WO2021060833A1 - 공액 디엔계 중합체의 제조방법 - Google Patents

공액 디엔계 중합체의 제조방법 Download PDF

Info

Publication number
WO2021060833A1
WO2021060833A1 PCT/KR2020/012872 KR2020012872W WO2021060833A1 WO 2021060833 A1 WO2021060833 A1 WO 2021060833A1 KR 2020012872 W KR2020012872 W KR 2020012872W WO 2021060833 A1 WO2021060833 A1 WO 2021060833A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
weight
parts
based monomer
added
Prior art date
Application number
PCT/KR2020/012872
Other languages
English (en)
French (fr)
Inventor
정영환
김유빈
이진형
허재원
김영민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080039052.3A priority Critical patent/CN113874405B/zh
Priority to JP2021567039A priority patent/JP7317431B2/ja
Priority to EP20868281.5A priority patent/EP4036128A4/en
Priority to US17/615,386 priority patent/US20220227987A1/en
Publication of WO2021060833A1 publication Critical patent/WO2021060833A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/32Organic compounds
    • C08F4/34Per-compounds with one peroxy-radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/40Redox systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/18Increasing the size of the dispersed particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/22Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a method for preparing a conjugated diene-based polymer, and specifically, a dimer acid saponified product is used in the polymerization initiation step, and a monomer and an emulsifier are divided and added three or more times after the polymerization reaction is initiated. It relates to a method of manufacturing.
  • ABS copolymer resin has relatively good physical properties such as moldability and gloss as well as mechanical strength such as impact resistance. It is widely used in parts and the like.
  • ABS resin prepared by the emulsion polymerization method has the advantage of having a relatively good balance of physical properties and excellent gloss. Therefore, ABS resins are mainly manufactured by emulsion polymerization rather than bulk polymerization.
  • the ABS resin produced by the emulsion polymerization method can be processed by mixing with a styrene-acrylonitrile (SAN) copolymer to maximize the properties of the composition of the SAN resin to diversify products and create high added value.
  • SAN styrene-acrylonitrile
  • the gloss or clarity of ABS resin is not only affected by the particle size and particle distribution of the dispersed rubber polymer, but also the emulsifier, residual monomer, oligomer remaining after polymerization of polybutadiene latex (PBL) and ABS during high-temperature injection process. It is affected by gas generated on the surface of the resin by impurities such as heat stabilizers and SAN. In particular, the gas generated from the surface of the resin during the high-temperature injection process affects the roughness of the surface, greatly lowering the gloss or clarity of the resin, and is known to be a limiting factor in improving the quality of the resin.
  • Patent Document 1 KR 10-1279267 B1
  • the present invention is to solve the problems of the prior art described above, to provide a method of manufacturing a conjugated diene-based polymer that is included in a thermoplastic resin to improve impact strength and surface clarity, and to reduce the amount of gas generated during injection. It is aimed at.
  • an object of the present invention is to provide a method for producing a graft copolymer including the conjugated diene polymer and a thermoplastic resin composition including the graft copolymer.
  • the present invention is a step of initiating a polymerization reaction by collectively introducing 30 to 50 parts by weight of 100 parts by weight of a conjugated diene-based monomer, 0.1 to 5 parts by weight of a dimer acid saponified product, and a polymerization initiator into the reactor ( S1), step of dividing the remaining conjugated diene-based monomer and emulsifier three or more times according to the polymerization conversion rate after the initiation of the polymerization reaction (S2), and terminating the polymerization reaction at the point of 90 to 99% polymerization conversion rate (S3) It provides a method for producing a conjugated diene-based polymer comprising a.
  • the step S2 is a step of introducing a conjugated diene-based monomer and an emulsifier at a polymerization conversion rate of 20 to 35% (S2-1), and a polymerization conversion rate of 45 to 60%.
  • Preparation of a conjugated diene-based polymer comprising the step of introducing a conjugated diene-based monomer and an emulsifier (S2-2) and adding a conjugated diene-based monomer and an emulsifier at a time point of 70 to 80% polymerization conversion (S2-3) Provides a way.
  • the impact strength and surface clarity of the thermoplastic resin containing the prepared conjugated diene-based polymer can be improved by increasing the standard deviation of the particle diameter of the prepared conjugated diene-based polymer.
  • the conjugated diene-based monomer of the present invention may be at least one selected from the group consisting of 1,3-butadiene, isoprene, chloroprene, and piperylene, of which 1,3-butadiene may be preferred.
  • the aromatic vinyl-based monomer of the present invention may be one or more selected from the group consisting of styrene, ⁇ -methyl styrene, ⁇ -ethyl styrene, and p-methyl styrene, of which styrene is preferable.
  • the vinyl cyan-based monomer may be at least one selected from the group consisting of acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, and ⁇ -chloroacrylonitrile, of which acrylonitrile This is desirable.
  • the "derived unit” refers to a unit derived from the compound, and specifically, may refer to the compound itself or a substituent from which some atoms of the compound have been removed.
  • the average particle diameter and standard deviation of the particle size of the conjugated diene-based polymer can be measured through a particle size analyzer of Nicomp. Specifically, the polymer sample to be measured is diluted and measured, and the average particle diameter and the standard deviation of the particle size of Intensity Wt You can read and measure.
  • a conjugated diene-based monomer 30 to 50 parts by weight of 100 parts by weight of a conjugated diene-based monomer, 0.1 to 5 parts by weight of a dimer acid saponified product, and a polymerization initiator are collectively added to the reactor to initiate a polymerization reaction (S1), and polymerization after the polymerization reaction is initiated.
  • Preparation of a conjugated diene-based polymer comprising the step of dividingly introducing the remaining conjugated diene-based monomer and emulsifier three or more times according to the conversion rate (S2) and terminating the polymerization reaction at the point of 90 to 99% polymerization conversion rate (S3) Provides a way.
  • the method for producing a conjugated diene-based polymer provided by the present invention includes 30 to 50 parts by weight of 100 parts by weight of a conjugated diene-based monomer subject to polymerization, a dimer acid saponification product, and a polymerization initiator in batch to initiate a polymerization reaction. Includes steps.
  • the conjugated diene-based monomer introduced in this step may be 30 to 50 parts by weight, preferably 35 to 45 parts by weight, based on 100 parts by weight, which is the total amount of the conjugated diene-based monomer to be polymerized.
  • the conjugated diene-based monomer is added in the above-described range in the polymerization initiation step, the standard deviation of the particle size of the finally prepared conjugated diene-based polymer can be widened.
  • the dimer acid saponification product and the polymerization initiator are added together with the conjugated diene-based monomer.
  • the dimer acid saponified product serves as an emulsifier.
  • the dimer acid may be one or more selected from compounds represented by the following Formulas 1 to 6:
  • the saponified product refers to a metal salt of a carboxylic acid group generated by saponification of an acid, for example, an alkali metal salt or an alkaline earth metal salt, and specifically, may be a sodium salt, potassium salt, magnesium salt, or calcium salt.
  • the polymerization initiator serves to initiate a polymerization reaction, and may be at least one of a water-soluble polymerization initiator and a mixture of an oil-soluble polymerization initiator and an oxidation-reduction catalyst, and it is particularly preferable to use a combination thereof.
  • the water-soluble polymerization initiator may be one or more selected from the group consisting of potassium persulfate, sodium persulfate, and ammonium persulfate
  • the oil-soluble polymerization initiator is cumene hydroperoxide, diisopropyl benzene hydroperoxide, It may be one or more selected from the group consisting of azobis isobutylonitrile, tertiary butyl hydroperoxide, paramethane hydroperoxide, and benzoyl peroxide
  • the oxidation-reduction catalyst is sodium formaldehyde sulfoxylate
  • It may be one or more selected from the group consisting of sodium ethylenediamine tetraacetide, ferrous sulfate, dextrose, sodium pyrrole phosphate, and sodium sulfite.
  • the polymerization initiator may be added in an amount of 0.01 to 1 parts by weight, preferably 0.01 to 0.5 parts by weight, based on 100 parts by weight of the conjugated diene-based monomer. When the polymerization initiator is used less than this, polymerization initiation may not be performed smoothly, and when more than this is used, the physical properties of the finally prepared conjugated diene-based polymer may be adversely affected.
  • the remaining conjugated diene-based monomer and an emulsifier are dividedly added to perform a polymerization reaction.
  • the standard of the divided input time may be a polymerization conversion rate.
  • the amount of the conjugated diene-based monomer dividedly introduced in this step may be less than or equal to the amount of the conjugated diene-based monomer added immediately before.
  • the amount of the conjugated diene-based monomer first dividedly added in the course of the polymerization reaction may be less than or equal to 30 parts by weight, and specifically 25 It may be parts by weight, and the amount of the conjugated diene-based monomer dividedly added to the second part may be less than or equal to 25 parts by weight, and may be, for example, 15 parts by weight.
  • the reaction time can be made equal to that of the existing one, and through this, the impact strength of the finally prepared polymer is excellent, Polymers can be made with excellent productivity.
  • the step S2 is specifically a step of introducing a conjugated diene-based monomer and an emulsifier at a time point of 20 to 35% polymerization conversion rate (S2-1), a step of introducing a conjugated diene-based monomer and an emulsifier at a time point of 45 to 60% polymerization conversion rate. (S2-2) and the step of introducing a conjugated diene-based monomer and an emulsifier at a time point of 70 to 80% of the polymerization conversion rate (S2-3).
  • the S2-1 step 20 to 30 parts by weight of the conjugated diene-based monomer is added
  • the S2-2 step is 15 to 25 parts by weight of the conjugated diene-based monomer
  • the S2-3 step is 10 to 30 parts by weight of the conjugated diene-based monomer. 20 parts by weight is added, and the total amount of the conjugated diene-based monomer added in the steps S2-1 to S2-3 may be 70 parts by weight or less, and the amount of the conjugated diene-based monomer added in the S2-1 to S2-3 steps May be one that satisfies Equation 1 below:
  • M1, M2, and M3 are the amounts of conjugated diene-based monomers added in steps S2-1, S2-2, and S2-3, respectively.
  • step S2-1 25 parts by weight of a conjugated diene-based monomer is added at a time point of 20 to 35% polymerization conversion rate
  • step S2-2 20 parts by weight of a conjugated diene-based monomer is added at a time point of 45 to 60% polymerization conversion rate
  • the step S2-3 may be to add 15 parts by weight of a conjugated diene-based monomer at a time point of 70 to 80% polymerization conversion rate, and more specifically, in step S2-1, 25 parts by weight of a conjugated diene-based monomer at a time point of 30% polymerization conversion rate, and in the step S2-2, 20 parts by weight of the conjugated diene-based monomer may be added at the time point of the polymerization conversion rate of 50%, and the step S2-3 may include 15 parts by weight of the conjugated diene-based monomer at the time point at the polymerization conversion rate of 70%.
  • the polymerization reaction may be smooth and the impact strength of the prepared conjugated diene-based polymer may be more excellent.
  • the polymerization conversion rate can be calculated by measuring the weight after drying 1.5 g of the prepared conjugated diene-based polymer for 15 minutes in a hot air dryer at 150° C. to obtain the total solid content (TSC), and using Equation 1 below. have.
  • Polymerization conversion rate (%) total solids content (TSC) X (weight of monomer and subsidiary material added) / 100-(weight of subsidiary material added outside the monomer)
  • the sub-material includes all of the remaining components except for the monomer among the substances introduced into the polymerization reaction, and for example, an initiator or an emulsifier may correspond to the sub-material.
  • the emulsifier introduced in step S2 may be one or more selected from the group consisting of saponified rosin acid, saponified fatty acid, saponified dimer, and saponified oleic acid, and the emulsifier is divided and introduced like the conjugated diene monomer. I can.
  • a molecular weight modifier may be further added, and the total amount of the molecular weight modifier added in the S1 and S2 steps may be less than 1 part by weight based on 100 parts by weight of the conjugated diene-based monomer.
  • the total amount of the added molecular weight modifier is larger than this, the balance of physical properties of the prepared conjugated diene-based polymer may be deteriorated.
  • the molecular weight modifier is ⁇ -methylstyrene dimer, t-dodecyl mercaptan, n-dodecyl mercaptan, n-octyl mercaptan, carbon tetrachloride, methylene chloride, methylene bromide, tetraethyl thiuram disulfide, dipentamethylene thiuram It may be one or more selected from the group consisting of disulfide and diisopropylxanthogen disulfide.
  • the method for preparing a conjugated diene-based polymer of the present invention includes a step (S3) of terminating the polymerization reaction at a time point of 90 to 99% of the polymerization conversion rate.
  • the final conjugated diene-based polymer is prepared through this step, and the average particle diameter of the conjugated diene-based polymer prepared through the production method of the present invention may be 1000 to 2000 ⁇ , preferably 1000 to 1500 ⁇ .
  • the conjugated diene-based polymer obtained in this step can be enlarged through the step (S4) of adding a coagulant or a coagulant and an auxiliary coagulant after completion of the polymerization reaction to make the conjugated diene-based polymer enlarge, , Preferably it may be 2500 to 3500 ⁇ .
  • the average particle diameter of the conjugated diene-based polymer and the enlarged conjugated diene-based polymer is within the above-described range, physical properties including the impact strength of the polymer may be excellent.
  • An acidic flocculant may be used as the flocculant that can be used in this step, specifically sulfuric acid, acetic acid, MgSO 4 , CaCl 2 or Al 2 (SO 4 ) 3 , and sodium alginate or sodium silicate as the auxiliary flocculant
  • a sodium auxiliary coagulant such as, or a polymer-based polymer coagulant may be used.
  • the present invention provides a method for preparing a graft copolymer by graft polymerization of an aromatic vinyl-based monomer and a vinyl cyan-based monomer to a conjugated diene-based polymer prepared by the above production method.
  • the graft copolymer may include 40 to 70% by weight of a conjugated diene-based polymer, 15 to 35% by weight of an aromatic vinyl-based monomer, and 5 to 25% by weight of a vinyl cyano-based monomer.
  • the component of the graft copolymer is within the above-described range, the chemical resistance and processability of the graft copolymer may be excellent.
  • the graft copolymer may be prepared by mixing an aromatic vinyl-based monomer and a vinyl cyan-based monomer with a conjugated diene-based polymer, adding an emulsifier and an initiator, and graft polymerization.
  • the emulsifier and initiator may be the same as those described in the method for preparing a conjugated diene polymer.
  • the present invention provides a thermoplastic resin composition
  • a thermoplastic resin composition comprising a graft copolymer prepared by the method for producing a graft copolymer described above, and a copolymer including a unit derived from an aromatic vinyl-based monomer and a unit derived from a vinyl cyan-based monomer.
  • the copolymer including the unit derived from the aromatic vinyl-based monomer and the unit derived from the vinyl cyan-based monomer may be a styrene-acrylonitrile copolymer.
  • the content of the graft copolymer in the thermoplastic resin composition may be 10 to 50% by weight.
  • thermoplastic resin composition may be extruded and injected to be manufactured into a molded article, and the molded article may be used for various purposes such as electric parts, electronic parts, and automobile parts.
  • the average particle diameter of the prepared polybutadiene was 1280 ⁇ , and the standard deviation of the particle diameter was 350 ⁇ .
  • Example 2 To the polybutadiene prepared in Example 1, 0.3 parts by weight of sodium alginate and 0.6 parts by weight of acetic acid were added to obtain an enlarged polybutadiene.
  • the average particle diameter of the enlarged polybutadiene was 3230 ⁇ , and the standard deviation of the particle diameter was 992 ⁇ .
  • the average particle diameter of the prepared polybutadiene was 1260 ⁇ , and the standard deviation of the particle diameter was 282 ⁇ .
  • a nitrogen-substituted polymerization reactor 75 parts by weight of ion-exchanged water, 90 parts by weight of 1,3-butadiene as a monomer, 3 parts by weight of a dimer acid saponified product as an emulsifier, 0.1 parts by weight of potassium carbonate as an electrolyte, and t as a molecular weight modifier.
  • the prepared polybutadiene had an average particle diameter of 1220 ⁇ and a particle diameter standard deviation of 210 ⁇ .
  • 1.5 parts by weight of acetic acid was added to the prepared polybutadiene to be enlarged, and the average particle diameter of the enlarged polybutadiene was 3290 ⁇ , and the standard deviation of the particle diameter was 690 ⁇ .
  • the average particle diameter of the enlarged polybutadiene was 3230 ⁇ , and the standard deviation of the particle diameter was 823 ⁇ .
  • the prepared polybutadiene had an average particle diameter of 1235 ⁇ and a particle diameter standard deviation of 242 ⁇ .
  • To the prepared polybutadiene 0.3 parts by weight of sodium alginate and 1.1 parts by weight of acetic acid were added to obtain an enlarged polybutadiene, and the average particle diameter of the enlarged polybutadiene was 3225 ⁇ , and the standard deviation of the particle diameter was 835 ⁇ .
  • ABS acrylonitrile-butadiene-styrene
  • the obtained thermoplastic resin composition was extruded and injected to obtain an injection specimen.
  • Example 1 In the process of manufacturing the injection specimen of Example 1, instead of 60 parts by weight of a single polybutadiene, the polybutadiene and the enlarged polybutadiene of Example 1 were mixed at 1:2, and a graft copolymer and injection were used using 1.2 parts by weight of MgSO 4. A specimen was prepared, and this was taken as Example 4.
  • Example 1 Polybutadiene 1280 350 95.0 95.3 0.7 Non-conversational polybutadiene 3270 920 95.7 One Example 2 Non-conversational polybutadiene 3230 992 95 0.8 Example 3 Polybutadiene 1260 282 95.1 95.8 0.7 Non-conversational polybutadiene 3290 870 95.5 0.8 Comparative Example 1 Polybutadiene 1220 210 95.2 96.1 2 Non-conversational polybutadiene 3290 690 95.7 2 Comparative Example 2 Non-conversational polybutadiene 3230 823 94.9 1.7 Comparative Example 3 Polybutadiene 1235 242 95.3 95.2 1.45 Non-conversational polybutadiene 3225 835 95.0 1.45
  • Izod impact strength (IMP, kgfcm/cm): According to ASTM D256, a notch was made in a pellet specimen having a thickness of 1/8 inch and 1/4 inch.
  • Sharpness (reflection haze) The sharpness was measured by adding gloss values between 17 to 19° and 21 to 23° according to ASTM E430, standard measurement using a glossy specimen. The lower the sharpness value measured by this method, the better the sharpness of the injection specimen.
  • Coagulation content weight of coagulation produced inside the reactor (g) / weight of total polymer and weight of monomer (100g)
  • VOC volatile organic compounds
  • Example 1 Polybutadiene 1170 Non-conversational polybutadiene 1590
  • Example 2 Non-conversational polybutadiene 1260
  • Example 3 Polybutadiene 1210 Non-conversational polybutadiene 1520
  • Example 4 Polybutadiene/non-conversed polybutadiene 1620 Comparative Example 1 Polybutadiene 1930 Non-conversational polybutadiene 2580 Comparative Example 2 Non-conversational polybutadiene 2310 Comparative Example 3 Polybutadiene 1727 Non-conversational polybutadiene 1840 Comparative Example 4 Polybutadiene/non-conversed polybutadiene 2490
  • the injection specimen can have a uniform surface because the amount of gas generated during injection is small compared to the case of using the conventional method or the method of the comparative example when using the manufacturing method according to the embodiment of the present invention.
  • Example 1 Polybutadiene 550 Non-conversational polybutadiene 690
  • Example 2 Non-conversational polybutadiene 632
  • Example 3 Polybutadiene 572 Non-conversational polybutadiene 659
  • Example 4 Polybutadiene/non-conversed polybutadiene 780 Comparative Example 1 Polybutadiene 1320 Non-conversational polybutadiene 1370 Comparative Example 2 Non-conversational polybutadiene 1150 Comparative Example 3 Polybutadiene 843 Non-conversational polybutadiene 865 Comparative Example 4 Polybutadiene/non-conversed polybutadiene 1220

