WO2017188594A1 - 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체 - Google Patents

염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체 Download PDF

Info

Publication number
WO2017188594A1
WO2017188594A1 PCT/KR2017/002764 KR2017002764W WO2017188594A1 WO 2017188594 A1 WO2017188594 A1 WO 2017188594A1 KR 2017002764 W KR2017002764 W KR 2017002764W WO 2017188594 A1 WO2017188594 A1 WO 2017188594A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl chloride
polymerization
polymer
weight
parts
Prior art date
Application number
PCT/KR2017/002764
Other languages
English (en)
French (fr)
Inventor
임중철
하현규
전양준
주진혁
강민정
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/760,158 priority Critical patent/US10414838B2/en
Priority to CN201780003398.6A priority patent/CN108137720B/zh
Priority to EP17789779.0A priority patent/EP3333197B1/en
Publication of WO2017188594A1 publication Critical patent/WO2017188594A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/138Phenolates

Definitions

  • the present invention relates to a method for preparing a vinyl chloride-based polymer capable of improving the melt processability of a high-polymerization vinyl chloride-based polymer, and a vinyl chloride-based polymer prepared accordingly.
  • the vinyl chloride polymer is a homopolymer of vinyl chloride or a hybrid polymer including 50% or more of vinyl chloride, which is inexpensive, easy to control the hardness, and applicable to most processing equipment, and thus has various applications.
  • molded articles having excellent physical and chemical properties such as mechanical strength, weather resistance, chemical resistance, etc. can be provided, and thus they are widely used in various fields.
  • various additives such as plasticizers are appropriately added to impart processability.
  • a method of using a plasticizer together with the vinyl chloride polymer in the production of a molded article is mainly used.
  • the plasticizer moves to the surface of the product, thereby causing the stickiness of the surface, and the plasticity gradually decreases over time.
  • phthalate plasticizer There is a disadvantage that a large amount of smoke is generated, and it is flexible at a considerably high temperature and requires high energy in processing.
  • the melting time is long, and thus the productivity of the processed molded product is greatly reduced.
  • discoloration occurs due to the structural properties of the vinyl chloride polymer when the processing temperature is increased.
  • a plasticizer is added during processing, processing may be possible at low temperature, but there is a limit to the amount of use because there is a possibility that the physical properties of the processed molded product may be lowered.
  • An object of the present invention is to solve the above problems and to provide a method for producing a vinyl chloride polymer that can improve the melt processability of a high polymerization vinyl chloride polymer.
  • Another object of the present invention to provide a vinyl chloride-based polymer and a vinyl chloride-based resin composition comprising the same prepared according to the production method.
  • the present invention includes the step of suspending polymerization of a vinyl chloride monomer, the pressure based on the equilibrium pressure at the polymerization temperature in the polymerization reactor after the addition of the vinyl chloride monomer
  • the change is 0.5kg / cm 2 to 1.5kg / cm 2
  • it provides a method for producing a vinyl chloride-based polymer which is to add an aromatic hydrocarbon compound containing a reactive functional group and a hydroxyl group containing a carbon-to-carbon double bond.
  • a vinyl chloride polymer prepared by the above production method and having a degree of polymerization of 1300 to 3000 is provided.
  • a vinyl chloride-based resin composition comprising a vinyl chloride-based polymer prepared by the production method.
  • the melt processability of the produced vinyl chloride polymer can be improved.
  • the pressure is kept constant by the phase equilibrium of the liquid and gas phase before the specific conversion, while the vinyl chloride monomer in the gas phase is As it is consumed, the pressure drops.
  • an additive capable of improving the melt processability of the vinyl chloride polymer produced by the polymerization reaction at the time of the pressure drop to a specific level it is possible to greatly improve the melt processability of the vinyl chloride polymer. As a result, it is possible to increase productivity in the manufacture of the processed molded article using the same.
  • the manufacturing method of the vinyl chloride polymer includes the step of suspending polymerization of the vinyl chloride monomer, equilibrium pressure at the polymerization temperature in the polymerization reactor after the addition of the vinyl chloride monomer At a time when the pressure change is 0.5 kg / cm 2 to 1.5 kg / cm 2 , the aromatic hydrocarbon compound including the reactive functional group and the hydroxy group including the carbon-to-carbon double bond is added.
  • the aromatic hydrocarbon-based compound is present in a dispersed form in the vinyl chloride-based polymer to be prepared, the hydroxyl group in the aromatic hydrocarbon-based compound is a vinyl chloride polymer
  • the polymerization of the vinyl chloride polymer can be terminated due to the stability of the radical resonance structure by the benzene ring while reacting with the radical of.
  • the aromatic hydrocarbon compound may be a monocyclic or polycyclic aromatic hydrocarbon compound having 6 to 20 carbon atoms including a reactive functional group and a hydroxyl group including a double bond between carbon atoms, and optionally further including an alkoxy group.
  • the alkoxy group may be an alkoxy group having 1 to 10 carbon atoms, and may be located at a meta-position with the hydroxy group.
  • aromatic hydrocarbon compound may be a compound of Formula 1:
  • R may be an alkyl group having 1 to 10 carbon atoms, more specifically, an alkyl group having 1 to 6 carbon atoms, even more specifically a linear alkyl group having 1 to 3 carbon atoms,
  • Y is a reactive functional group including a carbon-carbon double bond, and may be an alkenyl group having 2 to 10 carbon atoms such as vinyl group, allyl group, isopropenyl group, 2-butenyl group, or 3-butenyl group, and more specifically. It may be an alkenyl group having 2 to 6 carbon atoms, more specifically, an allyl group having 3 carbon atoms.
  • the aromatic hydrocarbon-based compound may be eugenol (4-allyl-2-methoxy phenol), isoeugenol and the like, any one or a mixture of two may be used. Most specifically, the aromatic hydrocarbon compound is eugenol.
  • the polymerization reaction In the above-mentioned aromatic hydrocarbon-based compound in the equilibrium pressure is the pressure change on the basis of 0.5kg / cm 2 to 1.5kg / cm 2 at the time of-flight polymerization temperature
  • the polymerization temperature may be 40 °C to 60 °C, more specifically 47 °C to 52 °C. If it is out of the above-mentioned pressure change range, the effect of the improvement of high polymerization degree and meltability cannot be acquired simultaneously.
  • the pressure change is based on the equilibrium pressure of the in-flight polymerization polymerization temperature can be added to 0.8kg / cm 2 to 1.2kg / cm 2 of the aromatic hydrocarbon compound at the time.
  • the aromatic hydrocarbon compound may be added at 0.005 parts by weight to 0.1 parts by weight based on 100 parts by weight of the vinyl chloride monomer.
  • the amount of the aromatic hydrocarbon compound is less than 0.005 parts by weight, the degree of polymerization and melting processability is insignificant, and when the amount is more than 0.1 parts by weight, the increase in the effect of the addition is insignificant. There is a risk of deteriorating the physical properties of the polymer.
  • the aromatic hydrocarbon compound may be added at 0.01 to 0.1 parts by weight based on 100 parts by weight of the vinyl chloride monomer.
  • the suspension polymerization is a vinyl chloride monomer is added to a polymerization reactor filled with one or more additives such as a solvent, a polymerization initiator, and optionally a dispersant. And reaction.
  • the "filled polymerization reactor” refers to a state in which additives such as a solvent, a polymerization initiator, and optionally a dispersant are added to the polymerization reactor before the vinyl chloride monomer is added.
  • "before polymerization start” means before the vinyl chloride monomer is added to the packed reactor.
  • Vinyl chloride-based polymer prepared by the method for producing a vinyl chloride-based polymer according to an embodiment of the present invention is not only a polymer consisting of a pure vinyl chloride monomer but also a vinyl chloride monomer mainly copolymerized with vinyl chloride monomer It may be a copolymer with a monomer.
  • the vinyl chloride polymer is a copolymer of a vinyl chloride monomer and a vinyl monomer, 50% or more of vinyl chloride may be included in the copolymer.
  • the vinyl chloride monomer usable in the suspension polymerization may be a vinyl chloride single material; Or a mixture of vinyl chloride and a vinyl monomer copolymerizable with the vinyl chloride.
  • the vinyl monomer is not particularly limited, but may be an olefin compound such as ethylene, propylene or butene; Vinyl esters such as vinyl acetate, vinyl propionate and vinyl stearate; Unsaturated nitriles such as acrylonitrile; Vinyl alkyl ethers such as vinyl methyl ether, vinyl ethyl ether, vinyl octyl ether and vinyl lauryl ether; Vinylidene halides such as vinylidene chloride; Unsaturated fatty acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, maleic anhydride and itaconic anhydride and anhydrides of these fatty acids; Unsaturated fatty acid esters such as methyl acrylate, e
  • the solvent may be deionized water, and the amount of the solvent may be appropriately adjusted according to the polymerization reactor size and the amount of the monomer used, for example, based on 100 parts by weight of the vinyl chloride monomer used in the suspension polymerization. 70 parts by weight or more can be used.
  • the polymerization initiator may be used in an amount of 0.02 parts by weight to 0.2 parts by weight based on 100 parts by weight of the vinyl chloride monomer used in the polymerization. If the polymerization initiator is used in less than 0.02 parts by weight, the polymerization reaction time is long, the conversion rate to the vinyl chloride-based polymer is low, there is a possibility that the productivity is lowered, when used in excess of 0.2 parts by weight polymerization process In this case, the polymerization initiator may not be completely consumed and may remain in the finally prepared vinyl chloride polymer slurry to lower thermal stability. More specifically, the polymerization initiator may be used from 0.04 parts to 0.12 parts by weight relative to 100 parts by weight of the vinyl chloride monomer.
  • the polymerization initiator may include a peroxide compound such as dicumyl peroxide, dipentyl peroxide, di-3,5,5-trimethyl hexanoyl peroxide or dilauryl peroxide; Peroxydicarbonate-based compounds such as diisopropylperoxydicarbonate, di-sec-butylperoxydicarbonate or di-2-ethylhexylperoxydicarbonate; peroxy ester compounds such as t-butylperoxy pivalate, 1,1,3,3-tetramethylbutylperoxy neodecanoate or t-butylperoxy neodecanoate; Azo compounds such as azobis-2,4-dimethylvaleronitrile; hydroperoxide compounds such as t-butyl hydroperoxide; Or sulfate-based compounds such as potassium persulfate or ammonium persulfate, and the like, and any one or a mixture
  • the suspension polymerization may be carried out in a temperature range of 40 °C to 60 °C, more specifically 47 °C to 52 °C.
  • a heat removal process through the reactor jacket and R / CN may be selectively performed so that the temperature change is maintained within the range of 0.1 ° C to 0.2 ° C during suspension polymerization.
  • the manufacturing method of the vinyl chloride-based polymer according to an embodiment of the present invention may further include a heat removal process for maintaining the polymerization temperature during suspension polymerization.
  • the suspension polymerization may be an additive such as a dispersant (or a protective colloid adjuvant), a polymerization regulator, a chain transfer agent, a pH regulator, an antioxidant, a crosslinking agent, an antistatic agent, an antiscalant or a surfactant, as necessary, in addition to the above-described active ingredient. May be further added, and the type and content of the additives are not particularly limited and may be used as conventional types and contents known in the art.
  • the additive may be added at any time during suspension polymerization, during polymerization or after polymerization, or may be added in batches or continuously.
  • the dispersant is to act to stabilize the reactants during the polymerization and to produce uniform and stable particles, it may be added at the beginning of the suspension polymerization.
  • Specific examples of the dispersant include vinyl alcohol resin, cellulose, unsaturated organic acid polymer, and the like, and any one or a mixture of two or more thereof may be used.
  • the vinyl alcohol-based resin may be specifically used as the hydration degree of 30% by weight to 90% by weight, more specifically, the first polyvinyl alcohol having a hydration degree of more than 50% by weight and 90% by weight or less.
  • a mixture of second polyvinyl alcohols having a degree of hydration of 30 to 50% by weight may be used.
  • the mixing ratio of the first and second polyvinyl alcohol may be 2: 1 to 1: 2, more specifically 5: 4 to 2: 3.
  • the cellulose may include methyl cellulose, hydroxyethyl cellulose, or hydroxypropyl methyl cellulose, and the like, and any one or a mixture of two or more thereof may be used.
  • hydroxypropylmethylcellulose may be used. More specifically, the content of intramolecular hydroxypropyl group is 3% by weight to 20% by weight, and the viscosity of 2% aqueous solution at 23 ⁇ 5 ° C. is 10cps to 20,000cps. Can be.
  • the unsaturated organic acid polymer may specifically include an acrylic acid polymer, a methacrylic acid polymer, an itaconic acid polymer, a fumaric acid polymer, a maleic acid polymer, or a succinic acid polymer, and any one or a mixture of two or more thereof may be used.
  • the dispersant usable in the suspension polymerization may include a mixture of a vinyl alcohol resin and a cellulose resin, and more specifically 5: 1 to 7: 7 of the vinyl alcohol resin and the cellulose resin. It may include a mixture of (weight ratio).
  • the dispersant may be used in an amount of 0.005 parts by weight to 5 parts by weight based on 100 parts by weight of the vinyl chloride monomer used in preparing the vinyl chloride polymer. If the content of the dispersant is less than 0.005 parts by weight, the particle size of the vinyl chloride polymer may be excessively increased, causing fish-eye. If the content of the dispersant is greater than 5 parts by weight, the initial coloring property may be reduced due to the increase of fine particles. There is. Considering the remarkable effect of the polymerization efficiency and the physical properties improvement effect of the vinyl chloride polymer according to the use of the dispersant, the dispersant may be used in 0.005 parts by weight to 2.5 parts by weight based on 100 parts by weight of the vinyl chloride monomer.
  • the antioxidant reacts with the radicals of the vinyl chloride polymer to stop the polymerization, and may be added at the end of the suspension polymerization, specifically, the aromatic hydrocarbon compound.
  • the polymerization conversion rate can be calculated from this by measuring the amount of vinyl chloride monomer recovered after the reaction is completed by a flow meter.
  • the polymerization conversion rate includes an error range of ⁇ 2% at the time of measurement, and the polymerization conversion rate of 0% is meant to include the time point before or before the start of the polymerization.
  • the antioxidant is not particularly limited as long as it is generally used in the preparation of the vinyl chloride polymer, and specific examples thereof include triethylene glycol-bis- [3- (3-t-butyl-5-methyl-4-hydroxyphenyl ) Propionate], hydroquinone, p-methoxyphenol, t-butylhydroxyanisole, n-octadecyl-3- (4-hydroxy 3,5-di-t-butylphenyl) propionate, 2,5-di-t-butyl hydroquinone, 4,4-butylidenebis (3-methyl-6-t-butyl phenol), t-butyl catechol, 4,4-thio bis (6-t- Phenolic compounds such as butyl-m-cresol), tocopherol and non dihydro guaretic acid; Amine compounds such as N, N-diphenyl-p-phenylenediamine and 4,4-bis (dimethyl benzyl) diphenylamine; Sulfur compounds such as
  • the antioxidant may be used in an amount of 0.01 parts by weight to 1 part by weight based on 100 parts by weight of the vinyl chloride monomer used in preparing the vinyl chloride polymer. If the content of the antioxidant is less than 0.01 part by weight, the particle size of the vinyl chloride polymer is excessively increased, there is a fear that the whiskey occurs, and if it exceeds 1 part by weight, there is a fear of the initial colorability decrease due to the increase of the fine particles. Considering the remarkable effect of the polymerization efficiency and the physical properties improvement effect of the vinyl chloride polymer according to the use of the dispersant, the antioxidant may be used in 0.05 parts by weight to 1 part by weight based on 100 parts by weight of the vinyl chloride monomer.
  • the vinyl chloride polymer prepared according to the above-mentioned production method may be prepared by adding an aromatic hydrocarbon compound containing a hydroxyl group together with a reactive functional group containing a carbon-to-carbon double bond when the pressure in the reactor changes during a suspension polymerization reaction within a predetermined range. It can exhibit excellent melt processability with high degree of polymerization. As a result, productivity in manufacturing the processed molded article using the same can be improved.
  • the vinyl chloride polymer may include not only a polymer consisting of purely vinyl chloride monomers but also a copolymer with vinyl monomers mainly composed of vinyl chloride monomers and copolymerizable with the vinyl chloride monomers.
  • the vinyl chloride polymer is a copolymer of a vinyl chloride monomer and a vinyl monomer, 50% or more of vinyl chloride may be included in the copolymer.
  • the vinyl monomer copolymerizable with the vinyl chloride monomer is as described above.
  • the vinyl chloride-based polymer may have a degree of polymerization of 1300 to 3000.
  • the degree of polymerization is the average degree of polymerization measured by JIS K6721-77.
  • a vinyl chloride-based resin composition comprising a vinyl chloride-based polymer prepared by the production method and a molded article manufactured using the same.
  • the vinyl chloride resin composition further includes 30 parts by weight to 120 parts by weight of plasticizer, more specifically 35 parts by weight to 100 parts by weight, based on 100 parts by weight of the vinyl chloride polymer prepared according to the above-described manufacturing method.
  • plasticizer more specifically 35 parts by weight to 100 parts by weight, based on 100 parts by weight of the vinyl chloride polymer prepared according to the above-described manufacturing method.
  • one or more additives such as a dispersion diluent, a stabilizer, a lubricant, a viscosity modifier, and a blowing agent may be further included.
  • the vinyl chloride-based resin composition is prepared by the above-described manufacturing method to include a vinyl chloride-based polymer having excellent melt processability, thereby exhibiting reduced melt time and melt load, and as a result, can exhibit excellent processability. As a result, it is possible to improve the production rate during the manufacture of the molded article using the same, and may be particularly useful in the manufacture of heat-resistant wire coating, gaskets and the like.
  • Reflux condenser and a stirrer as the internal volume of de-ionized water 140 parts by weight of a dispersing agent as a polymerization solvent in a stainless polymerization reactor equipped with a 1m 3 hydroxypropylmethylcellulose 0.005 parts by weight, as a polymerization initiator, t- butylperoxy-neodecanoate (BND ) 0.088 parts by weight was added and the inside was degassed with a vacuum pump under stirring, and 100 parts by weight of vinyl chloride monomer was added thereto. The reaction was carried out while maintaining the temperature in the polymerization reactor at 52 ° C.
  • a vinyl chloride polymer was prepared in the same manner as in Example 1, except that 0.1 part by weight of eugenol was added.
  • the reaction was carried out while maintaining the polymerization temperature at 47 °C, and was carried out in the same manner as in Example 1 except that the eugenol was added to 0.05 parts by weight to prepare a vinyl chloride polymer.
  • a vinyl chloride polymer was prepared in the same manner as in Example 3, except that Eugenol was added at 0.1 part by weight.
  • a vinyl chloride polymer was prepared in the same manner as in Example 1, except that no eugenol was used.
  • a vinyl chloride polymer was prepared in the same manner as in Example 3, except that no eugenol was used.
  • Vinyl chloride was prepared in the same manner as in Example 1 except that the polymerization was stopped by the addition of an antioxidant and eugenol at the point of change of 0.1 kg / cm 2 relative to the equilibrium pressure at the polymerization temperature in the polymerization reactor. System-based polymers were prepared.
  • Vinyl chloride was prepared in the same manner as in Example 1 except that the polymerization was stopped by adding an antioxidant and eugenol at the time point of 3.0 kg / cm 2 change from the equilibrium pressure at the polymerization temperature in the polymerization reactor. System-based polymers were prepared.
  • Example 1 100 parts by weight of each of the vinyl chloride polymers prepared in Example 1, 35 parts by weight of dioctylphthalate (DOP) as a plasticizer, 2 parts by weight of an organic tin compound (MT-800, manufactured by Songwon Industrial Co., Ltd.) as a heat stabilizer, and a lubricant ( SONGSTAB SL-29, manufactured by Songwon Industrial Co., Ltd.) was added to the mixture, and then mixed to prepare a vinyl chloride-based thermoplastic resin composition.
  • DOP dioctylphthalate
  • MT-800 organic tin compound
  • SONGSTAB SL-29 lubricant
  • a vinyl chloride-based thermoplastic resin composition was prepared in the same manner as in Preparation Example 1, except that the vinyl chloride polymers prepared in Examples 2 to 4 and Comparative Examples 1 to 5 were used, respectively.
  • thermoplastic resin composition comprising the vinyl chloride polymer prepared in Examples 1 to 4 and Comparative Examples 1 to 5
  • melt time and the melt load were measured at 140 ° C. and 30 rpm using the Bradender plastograph, respectively. Shorter melt times indicate better meltability.
  • Example 1 Example 2 Example 3
  • Example 4 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4
  • Eugenol dosage (parts by weight) 0.05 0.1 0.05 0.1 0 0 0.1 0.05 Input time ⁇ 1.0kg / cm 2 ⁇ 1.0kg / cm 2 ⁇ 1.0kg / cm 2 ⁇ 1.0kg / cm 2 - - Before start of polymerization ⁇ 0.1kg / cm 2 Average degree of polymerization 1300 1300 1700 1700 1300 1700 ND 1300 Melt Time (sec) 274 255 518 495 304 576 ND 268 Melt Load (Nm) 26.2 26.5 26.3 26.1 27.9 27.3 ND 26.3
  • ND means that the physical property was not measured because polymerization did not occur.
  • thermoplastic resin composition including the vinyl chloride polymer of Examples 1 to 4 to which the end-of-polymerization eugenol was added
  • Comparative Examples 1 and 2 irrespective of the degree of polymerization of the vinyl chloride polymer and the amount of eugenol added. Melting time was shortened and melt load became low. In particular, when comparing Examples 1 and 2, the melting time was further shortened as the dosage of eugenol was increased, but the melting load was about the same.
  • Example 1 and 2 was shown also in Examples 3 and 4 which have higher polymerization degree.
  • the melting time is shortened by adding eugenol at the time when the pressure change is 0.5kg / cm 2 to 1.5kg / cm 2 based on the equilibrium pressure at the polymerization temperature in the polymerization reactor. It can be seen that the melt load is lower, which is more advantageous when forming a workpiece.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

본 발명에서는 염화비닐계 단량체를 현탁중합하는 단계를 포함하며, 상기 염화비닐계 단량체의 투입 후 중합반응기내 중합온도에서의 평형 압력을 기준으로 압력 변화가 0.5kg/cm2 내지 1.5kg/cm2인 시점에, 탄소간 이중결합을 포함하는 반응성 작용기 및 히드록시기를 포함하는 방향족 탄화수소계 화합물을 첨가하는 염화비닐계 중합체의 제조방법 및 이에 따라 제조되어, 고중합도 및 우수한 용융가공성을 갖는 염화비닐계 중합체가 제공된다.

Description

염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체
[관련출원과의 상호인용]
본 출원은 2016.04.25자 한국 특허 출원 제10-2016-0049960호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 고중합도 염화비닐계 중합체의 용융가공성을 향상시킬 수 있는 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체에 관한 것이다.
염화비닐계 중합체는 염화비닐의 단독 중합체 또는 50% 이상의 염화비닐을 포함하는 혼성 중합체로서, 가격이 저렴하고 경도 조절이 용이하며, 대부분의 가공기기에 적용 가능하여 응용 분야가 다양하다. 게다가, 물리적·화학적 성질, 예컨대 기계적 강도, 내후성, 내약품성 등이 우수한 성형품을 제공할 수 있어 여러 분야에서 광범위하게 사용되고 있다. 그러나, 염화비닐계 중합체는 그 자체로서 성형 가공성이 낮기 때문에 가소제 등의 여러 첨가제를 적절하게 첨가하여 가공성을 부여하고 있다.
종래 염화비닐계 중합체의 가공성을 향상시키기 위한 방법으로서, 염화비닐계 중합체 중합시 폴리비닐 알코올 등과 같은 분산 안정제를 사용하여 염화비닐 중합체 자체의 가공성을 향상시키는 방법이 제안되었다. 그러나, 상기 방법에 따르면 염화비닐계 중합체의 부피 비중은 증가되지만, 중합체의 용융 특성은 저하되는 문제가 있었다.
이에 대해 염화비닐계 중합체의 가공성과 함께 용융 특성을 향상시키기 위한 방법으로서, 염화비닐계 중합체의 중합반응시 온도를 변화시킴으로써 중합도 분포 특성을 조절하는 방법이 제안되었다. 그러나, 상기의 방법들에 따르면 높은 벌크밀도를 가지며 가공성이 향상된 염화비닐계 중합체가 제조될 수는 있으나, 중합반응 시간이 길어져 생산성이 저하되고, 또 중합온도의 변화에 따른 염화비닐계 단량체 등의 반응물과 첨가제 간의 부반응으로 인해 착색성 증가, 기계적 특성 저하 등의 중합체 자체의 물성적 특성이 저하되는 문제가 있었다.
염화비닐계 중합체의 가공성을 향상시키기 위한 또 다른 방법으로서, 성형품의 제조시 염화비닐계 중합체와 함께 가소제를 이용하는 방법이 주로 사용되고 있다. 그러나 이와 같이 가소제를 사용할 경우, 가소제가 제품 표면으로 이동하여 표면의 끈적거림이 발생하고, 또 시간의 경과에 따라 가소성이 점차적으로 감소하는 문제가 있으며, 특히 주로 사용되는 프탈레이트계 가소제의 경우 연소시 다량의 연기가 발생하고, 또 상당히 고온에서 가요성을 나타내며, 가공시 높은 에너지를 필요로 하는 단점이 있다.
특히 고중합도를 갖는 염화비닐계 중합체의 경우 용융 시간이 길어 가공성형품의 생산성이 크게 저하되는 문제점이 있다. 이를 개선하기 위하여 가공 온도를 높일 경우 염화비닐 중합체의 구조적 특성으로 인해 변색이 발생한다. 또 가공시 가소제를 투입하면 낮은 온도에서도 가공이 가능할 수 있으나 가공성형품의 물성이 저하될 우려가 있기 때문에 사용량에 제한이 있다.
이에 따라 우수한 용융가공성을 갖는 고중합도의 염화비닐계 중합체를 우수한 중합생산성으로 제조할 수 있는 염화비닐계 중합체의 제조 방법의 개발이 요구된다.
본 발명은 상기한 문제점을 해결하고, 고중합도 염화비닐계 중합체의 용융가공성을 향상시킬 수 있는 염화비닐계 중합체의 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 상기 제조방법에 따라 제조되는 염화비닐계 중합체 및 이를 포함하는 염화비닐계 수지 조성물을 제공하는 것이다.
상기의 과제를 해결하기 위하여, 본 발명의 일 실시예에 따르면 염화비닐계 단량체를 현탁중합하는 단계를 포함하며, 상기 염화비닐계 단량체의 투입 후 중합반응기내 중합온도에서의 평형 압력을 기준으로 압력 변화가 0.5kg/cm2 내지 1.5kg/cm2인 시점에, 탄소간 이중결합을 포함하는 반응성 작용기 및 히드록시기를 포함하는 방향족 탄화수소계 화합물을 첨가하는 것인 염화비닐계 중합체의 제조방법을 제공한다.
본 발명의 또 다른 일 실시예에 따르면, 상기 제조방법에 의해 제조되며, 중합도가 1300 내지 3000인 염화비닐계 중합체를 제공한다.
본 발명의 또 다른 일 실시예에 따르면, 상기 제조방법에 의해 제조된 염화비닐계 중합체를 포함하는 염화비닐계 수지 조성물을 제공한다.
본 발명에 따른 염화비닐계 중합체의 제조방법은, 현탁중합의 말기에 염화비닐 중합체의 용융가공성을 향상시킬 수 있는 첨가제를 첨가함으로써, 제조되는 염화비닐 중합체의 용융가공성을 향상시킬 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
일반적으로 현탁중합에 의한 염화비닐계 중합체의 제조시, 특정 전환율(critical conversion) 이전에는 액상과 기상의 상 평형 상태 유지에 의해 압력이 일정하게 유지되는 반면, 특정 전환율 이후에는 기상의 염화비닐 단량체가 소모되면서 압력이 떨어지는 현상이 발생하게 된다. 본 발명에서는 특정 수준으로의 압력 저하 시점에 중합반응으로 생성된 염화비닐 중합체의 용융가공성을 향상시킬 수 있는 첨가제를 투입함으로써, 염화비닐 중합체의 용융가공성을 크게 향상시킬 수 있다. 그 결과 이를 이용한 가공성형품의 제조시 생산성을 높일 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 염화비닐계 중합체의 제조방법은, 염화비닐계 단량체를 현탁중합하는 단계를 포함하며, 상기 염화비닐계 단량체의 투입 후 중합반응기내 중합온도에서의 평형 압력을 기준으로 압력 변화가 0.5kg/cm2 내지 1.5kg/cm2인 시점에, 탄소간 이중결합을 포함하는 반응성 작용기 및 히드록시기를 포함하는 방향족 탄화수소계 화합물을 첨가한다.
본 발명의 일 실시예에 따른 염화비닐계 중합체의 제조방법에 있어서, 상기 방향족 탄화수소계 화합물은 제조되는 염화비닐계 중합체 내에 분산된 형태로 존재하며, 상기 방향족 탄화수소계 화합물에서의 히드록시기는 염화비닐 중합체의 라디칼과 반응하면서 벤젠 고리에 의한 라디칼 공명 구조의 안정성으로 인해 염화비닐 중합체의 중합반응을 종결시킬 수 있다.
상기 방향족 탄화수소계 화합물은 구체적으로 탄소간 이중결합을 포함하는 반응성 작용기와 히드록시기를 포함하고, 선택적으로 알콕시기를 더 포함하는 탄소수 6 내지 20의 단일환 또는 다환의 방향족 탄화수소계 화합물일 수 있다. 이때 상기 알콕시기는 탄소수 1 내지 10의 알콕시기일 수 있으며, 상기 히드록시기와 메타 위치(meta-position)에 위치할 수 있다.
보다 구체적으로는 상기 방향족 탄화수소계 화합물은 하기 화학식 1의 화합물일 수 있다:
[화학식 1]
Figure PCTKR2017002764-appb-I000001
상기 화학식 1에서,
R은 탄소수 1 내지 10의 알킬기일 수 있으며, 보다 구체적으로는 탄소수 1 내지 6의 알킬기, 보다 더 구체적으로는 탄소수 1 내지 3의 직쇄상 알킬기일 수 있고,
Y는 탄소-탄소간 이중결합을 포함하는 반응성 작용기로서, 비닐기, 알릴기, 이소프로펜일기, 2-부테닐기 또는 3-부테닐기 등과 같은 탄소수 2 내지 10의 알케닐기일 수 있으며, 보다 구체적으로는 탄소수 2 내지 6의 알케닐기, 보다 구체적으로는 탄소수 3의 알릴기일 수 있다.
보다 더 구체적으로, 상기 방향족 탄화수소계 화합물은 유게놀(4-allyl-2-methoxy phenol), 또는 이소유게놀 등일 수 있으며, 이들 중 어느 하나 또는 둘의 혼합물이 사용될 수 있다. 가장 구체적으로는 상기 방향족 탄화수소계 화합물은 유게놀이다.
유게놀은 통상 염화비닐계 중합체를 포함하는 가공조성물의 제조시 첨가되어 가공성을 향상시키는 역할을 한다. 그러나, 종래와 같이 염화비닐계 중합체의 가공시 사용될 경우, 충분한 용융가공성 개선효과를 얻기 위해서는 과량으로 투입되어야 하고, 또 그 특유의 냄새로 인해 작업환경의 악화를 초래하였다. 또, 염화비닐계 중합체의 중합 초기, 단량체와 함께 투입될 경우, 중합억제제의 역할을 하여 중합반응을 저해하여, 중합도가 낮은 염화비닐계 중합체가 수득되게 된다.
이에 대해 본 발명에서는 현탁중합의 말기, 구체적으로는 중합반응기내 중합온도에서의 평형 압력을 기준으로 압력 변화가 0.5kg/cm2 내지 1.5kg/cm2인 시점에 상기한 방향족 탄화수소계 화합물을 투입함으로써, 1300 내지 3000의 고중합도를 갖는 동시에 용융가공성이 향상된 염화비닐계 중합체를 제조할 수 있다. 이때 상기 중합온도는 40℃ 내지 60℃, 보다 구체적으로는 47℃ 내지 52℃일 수 있다. 상기한 압력변화 범위를 벗어난 경우, 고중합도 및 융융가공성 개선의 효과를 동시에 얻을 수 없다. 보다 구체적으로는 중합반응기내 중합온도에서의 평형 압력을 기준으로 압력 변화가 0.8kg/cm2 내지 1.2kg/cm2인 시점에 상기한 방향족 탄화수소계 화합물을 투입할 수 있다.
또, 상기한 방향족 탄화수소계 화합물은 염화비닐계 단량체 100중량부에 대하여 0.005중량부 내지 0.1중량부로 투입될 수 있다. 방향족 탄화수소계 화합물의 투입량이 0.005중량부 미만이면, 투입에 따른 중합도 및 용융가공성 개선효과가 미미하고, 또 0.1중량부를 초과할 경우 투입량 대비 개선효과의 증가가 미미하여 비효율적이고, 또 제조되는 염화비닐계 중합체의 물성을 저하시킬 우려가 있다. 보다 구체적으로는 상기한 방향족 탄화수소계 화합물은 염화비닐계 단량체 100중량부에 대하여 0.01 내지 0.1중량부로 투입될 수 있다.
한편, 본 발명의 일 실시예에 따른 염화비닐계 중합체의 제조방법에 있어서, 상기 현탁중합은 용매 및 중합개시제, 그리고 선택적으로 분산제 등 1종 이상의 첨가제가 충진된 중합반응기에 염화비닐계 단량체를 투입하고 반응시킴으로써 수행될 수 있다.
여기에서, 상기 "충진된 중합반응기"는 염화비닐계 단량체를 투입하기 전 상기 중합반응기 내에 용매 및 중합개시제, 그리고 선택적으로 분산제 등의 첨가제가 투입되어 있는 상태를 나타내는 것이다.
본 발명에 있어서, "중합 개시 전"은 상기 충진된 반응기에 염화비닐계 단량체를 투입하기 전을 의미한다.
본 발명의 일 실시예에 따른 상기 염화비닐계 중합체의 제조방법에 의해 제조되는 염화비닐계 중합체는 순수하게 염화비닐 단량체로 이루어진 중합체뿐 아니라 염화비닐 단량체를 주체로 하고 상기 염화비닐 단량체와 공중합 가능한 비닐계 단량체와의 공중합체일 수도 있다. 이때, 상기 염화비닐계 중합체가 염화비닐 단량체와 비닐계 단량체의 공중합체일 경우에는 상기 공중합체 내에 염화비닐이 50% 이상 포함되어 있는 것일 수 있다.
이에 따라 상기 현탁중합시 사용가능한 상기 염화비닐계 단량체는 염화비닐 단일 물질일 수도 있고; 또는 염화비닐, 및 상기 염화비닐과 공중합 가능한 비닐계 단량체의 혼합물일 수도 있다. 상기 비닐계 단량체로는 특별히 제한되는 것은 아니나, 에틸렌, 프로필렌, 부텐 등의 올레핀(olefin) 화합물; 초산 비닐, 프로피온산 비닐, 스테아린산 비닐 등의 비닐 에스테르(vinyl ester)류; 아크릴로니트릴 등의 불포화 니트릴류; 비닐 메틸 에테르, 비닐 에틸 에테르, 비닐 옥틸 에테르, 비닐 라우릴 에테르 등의 비닐 알킬 에테르류; 염화 비닐리덴 등의 할로겐화 비닐리덴(vinylidene)류; 아크릴산, 메타크릴산, 이타콘산, 말레인산, 푸마르산, 무수 말레산, 무수 이타콘산 등의 불포화 지방산 및 이들 지방산의 무수물; 아크릴산 메틸, 아크릴산 에틸, 말레인산 모노 메틸, 말레인산 디메틸, 말레인산 부틸벤질 등의 불포화 지방산 에스테르(ester)류; 디알릴 프탈레이트 등의 가교성 단량체 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 용매는 탈이온수일 수 있고, 상기 용매의 사용량은 중합 반응기 크기와 사용되는 단량체의 양에 따라 적절히 조절하여 사용할 수 있으며, 예컨대 상기 현탁중합에 사용되는 염화비닐계 단량체 100 중량부에 대하여 70 중량부 이상으로 사용할 수 있다.
또 상기 중합개시제는 중합에 사용되는 상기 염화비닐계 단량체 100중량부에 대하여 0.02중량부 내지 0.2중량부로 사용되는 것일 수 있다. 만약, 상기 중합개시제가 0.02중량부 미만으로 사용되는 경우에는 중합 반응시간이 길어지고, 염화비닐계 중합체로의 전환율이 낮아져 생산성이 저하될 우려가 있고, 0.2중량부를 초과하여 사용되는 경우에는 중합 과정 중에서 중합개시제가 완전히 소모되지 못하고 최종 제조된 염화비닐계 중합체 슬러리 내에 잔류하여 열 안정성 등을 저하시킬 우려가 있다. 보다 구체적으로, 상기 중합개시제는 염화비닐계 단량체 100중량부 대비 0.04중량부 내지 0.12중량부로 사용되는 것일 수 있다.
상기 중합개시제로는 구체적으로, 디큐밀퍼옥사이드, 디펜틸퍼옥사이드, 디-3,5,5-트리메틸 헥사노일퍼옥사이드 또는 디라우릴퍼옥사이드와 같은 퍼옥사이드계 화합물; 디이소프로필퍼옥시디카보네이트, 디-sec-부틸퍼옥시디카보네이트 또는 디-2-에틸헥실퍼옥시디카보네이트와 같은 퍼옥시디카보네이트계 화합물; t-부틸퍼옥시 피발레이트, 1,1,3,3-테트라메틸부틸퍼옥시 네오데카노에이트 또는 t-부틸퍼옥시 네오데카노에이트와 같은 퍼옥시에스테르계 화합물; 아조비스-2,4-디메틸발레로니트릴과 같은 아조계 화합물; t-부틸 하이드로퍼옥사이드와 같은 하이드로퍼옥사이드계 화합물; 또는 포타슘 퍼설페이트 또는 암모늄 퍼설페이트와 같은 설페이트계 화합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 현탁중합은 40℃ 내지 60℃, 보다 구체적으로는 47℃ 내지 52℃의 온도범위에서 수행될 수 있다. 또, 통상 염화비닐계 중합체의 중합반응은 발열반응이기 때문에 현탁중합 동안에 온도변화가 0.1℃ 내지 0.2℃의 범위 내로 유지되도록, 반응기 자켓 및 R/CN을 통한 제열 공정이 선택적으로 더 수행될 수도 있다. 이에 따라, 본 발명의 일 실시예에 따른 염화비닐계 중합체의 제조방법은 현탁중합 중 중합온도 유지를 위한 제열 공정을 더 포함할 수 있다.
상기한 바와 같은 중합온도범위 내에서 일정 수준의 온도를 유지하면서 중합 반응이 이루어질 때, 폼 발생을 방지하고, 재중합 및 스케일 생성을 억제할 수 있으며, 또 반응말기 잔류하고 있는 중합개시제의 분해를 유도하여 반응 후 보다 우수한 물성적 특징, 즉 고중합도 및 개선된 용융가공성을 갖는 염화비닐계 중합체가 제조될 수 있다.
또한, 상기 현탁중합은 상기 기재한 유효성분 이외에 필요에 따라 분산제(또는 보호 콜로이드 조제라고도 함), 중합 조절제, 연쇄 이동제, pH 조절제, 산화방지제, 가교제, 대전방지제, 스케일 방지제 또는 계면활성제 등의 첨가제를 추가로 첨가할 수 있으며, 상기 첨가제의 종류 및 함량은 특별히 제한되지 않고 당업계 공지된 통상의 종류 및 함량으로 사용할 수 있다. 상기 첨가제는 현탁중합 초, 중합 중 또는 중합 후 중 어느 시점에라도 첨가할 수 있으며, 일괄적으로 첨가하거나 연속적으로 첨가할 수도 있다.
일례로, 상기 분산제는 중합 중 반응물들을 안정화시키고 균일하고 안정된 입자가 생성될 수 있도록 작용하는 것으로, 현탁중합의 초기에 투입될 수 있다. 상기 분산제로는 구체적으로 비닐 알코올계 수지, 셀룰로오스, 또는 불포화 유기산 중합체 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 분산제로서 상기 비닐 알코올계 수지로는 구체적으로 수화도가 30중량% 내지 90중량%인 것이 사용될 수 있으며, 보다 구체적으로는 수화도가 50중량% 초과 90중량% 이하인 제1폴리비닐알코올과, 수화도가 30 내지 50중량%인 제2폴리비닐알코올의 혼합물이 사용될 수 있다. 이때, 제1 및 제2 폴리비닐알코올의 혼합비는 2:1 내지 1:2, 보다 구체적으로는 5:4 내지 2:3일 수 있다.
또, 분산제로서 상기 셀룰로오스로는 구체적으로 메틸셀룰로오스, 히드록시에틸셀룰로오스, 또는 히드록시프로필메틸셀룰로오스 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 히드록시프로필메틸셀룰로오스일 수 있으며, 보다 구체적으로는 분자내 히드록시프로필기의 함량이 3중량% 내지 20중량%이고, 23±5℃에서의 2% 수용액 점도가 10cps 내지 20,000cps인 것일 수 있다.
또, 분산제로서 상기 불포화 유기산 중합체로는 구체적으로 아크릴산 중합체, 메타아크릴산 중합체, 이타콘산 중합체, 푸마르산 중합체, 말레인산 중합체, 또는 숙신산 중합체 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
보다 구체적으로, 상기 현탁중합에 사용가능한 분산제는 비닐 알코올계 수지와 셀룰로오스계 수지의 혼합물을 포함하는 것일 수 있으며, 보다 더 구체적으로는 비닐알코올계 수지와 셀룰로오스계 수지의 5:1 내지 7:7(중량비)의 혼합물을 포함하는 것일 수 있다.
상기 분산제는 염화비닐계 중합체의 제조에 사용되는 염화비닐계 단량체 100 중량부에 대하여 0.005중량부 내지 5중량부로 사용될 수 있다. 분산제의 함량이 0.005중량부 미만이면 염화비닐 중합체의 입자 크기가 지나치게 증가하게 되어 휘시아이(fish-eye)가 발생할 우려가 있고, 또 5중량부를 초과하면 미세입자들의 증가로 인해 초기 착색성 저하의 우려가 있다. 분산제의 사용에 따른 중합효율 및 염화비닐 중합체의 물성 개선 효과의 현저함을 고려할 때, 상기 분산제는 염화비닐계 단량체 100중량부에 대하여 0.005중량부 내지 2.5중량부로 사용될 수 있다.
또, 상기 산화방지제는 염화비닐 중합체의 라디칼과 반응하여 중합을 정지시키는 역할을 하는 것으로, 현탁중합의 말기, 구체적으로는 상기한 방향족 탄화수소계 화합물과 동시에 투입될 수 있다. 본 발명에 있어서, 상기 중합전환율은 반응 종료 후 회수되는 염화비닐 단량체의 양을 유량계로 측정하고, 이로부터 계산할 수 있다. 상기 중합전환율은 측정시의 오차범위 ±2%를 포함하며, 또 중합전환율 0%는 중합 개시 시점 또는 개시 전까지를 포함하는 의미이다.
상기 산화방지제는 염화비닐계 중합체의 제조에 있어서 일반적으로 사용되는 것이면 특별히 제한되지 않는데, 구체적인 예로는 트리에틸렌글리콜-비스-[3-(3-t-부틸-5-메틸-4-하이드록시페닐)프로피오네이트], 하이드로퀴논, p-메톡시페놀, t-부틸하이드록시아니솔, n-옥타데실-3-(4-히드록시 3,5-디-t-부틸페닐) 프로피오네이트, 2,5-디-t-부틸 하이드로퀴논, 4,4-부틸리덴비스(3-메틸-6-t-부틸 페놀), t-부틸 카테콜, 4,4-티오 비스(6-t-부틸-m-크레졸), 토코페롤, 논 디하이드로 구아레틱산(non dihydro guaretic acid) 등의 페놀 화합물; N,N-디페닐-p-페닐렌디아민, 4,4-비스(디메틸 벤질)디페닐아민 등의 아민 화합물; 도데실 메르캅탄, 1,3-디페닐-2-티올 등의 유황 화합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 산화방지제는 염화비닐계 중합체의 제조에 사용되는 염화비닐계 단량체 100중량부에 대하여 0.01중량부 내지 1중량부로 사용될 수 있다. 산화방지제의 함량이 0.01중량부 미만이면 염화비닐 중합체의 입자 크기가 지나치게 증가하게 되어 휘시아이가 발생할 우려가 있고, 또 1중량부를 초과하면 미세입자들의 증가로 인해 초기 착색성 저하의 우려가 있다. 분산제의 사용에 따른 중합효율 및 염화비닐 중합체의 물성 개선 효과의 현저함을 고려할 때, 상기 산화방지제는 염화비닐계 단량체 100중량부에 대하여 0.05중량부 내지 1중량부로 사용될 수 있다.
상기한 제조방법에 따라 제조되는 염화비닐계 중합체는 탄소간 이중결합을 포함하는 반응성 작용기와 함께 히드록시기를 포함하는 방향족 탄화수소계 화합물을 현탁 중합반응 도중 반응기내 압력이 변화가 소정의 범위 내일 때 첨가함으로써, 고중합도와 함께 우수한 용융가공성을 나타낼 수 있다. 그 결과 이를 이용한 가공 성형품의 제조시 생산성을 높일 수 있다.
이에 따라 본 발명의 다른 일 실시예에 따르면, 상기한 제조방법에 의해 제조되는 염화비닐계 중합체가 제공된다.
상기 염화비닐계 중합체는 순수하게 염화비닐 단량체로 이루어진 중합체뿐 아니라 염화비닐 단량체를 주체로 하고 상기 염화비닐 단량체와 공중합 가능한 비닐계 단량체와의 공중합체도 포함할 수 있다. 이때, 상기 염화비닐계 중합체가 염화비닐 단량체와 비닐계 단량체의 공중합체인 경우에는 상기 공중합체 내에 염화비닐이 50% 이상 포함되어 있는 것일 수 있다. 이때, 상기 염화비닐계 단량체와 공중합이 가능한 비닐계 단량체는 앞서 설명한 바와 같다.
또, 상기 염화비닐계 중합체는 1300 내지 3000의 중합도를 갖는 것일 수 있다. 본 발명에 있어서 중합도는 JIS K6721-77에 의해 측정한 평균 중합도이다.
더 나아가 본 발명의 또 다른 일 실시예에 따르면, 상기 제조방법에 의해 제조된 염화비닐계 중합체를 포함하는 염화비닐계 수지 조성물 및 이를 이용하여 제조된 성형품이 제공된다.
구체적으로 상기 염화비닐계 수지 조성물은 상기한 제조방법에 따라 제조한 염화비닐계 중합체 100중량부에 대하여 가소제 30중량부 내지 120중량부, 보다 구체적으로는 35중량부 내지 100중량부를 더 포함하는 것일 수 있으며, 필요에 따라 분산 희석제, 안정제, 활제, 점도 조절제 및 발포제 등의 1종 이상의 첨가제를 더 포함할 수 있다.
상기 염화비닐계 수지 조성물은 상기한 제조방법에 의해 제조되어 우수한 용융가공성을 갖는 염화비닐계 중합체를 포함함으로써, 감소된 용융시간 및 용융부하를 나타내며, 그 결과 우수한 가공성을 나타낼 수 있다. 그 결과 이를 이용한 성형품의 제조시 생성율을 향상시킬 수 있으며, 내열전선피복, 가스켓 등의 제조에 특히 유용할 수 있다.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
실시예 1
환류 응축기 및 교반기가 구비된 내부용적 1m3의 스테인레스 중합 반응기에 중합용매로서 탈이온수 140중량부, 분산제로서 하이드록시프로필메틸셀룰로오스 0.005중량부, 중합 개시제로서 t-부틸퍼옥시네오데카노에이트(BND) 0.088중량부를 첨가한 뒤 교반 하에 내부를 진공펌프로 탈기하고, 염화비닐 단량체 100중량부를 투입하였다. 상기 중합반응기내 온도를 반응 전 과정 동안 52℃로 유지하면서 반응을 수행하였으며, 중합반응기내 압력을 확인하면서, 중합 반응기내 중합온도에서의 평형 압력 대비 1.0kg/cm2의 변화가 있는 시점에 산화방지제로서 트리에틸렌글리콜-비스-[3-(3-t-부틸-5-메틸-4-하이드록시페닐)프로피오네이트 0.05중량부 및 유게놀 0.05중량부를 첨가하고 중합을 정지시켰다. 반응 완료 후 미반응 단량체 및 수지 슬러리를 중합 반응기로부터 각각 회수하고, 회수된 수지 슬러리를 유동층 건조기에서 건조하여 염화비닐 중합체를 수득하였다.
실시예 2
유게놀을 0.1중량부로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하여 염화비닐 중합체를 제조하였다.
실시예 3
중합온도를 47℃로 유지하면서 반응을 수행하고, 또 유게놀을 0.05중량부로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하여 염화비닐 중합체를 제조하였다.
실시예 4
유게놀을 0.1중량부로 투입한 것을 제외하고는 상기 실시예 3과 동일한 방법으로 수행하여 염화비닐 중합체를 제조하였다.
비교예 1
유게놀을 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하여 염화비닐 중합체를 제조하였다.
비교예 2
유게놀을 사용하지 않은 것을 제외하고는 상기 실시예 3과 동일한 방법으로 수행하여 염화비닐 중합체를 제조하였다.
비교예 3
유게놀 0.1중량부를 중합 개시 전 분산제 및 개시제와 동시에 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였다.
그러나, 유게놀이 산화방지제와 유사한 역할을 하여 중합 반응이 진행되지 않아 염화비닐 중합체를 수득하지 못하였다.
비교예 4
중합 반응기내 중합온도에서의 평형 압력 대비 0.1kg/cm2의 변화가 있는 시점에 산화방지제 및 유게놀을 첨가하여 중합을 중지시키는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 염화비닐계 중합체를 제조하였다.
비교예 5
중합 반응기내 중합온도에서의 평형 압력 대비 3.0kg/cm2의 변화가 있는 시점에 산화방지제 및 유게놀을 첨가하여 중합을 중지시키는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 염화비닐계 중합체를 제조하였다.
제조예 1
상기 실시예 1에서 제조한 염화비닐계 중합체 각각 100 중량부에, 가소제로서 디옥틸프탈레이트(DOP) 35중량부, 열안정제로서 유기 주석 화합물(MT-800, 송원산업사제) 2중량부 및 활제(SONGSTAB SL-29, 송원산업사제) 1중량부를 첨가한 후 혼합하여 염화비닐계 열가소성 수지 조성물을 제조하였다.
제조예 2 내지 4, 및 비교제조예 1 내지 5
상기 실시예 2 내지 4 및 비교예 1 내지 5에서 제조한 염화비닐계 중합체를 각각 사용하는 것을 제외하고는, 상기 제조예 1에서와 동일한 방법으로 수행하여 염화비닐계 열가소성 수지 조성물을 제조하였다.
실험예
상기 실시예 1 내지 4, 및 비교예 1 내지 5에서 제조한 염화비닐계 중합체의 평균 중합도, 및 상기 염화비닐계 중합체를 포함하는 열가소성 수지 조성물의 용융시간과 용융부하를 각각 측정하였다. 결과를 하기 표 1에 나타내었다.
(1) 평균중합도
JIS K6721-77에 의해 측정하였다.
(2) 용융시간(fusion time) 및 용융부하 측정
상기 실시예 1 내지 4, 및 비교예 1 내지 5에서 제조한 염화비닐 중합체를 포함하는 열가소성 수지 조성물에 대해 Bradender plastograph를 이용하여 140℃, 30rpm의 조건에서 용융 시간 및 용융 부하를 각각 측정하였다. 용융 시간이 짧을수록 용융성이 우수할 수 있음을 나타낸다.
실시예 1 실시예 2 실시예 3 실시예 4 비교예 1 비교예 2 비교예 3 비교예 4
유게놀 투입량(중량부) 0.05 0.1 0.05 0.1 0 0 0.1 0.05
투입시점 △1.0kg/cm2 △1.0kg/cm2 △1.0kg/cm2 △1.0kg/cm2 - - 중합 개시전 △0.1kg/cm2
평균 중합도 1300 1300 1700 1700 1300 1700 ND 1300
용융시간(초) 274 255 518 495 304 576 ND 268
용융부하(Nm) 26.2 26.5 26.3 26.1 27.9 27.3 ND 26.3
상기 표 1에서 ND는 중합이 일어나지 않아 해당 물성을 측정하지 못하였음을 의미한다.
실험결과, 중합말기 유게놀을 투입한 실시예 1 내지 4의 염화비닐계 중합체를 포함하는 열가소성 수지 조성물의 경우, 염화비닐계 중합체의 중합도 및 유게놀의 투입량에 상관없이 비교예 1 및 2에 비해 용융시간이 단축되고, 용융부하가 낮아졌다. 특히 실시예 1과 2를 비교하면, 유게놀의 투입량이 증가함에 따라 용융시간이 더 단축되었지만 용융부하는 거의 동등 수준이었다. 또, 보다 높은 중합도를 갖는 실시예 3 및 4에서도 실시예 1 및 2와 동일한 결과를 나타내었다.
또, 압력 변화가 0.1kg/cm2인 시점에서 유게놀을 첨가하여 반응을 종결한 비교예 4의 경우 제조된 염화비닐 중합체의 물성은 실시예 1과 동등 수준이었으나, 중합시간 대비 염화비닐 중합체의 생성율이 저하되어 생산성 측면에서 비효율적이었다. 또, 압력 변화가 3.0kg/cm2인 시점에서 유게놀을 첨가하여 반응을 종결한 비교예 5의 경우에도 역시, 중합시간 대비 염화비닐 중합체의 생성율이 저하되어 생산성 측면에서 비효율적이었다.
이 같은 실험결과로부터 염화비닐 중합체의 중합시 중합반응기내 중합온도에서의 평형 압력을 기준으로 압력 변화가 0.5kg/cm2 내지 1.5kg/cm2인 시점에 유게놀을 첨가함으로써 용융시간이 단축되고 용융부하가 낮아져 가공품 성형시 보다 유리함을 알 수 있다.

Claims (10)

  1. 염화비닐계 단량체를 현탁중합하는 단계를 포함하며,
    상기 염화비닐계 단량체의 투입 후 중합반응기내 중합온도에서의 평형 압력을 기준으로 압력 변화가 0.5kg/cm2 내지 1.5kg/cm2인 시점에, 탄소간 이중결합을 포함하는 반응성 작용기 및 히드록시기를 포함하는 방향족 탄화수소계 화합물을 첨가하는 것인 염화비닐계 중합체의 제조방법.
  2. 청구항 1에 있어서,
    상기 방향족 탄화수소계 화합물은 탄소간 이중결합을 포함하는 반응성 작용기 및 히드록시기를 포함하고, 탄소수 1 내지 10의 알콕시기를 더 포함하는 탄소수 6 내지 20의 단일환 또는 다환의 방향족 탄화수소계 화합물인 것인 염화비닐계 중합체의 제조방법.
  3. 청구항 2에 있어서,
    상기 방향족 탄화수소계 화합물은 하기 화학식 1의 화합물을 포함하는 것인 염화비닐계 중합체의 제조방법:
    [화학식 1]
    Figure PCTKR2017002764-appb-I000002
    상기 화학식 1에서,
    R은 탄소수 1 내지 10의 알킬기이고,
    Y는 탄소수 2 내지 10의 알케닐기이다.
  4. 청구항 2에 있어서,
    상기 방향족 탄화수소계 화합물은 유게놀을 포함하는 것인 염화비닐계 중합체의 제조방법.
  5. 청구항 1에 있어서,
    상기 방향족 탄화수소계 화합물은 염화비닐계 단량체 100중량부에 대하여 0.005중량부 내지 0.1중량부로 투입되는 것인 염화비닐계 중합체의 제조방법.
  6. 청구항 1에 있어서,
    상기 현탁중합은 중합개시제 및 분산제의 존재 하에 용매 중에서 수행되는 것인 염화비닐계 중합체의 제조방법.
  7. 청구항 1에 있어서,
    상기 중합온도는 40℃ 내지 60℃인 것인 염화비닐계 중합체의 제조방법.
  8. 청구항 1에 따른 제조방법에 의해 제조되며, 중합도가 1300 내지 3000인 염화비닐계 중합체.
  9. 청구항 8에 따른 염화비닐계 중합체를 포함하는 염화비닐계 수지 조성물.
  10. 청구항 9에 있어서,
    상기 염화비닐계 중합체 100 중량부에 대하여 가소제를 30중량부 내지 120중량부로 포함하는 것인 염화비닐계 수지 조성물.
PCT/KR2017/002764 2016-04-25 2017-03-14 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체 WO2017188594A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/760,158 US10414838B2 (en) 2016-04-25 2017-03-14 Method for preparing vinyl chloride-based polymer and vinyl chloride-based polymer prepared by the same
CN201780003398.6A CN108137720B (zh) 2016-04-25 2017-03-14 氯乙烯基聚合物的制备方法和由其制备的氯乙烯基聚合物
EP17789779.0A EP3333197B1 (en) 2016-04-25 2017-03-14 Method for preparing vinyl chloride-based polymer and vinyl chloride-based polymer prepared by the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0049960 2016-04-25
KR1020160049960A KR101941098B1 (ko) 2016-04-25 2016-04-25 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체

Publications (1)

Publication Number Publication Date
WO2017188594A1 true WO2017188594A1 (ko) 2017-11-02

Family

ID=60159813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002764 WO2017188594A1 (ko) 2016-04-25 2017-03-14 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체

Country Status (5)

Country Link
US (1) US10414838B2 (ko)
EP (1) EP3333197B1 (ko)
KR (1) KR101941098B1 (ko)
CN (1) CN108137720B (ko)
WO (1) WO2017188594A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020205765A1 (en) * 2019-03-29 2020-10-08 Colorado State University Research Foundation Carbazole and acridine photoredox catalysts for small molecule and macromolecular transformations

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3160619A (en) * 1961-11-03 1964-12-08 Monsanto Co Molecular weight regulation in polymerization of vinylidene monomers using eugenol as regulator
JPS6238378B2 (ko) * 1984-07-02 1987-08-18 Mitsubishi Kasei Vinyl
KR20020045353A (ko) * 2000-12-08 2002-06-19 성재갑 투명성 및 강도가 우수한 염화비닐계 열가소성탄성체 및그의제조방법
KR20150042727A (ko) * 2013-10-11 2015-04-21 주식회사 엘지화학 페이스트 pvc 중합 방법 및 발포 성형품

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785107B2 (ja) * 1985-08-14 1995-09-13 株式会社東芝 航法装置
JP3802999B2 (ja) * 1999-08-09 2006-08-02 信越化学工業株式会社 塩化ビニル系重合体の製造方法
USRE45940E1 (en) * 2006-03-24 2016-03-22 Akzo Nobel N.V. Continuous process for the production of vinyl chloride (co)polymers
MX2008012262A (es) * 2006-03-24 2008-10-07 Akzo Nobel Nv Procedimiento continuo para la produccion de (co)polimeros de cloruro de vinilo.
WO2009065809A1 (de) * 2007-11-21 2009-05-28 Basf Se Verfahren zur herstellung von emulsionspolymerisation
KR101199094B1 (ko) 2009-07-21 2012-11-08 주식회사 엘지화학 현탁 중합 시드를 이용한 염화비닐계 중합체 제조방법 및 염화비닐계 공중합체 제조방법
JP6238378B2 (ja) 2016-02-09 2017-11-29 ウィンボンド エレクトロニクス コーポレーション 半導体記憶装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3160619A (en) * 1961-11-03 1964-12-08 Monsanto Co Molecular weight regulation in polymerization of vinylidene monomers using eugenol as regulator
JPS6238378B2 (ko) * 1984-07-02 1987-08-18 Mitsubishi Kasei Vinyl
KR20020045353A (ko) * 2000-12-08 2002-06-19 성재갑 투명성 및 강도가 우수한 염화비닐계 열가소성탄성체 및그의제조방법
KR20150042727A (ko) * 2013-10-11 2015-04-21 주식회사 엘지화학 페이스트 pvc 중합 방법 및 발포 성형품

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SABAA, M. W. ET AL.: "Organic Thermal Stabilizers for Rigid Poly (vinyl chloride) VIII. Phenylurea and Phenyl Thiourea Derivatives", POLYMER DEGRADATION AND STABILITY, vol. 81, no. 1, 2003, pages 37 - 45, XP004425571 *
See also references of EP3333197A4 *

Also Published As

Publication number Publication date
US20180265608A1 (en) 2018-09-20
KR20170121489A (ko) 2017-11-02
EP3333197A1 (en) 2018-06-13
CN108137720A (zh) 2018-06-08
EP3333197A4 (en) 2018-11-07
EP3333197B1 (en) 2019-12-04
US10414838B2 (en) 2019-09-17
CN108137720B (zh) 2020-05-08
KR101941098B1 (ko) 2019-01-22

Similar Documents

Publication Publication Date Title
WO2016195434A1 (ko) 염화비닐계 공중합체의 제조방법 및 이로부터 제조된 염화비닐계 공중합체
WO2016195436A1 (ko) 염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2010143893A2 (ko) 저점도 특성이 우수한 발포용 염화비닐계 수지 및 이의 제조방법
WO2017069425A1 (ko) 저전단 영역에서 고점도를 갖는 염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 플라스티졸
WO2016195435A1 (ko) 비닐계 중합체 및 그 제조방법
WO2016182338A1 (ko) 아크릴계 가공조제 및 이를 포함하는 염화비닐계 수지 조성물
WO2018044017A1 (ko) 염화비닐계 중합체의 제조방법 및 염화비닐계 중합체의 제조장치
WO2017188594A1 (ko) 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체
WO2020027490A1 (ko) 염화비닐계 공중합체 및 이의 제조 방법
WO2017104978A1 (ko) 염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 플라스티졸
WO2023158109A1 (ko) 염화비닐계 공중합체 및 이의 제조 방법
WO2017191899A1 (ko) 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체
WO2021049836A1 (ko) 염화비닐계 중합체의 제조방법
WO2021060909A1 (ko) 염화비닐계 중합체 중합용 조성물 및 이를 이용한 염화비닐계 중합체의 제조방법
WO2016047954A1 (ko) 염화비닐계 중합체 및 이의 제조방법
WO2023277530A1 (ko) 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체
WO2017061829A1 (ko) 염화비닐계 중합체 및 이의 제조방법
WO2018056604A1 (ko) 염화비닐계 중합체의 제조방법
WO2019124967A1 (ko) 염화비닐계 중합체의 제조방법 및 이로부터 제조된 염화비닐계 중합체
WO2018056668A1 (ko) 염화비닐계 중합체의 제조방법
WO2020060028A1 (ko) 염화비닐계 중합체 및 이의 제조방법
KR101875153B1 (ko) 염화비닐계 수지 조성물 및 그 제조 방법
WO2020091429A1 (ko) 염화비닐계 중합체 제조용 조성물 및 이를 이용한 염화비닐계 중합체의 제조방법
WO2021256867A1 (ko) 염화비닐계 중합체 복합체의 제조방법
WO2017099373A1 (ko) 염화비닐계 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017789779

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15760158

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE