WO2017105003A1 - 열가소성 중합체, 이의 제조방법 및 이를 포함하는 열가소성 중합체 조성물 - Google Patents

열가소성 중합체, 이의 제조방법 및 이를 포함하는 열가소성 중합체 조성물 Download PDF

Info

Publication number
WO2017105003A1
WO2017105003A1 PCT/KR2016/013816 KR2016013816W WO2017105003A1 WO 2017105003 A1 WO2017105003 A1 WO 2017105003A1 KR 2016013816 W KR2016013816 W KR 2016013816W WO 2017105003 A1 WO2017105003 A1 WO 2017105003A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
thermoplastic polymer
chain fatty
fatty acid
parts
Prior art date
Application number
PCT/KR2016/013816
Other languages
English (en)
French (fr)
Inventor
석재민
정영환
김영민
이진형
한수정
김유빈
정선행
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150180638A external-priority patent/KR102060107B1/ko
Priority claimed from KR1020150180637A external-priority patent/KR102019325B1/ko
Priority claimed from KR1020150180635A external-priority patent/KR101949866B1/ko
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to JP2017542472A priority Critical patent/JP6515190B2/ja
Priority to US15/552,238 priority patent/US10508168B2/en
Priority to CN201680013082.0A priority patent/CN107406594B/zh
Priority to EP16875945.4A priority patent/EP3243860B1/en
Publication of WO2017105003A1 publication Critical patent/WO2017105003A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/28Emulsion polymerisation with the aid of emulsifying agents cationic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/08Butenes
    • C08F210/10Isobutene
    • C08F210/12Isobutene with conjugated diolefins, e.g. butyl rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/01Additive used together with the catalyst, excluding compounds containing Al or B
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present invention relates to a thermoplastic polymer, a method for preparing the same, and a thermoplastic polymer composition comprising the same, and more particularly, as an emulsifier, when polymerizing a rubber polymer or when polymerizing a core and / or shell of a thermoplastic polymer including a core-shell structure.
  • a chain fatty acid having a specific branch or functional group or salts thereof reducing the amount of gas generated during the high temperature extrusion and injection process to improve the surface gloss and clarity of the resin, and also to provide a latex stability thermoplastic polymer, the preparation thereof
  • a method and a thermoplastic polymer composition comprising the same.
  • ABS resins may be used in automotive, electrical, and electrical applications due to the rigidity and chemical resistance of It is widely used in electronic products and office equipment.
  • the surface gloss and sharpness of these ABS resins is one of the important factors that determine the quality of the processed molding.
  • Factors affecting the surface gloss and sharpness of the ABS resin include not only the size and distribution of the particles, but also gases generated by thermal stabilizers, unreacted monomers, etc. during processing by high temperature extrusion and injection. Accordingly, in order to improve the surface gloss and sharpness of the ABS resin, it is necessary to reduce the amount of gas generated during processing of the resin, and additives for imparting various characteristics to the resin are difficult to exclude completely, and unreacted monomers may also be used. It is difficult to completely remove the resin in the process of processing. Therefore, the development of a technology that specifically identifies the components of the gas generated during the processing of the resin and thereby reduces the amount of gas generated is continuously required in the related industry.
  • Patent Document 1 KR1996-0014181 A
  • the present invention relates to a chain fatty acid having a specific branching or functional group as an emulsifier, or a polymer thereof, in the polymerization of a rubber polymer or in the core and / or shell polymerization of a thermoplastic polymer comprising a core-shell structure.
  • an object of the present invention is to provide a thermoplastic polymer having excellent latex stability by reducing the amount of gas generated during high-temperature extrusion and injection, thereby improving the surface gloss and clarity of the resin.
  • thermoplastic polymer It is another object of the present invention to provide a method for producing the thermoplastic polymer.
  • thermoplastic polymer composition comprising the thermoplastic polymer.
  • the present invention is a rubber polymer, or a core-shell polymer comprising the rubber polymer as a core, wherein at least one of the rubber polymer and the shell is branched chain fatty acid; Chain fatty acids including functional groups; And salts thereof; Provides a thermoplastic polymer characterized in that the polymerization, including one or more selected from the group consisting of.
  • the rubber polymer may be, for example, a conjugated diene rubber polymer.
  • the core-shell polymer may include, for example, (a) a core comprising a conjugated diene rubber polymer; And (b) a shell surrounding the core and polymerized with an aromatic vinyl compound and a vinyl cyan compound.
  • the conjugated diene rubber polymer is, for example, a group consisting of 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene, isoprene and chloroprene It may be polymerized including at least one conjugated diene-based compound selected from.
  • the core may be included in 30 to 80% by weight
  • the shell may be included in 20 to 70% by weight.
  • the aromatic vinyl compound may be, for example, one or more selected from the group consisting of styrene, ⁇ -methylstyrene, p-methylstyrene, o-methylstyrene, p-ethylstyrene, and vinyltoluene.
  • the vinyl cyan compound may be at least one selected from the group consisting of, for example, acrylonitrile, methacrylonitrile, and ethacrylonitrile.
  • the branched chain fatty acid may be, for example, a chain fatty acid including 1 to 10 branches of an alkyl group having 1 to 10 carbon atoms.
  • the functional group of the chain fatty acid including the functional group may be, for example, an alkoxy group including a hydroxy group or an alkyl group having 1 to 10 carbon atoms.
  • the branched chain fatty acid or the chain fatty acid including the functional group may be, for example, a chain fatty acid having 14 to 22 carbon atoms in each main chain.
  • the branched chain fatty acid or the chain fatty acid including the functional group may be, for example, an unsaturated chain fatty acid having an unsaturation of 1 to 20 in each main chain.
  • One or more selected from the group consisting of the branched chain fatty acid, the chain fatty acid including a functional group, and salts thereof included in the rubber polymer is, for example, 100 wt% of the rubber polymer. It may be included in 1 to 7 parts by weight based on parts.
  • At least one selected from the group consisting of the branched chain fatty acid, the chain fatty acid including a functional group, and salts thereof contained in the shell may be, for example, 0.01 to 5 based on 100 parts by weight of the total monomers included in the core and the shell. It may be included in parts by weight.
  • the present invention comprises the steps of polymerizing a monomer to be a rubber to prepare a rubber polymer; Or polymerizing the rubber polymer with a monomer to be grafted to prepare a polymer having a core-shell structure, wherein the polymerization includes a branched chain fatty acid and a functional group. It provides a method for producing a thermoplastic polymer, characterized in that the polymerization comprises one or more selected from the group consisting of chain fatty acids and salts thereof.
  • the rubber monomer may be, for example, a conjugated diene compound.
  • the grafted monomer may be, for example, an aromatic vinyl compound and a vinyl cyan compound.
  • the present invention provides a thermoplastic polymer composition comprising the thermoplastic polymer and the aromatic vinyl compound-vinyl cyan compound copolymer.
  • thermoplastic polymer may be included in 10 to 50% by weight
  • aromatic vinyl compound-vinylcyan compound copolymer may be included in 50 to 90% by weight.
  • thermoplastic polymer composition may have a surface sharpness (Haze) of 2.5 or less.
  • thermoplastic polymer composition may have a surface gloss of 90 or more.
  • thermoplastic polymers comprising a core-shell structure
  • a chain fatty acid having a specific branch or functional group or salt thereof is included as an emulsifier
  • Figure 2 is a TGA test comparison showing the thermal stability of hydrogenated ricinoleic acid, stearic acid and fatty acids.
  • the inventors of the present invention have confirmed that there are gas stabilizer, heat stabilizer, oligomer remaining after polymerization, unreacted monomer and emulsifier which are not easily removed during the dehydration process. .
  • the present inventors prior to the process of selecting the emulsifier to replace the fatty acid-based emulsifier used in order to control the type of the emulsifier of the above materials, the present invention for reducing the gas generation in high temperature extrusion and injection process According to the purpose of the boiling point (boiling point) and TGA test emulsifiers with higher thermal stability was selected.
  • ricinoleic acid is hydrogenated ricinoleic acid, a chain fatty acid containing a functional group, a saturated fatty acid stearic acid, which does not include a branch or a functional group, and a fatty acid-based emulsifier.
  • the TGA test comparison results of fatty acids (FAD acid: mixture of palmitic acid, oleic acid and stearic acid) contained in the solution are shown. Looking at the following Table 2 summarizes the TGA test comparison results, it can be seen that the hydrogenated ricinoleic acid is superior in thermal stability than stearic acid and fatty acids.
  • the present inventors selected chain fatty acids having a specific branch or functional group as a newly introduced emulsifier, and used the emulsifier when polymerizing a rubber polymer or when core and / or shell polymerizing a thermoplastic polymer including a core-shell structure.
  • the surface gloss and the surface sharpness of the resin is improved, and the stability of the latex is also improved, thereby completing the present invention.
  • thermoplastic polymer According to the present invention in detail.
  • the rubber polymer may be, for example, a conjugated diene compound; And branched chain fatty acids, at least one selected from the group consisting of chain fatty acids including functional groups, and salts thereof, and may be polymerized.
  • the conjugated diene compound is, for example, from the group consisting of 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene, isoprene and chloroprene It may be one or more selected.
  • the rubber polymer may be, for example, in the form of a latex in which the polymerized conjugated diene rubber polymer is dispersed in water in a colloidal state.
  • the rubber polymer may be, for example, an average particle diameter of 1,500 to 3,500 mm 3, 2,000 to 3,500 mm 3, or 2,500 to 3,500 mm 3, and a gel content of 60 to 95 weight%, 65 to 90 weight%, or 70 to 90 weight% It can be, and within this range there is an effect of excellent mechanical and physical properties balance.
  • At least one selected from the group consisting of the branched chain fatty acid, a chain fatty acid including a functional group and salts thereof is, for example, 1 to 7 parts by weight, 1 to 5 parts by weight, or 1 based on 100 parts by weight of the conjugated diene compound. It may be included in an amount of 3 to 3 parts by weight, and excellent surface gloss and clarity within this range, and excellent latex stability.
  • Rubber polymer production method of the present invention is a conjugated diene compound; And branched chain fatty acids (branched chain fatty acid), at least one selected from the group consisting of chain fatty acids including a functional group and functional salts thereof, and salts thereof.
  • branched chain fatty acids branched chain fatty acid
  • Polymerization of the rubber polymer may be carried out by emulsion polymerization, for example.
  • the emulsion polymerization method of the rubber polymer is not particularly limited in the case of the emulsion polymerization method generally used in the production method of the rubber polymer.
  • At least one selected from the group consisting of the branched chain fatty acid, a chain fatty acid including a functional group, and salts thereof may serve as an emulsifier during emulsion polymerization of the rubber polymer.
  • thermoplastic polymer includes, for example, a core-shell structure, wherein the shell comprises at least one member selected from the group consisting of branched chain fatty acids, chain fatty acids including functional groups, and salts thereof. It is characterized by including the polymerization.
  • thermoplastic polymer comprises a core-shell structure, wherein the core and the shell are each from a branched chain fatty acid, a chain fatty acid comprising a functional group, and salts thereof It is characterized by including one or more selected polymerized.
  • the core may be, for example, the rubber polymer described above.
  • the core-shell thermoplastic polymer may include, for example, (a) a core including a conjugated diene rubber polymer; And (b) a shell surrounding the core and polymerized with an aromatic vinyl compound and a vinyl cyan compound.
  • the core may include, for example, 30 to 80% by weight, 40 to 75% by weight, or 50 to 70% by weight based on 100% by weight of the total content of the core, the aromatic vinyl compound and the vinyl cyan compound, and within this range, mechanical The physical and surface properties are excellent effects.
  • the shell may be, for example, the rubber polymer, that is, the core may be graft polymerized, and may be 20 to 70% by weight, 25 to 60% by weight based on 100% by weight of the total content of the rubber polymer, the aromatic vinyl compound, and the vinyl cyan compound. %, Or 30 to 50% by weight may be included, within this range there is an excellent effect of mechanical and physical properties balance.
  • the conjugated diene rubber polymer of the core is, for example, 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene, isoprene and chloroprene It may be polymerized including one or more conjugated diene-based compound selected from the group consisting of.
  • the shell may be, for example, graft-polymerized, including the branched chain fatty acid, a chain fatty acid including a functional group, and a salt thereof.
  • the aromatic vinyl compound may be at least one selected from the group consisting of styrene, ⁇ -methylstyrene, p-methylstyrene, o-methylstyrene, p-ethylstyrene, and vinyltoluene, for example. It may be at least one selected from the group consisting of ronitrile, methacrylonitrile and ethacrylonitrile.
  • the aromatic vinyl compound and the vinyl cyan compound of the shell may be included in the range of 1: 1 to 5: 1, or 1.5: 1 to 4: 1, or 2: 1 to 4: 1, based on the weight ratio.
  • the branched chain fatty acid may be, for example, a chain fatty acid including 1 to 10, 1 to 5, or 1 to 3 branches of an alkyl group having 1 to 10, 1 to 5, or 1 to 3 carbon atoms.
  • the alkyl group forming the branch may be, for example, a methyl group, an ethyl group, a propyl group, or an isopropyl group.
  • the branched chain fatty acid is, for example, iso-acid or anisoto-acid for at least one chain fatty acid selected from the group consisting of myristic acid, myristic oleic acid, palmitic acid, stearic acid, oleic acid, linoleic acid and nonadesylic acid. (anteiso-acid), or a mixture thereof.
  • the iso acid refers to a structural isomer having a main chain having a carbon number of (n-1) when carbon number of the branched chain fatty acid main chain is (n) and one hydrogen of carbon number (n-2) is substituted with a methyl group.
  • the said anteiso acid means the structural isomer which has a main chain of carbon number (n-1), and one hydrogen couple
  • isostearic acid which is isoic acid of stearic acid having 18 carbon atoms in the main chain, has 17 carbon atoms in the main chain, in which one hydrogen bonded to carbon 16 is substituted with a methyl group, and is anteisoic acid in stearic acid.
  • isostearic acid has 17 carbon atoms in the main chain, of which one hydrogen bonded to carbon 15 is substituted with a methyl group.
  • the main chain unlike the fatty acids of the carboxyl group (R-COOH) or a carboxylate group (R-COO -) is not specified in the present invention means a chain of carbon full (R- and C) contained in the.
  • the functional group of the chain fatty acid including the functional group may be, for example, a hydroxy group or an alkoxy group including an alkyl group having 1 to 10, 1 to 5, or 1 to 3 carbon atoms, and in each case, the thermal stability of the emulsifier is increased so that extrusion and injection may be performed. By reducing the amount of gas generated when the resin has an excellent surface gloss and sharpness.
  • the functional group may be, for example, a hydroxy group, a methoxy group, an ethoxy group, or an epoxy group.
  • chain fatty acid containing the functional group examples include ricinoleic acid, hydrogenated ricinoleic acid (12-hydroxy octadecanoic acid, 12-hydrox octacdecanoic acid), and 2-hydroxy isocanoic acid (2-hydroxy).
  • eicosanoic acid 3-hydroxy eicosanoic acid, 3-hydroxy octadecanoic acid, 9-hydroxy octadecanoic acid, 10 10-dihydroxy octadecanoic acid, 18-hydroxy octadecanoic acid, 2-hydroxy hexadecanoic acid, 3-hydroxy hexa 3-hydroxy hexadecanoic acid, 16-hydroxy hexadecanoic acid, 14-hydroxy tetradecanoic acid, vernolic acid, 10-hydric acid Hydroxy octadecanoic acid, 11-hydroxy octadecanoic acid, 13-hydroxy octadecanoic acid, 14-hydroxy octadecanoic acid, 10-methoxy octa Cannoic acid, 11-methoxy octadecanoic acid, 12-methoxy octadecanoic acid, 13-methoxy octadecano
  • the salt of the branched chain fatty acid and the chain fatty acid comprising a functional group may be, for example, a metal salt, and the metal may be, for example, an alkali metal or an alkaline earth metal.
  • the branched chain fatty acid and the chain fatty acid including the functional group may be, for example, a chain fatty acid having 14 to 22, 14 to 20, or 16 to 20 carbon atoms in each main chain, and an emulsifier within this range.
  • the thermal stability of the is excellent, there is an effect of reducing the amount of gas generated during extrusion and injection processing.
  • the branched chain fatty acid and the chain fatty acid including the functional group may be, for example, unsaturated chain fatty acids having an unsaturation of 1 to 20, 1 to 10, or 1 to 5 of each main chain, within this range. Latex stability and surface properties are excellent effects.
  • the branched chain fatty acid included in the shell, the chain fatty acid including a functional group and at least one selected from the group consisting of salts thereof are, for example, 0.01 to 5 parts by weight based on a total of 100 parts by weight of monomers contained in the core and the shell. , 0.01 to 3 parts by weight, 0.01 to 2 parts by weight, 0.02 to 1.5 parts by weight, 0.05 to 1.5, or 0.1 to 1 parts by weight, within this range excellent surface gloss and sharpness, excellent latex stability There is.
  • thermoplastic polymer of the present invention include, for example, conjugated diene compounds; And branched chain fatty acids, at least one selected from the group consisting of chain fatty acids including functional groups, and salts thereof, to polymerize to prepare a core, and to the core, Graft polymerization of the aromatic vinyl compound and the vinyl cyan compound to prepare a polymer having a core-shell structure.
  • the method for producing a thermoplastic polymer of the present invention comprises the steps of polymerizing a core; And graft polymerizing the shell in the polymerized core, at least one selected from the group consisting of branched chain fatty acids, chain fatty acids including functional groups, and salts thereof; Characterized in that it comprises a.
  • the method for preparing a thermoplastic polymer of the present invention may include a conjugated diene-based compound; And at least one selected from the group consisting of the branched chain fatty acid, a chain fatty acid including a functional group, and salts thereof, to polymerize to prepare a core, and to the core.
  • the core polymerization and the graft polymerization of the shell may be carried out, for example, by emulsion polymerization.
  • the emulsion polymerization of the core and the emulsion graft polymerization method of the shell are not particularly limited in the case of emulsion polymerization and emulsion graft polymerization, which are generally used in the production method of ABS resin.
  • a method for preparing the thermoplastic polymer may include 50 to 80 parts by weight, or 50 to 70 parts by weight, based on 100 parts by weight of the total weight of the rubbery polymer latex, aromatic vinyl compound, and vinyl cyan compound included as the core. Parts, and 50 to 150 parts by weight of the aqueous medium; 20-50 parts by weight of the mixture of the aromatic vinyl compound and the vinyl cyan compound, or 30-50 parts by weight, 20-50 parts by weight of the aqueous medium, 0.01-5 parts by weight of the low temperature polymerization initiator, and 0.01-5 parts by weight of the oil-soluble polymerization initiator.
  • At least one member selected from the group consisting of the branched chain fatty acid, the chain fatty acid including a functional group and salts thereof may serve as an emulsifier during the emulsion graft polymerization of the core and / or the shell.
  • thermoplastic polymer composition of the present invention is characterized by comprising the thermoplastic polymer and the aromatic vinyl compound-vinyl cyan compound copolymer.
  • thermoplastic polymer composition may be, for example, in a form in which the thermoplastic polymer is dispersed in a matrix resin composed of an aromatic vinyl compound-vinyl cyan compound copolymer, in which case the impact strength and the balance of physical properties are excellent.
  • the aromatic vinyl compound-vinyl cyan compound copolymer may be polymerized by bulk polymerization, and in this case, the impact strength and surface sharpness may be excellent.
  • the aromatic vinyl compound of the aromatic vinyl compound-vinyl cyan compound copolymer may be at least one selected from the group consisting of styrene, ⁇ -methylstyrene, p-methylstyrene, o-methylstyrene, and vinyltoluene, for example. It may be included in 10 to 90% by weight, 30 to 80% by weight, or 50 to 80% by weight relative to the compound-vinyl cyan compound copolymer, there is an excellent effect on the surface properties and gloss within this range.
  • the vinyl cyan compound of the aromatic vinyl compound-vinyl cyan compound copolymer may be, for example, one or more selected from the group consisting of acrylonitrile, methacrylonitrile and ethacrylonitrile, and the aromatic vinyl compound-vinyl cyan compound It may be included in 10 to 90% by weight, 20 to 70% by weight, or 20 to 50% by weight relative to the coalescence, there is an excellent effect of color and physical properties within this range.
  • the thermoplastic polymer may be included in an amount of 10 to 50% by weight, 10 to 40% by weight, or 15 to 40% by weight based on the thermoplastic polymer composition
  • the aromatic vinyl compound-vinyl cyan compound copolymer may be, for example, the thermoplastic It may be included in 50 to 90% by weight, 60 to 90% by weight, or 60 to 85% by weight relative to the polymer composition, there is an excellent impact strength, surface sharpness and gloss within this range.
  • thermoplastic polymer composition may further include additives such as heat stabilizers, light stabilizers, antioxidants, antistatic agents, antibacterial agents, or lubricants, for example, in a range that does not affect their physical properties.
  • additives such as heat stabilizers, light stabilizers, antioxidants, antistatic agents, antibacterial agents, or lubricants, for example, in a range that does not affect their physical properties.
  • thermoplastic polymer composition may have a surface sharpness (Haze) of 2.5 or less, 1 to 2.0, 1 to 1.5, 0.5 to 1.5, or 1.2 to 1.7, and the surface of the resin may have a clear effect within this range.
  • Haze surface sharpness
  • the thermoplastic polymer composition may have a surface gloss of 90 or more, 90 to 99.9, 96 to 99.9, 90 to 99, 95 to 99, or 92 to 97, and within this range, the surface gloss of the resin may be Excellent effect.
  • Example 1-1 except that 2.5 parts by weight of hydrogenated ricinoleic acid soap (12-hydroxy octadecanoic acid soap) was added instead of 2.5 parts by weight of ricinoleic acid soap, Example 1- It carried out by the same method as 1.
  • Example 1-1 In the core polymerization step of Example 1-1, except that 2.5 parts by weight of isostearic acid soap instead of 2.5 parts by weight of ricinoleic acid soap was carried out in the same manner as in Example 1-1.
  • Example 1-1 In the core polymerization step of Example 1-1, 2.5 parts by weight of stearic acid soap instead of 2.5 parts by weight of ricinoleic acid soap was carried out in the same manner as in Example 1-1.
  • Example 1-1 In the core polymerization step of Example 1-1, 2.5 parts by weight of FAD soap instead of 2.5 parts by weight of ricinoleic acid soap was carried out in the same manner as in Example 1-1.
  • thermoplastic resin composition specimens obtained in Examples 1-1 to 1-4 and Comparative Example 1-1 were measured by the following methods, and the results are shown in Table 3 below.
  • VOC volatile organic compound
  • Reflection Haze The reflection haze was measured by adding gloss values between 17 and 19 ° and 21 to 23 ° according to the standard measurement ASTM E430 using a specimen.
  • Coagulum content (Coagulum, weight%): The weight of the coagulum produced in the reaction tank, the weight of the total rubber and the monomer was measured, the coagulum content was calculated by the following equation (2).
  • a nitrogen-substituted polymerization reactor (autoclave), 65 parts by weight of ion-exchanged water, 75 parts by weight of 1,3-butadiene as monomer, 1.5 parts by weight of potassium rosin salt as emulsifier, 0.8 parts by weight of potassium oleate salt, potassium carbonate as electrolyte (K 2 CO 3 ) 0.8 parts by weight, 0.3 parts by weight of tertiary dodecyl mercaptan (TDDM) as a molecular weight regulator, 0.3 parts by weight of potassium persulfate (K 2 S 2 O 8 ) as a polymerization initiator and the reaction temperature 70 °C At 30 to 40% of the polymerization conversion was carried out.
  • TDDM tertiary dodecyl mercaptan
  • styrene mixed in a nitrogen-containing polymerization reactor in a mixture of 60 parts by weight (based on solids) of polybutadiene rubber latex (core) and 100 parts by weight of ion-exchanged water, polymerized in the core polymerization step, 10 parts by weight of acrylonitrile, 25 parts by weight of ion-exchanged water, 0.6 parts by weight of a low temperature polymerization initiator (2,2'-azobis- (2,4-dimethyl-4-methoxyvaleronitrile)), t-butyl hydro 0.6 part by weight of peroxide, 1.0 part by weight of ricinoleic acid soap and 0.3 part by weight of tertiary dodecyl mercaptan (TDDM), 0.027 part by weight of dextrose, 0.002 part by weight of sodium pyrrolate and 0.001 part by weight of ferrous sulfate.
  • the polymerization was carried out while continuously input at 2 ° C.
  • the conversion rate of 92 to 95%, 0.05 parts by weight of dextrose, 0.03 parts by weight of sodium pyrolate, 0.001 parts by weight of ferrous sulfate, and 0.05 parts by weight of t-butyl hydroperoxide The batch was added to the reactor, the temperature was raised to 80 ° C. over 1 hour, polymerization was performed, and the reaction was terminated to prepare an ABS graft copolymer latex (second polymerization step). At this time, the polymerization conversion rate was 98%.
  • the prepared ABS graft copolymer latex was coagulated and washed with an aqueous sulfuric acid solution to obtain a powder, which was mixed with 27.5 parts by weight of the powder and 72.5 parts by weight of a SAN copolymer (product name: 92HR). After pelletizing by using an extruder, a specimen for measuring physical properties was prepared using an injection machine.
  • Example 2-1 In the shell polymerization step of Example 2-1, except that 1.0 parts by weight of hydrogenated ricinoleic acid soap (12-hydroxy octadecanoic acid soap) was added instead of 1.0 parts by weight of ricinoleic acid soap. It carried out by the same method as 1.
  • Example 2-1 In the shell polymerization step of Example 2-1, 1.0 part by weight of isostearic acid soap was added instead of 1.0 part by weight of ricinoleic acid soap, and the same method as in Example 2-1 was carried out.
  • Example 2-1 In the shell polymerization step of Example 2-1, except that 1.0 parts by weight of Vernolic acid soap instead of 1.0 parts by weight of ricinoleic acid soap was carried out in the same manner as in Example 2-1.
  • Example 2-1 In the shell polymerization step of Example 2-1, 1.0 part by weight of a mixed emulsifier of palmitic acid soap, stearic acid soap, and oleic acid soap was added instead of 1.0 part by weight of ricinoleic acid soap, and the same as in Example 2-1. It was carried out by the method.
  • thermoplastic polymer composition specimens obtained in Examples 2-1 to 2-4 and Comparative Example 2-1 were measured in the same manner as in Test Example, and the results are shown in Table 4 below.
  • Comparative Example 2-1 using a mixed emulsifier of saturated fatty acids that do not include a conventional branch or functional group, the amount of gas generation is excessive, the surface sharpness, gloss and impact strength are poor, and octanol-water distribution It was confirmed that the coefficient was high, the coagulant content was poor, and the latex stability was poor.
  • polybutadiene rubber latex (core) polymerized in the core polymerization step in a nitrogen-substituted polymerization reactor 10 parts by weight of acrylonitrile mixed in a separate mixing device, 30 parts by weight of styrene, and ion exchange Water 25 parts by weight, 0.12 parts by weight of t-butyl hydroperoxide, 1.0 parts by weight of ricinoleic acid soap and 0.3 parts by weight of tertiary dodecyl mercaptan, 0.054 parts by weight of dextrose, 0.004 parts by weight of sodium pyrrolate, and 0.002 parts by weight of ferrous sulfate were added together at 70 ° C. for 3 hours.
  • Example 3-1 In the core polymerization step of Example 3-1, 2.5 parts by weight of hydrogenated ricinoleic acid soap (12-hydroxy octadecanoic acid soap) instead of 2.5 parts by weight of ricinoleic acid soap, and in the shell polymerization step, ricinoleic acid
  • the procedure was carried out in the same manner as in Example 3-1, except that 1.0 part by weight of hydrogenated ricinoleic acid soap (12-hydroxy octadecanoic acid soap) was added instead of 1.0 part by weight of soap.
  • Example 3-1 In the core polymerization step of Example 3-1, 2.5 parts by weight of isostearic acid soap was added instead of 2.5 parts by weight of ricinoleic acid soap, and 1.0 part by weight of isostearic acid soap was added instead of 1.0 part by weight of ricinoleic acid soap in the shell polymerization step. Except that was carried out in the same manner as in Example 3-1.
  • Example 3-1 In the core polymerization step of Example 3-1, 2.5 parts by weight of stearic acid soap instead of 2.5 parts by weight of ricinoleic acid soap, and in the shell polymerization step, 1.0 part by weight of stearic acid soap instead of 1.0 parts by weight of ricinoleic acid soap was added. And the same method as in Example 3-1.
  • Example 3-1 In the core polymerization step of Example 3-1, 2.5 parts by weight of FAD soap was added instead of 2.5 parts by weight of ricinoleic acid soap, and in the shell polymerization step, 1.0 part by weight of FAD soap was added instead of 1.0 part by weight of ricinoleic acid soap. And the same method as in Example 3-1.
  • thermoplastic resin composition specimens obtained in Examples 3-1 to 3-4 and Comparative Example 3-1 were measured in the same manner as in Test Example, and the results are shown in Table 5 below.
  • Example 3-1 to 3-4 manufactured according to the present invention compared to Comparative Example 3-1 using a conventional FAD emulsifier, the amount of gas generated is significantly reduced, surface sharpness, The gloss and impact strength were very good, and the octanol-water partition coefficient was low, and the latex stability was improved due to the low coagulant content by controlling the emulsifying power between the hydrophilic vinyl cyanide compound and the hydrophobic monomer aromatic vinyl compound. .
  • the present invention is excellent in the thermal stability of the emulsifier when the chain fatty acid-based emulsifier has a specific branch or functional group, to utilize the characteristics of reducing the amount of gas generated during the extrusion and injection processing of the resin composition, during the polymerization of the rubber polymer Or when using a chain fatty acid salt having a specific branch or functional group in the core and / or shell polymerization of a thermoplastic polymer including a core-shell structure, the surface gloss and the surface sharpness of the resin composition are improved, and the thermoplastic is improved to the stability of the latex. It was confirmed that the polymer and the thermoplastic polymer composition including the same may be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 열가소성 중합체, 이의 제조방법 및 이를 포함하는 열가소성 중합체 조성물에 관한 것으로, 코어-쉘 구조를 포함하는 열가소성 중합체의 쉘 중합 시, 유화제로 특정 분지 또는 관능기를 갖는 사슬 지방산 또는 이들의 염을 포함할 경우, 고온의 압출 및 사출 과정에서 발생하는 가스 발생량을 줄여 수지의 표면 광택 및 선명도가 개선되고, 더불어 라텍스 안정성이 우수한 열가소성 중합체, 이의 제조방법 및 이를 포함하는 열가소성 중합체 조성물을 제공하는 효과가 있다.

