WO2021049836A1 - 염화비닐계 중합체의 제조방법 - Google Patents

염화비닐계 중합체의 제조방법 Download PDF

Info

Publication number
WO2021049836A1
WO2021049836A1 PCT/KR2020/012064 KR2020012064W WO2021049836A1 WO 2021049836 A1 WO2021049836 A1 WO 2021049836A1 KR 2020012064 W KR2020012064 W KR 2020012064W WO 2021049836 A1 WO2021049836 A1 WO 2021049836A1
Authority
WO
WIPO (PCT)
Prior art keywords
emulsifier
vinyl chloride
based polymer
polymerization
producing
Prior art date
Application number
PCT/KR2020/012064
Other languages
English (en)
French (fr)
Inventor
이광진
전양준
박재현
하현규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080031821.5A priority Critical patent/CN113748139B/zh
Priority to EP20863125.9A priority patent/EP4029885A4/en
Priority to US17/606,358 priority patent/US20220227899A1/en
Publication of WO2021049836A1 publication Critical patent/WO2021049836A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/02Monomers containing chlorine
    • C08F114/04Monomers containing two carbon atoms
    • C08F114/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/262Alkali metal carbonates

Definitions

  • the present invention relates to a manufacturing method for producing a vinyl chloride-based polymer having excellent fogging properties by implementing low viscosity characteristics, exhibiting stable viscosity, excellent processability, and reducing generation of volatile organic compounds.
  • Vinyl chloride-based polymers are resins containing 50% or more of vinyl chloride, and are inexpensive, easy to control hardness, and can be applied to most processing machines, and thus have various applications. In addition, it is possible to provide a molded article excellent in physical and chemical properties, such as mechanical strength, weather resistance, chemical resistance, and the like, and thus has been widely used in various fields.
  • vinyl chloride-based polymers are prepared in different forms depending on the application.
  • a vinyl chloride-based polymer for straight processing such as an extrusion process, a calendar process, and an injection process is generally prepared by suspension polymerization
  • a vinyl chloride-based polymer for paste processing such as dipping, spraying, and coating is prepared by emulsion polymerization.
  • the paste processing is generally dried by spray-drying the vinyl chloride-based polymer latex for paste processing obtained by emulsion polymerization to form final resin particles, and the particles are dispersed in a solvent or plasticizer to form a coating (reverse roll-coating, knife).
  • a coating reverse roll-coating, knife
  • Such a vinyl chloride-based polymer for paste processing alone is difficult to apply due to its low processability, and is usually processed and used in the form of a plastisol composed of various additives such as a plasticizer and a heat stabilizer. It is important to maintain good flowability by lowering the viscosity of the sol.
  • the content of the plasticizer was adjusted and blended. However, if the content of the plasticizer was increased, the plasticizer itself was separated from the resin after processing due to migration, volatility, and extractability, and the essential characteristics of the plastisol. It can induce deterioration and accelerate aging.
  • the processing viscosity of the plastisol may be greatly reduced, and in this case, the processability may be deteriorated due to a sol drop phenomenon during coating processing.
  • European patent application EP2039718 describes a method of using a plasticizer mixture based on an alkylsulfonate and diol dibenzoate instead of a phthalate plasticizer, and in U.S. Patent US7973194, dibutyl ester, dibenzyl ester and 1,4- Disclosed is a blend of a solid solution plasticizer for polyvinyl chloride plastisol comprising a butyl benzyl ester of cyclohexane dicarboxylic acid.
  • the above-described method has not sufficiently reduced the generation of volatile organic compounds, and in particular, since various regulations on the environment are constantly increasing, it is limited to lower the degree of generation of volatile organic compounds below an appropriate level only by replacing the plasticizer used as an auxiliary material. There is.
  • Patent Document 1 EP 2039718 B1 (2009.03.25)
  • Patent Document 2 US 7973194 B1 (2011.07.05)
  • the present invention has been devised to solve the problems of the prior art, and improves processability when blending plastisol by implementing a low viscosity, has excellent fogging properties, and has excellent foaming properties due to high density of foam cells. It is to provide a method for producing a polymer based.
  • the manufacturing method provides a method of manufacturing a vinyl chloride-based polymer in which the first emulsifier and the second emulsifier are added in a weight ratio of 5:5 to 9:1.
  • the second emulsifier in the above production method provides a method for producing a vinyl chloride-based polymer containing a sulfate compound.
  • the vinyl chloride-based polymer prepared by the production method according to the present invention can have excellent processability even if the content ratio of the plasticizer is not significantly increased since the low viscosity property is realized. In addition, since the viscosity of the vinyl chloride-based polymer does not change significantly even with a change in the content of the plasticizer, a stable processing viscosity can be realized.
  • the method for producing a vinyl chloride-based polymer according to an embodiment of the present invention can suppress the generation of volatile organic compounds, and can produce a vinyl chloride-based polymer having excellent fogging characteristics compared to a conventional vinyl-chloride-based polymer.
  • the method for producing a vinyl chloride-based polymer according to an embodiment of the present invention satisfies the above-described excellent processability and fogging characteristics, and the foaming cell is formed densely to produce a vinyl chloride-based polymer having further improved foaming properties. have.
  • Example 1 is a photograph taken with an optical microscope of a cross section of a foam prepared from the polymer of Example 1 of the present invention.
  • FIG. 2 is a view photographed with an optical microscope of a cross section of a foam prepared from the polymer of Comparative Example 2 of the present invention.
  • Example 1 a vinyl chloride polymer was prepared in the same manner as in Example 1, except that 1.05 kg of sodium dioctyl sulfosuccinate and 0.7 kg of sodium lauryl sulfate were added.
  • a vinyl chloride polymer was prepared in the same manner as in Example 1, except that the time when the addition of sodium dioctyl sulfosuccitate in Example 1 was completed was the time at which the polymerization conversion rate became 52%.
  • Example 1 a vinyl chloride polymer was prepared in the same manner as in Example 1, except that 0.875 kg of sodium dioctyl sulfosuccinate and 0.875 kg of sodium lauryl sulfate were added.
  • Example 1 a vinyl chloride polymer was prepared in the same manner as in Example 1, except that 0.7 kg of sodium dioctyl sulfosuccinate and 1.05 kg of sodium lauryl sulfate were added.
  • Example 1 without adding sodium dioctyl sulfosuccinate, 1.75 kg of sodium lauryl sulfate was continuously added from the start of polymerization, but continuously added to the reactor for 8 hours (until the conversion rate became 90%). Except that, a vinyl chloride polymer was prepared in the same manner as in Example 1.
  • Example 1 without adding sodium lauryl sulfate, 1.75 kg of sodium dioctyl sulfosuccinate was continuously added from the start of polymerization, but continuously added to the reactor for 8 hours (until the conversion rate became 90%). Except that, a vinyl chloride polymer was prepared in the same manner as in Example 1.
  • a vinyl chloride polymer was prepared in the same manner as in Example 1, except that sodium lauryl sulfate was used instead of sodium dioctyl sulfosuccinate in Example 1, and sodium dioctyl sulfosuccinate was used instead of sodium lauryl sulfate.
  • Example 1 A vinyl chloride polymer was prepared in the same manner as in Example 1, except that sodium lauryl sulfate was used instead of sodium dioctyl sulfosuccinate in Example 1, and sodium dioctyl sulfosuccinate was used instead of sodium lauryl sulfate. was prepared.
  • a vinyl chloride polymer was prepared in the same manner as in Example 2, except that sodium lauryl sulfate was used instead of sodium dioctyl sulfosuccinate in Example 2, and sodium dioctyl sulfosuccinate was used instead of sodium lauryl sulfate.
  • Example 2 A vinyl chloride polymer was prepared in the same manner as in Example 2, except that sodium lauryl sulfate was used instead of sodium dioctyl sulfosuccinate in Example 2, and sodium dioctyl sulfosuccinate was used instead of sodium lauryl sulfate. was prepared.
  • Example 2 sodium dioctyl sulfosuccinate and sodium lauryl sulfate were not sequentially added, but sodium dioctyl sulfosuccinate and sodium lauryl sulfate were mixed and continuously added from the start of polymerization, but for 8 hours (conversion rate A vinyl chloride polymer was prepared in the same manner as in Example 2, except that it was continuously added to the reactor until it reached 90%).
  • a vinyl chloride polymer was prepared in the same manner as in Example 1, except that sodium dioctylsulfosuccinate was added until the conversion rate reached 25% in Example 1, and sodium lauryl sulfate was immediately added thereafter. .
  • a vinyl chloride polymer was prepared in the same manner as in Example 1, except that sodium dioctylsulfosuccinate was added until the conversion rate reached 60% in Example 1, and sodium lauryl sulfate was immediately added thereafter. .
  • the fogging property indicates the generation amount of volatile organic compounds, and the smaller the measured value, the less the generation amount of volatile organic compounds is, and the fogging property is excellent.
  • Fogging properties (mg) mass of aluminum foil after fogging test-mass of aluminum foil before fogging test
  • each vinyl chloride polymer prepared in Example 1 and Comparative Example 2 100 g of each vinyl chloride polymer prepared in Example 1 and Comparative Example 2, 100 g of diisonylphthalate (DINP), 3 g of Ba-Zn stabilizer, and 3 g of AZO-based foaming agent were mixed at 800 rpm for 10 minutes using a Werke mixer (EUROSTAR IKA)
  • Each plastisol was prepared by stirring. Each prepared plastisol was coated on a release paper, coated with a 0.5mm rod, and then dried at 150°C for 45 seconds using a Mathis oven to prepare a pregelling sheet, which was 100°C at 210°C. Heated for seconds. Then, the final gelled sheet (foam) was cut and the cross-section of the foam was observed using an optical microscope (NIKON SMZ1500).
  • Example 1 is a photograph of a cross-section of the foam of Example 1
  • FIG. 2 is a photograph of a cross-section of the foam of Comparative Example 2.
  • Each plastisol was prepared by stirring 100 g of each vinyl chloride polymer and 66.7 g of diisononyl phthalate (DINP) prepared in Examples and Comparative Examples at 800 rpm for 10 minutes using a Werke mixer (EUROSTAR IKA). After 1 hour after mixing the sol, the viscosity of the plastisol was measured at room temperature (23 ⁇ 3°C. At this time, the viscosity was determined using a Brookfield viscometer (Brookfield, DV-1 viscometer) #64 spindle, 12rpm. It was measured under the conditions of, and the results are shown in Table 1 below.
  • Each plastisol was prepared by stirring 100 g of each vinyl chloride polymer and 100 g of diisononyl phthalate (DINP) prepared in Examples and Comparative Examples at 800 rpm for 10 minutes using a Werke mixer (EUROSTAR IKA). After 1 hour after mixing, the viscosity was measured in the same manner as in the method for measuring the viscosity of 1), and the results are shown in Table 1 below.
  • the first emulsifier is a succinate compound
  • the second emulsifier uses an emulsifier different from the first emulsifier
  • the first emulsifier input period meets the scope of the present invention. 5
  • Comparative Examples 1 to 7 which do not satisfy any one or more of these conditions, it can be seen that the fogging properties are excellent while stably implementing a low viscosity.
  • Examples 1 to 5 can realize low viscosity characteristics compared to Comparative Example 1 using only a single type of emulsifier, especially sodium lauryl sulfate in the entire polymerization reaction, and in particular, it can be confirmed that the fogging properties are greatly improved.
  • Comparative Example 2 in which only sodium dioctylsulfosuccinate was used as a single type of emulsifier, it was confirmed that there was no rapid decrease in viscosity due to the addition of a plasticizer, so that stable viscosity properties could be realized.
  • Comparative Example 2 as the plasticizer is added, the viscosity is greatly reduced, causing a sol drop phenomenon during processing, and thus, there is a problem of having a low viscosity to an extent that it is difficult to process.
  • Examples 1 to 5 can be confirmed that the fogging properties are improved while implementing low viscosity characteristics compared to Comparative Examples 3 and 4, respectively, in which the order of the emulsifier is changed, and the first emulsifier and the second emulsifier are mixed at the same time from the beginning.
  • Comparative Example 5 it can be predicted that the processability can be improved by implementing the low viscosity characteristics, and in particular, it can be seen that the fogging properties are greatly improved compared to Comparative Example 5.
  • Examples 1 to 5 can be seen that it is possible to obtain a normal latex that implements stable viscosity properties compared to Comparative Examples 6 and 7 in which the first emulsifier is added out of the scope of the present invention.
  • Comparative Example 6 polymerization stability is not secured due to the too short input period of the first emulsifier, and there is a problem in that it is difficult to obtain a normal latex.
  • the fogging properties of the vinyl chloride-based polymer and the viscosity properties of the plastisol are affected by the type of emulsifier, the period of addition, and the method of addition, and a succinate compound is used as the first emulsifier. It was confirmed that the polymer produced was able to realize excellent fogging properties and stable low viscosity characteristics by using a second emulsifier different from that of the first emulsifier.
  • vinyl chloride-based polymer encompasses a compound produced by polymerizing a vinyl chloride-based monomer alone or a mixture of a vinyl chloride-based monomer and a vinyl-chloride-based monomer copolymerizable with a vinyl chloride-based monomer. It may mean a polymer chain derived from a vinyl chloride-based monomer.
  • plastisol refers to a mixture of a resin and a plasticizer so that it can be molded, molded or processed into a continuous film by heating.
  • a vinyl chloride-based polymer and a plasticizer are mixed. It may have a paste form.
  • plasticizer used in the present invention may refer to an organic additive material that serves to improve the molding processability of the resin at high temperature by increasing the thermoplasticity by adding it to the thermoplastic resin.
  • a method of preparing a vinyl chloride-based polymer according to an embodiment of the present invention includes: 1) initiating polymerization by introducing a vinyl chloride-based monomer into a reactor; 2) continuously adding a first emulsifier to the reactor from the polymerization initiation point to the polymerization conversion rate of 35% to 52%; And 3) continuously adding a second emulsifier after the first emulsifier is added.
  • the first emulsifier and the second emulsifier may be different from each other, and the first emulsifier is succinate. It may be a (succinate) compound.
  • Step 1) of the method for producing a vinyl chloride-based polymer according to an embodiment of the present invention is a step of introducing a vinyl chloride-based monomer into a reactor and initiating polymerization, and forming a vinyl chloride-based polymer from the vinyl chloride-based monomer to be.
  • the polymerization may be preferably performed by an emulsion polymerization method.
  • the polymerization of step 1) may be performed by adding a vinyl chloride-based monomer to a polymerization reactor filled with polymerization water and a polymerization initiator and performing a polymerization reaction.
  • the polymerization reactor filled with the polymerization water and the polymerization initiator may represent a polymerization reactor containing a mixed solution containing polymerization water and a polymerization initiator, and the mixed solution is polymerization water, a polymerization initiator, a dispersant, a molecular weight control agent, An electrolyte and a reaction inhibitor may be further included, but the present invention is not limited thereto, and preferably, a carbonate-based metal salt is further added to the reactor in step 1).
  • the polymerization initiator may be used in an amount of 0.01 parts by weight to 2.0 parts by weight based on 100 parts by weight of the vinyl chloride-based monomer.
  • the polymerization initiator is not particularly limited, but may be one or more selected from the group consisting of peroxy carbonates, peroxy esters, and azo compounds.
  • the polymerization initiator is lauryl peroxide (LPO), di-2-ethylhexyl peroxycarbonate (OPP), diisopropyl peroxy dicarbonate, t-butyl peroxypivalate, t-butyl peroxy Neodecanoate, 2,2-azobisisobutyronitrile, or the like may be used alone, or two or more may be used in combination.
  • LPO lauryl peroxide
  • OPP di-2-ethylhexyl peroxycarbonate
  • diisopropyl peroxy dicarbonate t-butyl peroxypivalate
  • t-butyl peroxy Neodecanoate 2,2-azobisisobutyronitrile, or the like
  • the polymerization initiator may be a water-soluble initiator.
  • the polymerization initiator is not particularly limited, for example, it may be one or more selected from the group consisting of potassium persulfate (KPS), ammonium persulfate, and hydrogen peroxide, and preferably as a polymerization initiator in the present invention.
  • KPS potassium persulfate
  • a water-soluble initiator may be used, and specifically potassium persulfate may be used.
  • the polymerized water may be used in an amount of 70 to 150 parts by weight based on 100 parts by weight of the vinyl chloride-based monomer, and the polymerized water may be deionized water.
  • the vinyl chloride-based monomer according to an embodiment of the present invention may mean a vinyl chloride monomer alone or a mixture of a vinyl chloride monomer and a vinyl chloride monomer copolymerizable with a vinyl chloride monomer. That is, the vinyl chloride-based polymer according to an embodiment of the present invention may be a vinyl chloride homopolymer or a copolymer of a vinyl chloride monomer and a vinyl-based monomer copolymerizable therewith. If the vinyl chloride-based polymer is the above copolymer, it may contain 50% or more of vinyl chloride.
  • the vinyl-based monomer copolymerizable with the vinyl chloride monomer is not particularly limited, but, for example, olefin compounds such as ethylene, propylene, butene, vinyl esters such as vinyl acetate, vinyl propionate, and vinyl stearate, Unsaturated nitriles such as acrylonitrile, vinyl methyl ether, vinyl ethyl ether, vinyl octyl ether, vinyl alkyl ethers such as vinyl lauryl ether, halogenated vinylidene such as vinylidene chloride, acrylic acid, methacrylic acid , Unsaturated fatty acids such as itaconic acid, maleic acid, fumaric acid, maleic anhydride, itaconic anhydride, and anhydrides of these fatty acids, unsaturated fatty acid esters such as methyl acrylate, ethyl acrylate, monomethyl maleate, dimethyl maleate, and butylbenzyl maleate , May be a cross
  • the method for producing a vinyl chloride-based polymer according to an embodiment of the present invention may be started by controlling the pH to 8 or higher in step 1), and may be implemented by adding a carbonate-based metal salt to the polymerization mixture. have.
  • the carbonate-based metal salt serves to control the pH of the polymerization mixture, and needs to be a material capable of raising the pH to a certain level, specifically sodium carbonate (Na 2 CO 3 ), sodium hydrogen carbonate (NaHCO 3 ), and Potassium carbonate (K 2 CO 3 ) It may include one or more selected from the group consisting of. As described above, it is preferable to add a substance capable of raising the pH of the polymerization mixture to a certain level, for example, pH 8 or more from the viewpoint of reducing the number of defects in the polymer.
  • the carbonate-based metal salt may be added in an amount of 100 to 1500 ppm based on the total weight of the vinyl chloride-based monomer, preferably 200 ppm or more, 300 ppm or more, and 1300 ppm or less, 1200 ppm or less, 1000 ppm or less, or 800 An amount of less than ppm can be added.
  • the content of the carbonate-based metal salt within this range may control the pH of the mixture to 8 or more, and may have an effect on greatly reducing the number of olefin-type defects and chloro-type defects in the final polymer.
  • the carbonate-based metal salt may be added before the start of polymerization, that is, before the conversion rate of 0% is counted.
  • a carbonate-based metal salt can be added to the polymerization mixture and polymerization can be started, and there are no particular restrictions, such as continuous input, divided input, and batch input, as the input method, and the above-mentioned point at the level that satisfies the above content. In the case of injecting to, there may be an effect on achieving the above-described effect.
  • the number of defects in the final vinyl chloride-based polymer can be reduced when the reaction pH is properly controlled, and in particular, the proportion of pseudo-terminal trans-type defects is maintained among olefin-type defects.
  • the proportion of terminally symmetrical chloro defects can be maintained, and eventually, it can contribute greatly to increase the heat resistance.
  • the reaction inhibitor is not particularly limited, for example, paraquinone, hydroquinone, butylated hydroxy toluene, monomethyl ether hydroquinone, quaternary butyl catechol, Diphenyl amine, triisopropanol amine, triethanol amine, etc.
  • the dispersant is not particularly limited, but for example, higher alcohols such as lauryl alcohol, myristic alcohol, stearyl alcohol, or lauryl acid, Higher fatty acids, such as stearic acid, palmitic acid, and stearic acid, can be used.
  • the molecular weight modifier is not particularly limited, but may be, for example, n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, and the like, and the electrolyte may be potassium chloride, sodium chloride, or bicarbonate. Potassium, sodium carbonate, potassium carbonate, potassium hydrogen sulfite, sodium hydrogen sulfite, tetrapotassium pyrophosphate, tetrasodium pyrophosphate, tripotassium phosphate, trisodium phosphate, dipotassium hydrogen phosphate, and disodium hydrogen phosphate.
  • the electrolyte is not particularly limited, for example, potassium chloride, sodium chloride, potassium bicarbonate, sodium carbonate, potassium carbonate, potassium hydrogen sulfite, sodium hydrogen sulfite, tetrapotassium pyrophosphate, tetrasodium pyrophosphate, tripotassium phosphate, trisodium phosphate, phosphoric acid It may be one or more selected from the group consisting of dipotassium hydrogen and disodium hydrogen phosphate.
  • step 2) is a step in which the first emulsifier is added. It may be a step of continuously adding the first emulsifier to the reactor.
  • the first emulsifier may be a succinate compound.
  • the first emulsifier may be continuously added from the polymerization initiation point to the point where the polymerization conversion rate is 35% to 52%, preferably 35% to 48%, and more preferably 40% to 46%.
  • the polymerization initiation point may indicate a point in time at which the polymerization conversion rate is counted as 0%, and for example, may indicate a point in time at which the polymerization reaction is initiated when the temperature in the reactor in which the reaction mixture is present reaches the polymerization temperature.
  • the type of the emulsifier is changed before all the initial polymer particles are formed, making it difficult to control the particle size of the polymer particles and deviating from the desired level of viscosity characteristics. Problems can arise that polymers are produced.
  • the second emulsifier is introduced too quickly into the polymerization reaction product, the time that the second emulsifier is exposed to the hydrolysis conditions increases and the probability of hydrolysis increases, so the fogging properties of the polymer produced by the hydrolyzate of the second emulsifier are increased. A worsening problem can occur.
  • the conversion rate exceeds 52% and the first emulsifier, that is, the succinate compound is continuously added, compared to the case of adding the first emulsifier in the same amount in the entire reaction system up to 52% or less, per hour
  • the amount of the first emulsifier to be introduced may be smaller, and thus coarse particles may be formed during initial particle generation, or the number of particles may be remarkably small, resulting in a problem that the viscosity of the prepared polymer decreases significantly.
  • the input amount is not controlled, excessively large amounts of the succinate compound having high compatibility with the plasticizer are added, and thus the viscosity may be significantly lowered to such an extent that it is difficult to process when mixing the plastisol.
  • the influence of the second emulsifier in the prepared polymer may be given, and this may cause a problem of deteriorating foaming properties, such as lowering the density of the foaming cell during foaming.
  • the first emulsifier may be a succinate compound, wherein the succinate compound collectively refers to a compound containing a succinate functional group.
  • the succinate compound may include a sulfosuccinate compound, and more specifically, dioctyl sulfosuccinate, ditridecyl sulfosuccinate, lauryl ether sulfosuccinate (Laureth sulfosuccinate ) And lauryl sulfosuccinate.
  • it may preferably include dioctyl sulfosuccinate.
  • the succinate compound may be used in the form of a salt ionic bonded with an alkali metal, alkaline earth metal, ammonium ion, amine and/or amino alcohol, for example, used in the form of a salt ionic bonded with sodium ion (Na + ).
  • it may be used in the form of sodium dioctyl sulfosuccinate, sodium ditridecyl sulfosuccinate, disodium laureth sulfosuccinate, or sodium lauryl sulfosuccinate.
  • the succinate compound used as the first emulsifier in an embodiment of the present invention has excellent compatibility with a plasticizer, it is possible to realize low viscosity characteristics when blending plastisols, thereby greatly improving the processability of plastisols. .
  • the succinate compound can stably maintain its structure compared to other types of emulsifiers, thereby suppressing the occurrence of causative substances that can be converted into volatile organic compounds, and thus a polymer with improved fogging properties can be prepared. have.
  • the probability of hydrolysis is high because the structural stability is lower than that of the succinate compound.
  • the proportion of hydrolyzate may increase due to exposure to hydrolysis conditions for a long period of time.
  • the hydrolyzate causes a problem of deteriorating the fogging properties of the prepared polymer.
  • a sulfate emulsifier such as sodium lauryl sulfate may denature the bond structure into R-OH (in the case of sodium lauryl sulfate, R means lauryl (dodecyl)) due to the low bond strength of the SO bond in the structure.
  • the altered compound may become a substance that deteriorates the fogging properties.
  • the compatibility with plasticizers is not good compared to the succinate compound, there is a problem in that the processability is inferior because the low viscosity characteristics cannot be realized when the plastisol is prepared with a polymer prepared by using alone, and the processability is improved.
  • the content of the plasticizer is increased when the plastisol is compounded, the processability may be improved, but there may be a problem that the migration phenomenon is deteriorated according to the increase in the amount of the plasticizer.
  • the concentration of the emulsifier rapidly increases in a short time in the initial polymerization, preventing the formation of particles with too small particle diameter or abnormal polymer particles, and maintaining the concentration of the emulsifier in the polymerization reaction at a certain level. I can.
  • Step 3) may be a step of continuously adding a second emulsifier after the addition of the first emulsifier added in step 2) is completed, in which case the first emulsifier and the second emulsifier are It is characterized by being different from each other.
  • the type of the second emulsifier according to an embodiment of the present invention is not limited as long as it is different from the first emulsifier, and for example, the critical micelle concentration (CMC) may be higher than that of the first emulsifier.
  • CMC critical micelle concentration
  • the continuous use of an emulsifier with a lower critical micelle concentration during the polymerization reaction prevents the continued generation of particles other than the initial stage of polymerization. It is more preferable since it is possible to prepare a vinyl chloride-based polymer exhibiting a low viscosity property by preventing the further formation of.
  • the second emulsifier may include a sulfate compound, such as alkyl sulfate, alkyl ether sulfate, sulfate alkanolamide, monoglyceride sulfate, glycerol ether sulfate, fatty acid ether sulfate, and fatty acid amide ether sulfate. It can be. More specifically, it may include one or more selected from the group consisting of lauryl sulfate, dodecyl benzene sulfate, cetyl stearyl sulfate, and lauryl ether sulfate (laureth sulfate).
  • a sulfate compound such as alkyl sulfate, alkyl ether sulfate, sulfate alkanolamide, monoglyceride sulfate, glycerol ether sulfate, fatty acid ether sulf
  • the sulfate compound may be used in the form of an ion-bonded salt with an alkali metal, an alkaline earth metal, an ammonium ion, an amine, and/or an amino alcohol.
  • the sulfate compound is used in the form of an ion-bonded salt with a sodium ion (Na + ).
  • I can.
  • compatibility with plasticizers it is preferable in terms of supplementing compatibility with plasticizers to prevent sudden drop in viscosity even when plasticizers are added, to show more stable viscosity characteristics, and to form a dense foam cell during foam molding and to further improve foaming properties.
  • It may contain sodium lauryl sulfate.
  • Complementing the compatibility with the plasticizer is that the first emulsifier with excellent plasticizer compatibility prevents the occurrence of a sudden decrease in viscosity that cannot be processed by appropriately controlling the decrease in viscosity due to the addition of the plasticizer. Indicates that.
  • a second emulsifier with a different type of compound can be added to complement the compatibility with the plasticizer to prevent a sudden drop in viscosity even if the plasticizer is added.
  • the viscosity can be secured.
  • only the first emulsifier can further improve the density and foaming properties of the foamed cell, which has limited improvement.
  • the second emulsifier specifically starts to be added after the first emulsifier is added, so that the polymerization conversion rate is 70% to 95%, preferably 75% to 92%, more preferably 84% to 92. It may be continuously input until the point of %.
  • the time point after the completion of the first emulsifier input may be specifically a time point immediately after the input of the first emulsifier is completed, and in this case, the second emulsifier may be added immediately after the first emulsifier is added.
  • the time point at which the input is terminated may be a time point at which the reaction is specifically terminated.
  • first emulsifier and the second emulsifier may be added in a weight ratio of 5:5 to 9:1, respectively, specifically 6:4 to 9:1, more specifically 6:4 to 8:2 weight ratio It may be input to each.
  • weight ratio the low viscosity characteristic can be easily realized and the fogging properties can be further improved, and when the weight ratio of the second emulsifier is too low, the stability of the initially generated particles may be deteriorated.
  • the total amount of the first emulsifier and the second emulsifier may be 0.1 to 5.0 parts by weight based on 100 parts by weight of the vinyl chloride monomer, specifically 0.1 to 3.0 parts by weight, more specifically 0.5 to It may be 1.5 parts by weight.
  • the proportion of the hydrolyzate by the second emulsifier increases as the second emulsifier, which has poor structural stability, is added from the beginning of the polymerization, and the polymer prepared accordingly There may be a problem of deteriorating the fogging properties.
  • the low viscosity characteristic may not be realized, and thus the effect of improving processability may not be secured. Therefore, when the first emulsifier and the second emulsifier are sequentially added, the desired effect of the present invention, improvement in processability and improvement in fogging characteristics through implementation of low viscosity characteristics can be achieved.
  • the method for producing a vinyl chloride-based polymer according to an embodiment of the present invention provides viscosity properties at a level that can greatly improve processability even if the polymer is produced through one polymerization reaction by using two types of emulsifiers in a single reactor.
  • the above manufacturing method has a storage (silo) for storing each polymer, weighing for uniform blending, and a mixed storage.
  • the content ratio of the total emulsifier in the blended polymer has to be controlled in order to secure latex stability and fogging properties at an excellent level, which can be used when preparing each polymer. Since the content of the emulsifier is relatively small, there may be a problem in that polymerization stability cannot be secured in each polymerization, but the production method of the present invention can be prepared by a single polymerization reaction, so that stability can be maintained during the polymerization reaction. There is an advantage of having excellent polymerization stability because it can be used in a sufficient amount of the emulsifier.
  • the polymerization conducted according to an embodiment of the present invention may be terminated when the pressure in the reactor is 3.0 to 5.0 kgf/cm 2 or the conversion rate is 90 ⁇ 5%.
  • the step of drying the prepared vinyl chloride-based polymer may be further included, and in this case, drying is not particularly limited and may be performed by a method commonly known in the art, specifically It can be carried out according to the spray drying method. Prior to the drying, dehydration and washing steps may be further included.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 염화비닐계 중합체의 제조방법에 관한 것으로 본 발명에 따른 염화비닐계 중합체의 제조방법은, 중합 중 서로 상이한 제1 유화제 및 제2 유화제를 순차적으로 투입하고, 제1 유화제로 숙시네이트 화합물을 적용함으로써 제조되는 중합체로 플라스티졸 배합 시 저점도 특성을 구현하여 가공성을 개선할 수 있고, 휘발성 유기 화합물의 발생을 억제하여 포깅 물성을 개선할 수 있다.

Description

염화비닐계 중합체의 제조방법
관련 출원과의 상호 인용
본 출원은 2019년 9월 11일자 한국 특허 출원 제 10-2019-0113003호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 저점도 특성을 구현하면서도 안정적인 점도를 나타내 가공성이 우수하고, 휘발성 유기 화합물의 발생을 감소시켜 포깅 물성이 우수한 염화비닐계 중합체를 제조하는 제조방법에 관한 것이다.
염화비닐계 중합체는 염화비닐을 50% 이상 함유하는 수지로서, 가격이 저렴하고 경도 조절이 용이하며 대부분의 가공기기에 적용 가능하여 응용분야가 다양하다. 게다가, 물리적, 화학적 성질, 예컨대 기계적 강도, 내후성, 내약품성 등이 우수한 성형품을 제공할 수 있어 여러 분야에서 광범위하게 사용되고 있다.
이러한 염화비닐계 중합체는 용도에 따라 상이한 형태로 제조된다. 예컨대, 압출공정, 칼렌다 공정, 사출공정 등 스트레이트 가공용 염화비닐계 중합체는 일반적으로 현탁중합에 의하여 제조되고, 디핑, 스프레잉, 코팅 등의 페이스트 가공용 염화비닐계 중합체는 유화중합에 의하여 제조된다.
상기 페이스트 가공은 일반적으로 유화중합에 의해 얻어진 페이스트 가공용 염화비닐계 중합체 라텍스를 분무 건조하는 방법으로 건조하여 최종 수지 입자를 형성하고, 상기 입자는 용매나 가소제에 분산시켜 코팅(reverse roll-coating, knife coating, screen coating, spray coating), 그라비아 및 스크린 프린팅(gravure and screen printing), 회전 캐스팅(rototion casting), 쉘 캐스팅 및 딥핑(shell casting and dipping)과 같은 공정을 통해 바닥재, 벽지, 타포린, 우의, 장갑, 자동차 언더 바디 코팅, 실란트, 카펫 타일 등의 제품에 적용된다. 이러한 페이스트 가공용 염화비닐계 중합체는 단독으로는 가공성이 낮아 적용이 어렵고 통상 가소제와 함께 열안정제 등의 여러 가지 첨가제로 구성되는 플라스티졸 형태로 가공되어 사용되고 있으며, 이때 가공성을 우수하게 하기 위해서는 플라스티졸의 점도를 낮추어 흐름성을 좋게 유지하는 것이 중요하다.
이에, 가공성 개선시키기 위하여 가소제의 함량을 조절하여 배합하였으나, 이 때 가소제의 함량을 증가시키면 가공된 후 이행성, 휘발성, 추출성 등으로 인하여 수지 내에서 가소제 자체가 이탈하여 플라스티졸의 본질적인 특성 저하를 유도하고 노화를 촉진시킬 수 있다.
또 다른 경우에 있어서, 가소제의 함량을 증가시키면 플라스티졸의 가공 점도가 큰 폭으로 저하되는 경우도 발생할 수 있고, 이 경우 오히려 코팅 가공 시 졸 드롭 현상 등으로 인해 가공성이 악화될 수 있다.
또한, 최근에는 염화비닐계 중합체의 성능뿐 아니라 인간과 환경에 대한 무독성에 대한 요구가 높아지고 있다. 이에, 염화비닐계 중합체를 이용하여 제조된 성형품에서 발생하는 휘발성 유기화합물을 감소시키기 위한 많은 연구들이 진행되고 있으며, 주로 부원료로 사용되는 각종 첨가제, 예컨대 가소제에 관한 연구들이 진행되고 있다.
예컨대, 유럽 특허출원 EP2039718에는 프탈레이트계 가소제 대신 알킬술포네이트와 디올 디벤조에이트를 기반으로 한 가소제 혼합물을 사용하는 방법을 기술하고 있고, 미국 특허 US7973194에는 디부틸 에스테르, 디벤질 에스테르 및 1,4-시클로헥산 디카르복실산의 부틸 벤질 에스테르를 포함하는 폴리염화비닐 플라스티졸용 고용매화 가소제 배합물을 개시하고 있다.
그러나, 전술한 방법으로는 휘발성 유기화합물 발생을 충분히 감소시키지 못하고 있으며, 특히 환경에 대한 각종 규제가 지속적으로 증가하고 있어 부원료로 사용되는 가소제의 대체만으로는 휘발성 유기화합물 발생 정도를 적정수준 이하로 낮추는데 한계가 있다.
따라서, 염화비닐계 중합체가 갖는 유효한 물성을 유지하면서도 염화비닐계 중합체 자체에서 발생되는 휘발성 유기화합물을 감소시킬 수 있는 방법이 필요하다.
이와 같이, 플라스티졸 배합 시 가소제의 함량을 크게 증가시키지 않더라도 가공 점도를 낮춰 가공성을 개선시킴과 동시에, 가소제 첨가에 따라 급격하게 가공 점도가 저하되지 않고 안정적인 가공 점도가 형성될 수 있도록 하며, 동시에 염화비닐계 중합체에서 발생하는 휘발성 유기화합물을 감소시켜 우수한 포깅 특성을 가질 수 있는 염화비닐계 중합체의 제조방법에 대한 연구가 필요한 실정이다.
선행기술문헌
(특허문헌 1) EP 2039718 B1 (2009.03.25)
(특허문헌 2) US 7973194 B1 (2011.07.05)
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 낮은 점도를 구현하여 플라스티졸 배합 시 가공성이 개선되고, 포깅 특성이 우수하며, 발포 셀의 치밀도가 높아 발포 물성이 우수한 염화비닐계 중합체의 제조방법을 제공하는 것이다.
상기의 과제를 해결하기 위하여, 본 발명의 일 실시예에 따르면, 1) 반응기에 염화비닐계 단량체를 투입하여 중합을 개시하는 단계; 2) 중합 개시 시점부터 중합 전환율이 35% 내지 52%이 되는 시점까지 상기 반응기에 제1 유화제를 연속 투입하는 단계; 및 3) 상기 제1 유화제의 투입이 완료된 이후 제2 유화제를 연속 투입하는 단계를 포함하며, 상기 제1 유화제 및 제2 유화제는 서로 상이한 것이며, 상기 제1 유화제는 숙시네이트(succinate) 화합물인 것인 염화비닐계 중합체의 제조방법을 제공한다.
또한, 본 발명의 다른 일 실시예에 따르면, 상기의 제조방법은 제1 유화제 및 제2 유화제가 5:5 내지 9:1의 중량비로 투입되는 것인 염화비닐계 중합체의 제조방법을 제공한다.
또한, 본 발명의 다른 일 실시예에 따르면, 상기의 제조방법에서 제2 유화제는 설페이트 화합물을 포함하는 것인 염화비닐계 중합체의 제조방법을 제공한다.
본 발명에 따른 제조방법으로 제조된 염화비닐계 중합체는 저점도 특성이 구현되어 가소제의 함량비를 크게 증가시키지 않더라도 우수한 가공성을 가질 수 있다. 또한, 상기한 염화비닐계 중합체는 가소제의 함량 변화에도 점도가 큰 폭으로 변화하지 않음으로써 안정적인 가공 점도를 구현할 수 있다.
또한, 본 발명의 일 실시예에 따른 염화비닐계 중합체의 제조방법은 휘발성 유기화합물의 발생이 억제될 수 있으며, 종래의 염화비닐계 중합체 대비 포깅 특성이 우수한 염화비닐계 중합체를 제조할 수 있다.
또한, 본 발명의 일 실시예에 따른 염화비닐계 중합체의 제조방법은 상기의 우수한 가공성 및 포깅 특성을 만족하면서, 발포 셀이 치밀하게 형성되어 발포 물성이 더욱 개선된 염화비닐계 중합체를 제조할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 실시예 1의 중합체로부터 제조된 발포체의 단면을 광학 현미경으로 촬영한 사진이다.
도 2는 본 발명의 비교예 2의 중합체로부터 제조된 발포체의 단면을 광학 현미경으로 촬영한 도면이다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범위를 한정하기 위한 것이 아니다.
실시예
실시예 1
500 L의 고압반응기에 중합수 175kg, 과황산칼륨(KPS) 125g, 탄산나트륨(Na2CO3) 140g 투입한 후 교반하면서 반응기에 진공을 실시한다. 진공 상태의 반응기에 염화비닐 단량체 175kg를 투입한 후 반응기 온도를 52℃로 승온시켜 중합을 실시하였다. 상기 중합 반응이 개시되면 소듐 디옥틸설포숙시네이트(DOSS) 1.40kg을 4시간 동안 연속적으로 반응기에 투입하였다. 이 때 소듐 디옥틸설포숙시네이트의 투입이 완료된 시점은 중합 전환율이 45%가 되는 시점이었다. 소듐 디옥틸설포숙시네이트의 투입이 완료된 이후 곧바로 소듐 라우릴설페이트(SLS) 0.35kg을 4시간 동안 연속적으로 반응기에 투입하였다. 이 때 소듐 라우릴설페이트의 투입이 완료된 시점은 중합 전환율이 90%가 되는 시점이었다. 소듐 라우릴설페이트의 투입을 종료한 것과 동시에 반응을 종결하고 미반응 염화비닐 단량체를 회수, 제거하여 염화비닐 중합체 라텍스를 수득하였다. 수득한 염화비닐 중합체 라텍스를 분무, 건조하여 분체 상의 염화비닐 중합체를 제조하였다.
실시예 2
상기 실시예 1에서 소듐 디옥틸설포숙시네이트를 1.05kg, 소듐 라우릴 설페이트를 0.7kg 투입하는 것을 제외하고는 실시예 1과 동일한 방법으로 염화비닐 중합체를 제조하였다.
실시예 3
상기 실시예 1에서 소듐 디옥틸설포숙시테이트의 투입이 완료된 시점이 중합 전환율이 52%가 되는 시점이라는 것을 제외하고는 실시예 1과 동일한 방법으로 염화비닐 중합체를 제조하였다.
실시예 4
상기 실시예 1에서 소듐 디옥틸설포숙시네이트를 0.875kg, 소듐 라우릴설페이트를 0.875kg 투입하는 것을 제외하고는 실시예 1과 동일한 방법으로 염화비닐 중합체를 제조하였다.
실시예 5
상기 실시예 1에서 소듐 디옥틸설포숙시네이트를 0.7kg, 소듐 라우릴설페이트를 1.05kg 투입하는 것을 제외하고는 실시예 1과 동일한 방법으로 염화비닐 중합체를 제조하였다.
비교예 1
상기 실시예 1에서 소듐 디옥틸설포숙시네이트를 투입하지 않고, 중합 개시 시점부터 소듐 라우릴설페이트 1.75kg을 연속 투입하되, 8시간 동안(전환율이 90%가 되는 시점까지) 연속적으로 반응기에 투입하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 염화비닐 중합체를 제조하였다.
비교예 2
상기 실시예 1에서 소듐 라우릴설페이트를 투입하지 않고, 중합 개시 시점부터 소듐 디옥틸설포숙시네이트 1.75kg을 연속 투입하되, 8시간 동안(전환율이 90%가 되는 시점까지) 연속적으로 반응기에 투입하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 염화비닐 중합체를 제조하였다.
비교예 3
상기 실시예 1에서 소듐 디옥틸설포숙시네이트 대신 소듐 라우릴설페이트를 사용하고, 소듐 라우릴설페이트 대신 소듐 디옥틸설포숙시네이트를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 염화비닐 중합체를 제조하였다.
비교예 4
상기 실시예 2에서 소듐 디옥틸설포숙시네이트 대신 소듐 라우릴설페이트를 사용하고, 소듐 라우릴설페이트 대신 소듐 디옥틸설포숙시네이트를 사용하는 것을 제외하고는 상기 실시예 2와 동일한 방법으로 염화비닐 중합체를 제조하였다.
비교예 5
상기 실시예 2에서 소듐 디옥틸설포숙시네이트 및 소듐 라우릴설페이트를 각각 순차적으로 투입하지 않고, 소듐 디옥틸설포숙시네이트 및 소듐 라우릴설페이트를 혼합하여 중합 개시 시점부터 연속 투입하되 8시간 동안(전환율이 90%가 되는 시점까지) 연속적으로 반응기에 투입하는 것을 제외하고는 상기 실시예 2와 동일한 방법으로 염화비닐 중합체를 제조하였다.
비교예 6
상기 실시예 1에서 소듐 디옥틸설포숙시네이트를 전환율이 25%가 되는 시점까지 투입하고, 이후 곧바로 소듐 라우릴설페이트를 투입하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 염화비닐 중합체를 제조하였다.
비교예 7
상기 실시예 1에서 소듐 디옥틸설포숙시네이트를 전환율이 60%가 되는 시점까지 투입하고, 이후 곧바로 소듐 라우릴설페이트를 투입하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 염화비닐 중합체를 제조하였다.
실험예 1: 염화비닐 중합체의 포깅(Fogging) 물성 측정
실시예 및 비교예에서 제조된 염화비닐 중합체의 포깅 물성을 분석하기 위하여 휘발성 유기 화합물 발생 정도를 측정하였으며, 상기 휘발성 유기화합물 발생 정도는 DIN 75-201 B에 준하여 포깅 시험기(fogging tester, Horizon-FTS, Thermo Fisher Scientific 社)를 사용하여 측정하고, 그 결과를 하기 표 1에 나타내었다.
구체적으로, 상기 각 염화비닐 중합체 10g을 실린더에 넣고 실린더 상단을 알루미늄 포일로 덮은 후 100℃에서 16시간 동안 가열하였다. 이후, 알루미늄 포일 표면에 포집된 휘발성 유기화합물을 하기 수학식 1의 계산을 통하여 측정하였다. 포깅 물성은 휘발성 유기 화합물 발생량을 나타내는 것으로, 그 측정 값이 작을수록 휘발성 유기 화합물의 발생량이 적고 포깅 물성이 우수한 것을 나타내는 것이다.
[수학식 1]
포깅 물성(mg) = 포깅 시험 후 알루미늄 포일 질량 - 포깅 시험 전 알루미늄 포일 질량
실험예 2: 플라스티졸의 물성 측정
상기 실시예 및 비교예에서 제조한 각 염화비닐 중합체를 포함하는 플라스티졸의 점도 특성 및 발포체의 발포 셀을 측정하고, 그 결과를 하기 표 1에 나타내었다.
1) 발포체 단면 특성(발포 셀)
실시예 1 및 비교예 2에서 제조한 각 염화비닐 중합체 100g과 디아이소닐프탈레이트(DINP) 100g, Ba-Zn계 안정제 3 g, AZO계 발포제 3g을 Werke mixer(EUROSTAR IKA)를 사용하여 800rpm으로 10분 간 교반하여 각 플라스티졸을 제조하였다. 제조된 각 플라스티졸을 이형지에 도포하고 0.5mm 봉으로 코팅한 후 마티스 오븐(Mathis oven)을 사용하여 150℃에서 45초간 건조하여 예비 겔화된 시트(pregelling sheet)를 제조하였고 이를 210℃로 100초 동안 가열하였다. 이후 최종 겔화된 시트(발포체)를 컷팅하여 광학 현미경(NIKON SMZ1500)을 이용하여 발포체 단면을 관찰하였다.
도 1은 실시예 1의 발포체 단면을 촬영한 사진이고, 도 2는 비교예 2의 발포체 단면을 촬영한 사진이다. 도 1 및 도 2에 도시된 바와 같이 제2 유화제로 숙시네이트 화합물이 아닌 다른 종류의 유화제, 구체적으로 소듐 라우릴설페이트 유화제를 사용한 실시예 1은, 제2 유화제를 변경하지 않고 제1 유화제인 숙시네이트 화합물을 계속 사용한 비교예 2에 비해 발포 셀이 치밀하게 형성된 것을 확인할 수 있다.
2) 일반 점도 측정
실시예 및 비교예에서 제조한 각 염화비닐 중합체 100g과 디아이소노닐 프탈레이트(DINP) 66.7g을 Werke mixer(EUROSTAR IKA)를 사용하여 800rpm으로 10분 간 교반하여 각 플라스티졸을 제조하였고, 플라스티졸을 배합하고 1시간 경과 후, 실온(23±3℃에서 플라스티졸의 점도를 측정하였다. 이 때 점도는 브룩필드 점도계(브룩필드 사, DV-1 viscometer)를 이용하여 #64 spindle, 12rpm의 조건에서 측정하였고, 그 결과를 하기 표 1에 나타내었다.
3) 가공 점도 측정
실시예 및 비교예에서 제조한 각 염화비닐 중합체 100g과 디아이소노닐 프탈레이트(DINP) 100g을 Werke mixer(EUROSTAR IKA)를 사용하여 800rpm으로 10분 간 교반하여 각 플라스티졸을 제조하였고, 플라스티졸을 배합하고 1시간 경과 후, 상기 1)의 점도 측정 방법과 동일한 방법으로 점도를 측정하여 그 결과를 하기 표 1에 나타내었다.
구분 제1 유화제 제2 유화제 점도 특성(Pa·s) 포깅 물성 (mg)
종류 투입기간 (전환율,%) 투입량(phm) 종류 투입기간 (전환율,%) 투입량 (phm) 일반점도 가공점도
실시예 1 DOSS 0-45 0.8 SLS 45-90 0.2 65 13 0.22
실시예 2 DOSS 0-45 0.6 SLS 45-90 0.4 79 12 0.35
실시예 3 DOSS 0-52 0.8 SLS 52-90 0.2 61 11 0.24
실시예 4 DOSS 0-45 0.5 SLS 45-90 0.5 94 21 0.41
실시예 5 DOSS 0-45 0.4 SLS 45-90 0.6 113 28 0.48
비교예 1 SLS 0-90 1.0 - - - 230 50 3.42
비교예 2 DOSS 0-90 1.0 - - - 35 4 0.12
비교예 3 SLS 0-45 0.8 DOSS 45-90 0.2 167 36 0.67
비교예 4 SLS 0-45 0.6 DOSS 45-90 0.4 173 34 0.51
비교예 5 DOSS+SLS 0-90 DOSS: 0.6SLS: 0.4 - - - 170 29 0.49
비교예 6 DOSS 0-25 0.8 SLS 25-90 0.2 라텍스 안정성 저하로 건조 불가
비교예 7 DOSS 0-60 0.8 SLS 60-90 0.2 57 6 0.23
상기 표 1에서와 같이, 제1 유화제를 숙시네이트 화합물을 사용하고, 제2 유화제는 제1유화제와는 다른 유화제를 사용하면서, 제1 유화제 투입 기간이 본 발명의 범위를 충족하는 실시예 1 내지 5는 이 중 어느 하나 이상의 조건을 충족하지 못하는 비교예 1 내지 7에 비해 안정적으로 저점도를 구현함과 동시에 포깅 물성이 우수한 것을 확인할 수 있다.
구체적으로, 실시예 1 내지 5는 중합 반응 전체에서 단일 종류의 유화제, 그 중에서도 소듐 라우릴설페이트만 사용한 비교예 1에 비해 저점도 특성을 구현할 수 있고 특히 포깅 물성이 크게 개선한 것을 확인할 수 있으며, 단일 종류의 유화제로써 소듐 디옥틸설포숙시네이트만 사용한 비교예 2에 비해 가소제의 첨가에 따른 급격한 점도 저하가 발생하지 않아 안정적인 점도 물성을 구현할 수 있는 것을 확인할 수 있다. 비교예 2의 경우 가소제가 첨가됨에 따라 점도가 크게 떨어져 가공 시 졸 드롭 현상이 발생하는 등 가공이 어려운 정도로 낮은 점도를 가지는 문제가 있다.
또한, 실시예 1 내지 5는 각각 유화제의 순서를 바꾼 비교예 3 및 4에 비해 저점도 특성을 구현하면서도 포깅 물성이 개선되는 것을 확인할 수 있으며, 제1 유화제 및 제2 유화제를 혼합하여 초기부터 동시에 투입한 비교예 5에 비해서도 저점도 특성을 구현하여 가공성이 개선될 수 있는 것을 예측할 수 있고, 특히 비교예 5에 비해 포깅 물성이 크게 개선되는 것을 확인할 수 있다.
또한, 실시예 1 내지 5는 제1 유화제의 투입 기간이 본 발명의 범위를 벗어난 비교예 6 및 7에 비해 안정적인 점도 물성을 구현하는 정상적인 라텍스의 수득이 가능한 것을 확인할 수 있다. 이 중 비교예 6은 제1 유화제의 투입기간이 너무 짧음으로 인해 중합 안정성이 확보되지 못하고, 정상적인 라텍스의 수득이 어려운 문제가 있음을 확인할 수 있다.
본 발명에서는 염화비닐계 중합체의 포깅 물성 및 플라스티졸의 점도 물성은 유화제의 종류, 투입 기간, 투입 방법에 따라 영향을 받는 물성임을 확인하였고, 제1 유화제로 숙시네이트 화합물을 사용하고, 이를 특정 기간동인 투입하며, 이후 투입되는 제2 유화제는 제1 유화제와는 상이한 것을 사용함으로써 제조된 중합체가 우수한 포깅 물성 및 안정적인 저점도 특성을 구현할 수 있는 것을 확인하였다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어 "염화비닐계 중합체"는 염화비닐계 단량체 단독 또는 염화비닐계 단량체와 염화비닐계 단량체와 공중합 가능한 비닐계 단량체가 혼합되어 있는 혼합물을 중합하여 생성된 화합물을 포괄하여 나타내는 것으로 염화비닐계 단량체로부터 유도된 중합체 사슬을 의미하는 것일 수 있다.
본 명세서에서 사용되는 용어 "플라스티졸(plastisol)"은 가열에 의해 성형, 주형 혹은 연속 필름상으로 가공할 수 있도록 수지와 가소제를 섞은 혼합물을 나타내는 것으로, 예컨대 염화비닐계 중합체와 가소제를 혼합한 페이스트상을 나타내는 것일 수 있다.
본 발명에서 사용되는 용어 "가소제(plasticizer)"는 열가소성 수지에 첨가하여 열가소성을 증대시킴으로써 상기 수지의 고온에서의 성형 가공성을 향상시키는 역할을 하는 유기 첨가제 물질을 나타내는 것일 수 있다.
본 발명의 일 실시예에 따른 염화비닐계 중합체의 제조방법은 1) 반응기에 염화비닐계 단량체를 투입하여 중합을 개시하는 단계; 2) 중합 개시 시점부터 중합 전환율이 35% 내지 52%이 되는 시점까지 상기 반응기에 제1 유화제를 연속 투입하는 단계; 및 3) 상기 제1 유화제의 투입이 완료된 이후 제2 유화제를 연속 투입하는 단계를 포함할 수 있으며, 이 때 상기 제1 유화제 및 제2 유화제는 서로 상이한 것일 수 있으며, 상기 제1 유화제는 숙시네이트(succinate) 화합물인 것일 수 있다.
이하, 각 단계 별로 구체적으로 기술한다.
단계 1
본 발명의 일 실시예에 따른 상기 염화비닐계 중합체의 제조방법의 단계 1)은 반응기에 염화비닐계 단량체를 투입하고 중합을 개시하는 단계로, 염화비닐계 단량체로부터 염화비닐계 중합체를 형성하는 단계이다. 또한, 본 발명의 일 실시예에 따르면 상기 중합은 바람직하게는 유화중합 방법으로 수행되는 것일 수 있다.
구체적으로, 상기 단계 1)의 중합은 중합수 및 중합 개시제가 충진된 중합 반응기에 염화비닐계 단량체를 투입하고 중합 반응시켜 수행하는 것일 수 있다. 이 때 상기 중합수 및 중합 개시제가 충진된 중합 반응기는 중합수 및 중합 개시제를 포함하는 혼합용액이 들어있는 중합 반응기를 나타내는 것일 수 있으며, 상기 혼합용액은 중합수, 중합 개시제 외에 분산제, 분자량 조절제, 전해질 및 반응억제제 등을 더 포함할 수 있으나, 이에 제한되는 것은 아니며, 바람직하게는 단계 1)에서 상기 반응기에 카보네이트계 금속염을 더 투입하는 것일 수 있다.
본 발명의 일 실시예에 따르면 중합 개시제는 상기 염화비닐계 단량체 100 중량부에 대하여 0.01 중량부 내지 2.0 중량부로 사용되는 것일 수 있다. 상기 중합 개시제로는 특별히 제한되는 것은 아니나, 예컨대 퍼옥시 카보네이트류, 퍼옥시 에스테르류 및 아조계 화합물로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다. 구체적으로는, 상기 중합 개시제는 라우릴 퍼옥사이드(LPO), 디-2-에틸헥실 퍼옥시카보네이트(OPP), 디이소프로필 퍼옥시 디카보네이트, t-부틸 퍼옥시피발레이트, t-부틸퍼옥시네오데카노에이트, 2,2-아조비스이소부티로니트릴 등을 단독으로 사용하거나, 2종 이상을 혼합하여 사용할 수 있다.
또한, 상기 중합 개시제는 수용성 개시제일 수 있다. 상기 중합 개시제가 수용성 개시제일 경우에는, 특별히 제한되는 것은 아니나, 예컨대 과황산 칼륨(KPS), 과황산 암모늄 및 과산화수소로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있으며, 본 발명에서 바람직하게는 중합 개시제로 수용성 개시제를 사용할 수 있으며, 구체적으로 과황산 칼륨을 사용할 수 있다.
또한, 상기 중합수는 염화비닐계 단량체 100 중량부 대비 70 중량부 내지 150 중량부로 사용하는 것일 수 있으며, 상기 중합수는 탈이온수일 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 염화비닐계 단량체는 염화비닐 단량체 단독 또는 염화비닐 단량체와, 염화비닐 단량체와 공중합 가능한 비닐계 단량체가 혼합되어 있는 혼합물을 의미하는 것일 수 있다. 즉, 본 발명의 일 실시예에 따른 상기 염화비닐계 중합체는 염화비닐 단독 중합체이거나, 염화비닐 단량체 및 이와 공중합이 가능한 비닐계 단량체의 공중합체인 것일 수 있다. 만약, 상기 염화비닐계 중합체가 상기의 공중합체일 경우에는 염화비닐이 50%이상 포함되어 있는 것일 수 있다.
상기 염화비닐 단량체와 공중합체 가능한 비닐계 단량체는 특별히 제한되는 것은 아니나, 예컨대 에틸렌, 프로필렌, 부텐 등의 올레핀(olefin) 화합물, 초산 비닐, 프로피온산 비닐, 스테아린산 비닐 등의 비닐 에스테르(vinyl ester)류, 아크릴로니트릴 등의 불포화 니트릴류, 비닐 메틸 에테르, 비닐 에틸 에테르, 비닐 옥틸 에테르, 비닐 라우릴 에테르 등의 비닐 알킬 에테르류, 염화 비닐리덴 등의 할로겐화 비닐리덴(vinylidene)류, 아크릴산, 메타크릴산, 이타콘산, 말레인산, 푸마르산, 무수 말레산, 무수 이타콘산 등의 불포화 지방산 및 이들 지방산의 무수물, 아크릴산 메틸, 아크릴산 에틸, 말레인산 모노 메틸, 말레인산 디메틸, 말레인산 부틸벤질 등의 불포화 지방산 에스테르(ester)류, 디알릴 프탈레이트 등의 가교성 단량체 등일 수 있으며, 상기 비닐계 단량체는 단독 또는 2종 이상의 조합일 수 있다
또한, 본 발명의 일 실시예에 따른 염화비닐계 중합체의 제조방법은 상기 단계 1)에서 pH를 8 이상으로 제어하는 것으로부터 시작될 수 있으며, 중합 혼합물에 카보네이트계 금속염을 투입하는 것을 통해 구현될 수 있다.
상기 카보네이트계 금속염은 중합 혼합물의 pH를 제어하는 역할을 하는 것으로서, pH를 일정 수준으로 상승시킬 수 있는 물질일 필요가 있으며, 구체적으로 탄산나트륨(Na2CO3), 탄산수소나트륨(NaHCO3) 및 탄산칼륨(K2CO3)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 상기와 같이 중합 혼합물의 pH를 일정 수준, 예컨대 pH 8 이상으로 상승시킬 수 있는 물질을 첨가하는 것은 중합체 내 결함의 개수를 낮추는 측면에서 바람직하다.
상기 카보네이트계 금속염은 염화비닐계 단량체의 총 중량을 기준으로 100 내지 1500 ppm의 양으로 투입할 수 있고, 바람직하게는 200ppm 이상, 300ppm 이상 투입할 수 있으며, 1300ppm 이하, 1200ppm 이하, 1000ppm 이하 또는 800 ppm 이하의 양을 투입할 수 있다. 이 범위 내의 카보네이트계 금속염의 함량은 상기 혼합물의 pH를 8 이상으로 제어할 수 있으며, 뿐만 아니라 최종 중합체 내 올레핀형 결함 및 클로로형 결함의 개수를 크게 저감시키는 데에 영향을 줄 수 있다.
또, 상기 카보네이트계 금속염은 중합 초기에 투입하는 것이 유효할 수 있는데, 특히 중합이 시작되기 전, 즉 전환율이 0%인 것이 카운트 되기 전의 시점에 투입될 수 있다. 다시 말해서, 중합 혼합물에 카보네이트계 금속염을 투입하고 중합을 시작할 수 있고, 투입 방법으로는 연속 투입, 분할 투입 및 일괄 투입 등 특별히 제한되는 사항은 없으며, 전술한 함량을 만족하는 수준에서 위 언급된 시점에 투입하는 경우 전술한 효과를 달성하는 데에 영향이 있을 수 있다.
이처럼, 카보네이트계 금속염을 중합 시 첨가하는 경우 반응 pH를 적절하게 제어하는 경우에는 최종 염화비닐계 중합체의 결함 개수를 저감할 수 있고, 특히 올레핀형 결함 중에서는 유사-말단 트랜스형 결함의 비율을 유지할 수 있으며, 클로로형 결함 중에서는 말단 대칭형 클로로 결함의 비율을 유지할 수 있어, 종국적으로는 내열성 증대에 큰 기여를 할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 반응 억제제는 특별히 제한되는 것은 아니나, 예컨대 파라퀴논(paraquinone), 하이드로퀴논, 부틸레이티드 하이드록시 톨루엔, 모노메틸 에테르 하이드로퀴논, 4차 부틸 카테콜, 디페닐 아민, 트리이소프로파놀 아민, 트리에탄올 아민 등을 사용할 수 있으며, 상기 분산제는 특별히 제한되는 것은 아니나, 예컨대 라우릴 알코올, 미리스틱 알코올, 스테아릴 알코올 등의 고급 알코올류 또는 라우릴산, 미리스틴산, 팔미트산, 스테아린 산 등의 고급 지방산을 사용할 수 있다.
또한, 상기 분자량 조절제는 특별히 한정되는 것은 아니나, 예컨대 n-부틸머캅탄, n-옥틸머캅탄, n-도데실머캅탄, t-도데실머캅탄 등일 수 있으며, 상기 전해질은 일례로 염화칼륨, 염화나트륨, 중탄산칼륨, 탄산나트륨, 탄산칼륨, 아황산수소칼륨, 아황산수소나트륨, 피로인산사칼륨, 피로인산사나트륨, 인산삼칼륨, 인산삼나트륨, 인산수소이칼륨 및 인산수소이나트륨으로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 상기 전해질은 특별히 한정되는 것은 아니나, 예컨대 염화칼륨, 염화나트륨, 중탄산칼륨, 탄산나트륨, 탄산칼륨, 아황산수소칼륨, 아황산수소나트륨, 피로인산사칼륨, 피로인산사나트륨, 인산삼칼륨, 인산삼나트륨, 인산수소이칼륨 및 인산수소이나트륨으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
단계 2
본 발명의 일 실시예에 따른 염화비닐계 중합체의 제조방법에서 상기 단계 2)는 제1 유화제를 투입하는 것을 구체화한 단계로, 중합 개시 시점부터 중합 전환율이 35% 내지 52%가 되는 시점까지 상기 반응기에 제1 유화제를 연속 투입하는 단계일 수 있다. 또한, 상기 제1 유화제는 숙시네이트 화합물일 수 있다.
상기 제1 유화제는 중합 개시 시점부터 중합 전환율이 35% 내지 52%인 시점, 바람직하게는 35% 내지 48%인 시점, 보다 바람직하게는 40% 내지 46%인 시점까지 연속 투입하는 것일 수 있다. 여기에서, 중합 개시 시점은 중합 전환율이 0%로 카운트되는 시점을 나타내는 것일 수 있고, 예컨대 반응 혼합물이 존재하는 반응기 내 온도가 중합 온도에 도달하여 중합 반응이 개시되는 시점을 나타내는 것일 수 있다. 제1 유화제를 중합 전환율이 35% 미만인 시점까지 투입하는 경우에는 중합체 초기 입자가 모두 형성되기 이전에 유화제의 종류가 변경되어 중합체 입자의 입경 제어가 용이하지 않고, 목적하는 수준의 점도 특성을 벗어나게 하는 중합체가 생성되는 문제가 발생할 수 있다. 또한, 제2 유화제가 중합 반응물로 너무 빨리 투입됨에 따라 제2 유화제가 가수분해 조건에 노출되는 시간이 증가하여 가수분해될 확률이 높아지므로 제2 유화제의 가수분해물에 의해 제조된 중합체의 포깅 물성이 악화되는 문제가 발생할 수 있다. 예컨대, 전환율이 35% 미만인 시점까지 숙시네이트 화합물을 투입하고, 이후에는 제2 유화제로써 설페이트 화합물 등으로 종류를 변경하여 투입하는 경우, 상기 유화제 변경 시점이 너무 빨라 제2 유화제인 설페이트 화합물 내 -SO-결합이 가수분해될 가능성이 높아지고, 이에 따라 포깅 물성을 악화시키는 알코올 화합물이 다량 발생하여 제조된 중합체의 포깅 물성이 크게 악화될 수 있다. 또한, 전환율이 52%를 초과하여 제1 유화제, 즉 숙시네이트 화합물을 계속 투입하는 경우에는 전체 반응계에서 동일한 양의 제1 유화제를 투입하는 조건에서 52% 이하의 시점까지 투입하는 경우에 비해 시간 당 투입되는 제1 유화제의 양이 더 적어질 수 있고, 이에 따라 초기 입자 생성 시 조대한 입자가 형성되거나, 입자 수가 현저히 작아 제조된 중합체의 점도가 크게 떨어지는 문제가 발생할 수 있다. 또한, 투입량을 제어하지 않는 경우에는 가소제와의 상용성이 높은 숙시네이트 화합물이 과도하게 많이 투입됨에 따라 플라스티졸 배합 시 가공이 어려울 정도로 점도가 크게 떨어지는 문제가 발생할 수 있다. 또한, 제조된 중합체 내 제2 유화제에 의한 영향력이 줄 수 있고, 이로 인해 발포 가공 시 발포 셀의 치밀도가 저하되는 등 발포 물성이 악화되는 문제가 발생할 수 있다.
또한, 상기 제1 유화제는 숙시네이트(succinate) 화합물일 수 있으며, 여기에서 숙시네이트 화합물은 숙시네이트 작용기를 포함하는 화합물을 총괄하여 지칭하는 것이다. 구체적으로 상기 숙시네이트 화합물은 설포숙시네이트 화합물을 포함하는 것일 수 있으며, 더욱 구체적으로 디옥틸설포숙시네이트, 디트리데실 설포숙시네이트, 라우릴에테르 설포숙시네이트(라우레스 설포숙시네이트) 및 라우릴 설포숙시네이트로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다. 이 중 중합 반응의 안정성을 더욱 개선하고, 제조된 중합체의 점도 특성을 더욱 개선하는 측면에서 바람직하게는 디옥틸설포숙시네이트를 포함하는 것일 수 있다.
이 때, 상기 숙시네이트 화합물은 알칼리 금속, 알칼리 토금속, 암모늄 이온, 아민 및/또는 아미노 알코올과 이온 결합한 염의 형태로 사용되는 것일 수 있으며, 예컨대 소듐 이온(Na+)과 이온 결합한 염의 형태로 사용되는 것일 수 있다. 일례로, 소듐 디옥틸설포숙시네이트, 소듐 디트리데실 설포숙시네이트, 디소듐 라우레스 설포숙시네이트 또는 소듐 라우릴 설포숙시네이트의 형태로 사용되는 것일 수 있다.
본 발명의 일 실시예에서 제1 유화제로 사용되는 숙시네이트 화합물은 가소제와의 상용성이 우수하므로 플라스티졸 배합 시 저점도 특성을 구현할 수 있게 하여, 플라스티졸의 가공성을 크게 개선할 수 있다. 또한, 숙시네이트 화합물은 다른 종류의 유화제에 비해 구조를 안정적으로 유지할 수 있어, 휘발성 유기 화합물로 전환될 수 있는 원인 물질의 발생을 억제할 수 있고, 이에 따라 포깅 특성이 개선된 중합체가 제조될 수 있다.
이와 달리, 제1 유화제로써 설페이트 화합물과 같이 숙시네이트 화합물이 아닌 다른 종류의 화합물을 사용하는 경우, 숙시네이트 화합물에 비해 구조적 안정성이 떨어지기 때문에 가수분해가 일어날 확률이 높아지고, 특히 중합 초기부터 투입되는 경우 가수분해 조건에서 오랜 기간 노출되어 가수분해물의 비율이 높아질 수 있다. 이 때 가수분해물은 제조된 중합체의 포깅 물성을 악화시키는 문제의 원인이 된다. 예컨대, 소듐 라우릴 설페이트와 같은 설페이트 유화제는 구조 내 S-O 결합의 낮은 결합력으로 인해 상기 결합 구조가 R-OH(소듐 라우릴 설페이트인 경우, R은 라우릴(도데실)을 의미한다)로 변질될 수 있으며, 상기 변질된 화합물은 포깅 물성을 악화시키는 원인 물질이 될 수 있다. 또한, 숙시네이트 화합물에 비해 가소제와의 상용성이 좋지 않기 때문에 단독으로 사용하여 제조한 중합체로 플라스티졸을 제조할 때 저점도 특성을 구현할 수 없어 가공성이 열세해지는 문제점이 있고, 가공성을 개선하기 위하여 플라스티졸 배합 시 가소제의 함량을 높이는 경우 가공성을 개선될 수 있으나, 가소제 증량에 따른 이행성 현상이 악화되는 문제가 발생할 수 있다. 이와 같이, 가공성 개선을 위한 저점도 특성을 구현하면서도 포깅 물성을 개선하기 위해서는 단계 2)의 기간 동안 숙시네이트 화합물을 적용하는 것이 바람직하다.
또한, 상기 제1 유화제를 상기한 중합 기간 동안 연속 투입함으로써 일괄 투입 대비 중합체 입자의 입경 조절이 용이하여 라텍스 안정성 및 플라스티졸 배합 시 점도 안정성을 더욱 개선할 수 있다. 이는, 중합 초기 단 시간에 유화제 농도가 급격하게 높아져 입경이 너무 작은 입자나, 비정상적인 중합체 입자가 형성되는 것을 방지하고, 중합 반응물 내 유화제의 농도를 일정한 수준으로 유지할 수 있기 때문에 구현될 수 있는 특성일 수 있다.
단계 3
본 발명의 일 실시예에 따른 상기 단계 3)은 상기 단계 2)에서 투입한 제1 유화제의 투입이 완료된 이후 제2 유화제를 연속 투입하는 단계일 수 있으며, 이 때 제1 유화제와 제2 유화제는 서로 상이한 것을 특징으로 한다.
본 발명의 일 실시예에 따른 상기 제2 유화제는 제1 유화제와 상이한 것이라면 그 종류를 제한하지는 않으며, 예컨대 전술한 제1 유화제보다 임계 미셀농도(critical micelle concentration, CMC)가 높은 것일 수 있다.
제1 유화제보다 임계 미셀농도가 높은 유화제를 제2 유화제로 사용하는 경우, 중합 반응 중 임계 미셀농도가 낮은 유화제를 계속하여 사용함에 따라 중합 초기 이외에 입자가 계속하여 생성되는 것을 방지할 수 있고, 입자의 추가 형성을 방지함으로써 저점도 특성을 나타내는 염화비닐계 중합체를 제조할 수 있으므로 더욱 바람직하다.
구체적으로 상기 제2 유화제는 설페이트 화합물을 포함하는 것일 수 있으며, 예컨대 알킬 설페이트, 알킬 에테르 설페이트, 설페이티드 알카놀아마이드, 모노글리세라이드 설페이트, 글리세롤 에테르 설페이트, 지방산 에테르 설페이트 및 지방산 아미드 에테르 설페이트를 포함하는 것일 수 있다. 더욱 구체적으로 라우릴 설페이트, 도데실 벤젠 설페이트, 세틸스테아릴 설페이트, 라우릴 에테르 설페이트(라우레스 설페이트)로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.
이 때, 상기 설페이트 화합물은 알칼리 금속, 알칼리 토금속, 암모늄 이온, 아민 및/또는 아미노 알코올과 이온 결합한 염의 형태로 사용되는 것일 수 있으며, 예컨대 소듐 이온(Na+)과 이온 결합한 염의 형태로 사용되는 것일 수 있다. 일례로, 소듐 라우릴 설페이트, 소듐 도데실 벤젠 설페이트, 소듐 세틸스테아릴 설페이트, 소듐 라우릴에테르 설페이트(소듐 라우레스 설페이트) 또는 암모늄 라우릴 설페이트의 형태로 사용되는 것일 수 있다. 이 중, 가소제와의 상용성을 보완하여 가소제가 첨가되더라도 급격하게 점도가 떨어지는 것을 방지하고, 더욱 안정적인 점도 특성을 보이며, 발포 성형 시 발포 셀이 치밀하게 형성되고 발포 물성이 더욱 개선되는 측면에서 바람직하게는 소듐 라우릴 설페이트를 포함하는 것일 수 있다. 여기에서 가소제와의 상용성을 보완하는 것은, 우수한 가소제 상용성을 가지는 제1 유화제에 의해 가소제 첨가에 따라 점도가 감소하는 것을 적절하게 제어하여 가공할 수 없을 정도로 급격한 점도 저하가 발생하는 것을 방지하는 것을 나타낸다.
상기와 같이, 제1 유화제 투입 이후 화합물의 종류가 상이한 제2 유화제를 더 투입함으로써 가소제와의 상용성을 보완하여 가소제가 첨가되더라도 급격하게 점도가 떨어지는 것을 방지할 수 있으므로 플라스티졸 배합 시 안정적인 가공 점도를 확보할 수 있다. 또한, 제1 유화제만으로는 개선의 한계가 있었던 발포 셀의 치밀도, 발포 물성을 더욱 개선할 수 있다.
또한, 상기 제2 유화제는 구체적으로, 제1 유화제의 투입이 완료된 이후에 투입을 개시하여, 중합 전환율이 70% 내지 95%, 바람직하게는 75% 내지 92%, 보다 바람직하게는 84% 내지 92%인 시점까지 연속 투입되는 것일 수 있다. 또한, 상기 제1 유화제 투입이 완료된 이후 시점은 구체적으로 제1 유화제의 투입이 완료된 직후 시점일 수 있고, 이 경우 제2 유화제는 제1 유화제의 투입이 완료된 직후부터 곧바로 투입되는 것일 수 있고, 상기 투입 종료 시점은 구체적으로 반응이 종결되는 시점일 수 있다.
또한, 상기 제1 유화제 및 제2 유화제는 5:5 내지 9:1의 중량비로 각각 투입되는 것일 수 있으며, 구체적으로 6:4 내지 9:1, 보다 구체적으로 6:4 내지 8:2의 중량비로 각각 투입되는 것일 수 있다. 상기의 중량비를 충족할 때 저점도 특성이 용이하게 구현됨과 동시에 포깅 물성이 더욱 개선될 수 있으며, 제2 유화제의 중량비가 너무 낮은 경우에는 초기 생성되는 입자의 안정성이 떨어지는 문제점이 발생할 수 있다.
또한, 상기 제1 유화제 및 제2 유화제의 총 투입량은 염화비닐계 단량체 100 중량부 기준으로 0.1 중량부 내지 5.0 중량부일 수 있고, 구체적으로는 0.1 중량부 내지 3.0 중량부, 보다 구체적으로는 0.5 내지 1.5 중량부일 수 있다.
또한, 상기 제1 유화제 및 제2 유화제를 혼합하여 연속 투입하는 경우에는 구조적 안정성이 떨어지는 제2 유화제가 중합 초기부터 투입됨에 따라 제2 유화제에 의한 가수분해물의 비율이 증가하고, 이에 따라 제조된 중합체의 포깅 물성이 악화되는 문제가 발생할 수 있다. 또한, 제1 유화제 및 제2 유화제를 혼합하여 연속 투입할 때 저점도 특성이 구현되지 못하여 가공성 개선 효과를 확보하지 못하는 문제가 발생할 수 있다. 따라서, 상기 제1 유화제 및 제2 유화제는 순차적으로 투입하는 경우에 비로소 본 발명이 목적하는 효과, 저점도 특성의 구현을 통한 가공성 개선 및 포깅 특성 개선을 달성할 수 있다.
또한, 본 발명이 일 실시예에 따른 염화비닐계 중합체 제조방법은, 단일 반응기에서 2 종의 유화제를 사용함으로써 한 번의 중합반응을 통해 중합체를 제조하더라도 가공성이 크게 개선될 수 있는 수준의 점도 특성을 나타냄과 동시에 가소제의 첨가량에 따라 점도가 급격하게 감소하지 않고 안정적인 점도 특성을 보이며, 포깅 특성 및 발포 물성이 우수한 염화비닐계 중합체를 제조할 수 있다. 또한, 상기의 제조방법은 점도 특성이 상이하고, 포깅 물성, 발포 물성이 상이한 각각의 중합체를 블렌딩하는 경우와 달리 각각의 중합체를 저장하는 저장고(사일로), 균일하게 블렌딩하기 위한 계량, 혼합 저장고가 추가로 필요하지 않아 제조 설비가 비교적 간소화되고, 또한 별도의 블렌딩 공정이 포함되지 않아 공정 상 효율이 개선되는 이점이 있다. 또한, 개별적으로 중합체를 만들고 블렌딩하는 경우에는 라텍스 안정성 및 포깅 물성을 우수한 수준으로 확보하기 위해 블렌딩된 중합체 내 총 유화제의 함량비를 제어할 수 밖에 없고, 이로 인해 각각의 중합체를 제조할 때 사용될 수 있는 유화제의 함량이 상대적으로 적어지기 때문에 각각의 중합에서 중합 안정성을 확보할 수 없는 문제가 발생할 수 있으나, 본 발명의 제조방법은 단일 중합 반응으로 제조될 수 있으므로, 중합 반응 시 안정성을 유지할 수 있는 만큼의 충분한 양의 유화제를 사용할 수 있어 우수한 중합 안정성을 가질 수 있는 이점이 있다.
본 발명의 일 실시예에 따라 진행된 상기 중합은 반응기 내 압력이 3.0 내지 5.0 kgf/cm2 또는 전환율이 90 ± 5%이 될 때 종결시킬 수 있다.
또한, 본 발명에 따르면, 제조된 염화비닐계 중합체를 건조하는 단계를 더 포함할 수 있으며, 이 때 건조는 특별히 한정되지 않고 당업계에 통상적으로 공지된 방법에 의하여 수행할 수 있으며, 구체적으로는 분무건조방식에 따라 수행할 수 있다. 상기 건조 이전에, 탈수 및 세척 단계를 더 포함할 수 있다.

Claims (12)

1) 반응기에 염화비닐계 단량체를 투입하여 중합을 개시하는 단계;
2) 중합 개시 시점부터 중합 전환율이 35% 내지 52%가 되는 시점까지 상기 반응기에 제1 유화제를 연속 투입하는 단계; 및
3) 상기 제1 유화제의 투입이 완료된 이후 제2 유화제를 연속 투입하는 단계를 포함하며,
상기 제1 유화제 및 제2 유화제는 서로 상이한 것이며,
상기 제1 유화제는 숙시네이트(succinate) 화합물인 것인 염화비닐계 중합체의 제조방법.
제1항에 있어서,
상기 제2 유화제는 중합 전환율이 70% 내지 95%가 되는 시점까지 연속 투입되는 것인 염화비닐계 중합체의 제조방법.
제1항에 있어서,
상기 제2 유화제는 제1 유화제의 투입이 완료된 직후부터 바로 투입되는 것인 염화비닐계 중합체의 제조방법.
제1항에 있어서,
상기 제1 유화제 및 제2 유화제는 5:5 내지 9:1의 중량비로 투입되는 것인 염화비닐계 중합체의 제조방법.
제1항에 있어서,
상기 제2 유화제는 상기 제1 유화제에 비해 임계 미셀농도(critical micelle concentration, CMC)가 높은 것인 염화비닐계 중합체의 제조방법.
제1항에 있어서,
상기 제2 유화제는 설페이트(sulfate) 화합물을 포함하는 것인 염화비닐계 중합체의 제조방법.
제1항에 있어서,
상기 제1 유화제 및 제2 유화제 총 투입량은 염화비닐계 단량체 100 중량부 기준으로 0.1 내지 5.0 중량부인 것인 염화비닐계 중합체의 제조방법.
제1항에 있어서,
상기 제1 유화제는 소듐 디옥틸설포숙시네이트, 소듐 디트리데실 설포숙시네이트, 디소듐 라우레스 설포숙시네이트 및 소듐 라우릴 설포숙시네이트로 이루어진 군으로부터 선택된 1종 이상의 숙시네이트 화합물을 포함하는 것인 염화비닐계 중합체의 제조방법.
제1항에 있어서,
상기 제2 유화제는 알킬 설페이트, 알킬 에테르 설페이트, 설페이티드 알카놀아마이드, 모노글리세라이드 설페이트, 글리세롤 에테르 설페이트, 지방산 에테르 설페이트 및 지방산 아미드 에테르 설페이트로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것인 염화비닐계 중합체의 제조방법.
제1항에 있어서,
상기 단계 1)에서 카보네이트계 금속염을 더 투입하는 것인 염화비닐계 중합체의 제조방법.
제1항에 있어서,
상기 단계 1)에서 개시제 및 중합수를 더 투입하는 것인 염화비닐계 중합체의 제조방법.
제1항에 있어서,
상기 중합은 유화중합 방법으로 수행하는 것인 염화비닐계 중합체의 제조방법.
PCT/KR2020/012064 2019-09-11 2020-09-07 염화비닐계 중합체의 제조방법 WO2021049836A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080031821.5A CN113748139B (zh) 2019-09-11 2020-09-07 氯乙烯基聚合物的制备方法
EP20863125.9A EP4029885A4 (en) 2019-09-11 2020-09-07 PROCESS FOR PRODUCTION OF VINYL CHLORIDE BASED POLYMER
US17/606,358 US20220227899A1 (en) 2019-09-11 2020-09-07 Method for producing vinyl chloride-based polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190113003 2019-09-11
KR10-2019-0113003 2019-09-11

Publications (1)

Publication Number Publication Date
WO2021049836A1 true WO2021049836A1 (ko) 2021-03-18

Family

ID=74865907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012064 WO2021049836A1 (ko) 2019-09-11 2020-09-07 염화비닐계 중합체의 제조방법

Country Status (5)

Country Link
US (1) US20220227899A1 (ko)
EP (1) EP4029885A4 (ko)
KR (1) KR102524522B1 (ko)
CN (1) CN113748139B (ko)
WO (1) WO2021049836A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114181336A (zh) * 2021-12-16 2022-03-15 安徽天辰化工股份有限公司 一种超小粒径pvc种子及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258303A (ja) * 1994-03-25 1995-10-09 Nippon Zeon Co Ltd 塩化ビニル系樹脂の製造方法
KR20010020484A (ko) * 1998-04-27 2001-03-15 그라지아노 바이도토 폴리비닐클로라이드의 제조방법 및 이를 포함하는 조성물
JP2002020407A (ja) * 2000-07-05 2002-01-23 Kanegafuchi Chem Ind Co Ltd 塩化ビニル系ペースト樹脂の製造方法
KR100676541B1 (ko) * 2001-06-15 2007-01-30 사우디 베이식 인더스트리즈 코포레이션 폴리염화비닐 중합공정
EP2039718A2 (de) 2007-09-19 2009-03-25 Lanxess Deutschland GmbH Schnell gelierende Weichmacherzubereitungen
US7973194B1 (en) 2010-03-18 2011-07-05 Eastman Chemical Company High solvating cyclohexane dicarboxylate diesters plasticizers
KR20120107201A (ko) * 2011-03-21 2012-10-02 주식회사 엘지화학 페이스트 염화비닐계 수지의 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2714948C2 (de) * 1977-04-02 1985-01-10 Hoechst Ag, 6230 Frankfurt Verfahren zur kontinuierlichen Herstellung von Vinylchlorid-Polymerisaten
EP0144614B1 (de) * 1983-12-03 1989-05-31 Hüls Aktiengesellschaft Verfahren zur Herstellung von verpastbaren Vinylchloridpolymerisaten
DE19744845A1 (de) * 1997-10-10 1999-04-15 Vinnolit Kunststoff Gmbh Verfahren zur Herstellung von Homo- und Mischpolymerisaten des Vinylchlorids
KR101433998B1 (ko) * 2010-12-27 2014-08-27 주식회사 엘지화학 비발포성 염화비닐계 페이스트 수지 및 그 제조방법
KR101563766B1 (ko) * 2011-09-02 2015-10-29 주식회사 엘지화학 중합도가 개선된 염화비닐 수지의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258303A (ja) * 1994-03-25 1995-10-09 Nippon Zeon Co Ltd 塩化ビニル系樹脂の製造方法
KR20010020484A (ko) * 1998-04-27 2001-03-15 그라지아노 바이도토 폴리비닐클로라이드의 제조방법 및 이를 포함하는 조성물
JP2002020407A (ja) * 2000-07-05 2002-01-23 Kanegafuchi Chem Ind Co Ltd 塩化ビニル系ペースト樹脂の製造方法
KR100676541B1 (ko) * 2001-06-15 2007-01-30 사우디 베이식 인더스트리즈 코포레이션 폴리염화비닐 중합공정
EP2039718A2 (de) 2007-09-19 2009-03-25 Lanxess Deutschland GmbH Schnell gelierende Weichmacherzubereitungen
US7973194B1 (en) 2010-03-18 2011-07-05 Eastman Chemical Company High solvating cyclohexane dicarboxylate diesters plasticizers
KR20120107201A (ko) * 2011-03-21 2012-10-02 주식회사 엘지화학 페이스트 염화비닐계 수지의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4029885A4

Also Published As

Publication number Publication date
EP4029885A1 (en) 2022-07-20
EP4029885A4 (en) 2022-11-02
KR102524522B1 (ko) 2023-04-24
CN113748139A (zh) 2021-12-03
KR20210031393A (ko) 2021-03-19
US20220227899A1 (en) 2022-07-21
CN113748139B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
WO2012008654A1 (ko) 입자 균일성과 열 안정성이 뛰어난 염화비닐계 수지의 제조방법
WO2016195434A1 (ko) 염화비닐계 공중합체의 제조방법 및 이로부터 제조된 염화비닐계 공중합체
WO2010143893A2 (ko) 저점도 특성이 우수한 발포용 염화비닐계 수지 및 이의 제조방법
WO2021049836A1 (ko) 염화비닐계 중합체의 제조방법
WO2016195436A1 (ko) 염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2016182338A1 (ko) 아크릴계 가공조제 및 이를 포함하는 염화비닐계 수지 조성물
WO2017069425A1 (ko) 저전단 영역에서 고점도를 갖는 염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 플라스티졸
WO2015160145A1 (ko) 클로로에틸렌계 나노복합체 조성물 및 그 제조방법
KR101770016B1 (ko) 염화비닐계 수지 성형용 가공 조성물 및 이로부터 제조된 염화비닐계 수지 성형품
WO2017104978A1 (ko) 염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 플라스티졸
WO2018070804A1 (ko) 염화비닐계 중합체 조성물 및 이의 제조방법
WO2018044017A1 (ko) 염화비닐계 중합체의 제조방법 및 염화비닐계 중합체의 제조장치
WO2020091429A1 (ko) 염화비닐계 중합체 제조용 조성물 및 이를 이용한 염화비닐계 중합체의 제조방법
WO2021132870A1 (ko) 염화비닐 수지 조성물
WO2021060909A1 (ko) 염화비닐계 중합체 중합용 조성물 및 이를 이용한 염화비닐계 중합체의 제조방법
WO2020076023A1 (ko) 염화비닐계 중합체 중합용 조성물 및 이를 이용한 염화비닐계 중합체의 제조방법
WO2017061829A1 (ko) 염화비닐계 중합체 및 이의 제조방법
WO2020091342A1 (ko) 염화비닐계 중합체 및 이의 제조방법
JP3003247B2 (ja) 電子線架橋性プラスチゾル
WO2017191899A1 (ko) 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체
KR102345310B1 (ko) 염화비닐계 중합체 및 이의 제조방법
WO2017188594A1 (ko) 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체
WO2020060028A1 (ko) 염화비닐계 중합체 및 이의 제조방법
WO2020091340A1 (ko) 염화비닐계 중합체의 제조방법
WO2019022356A1 (ko) 염화비닐계 중합체 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020863125

Country of ref document: EP

Effective date: 20220411