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerization Catalysts (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 중합 개시 단계에서 다이머산 비누화물을 유화제로 사용하고, 중합 개시 이후 단량체와 유화제를 3회 이상에 걸쳐 분할 투입하는 것을 특징으로 하는 공액 디엔계 중합체의 제조방법에 관한 것으로, 본 발명의 제조방법으로 제조된 공액 디엔계 중합체는 충격강도 및 선명도 등의 물성이 우수하다.

Description

공액 디엔계 중합체의 제조방법
관련 출원과의 상호 인용
본 출원은 2019년 9월 27일자 한국 특허 출원 제 10-2019-0119589호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 공액 디엔계 중합체의 제조방법에 관한 것으로, 구체적으로는 다이머산 비누화물을 중합 개시 단계에서 사용하고, 중합 반응 개시 이후 단량체 및 유화제를 3회 이상으로 나누어 투입하는 것인 공액 디엔계 중합체의 제조방법에 관한 것이다.
아크릴로니트릴-부타디엔-스티렌(acrylonitrile-butadiene-styrene, ABS) 공중합체 수지는 내충격성 등과 같은 기계적 강도뿐만 아니라 성형성, 광택도 등의 물성이 비교적 양호하여 전기 부품, 전자 부품, 사무용 기기 또는 자동차 부품 등에 광범위하게 사용되고 있다.
유화중합법에 의해 제조된 ABS 수지는 비교적 양호한 물성 밸런스를 나타내고 우수한 광택 등을 가지는 장점이 있다. 따라서 ABS 수지는 괴상중합법보다 유화중합법에 의해 주로 제조되고 있다. 유화중합법에 의해 제조되는 ABS 수지는 스티렌-아크릴로니트릴(SAN) 공중합체와 혼합가공하여 SAN 수지의 조성물이 갖는 특성을 최대한 활용하여 제품을 다양화할 수 있고 고부가가치를 창출할 수 있다.
한편, ABS 수지의 광택도나 선명도는 분산된 고무질 중합체의 입자경 크기와 입자분포에 영향을 받을 뿐만 아니라, 고온의 사출 과정에서 폴리부타디엔 라텍스(PBL) 및 ABS 중합 후 남아있는 유화제, 잔류 단량체, 올리고머, 열 안정제, SAN 등의 불순물에 의해 수지의 표면에서 발생되는 가스의 영향을 받는다. 특히, 고온의 사출 공정 중 수지의 표면에서 발생되는 가스는 표면의 거칠기에 영향을 주어 수지의 광택도나 선명도를 크게 저하시켜 수지의 품질 향상에 제한되는 요소로 알려져 있다.
선행기술문헌
(특허문헌 1) KR 10-1279267 B1
본 발명은 상기한 종래 기술의 문제점을 해결하기 위한 것으로, 열가소성 수지에 포함되어 충격 강도 및 표면 선명성을 개선할 수 있고, 사출 시의 가스 발생량을 줄일 수 있는 공액 디엔계 중합체의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기의 공액 디엔계 중합체를 포함하는 그라프트 공중합체의 제조방법과 상기 그라프트 공중합체를 포함하는 열가소성 수지 조성물을 제공하는 것을 목적으로 한다.
상기한 과제를 해결하기 위하여, 본 발명은 공액 디엔계 단량체 100 중량부 중 30 내지 50 중량부, 다이머산 비누화물 0.1 내지 5 중량부 및 중합 개시제를 반응기에 일괄 투입하여 중합 반응을 개시하는 단계(S1), 중합 반응 개시 이후 중합 전환율에 따라 나머지 공액 디엔계 단량체와 유화제를 3회 이상에 걸쳐 분할 투입하는 단계(S2), 및 중합 전환율 90 내지 99% 시점에서 중합 반응을 종결하는 단계(S3)를 포함하는 공액 디엔계 중합체의 제조방법을 제공한다.
또한, 본 발명은 상기 공액 디엔계 중합체의 제조방법에서 상기 S2 단계는 중합 전환율 20 내지 35% 시점에서 공액 디엔계 단량체 및 유화제를 투입하는 단계(S2-1), 중합 전환율 45 내지 60% 시점에서 공액 디엔계 단량체 및 유화제를 투입하는 단계(S2-2) 및 중합 전환율 70 내지 80% 시점에서 공액 디엔계 단량체 및 유화제를 투입하는 단계(S2-3)를 포함하는 것인 공액 디엔계 중합체의 제조방법을 제공한다.
본 발명이 제공하는 공액 디엔계 중합체의 제조방법을 이용할 경우, 제조되는 공액 디엔계 중합체의 입경 표준 편차를 크게 하여 제조된 공액 디엔계 중합체를 포함하는 열가소성 수지의 충격 강도 및 표면 선명성을 개선할 수 있으며, 상기 열가소성 수지의 사출 과정에서의 가스 발생량을 줄일 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 공액 디엔계 단량체는 1,3-부타디엔, 이소프렌, 클로로프렌 및 피퍼릴렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 이 중 1,3-부타디엔이 바람직할 수 있다.
본 발명의 방향족 비닐계 단량체는 스티렌, α-메틸 스티렌, α-에틸 스티렌 및 p-메틸 스티렌으로 이루어진 군으로부터 선택되는 1종 이상일 수 있고, 이 중 스티렌이 바람직하다.
본 발명에서 비닐 시안계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴 및 α-클로로아크릴로니트릴로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 아크릴로니트릴이 바람직하다.
본 발명에서 "유래 단위"는 해당 화합물로부터 유래된 단위를 의미하며, 구체적으로는 해당 화합물 그 자체 또는 해당 화합물의 일부 원자가 제거된 것인 치환기를 의미할 수 있다.
본 발명에서 공액 디엔계 중합체의 평균 입경 및 입경 표준 편차는 Nicomp사의 입도 분석기를 통해 측정할 수 있으며, 구체적으로는 측정 대상이 되는 중합체 샘플을 희석하여 측정하고, Intensity Wt의 평균 입경과 입경 표준 편차를 읽어 측정할 수 있다.
공액 디엔계 중합체의 제조방법
본 발명은 공액 디엔계 단량체 100 중량부 중 30 내지 50 중량부, 다이머산 비누화물 0.1 내지 5 중량부 및 중합 개시제를 반응기에 일괄 투입하여 중합 반응을 개시하는 단계(S1), 중합 반응 개시 이후 중합 전환율에 따라 나머지 공액 디엔계 단량체와 유화제를 3회 이상에 걸쳐 분할 투입하는 단계(S2) 및 중합 전환율 90 내지 99% 시점에서 중합 반응을 종결하는 단계(S3)를 포함하는 공액 디엔계 중합체의 제조방법을 제공한다.
1) 중합 개시 단계
본 발명이 제공하는 공액 디엔계 중합체의 제조방법은 중합의 대상이 되는 공액 디엔계 단량체 100 중량부 중 30 내지 50 중량부와 다이머산 비누화물 및 중합 개시제를 반응기에 일괄 투입하여 중합 반응을 개시하는 단계를 포함한다.
본 단계에서 투입되는 공액 디엔계 단량체는 중합의 대상이 되는 공액 디엔계 단량체의 전량인 100 중량부에 대해 30 내지 50 중량부, 바람직하게는 35 내지 45 중량부일 수 있다. 중합 개시 단계에서 상술한 범위로 공액 디엔계 단량체를 투입할 경우, 최종적으로 제조되는 공액 디엔계 중합체의 입경 표준 편차를 넓게 가져갈 수 있다.
본 단계에서는 다이머산 비누화물과 중합 개시제가 공액 디엔계 단량체와 함께 투입된다. 본 발명에서 다이머산 비누화물은 유화제의 역할을 수행한다. 상기 다이머산은 하기 화학식 1 내지 6으로 표시되는 화합물 중 선택되는 1종 이상일 수 있다:
[화학식 1]
Figure PCTKR2020012872-appb-I000001
[화학식 2]
Figure PCTKR2020012872-appb-I000002
[화학식 3]
Figure PCTKR2020012872-appb-I000003
[화학식 4]
Figure PCTKR2020012872-appb-I000004
[화학식 5]
Figure PCTKR2020012872-appb-I000005
[화학식 6]
Figure PCTKR2020012872-appb-I000006
.
상기 비누화물은 산이 비누화 반응하여 생성된 카복실산기의 금속염을 지칭하며, 예컨대 알칼리 금속염 또는 알칼리 토금속염이 가능하고, 구체적으로는 나트륨염, 칼륨염, 마그네슘염 또는 칼슘염일 수 있다.
상기 중합 개시제는 중합 반응을 개시하는 역할을 수행하기 위한 것으로, 수용성 중합 개시제, 및 지용성 중합 개시제와 산화-환원계 촉매의 혼합물 중 하나 이상일 수 있으며, 이들을 조합하여 사용하는 것이 특히 바람직하다.
구체적으로, 상기 수용성 중합 개시제는 과황산 칼륨, 과황산 나트륨 및 과황산 암모늄으로 이루어지 군에서 선택되는 1종 이상일 수 있고, 상기 지용성 중합 개시제는 큐멘하이드로 퍼옥사이드, 디이소프로필 벤젠 하이드로퍼옥사이드, 아조비스 이소부틸로니트릴, 3급 부틸 하이드로퍼옥사이드, 파라메탄 하이드로퍼옥사이드, 및 벤조일퍼옥사이드로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 상기 산화-환원계 촉매는 소듐포름알데히드 술폭실레이트, 소듐에틸렌디아민 테트라아세테이드, 황산 제1철, 덱스트로즈, 피롤인산나트륨, 아황산나트륨으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 상기에서 나열한 중합 개시제를 사용할 경우, 중합 반응의 개시가 원활하게 수행될 수 있다.
상기 중합 개시제는 공액 디엔계 단량체 100 중량부에 대하여 0.01 내지 1 중량부, 바람직하게는 0.01 내지 0.5 중량부로 투입될 수 있다. 중합 개시제가 이보다 적게 사용될 경우, 중합 개시가 원활히 수행되지 않을 수 있고, 이보다 많게 사용되는 경우 최종적으로 제조되는 공액 디엔계 중합체의 물성에 악영향을 미칠 수 있다.
2) 중합 반응 단계
본 발명이 제공하는 공액 디엔계 중합체의 제조방법에 있어서, 중합 반응 개시 이후 나머지 공액 디엔계 단량체와 유화제를 분할 투입하여 중합 반응을 수행하는 단계를 포함한다.
본 단계에서는 중합의 대상이 되는 공액 디엔계 단량체 100 중량부 중, 중합 개시 단계에서 투입된 단량체를 제외한 나머지 단량체를 투입하며, 상기 단량체 및 유화제를 3회 이상에 걸쳐 분할 투입한다. 상기 분할 투입의 차수는 3회 이상일 수 있고, 바람직하게는 3 내지 5회일 수 있다. 특히 바람직하게는 3 또는 4회일 수 있다. 이보다 적은 차수로 분할 투입 할 경우, 단량체의 균일한 중합이 이루어지지 않을 수 있고, 이보다 많은 차수로 분할 투입 할 경우에는 공정 운전이 어려울 수 있다. 본 단계에서 분할 투입 시점의 기준은 중합 전환율일 수 있다.
본 단계에서 분할 투입되는 공액 디엔계 단량체의 양은 직전에 투입된 공액 디엔계 단량체의 양보다 작거나 같은 것일 수 있다. 예컨대, 중합 개시 시에 공액 디엔계 단량체를 30 중량부 투입하는 경우, 중합 반응이 진행되는 과정에서 첫 번째 분할 투입되는 공액 디엔계 단량체의 양은 30 중량부보다 작거나 같을 수 있고, 구체적으로는 25 중량부일 수 있으며, 두 번째로 분할 투입되는 공액 디엔계 단량체의 양은 앞선 25 중량부보다 작거나 같을 수 있으며, 예컨대 15 중량부일 수 있다. 이와 같이 투입되는 공액 디엔계 단량체의 양을 조절함으로써 제조되는 중합체의 입자 분포도를 넓게 유지하면서, 반응 시간을 기존과 동등하게 끔 할 수 있고, 이를 통해 최종적으로 제조되는 중합체의 충격강도가 우수하면서도, 우수한 생산성으로 중합체가 제조되도록 할 수 있다.
또한, 본 S2 단계는 구체적으로 중합 전환율 20 내지 35% 시점에서 공액 디엔계 단량체 및 유화제를 투입하는 단계(S2-1), 중합 전환율 45 내지 60% 시점에서 공액 디엔계 단량체 및 유화제를 투입하는 단계(S2-2) 및 중합 전환율 70 내지 80% 시점에서 공액 디엔계 단량체 및 유화제를 투입하는 단계(S2-3)를 포함하는 것일 수 있다.
또한, 상기 S2-1 단계는 공액 디엔계 단량체 20 내지 30 중량부를 투입하고, 상기 S2-2 단계는 공액 디엔계 단량체 15 내지 25 중량부를 투입하고, 상기 S2-3 단계는 공액 디엔계 단량체 10 내지 20 중량부를 투입하고, 상기 S2-1 내지 S2-3 단계에서 투입되는 공액 디엔계 단량체의 총량은 70 중량부 이하일 수 있으며, 상기 S2-1 내지 S2-3 단계에서 투입되는 공액 디엔계 단량체의 투입량은 하기 식 1을 만족하는 것일 수 있다:
[식 1]
M1≥M2≥M3
식 중에서, M1, M2 및 M3은 각각 S2-1, S2-2 및 S2-3 단계에서의 공액 디엔계 단량체 투입량이다.
일 예로, 상기 S2-1 단계는 중합 전환율 20 내지 35% 시점에서 공액 디엔계 25 중량부를 투입하고, 상기 S2-2 단계는 중합 전환율 45 내지 60% 시점에서 공액 디엔계 단량체 20 중량부를 투입하고, 상기 S2-3 단계는 중합 전환율 70 내지 80% 시점에서 공액 디엔계 단량체 15 중량부를 투입하는 것일 수 있으며, 더욱 구체적으로 상기 S2-1 단계는 중합 전환율 30% 시점에서 공액 디엔계 25 중량부를 투입하고, 상기 S2-2 단계는 중합 전환율 50% 시점에서 공액 디엔계 단량체 20 중량부를 투입하고, 상기 S2-3 단계는 중합 전환율 70% 시점에서 공액 디엔계 단량체 15 중량부를 투입하는 것일 수 있다.
상기 S2 단계가 상술한 것과 같은 S2-1, S2-2 및 S2-3 단계를 포함하는 경우, 중합 반응이 원활할 수 있으면서도, 제조되는 공액 디엔계 중합체의 충격 강도가 더욱 우수할 수 있다.
본 발명에서 중합 전환율은 제조된 공액 디엔계 중합체 1.5g을 150℃의 열풍 건조기 내에서 15분간 건조 후, 무게를 측정하여 총 고형분 함량(TSC)을 구하고, 하기 수학식 1을 이용하여 산출할 수 있다.
[수학식 1]
중합 전환율(%)= 총 고형분 함량(TSC) X (투입된 단량체 및 부원료 중량) / 100-(단량체 외 투입된 부원료 중량)
상기 수학식 1에서, 부원료는 중합 반응에 투입되는 물질 중 단량체를 제외한 나머지 성분들을 모두 포함하며, 예컨대 개시제나 유화제 등이 부원료에 해당할 수 있다.
상기 S2 단계에서 투입되는 유화제는 로진산 비누화물, 지방산 비누화물, 다이머산 비누화물 및 올레산 비누화물로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 상기 유화제는 공액 디엔계 단량체와 마찬가지로 분할되어 투입될 수 있다.
한편, 상기 S1 및 S2 단계는 분자량 조절제가 더 투입하는 것일 수 있으며, S1 단계 및 S2 단계에서 투입되는 분자량 조절제의 총량은 공액 디엔계 단량체 100 중량부에 대해 1 중량부 미만일 수 있다. 투입되는 분자량 조절제의 총량이 이보다 큰 경우에는 제조되는 공액 디엔계 중합체의 물성 밸런스가 떨어질 수 있다.
상기 분자량 조절제는 α-메틸스티렌 다이머, t-도데실 머캅탄, n-도데실 머캅탄, n-옥틸 머캅탄, 사염화탄소, 염화메틸렌, 브롬화메틸렌, 테트라 에틸 티우람 다이 설파이드, 디펜타메틸렌 티우람 다이 설파이드, 및 디이소프로필키산토겐 다이 설파이드로 이루어진 군에서 선택되는 1종 이상일 수 있다.
3) 종결 단계
본 발명의 공액 디엔계 중합체의 제조방법은 중합 전환율 90 내지 99% 시점에서 중합 반응을 종결하는 단계(S3)를 포함한다. 본 단계를 통해 최종적인 공액 디엔계 중합체가 제조되며, 본 발명의 제조방법을 통해 제조되는 공액 디엔계 중합체의 평균 입경은 1000 내지 2000Å, 바람직하게는 1000 내지 1500Å일 수 있다.
본 단계에서 수득된 공액 디엔계 중합체는 중합 반응 종결 후 응집제, 또는 응집제 및 보조응집제를 투입하여 비대화하는 단계(S4)를 통해 비대화될 수 있으며, 비대화된 공액 디엔계 중합체의 평균 입경은 2500 내지 4000Å, 바람직하게는 2500 내지 3500Å일 수 있다.
공액 디엔계 중합체 및 비대화된 공액 디엔계 중합체의 평균 입경이 상술한 범위인 경우, 중합체의 충격 강도 등을 비롯한 물성이 우수할 수 있다.
본 단계에서 사용될 수 있는 응집제로는 산성 응집제를 사용할 수 있으며, 구체적으로는 황산, 초산, MgSO4, CaCl2 또는 Al2(SO4)3을 사용할 수 있고, 보조 응집제로는 알긴산 나트륨 또는 규산 나트륨과 같은 나트륨 보조 응집제나 고분자 계열의 고분자 응집제를 사용할 수 있다.
그라프트 공중합체의 제조방법
본 발명은 앞선 제조방법으로 제조한 공액 디엔계 중합체에 방향족 비닐계 단량체 및 비닐 시안계 단량체를 그라프트 중합시켜 그라프트 공중합체를 제조하는 방법을 제공한다.
상기 그라프트 공중합체는 공액 디엔계 중합체를 40 내지 70 중량%로, 방향족 비닐계 단량체를 15 내지 35 중량%로, 비닐 시안계 단량체를 5 내지 25 중량%로 포함할 수 있다. 그라프트 공중합체의 성분이 상술한 범위 내일 경우, 그라프트 공중합체의 내화학성 및 가공성이 우수할 수 있다.