Description

열가소성 중합체, 이의 제조방법 및 이를 포함하는 열가소성 중합체 조성물
〔출원(들)과의 상호 인용〕
본 출원은 2015년 12월 17일자 한국 특허 출원 제10-2015-0180635호, 2015년 12월 17일자 한국 특허 출원 제10-2015-0180637호 및 2015년 12월 17일자 한국 특허 출원 제10-2015-0180638호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 열가소성 중합체, 이의 제조방법 및 이를 포함하는 열가소성 중합체 조성물에 관한 것으로, 보다 상세하게는 고무 중합체의 중합 시 또는 코어-쉘 구조를 포함하는 열가소성 중합체의 코어 및/또는 쉘 중합 시, 유화제로 특정 분지 또는 관능기를 갖는 사슬 지방산 또는 이들의 염을 포함할 경우, 고온의 압출 및 사출 과정에서 발생하는 가스 발생량을 줄여 수지의 표면 광택 및 선명도가 개선되고, 더불어 라텍스 안정성이 우수한 열가소성 중합체, 이의 제조방법 및 이를 포함하는 열가소성 중합체 조성물에 관한 것이다.
아크릴로니트릴-부타디엔-스티렌(Acrylonitrile-Butadiene-Styrene, 이하, ABS라 함) 수지는 아크릴로니트릴의 강성 및 내약품성, 부타디엔과 스티렌의 가공성, 기계적 강도 및 미려한 외관 특성으로 인하여 자동차 용품, 전기·전자 제품 및 사무용 기기 등에 다양하게 사용되고 있다. 이러한 ABS 수지의 표면 광택 및 선명도는 가공된 성형품의 품질을 결정짓는 중요한 요인 중 하나이다.
상기 ABS 수지의 표면 광택 및 선명성에 영향을 미치는 인자로는 입자들의 크기, 분포뿐만 아니라, 고온의 압출 및 사출에 의한 가공 시, 열안정제, 미반응 단량체 등으로 인해 발생되는 가스가 있다. 이에, ABS 수지의 표면 광택 및 선명성을 개선하기 위해 수지의 가공 시 발생하는 가스 발생량을 감소시킬 필요가 있는데, 수지에 여러 특성을 부여하기 위한 첨가제는 그 사용을 완전히 배제하기 어렵고, 미반응 단량체도 수지를 가공하는 과정에서 완전히 제거하기는 어려운 실정이다. 따라서, 수지의 가공 시 발생하는 가스의 성분을 구체적으로 확인하고, 이를 통해 가스 발생량을 감소시키는 기술의 개발이 관련 업계에 지속적으로 요구되고 있다.
〔선행기술문헌〕
〔특허문헌〕 (특허문헌 1) KR1996-0014181 A
본 발명은 이러한 종래 기술의 문제점을 극복하기 위해, 고무 중합체의 중합 시 또는 코어-쉘 구조를 포함하는 열가소성 중합체의 코어 및/또는 쉘 중합 시, 유화제로 특정 분지 또는 관능기를 갖는 사슬 지방산 또는 이들의 염을 포함할 경우, 고온의 압출 및 사출 과정에서 발생하는 가스 발생량을 줄여 수지의 표면 광택 및 선명도가 개선되고, 더불어 라텍스 안정성이 우수한 열가소성 중합체를 제공하는 것을 목적으로 한다.
또한 본 발명은 상기 열가소성 중합체의 제조방법을 제공하는 것을 목적으로 한다.
또한 본 발명은 상기 열가소성 중합체를 포함하는 열가소성 중합체 조성물을 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기 목적을 달성하기 위하여, 본 발명은 고무 중합체, 또는 상기 고무 중합체를 코어로 포함하는 코어-쉘 중합체에 있어서, 상기 고무 중합체와 상기 쉘 중 하나 이상이 분지 사슬 지방산(branched chain fatty acid); 관능기(functional group)를 포함하는 사슬 지방산; 및 이들의 염;으로 이루어진 군으로부터 선택된 1종 이상을 포함하여 중합된 것을 특징으로 하는 열가소성 중합체를 제공한다.
상기 고무 중합체는 일례로 공액디엔계 고무질 중합체일 수 있다.
상기 코어-쉘 중합체는 일례로 (a) 공액디엔계 고무질 중합체를 포함하는 코어; 및 (b) 상기 코어를 감싸고, 방향족 비닐 화합물 및 비닐시안 화합물을 포함하여 중합된 쉘;을 포함할 수 있다.
상기 공액디엔계 고무질 중합체는 일례로 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 1,3-펜타디엔, 이소프렌 및 클로로프렌으로 이루어진 군으로부터 선택된 1종 이상의 공액디엔계 화합물을 포함하여 중합된 것일 수 있다.
일례로, 상기 코어는 30 내지 80 중량%로 포함되고, 상기 쉘은 20 내지 70 중량%로 포함될 수 있다.
상기 방향족 비닐 화합물은 일례로 스티렌, α-메틸스티렌, p-메틸스티렌, o-메틸스티렌, p-에틸스티렌 및 비닐톨루엔으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 비닐시안 화합물은 일례로 아크릴로니트릴, 메타크릴로니트릴 및 에타크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 분지 사슬 지방산은 일례로 탄소수 1 내지 10의 알킬기로 이루어진 분지를 1 내지 10개 포함하는 사슬 지방산일 수 있다.
상기 관능기를 포함하는 사슬 지방산의 관능기는 일례로 히드록시기 또는 탄소수 1 내지 10의 알킬기를 포함하는 알콕시기일 수 있다.
상기 분지 사슬 지방산 또는 상기 관능기를 포함하는 사슬 지방산은 일례로 각각의 주사슬(main chain)의 탄소수가 14 내지 22인 사슬 지방산일 수 있다.
상기 분지 사슬 지방산 또는 상기 관능기를 포함하는 사슬 지방산은 일례로 각각의 주사슬(main chain)의 불포화도가 1 내지 20인 불포화 사슬 지방산일 수 있다.
상기 고무 중합체에 포함되는, 상기 분지 사슬 지방산(branched chain fatty acid), 관능기(functional group)를 포함하는 사슬 지방산, 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상은, 일례로 상기 고무 중합체 100 중량부를 기준으로 1 내지 7 중량부로 포함될 수 있다.
상기 쉘에 포함되는, 상기 분지 사슬 지방산, 관능기를 포함하는 사슬 지방산 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상은, 일례로 상기 코어 및 쉘에 포함되는 단량체 총 100 중량부를 기준으로 0.01 내지 5 중량부로 포함될 수 있다.
본 발명은 고무가 되는 단량체를 중합하여 고무 중합체를 제조하는 단계; 또는 상기 고무 중합체에, 그라프트 되는 단량체를 포함하여 중합시켜 코어-쉘 구조의 중합체를 제조하는 단계를 포함하되, 상기 중합은 분지 사슬 지방산(branched chain fatty acid), 관능기(functional group)를 포함하는 사슬 지방산 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상을 포함하여 중합되는 것을 특징으로 하는 열가소성 중합체의 제조방법을 제공한다.
상기 고무가 되는 단량체는 일례로 공액디엔계 화합물일 수 있다.
상기 그라프트 되는 단량체는 일례로 방향족 비닐 화합물 및 비닐시안 화합물일 수 있다.
본 발명은 상기 열가소성 중합체 및 방향족 비닐 화합물-비닐시안 화합물 공중합체를 포함하는 것을 특징으로 하는 열가소성 중합체 조성물을 제공한다.
일례로, 상기 열가소성 중합체는 10 내지 50 중량%로 포함되고, 상기 방향족 비닐 화합물-비닐시안 화합물 공중합체는 50 내지 90 중량%로 포함될 수 있다.
상기 열가소성 중합체 조성물은 일례로 표면 선명성(Haze)이 2.5 이하일 수 있다.
상기 열가소성 중합체 조성물은 일례로 표면 광택도(Gloss)가 90 이상일 수 있다.
본 발명에 따르면, 고무 중합체의 중합 시 또는 코어-쉘 구조를 포함하는 열가소성 중합체의 코어 및/또는 쉘 중합 시, 유화제로 특정 분지 또는 관능기를 갖는 사슬 지방산 또는 이들의 염을 포함할 경우, 고온의 압출 및 사출 과정에서 발생하는 가스 발생량을 줄여 수지의 표면 광택 및 선명도가 개선되고, 더불어 라텍스 안정성이 우수한 열가소성 중합체, 이의 제조방법 및 이를 포함하는 열가소성 중합체 조성물을 제공하는 효과가 있다.
도 1은 리시놀레산 및 지방산의 열안정성을 나타내는 TGA 시험 비교 결과이다.
도 2는 수소화된 리시놀레산, 스테아린산 및 지방산의 열안정성을 나타내는 TGA 시험 비교 결과이다.
이하 본 발명을 상세하게 설명한다.
본 발명자들은 200 내지 270 ℃의 고온에서 수지를 압출 및 사출 시, 가스를 발생시키는 물질로 열안정제, 중합 후 잔류되는 올리고머, 미반응 단량체 및 탈수 과정에서 쉽게 제거되지 않는 유화제 등이 있는 것을 확인하였다.
본 발명자들은 상기 물질들 중 유화제의 종류를 조절하기 위해, 기존에 사용되는 지방산계 유화제를 대체할 유화제를 먼저 선별하는 과정을 선행하였고, 고온의 압출 및 사출 공정에서 가스 발생량을 감소시키기 위한 본 발명의 목적에 따라, 비점(boiling point) 및 TGA 시험을 통해 보다 높은 열안정성을 갖는 유화제를 선별하였다.
하기의 도 1은 리시놀레산(ricinoleic acid) 및 기존에 사용되는 지방산계 유화제에 포함되는 지방산(FADH, Fatty acid)의 TGA 시험 비교 결과를 나타낸다. 상기 TGA 시험 비교 결과를 정리한 하기의 표 1을 살펴보면, 리시놀레산이 지방산 보다 열안정성이 뛰어난 것을 확인할 수 있다.
구분 비누(Soap) 산(acid)
리시놀레산(ricinoleic acid) 10 중량% 손실 온도 273 ℃
270 ℃의 손실량 9 중량%
지방산(FADH) 10 중량% 손실 온도 210 ℃
270 ℃의 손실량 78 중량%
하기의 도 2는 본 발명에 따라 관능기를 포함하는 사슬 지방산인 수소화된 리시놀레산(hydrogenated ricinoleic acid), 분지 또는 관능기를 포함하지 않는 포화 지방산인 스테아린산(stearic acid) 및 기존에 사용되는 지방산계 유화제에 포함되는 지방산(FAD acid: 팔미트산, 올레산 및 스테아르산 혼합물)의 TGA 시험 비교 결과를 나타낸다. 상기 TGA 시험 비교 결과를 정리한 하기의 표 2를 살펴보면, 수소화된 리시놀레산이 스테아린산 및 지방산 보다 열안정성이 뛰어난 것을 확인할 수 있다.
구분 5 중량%(w/w) 손실 온도 50 중량%(w/w) 손실 온도
수소화된 리시놀레산 263 ℃ 455 ℃
스테아린산 237 ℃ 289 ℃
지방산 198 ℃ 262 ℃
이에, 본 발명자들은 새로 도입될 유화제로 특정 분지 또는 관능기를 갖는 사슬 지방산을 선별하였고, 고무 중합체의 중합 시 또는 코어-쉘 구조를 포함하는 열가소성 중합체의 코어 및/또는 쉘 중합 시, 상기 유화제를 사용할 경우, 수지의 표면 광택 및 표면 선명성이 개선되고, 더불어 라텍스의 안정성까지 향상되는 것을 확인하여 이를 토대로 본 발명을 완성하게 되었다.
본 발명에 의한 열가소성 중합체를 상세하게 살펴보면 다음과 같다.
상기 고무 중합체는 일례로 공액디엔계 화합물; 및 분지 사슬 지방산(branched chain fatty acid), 관능기(functional group)를 포함하는 사슬 지방산 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상;을 포함하여 중합될 수 있다.
상기 공액디엔계 화합물은 일례로 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 1,3-펜타디엔, 이소프렌 및 클로로프렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 고무 중합체는 일례로 중합된 공액디엔계 고무질 중합체가 콜로이드 상태로 물에 분산된 라텍스의 형태일 수 있다.
상기 고무 중합체는 일례로 평균입경이 1,500 내지 3,500 Å, 2,000 내지 3,500 Å, 혹은 2,500 내지 3,500 Å일 수 있고, 겔 함량이 60 내지 95 중량%, 65 내지 90 중량%, 혹은 70 내지 90 중량%일 수 있고, 이 범위 내에서 기계적 물성 및 물성 밸런스가 우수한 효과가 있다.
상기 분지 사슬 지방산, 관능기를 포함하는 사슬 지방산 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상은 일례로 상기 공액디엔계 화합물 100 중량부를 기준으로 1 내지 7 중량부, 1 내지 5 중량부, 혹은 1 내지 3 중량부로 포함될 수 있고, 이 범위 내에서 표면 광택 및 선명성이 우수하고, 라텍스 안정성이 뛰어난 효과가 있다.
본 발명의 고무 중합체 제조방법은 공액디엔계 화합물; 및 분지 사슬 지방산(branched chain fatty acid), 관능기(functional group)를 포함하는 사슬 지방산 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상;을 포함하여 중합하는 단계를 포함하는 것을 특징으로 한다.
상기 고무 중합체의 중합은 일례로 유화중합으로 실시될 수 있다.
상기 고무 중합체의 유화중합 방법은 일반적으로 고무 중합체의 제조방법에 사용되는 유화중합 방법인 경우 특별히 제한되지 않는다.
상기 분지 사슬 지방산, 관능기를 포함하는 사슬 지방산 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상은 일례로 상기 고무 중합체의 유화 중합 시, 유화제의 역할을 수행할 수 있다.
상기 열가소성 중합체는 일례로 코어-쉘 구조를 포함하되, 상기 쉘은 분지 사슬 지방산(branched chain fatty acid), 관능기(functional group)를 포함하는 사슬 지방산 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상을 포함하여 중합된 것을 특징으로 한다.
또 다른 예로, 상기 열가소성 중합체는 코어-쉘 구조를 포함하되, 상기 코어 및 쉘은 각각 분지 사슬 지방산(branched chain fatty acid), 관능기(functional group)를 포함하는 사슬 지방산 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상을 포함하여 중합된 것을 특징으로 한다.
상기 코어는 일례로 앞서 기술된 고무 중합체일 수 있다.
상기 코어-쉘 구조의 열가소성 중합체는 일례로 (a) 공액디엔계 고무질 중합체를 포함하는 코어; 및 (b) 상기 코어를 감싸고, 방향족 비닐 화합물 및 비닐시안 화합물을 포함하여 중합된 쉘;을 포함할 수 있다.
상기 코어는 일례로 코어, 방향족 비닐 화합물 및 비닐시안 화합물 총 함량 100 중량%를 기준으로 30 내지 80 중량%, 40 내지 75 중량%, 혹은 50 내지 70 중량%로 포함될 수 있고, 이 범위 내에서 기계적 물성 및 표면 특성이 우수한 효과가 있다.
상기 쉘은 일례로 상기 고무 중합체, 즉 코어를 감싸며 그라프트 중합된 것일 수 있고, 상기 고무 중합체, 방향족 비닐 화합물 및 비닐시안 화합물 총 함량 100 중량%를 기준으로 20 내지 70 중량%, 25 내지 60 중량%, 혹은 30 내지 50 중량%로 포함될 수 있으며, 이 범위 내에서 기계적 물성 및 물성 밸런스가 우수한 효과가 있다.
상기 코어의 공액디엔계 고무질 중합체는 일례로 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 1,3-펜타디엔, 이소프렌 및 클로로프렌으로 이루어진 군으로부터 선택된 1종 이상의 공액디엔계 화합물을 포함하여 중합된 것일 수 있다.
상기 쉘은 일례로 상기 코어를 감싸며 상기 분지 사슬 지방산(branched chain fatty acid), 관능기(functional group)를 포함하는 사슬 지방산 및 이들의 염을 포함하여 그라프트 중합된 것일 수 있다.
상기 방향족 비닐 화합물은 일례로 스티렌, α-메틸스티렌, p-메틸스티렌, o-메틸스티렌, p-에틸스티렌 및 비닐톨루엔으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 상기 비닐시안 화합물은 일례로 아크릴로니트릴, 메타크릴로니트릴 및 에타크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 쉘의 방향족 비닐 화합물 및 비닐시안 화합물은 일례로 중량비를 기준으로 1:1 내지 5:1, 혹은 1.5:1 내지 4:1, 혹은 2:1 내지 4:1의 범위로 포함될 수 있다.
상기 분지 사슬 지방산은 일례로 탄소수 1 내지 10, 1 내지 5, 혹은 1 내지 3의 알킬기로 이루어진 분지를 1 내지 10개, 1 내지 5개, 혹은 1 내지 3개 포함하는 사슬 지방산일 수 있다.
상기 분지를 이루는 알킬기는 일례로 메틸기, 에틸기, 프로필기, 혹은 이소프로필기 일 수 있다.
상기 분지 사슬 지방산은 일례로 미리스트산, 미리스트올레산, 팔미트산, 스테아린산, 올레인산, 리놀레산 및 노나데실산으로 이루어진 군으로부터 선택된 1종 이상의 사슬 지방산에 대한 이소산(iso-acid), 안테이소산(anteiso-acid), 또는 이들의 혼합일 수 있다.
상기 이소산은 상기 분지 사슬 지방산 주사슬의 탄소수를 (n) 이라고 할 때, 탄소수 (n-1)의 주사슬을 갖고, (n-2)번 탄소의 수소 1개가 메틸기로 치환된 구조 이성질체를 의미하고, 상기 안테이소산은 탄소수 (n-1)의 주사슬을 갖고, (n-3)번 탄소와 결합된 수소 1개가 메틸기로 치환된 구조 이성질체를 의미한다. 구체적인 예로, 주사슬의 탄소수가 18인 스테아린산의 이소산인 이소스테아린산은 주사슬의 탄소수가 17이고, 이 중 16번 탄소와 결합된 수소 1개가 메틸기로 치환된 구조를 갖고, 스테아린산의 안테이소산인 안테이소스테아린산은 주사슬의 탄소수가 17이고, 이 중 15번 탄소와 결합된 수소 1개가 메틸기로 치환된 구조를 가진다.
상기 주사슬은 본 발명에서 달리 특정하지 않는 한 지방산의 카르복실기(R-COOH) 또는 카르복실레이트기(R-COO-)에 포함되는 탄소 전체(R- 및 C)의 사슬을 의미한다.
상기 관능기를 포함하는 사슬 지방산의 관능기는 일례로 히드록시기 또는 탄소수 1 내지 10, 1 내지 5, 혹은 1 내지 3의 알킬기를 포함하는 알콕시기일 수 있으며, 상기 각각의 경우 유화제의 열안정성이 높아져 압출 및 사출 시 가스 발생량을 저감시켜 수지의 표면 광택 및 선명성이 우수한 효과가 있다.
상기 관능기는 일례로 히드록시기, 메톡시기, 에톡시기, 혹은 에폭시기일 수 있다.
상기 관능기를 포함하는 사슬 지방산은 일례로 리시놀레산(ricinoleic acid), 수소화된 리시놀레산(12-히드록시 옥타데칸산, 12-hydrox octacdecanoic acid), 2-히드록시 이코사노익산(2-hydroxy eicosanoic acid), 3-히드록시 이코사노익산(3-hydroxy eicosanoic acid), 3-히드록시 옥타데칸산(3-hydroxy octadecanoic acid), 9-히드록시 옥타데칸산(9-hydroxy octadecanoic acid), 10-디히드록시 옥타데칸산(10-dihydroxy octadecanoic acid), 18-히드록시 옥타데칸산(18-hydroxy octadecanoic acid), 2-히드록시 헥사테칸산(2-hydroxy hexadecanoic acid), 3-히드록시 헥사데칸산(3-hydroxy hexadecanoic acid), 16-히드록시 헥사데칸산(16-hydroxy hexadecanoic acid), 14-히드록시 테트라데칸산(14-hydroxy tetradecanoic acid), 베르놀산(Vernolic acid), 10-히드록시 옥타데칸산, 11-히드록시 옥타데칸산, 13-히드록시 옥타데칸산, 14-히드록시 옥타데칸산, 10-메톡시 옥타데칸산, 11-메톡시 옥타데칸산, 12-메톡시 옥타데칸산, 13-메톡시 옥타데칸산, 14-메톡시 옥타데칸산, 10-에톡시 옥타데칸산, 11-에톡시 옥타데칸산, 12-에톡시 옥타데칸산, 13-에톡시 옥타데칸산, 14-에톡시 옥타데칸산, 10-이소프로필 옥타데칸산, 11-이소프로필 옥타데칸산, 12-이소프로필 옥타데칸산, 13-이소프로필 옥타데칸산, 14-이소프로필 옥타데칸산 및 이들의 금속염으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 분지 사슬 지방산 및 관능기를 포함하는 사슬 지방산의 염은 일례로 금속염일 수 있고, 상기 금속은 일례로, 알칼리 금속 또는 알칼리토 금속일 수 있다.
상기 분지 사슬 지방산 및 상기 관능기를 포함하는 사슬 지방산은 일례로 각각의 주사슬(main chain)의 탄소수가 14 내지 22, 14 내지 20, 혹은 16 내지 20인 사슬 지방산일 수 있고, 이 범위 내에서 유화제의 열안정성이 우수하여, 압출 및 사출 가공 시 가스 발생량을 저감시키는 효과가 있다.
상기 분지 사슬 지방산 및 상기 관능기를 포함하는 사슬 지방산은 일례로 각각의 주사슬(main chain)의 불포화도가 1 내지 20, 1 내지 10, 혹은 1 내지 5인 불포화 사슬 지방산일 수 있고, 이 범위 내에서 라텍스 안정성 및 표면 특성이 우수한 효과가 있다.
상기 쉘에 포함되는 상기 분지 사슬 지방산, 관능기를 포함하는 사슬 지방산 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상은 일례로 상기 코어 및 쉘에 포함되는 단량체 총 100 중량부를 기준으로 0.01 내지 5 중량부, 0.01 내지 3 중량부, 0.01 내지 2 중량부, 0.02 내지 1.5 중량부, 0.05 내지 1.5, 혹은 0.1 내지 1 중량부로 포함될 수 있고, 이 범위 내에서 표면 광택 및 선명성이 우수하고, 라텍스 안정성이 뛰어난 효과가 있다.
본 발명의 열가소성 중합체의 제조방법은 일례로 공액디엔계 화합물; 및 분지 사슬 지방산(branched chain fatty acid), 관능기(functional group)를 포함하는 사슬 지방산 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상;을 포함하여 중합하여 코어를 제조하는 단계, 및 상기 코어에, 방향족 비닐 화합물 및 비닐시안 화합물을 그라프트 중합하여 코어-쉘 구조의 중합체를 제조하는 단계;를 포함하는 것을 특징으로 한다.
또 다른 일례로, 본 발명의 열가소성 중합체의 제조방법은 코어를 중합하는 단계; 및 상기 중합된 코어에, 분지 사슬 지방산(branched chain fatty acid), 관능기(functional group)를 포함하는 사슬 지방산 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상을 포함하여 쉘을 그라프트 중합하는 단계;를 포함하는 것을 특징으로 한다.
또 다른 일례로, 본 발명의 열가소성 중합체의 제조방법은 공액디엔계 화합물; 및 상기 분지 사슬 지방산(branched chain fatty acid), 관능기(functional group)를 포함하는 사슬 지방산 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상;을 포함하여 중합하여 코어를 제조하는 단계, 및 상기 코어에, 방향족 비닐 화합물; 비닐시안 화합물; 및 상기 분지 사슬 지방산(branched chain fatty acid), 관능기(functional group)를 포함하는 사슬 지방산 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상;을 포함하여 중합하여 코어-쉘 구조의 중합체를 제조하는 단계를 포함하는 것을 특징으로 한다.
상기 코어 중합 및 쉘의 그라프트 중합은 일례로 각각 유화 중합으로 실시될 수 있다.
상기 코어의 유화 중합 및 쉘의 유화 그라프트 중합 방법은 일반적으로 ABS 수지의 제조방법에 사용되는 유화 중합 및 유화 그라프트 중합인 경우 특별히 제한되지 않는다.
상기 열가소성 중합체의 제조방법은 일례로, 상기 코어로 포함된 고무질 중합체 라텍스, 방향족 비닐 화합물 및 비닐시안 화합물의 총 중량 100 중량부를 기준으로 하여, 고무질 중합체 라텍스 50 내지 80 중량부, 혹은 50 내지 70 중량부, 및 수성 매질 50 내지 150 중량부를 혼합하는 단계; 상기 혼합액에, 방향족 비닐 화합물 및 비닐시안 화합물의 혼합물 20 내지 50 중량부, 혹은 30 내지 50 중량부, 수성 매질 20 내지 50 중량부, 저온 중합개시제 0.01 내지 5 중량부, 유용성 중합개시제 0.01 내지 5 중량부 및 유화제 0.01 내지 10 중량부를 유화시킨 유화 혼합물과 산화환원 개시제 0.01 내지 5 중량부를 투입하고 중합시키는 제1 중합단계; 및 상기 제1 중합단계의 진행 중에, 중합전환율 90 내지 95 %, 92 내지 95 %, 혹은 92 내지 94 % 시점에서 유용성 중합개시제 0.01 내지 1 중량부 및 산화환원 개시제 0.01 내지 1 중량부를 투입하고 중합시키는 제2 중합단계;를 포함할 수 있다.
상기 분지 사슬 지방산, 관능기를 포함하는 사슬 지방산 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상은 일례로 상기 코어 및/또는 쉘의 유화 그라프트 중합 시, 유화제의 역할을 수행할 수 있다.
본 발명의 열가소성 중합체 조성물은 상기 열가소성 중합체 및 방향족 비닐 화합물-비닐시안 화합물 공중합체를 포함하는 것을 특징으로 한다.
상기 열가소성 중합체 조성물은 일례로 방향족 비닐 화합물-비닐시안 화합물 공중합체로 이루어진 매트릭스 수지에 상기 열가소성 중합체가 분산된 형태일 수 있고, 이 경우 충격강도 및 물성 밸런스가 우수한 효과가 있다.
상기 방향족 비닐 화합물-비닐시안 화합물 공중합체는 일례로 괴상 중합으로 중합된 것일 수 있고, 이 경우 충격강도 및 표면 선명성이 우수한 효과가 있다.
상기 방향족 비닐 화합물-비닐시안 화합물 공중합체의 방향족 비닐 화합물은 일례로 스티렌, α-메틸스티렌, p-메틸스티렌, o-메틸스티렌 및 비닐톨루엔으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 상기 방향족 비닐 화합물-비닐 시안 화합물 공중합체에 대하여 10 내지 90 중량%, 30 내지 80 중량%, 혹은 50 내지 80 중량%로 포함될 수 있으며, 이 범위 내에서 표면 성명성 및 광택도가 우수한 효과가 있다.
상기 방향족 비닐 화합물-비닐 시안 화합물 공중합체의 비닐 시안 화합물은 일례로 아크릴로니트릴, 메타크릴로니트릴 및 에타크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 상기 방향족 비닐 화합물-비닐 시안 화합물 공중합체에 대하여 10 내지 90 중량%, 20 내지 70 중량%, 혹은 20 내지 50 중량%로 포함될 수 있으며, 이 범위 내에서 색상 및 물성 밸런스가 우수한 효과가 있다.
상기 열가소성 중합체는 일례로 상기 열가소성 중합체 조성물에 대하여 10 내지 50 중량%, 10 내지 40 중량%, 혹은 15 내지 40 중량%로 포함될 수 있고, 상기 방향족 비닐 화합물-비닐 시안 화합물 공중합체는 일례로 상기 열가소성 중합체 조성물에 대하여 50 내지 90 중량%, 60 내지 90 중량%, 혹은 60 내지 85 중량%로 포함될 수 있으며, 이 범위 내에서 충격강도, 표면 선명성 및 광택도가 우수한 효과가 있다.
상기 열가소성 중합체 조성물은 그 물성에 영향을 주지 않는 범위에서 일례로 열 안정제, 광 안정제, 산화 방지제, 대전 방지제, 항균제 또는 활제 등의 첨가제를 더 포함할 수 있다.
상기 열가소성 중합체 조성물은 일례로 표면 선명성(Haze)이 2.5 이하, 1 내지 2.0, 1 내지 1.5, 0.5 내지 1.5, 혹은 1.2 내지 1.7일 수 있고, 이 범위 내에서 수지의 표면이 선명한 효과가 있다.
상기 열가소성 중합체 조성물은 일례로 표면 광택도(Gloss)가 90 이상, 90 내지 99.9, 96 내지 99.9, 90 내지 99, 95 내지 99, 혹은 92 내지 97일 수 있고, 이 범위 내에서 수지의 표면 광택이 우수한 효과가 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 통상의 기술자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1-1
고무 중합체 코어 중합 단계
질소 치환된 중합 반응기에, 이온교환수 65 중량부, 1,3-부타디엔 75 중량부, 유화제로 리시놀레산 비누 2.5 중량부, 전해질로 탄산칼륨(K2CO3) 1.2 중량부, 분자량조절제로 3급 도데실메르캅탄(TDDM) 0.4 중량부, 개시제로 과황산 칼륨(K2S2O8) 0.3 중량부를 일괄 투입하고 반응온도 70 ℃에서 중합전환율 30 내지 40 %까지 반응시켰다. 이어서, 1,3-부타디엔 25 중량부를 연속 투입하고, 75 ℃에서 중합전환율 60 %까지 반응시킨 후, 과황산 칼륨(K2S2O8) 0.2 중량부를 일괄 투입하고, 82 ℃까지 승온시켰으며, 중합전환율 95 %에서 반응을 종료하여 평균입경 3,000 Å, 겔 함량 85 중량%의 폴리부타디엔 고무 라텍스(코어)를 수득하였다.
쉘 중합 단계
질소 치환된 중합 반응기에, 상기 코어 중합 단계에서 중합된 폴리부타디엔 고무 라텍스(시드) 60 중량부(고형분 기준), 별도의 혼합장치에서 혼합된 아크릴로니트릴 10 중량부, 스티렌 30 중량부, 이온교환수 25 중량부, t-부틸 하이드로퍼옥사이드 0.12 중량부, 로진산 칼륨 1.0 중량부 및 3급 도데실메르캅탄 0.3 중량부 혼합 용액과, 덱스트로즈 0.054 중량부, 피롤린산 나트륨 0.004 중량부 및 황산제일철 0.002 중량부를 함께 70 ℃에서 3시간 동안 투입하였다.
상기 투입이 완료된 후, 덱스트로즈 0.05 중량부, 피롤린산 나트륨 0.03 중량부, 황산제일철 0.001 중량부, t-부틸 하이드로퍼옥사이드 0.05 중량부를 상기 중합 반응기에 일괄 투입하고, 온도를 80 ℃까지 1시간에 걸쳐 승온시킨 다음, 반응을 종결하여 시드-쉘 구조의 ABS 그라프트 공중합체 라텍스를 제조하였다, 이 때, 중합전환율은 97 %였고, 제조된 ABS 그라프트 공중합체 라텍스의 그라프트율은 41 %이였으며, 생성된 응고물 함량은 0.3 중량%이였다.
이어서, 상기 제조된 ABS 그라프트 공중합체 라텍스에 10 중량% 황산 수용액 2 중량부를 투입하여 응고시킨 후, 세척하여 분체를 수득하였다.
열가소성 중합체 조성물 제조 단계
상기 수득된 ABS 그라프트 공중합체 분체 27.5 중량부 및 SAN 공중합체(LG 화학 사 제조, 제품명 92HR) 72.5 중량부를 혼합기에 넣어 혼합한 후, 압출기를 이용하여 200 내지 250 ℃에서 용융 및 혼련하여 펠렛화한 다음, 사출기를 이용하여 물성 측정을 위한 시편을 제작하였다.
실시예 1-2
상기 실시예 1-1의 코어 중합 단계에서, 리시놀레산 비누 2.5 중량부 대신 수소화된 리시놀레산 비누(12-히드록시 옥타데칸산 비누) 2.5 중량부를 투입한 것을 제외하고는 상기 실시예 1-1과 동일한 방법으로 실시하였다.
실시예 1-3
상기 실시예 1-1의 코어 중합 단계에서, 리시놀레산 비누 2.5 중량부 대신 이소스테아린산 비누 2.5 중량부를 투입한 것을 제외하고는 상기 실시예 1-1과 동일한 방법으로 실시하였다.
실시예 1-4
상기 실시예 1-1의 코어 중합 단계에서, 리시놀레산 비누 2.5 중량부 대신 스테아린산 비누 2.5 중량부를 투입한 것을 제외하고는 상기 실시예 1-1과 동일한 방법으로 실시하였다.
비교예 1-1
상기 실시예 1-1의 코어 중합 단계에서, 리시놀레산 비누 2.5 중량부 대신 FAD 비누 2.5 중량부를 투입한 것을 제외하고는 상기 실시예 1-1과 동일한 방법으로 실시하였다.
[시험예]
상기 실시예 1-1 내지 1-4 및 비교예 1-1에서 수득한 열가소성 수지 조성물 시편의 물성을 하기의 방법으로 측정하여, 그 결과를 하기의 표 3에 나타내었다.
측정 방법
* 평균 입경(Å): 미국 Nicomp 사의 Nicomp 370HPL 기기를 이용하여 다이나믹 레이져라이트 스케트링법으로 측정하였다.
* 겔 함량(중량%): 폴리부타디엔 고무 라텍스를 묽은 산이나 금속 염을 사용하여 응고한 후 세척하여 60 ℃의 진공 오븐에서 24 시간 동안 건조한 다음 얻어진 고무 덩어리를 가위로 잘게 자른 후 1 g의 고무 절편을 톨루엔 100 g에 넣고 48 시간 동안 실온의 암실에서 보관한 후 졸과 겔로 분리하여 각각 건조한 후, 하기 수학식 1로 겔 함량을 측정하였다.
Figure PCTKR2016013816-appb-M000001
* 가스발생량(ppm): HS-GC/MSD를 이용하여 수지 조성물 시료 1 g에 대해 250 ℃, 1시간 조건에서 발생되는 휘발성 유기 화합물(VOC) 성분을 분석하였다.
* 표면 선명성(Reflection Haze): 시편을 이용하여 표준 측정 ASTM E430에 의거하여 17 내지 19 ° 및 21 내지 23 ° 사이의 광택 수치를 더하여 reflection haze를 측정하였다.
* 표면 광택도(Gloss, 45 °): 시편을 이용하여 표준측정 ASTM D528에 의거하여 45 °각도에서 측정하였다.
* 충격강도(Notched Izod Impact Strength, kgf·m/m): 1/4" 및 1/8"의 시편을 이용하여 표준측정 ASTM D256에 의거하여 측정하였다.
* 응고물 함량(Coagulum, 중량%): 반응조 내에 생성된 응고물의 무게, 총 고무의 무게 및 단량체의 무게를 측정하고, 하기의 수학식 2로 응고물 함량을 계산하였다.
Figure PCTKR2016013816-appb-M000002
* 옥탄올-물 분배계수(octanol-water partition coefficient, Soap Acid form, Log P): 각 지방산에 대하여 한국표준과학연구소(KRISS)의 데이터 센터 표준품질메뉴얼 DCQM-01에 의거한 slow-stirring 방법을 3회 실시하여 측정한 후 하기의 수학식 3으로 Log P 값을 계산하였다.
Figure PCTKR2016013816-appb-M000003
Kow = (1-옥탄올 내 용해된 물질량) / (증류수에 용해된 물질량)
구분 실시예 비교예
1-1 1-2 1-3 1-4 1-1
가스발생량 3,100 2,800 3,600 3,300 4,800
선명성 1.3 1.1 1.4 1.2 2.7
광택도 97.4 98.2 95.4 96.4 89.1
충격강도(1/4") 36.7 36.2 35.8 35.5 35.5
충격강도(1/8") 47.2 47.5 46.9 46.2 46.4
응고물 함량 0.03 0.05 0.10 0.09 0.12
옥탄올-물 분배계수 6.2 6.4 8.7 8.2 8.3
상기 표 3에 나타낸 바와 같이, 본 발명에 따라 제조된 실시예 1-1 내지 1-4의 경우, 종래의 FAD 유화제를 사용한 비교예 1-1에 비해, 가스발생량을 현저히 저감시키고, 표면 선명성, 광택도 및 충격강도가 매우 우수하며, 옥탄올-물 분배계수가 낮아 친수성 단량체인 비닐시안 화합물과 소수성 단량체인 방향족 비닐 화합물 간의 유화력을 제어함으로써 응고물 함량이 낮아 라텍스 안정성이 개선된 것을 확인할 수 있었다.
실시예 2-1
코어 중합
질소 치환된 중합 반응기(오토 클레이브)에, 이온교환수 65 중량부, 단량체로 1,3-부타디엔 75 중량부, 유화제로 로진산 칼륨염 1.5 중량부, 올레인산 포타슘염 0.8 중량부, 전해질로 탄산칼륨(K2CO3) 0.8 중량부, 분자량조절제로 3급 도데실메르캅탄(TDDM) 0.3 중량부, 중합개시제로 과황산 칼륨(K2S2O8) 0.3 중량부를 일괄투여하고 반응온도 70 ℃에서 중합전환율 30 내지 40 %까지 반응시켰다. 이 후, 1,3-부타디엔 25 중량부를 일괄투여하고, 로진산 칼륨염 0.3 중량부를 투입한 다음, 82 ℃까지 승온시키고, 중합전환율 95 %에서 반응을 종료하여 평균입경 3,000 내지 3,500 Å의 폴리부타디엔 고무 라텍스(코어)를 수득하였다.
쉘 중합 단계
질소 치환된 중합 반응기에, 상기 코어 중합 단계에서 중합된 폴리부타디엔 고무 라텍스(코어) 60 중량부(고형분 기준) 및 이온 교환수 100 중량부의 혼합액에, 별도의 혼합장치에서 혼합된 스티렌 30 중량부, 아크릴로니트릴 10 중량부, 이온교환수 25 중량부, 저온 중합개시제(2,2'-아조비스-(2,4-디메틸-4-메톡시발레로니트릴)) 0.6 중량부, t-부틸 하이드로 퍼옥사이드 0.6 중량부, 리시놀레산 비누 1.0 중량부 및 3급 도데실메르캅탄(TDDM) 0.3 중량부의 혼합 용액과 덱스트로즈 0.027 중량부, 피롤린산 나트륨 0.002 중량부 및 황산제일철 0.001 중량부를 함께 70 ℃에서 2시간 동안 연속 투입하면서 중합을 수행하였다(제1 중합단계).
상기 제1 중합단계의 연속 투입 완료 시점인 중합전환율 92 내지 95 % 시점에, 덱스트로즈 0.05 중량부, 피롤린산 나트륨 0.03 중량부, 황산제일철 0.001 중량부, t-부틸 하이드로 퍼옥사이드 0.05 중량부를 상기 반응기에 일괄 투입하고, 온도를 80 ℃까지 1시간에 걸쳐 승온하여 중합을 수행한 다음 반응을 종결하여 ABS 그라프트 공중합체 라텍스를 제조하였다(제2 중합단계). 이 때, 중합전환율은 98 %이였다.
열가소성 중합체 조성물 제조 단계
상기 제조된 ABS 그라프트 공중합체 라텍스를 황산 수용액으로 응고시켜 세척한 다음 분체를 수득하였고, 이 분체 27.5 중량부 및 SAN 공중합체(LG 화학 사 제조, 제품명 92HR) 72.5 중량부를 혼합기에 넣어 혼합한 후, 압출기를 이용하여 펠렛화한 다음, 사출기를 이용하여 물성 측정을 위한 시편을 제작하였다.
실시예 2-2
상기 실시예 2-1의 쉘 중합 단계에서, 리시놀레산 비누 1.0 중량부 대신 수소화된 리시놀레산 비누(12-히드록시 옥타데칸산 비누) 1.0 중량부 투입한 것을 제외하고는 상기 실시예 2-1과 동일한 방법으로 실시하였다.
실시예 2-3
상기 실시예 2-1의 쉘 중합 단계에서, 리시놀레산 비누 1.0 중량부 대신 이소스테아린산 비누 1.0 중량부 투입한 것을 제외하고는 상기 실시예 2-1과 동일한 방법으로 실시하였다.
실시예 2-4
상기 실시예 2-1의 쉘 중합 단계에서, 리시놀레산 비누 1.0 중량부 대신 베르놀산(Vernolic acid) 비누를 1.0 중량부 투입한 것을 제외하고는 상기 실시예 2-1과 동일한 방법으로 실시하였다.
비교예 2-1
상기 실시예 2-1의 쉘 중합 단계에서, 리시놀레산 비누 1.0 중량부 대신 팔미트산 비누, 스테아린산 비누 및 올레인산 비누의 혼합 유화제 1.0 중량부를 투입한 것을 제외하고는 상기 실시예 2-1과 동일한 방법으로 실시하였다.
상기 실시예 2-1 내지 2-4 및 비교예 2-1에서 수득한 열가소성 중합체 조성물 시편의 물성을 상기 시험예에서와 같은 방법으로 측정하여, 그 결과를 하기의 표 4에 나타내었다.
구분 실시예 비교예
2-1 2-2 2-3 2-4 2-1
가스발생량 3,670 3,300 4,100 3,880 4,930
선명성 1.2 1.2 1.7 1.4 2.8
광택도 94.1 95.3 92.7 93.6 89.5
충격강도 35.7 36.2 34.9 34.2 34.7
응고물 함량 0.03 0.06 0.1 0.07 0.1
라텍스 안정성 0.03 0.02 0.05 0.04 0.06
옥탄올-물 분배계수 6.2 6.4 8.7 6.7 8.3
상기 표 4에 나타낸 바와 같이, 본 발명에 따라 제조된 실시예 2-1 내지 2-4의 경우, 가스발생량을 저감시키고, 표면 선명성, 광택도 및 충격강도가 우수하며, 옥탄올-물 분배계수가 낮아 친수성 단량체인 비닐시안 화합물과 소수성 단량체인 방향족 비닐 화합물 간의 유화력을 제어함으로써 응고물 함량이 낮고, 라텍스 안정성이 개선된 것을 확인할 수 있었다.
반면, 종래의 분지 또는 관능기를 포함하지 않는 포화 지방산들의 혼합 유화제를 사용한 비교예 2-1의 경우, 가스발생량이 과다하며, 표면 선명성, 광택도 및 충격강도가 모두 열악하며, 옥탄올-물 분배계수가 높아 응고물 함량이 많고, 라텍스 안정성이 열악한 것을 확인할 수 있었다.
실시예 3-1
고무 중합체 코어 중합 단계
질소 치환된 중합 반응기에, 이온교환수 65 중량부, 1,3-부타디엔 75 중량부, 유화제로 리시놀레산 비누 2.5 중량부, 전해질로 탄산칼륨(K2CO3) 1.2 중량부, 분자량조절제로 3급 도데실메르캅탄(TDDM) 0.4 중량부, 개시제로 과황산 칼륨(K2S2O8) 0.3 중량부를 일괄 투입하고 반응온도 70 ℃에서 중합전환율 30 내지 40 %까지 반응시켰다. 이어서, 1,3-부타디엔 25 중량부를 연속 투입하고, 75 ℃에서 중합전환율 60 %까지 반응시킨 후, 과황산 칼륨(K2S2O8) 0.2 중량부를 일괄 투입하고, 82 ℃까지 승온시켰으며, 중합전환율 95 %에서 반응을 종료하여 평균입경 3,000 Å, 겔 함량 85 중량%의 폴리부타디엔 고무 라텍스(코어)를 수득하였다.
쉘 중합 단계
질소 치환된 중합 반응기에, 상기 코어 중합 단계에서 중합된 폴리부타디엔 고무 라텍스(코어) 60 중량부(고형분 기준), 별도의 혼합장치에서 혼합된 아크릴로니트릴 10 중량부, 스티렌 30 중량부, 이온교환수 25 중량부, t-부틸 하이드로퍼옥사이드 0.12 중량부, 리시놀레산 비누 1.0 중량부 및 3급 도데실메르캅탄 0.3 중량부 혼합 용액과, 덱스트로즈 0.054 중량부, 피롤린산 나트륨 0.004 중량부 및 황산제일철 0.002 중량부를 함께 70 ℃에서 3시간 동안 투입하였다.
상기 투입이 완료된 후, 덱스트로즈 0.05 중량부, 피롤린산 나트륨 0.03 중량부, 황산제일철 0.001 중량부, t-부틸 하이드로퍼옥사이드 0.05 중량부를 상기 중합 반응기에 일괄 투입하고, 온도를 80 ℃까지 1시간에 걸쳐 승온시킨 다음, 반응을 종결하여 시드-쉘 구조의 ABS 그라프트 공중합체 라텍스를 제조하였다, 이 때, 중합전환율은 97 %였고, 제조된 ABS 그라프트 공중합체 라텍스의 그라프트율은 41 %이였으며, 생성된 응고물 함량은 0.3 중량%이였다.
이어서, 상기 제조된 ABS 그라프트 공중합체 라텍스에 10 중량% 황산 수용액 2 중량부를 투입하여 응고시킨 후, 세척하여 분체를 수득하였다.
열가소성 중합체 조성물 제조 단계
상기 수득된 ABS 그라프트 공중합체 분체 27.5 중량부 및 SAN 공중합체(LG 화학 사 제조, 제품명 92HR) 72.5 중량부를 혼합기에 넣어 혼합한 후, 압출기를 이용하여 200 내지 250 ℃에서 용융 및 혼련하여 펠렛화한 다음, 사출기를 이용하여 물성 측정을 위한 시편을 제작하였다.
실시예 3-2
상기 실시예 3-1의 코어 중합 단계에서, 리시놀레산 비누 2.5 중량부 대신 수소화된 리시놀레산 비누(12-히드록시 옥타데칸산 비누) 2.5 중량부를 투입하고, 쉘 중합 단계에서, 리시놀레산 비누 1.0 중량부 대신 수소화된 리시놀레산 비누(12-히드록시 옥타데칸산 비누) 1.0 중량부를 투입한 것을 제외하고는 상기 실시예 3-1과 동일한 방법으로 실시하였다.
실시예 3-3
상기 실시예 3-1의 코어 중합 단계에서, 리시놀레산 비누 2.5 중량부 대신 이소스테아린산 비누 2.5 중량부를 투입하고, 쉘 중합 단계에서, 리시놀레산 비누 1.0 중량부 대신 이소스테아린산 비누 1.0 중량부를 투입한 것을 제외하고는 상기 실시예 3-1과 동일한 방법으로 실시하였다.
실시예 3-4
상기 실시예 3-1의 코어 중합 단계에서, 리시놀레산 비누 2.5 중량부 대신 스테아린산 비누 2.5 중량부를 투입하고, 쉘 중합 단계에서, 리시놀레산 비누 1.0 중량부 대신 스테아린산 비누 1.0 중량부를 투입한 것을 제외하고는 상기 실시예 3-1과 동일한 방법으로 실시하였다.
비교예 3-1
상기 실시예 3-1의 코어 중합 단계에서, 리시놀레산 비누 2.5 중량부 대신 FAD 비누 2.5 중량부를 투입하고, 쉘 중합 단계에서, 리시놀레산 비누 1.0 중량부 대신 FAD 비누 1.0 중량부를 투입한 것을 제외하고는 상기 실시예 3-1과 동일한 방법으로 실시하였다.
상기 실시예 3-1 내지 3-4 및 비교예 3-1에서 수득한 열가소성 수지 조성물 시편의 물성을 상기 시험예에서와 같은 방법으로 측정하여, 그 결과를 하기의 표 5에 나타내었다.
구분 실시예 비교예
3-1 3-2 3-3 3-4 3-1
가스발생량 2,800 2,200 3,200 2,600 4,700
선명성 1.2 0.9 1.3 1.1 2.7
광택도 98.4 99.2 96.2 97.7 89.2
충격강도(1/4") 36.7 36.9 35.5 36.1 35.7
충격강도(1/8") 43.6 43.2 43.0 43.4 42.2
응고물 함량 0.03 0.03 0.08 0.06 0.13
옥탄올-물 분배계수 6.2 6.4 8.7 8.2 8.3
상기 표 2에 나타낸 바와 같이, 본 발명에 따라 제조된 실시예 3-1 내지 3-4의 경우, 종래의 FAD 유화제를 사용한 비교예 3-1에 비해, 가스발생량을 현저히 저감시키고, 표면 선명성, 광택도 및 충격강도가 매우 우수하며, 옥탄올-물 분배계수가 낮아 친수성 단량체인 비닐시안 화합물과 소수성 단량체인 방향족 비닐 화합물 간의 유화력을 제어함으로써 응고물 함량이 낮아 라텍스 안정성이 개선된 것을 확인할 수 있었다.
결론적으로, 본 발명은 사슬 지방산계 유화제가 특정 분지 또는 관능기를 가질 때 유화제의 열안정성이 우수하여, 수지 조성물의 압출 및 사출 가공 시, 가스 발생량을 저감시키는 특성을 이용하는 것으로, 고무 중합체의 중합 시 또는 코어-쉘 구조를 포함하는 열가소성 중합체의 코어 및/또는 쉘 중합 시, 특정 분지 또는 관능기를 갖는 사슬 지방산염을 사용할 경우, 수지 조성물의 표면 광택 및 표면 선명성이 개선되고, 라텍스의 안정성까지 향상된 열가소성 중합체 및 이를 포함하는 열가소성 중합체 조성물을 구현할 수 있음을 확인할 수 있었다.

Claims (20)

  1. 고무 중합체, 또는 상기 고무 중합체를 코어로 포함하는 코어-쉘 중합체에 있어서,
    상기 고무 중합체와 상기 쉘 중 하나 이상이 분지 사슬 지방산(branched chain fatty acid); 관능기(functional group)를 포함하는 사슬 지방산; 및 이들의 염;으로 이루어진 군으로부터 선택된 1종 이상을 포함하여 중합된 것을 특징으로 하는 열가소성 중합체.
  2. 제1항에 있어서,
    상기 고무 중합체는 공액디엔계 고무질 중합체인 것을 특징으로 하는 열가소성 중합체.
  3. 제1항에 있어서,
    상기 코어-쉘 중합체는 (a) 공액디엔계 고무질 중합체를 포함하는 코어; 및 (b) 상기 코어를 감싸고, 방향족 비닐 화합물 및 비닐시안 화합물을 포함하여 중합된 쉘;을 포함하는 것을 특징으로 하는 열가소성 중합체.
  4. 제2항 또는 제3항에 있어서,
    상기 공액디엔계 고무질 중합체는 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 1,3-펜타디엔, 이소프렌 및 클로로프렌으로 이루어진 군으로부터 선택된 1종 이상의 공액디엔계 화합물을 포함하여 중합된 것을 특징으로 하는 열가소성 중합체.
  5. 제1항에 있어서,
    상기 코어는 30 내지 80 중량%로 포함되고, 상기 쉘은 20 내지 70 중량%로 포함되는 것을 특징으로 하는 열가소성 중합체.
  6. 제3항에 있어서,
    상기 방향족 비닐 화합물은 스티렌, α-메틸스티렌, p-메틸스티렌, o-메틸스티렌, p-에틸스티렌 및 비닐톨루엔으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 열가소성 중합체.
  7. 제3항에 있어서,
    상기 비닐시안 화합물은 아크릴로니트릴, 메타크릴로니트릴 및 에타크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 열가소성 중합체.
  8. 제1항에 있어서,
    상기 분지 사슬 지방산은 탄소수 1 내지 10의 알킬기로 이루어진 분지를 1 내지 10개 포함하는 사슬 지방산인 것을 특징으로 하는 열가소성 중합체.
  9. 제1항에 있어서,
    상기 관능기를 포함하는 사슬 지방산의 관능기는 히드록시기 또는 탄소수 1 내지 10의 알킬기를 포함하는 알콕시기인 것을 특징으로 하는 열가소성 중합체.
  10. 제1항에 있어서,
    상기 분지 사슬 지방산 또는 상기 관능기를 포함하는 사슬 지방산은 각각의 주사슬(main chain)의 탄소수가 14 내지 22인 사슬 지방산인 것을 특징으로 하는 열가소성 중합체.
  11. 제1항에 있어서,
    상기 분지 사슬 지방산 또는 상기 관능기를 포함하는 사슬 지방산은 각각의 주사슬(main chain)의 불포화도가 1 내지 20인 불포화 사슬 지방산인 것을 특징으로 하는 열가소성 중합체.
  12. 제1항에 있어서,
    상기 고무 중합체에 포함되는, 상기 분지 사슬 지방산(branched chain fatty acid), 관능기(functional group)를 포함하는 사슬 지방산, 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상은, 상기 고무 중합체 100 중량부를 기준으로 1 내지 7 중량부로 포함되는 것을 특징으로 하는 열가소성 중합체.
  13. 제1항에 있어서,
    상기 쉘에 포함되는, 상기 분지 사슬 지방산, 관능기를 포함하는 사슬 지방산 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상은, 상기 코어 및 쉘에 포함되는 단량체 총 100 중량부를 기준으로 0.01 내지 5 중량부로 포함되는 것을 특징으로 하는 열가소성 중합체.
  14. 고무가 되는 단량체를 중합하여 고무 중합체를 제조하는 단계; 또는 상기 고무 중합체에, 그라프트 되는 단량체를 포함하여 중합시켜 코어-쉘 구조의 중합체를 제조하는 단계를 포함하되, 상기 중합은 분지 사슬 지방산(branched chain fatty acid), 관능기(functional group)를 포함하는 사슬 지방산 및 이들의 염으로 이루어진 군으로부터 선택된 1종 이상을 포함하여 중합되는 것을 특징으로 하는 열가소성 중합체의 제조방법.
  15. 제14항에 있어서,
    상기 고무가 되는 단량체는 공액디엔계 화합물인 것을 특징으로 하는 열가소성 중합체의 제조방법.
  16. 제14항에 있어서,
    상기 그라프트 되는 단량체는 방향족 비닐 화합물 및 비닐시안 화합물인 것을 특징으로 하는 열가소성 중합체의 제조방법.
  17. 제1항 내지 제13항 중 어느 한 항의 열가소성 중합체 및 방향족 비닐 화합물-비닐시안 화합물 공중합체를 포함하는 것을 특징으로 하는 열가소성 중합체 조성물.
  18. 제17항에 있어서,
    상기 열가소성 중합체는 10 내지 50 중량%로 포함되고, 상기 방향족 비닐 화합물-비닐시안 화합물 공중합체는 50 내지 90 중량%로 포함되는 것을 특징으로 하는 열가소성 중합체 조성물.
  19. 제17항에 있어서,
    상기 열가소성 중합체 조성물은 표면 선명성(Haze)이 2.5 이하인 것을 특징으로 하는 열가소성 중합체 조성물.
  20. 제17항에 있어서,
    상기 열가소성 중합체 조성물은 표면 광택도(Gloss)가 90 이상인 것을 특징으로 하는 열가소성 중합체 조성물.
PCT/KR2016/013816 2015-12-17 2016-11-28 열가소성 중합체, 이의 제조방법 및 이를 포함하는 열가소성 중합체 조성물 WO2017105003A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017542472A JP6515190B2 (ja) 2015-12-17 2016-11-28 熱可塑性重合体、その製造方法及びそれを含む熱可塑性重合体組成物
US15/552,238 US10508168B2 (en) 2015-12-17 2016-11-28 Thermoplastic polymer, method of preparing thermoplastic polymer, and thermoplastic polymer composition including thermoplastic polymer
CN201680013082.0A CN107406594B (zh) 2015-12-17 2016-11-28 热塑性聚合物、其制备方法以及包含该热塑性聚合物的热塑性聚合物组合物
EP16875945.4A EP3243860B1 (en) 2015-12-17 2016-11-28 Thermoplastic polymer, method for preparing same and thermoplastic polymer composition comprising same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2015-0180637 2015-12-17
KR10-2015-0180638 2015-12-17
KR1020150180638A KR102060107B1 (ko) 2015-12-17 2015-12-17 열가소성 수지, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
KR10-2015-0180635 2015-12-17
KR1020150180637A KR102019325B1 (ko) 2015-12-17 2015-12-17 시드 중합체, 이의 제조방법, 이를 포함하는 열가소성 수지
KR1020150180635A KR101949866B1 (ko) 2015-12-17 2015-12-17 열가소성 수지, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물

Publications (1)

Publication Number Publication Date
WO2017105003A1 true WO2017105003A1 (ko) 2017-06-22

Family

ID=59056958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013816 WO2017105003A1 (ko) 2015-12-17 2016-11-28 열가소성 중합체, 이의 제조방법 및 이를 포함하는 열가소성 중합체 조성물

Country Status (5)

Country Link
US (1) US10508168B2 (ko)
EP (1) EP3243860B1 (ko)
JP (1) JP6515190B2 (ko)
CN (1) CN107406594B (ko)
WO (1) WO2017105003A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102311952B1 (ko) * 2018-09-21 2021-10-14 주식회사 엘지화학 열가소성 수지 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960014181B1 (ko) 1993-07-28 1996-10-14 삼성항공산업 주식회사 자동창고 시스템을 위한 자동정비장치
JP2786890B2 (ja) * 1989-07-04 1998-08-13 電気化学工業株式会社 熱可塑性樹脂組成物
JP2001354824A (ja) * 2000-06-15 2001-12-25 Kanegafuchi Chem Ind Co Ltd 粉体特性の改善された樹脂組成物およびその製造方法
US6344509B1 (en) * 1994-12-22 2002-02-05 Taiyo Kagaku Co., Ltd. Thermoplastic resin compositions
JP2002146109A (ja) * 2000-11-16 2002-05-22 Bridgestone Corp ゴム組成物およびタイヤ
JP2011184501A (ja) * 2010-03-05 2011-09-22 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物およびそれを用いた空気入りタイヤ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB592913A (en) * 1944-08-11 1947-10-02 Gen Aniline & Film Corp Emulsion polymerization of butadienes
GB832822A (en) * 1957-05-08 1960-04-13 Ici Ltd Improvements in the production of thermoplastic polymeric materials
US2868755A (en) * 1958-01-14 1959-01-13 Avrom I Medalia Synthetic latex containing a vinyl emulsifying agent and process of preparation
JPS4929315B1 (ko) * 1970-12-30 1974-08-02
JPS5842216B2 (ja) * 1977-05-26 1983-09-17 東レ株式会社 耐衝撃性樹脂の製造法
JPS61233044A (ja) 1985-04-09 1986-10-17 Denki Kagaku Kogyo Kk 熱可塑性樹脂組成物
US5756619A (en) * 1994-04-26 1998-05-26 Arizona Chemical Company Method for emulsion polymerization
SE509240C2 (sv) 1996-05-28 1998-12-21 Perstorp Ab Termoplastisk kompound bestående av en termoplastisk polymer bunden till en dendritisk eller hyperförgrenad makromolekyl samt komposition och produkt därav
JPH1171479A (ja) * 1997-08-28 1999-03-16 Inoac Corp ゴム組成物
FR2995905B1 (fr) * 2012-09-21 2015-10-16 Arkema France Composition de peroxyde organique sans agent colloide
JP2014177537A (ja) * 2013-03-14 2014-09-25 Nippon A&L Inc フォームラバー用共重合体ラテックス
JP2014177536A (ja) * 2013-03-14 2014-09-25 Nippon A&L Inc フォームラバー用高分子水分散体
WO2015016520A1 (ko) * 2013-08-02 2015-02-05 (주) 엘지화학 고무강화 열가소성 수지의 제조방법
CN104492340B (zh) * 2014-11-28 2017-02-22 上海进瑞实业有限公司 一种乳化组成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2786890B2 (ja) * 1989-07-04 1998-08-13 電気化学工業株式会社 熱可塑性樹脂組成物
KR960014181B1 (ko) 1993-07-28 1996-10-14 삼성항공산업 주식회사 자동창고 시스템을 위한 자동정비장치
US6344509B1 (en) * 1994-12-22 2002-02-05 Taiyo Kagaku Co., Ltd. Thermoplastic resin compositions
JP2001354824A (ja) * 2000-06-15 2001-12-25 Kanegafuchi Chem Ind Co Ltd 粉体特性の改善された樹脂組成物およびその製造方法
JP2002146109A (ja) * 2000-11-16 2002-05-22 Bridgestone Corp ゴム組成物およびタイヤ
JP2011184501A (ja) * 2010-03-05 2011-09-22 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物およびそれを用いた空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3243860A4

Also Published As

Publication number Publication date
CN107406594A (zh) 2017-11-28
JP6515190B2 (ja) 2019-05-15
CN107406594B (zh) 2020-01-14
JP2018507935A (ja) 2018-03-22
EP3243860A1 (en) 2017-11-15
EP3243860B1 (en) 2022-03-23
US20180072834A1 (en) 2018-03-15
US10508168B2 (en) 2019-12-17
EP3243860A4 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2018084436A1 (ko) 충격강도가 향상된 abs계 그라프트 공중합체의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
WO2018084408A1 (ko) Abs계 수지 조성물의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
WO2016204566A1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
WO2017142172A1 (ko) 고무질 중합체와 이의 제조방법, 그라프트 공중합체 및 열가소성 수지 조성물
WO2019083153A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2021060743A1 (ko) 그라프트 중합체의 제조방법
WO2016195436A1 (ko) 염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2018124562A1 (ko) Abs계 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2016204485A1 (ko) 열가소성 수지, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2017105003A1 (ko) 열가소성 중합체, 이의 제조방법 및 이를 포함하는 열가소성 중합체 조성물
WO2018135793A1 (ko) 실리콘 고무 복합재 및 이의 제조방법
WO2020101182A1 (ko) 코어-쉘 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2021118063A1 (ko) 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2020149504A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2021015485A1 (ko) 아크릴계 공중합체 응집제 및 이를 이용한 그라프트 공중합체의 제조방법
WO2021060833A1 (ko) 공액 디엔계 중합체의 제조방법
WO2021101099A1 (ko) 공중합체 제조방법, 이로부터 제조된 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2016043424A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 열가소성 수지 성형품
WO2018088677A1 (ko) 열가소성 수지 및 열가소성 수지 조성물
WO2020050639A1 (ko) 열가소성 수지 조성물
WO2023008808A1 (ko) 열가소성 수지 조성물
WO2022075577A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2023022541A1 (ko) 그라프트 공중합체, 경화성 수지 조성물 및 접착제 조성물
WO2020060147A1 (ko) 공액 디엔계 중합체의 제조방법 및 이를 포함하는 그라프트 공중합체의 제조방법

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016875945

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017542472

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15552238

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE