인해 상승 효과가 구현되어, 방향족 비닐계 단량체 및 비닐 시안계 단량체와의 그라프트 중합이 용이해질 수 있다. 또한, 적절한 고무 평균 입경 및 그라프트율을 갖는 그라프트 공중합체가 제조될 수 있고, 무광 특성이 우수할 뿐만 아니라, 사출 표면이 우수한 그라프트 공중합체를 제조할 수 있다.
상기 1차 괴상 중합 온도가 상술한 범위 미만이면, 상전환율이 저하된다. 상술한 범위를 초과하면, 그라프트 중합 반응 속도가 저하되어 고무 평균 입경이 너무 커지고 사출 표면이 우수하지 못하다.
상기 1차 괴상 중합하는 단계는 0.5 내지 4 시간, 1.0 내지 3.5 시간, 1.5 내지 3.0 시간 또는 1.5 내지 2.5 시간 동안 수행될 수 있고, 이 중 1.5 내지 2.5 시간 동안 수행되는 것이 바람직하다.
상술한 시간을 만족하면, 상전환율을 보다 높일 수 있다.
상기 1차 괴상 중합하는 단계는 상기 반응용액을 50 내지 90 rpm, 55 내지 85 rpm, 60 내지 80 rpm 또는 65 내지 75 rpm으로 교반하면서 수행될 수 있고, 이 중 65 내지 75 rpm로 교반하면서 수행되는 것이 바람직하다.
상술한 범위를 만족하면, 무광 특성이 보다 개선될 수 있다.
상기 1차 괴상 중합하는 단계에서 개시제 및 분자량 조절제를 더 투입할 수 있다.
상기 개시제는 1시간 반감기 온도가 90 내지 110℃인 라디칼 중합 개시제일 수 있다. 상기 개시제는 스테아로일 퍼옥사이드, 벤조일 퍼옥사이드, t-부틸 퍼옥시-2-에틸헥사노에이트, t-부틸페옥시-이소부티레이트, 1,1-디(t-부틸퍼옥시)-3,5,5-트리메틸사이클로헥산으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 t-부틸퍼옥시-2-에틸헥사노에이트인 것이 바람직하다.
상기 개시제는 상기 반응용액 100 중량부에 대하여, 0.01 내지 0.2 중량부, 0.02 내지 0.1 중량부, 0.02 내지 0.08 중량부 또는 0.02 내지 0.06 중량부로 투입될 수 있고, 이 중 0.02 내지 0.06 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 중합을 용이하게 수행할 수 있고, 상기 중합체 유래 단위의 형성도 용이할 수 있다.
상기 분자량 조절제는 t-도데실 머르캅탄 및 n-옥틸 머르캅탄으로 이루어진 군으로부터 선택되는 1종 이상일 수 있고, 이 중 t-도데실 머르캅탄이 바람직하다.
상기 분자량 조절제는 상기 반응용액 100 중량부에 대하여, 0.02 내지 0.9 중량부, 0.02 내지 0.8 중량부, 또는 0.03 내지 0.7 중량부로 투입될 수 있고, 이 중 0.03 내지 0.7 중량부로 투입되는 것이 바람직하다.
상술한 범위를 만족하면, 그라프트 중합이 용이하게 수행될 뿐만 아니라, 공중합체 유래 단위의 평균 입경이 적절하게 형성될 수 있다. 또한 충격강도가 보다 우수한 그라프트 공중합체를 제조할 수 있다.
상기 1차 괴상 중합하는 단계는 상기 반응용액, 개시제 및 분자량 조절제를 일정한 속도로 연속 투입하면서 수행되는 연속 괴상 중합일 수 있다.
3) 2차 괴상 중합하는 단계
이어서, 상기 1차 괴상 중합된 반응용액을 130 내지 150 ℃에서 2차 괴상 중합하는 단계를 더 수행할 수 있다.
상기 2차 괴상 중합하는 단계는 중합전환율을 높이기 위하여 수행되는 것으로서, 상술한 온도에서 수행되면 중합전환율을 보다 개선시킬 수 있다.
상기 2차 괴상 중합하는 단계는 상기 1차 괴상 중합하는 단계에서의 반응기와는 다른 반응기에서 수행될 수 있다. 상기 1차 괴상 중합하는 단계에서의 반응기와 상기 2차 괴상 중합하는 반응기는 직렬로 연결된 연속 반응기일 수 있다. 상기 2차 괴상 중합하는 반응기는 3 이상의 반응기가 직렬로 연결된 연속 반응기일 수 있다.
상기 2차 괴상 중합하는 단계는 130 내지 150 ℃에서 단계적으로 승온되면서 수행될 수 있으며, 중합 온도를 변경하기 위하여 반응용액을 다른 반응기로 이송시킨 후, 괴상 중합을 수행할 수 있다.
또한, 상기 2차 괴상 중합하는 단계는 상기 반응용액을 연속 투입하면서 수행될 수 있다.
상기 2차 괴상 중합하는 단계는 상기 반응용액을 30 내지 70 rpm, 35 내지 65 rpm, 40 내지 60 또는 45 내지 55 rpm로 교반하면서 수행될 수 있고, 이 중 45 내지 55 rpm로 교반하면서 수행되는 것이 바람직하다.
상술한 범위를 만족하면, 무광 특성이 보다 개선될 수 있다.
상기 2차 괴상 중합하는 단계에서는 분자량 조절제를 더 투입할 수 있다. 상기 분자량 조절제의 종류는 상술한 바와 같다.
상기 분자량 조절제는 상기 반응용액 100 중량부에 대하여, 0.02 내지 0.9 중량부, 0.02 내지 0.8 중량부, 또는 0.03 내지 0.7 중량부로 투입될 수 있고, 이 중 0.03 내지 0.7 중량부로 투입되는 것이 바람직하다.
상술한 범위를 만족하면, 그라프트 중합이 용이하게 수행될 뿐만 아니라, 공중합체 유래 단위의 평균 입경이 적절하게 형성될 수 있다. 또한 충격강도가 보다 우수한 그라프트 공중합체를 제조할 수 있다.
4) 미반응 단량체와 반응용매를 회수하는 단계
이어서, 미반응 단량체와 반응용매를 회수하는 단계를 더 수행할 수 있다.
상기 미반응 단량체와 반응용매를 회수하는 단계는 탈휘발조에서 수행될 수 있다. 상기 탈휘발조는 열교환기가 부착되어 있고, 220 내지 250 ℃의 온도 및 25 torr 미만의 압력에서, 225 내지 245 ℃의 온도 및 20 torr 미만의 압력에서, 또는 230 내지 240 ℃의 온도 및 16 torr 미만의 압력에서 진공도를 유지한 상태일 수 있고, 이 중 230 내지 240 ℃의 온도 및 16 torr 미만의 압력에서 진공도를 유지한 상태인 것이 바람직하다.
상술한 조건을 만족하면, 상기 중합 생성물 내 포함된 미반응 단량체 및 용매를 용이하게 회수할 수 있다.
본 발명의 일실시예에 따른 그라프트 공중합체의 제조방법에 따라 제조된 그라프트 공중합체는 고무 평균 입경이 2 내지 5 ㎛이고, 바람직하게는 2.5 내지 4.5 ㎛, 보다 바람직하게는 3 내지 4.2 ㎛일 수 있다.
상술한 범위를 만족하면, 무광 특성을 구현하면서 사출 표면이 우수한 그라프트 중합체를 제조할 수 있다. 상술한 범위 미만이면, 무광 특성을 구현할 수 없고, 상술한 범위를 초과하면, 상기 그라프트 공중합체의 사출 표면이 우수하지 못하다.
본 발명의 일실시예에 따른 그라프트 공중합체의 제조방법에 따라 제조된 그라프트 공중합체의 그라프트율은 35 내지 60 % 또는 40 내지 55 %일 수 있고, 이 중 40 내지 55 %가 바람직하다.
상술한 범위를 만족하면, 무광 특성을 구현하면서 사출 표면이 우수한 그라프트 중합체를 제조할 수 있다.
2. 그라프트 공중합체
본 발명의 일실시예 따른 그라프트 공중합체의 제조방법에 따라 제조된 그라프트 공중합체는 ASTM 1003에 의거한 광택도가 22 % 이하이다.
상기 그라프트 공중합체는 ASTM 1003에 의거한 광택도가 16 % 이하 또는 12 % 이하일 수 있고, 이 중 12% 이하가 바람직하다. 상술한 범위를 만족하면, 무광 특성을 구현할 수 있다. 광택도가 22 %를 초과하면, 상기 그라프트 공중합체가 무광 특성을 구현할 수 없다.
또한, 상기 그라프트 공중합체는 사출 표면이 우수하고, 충격강도도 우수할 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 비교예
반응용매인 에틸벤젠 25 중량부에 스티렌 53.6 중량부, 아크릴로니트릴 13.4 중량부 및 하기 표 1에 기재된 에틸렌-프로필렌-디엔 테르폴리머 8 중량부를 완전히 용해시키고, 개시제로 t-부틸퍼옥시-2-에틸헥사노에이트와 분자량 조절제로 t-도데실 머르캅탄을 하기 표 1에 기재된 함량으로 첨가하여 반응용액을 준비하였다.
표 2에 기재된 내부 온도로 설정된 제1 반응기에 상기 중합용액을 2 시간 동안 일정한 속도로 투입하고 표 2에 기재된 속도로 교반하면서 1차 중합하였다. 표 2에 기재된 내부 온도로 설정된 제2 반응기에 상기 1차 중합물을 1.5 시간 동안 일정한 속도로 투입하고 표 2에 기재된 속도로 교반하면서 2차 중합하였다. 분자량 조절제로 t-도데실 머르캅탄 0.03 중량부를 제2 반응기에 일괄 투입하고, 표 2에 기재된 내부 온도로 설정된 제3 반응기에 상기 2차 중합물을 1.5 시간 동안 일정한 속도로 투입하고 표 2에 기재된 속도로 교반하면서 3차 중합하였다. 표 2에 기재된 내부 온도로 설정된 제4 반응기에 상기 3차 중합물을 1.5 시간 동안 일정한 속도로 투입하고 표 2에 기재된 속도로 교반하면서 4차 중합을 수행하고, 중합을 종결하였다. 그 후, 230℃ 및 15 torr로 탈휘발조에서 미반응 단량체와 반응용매를 회수하고, 제거하여 펠렛 형태의 그라프트 공중합체를 제조하였다.
구분 에틸렌-프로필렌-디엔 테르폴리머 개시제(중량부) 분자량 조절제(중량부)
ML(1+4, 100℃) 구성요소(중량%)
에틸렌유래 단위 프로필렌유래 단위 에틸리딘 노보렌유래 단위
실시예 1 50 62 30 8 0.03 0.03
실시예 2 35 63 32 5 0.03 0.03
실시예 3 80 64 28 8 0.03 0.03
실시예 4 50 62 30 8 0.03 0.03
실시예 5 50 62 30 8 0.06 0.03
실시예 6 50 62 30 8 0.03 0.70
실시예 7 50 62 30 8 0.03 0.03
비교예 1 50 66 32 2 0.03 0.03
비교예 2 20 62 30 8 0.06 0.03
비교예 3 50 62 30 8 0.03 0.03
비교예 4 50 62 30 8 0.01 0.03
비교예 5 50 62 30 8 0.03 1.0
비교예 6 50 62 30 8 0.03 0.03
비교예 7 50 62 30 8 0.03 0.03
비교예 8 50 62 30 8 0.03 0.03
구분 제1 반응기 제2 반응기 제3 반응기 제 4 반응기
내부온도(℃) 교반속도(rpm) 내부온도(℃) 교반속도(rpm) 내부온도(℃) 교반속도(rpm) 내부온도(℃) 교반속도(rpm)
실시예 1 105 70 130 50 140 50 150 50
실시예 2 105 70 130 50 140 50 150 50
실시예 3 105 70 130 50 140 50 150 50
실시예 4 110 70 130 50 140 50 150 50
실시예 5 105 70 130 50 140 50 150 50
실시예 6 105 70 130 50 140 50 150 50
실시예 7 100 70 130 50 140 50 150 50
비교예 1 105 70 130 50 140 50 150 50
비교예 2 105 70 130 50 140 50 150 50
비교예 3 120 70 130 50 140 50 150 50
비교예 4 105 70 130 50 140 50 150 50
비교예 5 105 70 130 50 140 50 150 50
비교예 6 105 150 130 50 140 50 150 50
비교예 7 95 70 130 50 140 50 150 50
비교예 8 115 70 130 50 140 50 150 50
실험예
실시예 및 비교예의 그라프트 공중합체의 물성을 하기와 같은 방법으로 평가하고, 그 결과를 표 3에 나타내었다.
(1) 고무 평균 입경(㎛): 그라프트 공중합체 0.5 g을 메틸에틸케톤 100 ㎖에 용해시켜, 쿨터 카운터(상품명: LS230, 제조사: 벡크만 콜터사)를 이용하여 고무 평균 입경을 측정하였다.
(2) 광택도(%): 그라프트 공중합체를 사출하여 3 ㎜ 시편으로 제조하고, ASTM 1003에 의거하여 측정하였다.
(3) 그라프트율: 그라프트 공중합체 일정량을 아세톤에 투입하고, 진동기로 24 시간 진동시켜 유리된 그라프트 공중합체를 용해시켰다. 원심분리기를 이용하여 그라프트 공중합체가 용해된 용액을 14,000 rpm으로 1 시간 동안 원심 분리하였다. 진공건조기를 이용하여 원심 분리된 물질을 140 ℃에서 2 시간 동안 건조시키고, 불용분을 수득하였다.
그라프트율(%)=(Y-(XХR))/ (XХR) Х 100
Y: 불용분 중량
X: 불용분 수득시 투입된 그라프트 공중합체 중량
R: 불용분 수득시 투입된 그라프트 공중합체 내 공중합체의 분율
(4) 충격강도(㎏·㎝/㎝): 그라프트 공중합체를 사출한 후, 1/4 In로 하여 ASTM D256-10에 의거하여 측정하였다.
(5) 사출표면: 그라프트 공중합체를 5회 사출한 후 사출물의 표면을 육안으로 판별하였다. (○: 우수, △: 중간, Х: 불량)
구분 고무 평균 입경(㎛) 광택도(%) 그라프트율(%) 충격강도(㎏·㎝/㎝) 사출표면
실시예 1 2.9 16 51 28
실시예 2 2.3 22 39 24
실시예 3 3.8 11 51 21
실시예 4 3.2 12 43 25
실시예 5 2.1 22 58 31
실시예 6 4.2 10 49 20
실시예 7 3.6 13 55 22
비교예 1 6.2 10 26 13 Х
비교예 2 1.3 57 68 22
비교예 3 5.4 12 25 16 Х
비교예 4 6.8 9 29 12 Х
비교예 5 6.3 11 52 13
비교예 6 1.5 62 50 23
비교예 7 4.3 13 29 12
비교예 8 6.1 10 22 14 X
표 3을 참조하면, 실시예 1 내지 실시예 7의 그라프트 공중합체는 고무 평균 입경이 2.1 내지 4.2 ㎛이고, 광택도가 22 % 이하이므로 무광 특성을 구현할 수 있음을 확인할 수 있었다. 또한, 그라프트율이 39 내지 58 %이므로 사출 표면도 우수한 것을 확인할 수 있었다.
한편, 실시예 1, 실시예 4 및 실시예 7을 참조하면, 동일한 에틸렌-프로필렌-디엔 테르폴리머가 동일하더라도, 제1 반응기의 온도가 낮을수록 무광 특성이 우수하고, 그라프트율이 우수해지는 것을 확인할 수 있었다.
실시예 1 및 비교예 1을 참조하면, 에틸렌-프로필렌-디엔 테르 폴리머를 이용하여 그라프트 공중합체를 제조하더라도, 에틸렌-프로필렌-디엔 테르폴리머 내 에틸리딘 노보렌의 함량이 낮을수록 고무 평균 입경이 커지고, 그라프트율이 저하되는 것을 확인할 수 있었다. 비교예 1의 경우, 고무 평균 입경이 6.2 ㎛이므로 무광 특성은 구현할 수 있었으나, 그라프트율이 낮으므로 사출 표면이 우수하지 못하였다.
또한, 실시예 1, 실시예 3, 실시예 5 및 비교예 2를 참조하면, 에틸렌-프로필렌-디엔 모노머 테르폴리머를 이용하여 그라프트 공중합체를 제조하더라도, 에틸렌-프로필렌-디엔 테르폴리머의 무니 점도가 높을수록 고무 평균 입경이 커지는 것을 확인할 수 있었다. 상세하게는 실시예 1과 실시예 3을 참조하면, 무니 점도가 높은 에틸렌-프로필렌-디엔 테르폴리머를 이용한 실시예 3이 고무 평균 입경이 크고 광택도도 낮으므로 무광 특성이 보다 우수한 것을 확인할 수 있었다. 또한 실시예 5와 비교예 2를 참조하면, 무니 점도가 높은 에틸렌-프로필렌-디엔 테르폴리머를 이용한 실시예 5가 고무 평균 입경이 크고 광택도도 현저하게 낮으므로 무광 특성이 보다 우수한 것을 확인할 수 있었다.
또한, 실시예 1, 실시예 5 및 비교예 4를 참조하면, 개시제의 함량이 높을수록 고무 평균 입경이 작아지고, 광택도가 높아지는 것을 확인할 수 있었다. 비교예 4의 경우, 개시제가 소량 투입되었으므로, 고무 평균 입경이 6.8 ㎛인 그라프트 공중합체가 제조되고, 고무 평균 입경이 너무 크므로, 사출 표면이 불량인 것을 확인할 수 있었다.
또한, 실시예 1, 실시예 6 및 비교예 5를 참조하면, 분자량 조절제의 함량이 높을수록 고무 평균 입경이 커지고, 광택도가 낮아지는 것을 확인할 수 있었다. 비교예 5의 경우, 분자량 조절제가 과량 투입되었으므로, 고무 평균 입경이 6.3㎛인 그라프트 공중합체가 제조되고, 고무 평균 입경이 너무 크므로, 사출 표면이 우수하지 못한 것을 확인할 수 있었다.
또한, 실시예 1과 비교예 6을 참조하면, 다른 조건은 모두 동일하고 제1 반응기에서 교반 속도만 비교예 6이 2배 이상이었으나, 광택도가 현저하게 높아지게 되고 이로 인해 무광 특성을 구현하지 못하는 것을 확인할 수 있었다.
제1 반응기의 온도가 낮은 비교예 7의 경우, 사출 표면과 충격강도가 우수하지 못하고, 제1 반응기의 온도가 비교예 8의 경우, 고무 평균 입경이 커지고, 사출 표면과 충격강도가 우수하지 못한 것을 확인할 수 있었다.

Claims (15)

  1. 디엔계 단량체 유래 단위 및 알켄계 단량체 유래 단위를 포함하는 공중합체, 방향족 비닐계 단량체, 비닐 시안계 단량체 및 반응용매를 포함하는 반응용액을 준비하는 단계; 및 상기 반응용액을 투입하여 100 내지 110 ℃에서 1차 괴상 중합하는 단계를 포함하는 그라프트 공중합체의 제조방법에 있어서,
    상기 공중합체는 상기 디엔계 단량체 유래 단위를 5 내지 10 중량%로 포함하고,
    상기 그라프트 공중합체는 고무 평균 입경이 2 내지 5 ㎛인 그라프트 공중합체의 제조방법.
  2. 청구항 1에 있어서,
    상기 그라프트 공중합체의 고무 평균 입경이 2.5 내지 4.5 ㎛ 것인 그라프트 공중합체의 제조방법.
  3. 청구항 1에 있어서,
    상기 그라프트 공중합체의 그라프트율이 35 내지 60 %인 것인 그라프트 공중합체의 제조방법.
  4. 청구항 1에 있어서,
    상기 그라프트 공중합체의 그라프트율이 40 내지 55 %인 것인 그라프트 공중합체의 제조방법.
  5. 청구항 1에 있어서,
    상기 1차 괴상 중합하는 단계는 상기 반응용액을 50 내지 90 rpm의 속도로 교반하면서 100 내지 110℃에서 1차 괴상 중합하는 단계인 것인 그라프트 공중합체의 제조방법.
  6. 청구항 1에 있어서,
    상기 디엔계 단량체 유래 단위는 에틸리덴 노보렌 유래 단위를 포함하는 것인 그라프트 공중합체의 제조방법.
  7. 청구항 1에 있어서,
    상기 알켄계 단량체 유래 단위는 에틸렌 유래 단위 및 프로필렌 유래 단위를 포함하는 것인 그라프트 공중합체의 제조방법.
  8. 청구항 1에 있어서,
    상기 공중합체는 무니 점도(ML(1+4), 100℃)가 30 내지 80인 것인 그라프트 공중합체의 제조방법.
  9. 청구항 1에 있어서,
    상기 공중합체는 중량평균분자량이 110,000 내지 250,000 g/mol인 것인 그라프트 공중합체의 제조방법.
  10. 청구항 1에 있어서,
    상기 반응용액 총 중량에 대하여,
    상기 공중합체 3 내지 15 중량%;
    상기 방향족 비닐계 단량체 40 내지 65 중량%;
    상기 비닐 시안계 단량체 5 내지 25 중량%; 및
    상기 반응용매 잔량을 포함하는 것인 그라프트 공중합체의 제조방법.
  11. 청구항 1에 있어서,
    상기 1차 괴상 중합하는 단계에서 개시제 및 분자량 조절제를 더 투입하는 것인 그라프트 공중합체의 제조방법.
  12. 청구항 11에 있어서,
    상기 반응용액 100 중량부에 대하여,
    상기 개시제 0.02 내지 0.2 중량부; 및
    상기 분자량 조절제 0.02 내지 0.9 중량부로 더 투입하는 것인 그라프트 공중합체의 제조방법.
  13. 청구항 1에 있어서,
    상기 1차 괴상 중합하는 단계 이후에 상기 1차 괴상 중합된 반응용액을 130 내지 150 ℃에서 2차 괴상 중합하는 단계를 더 포함하는 것인 그라프트 공중합체의 제조방법.
  14. 청구항 13에 있어서,
    상기 2차 괴상 중합하는 단계는 상기 1차 괴상 중합된 반응용액을 30 내지 70 rpm의 속도로 교반하면서 130 내지 150℃에서 2차 괴상 중합하는 단계인 것인 그라프트 공중합체의 제조방법.
  15. 청구항 1 내지 청구항 14 중 어느 한 항에 따른 제조방법으로 제조되고,
    ASTM 1003에 의거한 광택도가 22% 이하인 그라프트 공중합체.
PCT/KR2018/012847 2017-11-01 2018-10-26 그라프트 공중합체의 제조방법 및 이로 제조된 그라프트 공중합체 WO2019088598A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18873748.0A EP3617241B1 (en) 2017-11-01 2018-10-26 Method for preparing graft copolymer and graft copolymer prepared thereby
CN201880035617.3A CN110678493B (zh) 2017-11-01 2018-10-26 接枝共聚物的制备方法和由此制备的接枝共聚物
JP2019561241A JP7033151B2 (ja) 2017-11-01 2018-10-26 グラフト共重合体の製造方法及びこれで製造されたグラフト共重合体
US16/621,681 US11332568B2 (en) 2017-11-01 2018-10-26 Method for preparing graft copolymer and graft copolymer prepared thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0144958 2017-11-01
KR1020170144958A KR102187175B1 (ko) 2017-11-01 2017-11-01 그라프트 공중합체의 제조방법 및 이로 제조된 그라프트 공중합체

Publications (2)

Publication Number Publication Date
WO2019088598A2 true WO2019088598A2 (ko) 2019-05-09
WO2019088598A3 WO2019088598A3 (ko) 2019-06-27

Family

ID=66332137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012847 WO2019088598A2 (ko) 2017-11-01 2018-10-26 그라프트 공중합체의 제조방법 및 이로 제조된 그라프트 공중합체

Country Status (6)

Country Link
US (1) US11332568B2 (ko)
EP (1) EP3617241B1 (ko)
JP (1) JP7033151B2 (ko)
KR (1) KR102187175B1 (ko)
CN (1) CN110678493B (ko)
WO (1) WO2019088598A2 (ko)

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2344553C3 (de) * 1973-09-04 1978-10-26 Wacker-Chemie Gmbh, 8000 Muenchen Verfahren zur Herstellung von PoIyvinylchloridpfropfcopolymeren
DE3047295A1 (de) 1980-12-16 1982-07-29 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen herstellung alterungsbestaendiger aes-polymerisate
IT1218559B (it) 1987-04-07 1990-04-19 Montedipe Spa Processo per la produzione in soluzione e in continuo di resine termoplastiche stireniche
JP2679092B2 (ja) 1988-03-23 1997-11-19 宇部サイコン株式会社 艶消し熱可塑性樹脂組成物
US5204405A (en) * 1988-11-09 1993-04-20 Nippon Petrochemicals Co., Ltd. Thermoplastic resin composition and method for preparing the same
JPH0312444A (ja) 1989-06-09 1991-01-21 Mitsubishi Rayon Co Ltd 艶消し性良好な耐候性耐衝撃性熱可塑性樹脂組成物
JP3596126B2 (ja) * 1995-11-08 2004-12-02 Jsr株式会社 ゴム強化熱可塑性樹脂の製造方法
JP3939836B2 (ja) 1997-10-27 2007-07-04 テクノポリマー株式会社 ゴム変性熱可塑性樹脂組成物
JP3062173B2 (ja) 1998-02-09 2000-07-10 三井化学株式会社 スチレン系樹脂およびそれを用いた樹脂組成物
US6376605B1 (en) 1998-02-09 2002-04-23 Mitsui Chemicals, Inc. Styrene resin and resin composition comprising the same
SG79291A1 (en) * 1998-11-20 2001-03-20 Daicel Chem Rubber-containing styrenic resin and process for producing the same
KR100569758B1 (ko) * 2003-11-28 2006-04-11 주식회사 엘지화학 내충격성, 내후성 및 성형품의 외관 품질이 우수한 열가소성 수지 조성물
KR100657739B1 (ko) 2005-01-26 2006-12-13 주식회사 엘지화학 고충격 및 고광택을 갖는 내후성 수지 및 그 제조 방법
KR100708995B1 (ko) * 2005-05-26 2007-04-18 주식회사 엘지화학 내충격성과 신율이 우수한 무광택 abs 수지 조성물의제조방법 및 그로부터 수득되는 무광택 abs 수지 조성물
KR100786473B1 (ko) * 2005-08-30 2007-12-17 주식회사 엘지화학 스티렌계 열가소성 수지 조성물
KR100822152B1 (ko) 2005-10-21 2008-04-14 주식회사 엘지화학 내열성 및 내충격성이 우수한 내후성 aes 수지의제조방법
CN101311198A (zh) 2007-05-22 2008-11-26 广州金发科技股份有限公司 一种溶液接枝共聚制备EPDM-g-SAN增韧剂的方法
US20100210778A1 (en) 2007-09-26 2010-08-19 Lakeman Pascal E R E J Carbonate polymer blends with reduced gloss
KR100896210B1 (ko) 2007-12-03 2009-05-07 제일모직주식회사 내스크래치 특성이 우수한 내후성 아크릴로니트릴-에틸렌프로필렌 고무-스티렌(aes) 수지 및 이의 제조방법
KR100983239B1 (ko) 2007-12-28 2010-09-20 제일모직주식회사 무광택 고무변성 방향족 비닐-시안화 비닐 공중합체 및 그의 연속제조방법
KR100992537B1 (ko) * 2007-12-31 2010-11-05 제일모직주식회사 표면 질감이 우수한 저광 열가소성 수지 조성물 및 그 성형품
KR101151044B1 (ko) * 2008-12-02 2012-06-01 주식회사 엘지화학 내열성 및 내충격성이 우수한 투명 수지 및 이의 제조방법
PL2418246T3 (pl) * 2009-04-08 2015-03-31 Techno Polymer Co Ltd Element wyposażenia wewnętrznego pojazdu charakteryzujący się zmniejszonymi odgłosami skrzypienia
HUE046183T2 (hu) * 2013-04-26 2020-02-28 Techno Umg Co Ltd Termoplasztikus gyanta kompozíció és formadarab
KR101444054B1 (ko) 2014-03-18 2014-10-27 주식회사 엘지화학 무광택 열가소성 수지 조성물
WO2017104715A1 (ja) 2015-12-16 2017-06-22 テクノポリマー株式会社 レーダー装置が発するビームの経路に配置される樹脂部品、レドーム及びレーダー装置

Also Published As

Publication number Publication date
KR102187175B1 (ko) 2020-12-07
EP3617241A4 (en) 2020-06-17
JP7033151B2 (ja) 2022-03-09
JP2020518711A (ja) 2020-06-25
EP3617241A2 (en) 2020-03-04
WO2019088598A3 (ko) 2019-06-27
US11332568B2 (en) 2022-05-17
KR20190049292A (ko) 2019-05-09
CN110678493B (zh) 2022-11-11
CN110678493A (zh) 2020-01-10
EP3617241B1 (en) 2024-05-22
US20200199280A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
WO2016204566A1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2016052832A1 (ko) 내화학성 및 투명성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2017039157A1 (ko) 열가소성 수지 조성물 및 이의 제조방법
WO2018084417A1 (ko) 고내열성 스티렌-아크릴로니트릴 수지 및 이의 제조방법
WO2022010053A1 (ko) 열가소성 수지 및 이의 제조방법
WO2018084436A1 (ko) 충격강도가 향상된 abs계 그라프트 공중합체의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
WO2019103519A2 (ko) 수지 조성물
WO2022145727A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2017164507A1 (ko) 방향족 비닐-불포화 니트릴계 공중합체의 제조방법 및 이로부터 제조된 방향족 비닐-불포화 니트릴계 공중합체
WO2017099361A1 (ko) 스티렌계 수지의 제조방법 및 이로부터 제조된 스티렌계 수지
WO2019117587A1 (ko) 내열 수지 조성물 및 이를 이용한 자동차용 스포일러
WO2018043930A1 (ko) 방향족 비닐계 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2019088598A2 (ko) 그라프트 공중합체의 제조방법 및 이로 제조된 그라프트 공중합체
WO2022085998A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2017160011A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2021060833A1 (ko) 공액 디엔계 중합체의 제조방법
WO2019124857A2 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2020091371A1 (ko) 열가소성 수지 조성물
WO2019112239A1 (ko) 열가소성 수지 조성물
WO2018088677A1 (ko) 열가소성 수지 및 열가소성 수지 조성물
WO2022075579A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022114678A1 (ko) 그라프트 중합체의 제조방법
WO2020101275A1 (ko) 그라프트 공중합체의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873748

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2019561241

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018873748

Country of ref document: EP

Effective date: 20191127

NENP Non-entry into the national phase

Ref country code: DE