WO2016195436A1 - 염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물 - Google Patents
염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물 Download PDFInfo
- Publication number
- WO2016195436A1 WO2016195436A1 PCT/KR2016/005946 KR2016005946W WO2016195436A1 WO 2016195436 A1 WO2016195436 A1 WO 2016195436A1 KR 2016005946 W KR2016005946 W KR 2016005946W WO 2016195436 A1 WO2016195436 A1 WO 2016195436A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vinyl chloride
- fatty acid
- unsaturated fatty
- acid ester
- polymer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/02—Monomers containing chlorine
- C08F214/04—Monomers containing two carbon atoms
- C08F214/06—Vinyl chloride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F14/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F14/02—Monomers containing chlorine
- C08F14/04—Monomers containing two carbon atoms
- C08F14/06—Vinyl chloride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/20—Aqueous medium with the aid of macromolecular dispersing agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/10—Esters
- C08F222/12—Esters of phenols or saturated alcohols
- C08F222/14—Esters having no free carboxylic acid groups, e.g. dialkyl maleates or fumarates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/04—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
- C08L27/06—Homopolymers or copolymers of vinyl chloride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/62—Monocarboxylic acids having ten or more carbon atoms; Derivatives thereof
- C08F220/68—Esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/10—Esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/20—Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/22—Thermoplastic resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/062—Copolymers with monomers not covered by C08L33/06
Definitions
- the present invention relates to a vinyl chloride-based polymer comprising unsaturated fatty acid ester in a certain ratio, a method for preparing the same, a thermoplastic resin composition comprising the same, and a thermoplastic resin molded article prepared from the composition.
- vinyl chloride-based polymer is a polymer containing 50% or more of vinyl chloride, it is inexpensive, easy to control the hardness, and can be applied to most processing equipment has a variety of applications. In addition, it has excellent physical and chemical properties such as mechanical strength, weather resistance, chemical resistance, etc. and is widely used in various fields such as building materials, household goods, automobile interior materials, and decorative materials.
- the vinyl chloride polymer has various problems in processing such that the processing temperature is close to the pyrolysis temperature, so that the moldable temperature range is narrow, and it takes a long time to become molten.
- a plasticizer is added to the vinyl chloride-based polymer, a method of using a vinyl chloride-based copolymer obtained by copolymerizing other monomers such as vinyl acetate to the vinyl chloride-based monomer, and different from the vinyl chloride-based polymer.
- the method of blending and using a resin component is known.
- the above methods have a problem that it is difficult to sufficiently improve the processability while maintaining the excellent physical and chemical properties inherent to the vinyl chloride polymer.
- a plasticizer is added to a vinyl chloride polymer or a vinyl chloride copolymer obtained by copolymerizing another monomer such as vinyl acetate to a vinyl chloride monomer, there is a problem that the physical properties of the molded article are greatly changed.
- the method of blending other resin components to the vinyl chloride polymer has a problem in that the melt temperature during the molding process is lowered, thereby lowering the processing temperature.
- the gelation of the vinyl chloride-based polymer is insufficient, and thus there is a problem that the physical properties are lowered as compared to the fully-gelled vinyl chloride-based polymer.
- U.S. Patent No. 5,204,421 discloses a method for dividing a dispersant having a degree of hydration of 20% or more and 55% or less into the initial stage of polymerization and in the middle stage. It is disclosed that a vinyl chloride polymer having
- U.S. Patent Publication No. 7,001,960 discloses a preparation method of continuously dispersing a dispersant having a degree of hydration of 20% or more and 57% or less from the initial polymerization stage to the polymerization stage, thereby producing a vinyl chloride polymer having a small number of gelling particles. It is disclosed that it can be done.
- 2013-0001428 discloses a method of suppressing scale generation occurring in a polymerization reactor by adding a metal deactivator during a polymerization reaction, thereby providing a method of improving migrating particles.
- the above-described prior arts have a problem in that the gelling particle reduction effect is insignificant and the transparency of the manufactured molded article is not greatly improved.
- the present invention has been made in order to solve the problems of the prior art, an object of the present invention to provide a vinyl chloride-based polymer comprising a predetermined proportion of unsaturated fatty acid ester.
- Another object of the present invention is to provide a method for producing the vinyl chloride polymer.
- Still another object of the present invention is to provide a thermoplastic resin composition comprising the vinyl chloride polymer.
- Another object of the present invention is to provide a thermoplastic resin molded article prepared from the thermoplastic resin composition.
- the present invention provides a vinyl chloride-based polymer comprising an unsaturated fatty acid ester of 0.001 part by weight or more and less than 2 parts by weight with respect to 100 parts by weight of the vinyl chloride-based polymer.
- the present invention comprises the step (step A) of the step of adding an unsaturated fatty acid ester to the vinyl chloride monomer and suspending polymerization in the presence of a polymerization initiator and a protective colloid preparation, the dosing is a batch dosing within the range of 85% polymerization conversion, Provided is a method for preparing the vinyl chloride-based polymer that is continuously or at least twice divided doses.
- thermoplastic resin composition comprising the vinyl chloride polymer.
- thermoplastic resin molded article manufactured from said thermoplastic resin composition.
- the vinyl chloride-based polymer according to the present invention can be improved in processability by the internal plasticizer action of the unsaturated fatty acid ester by containing a predetermined proportion, such as 0.001 part by weight or more and less than 2 parts by weight.
- the manufacturing method of the vinyl chloride-based polymer according to the present invention can ensure that the unsaturated fatty acid ester is stably distributed in the vinyl chloride-based polymer, it is possible to increase the conversion rate of the vinyl chloride-based monomer to the polymer.
- thermoplastic resin molded article prepared from the thermoplastic resin composition including the vinyl chloride-based polymer according to the present invention may not only have excellent impact strength, but also have little gelling particles and excellent appearance characteristics.
- the vinyl chloride polymer and the method for producing the same according to the present invention can be easily applied to industries that require it, in particular, industries using vinyl chloride resin.
- the present invention provides a vinyl chloride-based polymer that can provide a molded article having excellent workability and less generation of migrating particles and excellent surface appearance characteristics.
- the vinyl chloride polymer according to an embodiment of the present invention is characterized in that it comprises at least 0.001 parts by weight or more and less than 2 parts by weight of unsaturated fatty acid ester based on 100 parts by weight of the vinyl chloride polymer.
- vinyl chloride polymer refers to a substance produced by polymerizing a vinyl chloride monomer and may be in a state in which a polymer chain derived from a vinyl chloride monomer and an unsaturated fatty acid ester are mixed.
- the mixture includes all of these states, such as a mixture state, a combined state, and a continuous phase and a dispersed phase relationship.
- the vinyl chloride polymer according to an embodiment of the present invention may be a polymer prepared by the manufacturing method described below using only vinyl chloride monomer as a monomer component.
- the vinyl chloride polymer may be a copolymer prepared by using a vinyl chloride monomer as a monomer component and a vinyl monomer copolymerizable with the vinyl chloride monomer.
- the vinyl chloride polymer is a copolymer of a vinyl chloride monomer and a vinyl monomer, 50% or more of vinyl chloride may be included in the copolymer.
- the vinyl monomer copolymerizable with the vinyl chloride monomer is not particularly limited, but for example, an olefin compound such as ethylene, propylene, butene; Vinyl esters such as vinyl acetate, vinyl propionate and vinyl stearate; Unsaturated nitriles such as acrylonitrile; Vinyl alkyl ethers such as vinyl methyl ether, vinyl ethyl ether, vinyl octyl ether and vinyl lauryl ether; Vinylidene halides such as vinylidene chloride; Unsaturated fatty acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, maleic anhydride and itaconic anhydride and anhydrides of these fatty acids; Unsaturated fatty acid esters such as methyl acrylate, ethyl acrylate, monomethyl maleate, dimethyl maleate, and butylbenzyl maleate; It may be a crosslinkable monomer such
- the unsaturated fatty acid ester included in the vinyl chloride-based polymer according to an embodiment of the present invention may be a material produced by esterification of an unsaturated fatty acid with an alcohol, and the unsaturated fatty acid may have at least one carbon-carbon double bond.
- the branch may be a compound.
- the unsaturated fatty acid ester may act as an internal plasticizer to improve the processability of the vinyl chloride polymer including the same.
- the unsaturated fatty acid ester may be an unsaturated carboxylic acid ester having 2 to 16 carbon atoms, and may include cis isomer and trans isomer of unsaturated fatty acid ester.
- the cis isomer and the trans isomer of the unsaturated fatty acid ester may have a weight ratio of 60:40 to 90:10.
- the cis isomer and the trans isomer of the unsaturated fatty acid ester may have a weight ratio of 65:35 to 80:20.
- thermoplastic resin composition comprising the vinyl chloride polymer. Appearance characteristics of the thermoplastic resin molded article produced from may deteriorate.
- the cis isomer of the unsaturated fatty acid ester may be a compound represented by Formula 1 below, and the trans isomer of the unsaturated fatty acid ester may be a compound represented by Formula 2 below.
- R 1 to R 4 may be independently selected from the group consisting of a linear or branched alkyl group having 2 to 16 carbon atoms, a cycloalkyl group having 3 to 16 carbon atoms, and a combination thereof.
- two or more functional groups are a single bond, a double bond (ethylene group), a triple bond (acetylene group) or an alkylene group having 2 to 16 carbon atoms (for example, It may mean that are bonded by a linking group such as methylene group (-CH 2- ) or ethylene group (-CH 2 CH 2- ), etc.), or that two or more functional groups are condensed, connected.
- R 1 to R 4 may be each independently a linear or branched alkyl group having 4 to 14 carbon atoms.
- alkyl group may mean an atomic group other than one hydrogen in the chain-shaped saturated hydrocarbon.
- the unsaturated fatty acid ester according to the embodiment of the present invention may be included in the vinyl chloride polymer as described above in an amount of 0.001 parts by weight or more and less than 2 parts by weight. If the unsaturated fatty acid ester is included in an amount less than 0.001 parts by weight, it may not properly express its function as an internal plasticizer, and thus the processability of the vinyl chloride polymer including the same may not be improved, and the unsaturated fatty acid ester may be 2 parts by weight or more. When included as a reverse plasticization phenomenon, the processability of the vinyl chloride-based polymer including it may be somewhat improved, but the impact strength degradation or surface properties of the thermoplastic resin molded article manufactured using the vinyl chloride-based polymer may be reduced. have.
- the vinyl chloride-based polymer according to the present invention includes an unsaturated fatty acid ester which can act as an internal plasticizer in a certain ratio, and thus the processability can be improved by the unsaturated fatty acid ester.
- the present invention also provides a method for producing the vinyl chloride polymer.
- Method for producing a vinyl chloride-based polymer comprises the step of injecting and suspending polymerization of unsaturated fatty acid ester in the vinyl chloride monomer in the presence of a polymerization initiator and a protective colloid preparation (step A),
- the unsaturated fatty acid ester is characterized in that a batch, continuous or at least two divided doses in the range of 85% polymerization conversion of the vinyl chloride monomer.
- Step A is a step for forming a vinyl chloride-based polymer comprising a predetermined proportion of unsaturated fatty acid ester, it can be carried out by adding the unsaturated fatty acid ester to the vinyl chloride monomer and polymerized.
- step A may be to add a suspension and polymerize the unsaturated fatty acid ester mixture to the polymerization reactor equipped with a vinyl chloride-based monomer.
- the polymerization reactor may be a reactor filled with a solvent, a polymerization initiator and a protective colloid preparation before the vinyl chloride monomer is provided.
- the "filled reactor” may mean a state in which a solvent, a polymerization initiator, and a protective colloid preparation are introduced into the polymerization reactor before the vinyl chloride monomer is provided.
- the vinyl chloride monomer may be pure vinyl chloride monomer alone.
- the vinyl chloride monomer may be a combination of a vinyl chloride monomer and a vinyl monomer copolymerizable therewith as desired, and when the vinyl chloride monomer is a combination of a vinyl chloride monomer and a vinyl monomer, finally The proportion of vinyl chloride in the vinyl chloride polymer to be produced may be 50% by weight or more, and may be combined.
- the vinyl monomer copolymerizable with the vinyl chloride monomer may be as described above.
- the unsaturated fatty acid ester is added in the polymerization of the vinyl chloride-based monomers to be included in the vinyl chloride-based polymer to be finally prepared to play a role in improving the processability of the vinyl chloride-based polymer, as described above unsaturated fatty acid ester
- the cis isomer and the trans isomer of the unsaturated fatty acid ester may be included, and the cis isomer and the trans isomer of the unsaturated fatty acid ester may have a weight ratio of 60:40 to 90:10.
- the cis isomer and trans isomer of the unsaturated fatty acid ester may have a weight ratio of 65:35 to 80:20, and the specific unsaturated fatty acid ester is as described above.
- the unsaturated fatty acid ester may be used in an amount of 0.001 part by weight or more and less than 2 parts by weight with respect to 100 parts by weight of the vinyl chloride monomer. If the unsaturated fatty acid ester is used in an amount less than 0.001 parts by weight, the processability of the final prepared vinyl chloride polymer may be insignificant or insignificant. If it is included in an amount of 2 parts by weight or more, the processability of the final manufactured vinyl chloride polymer Although it may be somewhat improved, the impact strength and surface properties of the molded article manufactured using the same may be degraded.
- the unsaturated fatty acid ester may be batch injection, continuous injection, or split injection at least twice in a polymerization reactor having a vinyl chloride monomer in a polymerization conversion rate within 85%.
- the "polymerization conversion rate” may mean a conversion rate of the vinyl chloride monomer to the polymer, and the polymerization conversion rate may be measured using a butane tracer equipped with gas chromatography. have. Specifically, the polymerization conversion curve according to the ratio of vinyl chloride monomer and butane over time under constant polymerization conditions is prepared for each polymerization condition, and the polymerization conversion rate according to the polymerization conditions may be measured based on this. In addition, the polymerization conversion may be to include an error range according to the measurement, for example, may include up to 85% to ⁇ 3%.
- the batch feeding may be to temporarily add the unsaturated fatty acid ester used at one point within the above-described polymerization conversion range into a polymerization reactor equipped with a vinyl chloride monomer. Specifically, the batch feeding may be to inject the entire amount of the unsaturated fatty acid ester into the unsaturated fatty acid ester within the range of 60% polymerization conversion at a time.
- the continuous input may be continuously adding the unsaturated fatty acid ester to the polymerization reactor equipped with a vinyl chloride monomer in the range of less than 85% polymerization conversion, specifically, when the unsaturated fatty acid ester is at least 1% polymerization conversion
- Starting the input may be to end the input at a time when the polymerization conversion rate is within 85%, the entire amount of the unsaturated fatty acid ester may be added at a constant rate from the start to the end.
- the polymerization conversion rate of 1% may mean a time point at which the polymerization initiation temperature is reached, that is, the unsaturated fatty acid ester may be added immediately after the polymerization start or together with the polymerization start.
- the polymerization conversion rate of 85% may mean a time point at which the polymerization ends, and in the present invention, may include a time point until the reaction ends.
- the continuous input may be to start the addition of the unsaturated fatty acid ester at the time when the polymerization conversion rate is 10% or more to end the input at the time when the polymerization conversion rate is within 35%, and also to start the entire amount of the unsaturated fatty acid ester It may be to input at a constant speed from to end.
- the divided input may be divided continuous input or divided batch input, and the divided continuous input may be performed by dividing the unsaturated fatty acid ester to be used in two or more to be continuously added within a specific polymerization conversion range, and the divided batch input.
- Silver may be divided into two or more unsaturated fatty acid ester to be used at one time within a specific polymerization conversion range.
- the divided continuous input is a first continuous input of starting the first fraction of the unsaturated fatty acid ester total amount at the time of polymerization conversion rate of 1% or more and ending the input at the time of within 25%, the first of the total amount
- the second fraction other than the fraction may be introduced at the time when the polymerization conversion rate is 35% or more, and the second continuous input may be performed at the time when the second fraction is within 60%, wherein the first and second continuous inputs are performed.
- Each may be to add an unsaturated fatty acid ester at a constant rate from the start start to the end.
- the first batch of the unsaturated fatty acid ester may be first batch injected at a time of 1% to 30% polymerization conversion, and the second fraction excluding the first fraction of the total amount is 35% to polymerization conversion. At 85%, the second batch may be added.
- the first fraction and the second fraction may be divided by adjusting so as to have a weight ratio of 9: 1 to 1: 9, and the divided input may be divided into two or more times, three times, four times, etc. have. Therefore, the fractions can be formed as many times as the number of divided doses, and each fraction can be adjusted to have an appropriate ratio as desired.
- the divided continuous input is the first fraction of the total unsaturated fatty acid ester starting at the time of the polymerization conversion rate of 1% or more, and at the time of within 25%
- the first continuous injection to terminate the input, and the second fraction of the total amount is the second continuous input to start the input at the time of the polymerization conversion rate of 30% or more and finish the input at the time of within 50%, the first of the total amount
- the third fraction other than the first fraction and the second fraction may be introduced into the third continuous injection at the point of time when the polymerization conversion rate is 55% or more and end the injection at the time within 70%, wherein the first continuous injection, Second continuous and third continuous dosing may be to inject unsaturated fatty acid esters at a constant rate from the start to the end, respectively.
- the first batch of unsaturated fatty acid esters is firstly charged at a polymerization conversion rate of 10% to 30%, and the second fraction of the total amount is 2% at a polymerization conversion rate of 35% to 50%.
- the second batch may be added, and the third fraction except for the first fraction and the second fraction may be added in the third batch at a time when the polymerization conversion rate is 55% to 85%.
- the protective colloid preparation is to act to stabilize the reactants during the polymerization and to produce uniform and stable particles, which is used in an amount of 0.03 to 5 parts by weight based on 100 parts by weight of the vinyl chloride monomer used in the polymerization.
- the protective colloid preparation may be used at 0.05 parts by weight to 2.5 parts by weight based on 100 parts by weight of the vinyl chloride monomer. If the protective colloid preparation is used in an amount less than 0.03 parts by weight, the particle size of the finally produced vinyl chloride-based polymer is excessively increased, and thus, the possibility of migrating particles in a molded article manufactured using the vinyl chloride-based polymer may occur. When used in excess of 5 parts by weight, the initial coloring property of the molded article produced using the vinyl chloride-based polymer may occur due to the increase of the fine particles in the finally prepared vinyl chloride-based polymer.
- the protective colloid preparation may be one or a mixture of two or more selected from the group consisting of vinyl alcohol-based resins, celluloses and unsaturated organic acid polymers.
- the protective colloid preparations may include 5 to 9 vinyl alcohol-based resins and celluloses. It may be a mixture in a weight ratio of 1: 1 to 7.
- the vinyl alcohol-based resin has a first polyvinyl alcohol having a degree of hydration greater than 50% by weight and 90% by weight or less, and a second polyvinyl alcohol having a degree of hydration of 30% by weight to 50% by weight from 2 to 1: 1 to 2 It may be a mixture mixed in a weight ratio of.
- the cellulose includes methyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, and the like, and any one or a mixture of two or more thereof may be used.
- hydroxypropylmethylcellulose may be used. More specifically, the content of intramolecular hydroxypropyl groups is 3 wt% to 20 wt%, and the viscosity of 2% aqueous solution at 23 ⁇ 5 ° C. is 10 cps to 20,000 cps. It may be.
- the unsaturated organic acid polymer may include an acrylic acid polymer, a methacrylic acid polymer, an itaconic acid polymer, a fumaric acid polymer, a maleic acid polymer, or a succinic acid polymer, and any one or a mixture of two or more thereof may be used.
- the polymerization initiator may be used in an amount of 0.02 part by weight to 0.2 part by weight based on 100 parts by weight of the vinyl chloride monomer used in the polymerization. Specifically, the polymerization initiator may be used in an amount of 0.04 parts by weight to 0.12 parts by weight based on 100 parts by weight of the vinyl chloride monomer. If the content of the polymerization initiator is less than 0.02 parts by weight, the polymerization reaction time is long, and the conversion rate to the vinyl chloride-based polymer is lowered, which may lower productivity. If the content is more than 0.2 parts by weight, the polymerization initiator is not completely consumed during the polymerization process. However, it may remain in the finally prepared vinyl chloride-based polymer, thereby lowering the physical properties of the polymer, particularly thermal stability.
- the polymerization initiator is not particularly limited.
- Peroxide compounds such as dicumyl peroxide, dipentyl peroxide, di-3,5,5-trimethyl hexanoyl peroxide or dilauryl peroxide;
- Peroxydicarbonate-based compounds such as diisopropylperoxydicarbonate, di-sec-butylperoxydicarbonate or di-2-ethylhexylperoxydicarbonate;
- peroxy ester compounds such as t-butylperoxy pivalate, 1,1,3,3-tetramethylbutylperoxy neodecanoate or t-butylperoxy neodecanoate
- Azo compounds such as azobis-2,4-dimethylvaleronitrile
- hydroperoxide compounds such as t-butyl hydroperoxide
- sulfate-based compounds such as potassium persulfate or ammonium persulfate, and any one or
- the suspension polymerization is not particularly limited, but may be, for example, carried out at a temperature range of 30 °C to 70 °C, the temperature during the suspension polymerization can be appropriately adjusted according to the degree of polymerization desired within the above range. For example, the higher the degree of polymerization, the lower the temperature, and the lower the degree of polymerization, the higher the temperature.
- the suspension polymerization may terminate the polymerization by adding a reaction terminator, the termination point is the pressure in the reactor 6 kg / cm 2 to 8 kg / cm 2 (or when the polymerization conversion exceeds 85%) May be the time point.
- the reaction terminator is not particularly limited, but may be, for example, a phenol compound, an amine compound, a nitrile compound, a sulfur compound, or the like.
- the reaction terminator is triethylene glycol-bis-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate, hydroquinone, p-methoxyphenol, t-butylhydro Roxyanisole, n-octadecyl-3- (4-hydroxy-3,5-di-t-butylphenyl) propionate, 2,5-di-t-butyl hydroquinone, 4,4'-part Phenolic compounds such as thilidenebis (3-methyl-6-t-butyl phenol), t-butyl catechol, 4,4'-thiobis (6-t-butyl-m-cresol), tocophenol, N, Amine compounds such as N'-diphenyl-p-phenylenediamine, 4,4'-bis (di
- the suspension polymerization may use a solvent, the solvent may be deionized water.
- the solvent may be used by appropriately adjusted according to the amount of the vinyl chloride monomer used in the polymerization and the size of the polymerization reactor, for example, may be used in more than 70 parts by weight based on 100 parts by weight of the vinyl chloride monomer.
- the suspension polymerization may further include additives such as polymerization regulators, chain transfer agents, pH regulators, antioxidants, crosslinking agents, antistatic agents, antiscaling agents, surfactants, etc., if necessary, in addition to the active ingredients described above.
- additives such as polymerization regulators, chain transfer agents, pH regulators, antioxidants, crosslinking agents, antistatic agents, antiscaling agents, surfactants, etc.
- the kind and content of the is not particularly limited and can be used as a conventional kind and content known in the art.
- the additive may be added at any time during suspension polymerization, during polymerization or after polymerization, or may be added in batches or continuously.
- the manufacturing method according to the present invention may further include a step of drying after the step A, the drying is not particularly limited and may be carried out by methods commonly known in the art.
- thermoplastic resin composition comprising the vinyl chloride polymer.
- thermoplastic resin composition may include the vinyl chloride-based polymer including a predetermined ratio of an unsaturated fatty acid ester as a main component. That is, the thermoplastic resin composition may include 90 wt% or more, specifically 95 wt% or more of the vinyl chloride polymer based on 100 wt% of the composition.
- thermoplastic resin composition may include various additives according to the purpose of the object to be manufactured using the same, for example, a thermoplastic resin molded article, and the additive is not particularly limited, such as a plasticizer, a stabilizer, a lubricant, an impact modifier, Processing aids or pigments;
- thermoplastic resin molded article manufactured from said thermoplastic resin composition.
- thermoplastic resin molded article according to an embodiment of the present invention may be manufactured from the thermoplastic resin composition including the vinyl chloride-based polymer according to the present invention, and may have high impact strength and less generation of gelling particles, and may have excellent transparency. .
- the polymerization conversion rate is measured using a butane tracer equipped with gas chromatography. Specifically, the polymerization conversion curve according to the ratio of vinyl chloride monomer and butane over time under constant polymerization conditions was prepared for each polymerization condition, and the polymerization conversion rate according to the polymerization conditions was measured based on this.
- 390 kg of deionized water was added to a reactor of 1 m 3 internal volume having a reflux condenser, 150 g of polyvinyl alcohol having a degree of hydration of 80.5%, 120 g of polyvinyl alcohol having a degree of hydration of 42.3%, and hydroxypropylmethyl cellulose 30 g was added to the reactor, 300 kg of vinyl chloride monomer was added, and then 60 g of di-2-ethylhexyl peroxydicarbonate and 120 g of t-butylperoxy neodecanoate were added to initiate the reaction.
- Di (2-ethylhexyl) ester was added at the time when the polymerization conversion was 20%, and the addition was terminated at the time of 35%. At this time, the total amount of added di (2-ethylhexyl) ester was 3 g, di (2-ethylhexyl) maleate and di (2-ethylhexyl) fumarate was mixed in a weight ratio of 90:10. In order to achieve the target average degree of polymerization of 1000, the reaction temperature was maintained at 57 ° C. during the entire polymerization process, and 4-hydroxy-2,2,6, when the polymerization reactor pressure reached 6.3 kg / cm 2 .
- the reaction was terminated by adding 12 g of 6-tetramethyl-piperidine-1-oxyl and 90 g of triethylene glycol-bis-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate. I was. Thereafter, the unreacted monomer and the resulting vinyl chloride copolymer slurry were separated and recovered, respectively, and the vinyl chloride copolymer slurry was dried in a fluidized bed dryer to obtain a vinyl chloride polymer.
- a vinyl chloride polymer was obtained in the same manner as in Example 1, except that the amount of di (2-ethylhexyl) ester was increased to 1500 g.
- a vinyl chloride polymer was obtained in the same manner as in Example 1, except that the amount of di (2-ethylhexyl) ester was increased to 4500 g.
- Example 2 Same as Example 1 except that di (2-ethylhexyl) ester was used in which di (2-ethylhexyl) maleate and di (2-ethylhexyl) fumalate were mixed in a weight ratio of 80:20.
- the vinyl chloride polymer was obtained through the method.
- Example 2 Same as Example 1 except that di (2-ethylhexyl) ester was used in which di (2-ethylhexyl) maleate and di (2-ethylhexyl) fumalate were mixed in a weight ratio of 65:35.
- the vinyl chloride polymer was obtained through the method.
- a vinyl chloride polymer was obtained in the same manner as in Example 2, except that di (ethyldodecyl) ester was used instead of di (2-ethylhexyl) ester. At this time, the di (ethyl dodecyl) ester was a mixture of di (ethyl dodecyl) maleate and di (ethyl dodecyl) fumarate in a weight ratio of 90:10.
- a vinyl chloride polymer was obtained in the same manner as in Example 1, except that 150 g of dihexyl ester was collectively added together with the vinyl chloride monomer instead of the di (2-ethylhexyl) ester. At this time, the dihexyl ester was a mixture of dihexyl maleate and dihexyl fumalate in a weight ratio of 90:10.
- a vinyl chloride polymer was obtained in the same manner as in Example 1, except that 100 g of di (2-ethylhexyl) ester was added at a polymerization conversion rate of 10%.
- dibutyl ester was used, and 500 g of the dibutyl ester was first charged in a batch at a polymerization conversion rate of 15% to proceed with polymerization, and further, 500 g of dibutyl ester was polymerized.
- a vinyl chloride polymer was obtained in the same manner as in Example 1, except that the second batch was injected at a conversion rate of 40%.
- the dibutyl ester was a mixture of dibutyl maleate and dibutyl fumarate in a weight ratio of 90:10.
- didecyl ester was used, 1000 g of the didecyl ester was started to be introduced at the polymerization conversion rate of 15%, the addition was terminated at the time of 20%, and the first continuous injection was carried out.
- the vinyl chloride polymer was prepared in the same manner as in Example 1 except that 1000 g of didecyl ester was added at 30% of the polymerization conversion rate, and the addition was terminated at 40%. Obtained. At this time, the didecyl ester was a mixture of didecyl maleate and didecyl fumarate in a weight ratio of 90:10.
- 390 kg of deionized water was added to a reactor of 1 m 3 internal volume having a reflux condenser, 150 g of polyvinyl alcohol having a degree of hydration of 80.5%, 120 g of polyvinyl alcohol having a degree of hydration of 42.3%, and hydroxypropylmethyl cellulose 30 g was added to the reactor, 300 kg of vinyl chloride monomer was added, and then 60 g of di-2-ethylhexyl peroxydicarbonate and 150 g of t-butylperoxy neodecanoate were added to initiate the reaction.
- the reaction was terminated by adding 12 g of 6-tetramethyl-piperidine-1-oxyl and 90 g of triethylene glycol-bis-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate. I was. Thereafter, the unreacted monomer and the resulting vinyl chloride copolymer slurry were separated and recovered, respectively, and the vinyl chloride copolymer slurry was dried in a fluidized bed dryer to obtain a vinyl chloride polymer.
- the vinyl chloride polymer was obtained in the same manner as in Example 10, except that 300 g of dibutyl ester instead of di (2-ethylhexyl) ester was added at the time of polymerization conversion rate of 50% and finished at the time of 60%. Obtained.
- the vinyl chloride polymer was prepared in the same manner as in Example 10, except that 500 g of didecyl ester instead of the di (2-ethylhexyl) ester was added at the polymerization conversion rate of 15% and finished at 30%. Obtained. At this time, the didecyl ester was a mixture of didecyl maleate and didecyl fumarate in a weight ratio of 90:10.
- a vinyl chloride polymer was obtained in the same manner as in Example 1, except that di (2-ethylhexyl) ester was not used.
- a vinyl chloride polymer was obtained in the same manner as in Example 1, except that 2.5 g of di (2-ethylhexyl) ester was added.
- a vinyl chloride polymer was obtained in the same manner as in Example 1, except that the amount of di (2-ethylhexyl) ester was increased to 7500 g.
- Example 2 Same as Example 1 except that di (2-ethylhexyl) ester was used in which di (2-ethylhexyl) maleate and di (2-ethylhexyl) fumalate were mixed in a weight ratio of 95: 5.
- the vinyl chloride polymer was obtained through the method.
- Example 2 Same as Example 1 except that di (2-ethylhexyl) ester was used in which di (2-ethylhexyl) maleate and di (2-ethylhexyl) fumalate were mixed in a weight ratio of 50:50.
- the vinyl chloride polymer was obtained through the method.
- a vinyl chloride polymer was obtained in the same manner as in Example 6, except that di (octadecyl) ester was used instead of di (2-ethylhexyl) ester. At this time, the di (octadecyl) ester was a mixture of di (octadecyl) maleate and di (octadecyl) fumarate in a weight ratio of 90:10.
- a vinyl chloride polymer was obtained in the same manner as in Example 1, except that diallyl ester was used instead of di (2-ethylhexyl) ester. At this time, the diallyl ester was a mixture of diallyl maleate and diallyl fumarate at a weight ratio of 90:10.
- a vinyl chloride polymer was obtained in the same manner as in Example 12, except that di (2-ethylhexyl) ester was not used.
- the apparent specific gravity was measured according to ASTM D1 895-89 standard.
- the average particle diameter and particle distribution were measured according to ASTM D1 705 standard, the average particle diameter was obtained by weight average particle diameter based on the standard, the particle distribution is the amount of sample remaining without passing through 200 mesh (mesh), It was calculated
- Example 1 0.531 144 0.9
- Example 2 0.536 137 0.8
- Example 3 0.535 138 0.7
- Example 4 0.538 141 0.8
- Example 5 0.549 143 1.2
- Example 6 0.535 139 0.8
- Example 7 0.534 144 0.7
- Example 8 0.537 145 0.7
- Example 9 0.536 137 0.8
- Example 10 0.536 136 0.9
- Example 11 0.538 141 0.8
- Example 12 0.578 141 1.0
- Example 13 0.576 139 1.1
- Example 14 0.579 140 1.1
- Example 15 0.579 138 1.2
- Comparative Example 1 0.532 145 0.7
- Comparative Example 2 0.532 146 0.8
- Comparative Example 3 0.535 134 1.0
- the vinyl chloride polymer of Examples 1 to 11 and the vinyl chloride polymer of Examples 12 to 15 according to an embodiment of the present invention respectively, Comparative Example 1 and Comparative Example prepared with the same degree of polymerization
- the particle properties were generally similar to those of the vinyl chloride polymer of 8.
- the vinyl chloride polymers of Comparative Examples 3 to 7 exhibited changed particle characteristics compared to the vinyl chloride polymer of Comparative Example 1 prepared with the same degree of polymerization, and in particular, Comparative Examples 4, 6 and 7
- the vinyl chloride polymer was found to have significantly changed the particle characteristics compared to the vinyl chloride heavy body of Comparative Example 1.
- vinyl chloride polymers of Examples 1 to 15 include unsaturated fatty acid esters in which cis and trans are present in a specific weight ratio, so that the particle characteristics of conventional vinyl chloride polymers are limited. This means that no deformation occurs.
- thermoplastic resin composition containing each vinyl chloride polymer was prepared and the molded article was used. After the production, the degree of gelling particle generation, transparency and impact strength were measured, and the results are shown in Table 2 below.
- DOP dioctylphthalate
- MT800 tin-based heat stabilizer
- tin-based heat stabilizer 4 parts by weight of tin-based heat stabilizer (MT800, Songwon Industry), 1 part by weight of processing aid (PA-910, LG Chemical) to 100 parts by weight of each vinyl chloride polymer prepared in Examples 1 to 15 and Comparative Examples 1 to 8 Part, 5 parts by weight of impact modifier (MB872, LG Chem), 0.5 parts by weight of lubricant (SL63, LG Chem), kneaded at 185 ° C. for 3 minutes using a roll-mill, and then 0.5 mm thick. Sheets were prepared. Each sheet was cut to a predetermined size and placed in a mold of 3 cm thickness to prepare each compressed sheet by using a press for 2 minutes preheating, 3 minutes low pressure heating and 2 minutes high pressure cooling at 185 ° C. Each compressed sheet was measured for transparency using a Haze-gard plus instrument (BYK-Gardener). Transparency indicates that the higher the value, the better.
- each vinyl chloride polymer prepared in Examples 1 to 15 and Comparative Examples 1 to 8 4 parts by weight of tin-based heat stabilizer (MT800, Songwon Industry), 1 part by weight of stearic acid-based lubricant (SL29, Songwon Industry) , 1.5 parts by weight of processing aids (PA-828, LG Chem), 6 parts by weight of impact modifier (MB872, LG Chem) were added and calendered at 185 ° C. for 5 minutes using a roll.
- the impact strength was measured in accordance with ASTM D256.
- Example 1 10 77.3 33 Example 2 3 78.3 37 Example 3 2 78.6 42 Example 4 7 77.3 36 Example 5 9 78.5 37 Example 6 3 78.4 38 Example 7 6 78.1 35 Example 8 78.0 34 Example 9 4 78.3 37 Example 10 3 78.9 40 Example 11 7 79.2 40 Example 12 12 76.8 32 Example 13 7 77.2 34 Example 14 8 77.4 35 Example 15 9 77.5 34 Comparative Example 1 12 76.1 32 Comparative Example 2 12 76.4 31 Comparative Example 3 4 77.5 26 Comparative Example 4 13 75.2 29 Comparative Example 5 8 73.1 36 Comparative Example 6 14 74.5 28 Comparative Example 7 19 74.1 27 Comparative Example 8 15 75.7 30
- the vinyl chloride polymer of Comparative Example 1 not containing an unsaturated fatty acid ester has a slightly reduced transparency compared to the vinyl chloride polymer of Example 1 prepared under the same conditions except for the inclusion of unsaturated fatty acid esters.
- the number of migrating particles was markedly increased to 120%, and the impact strength decreased by about 4%.
- the vinyl chloride polymer of Comparative Example 8 was somewhat compared to the vinyl chloride polymer of Example 12 While showing reduced transparency, the number of migrating particles was significantly increased to 125% and the impact strength decreased by about 6%.
- the vinyl chloride polymers of Comparative Example 2 including about 0.0008 parts by weight
- Comparative Example 3 including 2.5 parts by weight
- unsaturated fatty acid esters which are outside the content ranges set forth in the present invention
- the gelling particles were increased to 120% and 200%, respectively, and the impact strength was significantly reduced to 94% and 62%, respectively.
- the vinyl chloride polymer of) had a reduced transparency compared to the vinyl chloride polymer of Example 1 while increasing the number of migrating particles to 130% and significantly reducing the impact strength to 79%.
- the vinyl chloride polymer had a similar or slightly reduced number of migelling particles and a decrease in transparency to 93%.
- the transparency is reduced to a level of 95% compared to the vinyl chloride polymer of Example 6 and the number of migrating particles is about The increase was five times and the impact strength was significantly reduced to 74%.
- the vinyl chloride polymer of Comparative Example 7 containing diallyl ester instead of the unsaturated fatty acid ester presented in the present invention has a transparency decrease to 96% and the number of migrating particles is about 2 compared to the vinyl chloride polymer of Example 1. The rate increased sharply, and the impact strength decreased significantly to 82%.
- the results of Experimental Example 1 and Experimental Example 2 are conventional, because the vinyl chloride polymer according to an embodiment of the present invention includes unsaturated fatty acid esters in which cis isomers and trans isomers are mixed in specific weight ratios in a specific content range. Compared with the vinyl chloride polymer, it may have similar particle characteristics, and by expressing the internal plasticizer effect without lowering the impact strength characteristics of the vinyl chloride polymer, the processability is improved, thereby improving the appearance characteristics (eg, the number of migrating particles). Decrease and increase transparency).
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polymerisation Methods In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
본 발명은 불포화 지방산 에스테르를 일정비율로 포함하는 염화비닐계 중합체, 이의 제조방법, 이를 포함하는 열가소성 수지 조성물 및 상기 조성물로부터 제조된 열가소성 수지 성형품에 관한 것이다. 이에 따른 염화비닐계 중합체는 가공성이 우수할 수 있으며, 따라서 이를 포함하는 열가소성 수지 조성물로부터 제조된 열가소성 수지 성형품은 높은 충격강도를 가질 뿐 아니라 외관 특성이 개선될 수 있다.
Description
[관련출원과의 상호인용]
본 출원은 2015.06.05자 한국 특허 출원 제10-2015-0080160호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 불포화 지방산 에스테르를 일정비율로 포함하는 염화비닐계 중합체, 이의 제조방법, 이를 포함하는 열가소성 수지 조성물 및 상기 조성물로부터 제조된 열가소성 수지 성형품에 관한 것이다.
일반적으로 염화비닐계 중합체는 염화비닐을 50% 이상 함유하는 중합체로서, 가격이 저렴하고 경도 조절이 용이하며, 대부분의 가공기기에 적용 가능하여 응용 분야가 다양하다. 게다가, 물리적·화학적 성질, 예컨대 기계적 강도, 내후성, 내약품성 등이 우수하여 건축자재, 생활용품, 자동차 내장재, 장식재 등 여러 분야에서 광범위하게 사용되고 있다. 그러나, 염화비닐계 중합체는 가공온도가 열분해 온도에 가까워 성형 가능한 온도범위가 좁고, 용융상태로 되기까지 오랜 시간이 소요된다는 등 가공상의 여러 가지 문제점이 있다.
상기와 같은 문제를 해결하기 위하여, 염화비닐계 중합체에 가소제를 첨가하는 방법, 염화비닐계 단량체에 초산비닐 등의 다른 단량체를 공중합시킨 염화비닐계 공중합체를 사용하는 방법, 염화비닐계 중합체에 다른 수지 성분을 블렌딩하여 사용하는 방법이 등이 알려져 있다.
그러나, 상기와 같은 방법들은 염화비닐계 중합체 고유의 우수한 물리적 성질과 화학적 성질을 유지하면서 가공성을 충분히 향상시키기 어렵다는 문제점이 있다. 예를 들어, 염화비닐계 중합체에 가소제를 첨가하거나, 염화비닐계 단량체에 초산 비닐 등의 다른 단량체를 공중합시킨 염화비닐계 공중합체를 사용하는 경우에는 성형품의 물리적 성질이 크게 변화한다는 문제점이 있다.
또한, 상기 염화비닐계 중합체에 다른 수지 성분을 블렌딩하는 방법은 대부분 성형 가공시의 용융점도를 저하시켜 가공온도를 저하시킨다는 문제점이 있다. 뿐만 아니라, 가공 시 혼련 에너지가 유동에 의하여 소비되므로 염화비닐계 중합체의 겔화가 불충분하게 되며, 이에 따라 충분히 겔화된 염화비닐계 중합체에 비하여 물리적 성질이 저하되는 문제점이 있다.
한편, 염화비닐계 중합체의 성형 가공 시 겔화를 촉진시키거나, 성형품의 외관을 향상시키기 위하여 메틸 메타크릴레이트를 주성분으로 하는 공중합체를 염화비닐계 중합체에 배합하는 방법이 제안된 바 있다. 상기 방법은 겔화 정도가 높은 염화비닐계 중합체 성형품의 기계적 성질 및 투명성을 유지한 상태로 가공성을 향상시킬 수 있다는 장점이 있으며, 상기 공중합체를 염화비닐계 중합체와 배합 사용 시 캘린더 성형으로 시트 성형할 때 발생하는 에어 마크(air mark)를 감소시킬 수 있다는 장점이 있다. 그러나, 상기 방법은 시트 표면에 플로우 마크(flow mark)를 발생시켜 성형품의 품질을 저하시키는 문제점이 있다.
아울러, 최근에는 성형 기술이나 배합 기술 향상과 함께 성형품의 외관 특성이 중요시되고 있으며, 미겔링 입자 발생을 개선시키고 투명성을 향상시킬 수 있는 기술 개발에 대한 요구가 높아지고 있다.
예컨대, 미국 특허공보 제5,204,421호에는 20% 이상 55% 이하의 수화도를 가지는 분산제를 중합초기와 중기에 분할투입하는 제조방법을 제시하고 있으며, 상기 제조방법을 통하여 높은 가소제 흡수율 및 적은 미겔링 입자를 갖는 염화비닐 중합체를 제조할 수 있음을 개시하고 있다. 또한, 미국 특허공보 7,001,960호에는 중합초기부터 중합중기까지 20% 이상 57% 이하의 수화도를 갖는 분산제를 연속투입하는 제조방법을 제시하고 있으며, 이를 통하여 적은 미겔링 입자를 갖는 염화비닐 중합체를 제조할 수 있음을 개시하고 있다. 아울러, 한국 특허공개 제2013-0001428호에는 중합 반응 중 금속 비활성화제를 첨가함으로써 중합기 내에 발생하는 스케일 생성을 억제할 수 있으며, 이에 미겔링 입자를 개선하는 방법을 제시하고 있다. 그러나, 상기 종래 기술들은 미겔링 입자 감소 효과가 미미하고, 제조된 성형품의 투명성을 크게 개선시키지 못하는 문제가 있다.
따라서, 염화비닐계 중합체를 다양한 분야에 용이하게 적용하기 위해서는, 상기 염화비닐계 중합체의 가공성을 향상시킬 수 있어 미겔링 입자(fish-eye)의 발생을 억제시킬 수 있으며, 이에 제조된 성형품의 외관 특성을 향상시킬 수 있는 기술 개발이 필요한 실정이다.
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 불포화 지방산 에스테르를 일정비율로 포함하는 염화비닐계 중합체를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 상기의 염화비닐계 중합체의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기의 염화비닐계 중합체를 포함하는 열가소성 수지 조성물을 제공하는 것이다.
아울러, 본 발명의 또 다른 목적은 상기 열가소성 수지 조성물로부터 제조된 열가소성 수지 성형품을 제공하는 것이다.
상기의 과제를 해결하기 위하여, 본 발명은 염화비닐계 중합체 100 중량부에 대하여 0.001 중량부 이상 2 중량부 미만의 불포화 지방산 에스테르를 포함하는 염화비닐계 중합체를 제공한다.
또한, 본 발명은 중합 개시제 및 보호 콜로이드 조제의 존재하에 염화비닐계 단량체에 불포화 지방산 에스테르를 투입하고 현탁중합하는 단계(단계 A)를 포함하고, 상기 투입은 중합 전환율 85% 이내 범위에서 일괄투입, 연속투입 또는 적어도 2회 분할투입하는 것인 상기 염화비닐계 중합체의 제조방법을 제공한다.
아울러, 본 발명은 상기의 염화비닐계 중합체를 포함하는 열가소성 수지 조성물을 제공한다.
더 나아가, 본 발명은 상기의 열가소성 수지 조성물로부터 제조된 열가소성 수지 성형품을 제공한다.
본 발명에 따른 염화비닐계 중합체는 불포화 지방산 에스테르를 일정비율, 예컨대 0.001 중량부 이상 2 중량부 미만으로 포함함으로써 상기 불포화 지방산 에스테르의 내부 가소제 작용에 의하여 가공성이 개선될 수 있다.
또한, 본 발명에 따른 상기 염화비닐계 중합체의 제조방법은 불포화 지방산 에스테르가 염화비닐계 중합체 내에 안정적으로 분포하도록 할 수 있고, 염화비닐계 단량체의 중합체로의 전환율을 높일 수 있다.
아울러, 본 발명에 따른 상기 염화비닐계 중합체를 포함하는 열가소성 수지 조성물로부터 제조된 열가소성 수지 성형품은 충격강도가 우수할 뿐 아니라 미겔링 입자 발생이 적고 외관 특성이 우수할 수 있다.
따라서, 본 발명에 따른 상기 염화비닐계 중합체 및 이의 제조방법은 이를 필요로 하는 산업, 특히 염화비닐계 수지를 이용하는 산업에 용이하게 적용할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 우수한 가공성을 가지고 있어 미겔링 입자 발생이 적고 표면 외관 특성이 우수한 성형품을 제공할 수 있는 염화비닐계 중합체를 제공한다.
본 발명의 일 실시예에 따른 상기 염화비닐계 중합체는 상기 염화비닐계 중합체 100 중량부에 대하여 0.001 중량부 이상 2 중량부 미만의 불포화 지방산 에스테르를 포함하는 것을 특징으로 한다.
본 발명에서 "염화비닐계 중합체"는 염화비닐계 단량체를 중합하여 생성된 물질을 포괄하여 나타내는 것으로 염화비닐계 단량체로부터 유도된 중합체 사슬과 불포화 지방산 에스테르가 혼재하고 있는 상태인 것일 수 있다. 여기에서, 상기 혼재는 혼합물 상태, 결합한 상태 및 연속상과 분산상 관계 등 이들 모든 상태를 포함하는 것이다.
본 발명의 일 실시예에 따른 상기 염화비닐계 중합체는 단량체 성분으로 염화비닐 단량체만을 사용하여 후술하는 제조방법에 의하여 제조된 중합체일 수 있다. 그러나, 필요에 따라 상기 염화비닐계 중합체는 단량체 성분으로 염화비닐 단량체를 주체로 하고 상기 염화비닐 단량체와 공중합 가능한 비닐계 단량체를 함께 사용하여 제조된 공중합체일 수도 있다. 이때, 상기 염화비닐계 중합체가 염화비닐 단량체와 비닐계 단량체의 공중합체인 경우에는 상기 공중합체 내에 염화비닐이 50% 이상 포함되어 있는 것일 수 있다.
상기 염화비닐계 단량체와 공중합이 가능한 비닐계 단량체로는 특별히 한정되는 것은 아니나, 예컨대 에틸렌, 프로필렌, 부텐 등의 올레핀(olefin) 화합물; 초산 비닐, 프로피온산 비닐, 스테아린산 비닐 등의 비닐 에스테르(vinyl ester)류; 아크릴로니트릴 등의 불포화 니트릴류; 비닐 메틸 에테르, 비닐 에틸 에테르, 비닐 옥틸 에테르, 비닐 라우릴 에테르 등의 비닐 알킬 에테르류; 염화 비닐리덴 등의 할로겐화 비닐리덴(vinylidene)류; 아크릴산, 메타크릴산, 이타콘산, 말레인산, 푸마르산, 무수 말레산, 무수 이타콘산 등의 불포화 지방산 및 이들 지방산의 무수물; 아크릴산 메틸, 아크릴산 에틸, 말레인산 모노 메틸, 말레인산 디메틸, 말레인산 부틸벤질 등의 불포화 지방산 에스테르류; 디알릴 프탈레이트 등의 가교성 단량체 등일 수 있으며, 상기 비닐계 단량체는 단독 또는 2종 이상을 혼합하여 사용할 수 있다.
본 발명의 일 실시예에 따른 상기 염화비닐계 중합체에 포함되는 불포화 지방산 에스테르는 불포화 지방산과 알코올의 에스테르화 반응에 의하여 생성되는 물질일 수 있으며, 상기 불포화 지방산은 적어도 하나 이상의 탄소-탄소 이중결합을 가지는 화합물일 수 있다. 상기 불포화 지방산 에스테르는 내부 가소제로서 작용하여 이를 포함하는 상기 염화비닐계 중합체의 가공성을 향상시키는 역할을 할 수 있다.
구체적으로, 상기 불포화 지방산 에스테르는 탄소수 2 내지 16의 불포화 카르복실산 에스테르인 것일 수 있으며, 불포화 지방산 에스테르의 시스 이성질체와 트랜스 이성질체를 포함하는 것일 수 있다. 이때, 상기 불포화 지방산 에스테르의 시스 이성질체와 트랜스 이성질체는 60:40 내지 90:10의 중량비를 갖는 것일 수 있다. 구체적으로는, 상기 불포화 지방산 에스테르의 시스 이성질체와 트랜스 이성질체는 65:35 내지 80:20의 중량비를 갖는 것일 수 있다. 만약, 상기 불포화 지방산 에스테르의 시스 이성질체와 트랜스 이성질체가 전술한 중량비를 벗어나는 비율을 나타내는 경우에는 이를 포함하는 염화비닐계 중합체의 가공성이 저하될 수 있고, 이에 상기 염화비닐계 중합체를 포함하는 열가소성 수지 조성물로부터 제조된 열가소성 수지 성형품의 외관특성이 나빠질 수 있다.
상기 불포화 지방산 에스테르의 시스 이성질체는 하기 화학식 1로 표시되는 화합물일 수 있으며, 상기 불포화 지방산 에스테르의 트랜스 이성질체는 하기 화학식 2로 표시되는 화합물일 수 있다.
[화학식 1]
[화학식 2]
상기 화학식 1 또는 화학식 2에서, R1 내지 R4는 서로 독립적으로 탄소수 2 내지 16의 직쇄상 또는 분지상의 알킬기, 탄소수 3 내지 16의 사이클로알킬기 및 이들의 조합으로 이루어진 군에서 선택된 것일 수 있다.
본 발명에 있어서, "이들의 조합"이란 특별한 언급이 없는 한, 둘 이상의 작용기가 단일결합, 이중결합(에틸렌기), 삼중결합(아세틸렌기) 또는 탄소수 2 내지 16의 알킬렌기(예를 들면, 메틸렌기(-CH2-) 또는 에틸렌기(-CH2CH2-), 등)와 같은 연결기에 의해 결합되어 있거나, 또는 둘 이상의 작용기가 축합, 연결되어 있는 것을 의미하는 것일 수 있다.
구체적으로는, 화학식 1 또는 화학식 2에서, 상기 R1 내지 R4는 서로 독립적으로 탄소수 4 내지 14의 직쇄상 또는 분지상의 알킬기인 것일 수 있다.
본 발명에 있어서, 상기 "알킬기"는 사슬모양 포화탄화수소에서 1개의 수소를 제외한 나머지 원자단을 의미하는 것일 수 있다.
본 발명의 일 실시예에 따른 상기 불포화 지방산 에스테르는 전술한 바와 같이 상기 염화비닐계 중합체에 0.001 중량부 이상 2 중량부 미만으로 포함될 수 있다. 만약, 상기 불포화 지방산 에스테르가 0.001 중량부 미만으로 포함될 경우에는 내부 가소제로서의 작용을 제대로 발현할 수 없어 이를 포함하는 염화비닐계 중합체의 가공성이 개선되지 못할 수 있으며, 상기 불포화 지방산 에스테르가 2 중량부 이상으로 포함될 경우에는 역가소화 현상이 일어나 이를 포함하는 염화비닐계 중합체의 가공성은 다소 개선될 수는 있으나 상기 염화비닐계 중합체를 이용하여 제조된 열가소성 수지 성형품의 충격 강도의 열화나 표면 특성이 저하될 수 있다.
본 발명에 따른 상기 염화비닐계 중합체는 내부 가소제로 작용할 수 있는 불포화 지방산 에스테르를 일정비율로 포함하고 있어, 상기 불포화 지방산 에스테르에 의하여 가공성이 개선될 수 있다.
또한, 본 발명은 상기의 염화비닐계 중합체의 제조방법을 제공한다.
본 발명의 일 실시예에 따른 상기 염화비닐계 중합체의 제조방법은 중합 개시제 및 보호 콜로이드 조제의 존재하에 염화비닐계 단량체에 불포화 지방산 에스테르를 투입하고 현탁중합하는 단계(단계 A)를 포함하고, 상기 불포화 지방산 에스테르의 투입은 염화비닐계 단량체의 중합 전환율 85% 이내 범위에서 일괄투입, 연속투입 또는 적어도 2회 분할투입하는 것인 것을 특징으로 한다.
상기 단계 A는 불포화 지방산 에스테르를 일정비율로 포함하는 염화비닐계 중합체를 형성시키기 위한 단계로, 염화비닐계 단량체에 불포화 지방산 에스테르를 투입하고 중합시킴으로써 수행할 수 있다.
구체적으로, 상기 단계 A는 염화비닐계 단량체가 구비된 중합 반응기에 불포화 지방산 에스테르 혼합물을 투입하고 현탁중합하는 것일 수 있다. 이때, 상기 중합 반응기는 염화비닐계 단량체를 구비하기 전에 용매, 중합 개시제 및 보호 콜로이드 조제가 충진된 반응기 일 수 있다. 여기에서, 상기 "충진된 반응기"는 염화비닐계 단량체를 구비하기 전에 상기 중합 반응기 내에 용매, 중합 개시제 및 보호 콜로이드 조제가 투입되어 있는 상태를 의미하는 것일 수 있다.
상기 염화비닐계 단량체는 순수한 염화비닐 단량체 단독일 수 있다. 또한, 상기 염화비닐계 단량체는 목적하는 바에 따라 염화비닐 단량체 및 이와 공중합이 가능한 비닐계 단량체의 조합일 수 있으며, 상기 염화비닐계 단량체가 염화비닐 단량체와 비닐계 단량체의 조합일 경우에는, 최종적으로 제조되는 염화비닐계 중합체 내 염화비닐이 50 중량%이상이 되는 함량으로 비율을 조절하여 조합할 수 있다. 상기 염화비닐계 단량체와 공중합이 가능한 비닐계 단량체는 전술한 바와 같을 수 있다.
상기 불포화 지방산 에스테르는 염화비닐계 단량체의 중합 시에 첨가되어 최종적으로 제조되는 염화비닐계 중합체 내에 일정비율 포함됨으로써 상기 염화비닐계 중합체의 가공성을 향상시키는 역할을 하는 것으로, 전술한 바와 같이 불포화 지방산 에스테르의 시스 이성질체 및 불포화 지방산 에스테르의 트랜스 이성질체를 포함할 수 있으며, 상기 불포화 지방산 에스테르의 시스 이성질체 및 트랜스 이성질체는 60:40 내지 90:10의 중량비를 갖는 것일 수 있다. 구체적으로는, 상기 불포화 지방산 에스테르의 시스 이성질체 및 트랜스 이성질체는 65:35 내지 80:20의 중량비를 갖는 것일 수 있으며, 구체적인 불포화 지방산 에스테르는 전술한 바와 같다.
또한, 상기 불포화 지방산 에스테르는 상기 염화비닐계 단량체 100 중량부에 대하여 0.001 중량부 이상 2 중량부 미만의 함량으로 사용될 수 있다. 만약, 상기 불포화 지방산 에스테르가 0.001 중량부 미만으로 사용될 경우에는 최종 제조된 염화비닐계 중합체의 가공성 개선 효과가 없거나 미미할 수 있으며, 2 중량부 이상으로 포함될 경우에는 최종 제조된 염화비닐계 중합체의 가공성은 다소 개선될 수 있으나, 이를 이용하여 제조된 성형품의 충격 강도의 열화 및 표면 특성이 저하될 수 있다.
상기 불포화 지방산 에스테르는 전술한 바와 같이 중합 전환율이 85% 이내인 범위에서 염화비닐계 단량체가 구비되어 있는 중합 반응기에 일괄투입, 연속투입 또는 적어도 2회 분할투입하는 것일 수 있다.
본 발명에 있어서, 상기 "중합 전환율"은 염화비닐계 단량체의 중합체로의 전환율을 의미하는 것일 수 있으며, 상기 중합 전환율은 가스 크로마토그래피를 장착한 부탄 트레이서(butane tracer)를 이용하여 측정한 것일 수 있다. 구체적으로는, 일정 중합 조건에서 시간에 따른 염화비닐계 단량체와 부탄과의 비율에 따른 중합 전환율 곡선을 중합조건 때마다 작성해 두고, 이를 근거로 하여 중합조건에 따른 중합 전환율을 측정한 것일 수 있다. 또한, 상기 중합 전환율은 측정에 따른 오차범위까지 포함하는 것일 수 있으며, 예컨대 85%에서 ±3%까지 포함하는 것일 수 있다.
상기 일괄투입은 전술한 중합 전환율 범위 내의 일 시점에 사용되는 불포화 지방산 에스테르를 염화비닐계 단량체가 구비된 중합 반응기에 일시에 투입하는 것일 수 있다. 구체적으로는, 상기 일괄투입은 불포화 지방산 에스테르를 중합 전환율이 60% 이내인 범위에서 불포화 지방산 에스테르 전량을 일시에 투입하는 것일 수 있다.
상기 연속투입은 불포화 지방산 에스테르를 중합 전환율이 85% 이내인 범위에서 염화비닐계 단량체가 구비된 중합 반응기에 연속적으로 투입하는 것일 수 있으며, 구체적으로는 불포화 지방산 에스테르를 중합 전환율이 1% 이상인 시점에 투입하기 시작하여 중합 전환율이 85% 이내인 시점에 투입을 종료하는 것일 수 있으며, 상기 불포화 지방산 에스테르 전량을 투입 시작에서 종료까지 일정한 속도로 투입하는 것일 수 있다. 여기에서, 상기 중합 전환율 1%는 중합 개시 온도에 다다른 시점을 의미하는 것일 수 있으며, 즉 중합 개시 직후 또는 중합 개시와 함께 상기 불포화 지방산 에스테르를 투입할 수 있다. 또한, 상기 중합 전환율 85%는 중합이 종료되는 시점을 의미하는 것일 수 있으며, 본 발명에서는 반응이 종료되는 시점까지를 포함하는 것일 수 있다.
더욱 구체적으로, 상기 연속투입은 불포화 지방산 에스테르를 중합 전환율이 10% 이상인 시점에 투입하기 시작하여 중합 전환율이 35% 이내인 시점에 투입을 종료하는 것일 수 있으며, 또한 상기 불포화 지방산 에스테르 전량을 투입 시작에서 종료까지 일정한 속도로 투입하는 것일 수 있다.
상기 분할투입은 분할 연속투입 또는 분할 일괄투입인 것일 수 있으며, 상기 분할 연속투입은 사용되는 불포화 지방산 에스테르를 둘 이상으로 분할하여 특정 중합 전환율 범위 내에서 연속적으로 투입하는 것일 수 있고, 상기 분할 일괄투입은 사용되는 불포화 지방산 에스테르를 둘 이상으로 분할하여 특정 중합 전환율 범위 내의 일 시점에 일시에 투입하는 것일 수 있다.
구체적으로, 상기 분할 연속투입은 불포화 지방산 에스테르 전량 중 제1 분획을 중합 전환율 1% 이상인 시점에 투입을 시작하여 25% 이내인 시점에 투입을 종료하는 1차 연속투입을 하고, 상기 전량 중 제1 분획을 제외한 나머지 제2 분획을 중합 전환율 35% 이상인 시점에 투입을 시작하여 60% 이내인 시점에 투입을 종료하는 2차 연속투입을 하는 것일 수 있으며, 이때 상기 1차 연속투입 및 2차 연속투입은 각각 투입 시작에서 종료까지 일정한 속도로 불포화 지방산 에스테르를 투입하는 것일 수 있다.
또한, 상기 분할 일괄투입은 불포화 지방산 에스테르 전량 중 제1 분획을 중합 전환율 1% 내지 30%인 시점에 1차 일괄투입하고, 상기 전량 중 제1 분획을 제외한 나머지 제2 분획을 중합 전환율 35% 내지 85%인 시점에 2차 일괄투입하는 것일 수 있다.
이때, 상기 제1 분획과 제2 분획은 9:1 내지 1:9의 중량비를 가지도록 조절하여 나눌 수 있으며, 상기 분할 투입은 2회 이상, 3회, 4회 등의 횟수로 분할 투입할 수도 있다. 따라서, 분획은 분할 투입하는 횟수와 동일한 수만큼 형성될 수 있으며, 각 분획은 목적하는 바에 따라 적절한 비율을 가지도록 조절될 수 있다.
구체적으로, 상기 분할투입이 3회로 분할 연속투입하거나 분할 일괄투입하는 경우, 상기 분할 연속투입은 불포화 지방산 에스테르 전량 중 제1 분획을 중합 전환율 1% 이상인 시점에 투입을 시작하여 25% 이내인 시점에 투입을 종료하는 1차 연속투입을 하고, 상기 전량 중 제2 분획을 중합 전환율 30% 이상인 시점에 투입을 시작하여 50% 이내인 시점에 투입을 종료하는 2차 연속투입을 하며, 상기 전량 중 제1 분획 및 제2 분획을 제외한 나머지 제3 분획을 중합 전환율 55% 이상인 시점에 투입을 시작하여 70% 이내인 시점에 투입을 종료하는 3차 연속투입하는 것일 수 있으며, 이때 상기 1차 연속투입, 2차 연속투입 및 3차 연속투입은 각각 투입 시작에서 종료까지 일정한 속도로 불포화 지방산 에스테르를 투입하는 것일 수 있다.
또한, 상기 분할 일괄투입은 불포화 지방산 에스테르 전량 중 제1 분획을 중합 전환율 10% 내지 30%인 시점에 1차 일괄투입하고, 상기 전량 중 제2 분획을 중합 전환율 35% 내지 50%인 시점에 2차 일괄투입하며, 상기 전량 중 제1 분획 및 제2 분획을 제외한 나머지 제3 분획을 중합 전환율 55% 내지 85%인 시점에 3차 일괄투입하는 것일 수 있다.
또한, 상기 보호 콜로이드 조제는 중합 중 반응물들을 안정화시키고 균일하고 안정된 입자가 생성될 수 있도록 작용하는 것으로, 상기 중합에 사용되는 염화비닐계 단량체 100 중량부에 대하여 0.03 중량부 내지 5 중량부로 사용되는 것일 수 있다. 구체적으로는, 상기 보호 콜로이드 조제는 염화비닐계 단량체 100 중량부에 대하여 0.05 중량부 내지 2.5 중량부로 사용되는 것일 수 있다. 만약, 상기 보호 콜로이드 조제가 0.03 중량부 미만으로 사용될 경우에는 최종적으로 제조된 염화비닐계 중합체의 입자크기가 지나치게 증가하게 되어 상기 염화비닐계 중합체를 이용하여 제조된 성형품에 미겔링 입자가 발생할 가능성이 있으며, 5 중량부를 초과하여 사용될 경우에는 최종적으로 제조된 염화비닐계 중합체 내 미세입자들의 증가로 인해 상기 염화비닐계 중합체를 이용하여 제조된 성형품의 초기 착색성 저하가 발생할 수 있다.
상기 보호 콜로이드 조제는 비닐 알코올계 수지, 셀룰로오스 및 불포화 유기산 중합체로 이루어진 군으로부터 선택된 1종 또는 2종의 혼합물인 것일 수 있으며, 구체적으로는 상기 보호 콜로이드 조제는 비닐 알코올계 수지 및 셀룰로오스가 5 내지 9:1 내지 7의 중량비로 혼합된 혼합물일 수 있다. 이때, 상기 비닐 알코올계 수지는 수화도가 50 중량% 초과 90 중량% 이하인 제1 폴리비닐알코올과, 수화도가 30 중량% 내지 50 중량%인 제2 폴리비닐알코올이 2 내지 1:1 내지 2의 중량비로 혼합된 혼합물인 것일 수 있다.
또한, 상기 셀룰로오스로는 메틸셀룰로오스, 히드록시에틸셀룰로오스, 또는 히드록시프로필메틸셀룰로오스 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 히드록시프로필메틸셀룰로오스일 수 있으며, 보다 구체적으로는 분자내 히드록시프로필기의 함량이 3 중량% 내지 20 중량%이고, 23±5℃에서의 2% 수용액 점도가 10 cps 내지 20,000 cps인 것일 수 있다.
또한, 상기 불포화 유기산 중합체로는 아크릴산 중합체, 메타아크릴산 중합체, 이타콘산 중합체, 푸마르산 중합체, 말레인산 중합체, 또는 숙신산 중합체 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 중합 개시제는 중합에 사용되는 상기 염화비닐계 단량체 100중량부에 대하여 0.02 중량부 내지 0.2 중량부로 사용될 수 있다. 구체적으로는, 상기 중합 개시제는 염화비닐계 단량체 100 중량부에 대하여 0.04 중량부 내지 0.12 중량부로 사용되는 것일 수 있다. 만약, 중합 개시제의 함량이 0.02 중량부 미만이면 중합 반응시간이 길어지고, 염화비닐계 중합체로의 전환율이 낮아져 생산성이 저하될 우려가 있고, 0.2 중량부를 초과하면 중합 과정 중에서 중합 개시제가 완전히 소모되지 못하고 최종 제조된 염화비닐계 중합체 내에 잔류하여 상기 중합체의 물성, 특히 열안정성 등을 저하시킬 우려가 있다.
상기 중합 개시제는 특별히 제한되는 것은 아니나. 예컨대 디큐밀퍼옥사이드, 디펜틸퍼옥사이드, 디-3,5,5-트리메틸 헥사노일퍼옥사이드 또는 디라우릴퍼옥사이드와 같은 퍼옥사이드계 화합물; 디이소프로필퍼옥시디카보네이트, 디-sec-부틸퍼옥시디카보네이트 또는 디-2-에틸헥실퍼옥시디카보네이트와 같은 퍼옥시디카보네이트계 화합물; t-부틸퍼옥시 피발레이트, 1,1,3,3-테트라메틸부틸퍼옥시 네오데카노에이트 또는 t-부틸퍼옥시 네오데카노에이트와 같은 퍼옥시에스테르계 화합물; 아조비스-2,4-디메틸발레로니트릴과 같은 아조계 화합물; t-부틸 하이드로퍼옥사이드와 같은 하이드로퍼옥사이드계 화합물; 또는 포타슘 퍼설페이트 또는 암모늄퍼설페이트와 같은 설페이트계 화합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 현탁중합은 특별히 제한되는 것은 아니나, 예컨대 30℃ 내지 70℃의 온도범위에서 수행되는 것일 수 있으며, 상기 현탁중합 시의 온도는 상기 범위 내에서 목적하는 중합도에 따라 적절히 조절할 수 있다. 예컨대, 목적하는 중합도가 높을수록 상기 온도는 낮아질 수 있으며, 목적하는 중합도가 낮을수록 상기 온도는 높아질 수 있다.
또한, 상기 현탁중합은 반응종결제를 투입하여 중합을 종결할 수 있으며, 상기 종결 시점은 반응기 내의 압력이 6 kg/cm2 내지 8 kg/cm2(또는 중합 전환율이 85%를 초과하는 시점)인 시점일 수 있다.
상기 반응종결제는 특별히 제한되는 것은 아니나, 예컨대 페놀 화합물, 아민 화합물, 니트릴 화합물, 유황 화합물 등일 수 있다. 구체적으로는, 상기 반응종결제는 트리에틸렌 글리콜-비스-3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로피오네이트, 하이드로퀴논, p-메톡시페놀, t-부틸하이드록시아니솔, n-옥타데실-3-(4-히드록시-3,5-디-t-부틸페닐)프로피오네이트, 2,5-디-t-부틸 하이드로퀴논, 4,4'-부틸리덴비스(3-메틸-6-t-부틸 페놀), t-부틸 카테콜, 4,4'-티오비스(6-t-부틸-m-크레졸), 토코페놀 등의 페놀 화합물, N,N'-디페닐-p-페닐렌디아민, 4,4'-비스(디메틸벤질)디페닐 아민 등의 아민 화합물, 2-페닐 나이트로닐나이트록사이드(2-phenyl nitronylnitroxide), 3-이미다졸린 나이트록사이드(3-imidazoline nitroxide), 4-히드록시-2,2',6,6'-테트라메틸-피페리딘-1-옥실(4-hydroxy-2,2',6,6'-tetramethyl-piperidine-1-oxyl) 등의 니트릴 화합물, 도데실 메르캅탄, 1,2-디페닐-2-티올 등의 유황화합물 중에서 선택된 1종 이상인 것일 수 있다.
또한, 상기 현탁중합은 용매를 사용할 수 있으며, 상기 용매는 탈이온수일 수 있다. 이때, 상기 용매는 중합에 사용되는 염화비닐계 단량체의 양 및 중합 반응기의 크기에 따라 적절히 조절하여 사용될 수 있으며, 예컨대 상기 염화비닐계 단량체 100 중량부에 대하여 70 중량부 이상으로 사용할 수 있다.
아울러, 상기 현탁중합은 상기 기재한 유효성분 이외에 필요에 따라 중합 조절제, 연쇄 이동제, pH 조절제, 산화방지제, 가교제, 대전방지제, 스케일방지제, 계면활성제 등의 첨가제를 추가로 첨가할 수 있으며, 상기 첨가제의 종류 및 함량은 특별히 제한되지 않고 당업계 공지된 통상의 종류 및 함량으로 사용할 수 있다. 상기 첨가제는 현탁중합 초, 중합 중 또는 중합 후 중 어느 시점에라도 첨가할 수 있으며, 일괄적으로 첨가하거나 연속적으로 첨가할 수도 있다.
본 발명에 따른 제조방법은 상기 단계 A 이후에 건조하는 단계를 추가로 포함할 수 있으며, 상기 건조는 특별히 한정되지 않고 당업계에 통상적으로 공지된 방법에 의하여 수행할 수 있다.
아울러, 본 발명은 상기 염화비닐계 중합체를 포함하는 열가소성 수지 조성물을 제공한다.
본 발명의 일 실시예에 따른 상기 열가소성 수지 조성물은 불포화 지방산 에스테르를 일정비율 포함하는 상기의 염화비닐계 중합체를 주 성분으로 포함하고 있는 것일 수 있다. 즉, 상기 열가소성 수지 조성물은 상기 조성물 100 중량%를 기준으로 상기 염화비닐계 중합체를 90 중량% 이상, 구체적으로는 95 중량% 이상 포함하고 있는 것일 수 있다.
또한, 상기 열가소성 수지 조성물은 이를 이용하여 제조하고자 하는 목적물, 예컨대 열가소성 수지 성형품의 용도에 따라 다양한 첨가제를 포함할 수 있으며, 상기 첨가제는 특별히 한정되는 것은 아니다, 예컨대 가소제, 안정제, 활제, 충격 보강제, 가공 조력제 또는 안료 등일 수 있다.
더 나아가, 본 발명은 상기의 열가소성 수지 조성물로부터 제조된 열가소성 수지 성형품을 제공한다.
본 발명의 일 실시예에 따른 상기 열가소성 수지 성형품은 본 발명에 따른 염화비닐계 중합체를 포함하는 열가소성 수지 조성물로부터 제조됨으로써 높은 충격강도를 가지면서 미겔링 입자의 발생이 적고, 투명성이 우수할 수 있다.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
하기, 실시예 및 비교예의 염화비닐계 중합체의 제조 시에 중합 전환율은 가스 크로마토그래피를 장착한 부탄 트레이서(butane tracer)를 이용하여 측정한 것이다. 구체적으로는, 일정 중합 조건에서 시간에 따른 염화비닐계 단량체와 부탄과의 비율에 따른 중합 전환율 곡선을 중합조건 때마다 작성해 두고, 이를 근거로 하여 중합조건에 따른 중합 전환율을 측정하였다.
실시예 1
환류 응축기를 가지는 내부 용적 1 m3의 반응기에 탈이온수 390 kg을 투입하고, 수화도가 80.5%인 폴리비닐알코올 150 g, 수화도가 42.3%인 폴리비닐알코올 120 g, 하이드록시프로필메틸 셀룰로오스 30 g을 반응기에 투입하고, 염화비닐 단량체 300 kg을 투입한 후, 디-2-에틸헥실퍼옥시디카보네이트 60 g, t-부틸퍼옥시 네오데카노네이트 120 g을 투입하여 반응을 개시하였다. 중합 전환율이 20%인 시점에 디(2-에틸헥실)에스테르를 투입하기 시작하여 35%인 시점에 투입을 종료시켰다. 이때, 투입된 디(2-에틸헥실)에스테르의 총량은 3 g이었으며, 디(2-에틸헥실)말레이트와 디(2-에틸헥실)푸말레이트가 90:10의 중량비로 혼합된 것이었다. 목표로 하는 평균 중합도 1000을 달성하기 위하여, 중합 반응 전 과정 동안 반응 온도를 57℃로 유지하였으며, 중합 반응기 압력이 6.3 kg/cm2에 도달한 시점에 4-하이드록시-2,2,6,6-테트라메틸-피페리딘-1-옥실 12 g, 트리에틸렌 글리콜-비스-3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로피오네이트 90 g을 첨가하여 반응을 종료시켰다. 그 후, 미반응 단량체와 생성된 염화비닐계 공중합체 슬러리를 각각 분리하여 회수하고, 상기 염화비닐계 공중합체 슬러리를 유동층 건조기에서 건조하여 염화비닐 중합체를 수득하였다.
실시예 2
디(2-에틸헥실)에스테르를 1500 g으로 투입량을 증가시킨 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.
실시예 3
디(2-에틸헥실)에스테르를 4500 g으로 투입량을 증가시킨 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.
실시예 4
디(2-에틸헥실)에스테르를 디(2-에틸헥실)말레이트와 디(2-에틸헥실)푸말레이트가 80:20의 중량비로 혼합되어 있는 것을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.
실시예 5
디(2-에틸헥실)에스테르를 디(2-에틸헥실)말레이트와 디(2-에틸헥실)푸말레이트가 65:35의 중량비로 혼합되어 있는 것을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.
실시예 6
디(2-에틸헥실)에스테르 대신에 디(에틸도데실)에스테르를 사용한 것을 제외하고는 상기 실시예 2와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다. 이때, 상기 디(에틸도데실)에스테르는 디(에틸도데실)말레이트와 디(에틸도데실)푸말레이트가 90:10의 중량비로 혼합된 것이었다.
실시예 7
디(2-에틸헥실)에스테르 대신에 디헥실에스테르 150 g을 염화비닐 단량체와 함께 일괄투입한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다. 이때, 상기 디헥실에스테르는 디헥실말레이트와 디헥실푸말레이트가 90:10의 중량비로 혼합된 것이었다.
실시예 8
디(2-에틸헥실)에스테르 100 g을 중합 전환율 10%에서 일괄투입한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.
실시예 9
디(2-에틸헥실)에스테르 대신에 디부틸에스테르를 사용하고, 상기 디부틸에스테르 500 g을 중합 전환율 15% 시점에 1차 일괄투입하여 중합을 계속 진행시키고, 추가로 디부틸에스테르 500 g을 중합 전환율 40% 시점에 2차 일괄투입한 것을 제외하고는 상기 실시예 1과 동일한 방법에 의하여 염화비닐 중합체를 수득하였다. 이때, 상기 디부틸에스테르는 디부틸말레이트와 디부틸푸말레이트가 90:10의 중량비로 혼합된 것이었다.
실시예 10
디(2-에틸헥실)에스테르 대신에 디데실에스테르를 사용하고, 상기 디데실에스테르 1000 g을 중합 전환율 15% 시점에 투입하기 시작하여 20% 시점에 투입을 종료하여 1차 연속투입을 진행하고, 추가로 디데실에스테르 1000 g을 중합 전환율 30% 시점에 투입하기 시작하여 40% 시점에 투입을 종료하여 2차 연속투입을 진행한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다. 이때, 상기 디데실에스테르는 디데실말레이트와 디데실푸말레이트가 90:10의 중량비로 혼합된 것이었다.
실시예 11
디(2-에틸헥실)에스테르 500 g을 중합 전환율 20% 시점에 1차 일괄투입하여 중합을 계속 진행시키고, 디(2-에틸헥실)에스테르 500 g을 중합 전환율 40%인 시점에 2차 일괄투입하여 중합을 계속 진행시킨 후 추가로 디(2-에틸헥실)에스테르 500 g을 중합 전환율 60%인 시점에 3차 일괄투입한 것을 제외하고는 상기 실시예 1과 동일한 방법에 의하여 염화비닐계 중합체를 수득하였다. 이때, 상기 1차, 2차 및 3차 일괄투입시 디(2-에틸헥실)에스테르는 모두 디(2-에틸헥실)말레이트와 디(2-에틸헥실)푸말레이트가 90:10의 중량비로 혼합된 것이었다.
실시예 12
환류 응축기를 가지는 내부 용적 1 m3의 반응기에 탈이온수 390 kg을 투입하고, 수화도가 80.5%인 폴리비닐알코올 150 g, 수화도가 42.3%인 폴리비닐알코올 120 g, 하이드록시프로필메틸 셀룰로오스 30 g을 반응기에 투입하고, 염화비닐 단량체 300 kg을 투입한 후, 디-2-에틸헥실퍼옥시디카보네이트 60 g, t-부틸퍼옥시 네오데카노네이트 150 g을 투입하여 반응을 개시하였다. 중합 전환율이 80%인 시점에 디(2-에틸헥실)에스테르 50 g을 일괄투입하였다. 이때, 디(2-에틸헥실)말레이트와 디(2-에틸헥실)푸말레이트가 90:10의 중량비로 혼합된 것이었다. 목표로 하는 평균 중합도 800을 달성하기 위하여, 중합 반응 전 과정 동안 반응 온도를 64℃로 유지하였으며, 중합 반응기 압력이 8.0 kg/cm2에 도달한 시점에 4-하이드록시-2,2,6,6-테트라메틸-피페리딘-1-옥실 12 g, 트리에틸렌 글리콜-비스-3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로피오네이트 90 g을 첨가하여 반응을 종료시켰다. 그 후, 미반응 단량체와 생성된 염화비닐계 공중합체 슬러리를 각각 분리하여 회수하고, 상기 염화비닐계 공중합체 슬러리를 유동층 건조기에서 건조하여 염화비닐 중합체를 수득하였다.
실시예 13
디(2-에틸헥실)에스테르 대신에 디부틸에스테르 300 g을 중합 전환율 50% 시점에 투입하기 시작하여 60% 시점에 투입을 종료시킨 것을 제외하고는 상기 실시예 10과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.
실시예 14
디(2-에틸헥실)에스테르 대신에 디데실에스테르 500 g을 중합 전환율 15% 시점에 투입하기 시작하여 30% 시점에 투입을 종료시킨 것을 제외하고는 상기 실시예 10과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다. 이때, 상기 디데실에스테르는 디데실말레이트와 디데실푸말레이트가 90:10의 중량비로 혼합된 것이었다.
실시예 15
디(2-에틸헥실)에스테르 200 g을 중합 전환율 15% 시점에 투입하기 시작하여 25% 시점에 투입을 종료하여 1차 연속투입을 진행하고, 디(2-에틸헥실)에스테르 200 g을 중합 전환율 35% 시점에 투입하기 시작하여 45% 시점에 투입을 종료하여 2차 연속투입을 진행한 후 추가로 디(2-에틸헥실)에스테르 200 g을 중합 전환율 55% 시점에 투입하기 시작하여 70%인 시점에 투입을 종료한 것을 제외하고는 상기 실시예 12와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다. 이때, 상기 디(2-에틸헥실)에스테르는 디(2-에틸헥실)말레이트와 디(2-에틸헥실)푸말레이트가 90:10의 중량비로 혼합된 것이었다.
비교예 1
디(2-에틸헥실)에스테르를 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.
비교예 2
디(2-에틸헥실)에스테르 2.5 g을 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.
비교예 3
디(2-에틸헥실)에스테르를 7500 g으로 투입량을 증가시킨 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.
비교예 4
디(2-에틸헥실)에스테르를 디(2-에틸헥실)말레이트와 디(2-에틸헥실)푸말레이트가 95:5의 중량비로 혼합되어 있는 것을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.
비교예 5
디(2-에틸헥실)에스테르를 디(2-에틸헥실)말레이트와 디(2-에틸헥실)푸말레이트가 50:50의 중량비로 혼합되어 있는 것을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.
비교예 6
디(2-에틸헥실)에스테르 대신에 디(옥타데실)에스테르를 사용한 것을 제외하고는 상기 실시예 6과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다. 이때, 상기 디(옥타데실)에스테르는 디(옥타데실)말레이트와 디(옥타데실)푸말레이트가 90:10의 중량비로 혼합되어 있는 것이었다.
비교예 7
디(2-에틸헥실)에스테르 대신에 디알릴에스테르를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 염화비닐 중합체를 수득하였다. 이때, 상기 디알릴에스테르는 디알릴말레이트와 디알릴푸말레이트가 90:10의 중량비로 혼합되어 있는 것이었다.
비교예 8
디(2-에틸헥실)에스테르를 사용하지 않은 것을 제외하고는 상기 실시예 12와 동일한 방법을 통하여 염화비닐 중합체를 수득하였다.
실험예 1
상기 실시예 1 내지 15 및 비교예 1 내지 8에서 제조한 각 염화비닐 중합체의 물성을 비교 분석하기 위하여, 각 염화비닐 중합체의 겉보기 비중, 평균입경 및 입자분포도를 측정하였으며, 결과를 하기 표 1에 나타내었다.
상기 겉보기 비중은 ASTM D1 895-89 규격에 의거하여 측정하였다.
상기 평균입경 및 입자분포도는 ASTM D1 705 규격에 의거하여 측정하였으며, 평균입경은 상기 규격에 의거하여 중량평균입경을 얻었으며, 입자분포도는 200 메쉬(mesh)를 통과하지 않고 남은 시료의 양을, 측정에 사용된 전체 시료에 대한 중량%로 구하였다.
구분 | 겉보기 비중(g/cc) | 평균입경(㎛) | 입자분포도(%) |
실시예 1 | 0.531 | 144 | 0.9 |
실시예 2 | 0.536 | 137 | 0.8 |
실시예 3 | 0.535 | 138 | 0.7 |
실시예 4 | 0.538 | 141 | 0.8 |
실시예 5 | 0.549 | 143 | 1.2 |
실시예 6 | 0.535 | 139 | 0.8 |
실시예 7 | 0.534 | 144 | 0.7 |
실시예 8 | 0.537 | 145 | 0.7 |
실시예 9 | 0.536 | 137 | 0.8 |
실시예 10 | 0.536 | 136 | 0.9 |
실시예 11 | 0.538 | 141 | 0.8 |
실시예 12 | 0.578 | 141 | 1.0 |
실시예 13 | 0.576 | 139 | 1.1 |
실시예 14 | 0.579 | 140 | 1.1 |
실시예 15 | 0.579 | 138 | 1.2 |
비교예 1 | 0.532 | 145 | 0.7 |
비교예 2 | 0.532 | 146 | 0.8 |
비교예 3 | 0.535 | 134 | 1.0 |
비교예 4 | 0.516 | 137 | 1.4 |
비교예 5 | 0.540 | 143 | 1.0 |
비교예 6 | 0.535 | 142 | 2.5 |
비교예 7 | 0.545 | 149 | 0.8 |
비교예 8 | 0.574 | 140 | 1.1 |
상기 표 1에 나타난 바와 같이, 본 발명의 일 실시예에 따른 실시예 1 내지 실시예 11의 염화비닐 중합체 및 실시예 12 내지 15의 염화비닐 중합체는 각각 동일한 중합도로 제조된 비교예 1 및 비교예 8의 염화비닐 중합체와 전반적으로 유사한 입자 특성을 나타내었다. 반면에, 비교예 3 내지 비교예 7의 염화비닐 중합체는 동일한 중합도로 제조된 비교예 1의 염화비닐 중합체와 비교하여 변화된 입자 특성을 나타내었으며, 특히 비교예 4, 비교예 6 및 비교옌 7의 염화비닐 중합체는 비교예 1의 염화비닐 중하체 대비 입자 특성이 상당히 변화된 것을 확인하였다.
이는, 본 발명의 일 실시예에 따른 실시예 1 내지 실시예 15의 염화비닐 중합체가 시스와 트랜스가 특정 중량비로 존재하는 불포화 지방산 에스테르를 특정함량으로 포함함으로써 통상적인 염화비닐 중합체가 갖는 입자 특성에는 변형을 일으키지 않음을 의미하는 결과이다.
실험예 2
상기 실시예 1 내지 15 및 비교예 1 내지 8에서 제조한 각 염화비닐 중합체를 이용한 열가소성 수지 성형품의 물성을 비교분석하기 위하여, 각 염화비닐 중합체를 포함하는 열가소성 수지 조성물을 제조하고 이를 이용하여 성형품을 제조한 후 미겔링 입자 발생 정도, 투명도 및 충격강도를 측정하였으며, 결과를 하기 표 2에 나타내었다.
1) 미겔링 입자 발생 정도
상기 실시예 1 내지 15 및 비교예 1 내지 8에서 제조한 각 염화비닐 중합체 100 중량부에 디옥틸프탈레이트(DOP) 45 중량부, 스테아린산 바륨 0.1 중량부, 주석계 열안정제(MT800, 송원산업), 카본블랙 0.1 중량부를 첨가하여 열가소성 수지 조성물을 제조하고, 이를 145℃의 6인치 롤을 이용하여 5분간 혼합 혼련한 후 두께 0.3 mm의 시트로 제작하였다. 각 시트에서 400 cm2 면적 내 백색 투명 입자수를 측정하였다.
2) 투명도 평가
상기 실시예 1 내지 15 및 비교예 1 내지 8에서 제조한 각 염화비닐 중합체 100 중량부에 주석계 열안정제(MT800, 송원산업) 4 중량부, 가공조력제(PA-910, LG화학) 1 중량부, 충격보강제(MB872, LG화학) 5 중량부, 활제(SL63, LG화학) 0.5 중량부를 첨가하고 롤-밀(roll-mill)을 이용하여 185℃에서 3분간 혼련한 뒤 0.5 mm 두께의 각 시트를 제조하였다. 제조한 각 시트를 일정 크기로 잘라 3 cm 두께의 틀에 넣어 프레스(press)를 이용하여 185℃에서 2분 예열, 3분 저압 가열, 2분 고압 냉각하여 각각의 압축시트를 제조하였다. 각 압축시트를 Haze-gard plus 기기(BYK-Gardener)를 이용하여 투명도를 측정하였다. 투명도는 수치가 높을수록 우수함을 나타낸다.
3) 충격강도 측정
상기 실시예 1 내지 15 및 비교예 1 내지 8에서 제조한 각 염화비닐 중합체 100 중량부에, 주석계 열안정제(MT800, 송원산업) 4 중량부, 스테아린산계 활제(SL29, 송원산업) 1 중량부, 가공조력제(PA-828, LG화학) 1.5 중량부, 충격보강제(MB872, LG화학) 6 중량부를 첨가하고 롤을 이용하여 185℃에서 5분간 캘린더 가공한 후, 프레스 성형을 통해 압축시트를 제작하고, ASTM D256에 의거하여 충격강도를 측정하였다.
구분 | 미겔링 입자(개수) | 투명도 | 충격강도(kgfcm/cm2) |
실시예 1 | 10 | 77.3 | 33 |
실시예 2 | 3 | 78.3 | 37 |
실시예 3 | 2 | 78.6 | 42 |
실시예 4 | 7 | 77.3 | 36 |
실시예 5 | 9 | 78.5 | 37 |
실시예 6 | 3 | 78.4 | 38 |
실시예 7 | 6 | 78.1 | 35 |
실시예 8 | 7 | 78.0 | 34 |
실시예 9 | 4 | 78.3 | 37 |
실시예 10 | 3 | 78.9 | 40 |
실시예 11 | 7 | 79.2 | 40 |
실시예 12 | 12 | 76.8 | 32 |
실시예 13 | 7 | 77.2 | 34 |
실시예 14 | 8 | 77.4 | 35 |
실시예 15 | 9 | 77.5 | 34 |
비교예 1 | 12 | 76.1 | 32 |
비교예 2 | 12 | 76.4 | 31 |
비교예 3 | 4 | 77.5 | 26 |
비교예 4 | 13 | 75.2 | 29 |
비교예 5 | 8 | 73.1 | 36 |
비교예 6 | 14 | 74.5 | 28 |
비교예 7 | 19 | 74.1 | 27 |
비교예 8 | 15 | 75.7 | 30 |
상기 표 2에 나타난 바와 같이, 본 발명의 일 실시예에 따른 상기 실시예 1 내지 실시예 15의 염화비닐 중합체를 이용하여 제조된 각 성형품이 비교예 1 내지 비교예 8의 염화비닐 중합체를 이용하여 제조된 각 성형품과 비교하여 전반적으로 유사하거나 우수한 투명도 및 충격강도를 나타내면서 미겔링 입자 발생 정도가 감소되는 것을 확인하였다.
구체적으로, 불포화 지방산 에스테르를 포함하지 않는 비교예 1의 염화비닐 중합체는 불포화 지방산 에스테르의 포함 여부만 제외하고는 동등한 조건에서 제조된 실시예 1의 염화비닐 중합체와 비교하여 다소 감소된 투명도를 가지면서 미겔링 입자 수는 120%로 현저하게 증가하고, 충격강도는 약 4% 감소하였다. 또한, 불포화 지방산 에스테르의 포함 여부만 제외하고는 동등한 조건에서 제조된 실시예 12 및 비교예 8의 염화비닐 중합체를 비교한 결과, 비교예 8의 염화비닐 중합체가 실시예 12의 염화비닐 중합체 대비 다소 감소된 투명도를 나타내면서 미겔링 입자 수는 125%로 현저히 증가하고 충격강도는 약 6%가 감소하였다.
또한, 불포화 지방산 에스테르를 포함하되 본 발명에서 제시하는 함량 범위를 벗어나서 포함하는 비교예 2(약 0.0008 중량부 포함) 및 비교예 3(2.5 중량부 포함)의 염화비닐 중합체는 실시예 1 및 실시예 3의 염화비닐 중합체와 비교하여 각각 다소 감소된 투명도를 나타내면서 미겔링 입자는 각각 120% 및 200%로 증가하고 충격강도는 각각 94% 및 62% 수준으로 현저하게 감소하였다.
또한, 불포화 지방산 에스테르를 본 발명에서 제시하는 함량 범위로 포함하나 시스 이성질체와 트랜스 이성질체의 중량비에 있어서 시스 이성질체의 비율이 과하게 높은 비율로 혼합되어 있는 비교예 4(시스 이성질체:트랜스 이성질체=95:5)의 염화비닐 중합체는 실시예 1의 염화비닐 중합체 대비 감소된 투명도를 가지면서 미겔링 입자 수가 130%로 증가하고 충격강도가 79% 수준으로 현저하게 감소하였다. 불포화 지방산 에스테르를 본 발명에서 제시하는 함량 범위로 포함하나 시스 이성질체와 트랜스 이성질체의 중량비에 있어서 시스 이성질체와 트랜스 이성질체가 동등한 비율로 혼합되어 있는 비교예 5(시스 이성질체:트랜스 이성질체=50:50)의 염화비닐 중합체는 실시예 5의 염화비닐 중합체와 비교하여 미겔링 입자 수와 충격강도는 유사하거나 다소 감소하였으며 투명도가 93% 수준으로 감소하였다.
아울러, 불포화 지방산 에스테르로 본 발명에서 제시하는 탄소수가 벗어난 것을 포함하는 비교예 6의 염화비닐 중합체의 경우에는 실시예 6의 염화비닐 중합체와 비교하여 투명도가 95% 수준으로 감소하고 미겔링 입자수가 약 5배 증가하였으며 충격강도가 74% 수준으로 현저하게 감소하였다. 또한, 본 발명에서 제시하는 불포화 지방상 에스테르 대신에 디알릴 에스테르를 포함하는 비교예 7의 염화비닐 중합체는 실시예 1의 염화비닐 중합체 대비 투명도는 96% 수준으로 감소하고 미겔링 입자수는 약 2배로 급격히 증가하였으며 충격강도는 82% 수준으로 현저하게 감소하였다.
상기의 실험예 1 및 실험예 2의 결과는, 본 발명의 일 실시예에 따른 염화비닐 중합체가 시스 이성질체와 트랜스 이성질체가 특정 중량비로 혼합되어 있는 불포화 지방산 에스테르를 특정 함량 범위로 포함함으로써 종래의 일반적인 염화비닐 중합체와 비교하여 유사한 입자 특성을 가질 수 있으며, 이에 일반적인 염화비닐 중합체가 가지는 충격강도 특성을 저하시키지 않으면서도 내부 가소제 효과를 발현함으로써 가공성이 향상되어 성형품의 외관특성(예컨대, 미겔링 입자 수 감소 및 투명도 증가)을 개선시킬 수 있음을 의미한다.
Claims (28)
- 염화비닐계 중합체 100 중량부에 대하여 0.001 중량부 이상 2 중량부 미만의 불포화 지방산 에스테르를 포함하는 염화비닐계 중합체.
- 청구항 1에 있어서,상기 불포화 지방산 에스테르는 탄소수 2 내지 16의 불포화 카르복실산 에스테르인 것인 염화비닐계 중합체.
- 청구항 1에 있어서,상기 불포화 지방산 에스테르는 불포화 지방산 에스테르의 시스 이성질체와 트랜스 이성질체를 포함하는 것인 염화비닐계 중합체.
- 청구항 3에 있어서,상기 불포화 지방산 에스테르의 시스 이성질체와 트랜스 이성질체는 60:40 내지 90:10의 중량비를 갖는 것인 염화비닐계 중합체.
- 청구항 3에 있어서,상기 불포화 지방산 에스테르의 시스 이성질체와 트랜스 이성질체는 65:35 내지 80:20의 중량비를 갖는 것인 염화비닐계 중합체.
- 청구항 6에 있어서,상기 화학식 1에서 R1 및 R2는 서로 독립적으로 탄소수 4 내지 14의 직쇄상 또는 분지상의 알킬기인 것인 염화비닐계 중합체.
- 청구항 8에 있어서,상기 화학식 2에서 R3 및 R4는 서로 독립적으로 탄소수 4 내지 14의 직쇄상 또는 분지상의 알킬기인 것인 염화비닐계 중합체.
- 중합 개시제 및 보호 콜로이드 조제의 존재 하에 염화비닐계 단량체에 불포화 지방산 에스테르를 투입하고 현탁중합하는 단계를 포함하고,상기 불포화 지방산 에스테르의 투입은 염화비닐계 단량체의 중합 전환율 85% 이내 범위에서 일괄투입, 연속투입 또는 적어도 2회 분할투입하는 것인 청구항 1에 기재된 염화비닐계 중합체의 제조방법.
- 청구항 10에 있어서,상기 불포화 지방산 에스테르는 염화비닐계 단량체 100 중량부에 대하여 0.001 중량부 이상 2 중량부 미만으로 투입하는 것인 염화비닐계 중합체의 제조방법.
- 청구항 10에 있어서,상기 일괄투입은 불포화 지방산 에스테르를 염화비닐계 단량체의 중합 전환율 60% 이내 범위에서 불포화 지방산 에스테르 전량을 일시에 투입하는 것인 염화비닐계 중합체의 제조방법.
- 청구항 10에 있어서,상기 연속투입은 불포화 지방산 에스테르를 염화비닐계 단량체의 중합 전환율이 1% 이상인 시점에 투입하기 시작하여 중합 전환율이 85% 이내인 시점에 투입을 종료하는 것이고,상기 불포화 지방산 에스테르 전량을 투입 시작에서 종료까지 일정한 속도로 투입하는 것인 염화비닐계 중합체의 제조방법.
- 청구항 10에 있어서,상기 연속투입은 불포화 지방산 에스테르를 중합 전환율이 10% 이상인 시점에 투입하기 시작하여 중합 전환율이 35% 이내인 시점에 투입을 종료하는 것이고,상기 불포화 지방산 에스테르 전량을 투입 시작에서 종료까지 일정한 속도로 투입하는 것인 염화비닐계 중합체의 제조방법.
- 청구항 10에 있어서,상기 분할투입은 분할 연속투입 또는 분할 일괄투입인 것인 염화비닐계 중합체의 제조방법.
- 청구항 15에 있어서,상기 분할 일괄투입은 불포화 지방산 에스테르 전량 중 제1 분획을 중합 전환율 1% 내지 30%인 시점에 1차 일괄투입하고, 상기 전량 중 제1 분획을 제외한 나머지 제2 분획을 중합 전환율 35% 내지 85%인 시점에 2차 일괄투입하는 것인 염화비닐계 중합체의 제조방법.
- 청구항 15에 있어서,상기 분할 일괄투입은 불포화 지방산 에스테르 전량 중 제1 분획을 중합 전환율 10% 내지 30%인 시점에 1차 일괄투입하고, 상기 전량 중 제2 분획을 중합 전환율 35% 내지 50%인 시점에 2차 일괄투입하며, 상기 전량 중 제1 분획 및 제2 분획을 제외한 나머지 제3 분획을 중합 전환율 55% 내지 85%인 시점에 3차 일괄투입하는 것인 염화비닐계 중합체의 제조방법.
- 청구항 15에 있어서,상기 분할 연속투입은 불포화 지방산 에스테르 전량 중 제1 분획을 중합 전환율 1% 이상인 시점에 투입을 시작하여 25% 이내인 시점에 투입을 종료하는 1차 연속투입을 하고, 상기 전량 중 제1 분획을 제외한 나머지 제2 분획을 중합 전환율 35% 이상인 시점에 투입을 시작하여 60% 이내인 시점에 투입을 종료하는 2차 연속투입하는 것이고,상기 1차 연속투입 및 2차 연속투입은 각각 투입 시작에서 종료까지 일정한 속도로 불포화 지방산 에스테르를 투입하는 것인 염화비닐계 중합체의 제조방법.
- 청구항 15에 있어서,상기 분할 연속투입은 불포화 지방산 에스테르 전량 중 제1 분획을 중합 전환율 1% 이상인 시점에 투입을 시작하여 25% 이내인 시점에 투입을 종료하는 1차 연속투입을 하고, 상기 전량 중 제2 분획을 중합 전환율 30% 이상인 시점에 투입을 시작하여 50% 이내인 시점에 투입을 종료하는 2차 연속투입을 하며, 상기 전량 중 제1 분획 및 제2 분획을 제외한 나머지 제3 분획을 중합 전환율 55% 이상인 시점에 투입을 시작하여 70% 이내인 시점에 투입을 종료하는 3차 연속투입하는 것이고,상기 1차 연속투입, 2차 연속투입 및 3차 연속투입은 각각 투입 시작에서 종료까지 일정한 속도로 불포화 지방산 에스테르를 투입하는 것인 염화비닐계 중합체의 제조방법.
- 청구항 16 또는 청구항 18에 있어서,상기 제1 분획과 제2 분획은 9:1 내지 1:9의 중량비를 갖는 것인 염화비닐계 중합체의 제조방법.
- 청구항 10에 있어서,상기 불포화 지방산 에스테르는 불포화 지방산 에스테르의 시스 이성질체 및 불포화 지방산 에스테르의 트랜스 이성질체를 포함하고,상기 불포화 지방산 에스테르의 시스 이성질체 및 트랜스 이성질체는 60:40 내지 90:10의 중량비를 갖는 것인 염화비닐계 중합체의 제조방법.
- 청구항 10에 있어서,상기 보호 콜로이드 조제는 비닐 알코올계 수지, 셀룰로오스 및 불포화 유기산 중합체로 이루어진 군으로부터 선택된 1종 이상인 것인 염화비닐계 중합체의 제조방법.
- 청구항 10에 있어서,상기 보호 콜로이드 조제는 비닐 알코올계 수지 및 셀룰로오스의 혼합물이고,상기 혼합물 내 비닐 알코올계 수지 및 셀룰로오스는 5 내지 9:1 내지 7의 중량비를 갖는 것인 염화비닐계 중합체의 제조방법.
- 청구항 24 또는 청구항 25에 있어서,상기 비닐 알코올계 수지는 수화도가 50 중량% 초과 90 중량% 이하인 제1 폴리비닐알코올과, 수화도가 30 중량% 내지 50 중량%인 제2 폴리비닐알코올이 2 내지 1:1 내지 2의 중량비로 혼합된 혼합물인 것인 염화비닐계 중합체의 제조방법.
- 청구항 1에 기재된 염화비닐계 중합체를 포함하는 열가소성 수지 조성물.
- 청구항 27의 열가소성 수지 조성물로부터 제조된 열가소성 수지 성형품.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16803789.3A EP3284761B1 (en) | 2015-06-05 | 2016-06-03 | Vinyl chloride-based polymer and preparation method therefor |
CN201680003030.5A CN107075029B (zh) | 2015-06-05 | 2016-06-03 | 氯乙烯基聚合物、其制备方法以及包含该氯乙烯基聚合物的热塑性树脂组合物 |
US15/512,771 US10336847B2 (en) | 2015-06-05 | 2016-06-03 | Vinyl chloride-based polymer, method for preparing the same, and thermoplastic resin composition containing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20150080160 | 2015-06-05 | ||
KR10-2015-0080160 | 2015-06-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016195436A1 true WO2016195436A1 (ko) | 2016-12-08 |
Family
ID=57440800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/005946 WO2016195436A1 (ko) | 2015-06-05 | 2016-06-03 | 염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10336847B2 (ko) |
EP (1) | EP3284761B1 (ko) |
KR (1) | KR101819821B1 (ko) |
CN (1) | CN107075029B (ko) |
WO (1) | WO2016195436A1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101868212B1 (ko) * | 2015-12-07 | 2018-07-19 | 주식회사 엘지화학 | 염화비닐계 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물 |
KR101969074B1 (ko) * | 2016-05-03 | 2019-04-16 | 주식회사 엘지화학 | 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체 |
KR102236922B1 (ko) * | 2017-09-27 | 2021-04-07 | 주식회사 엘지화학 | 염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 내장재 |
KR102328795B1 (ko) * | 2017-11-29 | 2021-11-22 | 주식회사 엘지화학 | 공중합체의 제조방법 |
KR102566990B1 (ko) * | 2020-07-16 | 2023-08-16 | 주식회사 엘지화학 | 염화비닐계 중합체의 제조방법 |
EP4433517A1 (en) * | 2021-11-16 | 2024-09-25 | SCG Chemicals Public Company Limited | Vinyl chloride copolymer and copolymer composition, and an article comprising the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2897169A (en) * | 1956-07-09 | 1959-07-28 | Monsanto Chemicals | Plasticized polyvinyl halide polymers |
US3544661A (en) * | 1966-08-16 | 1970-12-01 | Solvay | Cross-linkable internally plasticized vinyl chloride compositions |
US4210739A (en) * | 1975-09-05 | 1980-07-01 | Stauffer Chemical Company | Internally plasticized vinyl chloride copolymer composition |
JPH06287237A (ja) * | 1993-04-05 | 1994-10-11 | Shin Etsu Chem Co Ltd | 塩化ビニル系重合体の製造方法 |
KR101133962B1 (ko) * | 2008-04-30 | 2012-04-09 | 주식회사 엘지화학 | 현탁 중합에 의한 염화 비닐 중합체의 제조 방법 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB765488A (en) * | 1954-05-03 | 1957-01-09 | Firestone Tire & Rubber Co | Improvements in or relating to vinyl chloride resins for application as solvent solutions |
US3219729A (en) * | 1961-09-27 | 1965-11-23 | Glidden Co | Mixed neutral vinyl resin/reactive vinyl resin coating compositions, and cans and/or container components coated therewith |
DE1949451A1 (de) * | 1969-10-01 | 1971-04-08 | Dynamit Nobel Ag | Schwer entflammbare Formmassen auf Basis von Acrylnitril/Butadien/Styrol-Polymerisaten und daraus hergestellte Formkoerper |
DE2015917A1 (en) * | 1970-04-03 | 1971-10-21 | Dynamit Nobel Ag | Moulding compounds for gramophone recordsmfe |
CA1140785A (en) * | 1979-07-02 | 1983-02-08 | Steven B. Bolte | Toner composition including carbon black and a copolymer of vinyl chloride and ethyl, propyl or butyl maleate |
JPH02269709A (ja) * | 1989-04-12 | 1990-11-05 | Nippon Shokubai Kagaku Kogyo Co Ltd | 塩化ビニル系共重合体の製造方法 |
JP2583453B2 (ja) | 1989-08-01 | 1997-02-19 | 信越化学工業株式会社 | 可塑剤吸収性の改良された塩化ビニル系重合体の製造方法 |
CN1045303C (zh) * | 1994-08-13 | 1999-09-29 | 广州市化学工业研究所 | 一种氯乙烯四元共聚树脂及其制备方法 |
PT103239A (pt) | 2004-03-02 | 2005-09-30 | Shinetsu Chemical Co | Processo para a producao de polimeros a base de cloreto de vinilo |
EP1934268B1 (en) | 2005-09-13 | 2015-08-19 | LG Chem, Ltd. | Method of preparing vinylchloride-based copolymer and vinylchloride plastisol composition including vinylchloride-based copolymer prepared using the method |
CN101338003B (zh) * | 2008-08-12 | 2010-12-15 | 上海氯碱化工股份有限公司 | 羧酸改性氯乙烯-醋酸乙烯酯共聚树脂的制备方法 |
CN101386661A (zh) * | 2008-09-16 | 2009-03-18 | 浙江巨化股份有限公司电化厂 | 一种高聚合度聚氯乙烯的制备方法 |
KR101410547B1 (ko) | 2010-09-06 | 2014-06-20 | 주식회사 엘지화학 | 높은 생산성과 향상된 열 안정성을 갖는 염화비닐계 수지의 제조 방법 |
KR101532813B1 (ko) | 2011-05-23 | 2015-07-01 | 주식회사 엘지화학 | 중합 생산성이 우수한 염화비닐계 중합체의 제조방법 |
KR101529750B1 (ko) | 2011-06-27 | 2015-06-17 | 주식회사 엘지화학 | 염화비닐계 수지 제조용 금속 비활성화제 조성물 및 이를 이용한 염화비닐계 수지의 제조방법 |
KR101529764B1 (ko) | 2012-10-08 | 2015-06-29 | 주식회사 엘지화학 | 염화비닐 수지의 제조방법 및 이로부터 수득된 무광택 내열 염화비닐 수지 |
CN104250335B (zh) * | 2013-06-28 | 2016-08-17 | 中国石油化工股份有限公司 | 一种高聚合度聚氯乙烯树脂的生产方法 |
-
2016
- 2016-06-03 KR KR1020160069526A patent/KR101819821B1/ko active IP Right Grant
- 2016-06-03 WO PCT/KR2016/005946 patent/WO2016195436A1/ko active Application Filing
- 2016-06-03 CN CN201680003030.5A patent/CN107075029B/zh active Active
- 2016-06-03 EP EP16803789.3A patent/EP3284761B1/en active Active
- 2016-06-03 US US15/512,771 patent/US10336847B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2897169A (en) * | 1956-07-09 | 1959-07-28 | Monsanto Chemicals | Plasticized polyvinyl halide polymers |
US3544661A (en) * | 1966-08-16 | 1970-12-01 | Solvay | Cross-linkable internally plasticized vinyl chloride compositions |
US4210739A (en) * | 1975-09-05 | 1980-07-01 | Stauffer Chemical Company | Internally plasticized vinyl chloride copolymer composition |
JPH06287237A (ja) * | 1993-04-05 | 1994-10-11 | Shin Etsu Chem Co Ltd | 塩化ビニル系重合体の製造方法 |
KR101133962B1 (ko) * | 2008-04-30 | 2012-04-09 | 주식회사 엘지화학 | 현탁 중합에 의한 염화 비닐 중합체의 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
US10336847B2 (en) | 2019-07-02 |
KR20160143565A (ko) | 2016-12-14 |
EP3284761B1 (en) | 2020-08-05 |
CN107075029B (zh) | 2020-02-07 |
KR101819821B1 (ko) | 2018-01-17 |
US20170291974A1 (en) | 2017-10-12 |
CN107075029A (zh) | 2017-08-18 |
EP3284761A4 (en) | 2018-05-30 |
EP3284761A1 (en) | 2018-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016195436A1 (ko) | 염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물 | |
WO2016195434A1 (ko) | 염화비닐계 공중합체의 제조방법 및 이로부터 제조된 염화비닐계 공중합체 | |
WO2018084486A2 (ko) | Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 asa계 수지 조성물의 제조방법 및 asa계 성형품의 제조방법 | |
WO2018084408A1 (ko) | Abs계 수지 조성물의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법 | |
WO2018174395A1 (ko) | Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 성형품의 제조방법 | |
WO2018084436A1 (ko) | 충격강도가 향상된 abs계 그라프트 공중합체의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법 | |
WO2021054695A1 (ko) | 가소제 조성물 및 이를 포함하는 염화비닐계 수지 조성물 | |
WO2021060743A1 (ko) | 그라프트 중합체의 제조방법 | |
WO2016195435A1 (ko) | 비닐계 중합체 및 그 제조방법 | |
WO2016182338A1 (ko) | 아크릴계 가공조제 및 이를 포함하는 염화비닐계 수지 조성물 | |
WO2020027490A1 (ko) | 염화비닐계 공중합체 및 이의 제조 방법 | |
WO2018044017A1 (ko) | 염화비닐계 중합체의 제조방법 및 염화비닐계 중합체의 제조장치 | |
WO2020045901A1 (ko) | 가소제 조성물 및 이를 포함하는 수지 조성물 | |
WO2016056848A1 (ko) | 비닐계 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 비닐계 열가소성 수지 | |
WO2017191899A1 (ko) | 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체 | |
WO2017099373A1 (ko) | 염화비닐계 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물 | |
WO2017188594A1 (ko) | 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체 | |
WO2020091429A1 (ko) | 염화비닐계 중합체 제조용 조성물 및 이를 이용한 염화비닐계 중합체의 제조방법 | |
WO2021101099A1 (ko) | 공중합체 제조방법, 이로부터 제조된 공중합체 및 이를 포함하는 열가소성 수지 조성물 | |
WO2020091340A1 (ko) | 염화비닐계 중합체의 제조방법 | |
WO2020076023A1 (ko) | 염화비닐계 중합체 중합용 조성물 및 이를 이용한 염화비닐계 중합체의 제조방법 | |
WO2019098753A1 (ko) | 그라프트 공중합체의 제조방법 | |
WO2013032142A9 (ko) | 고기능성 중합용 첨가제 및 이를 이용한 염화비닐계 시드의 제조방법 | |
WO2021054592A1 (ko) | 염화 비닐-아크릴계 공중합체 라텍스의 제조 방법 | |
WO2020091427A1 (ko) | 염화비닐계 중합체의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16803789 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2016803789 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016803789 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15512771 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |