WO2018084408A1 - Abs계 수지 조성물의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법 - Google Patents

Abs계 수지 조성물의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법 Download PDF

Info

Publication number
WO2018084408A1
WO2018084408A1 PCT/KR2017/008312 KR2017008312W WO2018084408A1 WO 2018084408 A1 WO2018084408 A1 WO 2018084408A1 KR 2017008312 W KR2017008312 W KR 2017008312W WO 2018084408 A1 WO2018084408 A1 WO 2018084408A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
resin composition
abs
polymerization
Prior art date
Application number
PCT/KR2017/008312
Other languages
English (en)
French (fr)
Inventor
한수정
김영민
이진형
김유빈
정영환
정선행
석재민
허재원
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to US16/068,873 priority Critical patent/US10717802B2/en
Priority to EP17866938.8A priority patent/EP3381957B1/en
Priority to JP2018533740A priority patent/JP6629974B2/ja
Priority to CN201780005141.4A priority patent/CN108473636B/zh
Publication of WO2018084408A1 publication Critical patent/WO2018084408A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/05Bimodal or multimodal molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/21Rubbery or elastomeric properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently

Definitions

  • the present invention relates to a method for preparing an ABS resin composition and a method for preparing an ABS injection molded product including the same, and more particularly, to a multimer acid of an unsaturated fatty acid as an emulsifier in diene rubber latex polymerization and ABS graft polymerization. Or it relates to a method for producing an ABS resin composition that can improve the surface glossiness and sharpness of the ABS-based injection product, including a metal salt thereof, and a method for producing an ABS injection-molded article comprising the same.
  • ABS copolymer resins have good mechanical properties such as impact resistance, as well as physical properties such as moldability and glossiness, so that they can be used for electrical parts, electronic parts, office equipment or automobiles. It is widely used in parts and the like.
  • ABS copolymer resin In general, in the case of producing an ABS copolymer resin by grafting aromatic vinyl compound and vinyl cyan compound monomer on a conjugated diene rubber latex by emulsion polymerization method, it shows a good physical balance and excellent gloss and the like compared to that produced by bulk polymerization method. ABS copolymer resin is mainly produced by the emulsion polymerization method.
  • ABS copolymer resin prepared as described above is mixed with the styrene-acrylonitrile copolymer (SAN) to produce a final ABS-based thermoplastic resin composition
  • SAN styrene-acrylonitrile copolymer
  • the ABS-based thermoplastic resin composition prepared by this manufacturing method is There is an advantage that the impact, processability, chemical resistance and the like is excellent, but the use of emulsifiers or flocculants in the production of diene rubber latex and ABS graft copolymers have physical properties such as gloss and sharpness.
  • Patent Document 1 Korean Registered Patent No. 0527095
  • the present invention is not easily vaporized during the high temperature thermoforming process such as extrusion or injection to effectively reduce the amount of gas (Total Volatile Organic Compounds, TVOC) generated on the resin surface surface glossiness And it provides a method for producing an ABS resin composition incorporating a novel emulsifier that can enable the production of ABS injection molded articles excellent in sharpness.
  • an object of the present invention is to provide a method for producing an ABS injection molded article excellent in gloss and clarity using the ABS resin composition according to the above production method.
  • the present invention comprises the steps of: a) 100 parts by weight of the conjugated diene monomer, 0.5 to 5 parts by weight of an emulsifier, 0.01 to 6 parts by weight of a water-soluble polymerization initiator to perform a polymerization reaction; b) after step a), adding 0.01 to 5 parts by weight of an emulsifier at a polymerization conversion time of 60 to 85%; c) terminating the polymerization at a polymerization conversion rate of 90 to 99% to obtain a large diameter diene rubber latex; d) 0.01 to 3 parts by weight of an emulsifier in 100 parts by weight of the monomer mixture including 40 to 70% by weight of the large-diameter diene rubber latex (based on solids), 15 to 35% by weight of an aromatic vinyl monomer, and 5 to 25% by weight of a vinyl cyan monomer.
  • the present invention provides a manufacturing method of the ABS injection-molded article comprising the step of injecting the ABS-based resin composition prepared according to the manufacturing method.
  • an ABS resin composition is prepared by using an emulsifier including a multimeric acid of an unsaturated fatty acid or a metal salt thereof.
  • an emulsifier including a multimeric acid of an unsaturated fatty acid or a metal salt thereof.
  • the amount of gas generated on the surface of the resin may be reduced to ultimately improve the surface roughness of the ABS injection molded article, and the surface gloss and sharpness may be improved.
  • the inventors confirmed that the gas generated on the surface of the resin affects the roughness of the surface of the resin in a high temperature extrusion or injection process, and analyzed the materials generating the gas, and thus remained after diene rubber latex polymerization and ABS graft polymerization. It was confirmed that it is due to an emulsifier, an unreacted monomer, an oligomer, and the like.
  • the present inventors can secure the stability of the polymerization reaction by including a multimeric acid of unsaturated fatty acid or a metal salt thereof as an emulsifier during diene-based rubber latex polymerization and ABS graft polymerization in a molecular weight having high molecular weight which is difficult to increase in high temperature extrusion or injection process.
  • a multimeric acid of unsaturated fatty acid or a metal salt thereof as an emulsifier during diene-based rubber latex polymerization and ABS graft polymerization
  • TVOC gas
  • the manufacturing method of the ABS resin composition of the present invention may be carried out including the following steps:
  • step b) after step a), adding 0.01 to 5 parts by weight of an emulsifier at a polymerization conversion time of 60 to 85%;
  • emulsifier 0.01 to 3 parts by weight of an emulsifier in 100 parts by weight of the monomer mixture including 40 to 70% by weight of the large-diameter diene rubber latex (based on solids), 15 to 35% by weight of an aromatic vinyl monomer, and 5 to 25% by weight of a vinyl cyan monomer. Graft polymerization, 0.01 to 3 parts by weight of initiator and 0.001 to 1 parts by weight of redox catalyst;
  • ABS resin composition by mixing the ABS graft copolymer and the aromatic vinyl monomer-vinyl cyan monomer copolymer.
  • the polymerization conversion rate is 1.5 g of the prepared latex in a 150 ° C. hot air dryer, followed by drying for 15 minutes to obtain a total solid content (TSG) by measuring the weight, and may be calculated based on Equation 1 below.
  • the present invention is a ABS resin prepared by using the emulsifier, in the a) and d) step, in order to improve the surface properties of the ABS-based injection molded article, a multimer acid of an unsaturated fatty acid or a metal salt thereof as an emulsifier,
  • the composition may be characterized as having a surface glossiness (45 °) of 90 or more.
  • the multimeric acid of the unsaturated fatty acid or a metal salt thereof as an emulsifier for diene rubber latex polymerization and ABS graft polymerization, it is possible to ensure the stability of the polymerization reaction, as well as high molecular weight compared to conventional emulsifiers
  • the gas generation (TVOC) generated on the surface of the resin can be reduced by having a property that is not easily vaporized during the thermoforming process, thereby achieving a surface glossiness (45 °) of 90 or more.
  • ABS resin composition manufactured by the manufacturing method according to the present invention for the same reason as above may be characterized in that the reflection haze (reflection haze) has a value of 2 or less.
  • the reflection haze value can be measured according to the standard measurement ASTM E430, and the glossiness (45 °) according to the standard measurement ASTM D528.
  • the multimeric acid of an unsaturated fatty acid is a polyhydric carboxylic acid obtained by polymerizing two or more unsaturated fatty acids, and the unsaturated fatty acid is a linear, branched, cyclic, or multicyclic unsaturated fatty acid or its It is assumed that a derivative is included.
  • the derivative means a compound in which one or two or more of hydrogens of the original compound are substituted with an alkyl group, a halogen group or a hydroxy group.
  • the composite ring means that at least two or more saturated or unsaturated cycloalkyl groups having 5 to 15 carbon atoms are included.
  • the emulsifier of step a) and the emulsifier of step d) may comprise a linear or branched or cyclic unsaturated fatty acid having 8 to 22 carbon atoms or a metal salt thereof, which is a diene-based rubber latex polymerization and ABS graph It is possible to improve the surface stability such as glossiness or clarity of ABS injection molded products while improving the polymerization stability during the polymerization.
  • the emulsifiers of steps a) and d) may include dimer acids of unsaturated fatty acids or metal salts thereof, which improves the polymerization stability during diene rubber latex polymerization and ABS graft polymerization, and at the same time ABS injection. Surface characteristics, such as glossiness and sharpness, of a molded article can be improved.
  • the emulsifier of step a) and step d) may include at least one dimer acid or metal salt thereof selected from the group consisting of compounds represented by the following formulas (1) to (6), which is a diene rubber latex
  • the emulsifier of step a) and step d) may include at least one dimer acid or metal salt thereof selected from the group consisting of compounds represented by the following formulas (1) to (6), which is a diene rubber latex
  • surface properties such as glossiness and sharpness of ABS injection molded articles can be improved.
  • the emulsifiers of steps a) and d) are tall oil fatty acids which are a mixture of 3-octenic acid, 10-undecic acid, oleic acid, linoleic acid, ellidic acid, palmitoleic acid, lenolenic acid, or unsaturated carboxylic acid, It may include a dimeric acid or a metal salt thereof derived from a compound selected from the group comprising soybean oil fatty acid, palm oil fatty acid, tallow fatty acid, pork fat fatty acid, blotting fatty acid, rice bran oil fatty acid, flaxseed oil fatty acid, but this is only one example. It is stated that the scope of the invention is not limited thereto.
  • the emulsifier of step a) and d) may include an alkali metal salt or an alkaline earth metal salt of a multimeric acid of an unsaturated fatty acid, which has an effect of improving the surface properties of an ABS injection molded article.
  • the alkali metal salt may be sodium salt or potassium salt
  • the alkaline earth metal salt may be specifically magnesium salt or calcium salt, but is not limited thereto.
  • the emulsifiers of steps a) and d) add alkali hydroxides of alkali metals such as NaOH and KOH to the unsaturated fatty acid multimer acid to remove alkali metal salts of multimer acids in which hydrogen of the carboxylic acid is substituted with alkali metals. It may include.
  • the emulsifier of step a) and d) may include a compound prepared by adding a metal salt such as calcium salt or magnesium salt to an unsaturated fatty acid multimer acid or an alkali metal salt of the multimer acid. Specifies that it is not limited.
  • the emulsifier of step a) and the emulsifier of step d) may be the same or different from each other, each independently using one compound selected from the above-mentioned multimer acid of an unsaturated fatty acid or a metal salt thereof, or It may also be possible to mix and use more than one species.
  • the conjugated diene monomer may include one or more compounds selected from the group consisting of 1,3-butadiene, isoprene, 2-chloro-1,3-butadiene and chloroprene, wherein derivatives thereof may be possible. do.
  • the derivative means a compound in which one or two or more of hydrogens of the original compound are substituted with an alkyl group, a halogen group or a hydroxy group.
  • the emulsifier of step a) comprises a multimer acid or a salt thereof of the aforementioned unsaturated fatty acid, which is 0.5 to 5 parts by weight, 0.8 to 4 parts by weight, 1.0 to 3 parts by weight or 100 parts by weight of the conjugated diene monomer It may be preferable to use 1.0 to 2 parts by weight, while the stability of the polymerization reaction is ensured within the above range, the content of the residual emulsifier after the polymerization is low, and the diene rubber latex having a low coagulant content may be prepared. In addition, the surface properties and productivity of the final ABS-based injection molded product may be improved by reducing the residual emulsifier content and the coagulant content.
  • the emulsifier of step a) may be used by mixing one or more auxiliary emulsifiers selected from the group consisting of alkyl aryl sulfonates, alkali methyl alkyl sulfates, sulfonated alkyl esters and metal salts of unsaturated fatty acids. have.
  • the amount of the co-emulsifier is 20 to 80% by weight, 30 to 70% by weight, 40 to 60% by weight or 100% by weight of the total emulsifier of step a) or 25 to 50% by weight may be preferable, and within the above-mentioned range, the coagulant content of the latex prepared through the polymerization reaction is low, and the gas generation amount (TVOC) generated on the resin surface during the high temperature thermoforming process is reduced.
  • the surface characteristics such as surface glossiness and sharpness of the ABS injection molded article are improved.
  • the water-soluble polymerization initiator may be used, for example, one or more selected from the group consisting of potassium persulfate, sodium persulfate and ammonium persulfate.
  • the amount of the water-soluble polymerization initiator in step a) is preferably 0.01 to 6 parts by weight, 0.05 to 4 parts by weight, 0.1 to 2 parts by weight or 0.1 to 1 part by weight based on 100 parts by weight of the conjugated diene monomer. When used within the range, large diameter rubber latexes can be produced that prevent overreaction of monomers and have even sizes.
  • Step a) is a specific example, a-1) 45 to 90 parts by weight, 0.5 to 5 parts by weight of an emulsifier, 0.01 to 3 parts by weight of a water-soluble polymerization initiator in the polymerization reaction of 100% by weight of the conjugated diene monomer used ; And a-2) adding 10 to 55 parts by weight of the conjugated diene monomer and 0.01 to 3 parts by weight of a water-soluble polymerization initiator at 25 to 55% of the polymerization conversion rate after the step a-1). .
  • the over-reaction of the monomer may be prevented to prepare a large diameter rubber latex having a uniform size.
  • step a-1 it is preferable to add 45 to 90 parts by weight, 55 to 90 parts by weight, 65 to 90 parts by weight or 75 to 90 parts by weight of the total 100 parts by weight of the conjugated diene monomer used, which reaction It is possible to form a suitable number of base particles at an initial stage to large diameter the base particles in a short time, and to enable the production of latex having a desired average particle diameter.
  • the water-soluble polymerization initiator it is preferable to use as 0.01 to 3 parts by weight based on 100 parts by weight of the total conjugated diene-based monomer. It can contribute to the production of latex of the particle size.
  • Step a-2 the remaining amount of the conjugated diene monomer, or 10 to 55 parts by weight, 10 to 45 parts by weight, 10 to 35 parts by weight or 10 to 25 parts by weight, conversion rate of the polymerization reaction 25 to 55 It may be desirable to add at a time point of 30% to 50% or 35% to 45%, and a large diameter rubber latex having a uniform size may be prepared within a short time within the above range.
  • the conjugated diene-based monomer added in step a-2) may be preferably continuously added from the time of the conversion to 60 to 85%, 65 to 80% or 70 to 80% of the conversion point, which is present in the reactant Unreacted monomer content can be minimized to prevent side reactions and to allow the production of large diameter rubber latexes of even size.
  • Continuous dosing in the present description is to continuously add or drop by drop the compound to the reaction for a predetermined time, 1 minute to 2 hours, 10 minutes to 1 hour or 20 to 50 minutes without resting time, or It is assumed that the case includes a case where a certain amount is added in two or more steps, five or more steps, or five to twenty steps.
  • the continuous addition of the step a-2) may mean adding the conjugated diene-based monomers used in the step a-2) over 2 to 5 steps.
  • the continuous addition of the step a-2) may be performed using the conjugated diene monomer used in the step a-2) from 0.01 to 0.2 g / min from 25 to 55% of the polymerization conversion rate to 60 to 85%. It can mean feeding at speed.
  • the water-soluble polymerization initiator may be preferably added in an amount of 0.01 to 3 parts by weight, 0.1 to 3 parts by weight, 0.1 to 2 parts by weight, or 0.1 to 1 parts by weight, and the average particle diameter is even within this range. Large diameter rubber latex can be prepared.
  • the emulsifier of step b) may be used one or more selected from the group consisting of alkyl aryl sulfonates, alkali methyl alkyl sulfates, sulfonated alkyl esters and metal salts of unsaturated fatty acids.
  • the emulsifier of step b) is 0.01 to 3 parts by weight, 0.1 to 3 parts by weight, 0.1 to 2 parts by weight or 0.1 to 1 parts by weight based on a total of 100 parts by weight of the conjugated diene monomer used, polymerization conversion of 60 to 85%, 65 To 80% or 70 to 80% of the time may be preferred.
  • the coagulation content in the latex is reduced by improving the stability of the polymerization reaction, and the quality and productivity of the ABS-based molded product is reduced by reducing the gas generation amount (TVOC) in the high temperature injection process. This has the effect of being improved.
  • TVOC gas generation amount
  • Step c) may be preferably terminated at, for example, the polymerization conversion rate of 90 to 99%, 93 to 99%, 95 to 99%, or 97 to 99%, and has a high degree of polymerization and uniform particle distribution within the above range. Rubber latex can be produced, which can ultimately contribute to improving the quality of ABS based resins.
  • the large-diameter diene rubber latex obtained in step c) may preferably have an average particle diameter of 2700 to 3300 mm 3 or 2900 to 3200 mm 3, which is a property of the ABS-based resin to the average particle diameter of the diene rubber latex. This is because it exhibits highly dependent properties, and the ABS resin composition prepared from the rubber latex within the above-described range has an advantage of excellent mechanical properties, surface properties and physical property balance.
  • the average particle diameter of the latex may be measured using Nicomp 370HPL by mixing 1 g of latex with 100 g of distilled water and then using dynamic laser light scattering.
  • the large-diameter diene rubber latex obtained in step c) may have a coagulant content of 0.1 wt% or less, 0.08 wt% or less or 0.05 wt% or less, based on 100 parts by weight of the latex, and a diene having a coagulant content within this range.
  • ABS resin produced from the rubber latex has the advantage of excellent mechanical properties, surface properties and physical properties balance.
  • step d) 100 parts by weight of the monomer mixture including the large-diameter diene rubber latex, aromatic vinyl monomer, and vinyl cyan monomer, 0.01 to 3 parts by weight of emulsifier, 0.01 to 3 parts by weight of initiator, and 0.001 to 3 parts by weight of redox catalyst
  • the graft polymerization may be performed using 1 part by weight, and the emulsifier may be characterized by including a multimeric acid or a metal salt thereof of an unsaturated fatty acid.
  • the monomer mixture may include 40 to 70% by weight of the large diameter diene rubber latex (based on solids), 15 to 35% by weight of the aromatic vinyl monomer, and 5 to 25% by weight of vinyl cyan monomer, within this range.
  • the mechanical properties and balance of physical properties of the ABS resin composition is excellent.
  • the monomer mixture may include 50 to 65% by weight of the large-diameter diene rubber latex (based on solids), 20 to 35% by weight of the aromatic vinyl monomer, and 5 to 15% by weight of vinyl cyan monomer.
  • ABS-based resins produced within the range has excellent mechanical properties and good balance of physical properties.
  • the monomer mixture may include 55 to 65% by weight of the large-diameter diene-based rubber latex (based on solids), 25 to 35% by weight of the aromatic vinyl monomer, and 5 to 15% by weight of the vinyl cyan monomer.
  • ABS resin produced using the monomers mixed in the above-described range has excellent mechanical properties and good physical properties balance.
  • the aromatic vinyl monomer may be at least one selected from the group consisting of styrene, ⁇ -methylstyrene, ⁇ -ethylstyrene, p-methylstyrene, ot-butylstyrene, bromostyrene, chlorostyrene, trichlorostyrene and derivatives thereof. It may include, but is not limited to.
  • the vinyl cyan monomer may include one or more selected from the group consisting of acrylonitrile, methacrylonitrile, and derivatives thereof, but is not necessarily limited thereto.
  • the derivative may mean a compound in which one or two or more hydrogen atoms of the original compound are substituted with a halogen group, an alkyl group, and a hydroxy group.
  • the emulsifier of step d) comprises a multimeric acid or a metal salt thereof of the aforementioned unsaturated fatty acid, 0.01 to 3 parts by weight, 0.05 to 2 parts by weight, 0.1 to 1.5 parts by weight or 0.3 to 1.0 based on 100 parts by weight of the monomer mixture. It may be preferable to use a weight part, within the above-described range there is an advantage that the surface properties such as gloss and sharpness of the finally produced ABS-based resin is improved.
  • the emulsifier of step d) is at least one auxiliary emulsifier selected from the group consisting of alkyl aryl sulfonates, alkali methyl alkyl sulfates, sulfonated alkyl esters and metal salts of unsaturated fatty acids. 20 to 80% by weight, 30 to 70% by weight, 40 to 60% by weight or 25 to 50% by weight based on the total 100% by weight can be used.
  • the coagulant content of the latex produced is less within the above-mentioned range, and the gas generation amount (TVOC) generated on the resin surface during the high temperature thermoforming process is
  • the surface properties such as surface glossiness and sharpness of the ABS injection molded article may be improved.
  • a water-soluble initiator or a fat-soluble initiator may be used, and the water-soluble initiator may be, for example, sodium persulfate, potassium persulfate, ammonium persulfate, and the like.
  • the fat-soluble initiator may be cumene hydroperoxide, di Isopropylbenzenehydro peroxide, tertiary butylhydro peroxide, paramethane hydroperoxide, benzoyl peroxide and the like can be used. It is also noted that it may be possible to mix and use the water-soluble initiator and the fat-soluble initiator as necessary.
  • the amount of the initiator in step d) may be 0.01 to 3 parts by weight, 0.01 to 2 parts by weight, 0.01 to 1 parts by weight or 0.05 to 0.25 parts by weight, based on 100 parts by weight of the monomer mixture, the content of unreacted monomers within the above range There is little effect that the surface glossiness and sharpness of this ABS resin composition improve.
  • the redox-based catalyst is, for example, at least one selected from the group consisting of sodium formaldehyde sulfoxylate, sodium ethylenediamine tetraacetate, ferrous sulfate, dextrose, sodium pyrrole phosphate, and sodium sulfite. It may include.
  • the amount of the oxidation-reduction catalyst used in step d) may be 0.001 to 1 part by weight, 0.01 to 0.5 part by weight, or 0.1 to 0.25 part by weight. In addition to increasing the productivity, the surface gloss and sharpness of the resin is improved.
  • step d) may be performed including the following steps:
  • d-1) a first step of reacting 100 parts by weight of the monomer mixture with 0.01 to 3 parts by weight of an emulsifier, 0.01 to 2 parts by weight of an initiator and 0.0001 to 0.4 parts by weight of an oxidation-reduction catalyst at 50 to 90 ° C. for 2 to 5 hours.
  • step d-3 After the addition of the d-2), the second graft polymerization to react by heating up to 60 to 100 °C (higher than the reaction temperature of step d-1) at a temperature rising rate of 10 to 15 °C / hour step.
  • the initiator is used in an amount of 0.01 to 2 parts by weight, 0.05 to 1 parts by weight, or 0.05 to 0.5 parts by weight, and the redox catalyst is 0.001 to 0.4 parts by weight, 0.005 to 0.2 parts by weight or It may be preferable to use the 0.01 to 0.2 parts by weight to first graft the monomer mixture, and thus, when the initiator and the redox-based catalyst are first introduced, the superheating is easy without causing overreaction and the graft rate is low.
  • High ABS graft copolymers can be prepared.
  • step d-1 the initiator and the oxidation-reduction catalyst are first charged and reacted at 50 to 90 ° C. or 60 to 80 ° C. for 2 to 5 hours or 3 to 4 hours to perform first graft polymerization. It may be preferable, because the polymerization is initiated by the activation of the initiator under the reaction conditions described above. In addition, when the first graft polymerization reaction is performed under the reaction conditions, there is an advantage in that overreaction is prevented and heat removal is easy.
  • step d-2 the initiator is added in an amount of 0.01 to 1 part by weight, 0.01 to 0.5 part by weight, or 0.01 to 0.1 part by weight, and 0.001 to 0.6 part by weight, 0.01 to 0.3 part by weight, or 0.01 of the redox catalyst.
  • the unreacted monomer content may be reduced to improve productivity and quality of the ABS resin composition.
  • Step d-3) after the addition of the step d-2), the temperature increase rate 10 to 15 °C / hour or 10 to 13 °C / hour, 60 to 100 °C or 70 to 90 °C (step d-1) It may be preferable to carry out the secondary graft polymerization reaction by heating up to). By raising the temperature of the reactant as described above, it is possible to further promote the reaction of the unreacted monomer to achieve high graft polymerization conversion in a shorter time.
  • ABS-based polymerization was terminated at the conversion rate of 90 to 99% of the graft polymerization.
  • step e) it may be preferable to terminate the reaction at a conversion rate of 90 to 99%, 92 to 99%, or 95 to 99% of the graft polymerization, and in the above range, the amount of unreacted monomer in the product is high and the graft rate is high.
  • ABS-based graft copolymers can be prepared.
  • the latex of the ABS graft copolymer may be obtained in powder form through conventional processes such as agglomeration, washing, and drying.
  • the ABS-based graft copolymer latex may be aggregated by adding an acid such as sulfuric acid, and may further include an antioxidant and / or stabilizer, and may have a temperature of 70 ° C. or higher, 80 ° C. or higher, or 90 ° C. or higher. It is noted that after agglomeration in, it may be obtained as a powder by washing, dehydration and drying, but not limited thereto.
  • ABS-based graft copolymer prepared in powder form through the conventional process may be mixed with an aromatic vinyl monomer-vinyl cyan monomer copolymer to prepare an ABS resin composition, and the manufactured ABS resin composition may be ABS-based injection. It can be used to manufacture molded articles.
  • the aromatic vinyl monomer-vinyl cyan monomer copolymer may be a copolymer of the aromatic vinyl monomer and vinyl cyan monomer of step d), for example, vinyl aromatic monomers such as styrene, ⁇ -methylstyrene, acrylonitrile, meta It may be a copolymer of vinyl cyan monomers such as chloronitrile and ethacrylonitrile.
  • the aromatic vinyl monomer-vinyl cyan monomer copolymer may be, for example, a copolymer of 50 to 80 wt% of an aromatic vinyl monomer and 20 to 50 wt% of a vinyl cyan monomer, and in another example, 65 to 80 wt% of an aromatic vinyl monomer and vinyl It may be a copolymer of the cyan monomer 20 to 35% by weight, it may be possible to manufacture the ABS-based injection molded article having the desired mechanical properties within the above range.
  • ABS-based resin composition prepared according to the ABS-based resin composition manufacturing method of the present invention may be characterized in that the glossiness (45 °) is 90 or more, 95 or more, 97 or more or 98 or more.
  • the ABS resin composition prepared according to the present invention may have a reflection haze of 2 or less, 1.5 or 1.3 or less.
  • reaction conditions such as reaction pressure, graft ratio, additives such as electrolyte or molecular weight regulator, etc., in addition to the above-described substrates, are not particularly limited as long as they are generally carried out in the art to which the present invention pertains. It can be specified.
  • ABS-based resin composition prepared according to the manufacturing method may be produced as an ABS injection molded article including the step of injection.
  • the ABS injection molded article manufacturing method of the present invention is a mixture of 10 to 50% by weight of the ABS-based graft copolymer and 50 to 90% by weight of an aromatic vinyl monomer-vinyl cyan monomer copolymer, and then extruded It may include a step, and when mixed in the above-described range to produce an ABS injection molded article has an advantage of excellent surface properties and physical properties balance.
  • the ABS injection molded article manufacturing method of the present invention is a mixture of 20 to 40% by weight ABS-based graft copolymer and 60 to 80% by weight of an aromatic vinyl monomer-vinyl cyan monomer copolymer, and then extruded It may include a step, and if mixed in the above-described range to produce an ABS injection-molded article has the advantage of excellent surface properties and physical properties balance.
  • the ABS injection molded article manufacturing method of the present invention is a mixture of 25 to 30% by weight ABS-based graft copolymer and 70 to 75% by weight of an aromatic vinyl monomer-vinyl cyan monomer copolymer, and then extruded It may include a step, and if mixed in the above-described range to produce an ABS injection-molded article has the advantage of excellent surface properties and physical properties balance.
  • the extrusion may be carried out under conditions of 200 to 240 °C and 140 to 190 rpm, or 200 to 220 °C and 150 to 180 rpm, for example, the production of ABS injection molded article having the desired mechanical properties within this range It may be possible.
  • the injection may be carried out under the conditions of 200 to 230 °C and 70 to 90 bar, or 200 to 220 °C and 70 to 80 bar, for example, the production of ABS-based injection molded article having the desired mechanical properties within this range It may be possible.
  • the gas generation amount is 4,500 ppm or less, 3,000 ppm or less, 2,500 ppm or less, 2,000 ppm or less, or 1,500 ppm or less, and within this range, the surface gloss and clarity This has the effect of being improved.
  • the gas generation amount may be measured by using gas chromatography to determine the amount of VOC generated for 1 hour at 200 to 300 ° C for 1 g of the resin composition.
  • ABS-based graft copolymer latex prepared above was coagulated with an aqueous sulfuric acid solution, washed and dried to obtain a powder. 27.5 parts by weight of the powder and SAN (LG Chemical, product name: 92HR, 27% by weight of acrylonitrile and styrene 73) were obtained. 72.5 parts by weight of the mixture was put in a mixer to prepare an ABS resin composition.
  • the resin composition was pelletized using an extruder (extrusion temperature 210 °C, 160 rpm) and then physical properties using an injection machine (injection temperature 210 °C, injection pressure 80 bar, Engel ES 200/45 HL-Pro Series) Specimens were obtained for measurement.
  • Example 1 Except for dimer acid potassium salt in Example 1 was carried out in the same manner as in Example 1 except for using a dimer acid potassium salt and rosin acid saponified in a weight ratio of 50:50.
  • Example 1 Except for dimer acid potassium salt in Example 1 was carried out in the same manner as in Example 1 except for using a dimer acid potassium salt and C16 to C18 fatty acid saponified in a weight ratio of 50:50.
  • dimer acid potassium salt rosin acid saponifier and C16 to C18 fatty acid saponified in the weight ratio of 50:25:25 instead of dimer acid potassium salt in Example 1 and It carried out in the same way.
  • Example 1 was carried out in the same manner as in Example 1 except for using fatty acid saponified with C16 to C18 instead of dimer acid potassium salt.
  • VOC volatile organic compounds
  • the gloss was measured by adding gloss values between 17 and 19 ° and 21 to 23 ° according to standard measurement ASTM E430.
  • the glossiness of the specimen was measured according to ASTM D528 at 45 °.
  • Coagulum content (Coagulum, g / 100g)
  • the weight of the coagulum produced in the reactor, the weight of the total rubber and the weight of the monomer were measured and the content of the solid coagulum of the ABS graft copolymer latex was calculated using Equation 2 below.
  • Coagulant content weight of coagulum produced inside the reactor (g) / weight of total rubber and monomer weight (100g)
  • Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Gas generation amount [ppm] 1,400 1,800 2,600 2,100 4,800 definition 1.1 1.2 1.4 1.3 2.7 Glossiness 99.9 98.4 97.7 97.5 89.1 Coagulant content of ABS latex [g / 100g] 0.09 0.05 0.06 0.02 0.16
  • ABS-based injection molded article according to the present invention has a low gas generation amount (TVOC) as described above, it can be seen that exhibits excellent surface properties with a low reflection haze value and high gloss compared to Comparative Example 1.
  • TVOC gas generation amount
  • the coagulant content of the ABS-based graft copolymer latex was confirmed that the value of Examples 1 to 4 has a lower value than Comparative Example 1, by mixing a dimer acid potassium salt and rosin acid saponified with an emulsifier In Examples 2 and 4 used, it was confirmed that the coagulant content had a lower value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Graft Or Block Polymers (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 ABS계 수지 조성물의 제조방법 및 이를 포함하는 ABS계 사출성형품의 제조방법에 관한 것으로, 보다 상세하게는 디엔계 고무 라텍스 중합 및 ABS계 그라프트 중합 단계에서 불포화 지방산의 다량체 산 또는 이의 금속염을 유화제로 사용하여 ABS계 수지 조성물을 제조하는 방법에 관한 기술을 제공한다. 본 발명에 따르면 불포화 지방산의 다량체 산 또는 이의 금속염을 유화제로 도입하여 ABS계 수지 조성물을 제조함으로써 중합 안정성을 확보하는 동시에 ABS계 사출품의 표면 광택도나 선명도 등의 표면 특성이 향상되는 효과가 있다.

Description

ABS계 수지 조성물의 제조방법 및 이를 포함하는 ABS계 사출성형품의 제조방법
〔출원(들)과의 상호 인용〕
본 출원은 2016년 11월 01일자 한국 특허 출원 제 10-2016-0144437 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 ABS계 수지 조성물의 제조방법 및 이를 포함하는 ABS계 사출성형품의 제조방법에 관한 것으로, 보다 상세하게는 디엔계 고무 라텍스 중합 및 ABS계 그라프트 중합 단계에서 유화제로 불포화 지방산의 다량체 산 또는 이의 금속염을 포함하여 ABS계 사출품의 표면 광택도 및 선명성을 향상시킬 수 있는 ABS계 수지 조성물의 제조방법 및 이를 포함하는 ABS계 사출성형품의 제조방법에 관한 것이다.
아크릴로니트릴-부타디엔-스티렌(acrylonitrile-butadiene-styrene, ABS) 공중합체 수지는 내충격성 등과 같은 기계적 강도뿐만 아니라 성형성, 광택도 등의 물성이 비교적 양호하여 전기 부품, 전자 부품, 사무용 기기 또는 자동차 부품 등에 광범위하게 사용되고 있다.
일반적으로 공액 디엔계 고무 라텍스에 방향족 비닐 화합물 및 비닐시안 화합물 단량체를 유화중합법으로 그라프팅시켜 ABS 공중합체 수지를 제조하는 경우, 괴상중합법으로 제조된 그것 대비 양호한 물성 밸런스를 나타내고 우수한 광택 등을 가지는 장점이 있어 ABS 공중합체 수지는 주로 유화중합법에 의해 제조된다.
또한, 상기와 같이 제조된 ABS 공중합체 수지는 스티렌-아크릴로니트릴 공중합체(SAN)와 혼합가공되어 최종 ABS계 열가소성 수지 조성물을 제조하기도 하는데, 이 제조방법으로 제조된 ABS계 열가소성 수지 조성물은 내충격성, 가공성, 내화학성 등이 우수하다는 이점이 있으나, 디엔계 고무 라텍스 및 ABS 그라프트 공중합체 제조 시 유화제나 응집제 등의 사용으로 광택도 및 선명도 등에 물성 한계를 갖는다.
〔선행기술문헌〕
〔특허문헌〕(특허문헌 1) 한국 등록특허 제0527095호
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 압출이나 사출 등 고온의 열성형 공정 중에 쉽게 기화되지 않아 수지 표면에서 생성되는 가스발생량(Total Volatile Organic Compounds, TVOC)을 효과적으로 감소시켜 표면 광택도 및 선명도가 우수한 ABS계 사출성형품의 제조를 가능케 할 수 있는 신규한 유화제를 도입한 ABS계 수지 조성물의 제조방법을 제공한다.
또한 본 발명은 상기 제조방법에 따른 ABS계 수지 조성물을 사용하여 광택도 및 선명도가 우수한 ABS계 사출성형품을 제조하는 방법을 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은 a) 공액 디엔계 단량체 100 중량부, 유화제 0.5 내지 5 중량부, 수용성 중합개시제 0.01 내지 6 중량부를 투입하여 중합반응 시키는 단계; b) 상기 a) 단계 후, 중합 전환율 60 내지 85% 시점에서 유화제 0.01 내지 5 중량부를 투입하는 단계; c) 중합 전환율 90 내지 99% 시점에서 중합반응을 종결하여 대구경 디엔계 고무 라텍스를 수득하는 단계; d) 상기 대구경 디엔계 고무 라텍스 40 내지 70 중량%(고형분 기준), 방향족 비닐 단량체 15 내지 35 중량% 및 비닐시안 단량체 5 내지 25 중량%를 포함하는 단량체 혼합물 100 중량부에, 유화제 0.01 내지 3 중량부, 개시제 0.01 내지 3 중량부 및 산화-환원계 촉매 0.001 내지 1 중량부를 그라프트 중합반응시키는 단계; e) 상기 그라프트 중합의 전환율 90 내지 99% 시점에 중합반응을 종결하여 ABS계 그라프트 공중합체를 수득하는 단계; 및 f) 상기 ABS계 그라프트 공중합체 및 방향족 비닐 단량체-비닐시안 단량체 공중합체를 혼합하여 ABS계 수지 조성물을 제조하는 단계;를 포함하되, 상기 a) 단계 및 상기 d) 단계의 유화제는 불포화 지방산의 다량체 산(multimer acid) 또는 이의 금속염을 포함하고, 상기 ABS계 수지 조성물은 광택도(45°)가 90 이상인 것을 특징으로 하는 ABS계 수지 조성물의 제조방법을 제공한다.
또한 본 발명은 상기 제조방법에 따라 제조된 ABS계 수지 조성물을 사출하는 단계를 포함하는 ABS계 사출성형품의 제조방법을 제공한다.
본 발명에 따르면 대구경 디엔계 고무 라텍스 중합 및 ABS 그라프트 중합 단계에서 불포화 지방산의 다량체 산 또는 이의 금속염을 포함하는 유화제를 사용하여 ABS계 수지 조성물을 제조함으로써 중합 반응의 안정성을 향상시키고, 압출이나 사출 등 고온의 열성형 공정에서 수지 표면에 생성되는 가스발생량(TVOC)을 저감하여 궁극적으로 ABS계 사출성형품의 표면 거칠기를 개선시킬 수 있고, 표면 광택도 및 선명도가 향상되는 효과가 있다.
또한, 본 발명에 따르면 ABS계 사출성형품의 표면특성이 향상되는 것은 물론이고 중합을 통해 생성된 라텍스의 안정성 향상으로 ABS계 수지 조성물의 생산성이 향상되는 부수적인 효과도 있다.
본 발명자들은 고온의 압출 또는 사출 공정에서 수지 표면에 생성되는 가스가 수지 표면의 거칠기에 영향을 주는 것을 확인하고 가스를 발생시키는 물질들을 분석한 결과, 디엔계 고무 라텍스 중합 및 ABS 그라프트 중합 후 남아 있는 유화제, 미반응 단량체, 올리고머 등에 의한 것임을 확인하였다.
이에 본 발명자들은 고온의 압출 또는 사출 공정에서 분자량이 높아기화가 어려운 불포화 지방산의 다량체 산 또는 이의 금속염을 디엔계 고무 라텍스 중합 및 ABS 그라프트 중합 시 유화제로 포함하여 중합 반응의 안정성을 확보할 수 있음은 물론 사출 과정에서 가스발생량(TVOC)을 감소시켜 최종품의 광택도나 선명도 등의 품질이 향상되는 것을 확인하고, 이를 토대로 더욱 매진하여 본 발명을 완성하게 되었다.
본 발명의 ABS계 수지 조성물의 제조방법은 하기 단계들을 포함하여 실시될 수 있다:
a) 공액 디엔계 단량체 100 중량부, 유화제 0.5 내지 5 중량부, 수용성 중합개시제 0.01 내지 6 중량부를 투입하여 중합반응 시키는 단계;
b) 상기 a) 단계 후, 중합 전환율 60 내지 85% 시점에서 유화제 0.01 내지 5 중량부를 투입하는 단계;
c) 중합 전환율 90 내지 99% 시점에서 중합반응을 종결하여 대구경 디엔계 고무 라텍스를 수득하는 단계;
d) 상기 대구경 디엔계 고무 라텍스 40 내지 70 중량%(고형분 기준), 방향족 비닐 단량체 15 내지 35 중량% 및 비닐시안 단량체 5 내지 25 중량%를 포함하는 단량체 혼합물 100 중량부에, 유화제 0.01 내지 3 중량부, 개시제 0.01 내지 3 중량부 및 산화-환원계 촉매 0.001 내지 1 중량부를 그라프트 중합반응시키는 단계;
e) 상기 그라프트 중합의 전환율 90 내지 99% 시점에 중합반응을 종결하여 ABS계 그라프트 공중합체를 수득하는 단계; 및
f) 상기 ABS계 그라프트 공중합체 및 방향족 비닐 단량체-비닐시안 단량체 공중합체를 혼합하여 ABS계 수지 조성물을 제조하는 단계.
본 기재에서 중합 전환율은 제조된 라텍스 1.5g을 150℃ 열풍 건조기 내에서 15분간 건조 후, 무게를 측정하여 총 고형분 함량(TSG)를 구하고, 하기 수학식 1에 의거하여 산출될 수 있다.
[수학식 1]
중합 전환율(%)= 총 고형분 함량(TSC) X (투입된 단량체 및 부원료 중량) / 100 - (단량체 외 투입된 부원료 중량)
본 발명은 ABS계 사출품의 표면특성을 향상시키기 위하여 상기 a) 단계 및 상기 d) 단계에서, 불포화 지방산의 다량체 산 또는 이의 금속염을 유화제로 포함하고, 상기 유화제를 사용하여 제조된 ABS계 수지 조성물은 표면 광택도(45°)가 90 이상인 것을 특징으로 할 수 있다.
상기 불포화 지방산의 다량체 산 또는 이의 금속염을 디엔계 고무 라텍스 중합 및 ABS 그라프트 중합의 유화제로 포함하여 사용하는 경우, 중합 반응의 안정성을 확보할 수 있음은 물론, 종래 유화제 대비 분자량이 높아 고온의 열성형 공정 중 쉽게 기화되지 않는 특성을 갖음에 따라 수지 표면에서 생성되는 가스발생량(TVOC)을 저감할 수 있으며, 이로써 90 이상의 표면 광택도(45°)를 달성할 수 있는 것이다.
또한, 상기와 동일한 이유로 본 발명에 따른 제조방법으로 제조된 ABS계 수지 조성물은 반사 헤이즈(reflection haze)가 2 이하의 값을 갖는 것을 특징으로 할 수 있다.
본 기재에서 반사 헤이즈 값은 표준측정 ASTM E430, 광택도(45°)는 표준측정 ASTM D528에 의거하여 측정할 수 있다.
본 발명에서 불포화 지방산의 다량체 산이라 함은 이분자 혹은 그 이상의 불포화 지방산이 중합반응하여 얻어지는 다가의 카르복실산이며, 상기 불포화 지방산은 직쇄형, 분기형, 고리형, 복합고리형 불포화 지방산 또는 이의 유도체를 포함하는 것으로 한다.
본 기재에서 유도체라 함은 원 화합물의 수소 중의 하나 또는 둘 이상이 알킬기, 할로겐기 또는 하이드록시기로 치환된 화합물을 의미한다.
본 기재에서 복합고리형은 탄소수 5 내지 15개의 포화 또는 불포화 사이클로알킬(cycloalkyl)기를 적어도 2개 이상 포함하는 것을 의미한다.
일례로, 상기 a) 단계의 유화제 및 상기 d) 단계의 유화제는 탄소수 8 내지 22 개의 직쇄형 또는 분기형 또는 고리형 불포화 지방산 또는 이의 금속염을 포함할 수 있으며, 이는 디엔계 고무 라텍스 중합 및 ABS 그라프트 중합 시 중합 안정성을 향상시키는 동시에 ABS계 사출성형품의 광택도나 선명도 등의 표면특성을 향상시킬 수 있다.
일례로, 상기 a) 단계 및 d) 단계의 유화제는 불포화 지방산의 이량체 산 또는 이의 금속염을 포함할 수 있으며, 이는 디엔계 고무 라텍스 중합 및 ABS 그라프트 중합 시 중합 안정성을 향상시키는 동시에 ABS계 사출성형품의 광택도나 선명도 등의 표면특성을 향상시킬 수 있다.
일례로, 상기 a) 단계 및 상기 d) 단계의 유화제는 하기 화학식 1 내지 화학식 6으로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상의 이량체 산 또는 이의 금속염을 포함할 수 있으며, 이는 디엔계 고무 라텍스 중합 및 ABS 그라프트 중합 시 중합 안정성을 향상시키는 동시에 ABS계 사출성형품의 광택도나 선명도 등의 표면특성을 향상시킬 수 있다.
[화학식 1]
Figure PCTKR2017008312-appb-I000001
[화학식 2]
Figure PCTKR2017008312-appb-I000002
[화학식 3]
Figure PCTKR2017008312-appb-I000003
[화학식 4]
Figure PCTKR2017008312-appb-I000004
[화학식 5]
Figure PCTKR2017008312-appb-I000005
[화학식 6]
Figure PCTKR2017008312-appb-I000006
보다 구체적으로 상기 a) 단계 및 d) 단계의 유화제는 3-옥텐산, 10-운데센산, 올레인산, 리놀산, 엘라이딘산, 팔미톨레산, 레놀렌산, 혹은 불포화 카르복실산의 혼합물인 톨유 지방산, 대두유 지방산, 팜유 지방산, 우지 지방산, 돈지 지방산, 압지 지방산, 쌀겨유 지방산, 아마씨유 지방산을 포함하는 군으로부터 선택되는 화합물로부터 유래된 이량체 산 또는 이의 금속염을 포함할 수 있으나, 이는 일례일 뿐 본 발명의 범위가 이에 한정되는 것은 아님을 명시한다.
일례로, 상기 a) 단계 및 d) 단계의 유화제는 불포화 지방산의 다량체 산의 알칼리금속염 또는 알칼리토금속염을 포함할 수 있으며, 이는 ABS계 사출성형품의 표면특성을 향상시키는 효과가 있다.
상기 알칼리금속염은 구체적으로 나트륨염 또는 칼륨염일 수 있으며, 상기 알칼리토금속염은 구체적으로 마그네슘염 또는 칼슘염일 수 있으나 이에 한정되는 것은 아님을 명시한다.
일례로, 상기 a) 단계 및 d) 단계의 유화제는 상기 불포화 지방산 다량체 산에 NaOH, KOH 등 알칼리금속의 수산화물을 첨가하여 카르복실산의 수소가 알칼리금속으로 치환된 다량체 산의 알칼리금속염을 포함할 수 있다.
또 다른 일례로, 상기 a) 단계 및 d) 단계의 유화제는 불포화 지방산 다량체 산 또는 상기 다량체 산의 알칼리금속염에 칼슘염 또는 마그네슘염 등의 금속염을 첨가하여 제조된 화합물을 포함할 수 있으나 이에 제한되는 것은 아님을 명시한다.
또한, 상기 a) 단계의 유화제 및 상기 d) 단계의 유화제는 서로 같거나 상이할 수 있으며, 각각 독립적으로 상술한 불포화 지방산의 다량체 산 또는 이의 금속염 중에서 선택된 1종의 화합물을 단독으로 사용하거나 2종 이상을 혼합하여 사용하는 것도 가능할 수 있다.
이하, 상기 신규한 유화제를 도입하여 표면특성이 향상된 ABS계 사출성형품 제조용 ABS계 수지 조성물의 제조방법을 각 단계별로 설명하기로 한다.
a) 공액 디엔계 단량체, 유화제, 수용성 중합개시제를 중합반응 시키는 계:
상기 공액 디엔계 단량체는 1,3-부타디엔, 이소프렌, 2-클로로-1,3-부타디엔 및 클로로프렌으로 이루어지는 군으로부터 선택된 1종 이상의 화합물을 포함할 수 있으며, 이때 이들의 유도체도 가능할 수 있음을 명시한다.
본 기재에서 유도체라 함은 원 화합물의 수소 중 하나 또는 둘 이상이 알킬기, 할로겐기 또는 하이드록시기로 치환된 화합물을 의미한다.
상기 a) 단계의 유화제는 전술한 불포화 지방산의 다량체 산 또는 이의 염을 포함하며, 이는 상기 공액 디엔계 단량체 100 중량부 기준 0.5 내지 5 중량부, 0.8 내지 4 중량부, 1.0 내지 3 중량부 또는 1.0 내지 2 중량부를 사용하는 것이 바람직할 수 있으며, 상기 범위 내에서 중합반응의 안정성이 확보되는 동시에 중합 후 잔류 유화제의 함량이 적고, 응고물 함량이 적은 디엔계 고무 라텍스가 제조될 수 있다. 또한, 잔류 유화제 함량 및 응고물 함량의 저감으로 최종 ABS계 사출품의 표면특성 및 생산성이 향상될 수 있다.
본 발명의 다른 일례에서, 상기 a) 단계의 유화제는 알킬 아릴 설포네이트, 알카리메틸 알킬 설페이트, 설포네이트화된 알킬에스테르 및 불포화 지방산의 금속염으로 이루어지는 군으로부터 선택된 1종 이상의 보조 유화제를 혼합하여 사용할 수 있다.
상기 a) 단계에서 상기 보조 유화제를 혼합하여 사용하는 경우, 보조유화제의 사용량은 상기 a) 단계의 유화제 총 100 중량%에 대하여 20 내지 80 중량%, 30 내지 70 중량%, 40 내지 60 중량% 또는 25 내지 50 중량%인 것이 바람직할 수 있으며, 상술한 범위 내에서는 중합반응을 통해 제조된 라텍스의 응고물 함량이 적고, 고온의 열성형 공정 시 수지 표면에서 생성되는 가스발생량(TVOC)이 저감되어 ABS계 사출성형품의 표면 광택도 및 선명도 등의 표면특성이 향상되는 효과가 있다.
상기 a) 단계에서 수용성 중합개시제는 일례로 과황산 칼륨, 과황산 나트륨 및 과황산 암모늄으로 이루어지는 군으로부터 선택된 1종 이상을 사용할 수 있다.
상기 a) 단계에서 수용성 중합개시제의 사용량은 상기 공액 디엔계 단량체 100 중량부 기준 0.01 내지 6 중량부, 0.05 내지 4 중량부, 0.1 내지 내지 2 중량부 또는 0.1 내지 1 중량부인 것이 바람직한데, 상술한 범위 내로 사용하는 경우, 단량체의 과반응을 방지하고 크기가 고른 대구경 고무 라텍스가 제조될 수 있다.
상기 a) 단계는 구체적인 예로, a-1) 사용되는 공액 디엔계 단량체 총 100 중량부 중 45 내지 90 중량부, 유화제 0.5 내지 5 중량부, 수용성 중합개시제 0.01 내지 3 중량부를 투입하여 중합반응 시키는 단계; 및 a-2) 상기 a-1) 단계 후 중합 전환율 25 내지 55% 시점에서 상기 공액 디엔계 단량체 10 내지 55 중량부 및 수용성 중합개시제 0.01 내지 3 중량부를 투입하는 단계;를 포함하여 수행될 수 있다.
상기와 같이 공액 디엔계 단량체 및 수용성 중합개시제를 반응초기 및 중합 전환율 25 내지 55% 시점에 나누어 투입하는 경우, 단량체의 과반응을 방지하여 크기가 고른 대구경 고무 라텍스의 제조가 가능할 수 있다.
상기 a-1) 단계에서는, 사용되는 공액 디엔계 단량체 총 100 중량부 중 45 내지 90 중량부, 55 내지 90 중량부, 65 내지 90 중량부 또는 75 내지 90 중량부를 투입하는 것이 바람직한데, 이는 반응 초기에 적절한 개수의 베이스 입자를 형성하여 단시간에 베이스 입자를 대구경화 시킬 수 있고, 목적하는 평균입경을 갖는 라텍스의 제조를 가능케할 수 있다.
상기 a-1) 단계에서는, 수용성 중합개시제를 공액 디엔계 단량체 총 100 중량부 기준 0.01 내지 3 중량부로 사용되는 것이 바람직하며, 이 범위 내에서는 단량체의 과반응이 발생하지 않아 제열이 용이하고, 목적하는 입경의 라텍스를 제조하는데 기여할 수 있다.
상기 a-2) 단계는, 상기 공액 디엔계 단량체의 나머지 잔량, 또는 10 내지 55 중량부, 10 내지 45 중량부, 10 내지 35 중량부 또는 10 내지 25 중량부를, 상기 중합반응의 전환율 25 내지 55%, 30 내지 50% 또는 35 내지 45% 시점에 투입하는 것이 바람직할 수 있으며, 상술한 범위 내에서는 단시간 내에 크기가 고른 대구경 고무 라텍스가 제조될 수 있다.
또한, 상기 a-2) 단계에서 투입되는 공액 디엔계 단량체는 투입 시점으로부터 전환율 60 내지 85%, 65 내지 80% 또는 70 내지 80% 시점까지 연속 투입되는 것이 바람직할 수 있으며, 이는 반응물 내에 존재하는 미반응 단량체 함량을 최소화하여 부반응을 방지하고 크기가 고른 대구경 고무 라텍스의 제조를 가능케할 수 있다.
본 기재에서 연속 투입은 반응에 투입되는 화합물을 휴지기없이 소정시간, 1분 내지 2시간, 10분 내지 1시간 또는 20 내지 50분 동안 지속적으로 투입 또는 드롭 바이 드롭(drop by drop)하거나, 화합물 중 일정량을 2 단계 이상, 5 단계 이상 또는 5 내지 20 단계에 걸쳐 투입하는 경우를 모두 포함하는 것으로 한다.
일례로, 상기 a-2) 단계의 연속 투입은 상기 a-2) 단계에서 사용되는 공액 디엔계 단량체를 2 내지 5 단계에 걸쳐 나누어 투입하는 것을 의미할 수 있다.
또 다른 일례로, 상기 a-2) 단계의 연속 투입은 상기 a-2) 단계에서 사용되는 공액 디엔계 단량체를 중합 전환율 25 내지 55% 시점으로부터 60 내지 85% 시점까지 0.01 내지 0.2 g/분의 속도로 투입하는 것을 의미할 수 있다.
상기 a-2) 단계에서 수용성 중합개시제는 0.01 내지 3 중량부, 0.1 내지 3 중량부, 0.1 내지 2 중량부 또는 0.1 내지 1 중량부로 투입되는 것이 바람직할 수 있으며, 이 범위 내에서 평균입경이 고른 대구경 고무 라텍스가 제조될 수 있다.
b) 중합 전환율 60 내지 85% 시점에 유화제 0.01 내지 5 중량부를 투입하는 단계:
상기 b) 단계의 유화제는 알킬 아릴 설포네이트, 알카리메틸 알킬 설페이트, 설포네이트화된 알킬에스테르 및 불포화 지방산의 금속염으로 이루어지는 군으로부터 선택된 1종 이상을 사용할 수 있다.
상기 b) 단계의 유화제는 사용되는 공액 디엔계 단량체 총 100 중량부 기준 0.01 내지 3 중량부, 0.1 내지 3 중량부, 0.1 내지 2 중량부 또는 0.1 내지 1 중량부로, 중합 전환율 60 내지 85%, 65 내지 80% 또는 70 내지 80% 시점에 투입되는 것이 바람직할 수 있다.
상기 b) 단계의 유화제를 상술한 범위로 투입하는 경우, 중합반응의 안정성 향상으로 라텍스내 응고물 함량이 저감되는 동시에 고온의 사출공정에서 가스발생량(TVOC)의 감소로 ABS계 성형품의 품질 및 생산성이 향상되는 효과가 있다.
c) 중합 전환율 90 내지 99% 시점에서 중합반응을 종결하여 대구경 디엔계 고무 라텍스를 수득하는 단계:
상기 c) 단계는 일례로 중합 전환율 90 내지 99%, 93 내지 99%, 95 내지 99% 또는 97 내지 99% 시점에서 종결되는 것이 바람직할 수 있으며, 상기 범위 내에서 중합도가 높고 입자 분포가 고른 대구경 고무 라텍스가 제조될 수 있으며, 이는 궁극적으로 ABS계 수지의 품질을 향상시키는데 기여할 수 있다.
상기 c) 단계에서 수득된 대구경 디엔계 고무 라텍스는 평균입경이 2700 내지 3300 Å 또는 2900 내지 3200 Å의 값을 갖는 것이 바람직할 수 있는데, 이는 ABS계 수지의 물성은 디엔계 고무 라텍스의 평균입경에 크게 의존하는 특성을 나타내기 때문이며, 상술한 범위 내의 고무 라텍스로부터 제조되는 ABS계 수지 조성물은 기계적 특성, 표면특성 및 물성 밸런스가 우수한 이점이 있다.
본 기재에서 라텍스의 평균입경은 라텍스 1g을 증류수 100g과 혼합한 뒤, 다이나믹 레이져라이트 스케트링법으로 Nicomp 370HPL를 사용하여 측정할 수 있다.
또한, 상기 c) 단계에서 수득된 대구경 디엔계 고무 라텍스는 응고물 함량이 라텍스 100 중량부 기준 0.1 중량% 이하, 0.08 중량% 이하 또는 0.05 중량% 이하일 수 있으며, 이 범위 내의 응고물 함량을 갖는 디엔계 고무 라텍스로부터 제조된 ABS계 수지는 기계적 물성, 표면특성 및 물성 밸런스가 우수한 이점이 있다.
d) 상기 대구경 디엔계 고무 라텍스에 방향족 비닐 단량체 및 비닐시안 단량체를 그라프트 중합시키는 단계:
상기 d) 단계는 상기 대구경 디엔계 고무 라텍스, 방향족 비닐 단량체 및 비닐시안 단량체를 포함하는 단량체 혼합물 100 중량부에, 유화제 0.01 내지 3 중량부, 개시제 0.01 내지 3 중량부 및 산화-환원계 촉매 0.001 내지 1 중량부를 사용하여 그라프트 중합을 수행할 수 있으며, 상기 유화제는 불포화 지방산의 다량체 산 또는 이의 금속염을 포함하는 것을 특징으로 할 수 있다.
일례로, 상기 단량체 혼합물은 상기 대구경 디엔계 고무 라텍스 40 내지 70 중량%(고형분 기준), 상기 방향족 비닐 단량체 15 내지 35 중량% 및 비닐시안 단량체 5 내지 25 중량%를 포함할 수 있으며, 이 범위 내에서 ABS계 수지 조성물의 기계적 물성 및 물성 밸런스가 우수한 효과가 있다.
또 다른 일례로, 상기 단량체 혼합물은 상기 대구경 디엔계 고무 라텍스 50 내지 65 중량%(고형분 기준), 상기 방향족 비닐 단량체 20 내지 35 중량% 및 비닐시안 단량체 5 내지 15 중량%를 포함할 수 있으며, 상기 범위 내에서 제조되는 ABS계 수지는 기계적 물성이 우수하고 물성 밸런스가 양호한 특성이 있다.
또 다른 일례로, 상기 단량체 혼합물은 상기 대구경 디엔계 고무 라텍스 55 내지 65 중량%(고형분 기준), 상기 방향족 비닐 단량체 25 내지 35 중량% 및 상기 비닐시안 단량체 5 내지 15 중량%를 포함할 수 있으며, 상술한 범위로 혼합된 단량체를 사용하여 제조된 ABS계 수지는 기계적 물성이 우수하고 물성 밸런스가 양호한 특성을 갖는다.
상기 방향족 비닐 단량체는 스티렌, α-메틸스티렌, α-에틸스티렌, p-메틸스티렌, o-t-부틸스티렌, 브로모스티렌, 클로로스티렌, 트리클로로스티렌 및 이들의 유도체로 이루어지는 군으로부터 선택된 1종 이상을 포함할 수 있으나, 이에 한정되는 것은 아님을 명시한다.
상기 비닐시안 단량체는 아크릴로니트릴, 메타크릴로니트릴 및 이들의 유도체로 이루어지는 군으로부터 선택된 1종 이상을 포함할 수 있으나, 반드시 이에 제한되는 것은 아니다.
본 기재에서 유도체라 함은 원 화합물의 수소 원자 중 하나 또는 둘 이상이 할로겐기, 알킬기, 히드록시기로 치환된 화합물을 의미할 수 있다.
상기 d) 단계의 유화제는 전술한 불포화 지방산의 다량체 산 또는 이의 금속염을 포함하며, 상기 단량체 혼합물 100 중량부 기준 0.01 내지 3 중량부, 0.05 내지 2 중량부, 0.1 내지 1.5 중량부 또는 0.3 내지 1.0 중량부를 사용하는 것이 바람직할 수 있으며, 상술한 범위 내에서는 최종적으로 제조된 ABS계 수지의 광택성 및 선명도 등의 표면특성이 개선되는 이점이 있다.
또 다른 일례로, 상기 d) 단계의 유화제는 알킬 아릴 설포네이트, 알카리 메틸 알킬 설페이트, 설포네이트화된 알킬에스테르 및 불포화 지방산의 금속염으로 이루어지는 군으로부터 선택된 1종 이상의 보조 유화제를 상기 d) 단계의 유화제 총 100 중량% 대비 20 내지 80 중량%, 30 내지 70 중량%, 40 내지 60 중량% 또는 25 내지 50 중량%로 혼합하여 사용할 수 있다.
상기 d) 단계에서 상술한 범위로 보조 유화제를 혼합하여 사용하는 경우, 상술한 범위 내에서는 제조된 라텍스의 응고물 함량이 적고, 고온의 열성형 공정 시 수지 표면에서 생성되는 가스발생량(TVOC)이 저감되어 ABS계 사출성형품의 표면 광택도 및 선명도 등의 표면특성이 향상되는 효과가 있다.
상기 d) 단계의 개시제는 수용성 개시제 또는 지용성 개시제를 사용할 수 있으며, 상기 수용성 개시제는 일례로 과황산 나트륨, 과황산 칼륨, 과황산 암모늄 등을 사용할 수 있으며, 상기 지용성 개시제는 큐멘하이드로 퍼옥사이드, 디이소프로필벤젠하이드로 퍼옥사이드, 3급 부틸하이드로 퍼옥사이드, 파라메탄 하이드로 퍼옥사이드, 벤조일 퍼옥사이드 등을 사용할 수 있다. 또한, 상기 수용성 개시제 및 지용성 개시제를 필요에 따라 혼합하여 사용하는 것도 가능할 수 있음을 명시한다.
상기 d) 단계에서 개시제의 사용량은 상기 단량체 혼합물 100 중량부 대비 0.01 내지 3 중량부, 0.01 내지 2 중량부, 0.01 내지 1 중량부 또는 0.05 내지 0.25 중량부일 수 있으며, 상기 범위 내에서 미반응 단량체 함량이 적어 ABS계 수지 조성물의 표면 광택도 및 선명도가 향상되는 효과가 있다.
상기 d) 단계에서 산화-환원계 촉매는 일례로 소듐포름알데히드 술폭실레이트, 소듐에틸렌디아민 테트라아세테이트, 황산 제1철, 덱스트로즈, 피롤인산나트륨, 아황산나트륨으로 이루어지는 군으로부터 선택된 1종 이상을 포함할 수 있다.
상기 d) 단계에서 산화-환원계 촉매의 사용량은 0.001 내지 1 중량부, 0.01 내지 0.5 중량부 또는 0.1 내지 0.25 중량부 일 수 있으며, 상술한 범위 내에서 미반응 단량체 함량을 감소시켜 ABS계 수지 조성물의 생산성 증가는 물론 수지의 표면 광택도 및 선명도가 향상되는 효과가 있다.
보다 구체적인 일례로 상기 d) 단계는 다음과 같은 단계들을 포함하여 수행될 수 있다:
d-1) 상기 단량체 혼합물 100 중량부에, 유화제 0.01 내지 3 중량부, 개시제 0.01 내지 2 중량부 및 산화-환원계 촉매 0.0001 내지 0.4 중량부를 50 내지 90℃에서 2 내지 5 시간 동안 반응시키는 제 1차 그라프트 중합 단계;
d-2) 상기 제 1차 그라프트 중합 단계 후, 개시제 0.01 내지 1 중량부 및 산화-환원계 촉매 0.001내지 0.6 중량부를 투입하는 단계; 및
d-3) 상기 d-2)의 투입 후, 승온속도 10 내지 15℃/시간으로 60 내지 100℃(상기 d-1) 단계의 반응온도 보다 높음)까지 승온하여 반응시키는 제 2차 그라프트 중합 단계.
상기 d-1) 단계는, 상기 개시제를 0.01 내지 2 중량부, 0.05 내지 1 중량부 또는 0.05 내지 0.5 중량부로 사용하고, 상기 산화-환원계 촉매를 0.001 내지 0.4 중량부, 0.005 내지 0.2 중량부 또는 0.01 내지 0.2 중량부로 사용하여 상기 단량체 혼합물을 1차 그라프트 중합 시키는 것이 바람직할 수 있으며, 이와 같이 개시제 및 산화-환원계 촉매를 1차 투입하는 경우, 과반응을 야기하지 않고 제열이 용이하며 그라프트율이 높은 ABS계 그라프트 공중합체를 제조할 수 있다.
상기 d-1) 단계는 상기 개시제 및 산화-환원계 촉매를 1차 투입하고, 이를 50 내지 90℃ 또는 60 내지 80℃에서 2 내지 5 시간 또는 3 내지 4 시간 동안 반응시켜 1차 그라프트 중합 시키는 것이 바람직할 수 있는데, 이는 상술한 반응조건에서 개시제의 활성화로 중합반응이 개시되기 때문이다. 또한, 상기 반응조건에서 제 1차 그라프트 중합 반응을 실시하는 경우, 과반응을 방지하고, 제열이 용이하다는 이점이 있다.
상기 d-2) 단계는 상기 개시제를 0.01 내지 1 중량부, 0.01 내지 0.5 중량부 또는 0.01 내지 0.1 중량부로 투입하고, 상기 산화-환원계 촉매를 0.001 내지 0.6 중량부, 0.01 내지 0.3 중량부 또는 0.01 내지 0.1 중량부로 투입하는 단계이며, 상술한 범위 내로 상기 개시제 및 산화-환원계 촉매를 2차 투입하는 경우 미반응 단량체 함량을 감소시켜 ABS계 수지 조성물의 생산성 및 품질을 향상시킬 수 있다.
상기 d-3) 단계는 상기 d-2) 단계의 투입 후, 승온속도 10 내지 15℃/시간 또는 10 내지 13℃/시간으로, 60 내지 100℃ 또는 70 내지 90℃(상기 d-1) 단계의 온도보다 높음)까지 승온시켜 제 2차 그라프트 중합 반응을 수행하는 것이 바람직할 수 있다. 상기와 같이 반응물의 온도를 승온시킴으로써 미반응 단량체의 반응을 더욱 촉진하여 보다 짧은 시간 내에 높은 그라프트 중합 전환율을 달성할 수 있다.
e) 그라프트 중합의 전환율 90 내지 99% 시점에 중합반응을 종결하여 ABS계 그라프트 공중합체를 수득하는 단계:
상기 e) 단계는 그라프트 중합의 전환율 90 내지 99%, 92 내지 99% 또는 95 내지 99% 시점에서 반응을 종결하는 것이 바람직할 수 있으며, 상기 범위에서는 생성물 내에 미반응 단량체 함량이 적고 그라프트율이 높은 ABS계 그라프트 공중합체가 제조될 수 있다.
또한, 상기 e) 단계에서는, ABS계 그라프트 공중합체의 라텍스를 응집, 세척, 건조 등의 통상적인 공정을 거쳐 분말 형태로 수득할 수 있다.
일례로, ABS계 그라프트 공중합체 라텍스는 황산 등의 산을 첨가하여 응집될 수 있으며, 선택적으로 산화방지제 및/또는 안정제를 더 포함할 수 있고, 70℃ 이상, 80℃ 이상 혹은 90℃ 이상의 온도에서 응집된 후, 세척, 탈수 및 건조하여 분말로 수득 될 수 있으나 이에 한정되는 것은 아님을 명시한다.
f) ABS계 그라프트 공중합체 및 방향족 비닐 단량체-비닐시안 단량체 공중합체를 혼합하여 ABS계 수지 조성물을 제조하는 단계:
상기 통상적인 공정을 거쳐 분말 형태로 제조된 ABS계 그라프트 공중합체는 방향족 비닐 단량체-비닐시안 단량체 공중합체와 혼합하여 ABS계 수지 조성물로 제조될 수 있으며, 제조된 ABS계 수지 조성물은 ABS계 사출성형품 제조에 사용될 수 있다.
상기 방향족 비닐 단량체-비닐시안 단량체 공중합체는 상기 d) 단계의 방향족 비닐 단량체 및 비닐시안 단량체의 공중합물을 사용할 수 있으며, 일례로 스티렌, α-메틸스티렌 등의 비닐 방향족 단량체와 아크릴로니트릴, 메타크릴로니트릴 및 에타크릴로니트릴 등의 비닐시안 단량체의 공중합물일 수 있다.
상기 방향족 비닐 단량체-비닐시안 단량체 공중합체는 일례로 방향족 비닐 단량체 50 내지 80 중량% 및 비닐시안 단량체 20 내지 50 중량%의 공중합체일 수 있고, 다른 일례로 방향족 비닐 단량체 65 내지 80 중량% 및 비닐시안 단량체 20 내지 35 중량%의 공중합체일 수 있고, 상기 범위 내에서 목적하는 기계적 특성을 갖는 ABS계 사출성형품의 제조가 가능할 수 있다.
상기 본 발명의 ABS계 수지 조성물 제조방법에 따라 제조된 ABS계 수지 조성물은 광택도(45°)가 90 이상, 95 이상, 97 이상 또는 98 이상인 것을 특징으로 할 수 있다.
상기 본 발명에 따라 제조된 ABS계 수지 조성물은 반사 헤이즈(reflection haze)가 2 이하, 1.5 이하 또는 1.3 이하의 값을 갖는 것을 특징으로 할 수 있다.
전술한 기재 이외에 반응압력, 그라프트율, 전해질이나 분자량조절제 등의 첨가제와 같은 다른 반응조건들은 본 발명이 속한 기술분야에서 통상적으로 실시되고 있는 범위 내인 경우 특별히 제한되지 않으며, 필요에 따라 적절히 선택하여 실시할 수 있음을 명시한다.
나아가 상기 제조방법에 따라 제조된 ABS계 수지 조성물은 사출하는 단계를 포함하여 ABS계 사출성형품으로 제조될 수 있다.
일례로, 본 발명의 ABS계 사출성형품 제조방법은 상기 ABS계 그라프트 공중합체 10 내지 50 중량% 및 방향족 비닐 단량체-비닐시안 단량체 공중합체 50 내지 90 중량%를 혼합하여 압출한 뒤, 이를 사출하는 단계를 포함할 수 있으며, 상술한 범위내로 혼합하여 ABS계 사출성형품을 제조하면 표면특성 및 물성 밸런스가 우수한 이점이 있다.
또 다른 일례로, 본 발명의 ABS계 사출성형품 제조방법은 ABS계 그라프트 공중합체 20 내지 40 중량% 및 방향족 비닐 단량체-비닐시안 단량체 공중합체 60 내지 80 중량%를 혼합하여 압출한 뒤, 이를 사출하는 단계를 포함할 수 있으며, 상술한 범위내로 혼합하여 ABS계 사출성형품을 제조하면 표면특성 및 물성 밸런스가 우수한 이점이 있다.
또 다른 일례로, 본 발명의 ABS계 사출성형품 제조방법은 ABS계 그라프트 공중합체 25 내지 30 중량% 및 방향족 비닐 단량체-비닐시안 단량체 공중합체 70 내지 75 중량%를 혼합하여 압출한 뒤, 이를 사출하는 단계를 포함할 수 있으며, 상술한 범위내로 혼합하여 ABS계 사출성형품을 제조하면 표면특성 및 물성 밸런스가 우수한 이점이 있다.
상기 압출은 일례로 200 내지 240 ℃ 및 140 내지 190 rpm, 또는 200 내지 220 ℃ 및 150 내지 180 rpm인 조건에서 실시할 수 있고, 이 범위 내에서 목적하는 기계적 특성을 갖는 ABS계 사출성형품의 제조가 가능할 수 있다.
상기 사출은 일례로 200 내지 230 ℃ 및 70 내지 90 bar, 또는 200 내지 220 ℃ 및 70 내지 80 bar인 조건에서 실시될 수 있고, 이 범위 내에서 목적하는 기계적 특성을 갖는 ABS계 사출성형품의 제조가 가능할 수 있다.
또한, 상기 사출 시에는 가스발생량(TVOC)이 4,500 ppm 이하, 3,000 ppm 이하, 2,500 ppm 이하, 2,000 ppm 이하 또는 1,500 ppm 이하인 것이 바람직할 수 있으며, 이 범위 내에서 사출성형품의 표면 광택성 및 선명도 등이 향상되는 효과가 있다.
본 기재에서 상기 가스발생량(TVOC)은 수지 조성물 1g에 대해 200 내지 300℃에서 1 시간 동안 발생되는 VOC의 양을 가스크로마토그래피를 사용하여 측정할 수 있다.
상술한 ABS계 사출성형품의 제조방법에서 명시적으로 기재하지 않은 다른 조건들은 본 발명이 속하는 기술분야에서 통상적으로 실시되고 있는 범위 내인 경우 특별히 제한되지 않으며, 필요에 따라 적절히 선택할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1
1. 대구경 디엔계 고무 라텍스 제조
질소 치환된 중합반응기(오토크레이브)에 이온교환수 55 중량부, 단량체로 1,3-부타디엔 100 중량부 중 85 중량부, 유화제로 이량체 산 칼륨염(Cas No. 67701-19-3) 1.5 중량부, 전해질로 탄산칼륨(K2CO3) 0.15 중량부, 분자량조절제로 3급 도데실메르캅탄(TDDM) 0.3 중량부, 개시제로 포타슘 퍼설페이트 0.3 중량부를 일괄 투여하고, 반응온도 70℃에서 중합전환율 35 내지 45%까지 중합반응시켰다.
다음으로 포타슘 퍼설페이트 0.3 중량부를 일괄 투입하고, 1,3-부타디엔의 나머지 중량부를 중합반응 전환율 70 내지 80%까지 연속 투입하여 반응시킨 후에 로진산 비누화물 0.3 중량부를 일괄 투입하여 반응시킨 후 전환율 93%에서 반응을 종료하였다.
2. ABS계 그라프트 공중합체 제조
다음으로 질소 치환된 중합반응기에 상기 대구경 디엔계 고무 라텍스(평균입경 3200 Å, 응고물 함량 0.04 중량%) 60 중량부 및 이온교환수 100 중량부에 별도의 혼합장치에서 혼합된 아크릴로니트릴 10 중량부, 스티렌 30 중량부, 이온교환수 25 중량부, t-부틸 하이드로퍼옥사이드 0.12 중량부, 이량체 산 칼륨염(Cas No. 67701-19-3) 0.7 중량부 및 3급 도데실메르캅탄 0.35 중량부로 이루어진 혼합용액과 덱스트로즈 0.054 중량부, 피롤인산 나트륨 0.004 중량부 및 황산제일철 0.002 중량부를 함께 70 ℃에서 3 시간 동안 투입하였다.
상기 투입이 끝난 후, 덱스트로즈 0.05 중량부, 피롤인산 나트륨 0.03 중량부, 황산제일철 0.001 중량부, t-부틸 하이드로퍼옥사이드 0.05 중량부를 상기 중합반응기에 일괄 투입하고, 온도를 80 ℃까지 1 시간에 걸쳐 승온한 다음 반응을 종결하여 ABS계 그라프트 공중합체 라텍스를 제조하였다. 이때 중합전환율은 97%였다.
3. ABS계 사출성형품의 제조
상기에서 제조된 ABS계 그라프트 공중합체 라텍스를 황산 수용액으로 응고시켜 세척 및 건조한 뒤 분말을 얻고, 이 분말 27.5 중량부와 SAN(LG화학 제품, 제품명: 92HR, 아크릴로니트릴 27 중량% 및 스티렌 73 중량% 포함) 72.5 중량부를 혼합기에 넣어 혼합하여 ABS계 수지 조성물을 제조하였다.
다음으로, 상기 수지 조성물을 압출기(압출온도 210 ℃, 160 rpm)를 이용하여 펠렛화한 다음 사출기(사출온도 210 ℃, 사출압력 80 bar, Engel ES 200/45 HL-Pro Series)를 이용하여 물성 측정을 위한 시편을 얻었다.
실시예 2
상기 실시예 1에서 이량체 산 칼륨염 대신 이량체 산 칼륨염과 로진산 비누화물을 50:50의 중량비로 혼합하여 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
실시예 3
실시예 1에서 이량체 산 칼륨염 대신 이량체 산 칼륨염과 C16 내지 C18인 지방산 비누화물을 50:50의 중량비로 혼합하여 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
실시예 4
실시예 1에서 이량체 산 칼륨염 대신 이량체 산 칼륨염, 로진산 비누화물 및 C16 내지 C18인 지방산 비누화물을 50:25:25의 중량비로 혼합하여 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
비교예 1
실시예 1에서 이량체 산 칼륨염 대신 C16 내지 C18인 지방산 비누화물을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
[시험예]
상기 실시예 1-4 및 비교예 1에서 제조된 시료의 특성을 하기의 방법으로 측정하였고, 그 결과를 하기의 표 1에 나타내었다.
가스발생량(TVOC)(ppm)
HS-GC/MSD를 이용하여 상기 실시예 및 비교예에서 제조된 ABS계 수지조성물 1g에 대해 250℃에서 1 시간 동안 발생되는 휘발성 유기 화합물(VOC)의 총량을 분석하였다.
선명도(reflection haze)
광택시편을 이용하여 표준측정 ASTM E430에 따라 17 내지 19° 및 21 내지 23°사이의 광택 수치를 더하여 선명도를 측정하였다.
광택도(Gloss, 45°)
45°에서 ASTM D528에 따라 시편의 광택도를 측정하였다.
응고물 함량(Coagulum, g/100g)
반응조 내에 생성된 응고물의 무게, 총 고무의 무게 및 단량체의 무게를 측정하고 하기 수학식 2를 사용하여 ABS계 그라프트 공중합체 라텍스의 고형 응고물의 함량을 계산하였다.
[수학식 2]
응고물 함량 = 반응조 내부에 생성된 응고물의 무게(g) / 총 고무의 무게 및 단량체의 무게(100g)
실시예 1 실시예 2 실시예 3 실시예 4 비교예 1
가스발생량 [ppm] 1,400 1,800 2,600 2,100 4,800
선명도 1.1 1.2 1.4 1.3 2.7
광택도 99.9 98.4 97.7 97.5 89.1
ABS 라텍스의 응고물 함량 [g/100g] 0.09 0.05 0.06 0.02 0.16
상기 표 1에서 보는 바와 같이, ABS계 수지 조성물 제조 시, 디엔계 고무 라텍스 및 ABS계 그라프트 중합 단계에서 유화제로 이량체 산 칼륨염을 포함하여 사용한 실시예 1 내지 4의 경우, 그렇지 않은 비교예 1 대비 가스발생량(TVOC)이 상당히 작은 것을 확인할 수 있으며, 이는 이량체 산 칼륨염이 종래 유화제 대비 분자량이 높아 잘 기화되지 않는 특성으로부터 기인한 것으로 볼 수 있다.
또한, 본 발명에 따른 ABS계 사출성형품은 상기와 같이 가스발생량(TVOC)이 적은 값을 가짐에 따라 비교예 1 대비 반사 헤이즈 값이 낮고 광택도는 높은 우수한 표면 특성을 나타내는 것을 확인할 수 있다.
아울러, ABS계 그라프트 공중합체 라텍스의 응고물 함량은 실시예 1 내지 4의 값이 비교예 1 대비 낮은 값을 갖는 것을 확인할 수 있었으며, 유화제로 이량체 산 칼륨염과 로진산 비누화물을 혼합하여 사용한 실시예 2 및 실시예 4의 경우 응고물 함량이 더욱 낮은 값을 갖는 것을 확인할 수 있었다.

Claims (16)

  1. a) 공액 디엔계 단량체 100 중량부, 유화제 0.5 내지 5 중량부, 수용성 중합개시제 0.01 내지 6 중량부를 투입하여 중합반응 시키는 단계; b) 상기 a) 단계 후, 중합 전환율 60 내지 85% 시점에서 유화제 0.01 내지 5 중량부를 투입하는 단계; c) 중합 전환율 90 내지 99% 시점에서 중합반응을 종결하여 대구경 디엔계 고무 라텍스를 수득하는 단계; d) 상기 대구경 디엔계 고무 라텍스 40 내지 70 중량%(고형분 기준), 방향족 비닐 단량체 15 내지 35 중량% 및 비닐시안 단량체 5 내지 25 중량%를 포함하는 단량체 혼합물 100 중량부에, 유화제 0.01 내지 3 중량부, 개시제 0.01 내지 3 중량부 및 산화-환원계 촉매 0.001 내지 1 중량부를 그라프트 중합반응시키는 단계; e) 상기 그라프트 중합의 전환율 90 내지 99% 시점에 중합반응을 종결하여 ABS계 그라프트 공중합체를 수득하는 단계; 및 f) 상기 ABS계 그라프트 공중합체 및 방향족 비닐 단량체-비닐시안 단량체 공중합체를 혼합하여 ABS계 수지 조성물을 제조하는 단계;를 포함하되,
    상기 a) 단계 및 상기 d) 단계의 유화제는 불포화 지방산의 다량체 산(multimer acid) 또는 이의 금속염을 포함하고,
    상기 ABS계 수지 조성물은 광택도(45°)가 90 이상인 것을 특징으로 하는 ABS계 수지 조성물의 제조방법.
  2. 제 1항에 있어서,
    상기 ABS계 수지 조성물은 반사 헤이즈(reflection haze)가 2 이하인 것을 특징으로 하는 ABS계 수지 조성물의 제조방법.
  3. 제 1항에 있어서,
    상기 불포화 지방산은 탄소수 8 내지 22 개의 직쇄형 또는 분기형 또는 고리형 불포화 지방산인 것을 특징으로 하는 ABS계 수지 조성물의 제조방법.
  4. 제 1항에 있어서,
    상기 다량체 산은 이량체 산(dimer acid)인 것을 특징으로 하는 ABS계 수지 조성물의 제조방법.
  5. 제 4항에 있어서,
    상기 이량체 산은 하기 화학식 1 내지 6으로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 ABS계 수지 조성물의 제조방법.
    [화학식 1]
    Figure PCTKR2017008312-appb-I000007
    [화학식 2]
    Figure PCTKR2017008312-appb-I000008
    [화학식 3]
    Figure PCTKR2017008312-appb-I000009
    [화학식 4]
    Figure PCTKR2017008312-appb-I000010
    [화학식 5]
    Figure PCTKR2017008312-appb-I000011
    [화학식 6]
    Figure PCTKR2017008312-appb-I000012
  6. 제 1항에 있어서,
    상기 금속염은 알칼리금속염 또는 알칼리토금속염인 것을 특징으로 하는 ABS계 수지 조성물의 제조방법.
  7. 제 6항에 있어서,
    상기 알칼리금속염은 나트륨염 또는 칼륨염인 것을 특징으로 하는 ABS계 수지 조성물의 제조방법.
  8. 제 6항에 있어서,
    상기 알칼리토금속염은 마그네슘염 또는 칼슘염인 것을 특징으로 하는 ABS계 수지 조성물의 제조방법.
  9. 제 1항에 있어서,
    상기 a) 단계의 유화제, 상기 d) 단계의 유화제 또는 이들 유화제는 알킬 아릴 설포네이트, 알카리메틸 알킬 설페이트, 설포네이트화된 알킬에스테르 및 불포화 지방산의 금속염으로 이루어지는 군으로부터 선택된 1종 이상의 보조 유화제를 상기 유화제 총 100 중량%에 대하여 20 내지 80 중량%로 포함하는 것을 특징으로 하는 ABS계 수지 조성물의 제조방법.
  10. 제 1항에 있어서,
    상기 a) 단계는, a-1) 사용되는 공액 디엔계 단량체 총 100 중량부 중 45 내지 90 중량부, 유화제 0.5 내지 5 중량부, 수용성 중합개시제 0.01 내지 3 중량부를 투입하여 중합반응 시키는 단계; 및 a-2) 상기 a-1) 단계 후 중합 전환율 25 내지 55% 시점에서 상기 공액 디엔계 단량체 10 내지 55 중량부 및 수용성 중합개시제 0.01 내지 3 중량부를 투입하는 단계; 를 포함하는 것을 특징으로 하는 ABS계 수지 조성물의 제조방법.
  11. 제 10항에 있어서,
    상기 a-2) 단계에서 상기 공액 디엔계 단량체 10 내지 55 중량부는 중합 전환율 60 내지 85% 시점까지 연속 투입되는 것을 특징으로 하는 ABS계 수지 조성물의 제조방법.
  12. 제 1항에 있어서,
    상기 대구경 디엔계 고무 라텍스는 평균입경이 2700 내지 3300 Å이고, 응고물 함량이 0.1 중량% 이하인 것을 특징으로 하는 ABS계 수지 조성물의 제조방법.
  13. 제 1항에 있어서,
    상기 d) 단계는, d-1) 상기 단량체 혼합물 100 중량부에, 유화제 0.01 내지 3 중량부, 개시제 0.01 내지 2 중량부 및 산화-환원계 촉매 0.0001 내지 0.4 중량부를 50 내지 90℃에서 2 내지 5 시간 동안 반응시키는 제 1차 그라프트 중합 단계; d-2) 상기 제 1차 그라프트 중합 단계 후, 개시제 0.01 내지 1 중량부 및 산화-환원계 촉매 0.001 내지 0.6 중량부를 투입하는 단계; 및 d-3) 상기 d-2)의 투입 후, 승온속도 10 내지 15 ℃/시간으로 60 내지 100℃(상기 d-1) 단계의 반응온도 보다 높음)까지 승온하여 반응시키는 제 2차 그라프트 중합 단계;를 포함하는 것을 특징으로 하는 ABS계 수지 조성물의 제조방법.
  14. 제 1항에 있어서,
    상기 ABS계 수지 조성물은 사출성형품 제조에 사용되는 것을 특징으로 하는
    ABS계 수지 조성물의 제조방법.
  15. 제 1항 내지 제 14항 중 어느 한 항의 제조방법에 따라 제조된 ABS계 수지 조성물을 사출하는 단계를 포함하는 것을 특징으로 하는
    ABS계 사출성형품의 제조방법.
  16. 제 15항에 있어서,
    상기 사출 시 가스발생량(TVOC)이 4,500 ppm 이하인 것을 특징으로 하는
    ABS계 사출성형품의 제조방법.
PCT/KR2017/008312 2016-11-01 2017-08-01 Abs계 수지 조성물의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법 WO2018084408A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/068,873 US10717802B2 (en) 2016-11-01 2017-08-01 Method of preparing ABS-based resin composition and method of manufacturing ABS-based injection-molded article including the same
EP17866938.8A EP3381957B1 (en) 2016-11-01 2017-08-01 Method for preparing abs resin composition and method for preparing abs injection-molded product comprising same
JP2018533740A JP6629974B2 (ja) 2016-11-01 2017-08-01 Abs系樹脂組成物の製造方法及びそれを含むabs系射出成形品の製造方法
CN201780005141.4A CN108473636B (zh) 2016-11-01 2017-08-01 制备abs类树脂组合物的方法和制造包含该组合物的abs类注塑制品的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0144437 2016-11-01
KR1020160144437A KR102078199B1 (ko) 2016-11-01 2016-11-01 Abs계 수지 조성물의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법

Publications (1)

Publication Number Publication Date
WO2018084408A1 true WO2018084408A1 (ko) 2018-05-11

Family

ID=62076130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008312 WO2018084408A1 (ko) 2016-11-01 2017-08-01 Abs계 수지 조성물의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법

Country Status (7)

Country Link
US (1) US10717802B2 (ko)
EP (1) EP3381957B1 (ko)
JP (1) JP6629974B2 (ko)
KR (1) KR102078199B1 (ko)
CN (1) CN108473636B (ko)
TW (1) TWI734851B (ko)
WO (1) WO2018084408A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021512982A (ja) * 2018-12-14 2021-05-20 エルジー・ケム・リミテッド ビニルシアン化合物−共役ジエン化合物−芳香族ビニル化合物グラフト共重合体の製造方法、及びそのグラフト共重合体を含む熱可塑性樹脂組成物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102049890B1 (ko) * 2016-11-01 2019-11-28 주식회사 엘지화학 충격강도가 향상된 abs계 그라프트 공중합체의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
KR102419952B1 (ko) * 2018-09-18 2022-07-13 주식회사 엘지화학 공액 디엔계 중합체의 제조방법 및 이를 포함하는 그라프트 공중합체의 제조방법
WO2020060147A1 (ko) * 2018-09-18 2020-03-26 주식회사 엘지화학 공액 디엔계 중합체의 제조방법 및 이를 포함하는 그라프트 공중합체의 제조방법
KR20200077384A (ko) 2018-12-20 2020-06-30 주식회사 엘지화학 디엔계 고무 라텍스, 이의 제조방법 및 이를 포함하는 코어-쉘 구조의 그라프트 공중합체
KR102511428B1 (ko) * 2019-09-20 2023-03-20 주식회사 엘지화학 디엔계 고무질 중합체의 제조방법 및 이를 포함하는 그라프트 중합체의 제조방법
KR102558312B1 (ko) * 2019-09-27 2023-07-24 주식회사 엘지화학 공액 디엔계 중합체의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755592B1 (ko) * 2000-03-10 2007-09-06 란세스 도이치란트 게엠베하 미분된 폴리부타디엔 라텍스의 응집 방법
KR101223295B1 (ko) * 2010-07-06 2013-01-16 주식회사 엘지화학 고무질 중합체의 제조방법 및 이를 이용한 고무 강화 열가소성 수지 조성물
KR20130057139A (ko) * 2011-11-23 2013-05-31 주식회사 엘지화학 그라프트 공중합체의 제조방법
CN104987775A (zh) * 2015-07-17 2015-10-21 苏州世名科技股份有限公司 使用反应型乳化剂制备原液着色用包覆颜料色浆的方法
KR20160071250A (ko) * 2014-12-11 2016-06-21 주식회사 엘지화학 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 열가소성 수지

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG34284A1 (en) * 1994-12-02 1996-12-06 Gen Electric Impact modified vinyl chloride resin composition and graft copolymer compositions
EP0714949A2 (en) * 1994-12-02 1996-06-05 General Electric Company Processes, thermoplastic compositions and emulsion graft copolymer utilizing a polyacid
JPH08176351A (ja) 1994-12-21 1996-07-09 Lion Corp タイヤトレッドゴム用軟化剤及び該軟化剤を配合したタイヤトレッド用ゴム組成物
KR100527095B1 (ko) 2003-12-30 2005-11-09 제일모직주식회사 백색도와 표면 광택이 우수한 열가소성 공중합체 수지의제조 방법
KR101515329B1 (ko) * 2013-06-28 2015-04-24 주식회사 엘지화학 표면선명성과 광택도가 우수한 열가소성 수지 조성물의 제조방법
WO2014208965A1 (ko) * 2013-06-28 2014-12-31 (주) 엘지화학 표면선명성과 광택도가 우수한 열가소성 수지 조성물의 제조방법
KR102049890B1 (ko) * 2016-11-01 2019-11-28 주식회사 엘지화학 충격강도가 향상된 abs계 그라프트 공중합체의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
KR102044364B1 (ko) * 2016-11-11 2019-11-13 주식회사 엘지화학 열가소성 수지 및 열가소성 수지 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755592B1 (ko) * 2000-03-10 2007-09-06 란세스 도이치란트 게엠베하 미분된 폴리부타디엔 라텍스의 응집 방법
KR101223295B1 (ko) * 2010-07-06 2013-01-16 주식회사 엘지화학 고무질 중합체의 제조방법 및 이를 이용한 고무 강화 열가소성 수지 조성물
KR20130057139A (ko) * 2011-11-23 2013-05-31 주식회사 엘지화학 그라프트 공중합체의 제조방법
KR20160071250A (ko) * 2014-12-11 2016-06-21 주식회사 엘지화학 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 열가소성 수지
CN104987775A (zh) * 2015-07-17 2015-10-21 苏州世名科技股份有限公司 使用反应型乳化剂制备原液着色用包覆颜料色浆的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021512982A (ja) * 2018-12-14 2021-05-20 エルジー・ケム・リミテッド ビニルシアン化合物−共役ジエン化合物−芳香族ビニル化合物グラフト共重合体の製造方法、及びそのグラフト共重合体を含む熱可塑性樹脂組成物
JP7011073B2 (ja) 2018-12-14 2022-01-26 エルジー・ケム・リミテッド ビニルシアン化合物-共役ジエン化合物-芳香族ビニル化合物グラフト共重合体の製造方法、及びそのグラフト共重合体を含む熱可塑性樹脂組成物

Also Published As

Publication number Publication date
TW201821443A (zh) 2018-06-16
US10717802B2 (en) 2020-07-21
EP3381957A1 (en) 2018-10-03
JP6629974B2 (ja) 2020-01-15
KR20180047750A (ko) 2018-05-10
EP3381957A4 (en) 2019-03-27
US20190016841A1 (en) 2019-01-17
CN108473636B (zh) 2020-10-27
CN108473636A (zh) 2018-08-31
EP3381957B1 (en) 2020-09-30
KR102078199B1 (ko) 2020-02-17
JP2019502002A (ja) 2019-01-24
TWI734851B (zh) 2021-08-01

Similar Documents

Publication Publication Date Title
WO2018084408A1 (ko) Abs계 수지 조성물의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
WO2018084436A1 (ko) 충격강도가 향상된 abs계 그라프트 공중합체의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
WO2018084486A2 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 asa계 수지 조성물의 제조방법 및 asa계 성형품의 제조방법
WO2016204566A1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
WO2017142172A1 (ko) 고무질 중합체와 이의 제조방법, 그라프트 공중합체 및 열가소성 수지 조성물
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2016195436A1 (ko) 염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2022010053A1 (ko) 열가소성 수지 및 이의 제조방법
WO2018174395A1 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 성형품의 제조방법
WO2021060743A1 (ko) 그라프트 중합체의 제조방법
WO2018124562A1 (ko) Abs계 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2016204485A1 (ko) 열가소성 수지, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2021118063A1 (ko) 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2021060833A1 (ko) 공액 디엔계 중합체의 제조방법
WO2021015485A1 (ko) 아크릴계 공중합체 응집제 및 이를 이용한 그라프트 공중합체의 제조방법
WO2017105003A1 (ko) 열가소성 중합체, 이의 제조방법 및 이를 포함하는 열가소성 중합체 조성물
WO2018084407A1 (ko) 디엔계 고무 라텍스의 제조방법, 이를 포함하는 abs계 그라프트 공중합체의 제조방법 및 abs계 사출성형품의 제조방법
WO2018088677A1 (ko) 열가소성 수지 및 열가소성 수지 조성물
WO2020060147A1 (ko) 공액 디엔계 중합체의 제조방법 및 이를 포함하는 그라프트 공중합체의 제조방법
WO2015016520A1 (ko) 고무강화 열가소성 수지의 제조방법
WO2019098753A1 (ko) 그라프트 공중합체의 제조방법
WO2019164176A1 (ko) Abs계 그라프트 공중합체의 제조방법 및 열가소성 수지 조성물의 제조방법
WO2023008808A1 (ko) 열가소성 수지 조성물
WO2022085893A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2023054984A1 (ko) 그래프트 중합체의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017866938

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018533740

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017866938

Country of ref document: EP

Effective date: 20180625

NENP Non-entry into the national phase

Ref country code: DE