상기 그라프트 공중합체는 공액 디엔계 중합체에 방향족 비닐계 단량체 및 비닐 시안계 단량체를 혼합한 뒤, 유화제 및 개시제를 첨가하고 그라프트 중합하여 제조될 수 있다. 상기 유화제 및 개시제는 앞서 공액 디엔계 중합체의 제조방법에서 설명한 것과 동일한 것을 사용할 수 있다.
열가소성 수지 조성물
본 발명은 앞서 설명한 그라프트 공중합체의 제조방법으로 제조된 그라프트 공중합체와 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하는 공중합체를 포함하는 열가소성 수지 조성물을 제공한다.
구체적으로 상기 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하는 공중합체는 스티렌-아크릴로니트릴 공중합체일 수 있다. 상기 열가소성 수지 조성물에서의 그라프트 공중합체 함량은 10 내지 50 중량%일 수 있다.
상기 열가소성 수지 조성물은 압출 및 사출되어 성형품으로 제조될 수 있으며, 상기 성형품은 전기 부품, 전자 부품, 자동차 부품 등의 다양한 용도로 사용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범위를 한정하기 위한 것이 아니다
실시예 1
질소 치환된 중합 반응기(오토클레이브)에 이온 교환수 90 중량부, 공액 디엔계 단량체로는 1,3-부타디엔 35 중량부, 유화제로 상기 화학식 1 내지 6으로 표시되는 화합물 중 1종 이상의 혼합물인 다이머산 비누화물 0.8 중량부, 전해질로 탄산칼륨 0.25 중량부, 수산화칼륨 0.044 중량부, 분자량 조절제로 t-도데실 머캅탄 0.25 중량부, 반응 개시제로 t-부틸 하이드로퍼옥사이드 0.04 중량부, 덱스트로즈 0.02 중량부, 피롤인산나트륨 0.0015 중량부 및 황산 제일철 0.0007 중량부를 투입하고 온도를 55℃로 승온시켜 중합 반응을 개시하였다.
중합 반응이 개시된 이후, 중합 전환율이 30%인 시점에 1,3-부타디엔 25 중량부, 분자량 조절제로 t-도데실 머캅탄 0.1 중량부, 과황산 칼륨 0.05 중량부 및 유화제로 다이머산 비누화물 0.15 중량부를 투입하고, 온도를 78℃로 승온시키고 유지하여 6시간 동안 중합 반응 하였다.
그 다음 단계로 중합 전환율 50% 시점에서 1,3-부타디엔 25 중량부와 분자량 조절제로 t-도데실 머캅탄 0.1 중량부, 다이머산 비누화물 0.15 중량부, 탄산칼륨 0.05 중량부 및 수산화칼륨 0.01 중량부를 순차적으로 투입하였으며, 이후 중합 전환율 70% 시점에서 1,3-부타디엔 15 중량부, 분자량 조절제로 t-도데실 머캅탄 0.1 중량부, 다이머산 비누화물 0.15 중량부, 탄산칼륨 0.05 중량부 및 수산화칼륨 0.01 중량부를 순차적으로 투입하여 중합 전환율은 95%에 반응 종료하였다.
제조된 폴리부타디엔의 평균 입경은 1280Å, 입경 표준 편차는 350Å 이었다. 제조된 폴리부타디엔에 초산 0.8 중량부를 첨가하여 비대화된 폴리부타디엔을 수득하였으며, 비대화된 폴리부타디엔의 평균 입경은 3270Å, 입경 표준 편차는 920Å 이었다.
실시예 2
실시예 1에서 제조한 폴리부타디엔에 알긴산 나트륨 0.3 중량부 및 초산 0.6 중량부를 첨가하여 비대화된 폴리부타디엔을 수득하였다.
비대화된 폴리부타디엔의 평균 입경은 3230 Å, 입경 표준 편차는 992Å 이었다.
실시예 3
질소 치환된 중합 반응기(오토클레이브)에 이온 교환수 90 중량부, 공액 디엔계 단량체로는 1,3-부타디엔 30 중량부, 유화제로 상기 화학식 1 내지 6으로 표시되는 화합물 중 1종 이상의 혼합물인 다이머산 비누화물 0.75 중량부, 전해질로 탄산칼륨 0.25 중량부, 수산화칼륨 0.044 중량부, 분자량 조절제로 t-도데실 머캅탄 0.25 중량부, 반응 개시제로 t-부틸 하이드로퍼옥사이드 0.04 중량부, 덱스트로즈 0.02 중량부, 피롤인산나트륨 0.0015 중량부 및 황산 제일철 0.0007 중량부를 투입하고 온도를 55℃로 승온시켜 중합 반응을 개시하였다.
중합 반응이 개시된 이후, 중합 전환율이 25%인 시점에 1,3-부타디엔 25 중량부, 분자량 조절제로 t-도데실 머캅탄 0.1 중량부, 과황산 칼륨 0.05 중량부 및 유화제로 다이머산 비누화물 0.1 중량부를 투입하고, 온도를 78℃로 승온시키고 유지하여 6시간 동안 중합 반응 하였다.
그 다음 단계로 중합 전환율 35% 시점에서 1,3-부타디엔 15 중량부와 분자량 조절제로 t-도데실 머캅탄 0.1 중량부, 다이머산 비누화물 0.1 중량부, 탄산칼륨 0.05 중량부 및 수산화칼륨 0.01 중량부를 순차적으로 투입하였으며, 중합 전환율 50% 시점에서 1,3-부타디엔 15 중량부와 다이머산 비누화물 0.1 중량부를 투입하였다.
이후 중합 전환율 70% 시점에서 1,3-부타디엔 15 중량부, 분자량 조절제로 t-도데실 머캅탄 0.1 중량부, 다이머산 비누화물 0.15 중량부, 탄산칼륨 0.05 중량부 및 수산화칼륨 0.01 중량부를 순차적으로 투입하여 중합 전환율 95%에 반응 종료하였다.
제조된 폴리부타디엔의 평균 입경은 1260Å, 입경 표준 편차는 282Å 이었다. 제조된 폴리부타디엔에 알긴산 나트륨 0.3 중량부 및 초산 0.7 중량부를 첨가하여 비대화된 폴리부타디엔을 수득하였으며, 비대화된 폴리부타디엔의 평균 입경은 3290Å, 입경 표준 편차는 870Å 이었다.
비교예 1
질소 치환된 중합 반응기(오토클레이브)에 이온 교환수 75 중량부, 단량체로 1,3-부타디엔 90 중량부, 유화제로 다이머산 비누화물 3 중량부, 전해질로 탄산칼륨 0.1 중량부, 분자량 조절제로 t-도데실 머캅탄 0.1 중량부, 반응 개시제로 t-부틸 하이드로퍼옥사이드 0.15 중량부, 덱스트로즈 0.06 중량부, 피롤인산나트륨 0.005 중량부 및 황산 제일철 0.0025 중량부를 일괄투여하고 온도를 55℃로 승온하여 중합 전환율 30 내지 40%까지 반응시켰다.
그 후, 과황산 칼륨 0.3 중량부를 일괄 투입 한 후, 온도를 72℃까지 승온한 후, 중합 전환율 60 내지 70%에서 나머지 1,3-부타디엔 10 중량부를 일괄 투입하여 중합 반응시켰으며, 중합 전환율 95%에서 반응을 종료하였다. 제조된 폴리부타디엔의 평균 입경은 1220Å, 입경 표준 편차는 210Å 이었다. 제조된 폴리부타디엔에 초산 1.5 중량부를 투입하여 비대화하였으며, 비대화된 폴리부타디엔의 평균 입경은 3290Å, 입경 표준 편차는 690Å 이었다.
비교예 2
비교예 1에서 제조된 폴리부타디엔에 알긴산 나튜름 0.3 중량부 및 초산 1.32 중량부를 투입하여 비대화된 폴리부타디엔을 수득하였다.
비대화된 폴리부타디엔의 평균 입경은 3230Å, 입경 표준 편차는 823Å 이었다.
비교예 3
질소 치환된 중합 반응기(오토클레이브)에 이온 교환수 90 중량부, 공액 디엔계 단량체로는 1,3-부타디엔 50 중량부, 유화제로 상기 화학식 1 내지 6으로 표시되는 화합물 중 1종 이상의 혼합물인 다이머산 비누화물 1.1 중량부, 전해질로 탄산칼륨 0.27 중량부, 수산화칼륨 0.06 중량부, 분자량 조절제로 t-도데실 머캅탄 0.25 중량부, 반응 개시제로 t-부틸 하이드로퍼옥사이드 0.04 중량부, 덱스트로즈 0.02 중량부, 피롤인산나트륨 0.0015 중량부 및 황산 제일철 0.0007 중량부를 투입하고 온도를 55℃로 승온시켜 중합 반응을 개시하였다.
중합 반응이 개시된 이후, 중합 전환율이 40%인 시점에 분자량 조절제로 t-도데실 머캅탄 0.1 중량부, 과황산 칼륨 0.05 중량부 및 유화제로 다이머산 비누화물 0.15 중량부를 투입하고, 온도를 78℃로 승온시키고 유지하여 6시간 동안 중합 반응 하였다.
그 다음 단계로 중합 전환율 50% 시점에서 1,3-부타디엔 35 중량부와 분자량 조절제로 t-도데실 머캅탄 0.1 중량부, 다이머산 비누화물 0.15 중량부, 탄산칼륨 0.05 중량부 및 수산화칼륨 0.01 중량부를 순차적으로 투입하였으며, 이후 중합 전환율 70% 시점에서 1,3-부타디엔 15 중량부, 분자량 조절제로 t-도데실 머캅탄 0.1 중량부, 다이머산 비누화물 0.15 중량부, 탄산칼륨 0.05 중량부 및 수산화칼륨 0.01 중량부를 순차적으로 투입하여 중합 전환율 95%에 반응 종료하였다.
제조된 폴리부타디엔의 평균 입경은 1235Å, 입경 표준 편차는 242Å 이었다. 제조된 폴리부타디엔에 알긴산 나트륨 0.3 중량부 및 초산 1.1 중량부를 첨가하여 비대화된 폴리부타디엔을 수득하였으며, 비대화된 폴리부타디엔의 평균 입경은 3225Å, 입경 표준 편차는 835Å 이었다.
ASBS DP 및 사출 시편 제조
상기 실시예 및 비교예에서 제조한 폴리부타디엔 60 중량부 및 이온 교환수 1000 중량부에 별도의 혼합 장치에서 혼합된 아크릴로니트릴 12 중량부, 스티렌 28 중량부, 이온 교환수 20 중량부, 다이머산 비누화물 0.4 중량부 및 t-도데실 머캅탄 0.35 중량부로 이루어진 혼합 용액과 t-부틸 하이드로퍼옥사이드 0.12 중량부, 덱스트로즈 0.054 중량부, 피롤인산나트륨 0.004 중량부 및 황산 제일철 0.002 중량부를 70℃에서 3시간 연속 투입 하였다.
상기 투입이 종료된 후, 덱스트로즈 0.05 중량부, 피롤인산나트륨 0.03 중량부, 황산 제일철 0.001 중량부, t-부틸 하이드로퍼옥사이드 0.05 중량부를 일괄 투입하고, 온도를 80℃까지 1시간에 걸쳐 승온한 후, 반응을 종결하여 아크릴로니트릴-부타디엔-스티렌(ABS) 그라프트 공중합체를 제조하였다.
제조된 ABS 그라프트 공중합체에 MgSO4를 0.8 내지 2 중량부 투입 응집하고, 세척 및 건조하여 ABS 분말(DP)을 수득하였으며, 수득한 ABS 분말 27 중량부와 SAN(스티렌-아크릴로니트릴, Mw=120,000, 아크릴로니트릴 함량 27%) 73 중량부를 혼합하여 열가소성 수지 조성물을 수득하였다. 수득한 열가소성 수지 조성물을 압출 및 사출하여 사출 시편을 수득하였다.
실시예 4 및 비교예 4
상기 실시예 1의 사출 시편 제조 과정에서 단일 폴리부타디엔 60 중량부 대신 실시예 1의 폴리부타디엔 및 비대화된 폴리부타디엔을 1:2로 혼합하고, MgSO4를 1.2 중량부 사용하여 그라프트 공중합체 및 사출 시편을 제조하였으며, 이를 실시예 4로 하였다.
또한, 동일하게 비교예 1의 사출 시편 제조 과정에서 단일 폴리부타디엔 60 중량부 대신 비교예 1의 폴리부타디엔 및 비대화된 폴리부타디엔을 1:2로 혼합하고, MgSO4를 2 중량부 사용하여 그라프트 공중합체 및 사출 시편을 제조하였으며, 이를 비교예 4로 하였다.
상기 실시예 및 비교예에서 제조한 폴리부타디엔 및 비대화된 폴리부타디엔의 평균 입경 및 입경 표준 편차, 폴리부타디엔(PBL)으로의 전환율 및 ABS 그라프트 공중합체로의 전환율, 그리고 각 경우의 사출 시편 제조에 투입된 MgSO4 중량부를 하기 표 1로 정리하였다
평균 입경(Å) 입경 표준 편차(Å) PBL 전환율 ABS 전환율 MgSO4 투입 중량부
실시예 1 폴리부타디엔 1280 350 95.0 95.3 0.7
비대화 폴리부타디엔 3270 920 95.7 1
실시예 2 비대화 폴리부타디엔 3230 992 95 0.8
실시예 3 폴리부타디엔 1260 282 95.1 95.8 0.7
비대화 폴리부타디엔 3290 870 95.5 0.8
비교예 1 폴리부타디엔 1220 210 95.2 96.1 2
비대화 폴리부타디엔 3290 690 95.7 2
비교예 2 비대화 폴리부타디엔 3230 823 94.9 1.7
비교예 3 폴리부타디엔 1235 242 95.3 95.2 1.45
비대화 폴리부타디엔 3225 835 95.0 1.45
실험예 1. 사출 시편의 물성 확인
상기 실시예 및 비교예에서 제조한 사출 시편에 대해, 하기 방법을 사용하여 물성을 측정하였다.
* 아이조드 충격강도(IMP, kgfcm/cm): ASTM D256에 의거하여 두께 1/8 인치 및 1/4 인치의 펠렛 시편에 노치(notch)를 내어 측정하였다.
* 선명도(reflection haze): 광택시편을 이용하여 표준측정 ASTM E430에 따라 17 내지 19° 및 21 내지 23°사이의 광택 수치를 더하여 선명도를 측정하였다. 본 방법으로 측정된 선명도 값이 낮을수록 사출 시편의 선명도가 우수함을 의미한다.
측정된 물성을 하기 표 2로 정리하였다.
폴리부타디엔 종류 1/4인치 IMP 1/8인치 IMP 선명도
실시예 1 폴리부타디엔 5.2 6.7 0.8
비대화 폴리부타디엔 23.1 23.4 1.8
실시예 2 비대화 폴리부타디엔 23.5 24.3 1.4
실시예 3 폴리부타디엔 3.8 5.7 1.0
비대화 폴리부타디엔 22.7 23.3 1.4
실시예 4 폴리부타디엔/비대화 폴리부타디엔 18.2 18.3 0.9
비교예 1 폴리부타디엔 3.2 5.0 1.7
비대화 폴리부타디엔 21.8 22.7 2.7
비교예 2 비대화 폴리부타디엔 22.3 23.0 2.3
비교예 3 폴리부타디엔 3.6 5.2 1.4
비대화 폴리부타디엔 22.2 22.9 2.2
비교예 4 폴리부타디엔/비대화 폴리부타디엔 16.1 15.0 1.6
상기 결과로부터 본 발명의 제조방법으로 제조된 공액 디엔계 중합체를 포함하는 열가소성 수지로부터 제조되는 사출 시편이 더욱 우수한 충격 강도 및 선명도를 나타낸다는 점을 확인하였다.
실험예 2. 중합 및 초산 응집시의 응고물 발생량 확인
상기 실시예 및 비교예의 반응조 내에 생성된 응고물의 무게, 총 중합체의 무게 및 단량체의 무게를 측정하고 하기 수학식 2를 사용하여 공액 디엔계 중합체의 고형 응고물의 함량을 계산한 후, 표 3으로 나타내었다.
[수학식 2]
응고물 함량 = 반응조 내부에 생성된 응고물의 무게(g) / 총 중합체의 무게 및 단량체의 무게(100g)
폴리부타디엔 종류 소구경 제조 응고물 발생량 대구경화 응고물 발생량
실시예 1 폴리부타디엔 0.02 -
비대화 폴리부타디엔 - 0.043
실시예 2 비대화 폴리부타디엔 - 0.045
실시예 3 폴리부타디엔 0.0175 -
비대화 폴리부타디엔 - 0.04
실시예 4 폴리부타디엔/비대화 폴리부타디엔 - 0.023
비교예 1 폴리부타디엔 0.018 -
비대화 폴리부타디엔 - 0.041
비교예 2 비대화 폴리부타디엔 - 0.045
비교예 3 폴리부타디엔 0.021 -
비대화 폴리부타디엔 - 0.037
비교예 4 폴리부타디엔/비대화 폴리부타디엔 - 0.021
상기 결과로부터 본 발명의 실시예에 따른 제조방법 사용 시 비교예의 방법과 유사한 수준으로 응고물이 발생된다는 점을 확인하였다.
실험예 3. 사출 시의 가스 발생량 확인
HS-GC/MSD를 이용하여 상기 실시예 및 비교예에서 제조되는 그라프트 공중합체 1g에 대해 250℃에서 1 시간 동안 발생되는 휘발성 유기 화합물(VOC)의 총량을 분석하였으며, 그 결과를 하기 표 4로 기재하였다.
폴리부타디엔 종류 가스 발생량(ppm)
실시예 1 폴리부타디엔 1170
비대화 폴리부타디엔 1590
실시예 2 비대화 폴리부타디엔 1260
실시예 3 폴리부타디엔 1210
비대화 폴리부타디엔 1520
실시예 4 폴리부타디엔/비대화 폴리부타디엔 1620
비교예 1 폴리부타디엔 1930
비대화 폴리부타디엔 2580
비교예 2 비대화 폴리부타디엔 2310
비교예 3 폴리부타디엔 1727
비대화 폴리부타디엔 1840
비교예 4 폴리부타디엔/비대화 폴리부타디엔 2490
상기 결과로부터 본 발명의 실시예에 따른 제조방법 이용 시 기존의 방법이나 비교예의 방법을 이용한 경우 대비 사출 시 가스 발생량이 적어 사출 시편이 균일한 표면을 가질 수 있다는 점을 확인하였다.
실험예 4. ABS 분말 잔류 Mg 함량 확인
상기 실시예 및 비교예에서 제조된 ABS 분말에 잔류하는 Mg 함량을 ICP Mass를 통한 무기물 함량 분석을 이용하여 확인하였으며, 그 결과를 하기 표 5에 기재하였다.
폴리부타디엔 종류 잔류 Mg 함량(ppm)
실시예 1 폴리부타디엔 550
비대화 폴리부타디엔 690
실시예 2 비대화 폴리부타디엔 632
실시예 3 폴리부타디엔 572
비대화 폴리부타디엔 659
실시예 4 폴리부타디엔/비대화 폴리부타디엔 780
비교예 1 폴리부타디엔 1320
비대화 폴리부타디엔 1370
비교예 2 비대화 폴리부타디엔 1150
비교예 3 폴리부타디엔 843
비대화 폴리부타디엔 865
비교예 4 폴리부타디엔/비대화 폴리부타디엔 1220
상기 결과로부터 본 발명 실시예의 제조방법 이용 시 잔류하는 Mg 함량이 적어 공액 디엔계 중합체의 물성 등이 우수할 수 있다는 점을 확인하였다.

Claims (16)

  1. 공액 디엔계 단량체 100 중량부 중 30 내지 50 중량부, 다이머산 비누화물 0.1 내지 5 중량부 및 중합 개시제를 반응기에 일괄 투입하여 중합 반응을 개시하는 단계(S1);
    중합 반응 개시 이후 중합 전환율에 따라 나머지 공액 디엔계 단량체와 유화제를 3회 이상에 걸쳐 분할 투입하는 단계(S2); 및
    중합 전환율 90 내지 99% 시점에서 중합 반응을 종결하는 단계(S3);를 포함하는 공액 디엔계 중합체의 제조방법.
  2. 제1항에 있어서,
    상기 S2 단계는 나머지 공액 디엔계 단량체와 유화제를 3회 또는 4회에 걸쳐 분할 투입하는 것인 공액 디엔계 중합체의 제조방법.
  3. 제1항에 있어서,
    상기 S2 단계에서 분할 투입되는 공액 디엔계 단량체의 양은 직전에 투입된 공액 디엔계 단량체의 양보다 작거나 같은 것인 공액 디엔계 중합체의 제조방법.
  4. 제1항에 있어서,
    상기 S2 단계는
    중합 전환율 20 내지 35% 시점에서 공액 디엔계 단량체 및 유화제를 투입하는 단계(S2-1);
    중합 전환율 45 내지 60% 시점에서 공액 디엔계 단량체 및 유화제를 투입하는 단계(S2-2); 및
    중합 전환율 70 내지 80% 시점에서 공액 디엔계 단량체 및 유화제를 투입하는 단계(S2-3);를 포함하는 것인 공액 디엔계 중합체의 제조방법.
  5. 제4항에 있어서,
    상기 S2-1 단계는 공액 디엔계 단량체 20 내지 30 중량부를 투입하고,
    상기 S2-2 단계는 공액 디엔계 단량체 15 내지 25 중량부를 투입하고,
    상기 S2-3 단계는 공액 디엔계 단량체 10 내지 20 중량부를 투입하고,
    상기 S2-1 내지 S2-3 단계에서 투입되는 공액 디엔계 단량체의 총량은 70 중량부 이하인 것인 공액 디엔계 중합체의 제조방법.
  6. 제4항에 있어서,
    상기 S2-1 내지 S2-3 단계에서 투입되는 공액 디엔계 단량체의 투입량은 하기 식 1을 만족하는 것인 공액 디엔계 중합체의 제조방법:
    [식 1]
    M1≥M2≥M3
    식 중에서, M1, M2 및 M3은 각각 S2-1, S2-2 및 S2-3 단계에서의 공액 디엔계 단량체 투입량이다.
  7. 제1항에 있어서,
    상기 다이머산은 하기 화학식 1 내지 6으로 표시되는 화합물 중 선택되는 1종 이상인 것인 공액 디엔계 중합체의 제조방법:
    [화학식 1]
    Figure PCTKR2020012872-appb-I000007
    [화학식 2]
    Figure PCTKR2020012872-appb-I000008
    [화학식 3]
    Figure PCTKR2020012872-appb-I000009
    [화학식 4]
    Figure PCTKR2020012872-appb-I000010
    [화학식 5]
    Figure PCTKR2020012872-appb-I000011
    [화학식 6]
    Figure PCTKR2020012872-appb-I000012
    .
  8. 제1항에 있어서,
    상기 중합 개시제는 수용성 중합 개시제, 및 지용성 중합 개시제와 산화-환원계 촉매의 혼합물 중 하나 이상인 공액 디엔계 중합체의 제조방법.
  9. 제8항에 있어서,
    상기 수용성 중합 개시제는 과황산 칼륨, 과황산 나트륨 및 과황산 암모늄으로 이루어지 군에서 선택되는 1종 이상이고,
    상기 지용성 중합 개시제는 큐멘하이드로 퍼옥사이드, 디이소프로필 벤젠 하이드로퍼옥사이드, 아조비스 이소부틸로니트릴, 3급 부틸 하이드로퍼옥사이드, 파라메탄 하이드로퍼옥사이드, 및 벤조일퍼옥사이드로 이루어진 군에서 선택되는 1종 이상이고,
    상기 산화-환원계 촉매는 소듐포름알데히드 술폭실레이트, 소듐에틸렌디아민 테트라아세테이드, 황산 제1철, 덱스트로즈, 피롤인산나트륨, 아황산나트륨으로 이루어진 군으로부터 선택되는 1종 이상인 공액 디엔계 중합체의 제조방법.
  10. 제1항에 있어서,
    상기 중합 개시제는 공액 디엔계 단량체 100 중량부에 대하여 0.01 내지 1 중량부로 투입되는 것인 공액 디엔계 중합체의 제조방법.
  11. 제1항에 있어서,
    상기 S1 단계 및 S2 단계에서 분자량 조절제가 더 투입되며,
    S1 단계 및 S2 단계에서 투입되는 분자량 조절제의 총량은 공액 디엔계 단량체 100 중량부에 대해 1 중량부 미만인 것인 공액 디엔계 중합체의 제조방법.
  12. 제1항에 있어서,
    상기 유화제는 로진산 비누화물, 지방산 비누화물, 다이머산 비누화물 및 올레산 비누화물로 이루어진 군에서 선택되는 1종 이상인 공액 디엔계 중합체의 제조방법.
  13. 제1항에 있어서,
    상기 공액 디엔계 중합체의 평균 입경은 1000 내지 2000Å인 공액 디엔계 중합체의 제조방법.
  14. 제1항에 있어서,
    중합 반응 종결 후 응집제, 또는 응집제 및 보조응집제를 투입하여 비대화하는 단계(S4);를 더 포함하며,
    상기 공액 디엔계 중합체의 평균 입경은 2500 내지 4000Å인 공액 디엔계 중합체의 제조방법.
  15. 제1항 내지 제14항 중 어느 한 항의 제조방법으로 제조된 공액 디엔계 중합체에 방향족 비닐계 단량체 및 비닐 시안계 단량체를 그라프트 중합시키는 것인 그라프트 공중합체의 제조방법.
  16. 제15항의 제조방법으로 제조된 그라프트 공중합체; 및
    방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하는 공중합체;를 포함하는 열가소성 수지 조성물.
PCT/KR2020/012872 2019-09-27 2020-09-23 공액 디엔계 중합체의 제조방법 WO2021060833A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080039052.3A CN113874405B (zh) 2019-09-27 2020-09-23 共轭二烯类聚合物的制备方法
JP2021567039A JP7317431B2 (ja) 2019-09-27 2020-09-23 共役ジエン系重合体の製造方法
EP20868281.5A EP4036128A4 (en) 2019-09-27 2020-09-23 PROCESS FOR PRODUCTION OF CONJUGATED DIEN-BASED POLYMER
US17/615,386 US20220227987A1 (en) 2019-09-27 2020-09-23 Method for preparing conjugated diene-based polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190119589 2019-09-27
KR10-2019-0119589 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021060833A1 true WO2021060833A1 (ko) 2021-04-01

Family

ID=75165895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012872 WO2021060833A1 (ko) 2019-09-27 2020-09-23 공액 디엔계 중합체의 제조방법

Country Status (6)

Country Link
US (1) US20220227987A1 (ko)
EP (1) EP4036128A4 (ko)
JP (1) JP7317431B2 (ko)
KR (1) KR102558312B1 (ko)
CN (1) CN113874405B (ko)
WO (1) WO2021060833A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115947884B (zh) * 2022-12-20 2024-03-05 山东万达化工有限公司 一种大粒径聚丁二烯胶乳的合成方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253647A (ja) * 1994-12-02 1996-10-01 General Electric Co <Ge> 耐衝撃性が改良された塩化ビニル樹脂組成物およびグラフトコポリマー組成物
WO2006039860A1 (fr) * 2004-10-12 2006-04-20 China National Petroleum Corporation Procede pour la preparation de latex de polybutadiene a petites particules utilise pour la fabrication d’abs
KR20160077627A (ko) * 2014-12-24 2016-07-04 주식회사 엘지화학 디엔계 고무 라텍스의 제조방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
KR20160078288A (ko) * 2014-12-24 2016-07-04 주식회사 엘지화학 디엔계 고무 라텍스의 제조방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
KR20170098001A (ko) * 2016-02-19 2017-08-29 주식회사 엘지화학 고무질 중합체와 이의 제조방법, 그라프트 공중합체 및 열가소성 수지 조성물
KR20180047748A (ko) * 2016-11-01 2018-05-10 주식회사 엘지화학 대구경 고무질 라텍스의 제조방법, 이를 포함하는 abs계 그라프트 공중합체 및 abs계 사출품의 제조방법
KR20190095880A (ko) * 2018-02-07 2019-08-16 주식회사 엘지화학 그라프트 공중합체의 제조방법 및 열가소성 수지 성형품

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101899637B1 (ko) * 2015-06-24 2018-09-17 주식회사 엘지화학 공액 디엔계 중합체 제조용 촉매 조성물 및 이를 이용하여 제조된 공액 디엔계 중합체
KR102078199B1 (ko) * 2016-11-01 2020-02-17 주식회사 엘지화학 Abs계 수지 조성물의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
KR102013184B1 (ko) 2016-11-01 2019-08-22 주식회사 엘지화학 디엔계 고무 라텍스의 제조방법, 이를 포함하는 abs계 그라프트 공중합체의 제조방법 및 abs계 사출성형품의 제조방법
KR102049890B1 (ko) * 2016-11-01 2019-11-28 주식회사 엘지화학 충격강도가 향상된 abs계 그라프트 공중합체의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
KR102044364B1 (ko) * 2016-11-11 2019-11-13 주식회사 엘지화학 열가소성 수지 및 열가소성 수지 조성물

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253647A (ja) * 1994-12-02 1996-10-01 General Electric Co <Ge> 耐衝撃性が改良された塩化ビニル樹脂組成物およびグラフトコポリマー組成物
WO2006039860A1 (fr) * 2004-10-12 2006-04-20 China National Petroleum Corporation Procede pour la preparation de latex de polybutadiene a petites particules utilise pour la fabrication d’abs
KR101279267B1 (ko) 2004-10-12 2013-06-26 차이나 내셔널 페트롤리움 코포레이션 데이킹 페트로 케미컬컴플렉스 Αbs 제조용 소립자 크기의 폴리부타디엔 라텍스의제조방법
KR20160077627A (ko) * 2014-12-24 2016-07-04 주식회사 엘지화학 디엔계 고무 라텍스의 제조방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
KR20160078288A (ko) * 2014-12-24 2016-07-04 주식회사 엘지화학 디엔계 고무 라텍스의 제조방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
KR20170098001A (ko) * 2016-02-19 2017-08-29 주식회사 엘지화학 고무질 중합체와 이의 제조방법, 그라프트 공중합체 및 열가소성 수지 조성물
KR20180047748A (ko) * 2016-11-01 2018-05-10 주식회사 엘지화학 대구경 고무질 라텍스의 제조방법, 이를 포함하는 abs계 그라프트 공중합체 및 abs계 사출품의 제조방법
KR20190095880A (ko) * 2018-02-07 2019-08-16 주식회사 엘지화학 그라프트 공중합체의 제조방법 및 열가소성 수지 성형품

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4036128A4

Also Published As

Publication number Publication date
CN113874405B (zh) 2024-05-07
EP4036128A1 (en) 2022-08-03
JP7317431B2 (ja) 2023-07-31
KR102558312B1 (ko) 2023-07-24
KR20210037565A (ko) 2021-04-06
JP2022531966A (ja) 2022-07-12
CN113874405A (zh) 2021-12-31
US20220227987A1 (en) 2022-07-21
EP4036128A4 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
WO2018084486A2 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 asa계 수지 조성물의 제조방법 및 asa계 성형품의 제조방법
WO2016093649A1 (ko) 대구경의 디엔계 고무 라텍스 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
WO2016052832A1 (ko) 내화학성 및 투명성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2018084436A1 (ko) 충격강도가 향상된 abs계 그라프트 공중합체의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
WO2018084408A1 (ko) Abs계 수지 조성물의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
WO2017039157A1 (ko) 열가소성 수지 조성물 및 이의 제조방법
WO2018174395A1 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 성형품의 제조방법
WO2017142172A1 (ko) 고무질 중합체와 이의 제조방법, 그라프트 공중합체 및 열가소성 수지 조성물
WO2019083153A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2018139775A1 (ko) 그라프트 공중합체, 이의 제조방법, 이를 포함하는 열가소성 수지 조성물 및 성형품
WO2021060833A1 (ko) 공액 디엔계 중합체의 제조방법
WO2013022205A2 (ko) 알킬 (메트)아크릴레이트계 열가소성 수지 조성물, 및 내스크래치성과 황색도가 조절된 열가소성 수지
WO2016182338A1 (ko) 아크릴계 가공조제 및 이를 포함하는 염화비닐계 수지 조성물
WO2018124562A1 (ko) Abs계 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2013077614A1 (ko) 내후성 및 성형성이 우수한 아크릴계 라미네이트 필름 및 그 제조 방법
WO2016204485A1 (ko) 열가소성 수지, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2021015485A1 (ko) 아크릴계 공중합체 응집제 및 이를 이용한 그라프트 공중합체의 제조방법
WO2017039322A1 (ko) 열가소성 수지 및 이를 포함하는 열가소성 수지 조성물
WO2015016520A1 (ko) 고무강화 열가소성 수지의 제조방법
WO2016043424A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 열가소성 수지 성형품
WO2015047026A1 (ko) 고무질 중합체, 그라프트 공중합체와 이들의 제조방법, 내충격 내열수지 조성물
WO2016105171A1 (ko) 디엔계 고무 라텍스의 제조방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
WO2013105737A1 (ko) 열 안정화제 프리 열가소성 수지 조성물 및 그 제조방법
WO2023014154A1 (ko) 그라프트 공중합체 제조방법, 그라프트 공중합체 및 이를 포함하는 수지 조성물
WO2023008808A1 (ko) 열가소성 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567039

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020868281

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020868281

Country of ref document: EP

Effective date: 20220428