WO2013077614A1 - 내후성 및 성형성이 우수한 아크릴계 라미네이트 필름 및 그 제조 방법 - Google Patents

내후성 및 성형성이 우수한 아크릴계 라미네이트 필름 및 그 제조 방법 Download PDF

Info

Publication number
WO2013077614A1
WO2013077614A1 PCT/KR2012/009835 KR2012009835W WO2013077614A1 WO 2013077614 A1 WO2013077614 A1 WO 2013077614A1 KR 2012009835 W KR2012009835 W KR 2012009835W WO 2013077614 A1 WO2013077614 A1 WO 2013077614A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic
weight
acid ester
acrylate
laminate film
Prior art date
Application number
PCT/KR2012/009835
Other languages
English (en)
French (fr)
Inventor
신창학
이응기
이민희
이태화
박구일
황덕율
서혜원
이영수
전은진
Original Assignee
(주)엘지하우시스
엘지엠엠에이(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스, 엘지엠엠에이(주) filed Critical (주)엘지하우시스
Priority to EP12851027.8A priority Critical patent/EP2784107B1/en
Priority to JP2014543416A priority patent/JP5901785B2/ja
Publication of WO2013077614A1 publication Critical patent/WO2013077614A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/04Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2413/00Characterised by the use of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical

Definitions

  • the present invention relates to an acrylic laminate film and a manufacturing method thereof, and more particularly, to an acrylic laminate film excellent in stress whitening resistance, transparency, impact resistance, film forming property and processability.
  • Acrylic resins are excellent in transparency and weather resistance, and have excellent moldability, and thus are widely used in various industrial fields such as optical products and electronics housings.
  • the acrylic resin may be molded into a sheet or a film, or laminated and applied to plastic, wood, and metal.
  • the film formed of such an acrylic resin may have a high film formability and impact resistance at the time of processing, and a transparency may not be lowered, thereby making it easy to change thickness and produce a film having excellent film forming property.
  • a method of dispersing a component consisting of an acrylic rubber in an acrylic resin or using a graft copolymer itself has been widely devised.
  • the acrylic polymer disclosed in the document is manufactured in a multi-layered structure by changing the composition step by step in order to reduce the transparency or whitening phenomenon, but the impact resistance is lowered, the transparency of the secondary processed film after the lamination process and stress whitening There is a problem that occurs.
  • the acrylic laminate film is used in the decor sheet for the purpose of decoration, can be used as a decor film for indoor (in-door) or out-door (out-door), it can be used as a surface material film.
  • Specific applications are used in indoor and outdoor environments such as windows, doors, furniture, sinks, etc. To meet the application requirements, they must be well attached to the outside for a long time, as well as maintain optical transparency. There should be no whitening.
  • the outdoor deco film is a product consisting of a printing layer and an acrylic film on a base film such as PP, PE, PET, PVC, it is used in the construction site profile (door), door products.
  • the haze of the film may be high, which may cause a problem of inhibiting the appearance of the decor film.
  • An object of the present invention is to use an acrylic rubber copolymer composed of a multi-layer structure of the inner layer (core) and the outer layer (shell), the bead-like acrylic thermoplastic resin by using a material having the same composition as the outer layer, thereby improving the compatibility, transparency and It is to provide an acrylic laminate film that can implement stress whitening resistance as well as improve impact resistance and film formation.
  • Another object of the present invention is to control the content of the acrylic rubber copolymer composed of a multi-layer structure to prevent degradation of the optical properties, and the surface roughness in the processing of thin film using the T-die extrusion method It is to provide a method of manufacturing an acrylic laminate film that can minimize the roughness to increase the light transmittance and lower the haze of the film.
  • Acrylic laminate film according to an embodiment of the present invention for achieving the above object is a particulate acrylic rubber copolymer consisting of a multi-layer structure of the inner layer (core) and the shell (shell): 30 to 60% by weight and beaded acrylic thermoplastic resin: 70 Characterized in that it comprises ⁇ 40% by weight.
  • a method of manufacturing an acrylic laminate film including: (a) forming a particulate acrylic rubber copolymer having a multilayer structure of a core and an outer layer; (b) forming a beaded acrylic thermoplastic resin; (c) mixing the particulate acrylic rubber copolymer and the beads acrylic thermoplastic resin in a weight ratio of 30 to 60:70 to 40 to form a resin mixture; And (d) melting and kneading the resin mixture to form the resin mixture.
  • An acrylic laminate film and a method of manufacturing the same according to the present invention has the following effects.
  • the present invention it is excellent in weather resistance, moldability and transparency, but stress whitening resistance and film forming property can be improved to prevent whitening phenomenon during processing, and transparency does not decrease.
  • Second, according to the present invention can minimize the content of the acrylic rubber copolymer to prevent optical properties, to form a core-cell multi-layer structure, and may have a stress whitening resistance by polymerizing the outer layer in at least two steps.
  • the bead-shaped acrylic thermoplastic resin with a material having the same composition as the outer shell (shell) of the particulate acrylic rubber copolymer, to realize the compatibility of stress whitening while improving the compatibility, furthermore transparency and optical properties Can be improved.
  • the present invention is excellent in stress whitening resistance, good transparency and optical property, and can be used as a deco sheet for windows, doors, furniture, sinks and the like.
  • FIG. 1 is a process flowchart showing a method of manufacturing an acrylic laminate film according to an embodiment of the present invention.
  • the acrylic laminate film according to the present invention may include a particulate acrylic rubber copolymer having a multilayer structure of a core and an outer layer: 30 to 60 wt%, and a beaded acrylic thermoplastic resin: 70 to 40 wt%. .
  • the acrylic laminate film has a multi-layer structure of the inner layer (core) and the outer layer (shell), and has an average diameter of 50 ⁇ 150nm.
  • the outer layer (shell) of the particulate acrylic rubber copolymer by using the same material as the monomer composition of the acrylic thermoplastic resin composition to suppress the turbidity or change in transparency during deformation and to control the content of the acrylic rubber copolymer to inhibit optical properties It is characterized in that the impact resistance can be improved without being.
  • the inner layer of the acrylic rubber copolymer includes at least one selected from methacrylic acid ester monomers, aromatic vinyl monomers, crosslinking agents and initiators
  • the outer layer of the acrylic rubber copolymer may be acrylic acid ester monomers or methacrylic acid ester monomers. It may include one or more selected from a chain transfer agent, an initiator and a crosslinking agent.
  • the acrylic rubber copolymer may be 30 to 50% by weight of the inner layer, 50 to 70% by weight of the outer layer.
  • the inner layer of the acrylic rubber copolymer may include 50 to 90% by weight of the methacrylic acid ester monomer and 10 to 50% by weight of the aromatic vinyl monomer based on the total monomers.
  • the aromatic vinyl monomer may include one or more selected from the group consisting of styrene, ⁇ -methylstyrene, ⁇ -ethylstyrene, p-ethylstyrene, vinyltoluene, and derivatives thereof.
  • the crosslinking agent may also be 1,2-ethanedioldi (meth) acrylate, 1,3-propanedioldi (meth) acrylate, 1,4-butanedioldi (meth) acrylate, 1,5-pentanedioldi (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, divinylbenzene, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate 1 selected from triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polybutylene glycoldi (meth) acrylate and allyl (meth) acrylate It may include more than one species.
  • the inner layer of the acrylic rubber copolymer may further include 0.1 to 10 parts by weight of the graft agent based on 100 parts by weight of the total monomers.
  • Such graft agents may comprise one or more selected from allyl (meth) acrylate and diallyl maleate.
  • the outer layer of the acrylic rubber copolymer may include 10 to 50% by weight of the acrylic acid ester monomer and 50 to 90% by weight of the methacrylic acid ester monomer based on the total monomers.
  • the bead-shaped acrylic thermoplastic resin may include one or more selected from acrylic ester monomers, methacrylic acid ester monomers, chain transfer agents and initiators.
  • the acrylic thermoplastic resin may include 10 to 50% by weight of the acrylic acid ester monomer and 50 to 90% by weight of the methacrylic acid ester monomer based on the total monomers.
  • the initiator may include one or more selected from cumene hydroperoxide, diisopropyl benzene hydroperoxide, azobis isobutylonitrile, tertiary butyl hydroperoxide, paramethane hydroperoxide and benzoyl peroxide. have.
  • FIG. 1 is a process flowchart showing a method of manufacturing an acrylic laminate film according to an embodiment of the present invention.
  • the illustrated acrylic laminate film manufacturing method includes an acrylic rubber copolymer forming step (S110), an acrylic thermoplastic resin forming step (S120), a mixing step (S130), and a forming step (S140).
  • a particulate acrylic rubber copolymer having a multilayer structure of a core and an outer layer is formed.
  • the particulate acrylic rubber copolymer is a process of forming an inner layer (core) by mixing the methacrylic acid ester monomer, aromatic vinyl monomer, crosslinking agent and initiator with ion-exchanged water in a reactor in a nitrogen atmosphere and then emulsion polymerization reaction and In the reactor of the nitrogen atmosphere, the acrylic acid ester monomer, the methacrylic acid ester monomer, the chain transfer agent, the initiator and the crosslinking agent are added to emulsion polymerization to form an outer layer (shell) covering the inner layer, and then aggregated, dehydrated and dried. It may include the step of forming a particulate acrylic rubber copolymer composed of a multilayer structure of the inner layer and the outer layer.
  • the acrylic rubber copolymer is preferably 30 to 50% by weight of the inner layer, 50 to 70% by weight of the outer layer.
  • the mixed weight ratio of the inner layer and the outer layer is outside the above range, the impact resistance may be lowered, and thus, it may be difficult to implement the desired impact characteristics.
  • the inner layer of the acrylic rubber copolymer is preferably 50 to 90% by weight of the methacrylic ester monomer and 10 to 50% by weight of the aromatic vinyl monomer based on the total monomers used.
  • the outer layer of the acrylic rubber copolymer is preferably 10 to 50% by weight acrylic acid ester monomer and 50 to 90% by weight methacrylic acid ester monomer relative to the total monomers used.
  • the content of the acrylic ester monomer is less than 10% by weight, transparency and physical properties may be reduced due to compatibility with the thermoplastic resin.
  • the content of the acrylic ester monomer exceeds 50% by weight, there is a problem in that the polymerization conversion falls.
  • the average diameter of the acrylic rubber copolymer is preferably 50 ⁇ 150nm.
  • the average diameter of the acrylic rubber copolymer is less than 50nm, there is a problem that the impact resistance is not rapidly reduced, the impact resistance is sharply lowered.
  • the average diameter of the acrylic rubber copolymer exceeds 150nm, it may be difficult to implement whitening resistance due to the occurrence of surface haze.
  • the methacrylic acid ester monomer, aromatic vinyl monomer after adding the emulsifier and stirred sufficiently A solution in which one or more comonomers, crosslinking agents and initiators selected from methacrylic acid and acrylic acid are mixed is added to the reactor for emulsion polymerization.
  • the content of the acrylic monomers relative to the total monomers is preferably 30 to 50% by weight. When the content of the acrylic monomer is less than the above range, shock expression is difficult.
  • the said emulsifier uses anionic emulsifiers, such as a C4-C30 alkaline alkyl phosphate, sodium dodecyl sulfate, sodium dodecylbenzene sulfate, and an alkyl sulfate salt. At this time, it is preferable to add 0.1-5 weight part with respect to 100 weight part of total emulsifiers.
  • a methacrylic ester monomer, an acrylic ester monomer, a chain transfer agent, an initiator and a crosslinking agent are added to emulsify and polymerize the inner layer to express stress whitening resistance in the reactor.
  • cover is formed.
  • methacrylic acid ester monomer and the acrylic acid ester monomer in the reactor while reducing the content of the acrylic acid ester monomer step by step. That is, in adding 50 to 90% by weight of methacrylic acid ester monomer and 10 to 50% by weight acrylic acid ester monomer relative to the total monomers, it is preferable to divide the process into at least two or more stages, and to add the reactor to the reactor. It is more preferable to divide into steps.
  • the content of the monomer of the acrylic ester is good to reduce the content every time. This is because it is difficult to express stress whitening resistance when mixing with an acrylic thermoplastic resin unless the content of the acrylic ester monomer is reduced from the outside.
  • the acrylic ester monomer may include one or more monomers selected from ethyl acrylate having 1 to 15 carbon atoms, n-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, and the like.
  • the methacrylic acid ester monomer is a methacrylic acid ester having 1 to 15 carbon atoms, specifically methyl methacrylate, ethyl methacrylate, n- butyl methacrylate, I- butyl methacrylate, t- It may include one or more monomers selected from butyl methacrylate, lauryl methacrylate, 2-ethylhexyl methacrylate and the like.
  • the aromatic vinyl monomer may include one or more selected from the group consisting of styrene, ⁇ -methylstyrene, ⁇ -ethylstyrene, p-ethylstyrene, vinyltoluene, and derivatives thereof.
  • the crosslinking agent is 1,2-ethanedioldi (meth) acrylate, 1,3-propanedioldi (meth) acrylate, 1,4-butanedioldi (meth) acrylate, 1,5-pentanedioldi (meth ) Acrylate, 1,6-hexanediol di (meth) acrylate, divinylbenzene, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, tri At least one selected from ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate, allyl (meth) acrylate, and the like It may include.
  • a crosslinking agent in 0.1-10 weight part with respect to 100 weight part of total monomers.
  • the amount of the crosslinking agent added is less than 0.1 part by weight based on 100 parts by weight of the total monomers, sufficient crosslinking effect cannot be exhibited.
  • the addition amount of the crosslinking agent exceeds 10 parts by weight based on 100 parts by weight of the total monomers, there is a problem of only increasing the manufacturing cost without any further effect.
  • the inner layer of the acrylic rubber copolymer may further comprise 0.1 to 10 parts by weight of the graft agent based on 100 parts by weight of the total monomers.
  • the graft agent may include at least one monomer selected from allyl (meth) acrylate, diallyl maleate and the like.
  • the amount of the graft agent added is less than 0.1 part by weight based on 100 parts by weight of the total monomers in the inner layer, there is a problem that the viscosity increases and polymerization stability is lowered.
  • the amount of the graft agent added exceeds 10 parts by weight with respect to 100 parts by weight of the total monomers in the inner layer, there is a problem that the tensile strength is lowered.
  • the initiator is ferrous sulfate, ethylenediaminetetraacetate sodium, cumene hydroperoxide, diisopropyl benzene hydroperoxide, azobis isobutylonitrile, tertiary butyl hydroperoxide, paramethane hydroperoxide, benzoyl per It may include one or more selected from oxides and the like.
  • the initiator is preferably added 10 parts by weight or less based on 100 parts by weight of the total monomers. It is not economical when the added amount of the initiator exceeds 10 parts by weight based on 100 parts by weight of the total monomers.
  • chain transfer agents are added for the purpose of controlling the molecular weight.
  • the chain transfer agent may be selected from alkyl mercaptan having 2 to 18 carbon atoms, benzyl mercaptan, mercaptoic acid and the like.
  • the flocculant used is preferably an aqueous organic acid salt solution, and for example, sodium acetate, calcium acetate, sodium formate, calcium formate and the like can be used.
  • the amount of organic acid salt used is preferably added in 0.01 to 5 parts by weight relative to the total suspension polymerization solution.
  • Such a bead-type acrylic thermoplastic resin is prepared by adding a acrylic ester monomer, a methacrylic ester monomer, a chain transfer agent and an initiator to a solution obtained by mixing a dispersant and a buffer salt in ion-exchanged water, and reacting the suspension polymerized reactant.
  • the method may include washing, dehydrating and drying to form a beaded acrylic thermoplastic.
  • the bead acrylic thermoplastic resin use the same monomer composition as the monomer composition of the outer layer of the particulate acrylic rubber copolymer.
  • the dispersant may be a copolymer of acrylic acid, methacrylic acid esters and salts thereof, polyvinyl alcohol and the like.
  • the preferred amount is 0.1 to 2% by weight relative to the total monomer in the aqueous solution, a small amount of inorganic salt may be used as a dispersing aid.
  • the suspension polymerization reaction is carried out in a nitrogen atmosphere for a sufficient time at a temperature of 60 ⁇ 110 °C at a stirring speed of 500 ⁇ 700rpm, and when the reaction is completed, washing and drying the acrylic thermoplastic resin of the bead state having impact resistance To obtain.
  • the particulate acrylic rubber copolymer and the bead-shaped acrylic thermoplastic resin are mixed in a weight ratio of 30 to 60:70 to 40 to form a resin mixture.
  • the mixed weight part of the acrylic rubber copolymer and the acrylic thermoplastic resin is an important parameter in stress whitening resistance and impact resistance, it is preferable that the acrylic rubber copolymer is 30 to 60% by weight, acrylic acrylic resin is 70 to 40 It is preferable that it is weight%.
  • the impact resistance is weakened and can be easily broken during processing, it may be difficult to achieve the stress whitening resistance.
  • the content of the acrylic rubber copolymer exceeds 60% by weight, the impact resistance is improved, but the effect of improving transparency and optical properties may be insignificant.
  • the resin mixture may further include one or more selected from fillers, reinforcing agents, colorants, lubricants, stabilizers, antioxidants, heat-resistant, ultraviolet stabilizers and the like.
  • a ultraviolet absorber to impart weather resistance. 300 or more are preferable and, as for the molecular weight of a ultraviolet absorber, 400 or more are more preferable.
  • the ultraviolet absorber having a molecular weight of 300 or more is used, mold contamination due to volatilization of the ultraviolet absorber can be prevented when vacuum molding in the injection molding mold.
  • the kind of ultraviolet absorber is not specifically limited, It is preferable to use a benzotriazole type or a triazine type.
  • the resin mixture is melt kneaded and molded, and then dried to form an acrylic laminate film.
  • a melt casting method a T-die method, a calender method, or the like can be used, and a T-die method is more preferable.
  • the thickness of the said acrylic laminate film is not specifically limited, It may have 300 micrometers or less, More preferably, it may have 50-300 micrometers.
  • the film from the T-die is processed using a metal type mirror touch roll in a film of 100 ⁇ m or more, surface roughness can be reduced and haze A low haze film can be realized.
  • the resin mixture in which the acrylic rubber copolymer and the acrylic thermoplastic resin are mixed may be manufactured into a molded product by a method such as injection and extrusion, and specifically, an acrylic laminate film having stress whitening resistance and impact resistance and not impairing transparency may be produced. can do.
  • Figure 2 is a schematic diagram showing a continuous casting apparatus of a twin-roll system, with reference to this will be briefly described for the T-die method.
  • one of two rolls is fixed at a fixed position as a fixed roll 10.
  • the other roll (roll) is a moving roll 20
  • the moving roll 20 is moved in the direction of the fixed roll 10 by the moving roll drive unit 30, the fixed roll 10 Close to or fall off.
  • the fixed roll 10 and the moving roll 20 are discharged downward in the state where the film F to be formed is compressed by rotating in the opposite direction to each other.
  • the film F to be molded may be discharged in the left or right direction.
  • a wedge-shaped support block 40 for pressing the film F to be molded may be mounted in the downward direction between the fixed roll 10 and the moving roll 20.
  • the support block driving unit 45 may be mounted on the support block 40 mounted on the moving roll 20 to adjust the thickness of the film F to be molded.
  • the movement roll drive unit 30 and the support block drive drive unit 45 may be controlled in operation with respect to the control unit 50 mounted on one side of the fixed roll 10 and the movement roll 20.
  • the support block drive unit 45 may be driven by a hydraulic cylinder, a motor, or the like.
  • the film F to be molded is supported by a plurality of support rolls 60 arranged on both sides after passing between the support blocks 2 on both sides.
  • the pressure for pressing the film F on which the support block 40 is formed by the support block drive unit 45 is set in advance when using a hydraulic cylinder, and the current value when using a motor.
  • the position of the support block 40 can be controlled by setting the pressure in advance, or by measuring the pressure by a load cell or the like and controlling the feedback.
  • an acrylic rubber copolymer 250 parts by weight of ion-exchanged water, 0.002 parts by weight of ferrous sulfate, 0.008 parts by weight of EDTA.2Na salt, 0.2 parts by weight of sodium formaldehyde sulfoxylate and 2 parts by weight of sodium dodecyl sulfate. It injected
  • the average diameter of the final polymer was 60 nm.
  • 0.02 parts by weight of calcium acetate was added to the solid particles, and the mixture was agglomerated at 70 ° C., and the obtained powder was dehydrated in distilled water and dried at 80 ° C.
  • an acrylic thermoplastic resin 0.3 parts by weight of dodecyl mercaptan and 0.15 parts by weight of azobisisobutyronitrile based on 100 parts by weight of a monomer composed of 85% by weight of methyl methacrylate and 15% by weight of butyl acrylate.
  • An acrylic laminate film having a thickness of 80 ⁇ m was prepared in the same manner as in Example 1, except that the core of the acrylic rubber copolymer was included at 50 wt%.
  • the composition of the shell of the acrylic rubber copolymer was polymerized into 4.5 parts by weight of butyl acrylate and 25.5 parts by weight of methyl methacrylate, and the acrylic thermoplastic resin was polymerized into 87.5 parts by weight of methyl methacrylate and 12.5 parts by weight of butyl acrylate and mixed.
  • An acrylic laminate film having a thickness of 77 ⁇ m was prepared in the same manner as in Example 1.
  • An acrylic laminate film of 76 ⁇ m was prepared in the same manner as in Example 1, except that an acrylic rubber copolymer having an average diameter of 100 nm was used.
  • An acrylic laminate film of 85 ⁇ m was prepared in the same manner as in Example 1, except that an acrylic rubber copolymer having an average diameter of 150 nm was used and azobisisobutylonitrile was used as an initiator.
  • An acrylic laminate film of 79 ⁇ m was prepared in the same manner as in Example 1, except that 60 wt% of the acrylic rubber copolymer and 40 wt% of the acrylic thermoplastic resin were mixed.
  • a 150- ⁇ m acrylic laminate film was prepared in the same manner as in Example 1 except for performing T-die extrusion but molding through a mirror touch roll.
  • An acrylic laminate film having a thickness of 55 ⁇ m was prepared in the same manner as in Example 1 except for performing T-die extrusion but molding through a carrier type roll.
  • An acrylic laminate film of 80 ⁇ m was prepared in the same manner as in Example 1, except that 95 wt% of methyl methacrylate and 5 wt% of butyl acrylate were polymerized during the polymerization of the acrylic thermoplastic resin.
  • An acrylic laminate film having a thickness of 70 ⁇ m was prepared in the same manner as in Example 1, except that 85% by weight of methyl methacrylate and 15% by weight of methyl acrylate were polymerized during the polymerization of the acrylic thermoplastic resin.
  • the part corresponding to the outer layer (shell) in the production of the acrylic rubber copolymer is the same as in Example 1 except that it was polymerized by adding 6% by weight of butyl acrylate and 54% by weight of methyl methacrylate without polymerizing in two steps.
  • An acrylic laminate film of 73 ⁇ m was prepared by the method.
  • An acrylic laminate film of 75 ⁇ m was prepared in the same manner as in Example 1, except that 20 wt% of the acrylic rubber copolymer and 80 wt% of the acrylic thermoplastic resin were mixed.
  • An acrylic laminate film having a thickness of 73 ⁇ m was prepared in the same manner as in Example 1, except that an acrylic rubber copolymer having an average diameter of 250 nm was used.
  • a 60-micrometer acrylic laminate film was prepared in the same manner as in Example 1 except for performing T-die extrusion, but stretching and molding without using a mirror touch roll.
  • a 100 ⁇ m acrylic laminate film was manufactured in the same manner as in Example 1 except that the T-die extrusion was carried out, but only one mirror surface was compressed by using a mirror touch roll.
  • Table 1 shows the physical property evaluation results for the samples according to Examples 1 to 6
  • Table 2 shows the physical property evaluation results for the targets according to Comparative Examples 1 to 5.
  • Table 3 shows the results of evaluation of physical properties of the samples according to Examples 7 to 8 and Comparative Examples 6 to 7.
  • Elongation (%) measured at room temperature using a Zwick / Roell UTM (Universal testing machine, model Z010). Specimens were prepared with a width of 10 mm and measured at a tensile rate of 50 mm / min.
  • Pencil hardness measured at 1kg load according to ASTM D3363
  • Thickness smoothness Measure the thickness of the entire film with a thickness gauge
  • the samples according to Examples 1 to 6 compared with the samples according to Comparative Examples 1 to 5, have no stress whitening, do not impair transparency after processing the film, turbidity, It can be seen that the impact resistance and workability are excellent.
  • the sample according to Example 7 has a total light transmittance of 95% and haze 0.5, even though the film thickness is 150 ⁇ m, it can be seen that the film thickness smoothness is excellent.
  • the sample according to Example 8 having a film thickness of 55 ⁇ m also had a total light transmittance of 95% and a haze of 0.5, and was excellent in film thickness smoothness.
  • the sample according to Comparative Example 6 having a film thickness of 60 ⁇ m had a total light transmittance of 93% and a turbidity of 4.1, which is considerably higher than that of Examples 5 to 6, and the film thickness smoothness of Examples 5 to 6. You can see that it is not good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Graft Or Block Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

내 응력 백화성, 투명성, 내충격성, 제막성 및 가공성이 우수한 아크릴계 라미네이트 필름 제조 방법에 대하여 개시한다. 본 발명에 따른 아크릴계 라미네이트 필름은 내층(core) 및 외층(shell)의 다층 구조로 이루어진 입자상 아크릴 고무 공중합체 : 30~60 중량% 및 비드상 아크릴계 열가소성 수지 : 70~40 중량%를 포함하는 것을 특징으로 한다.

Description

내후성 및 성형성이 우수한 아크릴계 라미네이트 필름 및 그 제조 방법
본 발명은 아크릴계 라미네이트 필름 및 그 제조 방법에 관한 것으로, 보다 상세하게는 내 응력 백화성, 투명성, 내충격성, 제막성 및 가공성이 우수한 아크릴계 라미네이트 필름 및 그 제조 방법에 관한 것이다.
아크릴 수지는 투명성과 내후성이 우수하며, 성형성이 우수하여 광학용 제품 및 전자제품 하우징 등 산업전반에 다양하게 이용되고 있다.
특히, 아크릴 수지는 시트(sheet)나 필름(film)상으로 성형하거나 플라스틱, 목재, 금속 등에 라미네이트(laminate)되어 적용할 수 있다. 이와 같은 아크릴계 수지를 성형한 필름은 가공시 필름 성형성 및 내충격성이 높고 투명도가 저하되지 않아야 두께 변동이 용이하고 제막성이 뛰어난 필름을 제조할 수 있다. 이를 위해, 아크릴계 수지에 아크릴계 고무로 이루어진 성분을 분산시키거나 또는 그라프트 공중합체 그 자체를 사용하는 방법이 널리 고안되고 있다.
관련 선행 문헌으로는 일본특허공보 평10-306192이 있으며, 상기 문헌에는 두께 조절이 용이한 필름으로 특정 환원 점도의 아크릴계 중합체와 다층 구조 아크릴계 중합체를 함유하는 수지 조성물로 이루어진 필름이 개시되어 있다.
그러나, 상기 문헌에 개시된 아크릴계 중합체는 투명도가 저하되거나 백화현상을 억제할 목적으로 조성을 단계적으로 변화시켜 다층구조로 제조된 것이나, 내충격성이 떨어지고 라미네이트 공정 이후 2차 가공 필름의 투명도가 저하되고 응력 백화가 생기는 문제점이 있다.
이러한 아크릴계 라미네이트 필름은 데코레이션을 위한 목적으로 데코 시트에 활용되며, 실내(in-door) 또는 실외(out-door)용 데코 필름으로 활용될 수 있고, 표면소재 필름으로도 사용 가능하다. 구체적인 활용 예로는 창호, 도어(door), 가구, 싱크대 등의 실내외 환경에 사용되고 있으며, 그 적용요건을 충족시키기 위해서 외부에 장기간 동안 잘 부착되어야 함은 물론, 광학적 투명성을 유지해야 하며, 성형시 응력백화가 없어야 한다.
이때, 실외용 데코 필름은 PP, PE, PET, PVC등의 기재 필름위에 인쇄층 그리고 아크릴필름으로 이루어진 제품으로, 시공 현장에서는 창호용 프로파일(profile), 도어 제품 등에 활용된다.
그러나, 시공현장에서 실외용 데코 필름이 구겨지거나, 시공 후에도 찍힘이나 표면 충격에 의해서 흰색의 응력 백화 현상이 발생할 경우, 시공 후 외관상의 문제가 될 수 있다. 일반적인 아크릴만으로 이루어진 아크릴계 라미레이트 필름은 신율이 나쁘고, 깨짐 현상이 발생하여 표면소재로서의 활용성이 떨어진다. 이를 개선하기 위해 일반적인 충격 보강제(Impact modifier)를 첨가할 경우 굴곡면 성형시 백화현상이 발생하여 외관상 문제가 될 수 있다.
또한, 아크릴계 라미네이트 필름이 박막화됨에 따라 필름의 헤이즈(haze)가 높아질 수 있으며, 이는 데코 필름의 외관을 저해하는 문제를 야기할 수 있다.
본 발명의 목적은 내층(core) 및 외층(shell)의 다층구조로 이루어진 아크릴계 고무 공중합체를 사용하고, 비드상 아크릴계 열가소성 수지는 외층과 동일한 조성을 갖는 물질을 이용함으로써, 상용성을 높이고, 투명성 및 내응력 백화성을 구현할 수 있을 뿐만 아니라, 충격성 및 제막성을 향상시킬 수 있는 아크릴계 라미네이트 필름을 제공하는 것이다.
본 발명의 다른 목적은 다층구조로 이루어진 아크릴 고무 공중합체의 함량을 조절하여 광학물성의 저하를 방지할 수 있음과 더불어, T-다이(die) 압출법을 사용하여 박막형 필름 가공함에 있어서 표면의 조도(roughness)를 최소화하여 광 투과율을 높이고 필름의 헤이즈(haze)를 낮출 수 있는 아크릴계 라미네이트 필름을 제조하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 아크릴계 라미네이트 필름은 내층(core) 및 외층(shell)의 다층 구조로 이루어진 입자상 아크릴 고무 공중합체 : 30~60 중량% 및 비드상 아크릴계 열가소성 수지 : 70~40 중량%를 포함하는 것을 특징으로 한다.
상기 다른 목적을 달성하기 위한 본 발명의 실시예에 따른 아크릴계 라미네이트 필름 제조 방법은 (a) 내층(core) 및 외층(shell)의 다층 구조로 이루어진 입자상 아크릴 고무 공중합체를 형성하는 단계; (b) 비드상 아크릴계 열가소성 수지를 형성하는 단계; (c) 상기 입자상 아크릴 고무 공중합체 및 비드상 아크릴계 열가소성 수지를 30~60 : 70~40 중량비로 혼합하여 수지 혼합물을 형성하는 단계; 및 (d) 상기 수지 혼합물을 용융 혼련시켜 성형하는 단계;를 포함하는 것을 특징으로 한다.
본 발명에 따른 아크릴계 라미네이트 필름 및 그 제조 방법은 다음과 같은 효과가 있다.
첫째, 본 발명에 따르면 내후성, 성형성 및 투명성이 우수하면서도 내 응력 백화성 및 제막성이 향상되어 가공시 백화현상을 방지할 수 있고, 투명도가 저하되지 않는 이점이 있다.
둘째, 본 발명에 따르면 아크릴 고무 공중합체의 함량을 최소화하여 광학물성의 저하를 막고, 코어-셀 다층구조로 형성하고, 외층을 적어도 2단계 이상으로 중합함으로써 내 응력 백화성을 가질 수 있다.
셋째, 본 발명에 따르면 비드상 아크릴계 열가소성 수지를 입자상 아크릴 고무 공중합체의 외층(shell)과 동일한 조성을 갖는 물질로 형성함으로써, 상용성을 향상시키면서 내 응력 백화성을 구현하고, 나아가 투명도 및 광학물성을 향상시킬 수 있다.
넷째, 본 발명에 따르면 내 응력 백화성이 우수하고, 투명도 및 광학물성이 좋아 창호, 도어(door), 가구, 싱크대 등의 데코 시트로 활용할 수 있다.
도 1은 본 발명의 실시예에 따른 아크릴계 라미네이트 필름 제조 방법을 나타낸 공정 순서도이다.
도 2는 쌍-롤 방식의 연속 주조 장치를 나타낸 모식도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 내후성 및 성형성이 우수한 아크릴계 라미네이트 필름 및 그 제조 방법에 대하여 설명하면 다음과 같다.
본 발명에 따른 아크릴계 라미네이트 필름은 내층(core) 및 외층(shell)의 다층 구조로 이루어진 입자상 아크릴 고무 공중합체 : 30~60 중량% 및 비드상 아크릴계 열가소성 수지 : 70~40 중량%를 포함할 수 있다.
이때, 상기 아크릴계 라미네이트 필름은 내층(core) 및 외층(shell)의 다층구조를 가지며, 50~150nm의 평균 직경을 갖는다. 특히, 상기 입자상 아크릴 고무 공중합체의 외층(shell)은 아크릴계 열가소성 수지 조성물의 단량체 조성과 동일한 물질을 이용함으로써 변형시 백탁이나 투명도 변화를 억제하고 아크릴 고무 공중합체의 함량을 조절하여 광학물성을 저해하지 않으면서도 내충격성을 향상시킬 수 있는 것을 특징으로 한다.
즉, 상기 아크릴 고무 공중합체의 내층은 메타크릴산 에스테르 단량체, 방향족 비닐계 단량체, 가교제 및 개시제 중 선택된 1종 이상을 포함하고, 상기 아크릴 고무 공중합체의 외층은 아크릴산 에스테르 단량체, 메타크릴산 에스테르 단량체, 사슬이동제, 개시제 및 가교제 중 선택된 1종 이상을 포함할 수 있다.
이때, 상기 아크릴 고무 공중합체는 내층이 30~50 중량%이고, 외층이 50~70 중량%일 수 있다.
이러한 아크릴 고무 공중합체의 내층은 총 단량체에 대하여 메타크릴산 에스테르 단량체 50~90 중량% 및 방향족 비닐계 단량체 10~50 중량%를 포함할 수 있다.
이때, 상기 방향족 비닐계 단량체는 스티렌, α-메틸스티렌, ο-에틸스티렌, p-에틸스티렌, 비닐톨루엔 및 이들의 유도체로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
또한, 상기 가교제는 1,2-에탄디올디(메타)아크릴레이트, 1,3-프로판디올디(메타)아크릴레이트, 1,4-부탄디올디(메타)아크릴레이트, 1,5-펜탄디올디(메타)아크릴레이트, 1,6-헥산디올디(메타)아크릴레이트, 디비닐벤젠, 에틸렌글리콜디(메타)아크릴레이트, 프로필렌글리콜디(메타)아크릴레이트, 부틸렌글리콜디(메타)아크릴레이트, 트리에틸렌글리콜디(메타)아크릴레이트, 폴리에틸렌글리콜디(메타)아크릴레이트, 폴리프로필렌글리콜디(메타)아크릴레이트, 폴리부틸렌글리콜디(메타)아크릴레이트 및 알릴(메타)아크릴레이트 중 선택된 1종 이상을 포함할 수 있다.
한편, 상기 아크릴 고무 공중합체의 내층은 총 단량체 100중량부에 대하여 그라프트제 0.1~10중량부를 더 포함할 수 있다. 이러한 그라프트제는 알릴(메타)아크릴레이트 및 디알릴말레이트 중 선택된 1종 이상을 포함할 수 있다.
그리고, 아크릴 고무 공중합체의 외층은 총 단량체에 대하여 아크릴산에스테르 단량체 10~50 중량% 및 메타크릴산 에스테르 단량체 50~90 중량%를 포함할 수 있다.
한편, 비드상 아크릴계 열가소성 수지는 아크릴산 에스테르 단량체, 메타크릴산 에스테르 단량체, 사슬이동제 및 개시제 중 선택된 1종 이상을 포함할 수 있다.
이때, 아크릴계 열가소성 수지는 총 단량체에 대하여 상기 아크릴산 에스테르 단량체 10~50 중량% 및 메타크릴산 에스테르 단량체 50~90 중량%를 포함할 수 있다.
여기서, 상기 개시제는 큐멘하이드로 퍼옥사이드, 디이소프로필 벤젠 하이드로퍼옥사이드, 아조비스 이소부틸로니트릴, 3급 부틸 하이드로퍼옥사이드, 파라메탄 하이드로퍼옥사이드 및 벤조일퍼옥사이드 중에서 선택된 1종 이상을 포함할 수 있다.
이에 대해서는 이하 본 발명의 실시예에 따른 아크릴계 라미네이트 필름 제조 방법을 통하여 보다 구체적으로 설명하도록 한다.
도 1은 본 발명의 실시예에 따른 아크릴계 라미네이트 필름 제조 방법을 나타낸 공정 순서도이다.
도 1을 참조하면, 도시된 아크릴계 라미네이트 필름 제조 방법은 아크릴 고무 공중합체 형성 단계(S110), 아크릴계 열가소성 수지 형성 단계(S120), 혼합 단계(S130) 및 성형 단계(S140)를 포함한다.
아크릴 고무 공중합체 형성
아크릴 고무 공중합체 형성 단계(S110)에서는 내층(core) 및 외층(shell)의 다층 구조로 이루어진 입자상 아크릴 고무 공중합체를 형성한다.
이때, 입자상 아크릴 고무 공중합체는 메타크릴산 에스테르 단량체, 방향족 비닐계 단량체, 가교제 및 개시제를 질소분위기의 반응기 내에서 이온교환수와 혼합한 후, 유화 중합 반응시켜 내층(core)을 형성하는 과정과, 상기 질소분위기의 반응기 내에서 아크릴산 에스테르 단량체, 메타크릴산 에스테르 단량체, 사슬이동제, 개시제 및 가교제를 첨가하여 유화 중합 반응시켜 상기 내층을 피복하는 외층(shell)을 형성한 후 응집, 탈수 및 건조하여 상기 내층 및 외층의 다층 구조로 이루어진 입자상 아크릴 고무 공중합체를 형성하는 과정을 포함할 수 있다.
이때, 상기 아크릴 고무 공중합체는 내층이 30~50중량%이고, 외층이 50~70중량%인 것이 바람직하다. 상기 내층과 외층의 혼합 중량비가 상기의 범위를 벗어나면 내충격성이 저하되어 목적하는 충격 특성을 구현하는 데 어려움이 따를 수 있다.
또한, 상기 아크릴 고무 공중합체의 내층은 사용된 총 단량체에 대하여 메타크릴산 에스테르 단량체 50~90중량% 및 방향족 비닐계 단량체 10~50 중량%인 것이 바람직하다.
또한, 상기 아크릴 고무 공중합체의 외층은 사용된 총 단량체에 대하여 아크릴산 에스테르 단량체 10~50중량% 및 메타크릴산 에스테르 단량체 50~90중량%인 것이 바람직하다. 이때, 아크릴산 에스테르 단량체의 함량이 10중량% 미만일 경우에는 열가소성 수지와의 상용성에 따른 투명도 및 물성 저하를 가져올 수 있다. 반대로, 아크릴산 에스테르 단량체의 함량이 50중량%를 초과할 경우에는 중합 전환율이 떨어지는 문제가 있다.
이때, 상기 아크릴 고무 공중합체의 평균 직경은 50~150nm인 것이 바람직하다. 상기 아크릴 고무 공중합체의 평균 직경이 50nm 미만일 경우에는 충격발현이 되지 않아 내충격성이 급격히 저하되는 문제가 있다. 반대로, 아크릴 고무 공중합체의 평균 직경이 150nm를 초과할 경우에서는 표면 헤이즈(Haze)가 발생되는 데 기인하여 내 백화성을 구현하는 데 어려움이 따를 수 있다.
한편, 아크릴 고무 공중합체의 내층을 형성하는 과정 중, 질소분위기하에서 이온교환수의 온도가 50~70℃에 도달하면, 유화제를 투입하여 충분히 교반시킨 후 메타크릴산 에스테르계 단량체, 방향족 비닐계 단량체, 메타크릴산 및 아크릴산 중에서 선택되는 어느 하나 이상의 공단량체, 가교제 및 개시제가 혼합된 용액을 반응기에 투입하여 유화 중합 반응 시킨다. 이때, 내충격성 발현을 위해서는 총 단량체 대비 아크릴 단량체의 함량은 30~50중량%인 것이 바람직하다. 상기 아크릴 단량체의 함량이 상기 범위에 미달하면 충격발현이 어렵다.
상기 유화제는 탄소수 4~30개의 알칼리성 알킬인산염, 나트륨 도데실설페이트, 나트륨 도데실벤젠설페이트, 알킬설페이트염 등의 음이온계 유화제를 이용하는 것이 바람직하다. 이때, 유화제는 총 단량체 100중량부에 대하여 0.1~5중량부를 첨가하는 것이 바람직하다.
또한, 아크릴 고무 공중합체의 외층을 형성하는 과정 중, 반응기 내에서 내 응력 백화성을 발현할 수 있도록 메타크릴산 에스테르 단량체, 아크릴산 에스테르 단량체, 사슬이동제, 개시제 및 가교제를 넣어 유화 중합 반응시켜 내층을 피복하는 외층을 형성하게 된다.
이때, 메타크릴산 에스테르 단량체와 아크릴산 에스테르계 단량체를 반응기에 투입하는데 있어서 아크릴산 에스테르계 단량체의 함량을 단계적으로 줄여가면서 투입하는 것이 바람직하다. 즉, 총 단량체 대비 메타크릴산 에스테르 단량체 50~90중량% 및 아크릴산 에스테르 단량체 10~50중량%를 투입함에 있어서 적어도 2단계 이상의 공정으로 나누어 반응기에 투입하는 것이 바람직하며, 공정 단순화를 고려해 볼 때 2단계로 구분하여 투입하는 것이 보다 바람직하다.
이때, 아크릴산 에스테르의 단량체의 함량은 단계를 거칠 때마다 함량을 줄이는 것이 좋다. 이는 외부에서 아크릴산 에스테르계 단량체의 함량을 줄이지 않으면 아크릴계 열가소성 수지와의 혼합시 내 응력 백화성을 발현하기 어렵기 때문이다.
상기 아크릴산 에스테르 단량체는 탄소수 1 ~ 15개인 에틸아크릴레이트, n-부틸아크릴레이트, t-부틸아크릴레이트, 2-에틸헥실아크릴레이트 등에서 선택된 1종 이상의 단량체를 포함할 수 있다.
한편, 상기 메타크릴산 에스테르 단량체는 탄소수 1~15의 메타크릴산 에스테르인 것으로, 구체적으로는 메틸메타아크릴레이트, 에틸메타크릴레이트, n-부틸메타크릴레이트, I-부틸메타크릴레이트, t-부틸메타크릴레이트, 라우릴메타크릴레이트, 2-에틸헥실메타크릴레이트 등에서 선택된 1종 이상의 단량체를 포함할 수 있다.
상기 방향족 비닐계 단량체는 스티렌, α-메틸스티렌, ο-에틸스티렌, p-에틸스티렌, 비닐톨루엔 및 이들의 유도체로 이루어진 군으로부터 선택된 1 종 이상을 포함할 수 있다.
상기 가교제는 1,2-에탄디올디(메타)아크릴레이트, 1,3-프로판디올디(메타)아크릴레이트, 1,4-부탄디올디(메타)아크릴레이트, 1,5-펜탄디올디(메타)아크릴레이트, 1,6-헥산디올디(메타)아크릴레이트, 디비닐벤젠, 에틸렌글리콜디(메타)아크릴레이트, 프로필렌글리콜디(메타)아크릴레이트, 부틸렌글리콜디(메타)아크릴레이트, 트리에틸렌글리콜디(메타)아크릴레이트, 폴리에틸렌글리콜디(메타)아크릴레이트, 폴리프로필렌글리콜디(메타)아크릴레이트, 폴리부틸렌글리콜디(메타)아크릴레이트, 알릴(메타)아크릴레이트 등에서 선택된 1종 이상을 포함할 수 있다. 이때, 가교제는 총 단량체 100중량부에 대하여 0.1~10중량부로 첨가하는 것이 바람직하다. 가교제의 첨가량이 총 단량체 100 중량부에 대하여 0.1 중량부 미만으로 첨가될 경우에는 충분한 가교 효과를 발휘할 수 없다. 반대로, 가교제의 첨가량이 총 단량체 100 중량부에 대하여 10중량부를 초과할 경우에는 더 이상의 효과 없이 제조 비용만을 상승시키는 문제가 있다.
한편, 상기 아크릴 고무 공중합체의 내층은 그라프트제를 총 단량체 100중량부에 대하여 0.1~10중량부를 더 포함할 수 있다. 이때, 그라프트제는 알릴(메타)아크릴레이트, 디알릴말레이트 등에서 선택되는 1종 이상의 단량체를 포함할 수 있다. 상기 그라프트제의 첨가량이 내층의 총 단량체 100중량부에 대하여 0.1중량부 미만일 경우에는 점도가 증가하여 중합안정성이 저하되는 문제가 있다. 반대로, 그라프트제의 첨가량이 내층의 총 단량체 100중량부에 대하여 10중량부를 초과할 경우에는 인장강도가 저하되는 문제가 있다.
상기 개시제는 황산 제1철, 에티렌디아민테트라아세테이트나트륨, 큐멘하이드로 퍼옥사이드, 디이소프로필 벤젠 하이드로퍼옥사이드, 아조비스 이소부틸로니트릴, 3급 부틸 하이드로퍼옥사이드, 파라메탄 하이드로퍼옥사이드, 벤조일퍼옥사이드 등에서 선택된 1종 이상을 포함할 수 있다. 이때, 상기 개시제는 총 단량체 100중량부에 대하여 10중량부 이하를 첨가하는 것이 바람직하다. 상기 개시제의 첨가량이 총 단량체 100 중량부에 대하여 10중량부를 초과할 경우에는 경제적이지 못하다.
또한, 사슬이동제는 분자량을 조절하기 위한 목적으로 첨가된다. 이때, 사슬이동제는 탄소수 2~18의 알킬메르캅탄, 벤질메르캅탄, 메르캅토산 등에서 선택될 수 있다.
이온교환수는 총 단량체 100중량부에 대하여 100~500중량부를 사용하는 것이 바람직하다.
한편, 아크릴 고무 공중합체의 형성 과정 중, 중합 반응이 완료되면 응집제를 이용한 응집, 세척 및 건조 공정을 통해 수지 조성물과 물을 분리시켜 회수한다. 이때, 사용되는 응집제는 유기 산염 수용액이 바람직하며, 예를 들어 아세트산나트륨, 아세트산칼슘, 포름산나트륨, 포름산칼슘 등을 사용할 수 있다. 유기산염 사용량은 전체 현탁 중합용액 대비 0.01~5중량부로 첨가하는 것이 바람직하다.
아크릴계 열가소성 수지 형성
아크릴계 열가소성 수지 형성 단계(S120)에서는 비드상 아크릴계 열가소성 수지를 형성한다.
이러한 비드상 아크릴계 열가소성 수지는 이온교환수에 분산제 및 완충염을 혼합한 용액에 아크릴산 에스테르 단량체, 메타크릴산 에스테르 단량체, 사슬이동제 및 개시제를 넣어 현탁 중합 반응시키는 과정과, 상기 현탁 중합 반응시킨 반응물을 세척, 탈수 및 건조하여 비드상 아크릴계 열가소성 수지를 형성하는 과정을 포함할 수 있다.
이때, 비드상 아크릴계 열가소성 수지는 입자상 아크릴 고무 공중합체의 외층의 단량체 조성과 동일한 것을 이용하는 것이 바람직한 바, 중복 설명은 생략하도록 한다.
비드상 아크릴계 열가소성 수지와 입자상 아크릴 고무 공중합체의 외층의 단량체 조성을 동일하게 사용하는 것은 아크릴계 열가소성 수지 단량체와 아크릴 고무 공중합체의 외층 단량체 간의 조성이 불일치하면, 후술할 아크릴 고무 공중합체와 아크릴계 열가소성 수지의 혼합시 상용성이 떨어져 광학물성 및 투명성이 저하될 뿐만 아니라, 아크릴 고무 공중합체를 30중량% 이상 혼합하기 어려운 문제가 있기 때문이다.
한편, 분산제는 아크릴산, 메타크릴산 에스테르의 공중합체 및 그 염, 폴리비닐 알코올 등이 이용될 수 있다. 바람직한 사용량은 수용액 내에서 전체 단량체 대비 0.1~2중량%이며, 소량의 무기염이 분산 보조제로 사용될 수 있다.
이때, 현탁 중합 반응은 질소 분위기하에서, 500~700rpm의 교반속도로 60~110℃사이의 온도에서 충분한 시간동안 실시하며, 반응이 완료되면 세척 및 건조시켜 내충격성을 가진 비드 상태의 아크릴계 열가소성 수지를 수득한다.
혼합
혼합 단계(S130)에서는 입자상 아크릴 고무 공중합체 및 비드상 아크릴계 열가소성 수지를 30~60 : 70~40 중량비로 혼합하여 수지 혼합물을 형성한다.
이때, 상기 아크릴 고무 공중합체 및 아크릴계 열가소성 수지의 혼합 중량부는 내 응력 백화성 및 내충격성에 있어 중요한 변수로, 아크릴 고무 공중합체가 30~60중량%인 것이 바람직하고, 아크릴계 열가소성 수지는 70~40중량%인 것이 바람직하다.
이때, 상기 아크릴 고무 공중합체의 함량이 30중량% 미만일 경우에는 내충격성이 약화되어 가공 중에 쉽게 깨질 수 있으며, 내 응력 백화성을 달성하는 데 어려움이 따를 수 있다. 반대로, 아크릴 고무 공중합체의 함량이 60중량%를 초과할 경우에는 내충격성은 향상되나 투명성과 광학물성의 개선 효과가 미미할 수 있다.
한편, 상기 혼합 단계(S130)에서, 수지 혼합물은 충진제, 보강제, 착색제, 활제, 안정제, 산화방지제, 내열제, 자외선 안정제 등에서 선택된 1종 이상을 더 포함할 수 있다. 특히, 내후성을 부여하기 위해 자외선 흡수제를 첨가하는 것이 바람직하다. 자외선 흡수제의 분자량은 300이상이 바람직하고, 400이상이 보다 바람직하다. 분자량이 300 이상인 자외선 흡수제를 사용할 경우, 사출 성형 금형 내에서 진공 성형을 할 때 자외선 흡수제의 휘발에 의한 금형 오염등을 방지할 수 있다. 자외선 흡수제의 종류는 특별히 한정되는 것은 아니나, 벤조트리아졸계 또는 트리아진계를 이용하는 것이 바람직하다.
성형
성형 단계(S140)에서는 수지 혼합물을 용융 혼련시켜 성형한 후, 건조하여 아크릴계 라미네이트 필름을 형성한다.
이때, 성형 방법으로는 용융 유연법이나, T-다이(die)법, 캘린더법 등을 이용할 수 있으며, 이 중 T-다이(die)법을 이용하는 것이 더 바람직하다.
상기 아크릴계 라미네이트 필름의 두께는 특별히 한정되지는 않지만 300㎛ 이하, 보다 바람직하게는 50~300㎛를 가질 수 있다. T-다이법을 이용하여 아크릴계 라미네이트 필름을 성형할 경우, 일반적으로 100㎛ 이상의 필름에서는 T-다이에서 나온 필름을 금속형 경면 터치 롤을 이용하여 가공하게 되면 표면 조도(roughness)를 줄일 수 있고 헤이즈(Haze)가 낮은 필름을 구현할 수 있다.
그러나, 100㎛ 이하의 필름에서는 경면 터치 롤의 활용이 힘들며, 필름을 연신해서 두께 조절을 할 경우, 표면 조도(roughness)에 의해 헤이즈가 높아 질 수 있다. 이를 방지 하기 위해, 캐리어 타입의 경면 롤을 채용함을 통해 이를 해결할 수 있으며, 또는 프레스 롤이나 스틸벨트 타입의 롤을 채용하여도 헤이즈가 최소화된 필름을 만들 수 있다.
상기 아크릴계 고무 공합체 및 아크릴계 열가소성 수지를 혼합한 수지 혼합물은 사출 및 압출 등의 방법에 의해 성형품으로 제조가 가능하며, 구체적으로는 내 응력 백화성과 내충격성을 가지고 투명성을 해치지 않는 아크릴계 라미네이트 필름을 제조할 수 있다.
한편, 도 2는 쌍-롤 방식의 연속 주조 장치를 나타낸 모식도로, 이를 참조하여 T-다이법에 대하여 간략히 설명하도록 한다.
도 2를 참조하면, 도시된 쌍-롤 방식의 연속 주조 장치(1)는 2개의 롤(roll) 중 한편의 롤(roll)은 고정 롤(10)로서 일정한 위치에 고정되어 있다. 한편, 나머지 다른 한편의 롤(roll)은 이동 롤(20)로서, 이동 롤(20)은 이동 롤 구동 유닛(30)에 의하여 고정 롤(10) 방향으로 위치 운동하여, 상기 고정 롤(10)과 근접하거나, 또는 떨어지게 된다.
고정 롤(10)과 이동 롤(20)은 서로 역 방향으로 회전 운동하는 것에 의하여 성형되는 필름(F)을 압착한 상태에서 하측 방향으로 배출시키게 된다. 도면으로 도시하지는 않았지만, 성형되는 필름(F)은 좌측 또는 우측 방향으로 배출될 수도 있다.
고정 롤(10)과 이동 롤(20) 사이의 하측 방향에는 성형되는 필름(F)을 압착하는 쐐기 형상의 서포트 블록(support block, 40)이 장착되어 있을 수 있다. 이때, 이동 롤(20) 측에 장착된 서포트 블록(40)에는 성형되는 필름(F)의 두께 조절을 위해 서포트 블록 구동 유닛(45)이 장착되어 있을 수 있다. 이동 롤 구동 유닛(30) 및 서포트 블록 구동 구동 유닛(45)은 고정 롤(10) 및 이동 롤(20)의 일측에 장착된 제어부(50)에 대하의 그 동작이 제어될 수 있다.
서포트 블록 구동 유닛(45)은 유압 실린더, 모터(motor) 등에 의하여 구동될 수 있다. 또한, 성형되는 필름(F)은 양측의 서포트 블록()들 사이를 통과한 후, 양측에 배열되는 복수의 서포트 롤(support roll, 60)들에 의하여 지지받는다.
이때, 서포트 블록 구동 유닛(45)에 의하여 서포트 블록(40)이 성형되는 필름(F)을 압박하는 압력은 유압 실린더를 이용할 경우에는 압력을 미리 설정해 두고, 모터(motor)를 이용할 경우에는 전류 값을 미리 설정하거나, 또는 로드 셀(road cell) 등에 의하여 압력을 계측하고 피드백(feedback) 제어함으로써, 서포트 블록(40)의 위치를 제어할 수 있다.
전술한 T-다이법을 이용한 쌍-롤 방식의 연속 주조 장치를 이용하여 아크릴계 라미네이트 필름을 형성할 경우, 표면 조도(roughness)를 줄일 수 있고 헤이즈(Haze)가 낮은 필름을 구현할 수 있다.
실시예
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
1. 시료 제조
실시예 1
먼저, 아크릴 고무 공중합체를 제조하기 위해, 이온교환수 250중량부, 황산 제1 철 0.002중량부, EDTA·2Na염 0.008중량부, 포름알데히드술폭실산나트륨 0.2중량부 및 나트륨 도데실설페이트 2중량부를 교반기 부착 반응기에 주입하고 질소치환 후, 65℃까지 승온하였다. 승온 후 부틸 메타아크릴레이트 33중량부, 스타이렌 7중량부, 알릴 메타크릴레이트 1중량부, 큐멘하이드로퍼옥시드 0.05중량부로 이루어진 혼합용액 중 1/10을 30분 동안 적가한 후 나머지 9/10를 90분 동안 적가한 후 1시간 동안 교반하며 유화 중합 반응시켰다. 이때 수득된 글래스상 중합체의 평균 직경은 40nm이었다.
다음으로, 상기 수득된 중합체에 나트륨 도데실설페이트 0.5중량부, 부틸아크릴레이트 6중량부, 메틸메타아크릴레이트 24중량부, 알릴 메타크릴레이트 0.3중량부, 도데실메르캅탄 0.04중량부, 큐멘하이드로퍼옥시드 0.05중량부 혼합용액을 1시간에 걸쳐 적가한 후 부틸아크릴레이트 3중량부, 메틸메타아크릴레이트 27중량부, 도데실메르캅탄 0.09중량부 및 큐멘하이드로퍼옥시드 0.05중량부로 이루어진 혼합용액을 1시간에 걸쳐 적가한 후 1시간 동안 중합 반응시켰다. 최종 중합체의 평균 직경은 60nm이었다. 상기 최종 중합체인 아크릴 고무 공중합체를 응집하기 위하여 고형분 입자 대비 0.02중량부의 아세트산칼슘을 투입하여 70℃에서 응집하고, 얻어진 입자 파우더를 증류수에서 탈수 후 80℃에서 건조하였다.
다음으로, 아크릴계 열가소성 수지를 제조하기 위해, 메틸메타크릴레이트 85중량% 및 부틸아크릴레이트 15중량%로 이루어진 단량체 100 중량부에 대하여 도데실메르캅탄 0.3중량부 및 아조비스이소부티로니트릴 0.15 중량부를 첨가하여 교반시키고, 이를 이온교환수 250중량부에 분산제로 나트륨이 치환된 70%의 메타크릴산과 30%의 메틸메타크릴레이트 공중합체 0.12g, 완충염으로는 NaH2PO4·2H2O 1.2g, Na2HPO4·12H2O 1.8g을 투입하여 용해한 용액에 혼합시킨 후 혼합물을 600rpm으로 교반하면서 1차 중합반응으로 80℃에서 90분 동안 실시하고, 중합 피크가 발생함과 동시에 110℃로 승온하여 30분간 2차 중합반응 시킨 다음 30℃로 냉각하였다. 상기 반응으로 얻어진 비드상 중합체는 증류수로 3회 세척과 탈수를 반복하였으며 비드상 아크릴계 열가소성 수지는 오븐에서 건조하였다.
다음으로, 상기 아크릴 고무 공중합체 입자 파우더 40중량%와 비드상 아크릴계 열가소성 수지 60중량%를 혼합한 후, 혼합물 100 중량부에 대하여 자외선 흡수제로 티누빈 234 1.5중량부를 혼합하여 T-다이(die) 압출기로 260℃에서 압출 성형하여 75㎛의 아크릴계 라미네이트 필름을 제조하였다.
실시예 2
아크릴 고무 공중합체의 내층(core)을 50중량%로 함유하는 것을 제외하고는 실시예 1과 동일한 방법으로 80㎛의 아크릴계 라미네이트 필름을 제조하였다.
실시예 3
아크릴 고무 공중합체의 외층(shell)의 조성을 부틸아크릴레이트 4.5중량부 및 메틸메타아크릴레이트 25.5중량부로 중합하고, 아크릴계 열가소성 수지를 메틸메타크릴레이트 87.5중량부 및 부틸아크릴레이트 12.5중량부로 중합하여 혼합한 것을 제외하고는 실시예 1과 동일한 방법으로 77㎛의 아크릴계 라미네이트 필름을 제조하였다.
실시예 4
평균 직경이 100nm인 아크릴 고무 공중합체를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 76㎛의 아크릴계 라미네이트 필름을 제조하였다.
실시예 5
평균 직경이 150nm인 아크릴 고무 공중합체를 이용하고, 개시제로 아조비스이소부틸로니트릴을 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 85㎛의 아크릴계 라미네이트 필름을 제조하였다.
실시예 6
아크릴 고무 공중합체 60중량% 및 아크릴계 열가소성 수지 40중량%를 혼합한 것을 제외하고는 실시예 1과 동일한 방법으로 79㎛의 아크릴계 라미네이트 필름을 제조하였다.
실시예 7
T-다이 압출을 하되, 경면 터치 롤을 통해 성형한 것을 제외하고는 실시예 1과 동일한 방법으로 150㎛의 아크릴계 라미네이트 필름을 제조하였다.
실시예 8
T-다이 압출을 하되, 캐리어 타입 롤을 통해 성형한 것을 제외하고는 실시예 1과 동일한 방법으로 55㎛의 아크릴계 라미네이트 필름을 제조하였다.
비교예 1
아크릴계 열가소성 수지 중합시 메틸메타크릴레이트 95중량% 및 부틸아크릴레이트 5중량%로 중합한 것을 제외하고는 실시예 1과 동일한 방법으로 80㎛의 아크릴계 라미네이트 필름을 제조하였다.
비교예 2
아크릴계 열가소성 수지 중합시 메틸메타크릴레이트 85중량% 및 메틸아크릴레이트 15중량%로 중합한 것을 제외하고는 실시예 1과 동일한 방법으로 70㎛의 아크릴계 라미네이트 필름을 제조하였다.
비교예 3
아크릴 고무 공중합체 제조시 외층(shell)에 해당하는 부분은 2단계로 나누어 중합하지 않고 부틸아크릴레이트 6 중량% 및 메틸메타아크릴레이트 54중량%로 투입하여 중합한 것을 제외하고는 실시예 1과 동일한 방법으로 73㎛의 아크릴계 라미네이트 필름을 제조하였다.
비교예 4
아크릴 고무 공중합체 20중량% 및 아크릴계 열가소성 수지 80중량%를 혼합한 것을 제외하고는 실시예 1과 동일한 방법으로 75㎛의 아크릴계 라미네이트 필름을 제조하였다.
비교예 5
평균 직경이 250nm인 아크릴 고무 공중합체를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 73㎛의 아크릴계 라미네이트 필름을 제조하였다.
비교예 6
T-다이 압출을 하되, 경면 터치 롤을 사용하는 것 없이 연신하여 성형한 것을 제외하고는 실시예 1과 동일한 방법으로 60㎛의 아크릴계 라미네이트 필름을 제조하였다.
비교예 7
T-다이 압출을 하되, 경면 터치 롤을 이용하여 한쪽 경면만을 압축하여 성형한 것을 제외하고는 실시예 1과 동일한 방법으로 100㎛의 아크릴계 라미네이트 필름을 제조하였다.
2. 물성 평가
표 1은 실시예 1 ~ 6에 따른 시료들에 대한 물성 평가 결과를 나타낸 것이고, 표 2는 비교예 1 ~ 5에 따른 시표들에 대한 물성 평가 결과를 나타낸 것이다. 또한, 표 3은 실시예 7 ~ 8 및 비교예 6 ~ 7에 따른 시료들에 대한 물성 평가 결과를 나타낸 것이다.
1) 그라프트율(G) : 아크릴 고무 공중합체 제조 단계에서 제조된 파우더를 아세톤(Acetone)에 용해시킨 후, 불용분과 가용분으로 분리후, 불용분을 그라프트 분으로 하여 구하였다.
G = (불용분의 중량-고무 모양중합체의 중량)/고무 모양 중합체의 중량 X 100
2) 투명도(%) 및 탁도(Haze) : ASTM D1003 방법에 의거 Hazemeter로 측정
3) 황색지수(YI) : ASTM D1925 방법
4) 신율(%) : Zwick/Roell 사의 UTM(Universal testing machine, model Z010)을 사용하여 실온에서 측정하였다. 시편은 폭 10mm로 제작하여 인장속도 50 mm/min으로 측정하였다.
5) 평균 직경(nm) : ASTM D1705 및 ASTM D2921에 의거한 광산란법으로 측정
6) 연필경도 : ASTM D3363에 따라 1kg 하중에서 측정
7) 응력백화 : 필름을 상온에서 180도 접어 구부리고 백화상태를 관찰
○ : 백화가 인정되지 않음.
△ : 백화가 조금 인정됨.
× : 백화가 현저함.
8) 두께 평활도 : 필름 전폭의 두께를 두께 측정기로 측정
O : 전폭의 두께 편차가 평균 ± 1%
△ : 전폭의 두께 편차가 평균 ± 3%
X : 전폭의 두께 편차가 평균 ± 3% 초과
표 1
Figure PCTKR2012009835-appb-T000001
(A) : 아크릴 고무 공중합체, (B) : 아크릴계 열가소성 수지
표 2
Figure PCTKR2012009835-appb-T000002
표 1 및 표 2를 참조하면, 실시예 1 ~ 6에 따른 시료들은 비교예 1 ~ 5에 따른 시료들과 비교해 볼 때, 응력 백화성이 없고, 필름을 가공한 후 투명성을 해치지 않으며, 탁도, 내충격성 및 가공성이 우수하다는 것을 알 수 있다.
표 3
Figure PCTKR2012009835-appb-T000003
표 3을 참조하면, 실시예 7에 따른 시료는 필름 두께가 150㎛임에도 불구하고 전광 투과율 95%, 탁도 0.5를 가지며, 필름 두께 평활도가 우수한 것을 알 수 있다.
또한, 필름 두께가 55㎛인 실시예 8에 따른 시료 역시, 전광 투과율 95%, 탁도 0.5를 가지며, 필름 두께 평활도가 우수한 것을 알 수 있다.
반면, 필름 두께가 60㎛인 비교예 6에 따른 시료는 전광 투과율이 93%이고, 탁도가 4.1로 실시예 5 ~ 6에 비하여 상당히 높은 수치일 뿐만 아니라, 필름 두께 평활도가 실시예 5 ~ 6에 비하여 좋지 않다는 것을 알 수 있다.
또한, 필름 두께가 100㎛인 비교예 7에 따른 시료는 전광 투과율이 92%에 불과하며, 탁도가 6.0으로 나쁘고, 필름 두께 평활도가 좋지 않다는 것을 알 수 있다.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.

Claims (18)

  1. 내층(core) 및 외층(shell)의 다층 구조로 이루어진 입자상 아크릴 고무 공중합체 : 30~60 중량% 및 비드상 아크릴계 열가소성 수지 : 70~40 중량%를 포함하는 것을 특징으로 하는 아크릴계 라미네이트 필름.
  2. 제1항에 있어서,
    상기 아크릴 고무 공중합체의 내층은 메타크릴산 에스테르 단량체, 방향족 비닐계 단량체, 가교제 및 개시제 중 선택된 1종 이상을 포함하고,
    상기 아크릴 고무 공중합체의 외층은 아크릴산 에스테르 단량체, 메타크릴산 에스테르 단량체, 사슬이동제, 개시제 및 가교제 중 선택된 1종 이상을 포함하는 것을 특징으로 하는 아크릴계 라미네이트 필름.
  3. 제2항에 있어서,
    상기 아크릴 고무 공중합체는
    상기 내층이 30~50 중량%이고, 상기 외층이 50~70 중량%인 것을 특징으로 하는 아크릴계 라미네이트 필름.
  4. 제2항에 있어서,
    상기 아크릴 고무 공중합체의 내층은
    총 단량체에 대하여 메타크릴산 에스테르 단량체 50~90 중량% 및 방향족 비닐계 단량체 10~50 중량%를 포함하는 것을 특징으로 하는 아크릴계 라미네이트 필름.
  5. 제4항에 있어서,
    상기 방향족 비닐계 단량체는
    스티렌, α-메틸스티렌, ο-에틸스티렌, p-에틸스티렌, 비닐톨루엔 및 이들의 유도체로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 아크릴계 라미네이트 필름.
  6. 제2항에 있어서,
    상기 가교제는
    1,2-에탄디올디(메타)아크릴레이트, 1,3-프로판디올디(메타)아크릴레이트, 1,4-부탄디올디(메타)아크릴레이트, 1,5-펜탄디올디(메타)아크릴레이트, 1,6-헥산디올디(메타)아크릴레이트, 디비닐벤젠, 에틸렌글리콜디(메타)아크릴레이트, 프로필렌글리콜디(메타)아크릴레이트, 부틸렌글리콜디(메타)아크릴레이트, 트리에틸렌글리콜디(메타)아크릴레이트, 폴리에틸렌글리콜디(메타)아크릴레이트, 폴리프로필렌글리콜디(메타)아크릴레이트, 폴리부틸렌글리콜디(메타)아크릴레이트 및 알릴(메타)아크릴레이트 중 선택된 1종 이상을 포함하는 것을 특징으로 하는 아크릴계 라미네이트 필름.
  7. 제2항에 있어서,
    상기 아크릴 고무 공중합체의 내층은
    총 단량체 100중량부에 대하여 그라프트제 0.1~10중량부를 더 포함하는 것을 특징으로 하는 아크릴계 라미네이트 필름.
  8. 제7항에 있어서,
    상기 그라프트제는
    알릴(메타)아크릴레이트 및 디알릴말레이트 중 선택된 1종 이상을 포함하는 것을 특징으로 하는 아크릴계 라미네이트 필름.
  9. 제2항에 있어서,
    상기 아크릴 고무 공중합체의 외층은
    총 단량체에 대하여 아크릴산에스테르 단량체 10~50 중량% 및 메타크릴산 에스테르 단량체 50~90 중량%를 포함하는 것을 특징으로 하는 아크릴계 라미네이트 필름.
  10. 제1항에 있어서,
    상기 아크릴 고무 공중합체의 평균 직경은
    50~150nm인 것을 특징으로 하는 아크릴계 라미네이트 필름.
  11. 제1항에 있어서,
    상기 비드상 아크릴계 열가소성 수지는
    아크릴산 에스테르 단량체, 메타크릴산 에스테르 단량체, 사슬이동제 및 개시제 중 선택된 1종 이상을 포함하는 것을 특징으로 하는 아크릴계 라미네이트 필름.
  12. 제11항에 있어서,
    상기 아크릴계 열가소성 수지는
    총 단량체에 대하여 상기 아크릴산 에스테르 단량체 10~50 중량% 및 메타크릴산 에스테르 단량체 50~90 중량%를 포함하는 것을 특징으로 하는 아크릴계 라미네이트 필름.
  13. 제11항에 있어서,
    상기 개시제는
    큐멘하이드로 퍼옥사이드, 디이소프로필 벤젠 하이드로퍼옥사이드, 아조비스 이소부틸로니트릴, 3급 부틸 하이드로퍼옥사이드, 파라메탄 하이드로퍼옥사이드 및 벤조일퍼옥사이드 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 아크릴계 라미네이트 필름.
  14. (a) 내층(core) 및 외층(shell)의 다층 구조로 이루어진 입자상 아크릴 고무 공중합체를 형성하는 단계;
    (b) 비드상 아크릴계 열가소성 수지를 형성하는 단계;
    (c) 상기 입자상 아크릴 고무 공중합체 및 비드상 아크릴계 열가소성 수지를 30~60 : 70~40 중량비로 혼합하여 수지 혼합물을 형성하는 단계; 및
    (d) 상기 수지 혼합물을 용융 혼련시켜 성형하는 단계;를 포함하는 것을 특징으로 하는 아크릴계 라미네이트 필름 제조 방법.
  15. 제14항에 있어서,
    상기 (a) 단계는
    (a-1) 메타크릴산 에스테르 단량체, 방향족 비닐계 단량체, 가교제 및 개시제를 질소분위기의 반응기 내에서 이온교환수와 혼합한 후, 유화 중합 반응시켜 내층(core)을 형성하는 단계와,
    (a-2) 상기 질소분위기의 반응기 내에서 아크릴산 에스테르 단량체, 메타크릴산 에스테르 단량체, 사슬이동제, 개시제 및 가교제를 첨가하여 유화 중합 반응시켜 상기 내층을 피복하는 외층(shell)을 형성한 후 응집, 탈수 및 건조하여 상기 내층 및 외층의 다층 구조로 이루어진 입자상 아크릴 고무 공중합체를 형성하는 단계를 포함하는 것을 특징으로 하는 아크릴계 라미네이트 필름 제조 방법.
  16. 제15항에 있어서,
    상기 (a-1) 또는 (a-2) 단계에서,
    상기 유화 반응 전에 탄소수 4~30개의 알칼리성 알킬인산염 또는 알킬설페이트염을 포함하는 유화제를 더 첨가하는 것을 특징으로 하는 아크릴계 라미네이트 필름 제조방법.
  17. 제15항에 있어서,
    상기 (a-2) 단계에서,
    상기 아크릴산 에스테르 단량체 및 메타크릴산 에스테르 단량체는 2회 이상으로 구분하여 투입하는 것을 특징으로 하는 아크릴계 라미네이트 필름 제조 방법.
  18. 제14항에 있어서,
    상기 (b) 단계는
    (b-1) 이온교환수에 분산제 및 완충염을 혼합한 용액에 아크릴산 에스테르 단량체, 메타크릴산 에스테르 단량체, 사슬이동제 및 개시제를 넣어 현탁 중합 반응시키는 단계와,
    (b-2) 상기 현탁 중합 반응시킨 반응물을 세척, 탈수 및 건조하여 비드상 아크릴계 열가소성 수지를 형성하는 단계를 포함하는 것을 특징으로 하는 아크릴계 라미네이트 필름 제조 방법.
PCT/KR2012/009835 2011-11-23 2012-11-20 내후성 및 성형성이 우수한 아크릴계 라미네이트 필름 및 그 제조 방법 WO2013077614A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12851027.8A EP2784107B1 (en) 2011-11-23 2012-11-20 Acryl-based laminate film having good weatherability and formability and method for manufacturing same
JP2014543416A JP5901785B2 (ja) 2011-11-23 2012-11-20 耐候性および成形性に優れたアクリル系ラミネートフィルム並びにその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0122751 2011-11-23
KR1020110122751A KR101473521B1 (ko) 2011-11-23 2011-11-23 내후성 및 성형성이 우수한 아크릴계 라미네이트 필름 및 그 제조 방법

Publications (1)

Publication Number Publication Date
WO2013077614A1 true WO2013077614A1 (ko) 2013-05-30

Family

ID=48470004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009835 WO2013077614A1 (ko) 2011-11-23 2012-11-20 내후성 및 성형성이 우수한 아크릴계 라미네이트 필름 및 그 제조 방법

Country Status (5)

Country Link
EP (1) EP2784107B1 (ko)
JP (1) JP5901785B2 (ko)
KR (1) KR101473521B1 (ko)
PL (1) PL2784107T3 (ko)
WO (1) WO2013077614A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6704254B2 (ja) * 2015-03-09 2020-06-03 旭化成株式会社 メタクリル系樹脂組成物、その製造方法及び成形体
JP7202181B2 (ja) * 2016-05-27 2023-01-11 株式会社クラレ 熱可塑性樹脂組成物、成形体、フィルム及び積層体
KR102246283B1 (ko) 2018-12-20 2021-04-29 엘지엠엠에이 주식회사 아크릴계 라미네이트 필름, 이의 제조방법 및 이로부터 제조된 데코 시트
KR20230060195A (ko) 2021-10-27 2023-05-04 주식회사 엘엑스엠엠에이 2축 스크류형 압착탈수 건조기를 이용한 아크릴계 라미네이트 필름용 수지의 제조 방법
KR20230060199A (ko) 2021-10-27 2023-05-04 주식회사 엘엑스엠엠에이 2축 스크류형 압출 건조기를 이용한 폴리메틸메타크릴레이트용 충격보강제의 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07149994A (ja) * 1993-11-26 1995-06-13 Mitsubishi Rayon Co Ltd アクリル系熱可塑性樹脂組成物
JPH10306192A (ja) 1997-03-06 1998-11-17 Sumitomo Chem Co Ltd フィルムおよびそれを用いた成形体
KR20060016853A (ko) * 2004-08-19 2006-02-23 주식회사 엘지화학 열가소성 투명수지 조성물 및 그 제조방법
JP2006299037A (ja) * 2005-04-19 2006-11-02 Mitsubishi Rayon Co Ltd アクリル樹脂フィルムの製造方法、および、このアクリル樹脂フィルムを含む積層体
KR20070006928A (ko) * 2004-04-28 2007-01-11 도레이 가부시끼가이샤 아크릴 수지 필름 및 제조 방법
KR20090034200A (ko) * 2007-10-02 2009-04-07 주식회사 엘지화학 광학필름 및 이의 제조방법
KR20120056974A (ko) * 2010-11-26 2012-06-05 엘지엠엠에이 주식회사 아크릴계 라미네이트 필름 및 그 제조방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124754A (ja) * 1989-10-09 1991-05-28 Mitsubishi Rayon Co Ltd 耐衝撃性フイルム
JP3669162B2 (ja) * 1997-07-31 2005-07-06 住友化学株式会社 アクリル系樹脂フィルム
JP2001064469A (ja) * 1999-08-31 2001-03-13 Kuraray Co Ltd アクリル系樹脂組成物フィルムおよびその積層体
JP3479645B2 (ja) * 2000-07-04 2003-12-15 三菱レイヨン株式会社 塗装代替用アクリル樹脂フィルムおよびこれを用いたアクリル積層成形品
JP4031951B2 (ja) * 2001-05-17 2008-01-09 三菱レイヨン株式会社 塗装代替用積層フィルムまたはシート、その製造方法、および、この塗装代替用積層フィルムまたはシートを含む積層体
EP1582538B1 (en) * 2003-01-10 2010-05-05 Mitsubishi Rayon Co., Ltd. Multilayer structure polymer and resin composition together with acrylic resin film material, acrylic resin laminate film, photocurable acrylic resin film or sheet, laminate film or sheet and laminate molding obtained by laminating thereof
JP4406304B2 (ja) * 2003-02-19 2010-01-27 三菱レイヨン株式会社 多層構造重合体及びこれを含む樹脂組成物、並びに、アクリル樹脂フィルム状物、アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、積層フィルム又はシート、及び、これらを積層した積層成形品
US7888456B2 (en) * 2006-09-20 2011-02-15 Toray Industries, Inc. Process for production of thermoplastic copolymer
JP5544686B2 (ja) * 2008-03-28 2014-07-09 住友化学株式会社 射出成形同時貼合用多層フィルム
JP5544685B2 (ja) * 2008-03-28 2014-07-09 住友化学株式会社 射出成形同時貼合用多層フィルム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07149994A (ja) * 1993-11-26 1995-06-13 Mitsubishi Rayon Co Ltd アクリル系熱可塑性樹脂組成物
JPH10306192A (ja) 1997-03-06 1998-11-17 Sumitomo Chem Co Ltd フィルムおよびそれを用いた成形体
KR20070006928A (ko) * 2004-04-28 2007-01-11 도레이 가부시끼가이샤 아크릴 수지 필름 및 제조 방법
KR20060016853A (ko) * 2004-08-19 2006-02-23 주식회사 엘지화학 열가소성 투명수지 조성물 및 그 제조방법
JP2006299037A (ja) * 2005-04-19 2006-11-02 Mitsubishi Rayon Co Ltd アクリル樹脂フィルムの製造方法、および、このアクリル樹脂フィルムを含む積層体
KR20090034200A (ko) * 2007-10-02 2009-04-07 주식회사 엘지화학 광학필름 및 이의 제조방법
KR20120056974A (ko) * 2010-11-26 2012-06-05 엘지엠엠에이 주식회사 아크릴계 라미네이트 필름 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2784107A4

Also Published As

Publication number Publication date
JP2014533764A (ja) 2014-12-15
EP2784107A4 (en) 2015-04-22
EP2784107A1 (en) 2014-10-01
PL2784107T3 (pl) 2017-05-31
KR101473521B1 (ko) 2014-12-17
EP2784107B1 (en) 2017-01-04
JP5901785B2 (ja) 2016-04-13
KR20130057035A (ko) 2013-05-31

Similar Documents

Publication Publication Date Title
WO2018084486A2 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 asa계 수지 조성물의 제조방법 및 asa계 성형품의 제조방법
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2013077614A1 (ko) 내후성 및 성형성이 우수한 아크릴계 라미네이트 필름 및 그 제조 방법
WO2014035055A1 (ko) 아크릴로니트릴-아크릴레이트-스티렌 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2018174395A1 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 성형품의 제조방법
WO2017039157A1 (ko) 열가소성 수지 조성물 및 이의 제조방법
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2016093649A1 (ko) 대구경의 디엔계 고무 라텍스 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
WO2019066375A2 (ko) 열가소성 수지 조성물 및 이로부터 제조된 열가소성 수지 성형품
WO2019225827A1 (ko) 공중합체의 제조방법
WO2017082649A1 (ko) 저광 특성, 내후성 및 기계적 물성이 우수한 열가소성 수지 조성물 및 이로부터 제조되는 압출 물품
WO2013100439A1 (ko) 내충격성, 내스크래치성 및 투명성이 우수한 투명 abs 수지 조성물
WO2016182338A1 (ko) 아크릴계 가공조제 및 이를 포함하는 염화비닐계 수지 조성물
WO2013022205A2 (ko) 알킬 (메트)아크릴레이트계 열가소성 수지 조성물, 및 내스크래치성과 황색도가 조절된 열가소성 수지
WO2016204485A1 (ko) 열가소성 수지, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2020101182A1 (ko) 코어-쉘 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2020130700A2 (ko) 아크릴계 라미네이트 필름, 이의 제조방법 및 이로부터 제조된 데코 시트
WO2016043424A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 열가소성 수지 성형품
WO2021015485A1 (ko) 아크릴계 공중합체 응집제 및 이를 이용한 그라프트 공중합체의 제조방법
WO2021060833A1 (ko) 공액 디엔계 중합체의 제조방법
WO2017160011A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2023008808A1 (ko) 열가소성 수지 조성물
WO2021040269A1 (ko) (메트)아크릴레이트 그라프트 공중합체를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2022092755A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2023008807A1 (ko) 열가소성 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851027

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012851027

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012851027

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014543416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE